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Abstract

A new and simplified proof of the sign of the second variation of the Oseen-

Frank Energy in terms of the elastic constants is given. The proof relies on the

frame indifference of the energy and a new expression for the second invariant

null lagrangian as a surface integral.
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1 Introduction

Equilibrium configuration of a nematic liquid crystal are generally assumed to be

realized by minima, or at least stationary points of the Oseen Frank energy of its

optic axis u(x) = (u1(x),u2(x),u3(x)),

u)dx, H = l, (1.1)

W(Vu,u) = -fci(divu)2 + -k2(u • curlu)2 + -k3 |u A curlu|2, (1.2)

where fi is the domain in R3 occupied by the material. 1 Above Jbi, Jb2, £3 are positive

constants. In view of the constranint \u\ = 1, an equilibrium configuration will
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generally have defects, or singular points, where u fails to be continuous. The simplest

example of a configuration with a defect is

»(*) = jfj = V|*|, (1.3)

which is stationary for all choices of &i, &29 &3*

The issue we wish to consider is when n(x) is stable among all possible choices of

u(x), \u(x)\ = 1, which, say, are defined in |x| < 1 and agree with n on \x\ = 1. Let

us formulate this by introducing

HX(B,S2) = {ueHl(B;R3):\u(x)\ = l in B} and

A = {ueH^B.S2): u = n on S2 = 8B), (1.4)

where B denotes the unit ball in i23, and HX(B\ R3) denotes the usual Sobolev space

of i23 valued functions with square integrable first derivatives.

S.-Y. Lin [LI] pointed out that n(x) fails to minimize (1.1) in A if k\ is too large,

both by explicit construction of a trial vector field of lower energy and by computation

of the minimizing configuration. F.Helein [H], independently, gave quantitative form

to this fact by proving that n(x) is not the minimum of E in A if

8(*2 - Jfci) + h < 0. (1.5)

Cohen and Taylor [CT] then proved the remarkable fact that n is stable, in a suitable

sense, provided

8(* 2 -* i ) + *3>0. (1.6)

Our primary intention here is to give an elementary proof of the Cohen and Taylor

result, whose proof is based on the spectral theory of the d operator on S2. Pivotal

to our argument is a new expression for the integral of the null lagrangian

/ tradjVuds = I /((divu)2 - tr(Vu)2)dx (1.7)
JQ 2 JQ

as a surface integral.

One result relevant to our results which we would like to mention here is that if

ki < k2) then n(x) is the unique minimizer of energy in A defined above. This is

shown in [01] by extending an earlier result of F.-H. Lin [LI] on harmonic maps.
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We refer to [El], [HK], [K], and [L2] for recent developments in liquid crystal

theory.

We wish to thank J.L. Ericksen for much helpful guidance. We are indebted to

G.Vergara Caifarelli for many discussions about boundary integrals for (1.7), includ-

ing the extremely simple proof of LEMMA 4.2.

2 Second variation of the Oseen Frank energy

We review the second variation of the Oseen Frank energy at n(x) = 73 as developed

by Cohen and Taylor. We then explain our result. Let v G Hl(B;R3)nL°°(B;R3)

have compact support and satisfy v • n = 0. For A small

(2.2)

where

B |X|

+fc3|nAcurlv|2}dx. (2.3)

Our main objective is to prove this version of the result of Cohen and Taylor [CT]:

Theorem 2.1 Let v e HX(B\ R3)r\L°°(B; R3) satisfy v • n = 0. Assume that v£0.
Then

En(v,v) > 0 when S(k2 - kx) + k3 > 0

and

En(v,v) < 0 when 8(k2 - h) + k3 < 0.

As noted in the introduction, the second part of this theorem is due to Helein [H].

As observed by Cohen and Taylor, the positivity of En(v, v) when S(k2 — kx) + jfc3 >

0 follows from the two inequalities
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]B[(divv)2 + |n • curlv|2]dx > jf j^ |v |2dx, (2.4)

and

jB\n^nM2dx>\jB^dx, (2.5)

whenever t; G HX{B; i?3) f]L°°(B; fl3) satisfies t; • n = 0.

The inequality in (2.5) is strict if t; ̂  0.

The proof for this elementary but rather critical observation is simple. If jfcj < Ar2,

E(n)(vyv) is lowered if fc2 in (2.3) is replaced by ku and the proof of the positivity

simply follows the inequalities of (2.4) and (2.5); if A?i > A:2, and k3 > 8(ki — k2) then

E(n)(v,v) > /
JB | |

+k3\n Acurlv|2}dx

= / {*a[(div v)2 + |n • curl v|2] + k3|n A curhf
JB

= / [2fcj + 2(kr - k2) -

= 0.

