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CO-VOLUME METHODS FOR DEGENERATE PARABOLIC
PROBLEMS

LISA A. BAUGHMAN AND NOEL J. WALKINGTON*

Abstract. A complementary volume (co-volume) technique is used to develop a physically ap-
pealing algorithm for the solution of degenerate parabolic problems, such as the Stefan problem. It
is shown that, these algorithms give rise to a discrete semigroup theory that parallels the continuous
problem. In particular, the discrete Stefan problem gives rise to nonlinear semigroups in both the
discrete L1 and H~x spaces.

Key words, semigroup, co-volume, Stefan problem.
A M S ( M O S ) subject classifications. 65M12, 35K55.

1. Introduction. The classical Stefan problem models heat conduction in a ma-
terial which may undergo a change in phase. In each of the phases, the balance of
energy reduces to the classical heat conduction problem,

de
— - kiAu = / , in n tat

where e is the energy, u is the temperature and k{ the conductivity in phase i which
currently occupies a region ftt- C ft. In each phase, u is typically an affine function of
the energy e with slope c,-, the specific heat of the ith phase; however, any monotone
function of e may be accommodated. It is assumed that each phase change takes
place at a known temperature. At an interface between two phases, the balance of
energy requires the jump in the normal component of the flux, q = —fcVu, to equal
the product of the latent heat L associated with the phase change and the normal
velocity of the interface. This problem can be compactly written as a distributional
equation

(1) | - A t f ( e ) = / tn l> ' ( (0 ,T)xn) ,

where K : IR —• IR is a monotone function. A typical form of K for the two phase
problem is shown in Figure 1. It can be shown that each term in equation (1) is in
j5r""1(n), so that (1) may also be written in the form,

which holds for all functions v € HQ(H), provided the first term is interpreted as a
dual pairing. The description of the problem is completed by specifying an initial
condition for e and boundary conditions on u.

Note that by adding a constant to u we may always assume that K(0) = 0, and
this will be assumed in the sequel. Equation (1) can be used to model several other
degenerate diffusion problems, eg. diffusion through porous media, the only difference
being the form of the monotone function K. For the Stefan problem, K is Lipschitz,

* Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213. The second
author was supported by the National Science Foundation Grant No. DMS-9002768 while this work
was undertaken.
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u = K(e)

Figure 1. Energy Temperature Relationship.



and this frequently leads to estimates on the temperature u; however, this is not so for
the porous medium equation. Below we will use terminology appropriate to to Stefan
problem; however, all of the results are applicable to the porous medium equation
provided the reciprocal of the Lipschitz constant for K is interpreted as zero. In order
to minimize the technical detail, it will be assumed that £2 is a bounded Lipschitz
domain, and that a zero boundary condition is specified for the temperature u.

The existence and uniqueness theory for the Stefan problem is well understood;
however, the numerical analysis for such problems is crude and gives sub-optimal
results, [17, 8, 18]. Part of the problem is the lack of regularity of the solution which
may be summarized as follows.

• If the initial temperature satisfies u0 = K(e0) € H£(Q) and / G H1^, T, Z2(ft)]
then e € Z°°[0,T,Z2(ft)] n JJ^0,T; tf-^fi)].

• If the initial temperature UQ = lf(eo), satisfies Awo € X1(fi). and / G
Lip[0,T;L\Q)] then e € Lip[Q9T;L\il)],

• If 60 € £°°(ft) and / € ^ [ O J i l ^ f l ) ] , then e G i 0 0 ^ , ! ; ! 0 0 ^ ) ] .
• If c0 6 £2(fi), / € Z2[0,T;Z2(ft)], then u € L2[0,T;H$(fl)].
• If w0 = K(e0) e Ho(fy, f € H^OjT^H^Q)] and K is Lipschitz, then u €

These estimates are optimal, since any problem involving a phase change across a
sharp interface will have a jump in the energy and temperature gradient. Other reg-
ularity results are known, for example CafFarelli and Friedman [6] discuss continuity
of the temperature, and Magenes et. al. [13] have recently shown that the energy lies
in a Nikolskii space under suitable hypotheses on the data. Given the above regular-
ity of the solution, it would be reasonable to expect first order rates of convergence
for approximate solutions of the energy in Z2[0,T; H"1(Q)] and the temperature in
2/2[0,T;Z2(£2)] when K is Lipschitz. Numerical evidence suggests that these are in-
deed the correct rates; however, the analysis typically predicts rates of one half the
expected values. Small improvements over rates of one half can be achieved by adding
c times the identity to K so that both K and its inverse are Lipschitz. Choosing e
as some power of the mesh size h can lead to rates of order 2/3 is space and 1/2 in
time [9]. Under suitable conditions on the data, it can be shown that all of the phase
change interfaces are sharp, and in this instance a different choice of c will lead to a
first order rate in h and order 2/3 in time [16].

