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This note is an announcement of our recent work about the singularities

and the uniqueness of cylindrically symmetric hypersurfaces in M3 which

move by mean curvature. The details and proofs will appear in the authors'

forthcoming paper [SoS 1991].

We begin with a very brief description of the notion of hypersurfaces

moving by mean curvature. Let Tt denote a hypersurface expressed as the

boundary of a bounded open set Dt in MN at time t. If n is the exterior unit

normal vector field to Tt = dDt, we say that Tt moves by mean curvature if

the speed V(xyt) of Tt at x is given by

(1) V = -div n.

An alternative approach is to think of Tt as the level set (for definiteness the

zero-level set) of the solution u : MNx(0, oo) —> R of the mean curvature

equation

(2) ut = trace[(7 - )D2u).

A fundamental analytic question related to (1) and (2) is to construct a

global in time unique solution {I\}t>o for a given initial data TQ (allowing

that Tt becomes empty in a finite time). This question has been studied

extensively over the last few years. In particular, Evans and Spruck [ES

1990] and Chen, Giga and Goto [CGG 1989] have used the theory of viscosity

solutions (cf. [CIL 1990]) to construct global solutions to (2). Soner [So 1990]

studied (1) directly; he gave an intrinsic characterization for the motion of

Tt in terms of its distance function. For all the details we refer to the above

mentioned references.

The question of uniqueness of the front Tt is a very fundamental one from

both the analytic point of view as well as for applications, since fronts moving

by mean curvature arrive quite naturally in the theory of phase transitions

(cf. Evans, Soner and Souganidis [ESoS 1991]).
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The following theorem gives a characterization of uniqueness in terms of

the regularity of the level sets of the solution of (2).

Theorem 1 ([ES 1989], [So 1990]): The front Tt is determined uniquely

by its initial value To if, for each t > 0,d[u(-,<)>0] = d[u(-,t) > 0], where

u is the solution of (2), with initial data uo such that To = [uo = 0]. E

So far the most general sufficient condition for uniqueness is given by

Barles, Soner and Souganidis [BSoS 1991].

Theorem 2 ([BSoS 1991]) Let Fo be smooth and denote by d the signed

distance from To- If there exist z0 £ JRN,K € JR and a skew symmetric

matrix Q such that

(3) (/ + Q)(x - x0) • Dd + KAd £ 0 on To,

then the surface Tt is uniquely determined by To- E

Condition (3) is by no means necessary. It has, however, a very natural

geometric interpretation (cf [BSoS 1991]).

We now turn our attention to the flow by mean curvature of cylindrically

symmetric hypersurfaces in MN(N > 3). Such surfaces, as long as they are

smooth, can be parametrized by

(4) r = h(z,t),

where h solves the equation

(5) h - H" N~2
(5) '"" l + C M 2 " h
in some time dependent domain. At this point we need to remark that the

parametrization (4) involves two different functions /i, which satisfy (5) and



match appropriately on the boundary. It is immediate that as long as h ^ 0,
(5) has classical solutions, therefore Tt is unique. We are interested on what
happens when h becomes 0. For definiteness let us assume that h becomes
0 for the first time at (0,7*) and that (5) holds in ft = (-2A,2A) x (0,T"),
for some A > 0. Finally, let us denote by to the set [-2/1,2/1] x [0,T").

Our main result is:
Theorem 3 ([SoS 1991]): Assume that

h > 0,zhz>0 and h(t,O)<h(t,z) in ft.

Then

(6) lim(7- - t)-h(y(r - <)*,*) = fi{N - 2),

with the limit uniform for y bounded. O

A similar type of result was obtained by Huisken [H 1990], under the
condition that at t = 0 the surface was positive mean curvature. No such
assumption is made here. In the sequel we sketch the main steps of the proof
of the theorem. The proof goes along the general scheme developed in Giga
and Kohn [GK 1985] for the study of the blow-up of solutions of semilineax
heat equations.