3 Frame indifference

The energy density (1.1) is frame indifferent, which means that it is invariant under
the change of variables

u'(x) = Qu(QTx), QeSO(3), (3.1)

which transforms Vtx to Vt/ = QVuQT. This was one of the bases for its derivation,
cf.[F],[E], In our proof we shall use the frame indifference of the quantities appearing
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in (2.3) as well, so we check that here. First of all note that for any vector valued

function u(x)

det(A/ - QVuQT) = det(A7 - Vu), - o o < A < +oo. (3.2)

Since

det(A7 - Vu) = A3 - divuA2 + ^((divu)2 - tr(Vu)2)A - det(Vu), (3.3)
2

the fundamental invariants divu, (divu)2 — tr (Vu)2, and det(Vti) are frame indiffer-

ent.

Now curl u is the unique vector for which

curluAf = (Vu-VuT)f , £ G R3. (3.4)

Writing £' = Q£ and defining u'(x) = Qu(QTx), as in (3.1) above, we have that

so
|curlu'A£'| = |curluAf|. (3.5)

If £ is a unit vector perpendicular to curl u, then £' is a unit vector perpendicular to

curl u', whence

(curl u' | = |curlu|.

If £ is an arbitrary unit vector, then

|f • curlu|2 = |curlu|2 - |curlu A f |2,

so

A special case of this is f (x) = n(x) for which n'(x) = n(x). This gives that

\n • curlu'l2 = |n • curlu|2. (3.6)

Thus each term in (2.3) is frame indifferent.
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In this spirit, we do some computations along the positive x3 axis to be used later.

Along the positive x3 axis, x = (0,0, r), n = x/\x\ = (0,0,1). Exploiting (n-v) = 0,

we have

XiVi = \x\(n • v) = 0,

—-(xiVi) = VJ + ^t^-1 = ° for i = !?2^ 3-

Writing them down explicitly,

"i + r—w 3 = 0,

5
V2

v3

= 0,

= 0.

In summary,

(V.) - ( |)

v± \
8x2
dvo
dx2

\ r

/

\ r

dr

62 «adr

0

Therefore
, d\2 v2 dvx vi

c u r l v = (_____+_b l_a 2)

(3.7)

(3.8)

and the following expressions for those quantities which are frame indifferent:

(divv)2 = (ax + k)2; (3.9)

|n-curlv|2 = ( 6 i - a 2 ) 2 ; (3.10)

|n A curl v|' = ( - ^ - ̂  + ( ^ + ^ (3.11)

(div v)2 — tr (Vv)2 = Twice the sum of the determinants of all
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the diagonal 2 x 2 submatrices of (Vv)

\v\2 =

(3.12)

(3.13)

( 3 , 4 )

4 Proof of (2.4)

The inequality (2.4) is the more difficult to prove, so we shall focus first on it. In

fact, we shall prove a better inequality..

PROPOSITION 4.1 Let v € Cl(B; R3) satisfy v • n = 0. Then

I ((divv)2 + (n • curlv)2)dSr > \ I |v|2dSr, 0 < r < 1. (4.1)

where Sr = dBr and dSr denotes the surface measure on Sr.

Integration of (4.1) yields (2.4) for smooth functions. We remove this restriction at

the end of this section. The proof relies on two lemmas. The first of these is the

interpretation of the null langrangian mentioned in the introduction.

LEMMA 4.2 Let v € Cr l(fi;il3) ; where il is a domain with smooth boundary. Then

1 /(divu)2-tr(Vu)2dx
2 JQ

= / tr adj Vudx

= / adj Vu • x ® vdS, (4.2)

where v denotes the outward unit normal to Q.

Proof of LEMMA 4.2. First suppose that u G C°°(T2; #3).Then recalling

that

divadjVu = 0,
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we have that

/ adjVu • x ® udS = / (adjVu)ox,i/,<fS
JQ JdQ

= / (adjVu)ij6ijdx + / - j — (adjV)tizt<fc

= / (tr adjVuWi.

The result now follows from approximation.

The lemma may be generalized in many directions, both to less smooth classes of

functions and to other null langrangians. See section 8 for more discussion.

We apply the lemma. Assume that v € C1(5;il3) . Introduce the (frame indiffer-

ent) expression

Tv = (div v)2 - tr (Vv)2 — 1A| V |2 ( 4 3 )

and note that if t; • n = 0, then

On the other hand, at x = (0,0, r),

adj Vt; • x ® v = adj V r - n ® n r , n = (0,0,1),

= (0162 - a26i)r = ^Tvr.