In this paper we discuss a numerical method, the co-volume scheme, for the so-
lution of the Stefan problem. Co-volume schemes have been proposed in the past
for linear elliptic problems [12], and, more recently, have been used very effectively
by Nicolaides [14] to obtain stable low order schemes for problems in incompressible
fluid mechanics. We establish that these techniques lead to numerical schemes with
many desirable properties when used for the Stefan problem. For example, the discrete
numerical scheme mimics the continuous problem in that it generates contraction semi-
groups in both the discrete i1(fi) and flr~1(JI) spaces. Moreover, the proofs of such
properties mimic the continuous proofs, and are frequently simpler since at the dis-
crete level many of the technical issues disappear. Another desirable property is that
the co-volume algorithm does not require the projection of a nonlinear function onto
a finite element space. Most traditional schemes approximate the energy-temperature
relationship, u = K(e)y by projecting K{eh) onto a finite element subspace (e^ being
the approximate energy). Such projections are implemented using numerical quadra-
ture, which is subject to large errors when K is not smooth. While we can not show



that the rates of convergence are better for the co-volume scheme than traditional
schemes, the simplicity of the method leads to a very efficient algorithm. Indeed, the
explicit scheme discussed below will execute as quickly as a linear heat conduction
code.

In the next section, we introduce the co-volume discretization and the correspond-
ing discrete spaces of functions. Section 3 is reveals how the discrete scheme mimics
the continuous problem and Section 4 establishes convergence of the discrete energy in
both ix(Q) and H"1^). Finally, we present some numerical examples in Section 5.

2. Co-Volume Discretizations. The co-volume discretization is most easily
described for a triangulation Th of plane domains ft C IR2. We assume that J) is
polygonal in order to avoid dealing with the errors introduced when fi ^ UTeThT.
Given Th, a dual (non-triangular) mesh is constructed with vertices corresponding to
the circumcenters of the triangles, and edges joining the circumcenters of triangles
that have an adjacent side. With each interior vertex of the original triangulation,
there is an associated (Voronoi) complementary volume bounded by the edges of the
dual mesh that connect the circumcenters of the triangles containing this vertex (see
Figure 2a.). In the sequel, quantities associated with the dual mesh will be prefixed
with 'co-', eg. co-edges, co-vertices etc. refer to edges and vertices in the dual mesh.
Note that the union of the co-volumes does not exhaust ft, there is a region near
the boundary that is omitted (see Figure 2b.). Of course this construction can be
completed in higher dimensions, by constructing the complementary volumes from
the hyperplanes that bisect and are perpendicular to the edges of the original mesh
(see eg. Nicolaides and Wu [15]). For clarity of exposition, we will use the vocabulary
appropriate to plane problems below.

For an arbitrary triangulation Th of £2, the co-volumes may not be well defined
in the sense that the edges for a particular co-volume may intersect at points other
than the vertices. However, if each triangle T £ Th has angles no larger than 90°,
each co-volume will be convex, and none will extend beyond the boundary. It will
be assumed that we are dealing with such a mesh in the sequel. Placing the dual
vertices at the circumcenter of each triangle guarantees that the edges of the dual
mesh intersect the edges of the original mesh at right angles. It is this feature that
leads to 'natural' discretizations of conservation laws.

The discrete equations may be motivated by integrating equation (1.1) over a
typical co-volume A,-, and applying the divergence equation to the spatial term:

where et, and /, are the average values of the energy and source terms on At. Let
C{ C IN be defined by j € C% implies there is an edge in the triangulation Th connect-
ing vertex t to vertex j . Denote the length of such an edge by hy, and the length of
the perpendicular co-edge by1 hjj. If the normal derivative on this co-edge is approx-
imated by (UJ — Ui)/hij, where it,-, Uj etc. are the nodal values of a piecewise linear
approximation to u on 7^, then the discrete Stefan problem becomes

1 In three dimensions, hfj is the area of the corresponding co-face
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Figure 2a. Complementary Volumes.

Figure 2b. Region Near Boundary.



Note that these equations are only defined for the Nh interior vertices which correspond
to co-volumes. On the boundary, the nodal values of u are obtained from the Dirichlet
data. We will think of {e , - }^ as representing a piecewise constant approximation of
e on UiA{. From a mathematical point of view, it suffices to approximate e by zero in
the region near the boundary, SI \ U,At-, since this region is small, and e € £°°(ft). A
more physically appealing approximation could be made by integrating equation (1.1)
over a boundary co-volume, A,-, to obtain,

^ 1 n+ - hTVu- - n~ = | i t | / t .

Vu • n* is the normal derivative on the boundary evaluated using the piecewise linear
temperature field on each side of node i (for i and j on the boundary, hfj is defined as
the perpendicular distance from the (i,j)th edge to the circumcenter). This technique
is used when Neumann boundary conditions are specified; in this situation the specified
normal derivative is used in place of Vtz • n^. (See eg. [14]).

In order to calculate approximate solutions of the Stefan problem using equa-
tion (3), it is necessary to discretize the temporal derivative. Integrating equation (3)
over a time interval (TIT, (n + l)r) and approximating the temperature by piecewise
constant functions in time gives either the implicit discretization,

(4) \Ai\(e^ - ef) + r E ^ « + 1 - u]+1) = T\A{\f?
+K

Jen hi>

or the explicit discretization

(5) | A t | ( e ^ - e?) + r £ ^ « - «*) = r\Ai\f^.

In the above, a supper script refers to the time level, and r the time step, e^nr) ~
ej1 etc., and the supper script n + \ indicates the time average over the interval
(nr,(n+ l)r). Of course equations (4) and (5) could have been derived directly from
equation (1) by integrating over the space-time cylinder At- x (TIT, (n + l)r).