Sketch of the proof of Theorem 3: In the sequel for simplicity we let
N = 3. The main step in the proof is to establish the rate at which h vanishes
and the fact that ht remains strictly negative in [—6, ,6] x [T* — &>T*) for
some sufficiently small 8 > 0. The rate follows after the latter is established.
To this end observe that if

then ht < 0 if $ < 1.
We have:



Lemma: Under the assumption of Theorem 3 there exists a constant
c < 1 and 8 > 0 such that

(7) t{> < c in [-«, 6] x [r - 5, T*). D

The proof of this lemma is rather technical. It is based upon constructing
appropriate barriers which touch h at any given point and time. The heuristic
idea behind (7) is that near focusing the curvature is controlled by its angular
component. We refer to [SoS 1991] for the details.

We next establish the rate at which h becomes 0. Since z = 0 is a local
minimum of h for each f, it is immediate from (5) that

On the other hand, (7) yields

(8) M<M)>(2(1 - e)(r - t))l in [T* - 6,T>).

Once (7) and (8) have been established we define

w(y,s) = ( r - t)-h(y(T* - t)*,i) (F-t =

which solves the equation

wm 1 1 1

Estimates (7) and (8) yield that there exist a, 6 such that

(9) \w\<a(l + e6M), K | < a ( l + |y|)e6^ and \wy\<a.

Therefore, along subsequences, w converges to w°° as s —• oo, which, how-
ever, may dependent on the choice of the subsequence and s.

The s dependence is eliminated by a monotonicity identity, which we
state here under the simplifying assumption that w is defined for all y € JR.
We have:

(10) £ / p w ( l + (w,)8)* =-JPw(l + K) 2 ) -§^



where p(yys) = exp(-\(w2(y,s) + y2)).
An immediate consequence of (10) is that all limits w°° of w are solutions

of the stationary equation.

w°° 1 1 1 .

with |w°°|<a(l + e|y|6) and u;?0 locally bounded.

Looking at the equation satisfied by f ^/Jffik ) a n ^ utilizing the maxi-

mum principle we conclude that w°° = y/2. O

We conclude this short note with some results concerning the uniqueness

of the surface Tt. In particular, we consider the continuation of Tt past T*,

which is given by [ES 1990], [CGG 1989] and [So 1990] and ask whether it is

unique.

An immediate consequence of the proof of Theorem 3 is that the singu-

larity at (0,T*) does not create an "interior". This follows from:

Proposition 4 ([SoS 1991]): Let u be the solution of (2) with [u(-,t =

0] = [r = h{z,t)] fort < T*. Then (0,0,0) £ int [u(-,T*) = 0]. •

Next we state a global uniqueness result for torus-like surfaces. A similar

result holds for general dumbbell shapes. In [SoS 1991] we also consider

uniqueness questions in more general situations.

To state the result, we parametrize the surface by

where g solves the equation

grr N-2
9 +



Theorem 5 ([SoS 1991]). If rgT - g - 2T*gt has at most 2 zeroes at
i = 0, then the surface t —* I\ is unique.

Proof. As long as h ^ 0, Tt is classical and therefore unique. On the
other hand, the assumption at t = 0 yields that A — z/i2^0 at t = T* with
equality only at z = 0. In view then of the fact that ftt(0,i) | —oo as * | T*,
we can show that (3) holds for some K for t near T*. We then conclude by
Theorem 2. D

In the case of the torus the surface is given by

The following is an immediate consequence of Theorem 5.

Proposition 6 [(SoS 1991]): There exists Ro £ (0,1) such that for any
R < Ro the torus shrinks to a circle and then becomes extinct. For

R > Ro the torus "focuses" at 0 at some TR, but then it opens up ; it becomes

"topologically" a sphere, shrinks to a point and then becomes extinct. The

surface Tt is unique throughout this motion. Finally, for R = RQ the torus

focuses at exactly the same time it shrinks to a circle. •

The above result is related to a conjecture by DeGiorgi [DeG 1990].

Remark: After this note was completed the authors learned that X.-Y.
Chen [C 1991] has shown that, in general, bodies of rotation give rise to point
singularities.

Acknowledgement: The authors want to thank Luis Caffarelli for sev-
eral very interesting discussions about this problem.
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