Hence

r)2 - tr(Vu)2)dx = / TvrdSr (4.4)

Finally, let us note that at x = (0,0, r) ,

(div v)2 + (n • curlv)2 = (a2 + b2)2 + (a2 - bx)2 > 4 ^ 2 -

from which it follows that

(div v)2 + (n • curl v)2 > 2Tv. (4.5)

Hence PROPOSITION 4.1 for smooth function is a consequence of
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LEMMA 4.3 Let v € C\{B\ R3) satisfy v • n = 0. Then

( TvdST = \ l \v\2dSr, 0 < r < l . (4.6)
JSr r* JST

PROOF: We may assume that v = 0 in a neighborhood of 0. Using (4.4),

/ Tvdx
JBr

We calculate that

- / ~\v\2dx = I ±\v\*dx- I -\v\2dSr. (4.7)
JBr pdp JBr p2 Jsrr

l

Placing this in the above and grouping the volume and surface terms separately gives

that

/ {Tv - ±\v\2}dx = r f {Tv - ±\v\2}dSr. (4.8)

Denote the left hand side of (4.7) by /(r) . Since v has compact support, (4.7) assumes

the form

/(r) = r ^ , / ( l ) = 0. (4.9)

The solution of (4.8) is f(r) = 0, which is (4.6).

COMPLETION OF THE PROOF OF (2.4): We want to check that (1.4)

is valid for v € Hl(B',F?) with compact support. Suppose first that v € Hl(B;R3)

with suppv C B \Br. Let wt € CQ'(B;R3) be uniformly bounded, supp wc C B \Br

with wt —* v in HQ(B; R3). Then vc = wc — (wc • n)n satisfies ve • n = 0 and

( ) < \\tVc -

Moreover,

v( - v)\2dx < 2 / |V(u;£ - v)\2dx + / \wt - v\2\Vn\2dx.
JB JB
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Now for a subsequence of tuc, not relabled,

wt —• v in B a.e.

hence

\wt-v\2\Vn\2 —>0 inBa.e.

Moreover, since the we are uniformly bounded,

\wt - t f | V n | 2 < C|Vn|2 € L\B).

Thus by Lebesque's Theorem,

lim / \wc-v\2\Vn\2dx = 0,

and (2.4) holds for t; G HQ(B;R3) with suppv C B \ Br. To remove the condition

on the support of r, it suffices to replace v by rj2v, n = 1 in B \ Br and tf = 0 in i? r/2

and check that

lim / |V(r/2v - vfdx = 0.

5 Proof of (2.5)

We begin by proving (2.5) for t; G CQ(B \ Br\ R
3) satisfying v • n = 0. Owing to the

frame indifference of the integrand, it suffices to prove that along the positive x3 axis

£ \n A curhfr2</r >^£ ^\v\2r2dr (5.1)

and the inequality is strict if i; does not vanish identically along the positive x3 axis.

Let gi = rvt-, i = 1,2. From the calculations of (10),(12) along the positive X3

axis,

/ \n A curlv|2r2dr

i
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= T /W*
4 Jo

where we used Proposition 1 in the appendix to get the inequality above. We also use

Proposition 1 to conclude that the inequality is strict if t; does not vanish identically

along the positive x3 axis. The extension to general v G Hl(B] R3) with compact sup-

port proceeds exactly as in the proof of (2.4). This completes the proof of THEOREM

2.1.

6 Optimality

Finally, we remark that inequalities (2.4) and (2.5) are optimal. In [H], Helein picked

v = (x(r)x2,-x(r)xu0), r = \x\

to get the optimal choice in his proof that the second variation of E(u) in (1) at x/\x\

is nonpositive if 8(&2 — &i) + &3 < 0 • F°r such kind of t;,

(di™)2 = 0;

| .2 _

|x|2 ' ' r2

Thus for the two sides of the inequality (2.4),

Therefore (2.4) is in fact an equality. This calculation also shows that in (4.6),

although the integrals of the two sides over a sphere are equal, their integrands are
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generally not. To be more specific, we easily verify it here by a direct computation.

nfdvi dv2 dv2 dvi x 1 d(|v|2)
= 2v"3—*Z "5—"5—) H —

ox i Ox2 OX\ 0X2 v or
~2 _l_ .̂2

therefore for the two sides of (4.6),

Furthermore, the function \ in t; can be chosen such that the left side of (2.5)

can be less than the right side multiplied by any prescribed factor larger than one.

We do not go to detail here, see [H] and/or the remark following the proof of our

Proposition 1 in the appendix.

7 Appendix 1: A Sobolev type inequality

Proposition 1 For a smooth function g{t) with compact support in (0,1], the follow-

ing inequality holds:

£<rf*i\£$* (7.1)
and the equality holds only when g = 0.

Proof: We notice that
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Squaring two sides above leads to (7.1).

From the proof, if (7.1) is an equality, g' has to be proportional to g/t. Only g = 0

satisties this with the boundary condition ^(1) = 0.