Discrete analogues of equation (2) result if we let {v{} denote the nodal values of
a piecewise linear function on Th vanishing on the boundary, and form the discrete £2

inner product of equations (4) and (5) to obtain

(6) £ |*|(e?+l - e?)Vi + r £ ^-(u^ - u]^){Vi - Vj) = r

and

(7)

In the above J2(i,j) • • • indicates the sum over all edges (joining nodes t and j) in the
mesh Th, and a discrete version of Green's theorem was utilized:

E E %«- «>•• = E $
1*! {i,j)hi>



provided V( = 0 at boundary vertices. The nontrivial identity

«—^ hhL
is shown to hold in [4], for piecewise linear functions defined on 7^.

The following function spaces will be utilized below. V = HQ(SI), the Sobolev
space of functions vanishing on the boundary and having square integrable derivatives,
and VhCV will be the space of piecewise linear functions defined on Th which vanish
on the boundary. Vh is endowed with the inner product

h
(«, v)Vh = J2 ^ ( t t i - Uj)(vi - Vj)y u,v€ Vh.

Let H = Z2(fi) and Hh C H be the set of functions that are piecewise constant on
the co-volumes A,-, and zero on (1 \ U«Aj. Note that while V C if, V/t is not a subset
of .fffc; however, there is a natural embedding v »-> 5 where vt- = V{. Dual pairings
will be denoted using angled brackets, (.,.), and round brackets (.,.) will denote the
L2 inner product. Usually approximate quantities calculated from the fully discrete
schemes (4) and (5) will be subscripted with h, eg. e^; however, when it is necessary
to distinguish between solutions of the semi-discrete scheme (3) and the fully discrete
schemes, the fully discrete solution will have a superscript of r, eg. e\.

3. Discrete Semigroups. The Stefan problem generates a contraction semi-
group in both Jff~

1(f2), and i1(ft). In this section we show that the discrete operator
generates semigroups in the analogous discrete spaces. The continuous semigroup also
maps bounded sets in L2(il) and £°°(fi) to bounded sets. We show that analogous
properties hold for the discrete operator. Recall that the discrete evolution operator
A h : WLNh - > TR>Nh is

where U{ = K(e{) if i is an interior vertex, and U{ = 0 otherwise, and that K : IR —• IR
is a monotone function vanishing a zero. Frequently we will abuse notation by writing

with the understanding that K(e%) = 0 if i corresponds to a boundary vertex (where
et- is undefined).

LEMMA 3.1. Let ||.||^ denote the discrete X1(f2) norm defined by \\e\\£1 = Yli \Ai\\ei\
where the sum is over the interior nodes of%. Then Ah is accretive in I1, ie.

for all T > 0.



Proof. Let Si = sgn{e^ — e$ ) where sgn(.) denotes the signum function. Sub-
tracting the discrete equations for e\2^ + rAh(^)i and ej1' + rAh(e^)i, multiplying
the difference by \Ai\si and summing gives

£ W

The lemma now follows upon observing that (e)2' — e\x')si = |e[ — e\ '|, and that the
second term on the right is non-negative since K is monotone. D

We next show that the operator Ah is also accretive in the dual of Vh. A function
v € Vh is uniquely identified by a vector of interior nodal values {vt}t=

h
1 £ WLNh, since

V\QQ = 0. Given / € V̂ , the dual space of V ,̂ we define,

\\f\\v>= ™P=1f(
v)'

The dual norm may be computed using the discrete Riesz map for V ,̂ | |/ | |y' = \\v\\v ,
hwhere v = is defined by

for all w € V .̂ We identify e € Hh CV^ according to

Since Vh is finite dimensional, we can represent any e € V'h by a vector of nodal values

LEMMA 3.2. Lei >U : V)[-• V£ 6e defined by

where e e V^ and v £
in v£ te.

for all T > 0.
Proo/. Let v =

are identified with their nodal values. Then Ah is accretive

<

- e*1)), then



The lemma now follows by dividing both sides by \\v\\v and recognizing that the left
hand side is then less than ||e<2) - eW + r(>U(e<2>) - Ah(eW))\\v>. D

h
We next show that discrete X2(ft) and Z°°(fi) bounds are preserved by the discrete

semigroup.
LEMMA 3.3. Foree JR,Nh let ||e||^ = £ f \Ai\e*, and \\e\\eoo = max; |e,|. Ife is a

solution of the resolvent equation

then \\e\\% + 2mr\\u\\yh < \\t\\% and ||e||/Oo < ||f||*oo, where m is the reciprocal of the
Lipschitz constant for K.

Proof Taking the I2 inner product of the resolvent equation with e gives

,|e? + r £ %Ui - uj){ti - ej) =
(.'J) hij

Since K is monotone, it follows that (ui - Wj)(et- — ej) > m(ui — iij)2- The I2 es-
timate now follows from an application of the Cauchy-Schwarz and geometric mean
inequalities to the right hand side.

Let k = ||f ll̂ oo and st- = sgn+(ei — k) (sgn+(x) = 1 if x > 0 and zero otherwise).
Subtracting k from both sides of (each component of) the resolvent equation, and
forming the I2 inner product with s% gives

The choice of k guarantees that the right hand side is non-positive. Since both terms
on the left are non-negative, it follows that the both sides of the equation are identi-
cally zero. In particular, (et- — fc)+ = 0 for each i implies et < k = ||f||^oo. A similar
argument with S{ = sgn~(ei + k) yields et- > — k = — ||f||^oo. 0

COROLLARY 3.4. The implicit difference scheme (2.2) satisfies,

m=0

and

2mr j ^ \\u~+%h < e<n(\\e% + r
m=0 m=0

where m is the reciprocal of the Lipschitz constant for K.
Proof The implicit difference scheme may be written as ( / + r>l/ l)en+1 = en +

TF1^. Putting f = en + TF1** into the above gives the l°° bound immediately. Sim-
ilarly, the I2 estimate implies ||e»+1|& +2mr||W

n+1 | |^ < ( l + r)(||ew||^ +r | | fn + l | |J i ) .
An elementary calculation with the difference equation a n + 1 / ( l + r) — an + cr(5n/(I +
r) < rfn completes the proof. D

COROLLARY 3.5. The resolvent equation (I + TAH) ' TR>Nfl —• MNh is coercive, ie.
|^ -> oo as | |e | |^ - oo.



Proof. If f = ( / + rAh)(e)i the proof of the I2 estimate above revealed

ie. ||e|fe <((/+r.4fc)(e),e>|2. D
COROLLARY 3.6. Ah generates a contraction semigroup in both the tl and V'h

topologies.
Proof. Since any coercive continuous operator on a finite dimensional space is

surjective, it follows that Ah is m-accretive in either the I1 or Vj[norms. An application
of the Crandall-Ligget theorem then shows that Ah generates a contraction semigroup.
D

The estimates above show the the implicit scheme (4) is stable, and semigroup
theory shows that the difference solutions converge to the solution of (3) as r —> 0 [7].
We next establish a stability result for the explicit scheme (5).

LEMMA 3.7. Let

en+1 = en - rA(e n )

then

||en+1||?2 < (1 + r) [||en||^ - 2r (m - rMfc) ||un||Vh

Where m is the reciprocal of the Lipschitz constant for K, and Mh = maxc(l/| A,-|)'

Proof. We begin with the inequality

l|en+1|fe = ||e"-

The remainder of the proof is a detailed computation of the first term on the right.
We omit the superscript from en below.

hh
f\Ai\

hh

< Hell2, - 2r (m - r ^ ) ^ £*(«,• - tij)

The final line involved the use of the inequality2 J2% ^2jed aij ^ 2 ̂ /t- j \ atj when
atJ = aji > 0. Combining the inequalities completes the proof. D

2 This inequality would be an equality if t summed over all the nodes in the mesh. In this situation
no restriction is required on the sign of aij.



COROLLARY 3.8 (STABILITY OF EXPLICIT SCHEME). Ifr < m/Mh then

l|en+1|£ + c r ± \\u*»\\lh < e<n(\\e°\fp + £ * J
m=0 m=0

where tn = nr, and c = 2(m —
Note that if the mesh Th is constructed from equilateral triangles, then fj

l / \ / 3 and |C,-| = 6. Also, |At| = (y/Z/2)h2 where A is the length of the sides of the
triangles, so that Mh = 4/h2. The stability estimate then becomes r < mh2 /A.

We complete this section with a summary of the bounds satisfied by solutions of
both the implicit and explicit schemes. The bounds that don't follow immediately
from the previous results can be proved using identical techniques.

THEOREM 3.9. The following bounds are satisfied by both the implicit and explicit
schemes. The explicit scheme requires CFL condition m — rMh > c > 0 to hold
uniformly (recall that m is the reciprocal of the Lipschitz constant for K, and Mh ~ h"2

is a mesh parameter).

# IK||z,2[0,T;V] ^

Additionally, solutions of the implicit scheme satisfies the following bounds,

p [ , ; ( )

IMILOO[0 |T;V] ^

4. Convergence of the Discrete Problem. In order to prove convergence of
the co-volume algorithm it is necessary to interpret the energy as an element in the
dual space V' = i?o(^)» however, we shall not simply pivot through H = L2(Q). Let
IIo and III be the standard projections of H onto Hh and V onto Vh respectively:

€ Hh (Hot;, w) = (v, w) V w € Hhj

and

, Vw) = (Vv, Vw) V w e Vh.

We next define a projection Ph : V —• Hh by: PhV is the function in Hh whose value on
the co-volume A{ containing the node X{ is IIit;(a:l). ie. PhV is the piecewise constant
function whose values correspond to the nodal values of the projection of v onto Vh
(see figure 3). The role of this projection becomes clear when we write the co-volume
algorithm as:

(8) (^c f c f Ph^j + (Vu*, Vt;) = (/, Phv) V v € V,

or

-r;P'heh - Aufc = P'hf in V\
at



riu(x)

•+ - • - x

Figure 3. Projections Pu and Flu.



where P*h : Hh -> V'is the dual map, (P'heh> v) = (eh,Phv). The following elementary
lemma shows that the natural identification of eh as an element of V' (i.e. {e^v) =
(e*,t;))is close to P'heh.

LEMMA 4.1. Ifu e W^p(a) then \\u - Pku\\^(Q) < C(p)h\\u\\wi,P{Q), 1 < p < oo,
hence if en £ H

IK - PLeh\\y. < Ch\\eh\\H, \\Plek\\y. < Ch\\eh\\H

\v.<\\eh\\vi.
Proof. If Uh = IIiw, then P / ^ = P/jU, so that

Standard approximation theory shows the first term is less than Cr/i||tt||w,i,P/nx, and
the second term can be bounded by writing Uh(x) = Uh(xi) + (Vuh)\T • (x — £») for
x £ T where T is a typical triangle with vertex x«. Since ^^(xt) = (PhV>h)i it follows
that the leading term of Uh — P/it^ cancels. The first order remainder can then be
bounded by ^ H ^ H ^ . p ^ ) < Ch\\u\\wiiP{fly

The inequalities pertaining to e follow from

(eh - P'heh, u) = (eh, u -

and

(P'heh,u)v = (c

4.1. Convergence of the Implicit Scheme. Since the discrete co-volume
scheme retains the semigroup properties of the continuous problem, abstract semi-
group results can be used to establish convergence of the implicit scheme. We begin
by recalling the Kato-Trotter [5] and Crandall-Ligget theorems [7], and indicate how
they may be used. The resolvent convergence required for the Kato-Trotter theorem
is then established. This will show convergence of the discrete energy in V = H"1^)
for arbitrary meshes, and if the mesh is uniform, we can also establish convergence in

THEOREM 4.2 ( K A T O - T R O T T E R ) . Let Xh C X, h > 0 be an inclusion of Ba-
nach spaces, and suppose the Ah is an m-accretive operation on Xh with associated
semigroup Sh> If Xh —• x as h —• 0, Xh € Xhf and A is an m-accretive operator in X
satisfying,

(9) heXh, fh-+fex =» (/ + AhY^h-(/ + A)"1/ex,

then Sh(t)xh —• S(t)x uniformly in t on compact intervals, where S is the semigroup
in X generated by A.

THEOREM 4.3 (CRANDALL-LIGGET). Let Ah be an m-accretive operator in Xh,
then for f € Zx[0,T, Xh], the piece-wise linear functions generated by the implicit
scheme

3 / n , e° = eoh, n = O,1,---,JV - 1,

10



converge in C[O,T; X/J to Sh(-)eOh, the solution ofdeh/dt + Ah(eh) = fh, Cfc(O) = e0^.
(fn = (1/r) j J + ^ / W ^ , r = 1/JV, etcj.

To apply the above results, let Xh = IR h, with either the I1 topology so that
Xh C X = I^Q) , or the V^ topology, so that 1 ^ 1 = JJ-^fi) (in this instance
the inclusion map is P'h). Suppose for the moment that condition (9) is satisfied for
each of the above choices, then if e\ denotes the discrete solution obtained with the
implicit co-volume scheme, and eh denotes the semi-discrete solution obtained by
letting r —• 0, then

lle ~ eh\\c[0,T;X) ^ We - eh\\c[Q,T;X] + He>* " el\\c[0^Xhy

By selecting h sufficiently small, the Kato-Trotter theorem implies that the first term
may be made arbitrarily small. Then, for h fixed, the Crandall-Ligget theorem shows
that the second term may be made arbitrarily small by selecting r sufficiently small,
establishing the convergence of the implicit scheme. Berger, Brezis and Rogers [3]
used the Kato-Trotter theorem in a similar manner for a continuous in space, discrete
time scheme.

Remark: Strictly speaking the Kato-Trotter theorem only pertains to the homo-
geneous equation, de/dt + A(e) = 0. However, standard arguments (see eg. [7]) using
translates of the form A{e) = A{e) — / for / € X, can be used to establish convergence
for a non-homogeneous right hand sides.

LEMMA 4.4. Let (I+Ah)eh = fh in V^, P'hfh -» / in V' = Jff"1(fl), and suppose
K satisfies the growth condition \K(s)\ > c\s\ for \s\ large. Then P^h -* c. in V,
where e is the solution to ( / — A o K)e = / .

Proof The discrete resolvent equation may be written as

(P'heh,v) + (Vuh,Vv)=(P'hfh,v), V ve V.

Selecting v = w ,̂ and recalling that (P^e^,w^) > 0, implies that \\uh\\v < \\P'hfh\\v'>
so remains bounded. The growth condition on K (and the Poincare inequality) then
imply that ||c^||^ is bounded. Passing to a subsequence, standard compactness results
imply that

Uh —w u in V, Uh —> u in H,

eh —fc e in iT, eh —* e in V.

Defining Uh = PhUh, lemma 4.1 then implies that

Uh —• u in i f , P*heh —• e in V*.

Passing to a further subsequence, we may assume that Uh(x) —• t*(x) for almost every
x G fi. Taking the limit of the resolvent equation shows that e and u satisfy

(c,t>) + (Vtt,VtO = ( / , » ) , V veV,

moreover, eh = K(uh) and the almost everywhere convergence of Uh(x) shows that
e = K{u) a.e, so that e is a solution of the resolvent equation in V'. Since solutions of
the resolvent equation are unique, it follows that the whole sequence {P*heh} converged
strongly to e in V'. D

11



Remark: The strong convergence of P'heh can be established directly without the
compactness argument as in the proof of Theorem 4.11 below.

To establish convergence of the resolvent equation is X1(0), we begin with a minor
modification of a lemma by Stampacchia (see [11]).

LEMMA 4.5 (STAMPACCHIA). Given g e Lp(Q)n, p> n, let vh e Vh satisfy

I Vvh • Vwh = / g • Vwh V wh € Vh,

then\\vh\\Loo{Q)<C(\a\)\\g\\LP{Q).
Proof. (Sketch) The only modification required of the proof in [11] is to begin

by letting & € Vh be the piecewise linear function with nodal values given by & =
sgn(vi)max(\vi\ — A;,0), and observing that

(,.fi)

The rest of the proof remains the same. D
COROLLARY 4.6. Let eh be a solution of the discrete resolvent equation (I +

Ah)eh = fh> then for 1 < p < n/(n - 1), \\uh\\ , < C(p)\\fh\\el.

Proof Given Vh € V ,̂ the resolvent equation implies that

i )( )

and by Lemma 3.1, \\eh\\fl < \\h\\fi- F o r 8 € Xp(fi)n, p > n, let vh € Vh be the
solution of the discrete equation given in Stampacchia's lemma above, then

The lemma now follows by taking a suitable supremum over g. D
Using the techniques in [2] we establish the strong convergence of {e/J in i 1 ( f i ) .

Essentially we show the ideas used for the continuous problem carry over to the discrete
scheme. The next two lemmas are discrete analogues of Lemmas E and F in [2]

LEMMA 4.7. Let eh be a solution of the resolvent equation (I + Ah)&h = thj then
for b > 0,

= max(a,

12



Proof. Subtracting b from both sides of the resolvent equation and selecting vt =
sgn+(ei — 6) and then adding 6 to both sides and selecting V{ = sgn~(e{ + b) gives the
two inequalities,

The lemma now follows by observing that (\a\ — 6)+ = (a — 6)+ + (a + &)~, (a"
a + - a). D

LEMMA 4.8. Let fa € Vh be non-negative, and suppose that Uh € Vh satisfies

at points where <̂ ̂  0. Then

/or any selection Si G
Proof. Since |wt| vanishes on the boundary nodes we use the discrete Green's

formula to get

(*tj) ^ i

Since each of the terms in the second sum on the right hand side is non-positive, the
lemma follows. D

LEMMA 4.9. Let eh be the solutions of the resolvent equations en + Ah(^h) =
ffc on a family of uniform meshes {Th}h>of and let e^ and f̂  be identified with the
corresponding piece-wise constant functions e^ and fh in i1(Jl) (extended to zero off
&h)' If fh -* f *n L1^), then {eh}h>o converges strongly in i 1 ( f i ) to the solution of
the continuous resolvent equation ( / — A o K)e = / .

Proof It follows immediately from Corollary 4.7 that we may pass to a sub-
sequence for which {uh} converges weakly in WQ'P (ft), and hence strongly in Lp (17).
Similarly, Lemma 4.7 is precisely the criteria for weak sequential compactness in
so we may assume {e/J is weakly convergent. To show that a subsequence of

13



converges strongly in X1(f2), it then suffices to show that for any sub-domain ft' CC ft
that

sup / |c* - e*(. + S ) | - • 0 as \S\ -+ 0.

To accomplish this, let f € C£°(ft) satisfy 0 < £ < 1 and f = 1 on ft', and denote
£(xt) by & for each mesh point X{.

We first consider 6 a mesh lattice vector, ie. translation by 6 carries the mesh
onto itself, and assume that 6 is sufficiently small to guarantee that x £ supp(£) =>
x + 6 € ft. If et denotes the value of e^ at mesh point a:,-, let e{+$ denote the value of
e^ at the mesh point X{ + 6. Subtracting the discrete equations for et- and et+$ yields
for Xi € supp(f),

\Ai\ia -

Defining 5t- = sgn(ei — et-+$) 6 sgn(ui — 1/,*+$), Lemma 4.8 then asserts that

or

< HA "

An elementary calculation shows that ||-4/i(£)ll*«> ^ C||J^2^llLoo(fi)' an(^ s^nce iuh} is
bounded in W^'^ft), Lemma4.1 shows \\Ph(uh - t*fc(. + S))\\L1(Q) < C\\uh - uh(- + 6)\\L1(Q).
It follows that

IN - e*(. + S)\\L1{Qf) < \\fh - A(. + S)\\L1{Q) + C\\uh - t*(. + *)| |Li (0 ) .

Since //i and Uh converge strongly in i2(ft) , it follows that the right hand side goes
to zero uniformly in h as \6\ —• 0.

To complete the proof for arbitrary shifts, we decompose 6 into a "large" shift
comprising of one of the mesh lattice vectors, and a "small" shift where the translate
of each co-volume would only overlay its adjacent neighbors. Using the above esti-
mate for the large shift with the triangle inequality, it suffices to consider these small
translates. On a typical co-volume A, we may explicitly write

where pj = \Ai n Aj\/\Ah so that EjPi < 1- Letting {Sj}j=1 (J = |C,-|), denote the
set of mesh vectors that point from node i to the adjacent nodes j , we may write

x>-
14



Since the mesh is uniform, the quantities subscripted with j do not depend upon the
particular co-volume in question, thus summing over all co-volumes in fl yields

Jo! i = i

Since each of the 6j are lattice vectors, we obtain

J
lie* - c*(-

As in Lemma 4.4, it follows that the u = K(e), and ( / - A o # ) e = / in
Uniqueness of this solution then implies that the whole sequence {e/J converges to e
in Lx(il). D

In summary we have,
THEOREM 4.10. Let {e£} be the sequence of solutions given by the implicit co-

volume algorithm (4) for a regular family of meshes, then
• IfP'heoh - e0 in V' and P'hfh - / tn L^O, T; V\, then P'hel - . e tn C[0, T; V ,̂

provided |jfiT(^)| > c|s|, /or 5ome c > 0 «;/ien |5| is large.
• If &oh -* eo i n ix(ft) and fh—>f in i 1 [0 ,T; i 1 (n ) ] /or a uniform family of

meshes, then e\ -> e m C[0,T;i1(Q)] .

4.2. Rates of Convergence. The preceding results do not give any rates of
convergence for the implicit scheme. The following establishes a (sub-optimal) rate of
convergence for both the implicit and explicit scheme.

THEOREM 4.11. Let the data for the Stefan problem satisfy eo € H and f £
Z2[0,T; H], then the discrete solution given by either the implicit co-volume algorithm
or the explicit co-volume algorithm (subject to the CFL constraint m — rMh > c > 0)
satisfy the error estimates

/ / and || t t - ^

where C depends only upon the data eo and / , and C depends additionally upon the
Lipschitz constant for K.

Proof. Taking the difference of equations (2) and (8) gives

{jt{e - Pleh), v) + (V(ti - iifc), *) = ( / - Plf, v) VveV.

It is to be understood that eh is the temporally piece-wise linear function that in-
terpolates the values {en}£L0, and UH is the piecewise constant function with values
{^n}£Li f°r the implicit scheme and values {u71}^^} for the explicit scheme. Selecting
v € V as the solution to

(Vt;, Vw) = (e - P*heh, w) V w € V,

yields

\ ^ " P'h6h>U " Uh) = ( / ' V "

15



The term on the right can be bounded by C&| | / |yM| v = Ch\\f\\H\\e - P'heh\\v: To
estimate the middle term we introduce the piece wise constant functions Uh € Hh
defined by Uh = Ptih, and eh 6 Hh given as the piece-wise constant function in time
having values {en}^sl for the implicit scheme, and {en}^Q for the explicit scheme.
This choice gives Uh = K(eh) with e^ and eh equal at the discrete times tn = nr.
Writing

(e - P'heh, u - uh) = (e - P ^ , u - uh) + ( P ^ - eh), u - «*),

we bound each of the terms on the right.

(e - P'heh, u - uh) = (e - e/j, w - t^) + (eA - P'heh, u - w/j)
= (e - e*, w - u/J + (e - e^, Sfc - uh) + (eh - P*e*, u - t^)
> (c - gfc, u - uh) -

For tn = nr <t < fn+1 = (n + l ) r , the second term may be bounded by

(P'h(eh - efc), u-uh) < \\eh - cfc||v/||ti - uh\\v
h

- r

Since the ||e||L2[0,7W]> Wek\\L*[O,T;H}> H^llL2[0,r;H]» H^"llL2[0,T;V'h]' IIWHL2[0,T;V]'
 a n d

1 a r e ^ bounded, integration of (10) from time zero to t yields

\\e - P'heh\\
2
v>(t) + / (e - ehj u - fifc) < ||e0 - eofc | |^ + C(h + r ) .

The projection eoh = Iloe satisfies ||e — co^||y' < C'/iHeH ,̂ so an L°° estimate on
||e — P^e^ll^/, and hence ||e — eh\\v* follows immediately. A bound on the error \\u — tZ |̂|
follows from the inequality (e — eh,u — Uh) > m\\u — Uh\\]f, where m is the reciprocal of
the Lipschitz constant for K. The estimate \\uh — Uh\\jj = \\uh — ^/ill/f < C^ll^llv
and an application of the triangle inequality completes the proof. D

5. Numerical Examples. We present some numerical examples that demon-
strate the convergence of the co-volume algorithm. The examples suggest that the
rate of {h1/2 + r1/2) is pessimistic, since rates close to order one are observed. In order
to try and isolate the spatial and temporal errors, we attempt to hold one of h or r
fixed, and let the other go to zero. It is relatively easy to let r —• 0 with h fixed using
the explicit scheme. At worst, the program will take a long time to run. However,
when attempting to let h —• 0, one must use the implicit scheme, and the equations
at each step become difficult to solve. While it is known that they can always be
solved using a Gauss Seidel algorithm [21, 22], this is not very effective when r/h2 is
large since, this is analogous to a linear system of equations with a large difference
in the modulus of eigenvalues. In this situation, each iteration makes a very small
correction (of order h2/r) to the vector of unknowns, and this is unacceptable, since,
if in one time step the phase boundary passes over a node in the mesh, the energy at
that node will increase by the latent heat (set to unity in the examples), so that it
will take ~ h2/r iterations to capture this. One other disadvantage is that when the
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change with each iteration is so small, it is difficult to determine when convergence
has occurred. To solve the implicit equations, the following Newton scheme was used,

-new -old j—1

where

hh

otherwise.

Clearly the components of J are not well defined where K fails to exist; however, in
practice this scheme works much better than simple relaxation. This Newton algo-
rithm differs from the one proposed in [10] where a meaning to (K*1)' is established.

When evaluating the errors in the energy, it is necessary to use numerical quadra-
ture to integrate the discontinuous exact solution. A little thought shows that if the
interfaces where the discontinuities occur are smooth, the quadrature errors will be
of order h, so that it is still possible to detect order h convergence. The L1 errors
tabulated for e — e\ are calculated over the union of the co-volumes, ilh = UtAt,
which excludes a region near the boundary. A similar problem arises when evaluating
the V = H^1(Q>) norms. This norm was estimated by solving the discrete Dirichlet
problem, VH € Vh,

i - wj) = £ / (a -

where e is the exact solution, and setting ||e — P^e£||v/ ~ ||fji||y. Again, a little
thought shows that this process will be of order h9 so that errors up to order h may
be detected.

In each of the examples below, the energy temperature relation was taken to be
K(e) = e if e < 0, K(e) = 0 if 0 < e < 1 and K(e) = e - 1 for e > 1 (see Figure 1).

5.1. One Dimensional Example. The one dimensional analogue of the co-
volume algorithm corresponds to the staggered mesh scheme proposed in [19] and
analyzed in [1] (see Figure 3). An example, taken from [17] involving the melting of
a mushy region (0 < e < 1) is computed. The solution in the (x,t) plane is shown in
Figure 4, and is given by

e(x,t) =

- (x - s2(t)f x > s2(t)
 0 < t

Si(t)2 - X2 + 1 X < Si(t)
4(s2(t)-x) si(t)x<s2(t) l /4<t<3/4,

-(* - s2(t))
2 x > s2(t)

- 3 / 4 )
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• - X

Figure 4. One Dimensional Example.

0.5

1.0

0

(a) Solution in (r,t) plane. (b) A2x2Mesh(h=l).

Figure 5. Two Dimensional Example.



TABLE 1

Rates of Convergence with Respect to h for the One Dimensional Problem

h
||(e-e,)(T)||L1(n)

Rates
||(e - P'heh)(T)\\v,
Rates
\\u ~ Uh\\L2[0,T;H)

Rates
Final Time Step Size

1/10
0.019527

0.001385

0.005693

1/51200

0.999674

1.383272

1.232490

1/22
0.008878

0.000465

> 0.002154

1/61952

1.006707

1.430705

1.233936

1/46
0.004225

0.000162

0.000867

1/67792

where s\(t) = t —1/4 and S2(t) = (l/2)(t + l/4). The non-homogeneous term required
to obtain this solution is

2.0
s2(t) + 2.0

Sl(t)x < s2(t)
X > S2(t)

1/4 <t< 3/4,

f(x,t) •[
2s1{t) + 2.0

2t + 0.5
x <
x >

3/4 < t < 1,

Using the explicit algorithm, the time step r was reduced until there was negligible
change (less than 1.0"*6) in the error norms for each of three mesh sizes, /i, on a uniform
grid. The results are summarized in Table 1. The values of h of 1/10, 1/22, and 1/46
were chosen so that the phase boundary of the exact solution at T = 1.0 was aligned
with a co-boundary, eliminating the quadrature errors discussed above. As indicated
in Table 1, rates of no less than order h are observed. A similar procedure was followed
to estimate the rate of convergence with respect to r. For three time steps r = 1/32,
1/64, and 1/128, the mesh size was reduced by a factor of two until the implicit
equations could no longer be solved. The error norms typically differed in their third
significant figure for the last two meshes. As can be observed from Table 2, the rate
of convergence with respect to r is close to unity.

5.2. Two Dimensional Example. A radially symmetric solution in two dimen-
sions was solved on the square (—1,1)2. Since a rectangular grid was used, the radial
symmetry should not artificially increase the rates of convergence. A sketch of the
solution in the (r,t) plane and a 2 x 2 mesh (h = 1) is shown in Figure 5. Again a
solution with a mushy region is selected to eliminate any favorable affects that sharp
interfaces may have on the rates of convergence. The exact solution is given by

e(r,t) =
otherwise
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TABLE 2

Rates of Convergence with Respect to r for the One Dimensional Problem

T

||(6 - eh)(T)\\Llm

Rates
||(e - P'heh)(T)\\v,
Rates

llu - «/ilil,2[0,T;tf]
Rates
Final Mesh Size

1/32
0.009617

0.002537

0.019068

1/1534

0.974593

0.986399

0.991450

1/64
0.004894

0.001281

0.009591

1/1534

0.977400

0.983229

0.995745

1/128
0.002486

0.000648

0.004810

1/3070

TABLE 3

Rates of Convergence with Respect to h for the Two Dimensional Problem

h
\\(e - eh)(T)\\LHU)

Rates
||(e - Pheh)(T)\\v,
Rates

\\u ~ uh\\L2[0,T;H]
Rates

1/8
0.1875

0.02191

0.01334

0.2772

2.5939

1.5038

1/16
0.1237

0.003629

0.004704

0.7760

-0.4306

1.0385

0

0.

0.

1/32
.07224

004891

002290

0

1

1

.9424

.1905

.5245

1/64
0.03759

0.002143

0.000796

where <f>(r,t) = ( l /4)(r2 - e2'/16), and i/>(r,t) = ( l /4)(r2 - (9/16)e~2<). The corre-
sponding non-homogeneous term is

0

()
r, t) > 0 and <f> > 0

otherwise

Table 3, analogous to Table 1, was obtained by letting r —• 0 for each of the meshes
h = 1/8, 1/16, 1/32, and 1/64. In all instances, r = 0.5/102400 sufficed to render the
temporal errors negligible. The erratic behavior of the L1 and V norms at T suggests
that there are significant quadrature errors associated with the numerical integration
of €h and the discontinuous right hand side / . The quadrature errors will depend
upon how each of the rectangular meshes can approximate the circular fronts. While
it is not clear that the L1 norm has attained an asymptotic rate, the other two norms
do appear to converge, on average, at a near unit rate.

Computational resource limitations prohibited the calculation of rates with respect
to r obtained by letting h —• 0. However, a recent result by Rulla [20] has established
that for fixed h, the rate of convergence with respect to r is indeed unity for the Hilbert
norms, \\(eh - eT

h)(T)\\v; and \\uh - <||L2[o,r;/7] for t h e implicit scheme. Indeed, the
constant of proportionality depends only upon ||t*/i(0)||V/i, so that ||e^ - e£||v/ < CV,

is independent of h. Of course, this doesn'tand \\uh — ^llx,2foTi/l — ̂ T w ^ e r e

determine any rate for ||(e —
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