Remark 1: It's easy to verify that the proposition is equally true for nonsmooth,

but absolutely continuous function g such that \g\ < ct for some constant c. The

proof of (2.5) for general v E H1 f]L°° depends on this argument. Specifically in the

proof of equality (5.1), #, = r vt-, \gi\ < or since v 6 Hl{\L°°.

Remark 2: 1/4 here is in fact the best coefficient in the following sense, for any

constant c > 1/4, there is a smooth g with compact support in (0,1) such that

pt. (7.2)

The proof of this is also elementary.

Consider

cc = inf / {g'fdtl I Zrdt with 0 < e < 1.
aeH&([c,i])Jo v : " 'Jo t2

cc is reached by a function gt which satisties

2

9? + c^ = 0, 9l(e) = <7<(1) = 0

The ODE is solvable by the standard Euler method, cc is calculated as

^ 2 1/4 as c ̂  0.

8 Appendix 2: A discussion on the null lagrangian

energy

In [E2] there is a systematic discussion on the null lagrangian energies of liquid crys-
tals. Here we are going to give a more geometrical understanding of the null lagrangian
energy. In another sense, this is to put the simple proof of Lemma 4.2 in a larger
context.
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The first motivation of our study comes from the equality

det(7 + t V/) = 1 + t div/ + | [ (divV/)2 - tr(V/)2] + j det(V/).

Obviously this equality suggests that all the three terms in the right side are null

lagrangians, i.e, their integrations in a domain only depend on their values on the

boundary.

In [BCL], an important role is played by the divergence of the vector function

df df df df - df df
( / ' " 5 — A " 5 — > / ' " 5 — A " 5 — > f ' ~ Z — A " 5 — ) •ox2 ox3 ox3 oxi axi ax2

Specifically, if / = (/i,/2,/3), | / | = 1 and / only has finite singularities at Pt- with

degree rft, then the aforementioned divergence is Y^diSp^x). A detailed proof has

to employ the following identity of the diffential forms and the Stokes integration

theorem:

= 3dfxAdf2Adf3

= 3 det(Vf)dx1 A dx2 A dx3.

Here we use A as the exterior product of differential forms (besides the exterior

product of two vectors in i?3), and we use d as the exterior differentiation operator.

We refer to [B] for an introduction to the calculus of the exterior differntiation.

Playfully, if we replace one of the / t 's in the above identity with xt's, say the last

ones, we find

d(fidf2 A dx3 + f2df3 A dxx + f3dfx A dx2)

= dfx A df2 A dx3 + df2 A df3 A dxx + df3 A djx A dx2

The integration by Stokes theorem leads to something well known already. In

fact, it is equivalent to writing

(div/)2 - tr(V/)2
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then using the divergence theorem to express it as a boundary integral. Unfortunately,

the formula as the surface integration does not provide much geometric insight into

what it really is. In the proof of inequality (2.4) we were initially stalled at this point.

The difficulty encountered here was finally resolved by our observation that we

should replace the first /t's with xt's, that is, we equally have

d(x1df2 A df3 + x2df3 A dfx + x3dfx A df2)

= dxx A df2 A df3 + dx2 A df3 A dfx + dx3 A dfx A df2

= l/2((div(v/)2 - tr (v / ) 2 )^! A dx2 A dx3.

A salient feature of this equality is that here the first x^s lead the two following /t's

instead of that the first /t's lead one /;'s and one zt's in the former identity. It was

this symmetry that leads to the new expression.

Proposition 2 Let f = (fiif2,f3) be smooth on a smooth domain Q. Denote v as

the outnormal of dtt and tx,e2 as an orthonormal basis for the tangential plane at

x G dCl such that (e\,e2, u) forms a, right handed basis for R3. We have

/nn[(div/)> - tr(V/)V* = 21 x • §L A §LdS. (8.1)

Proof: We use Stokes theorem on integration (cf. [B]).

[(div/)2 -
l

= 2 / dfadfi A df3 + x2df3 A dfx + xzdfx A df2)

= 2 [ (xidf2 A df3 + x2df3 A dfx + ^ 3 ^ A df2)

x2 8x2
dx2 A dx3 x2

dx3

9X3

dx3 A dx\
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SA Sh.
dxi 9x2

x2

h. Sh.
9*, 9x2

h.
9x2 2 dx\ A

*3

dX2 dX3

Sh.
8*3

ft 8*3

8*3
Sh.
8*3

8*1 8*2
dh 9h
9*i 9*2
^ h.

8*1 9*2

u3)dS

a/3 a/3 a/3
a a a

dh. 9h,
8*1 8*2 8*3

V2

Si*
a/3
a

+x3

dh dh dh
dxi dx2 dx3
dh dh dh
dxi dx2 dx3

V\ l/2 Vz

)dS

where (^1,^2^3) = v ls the outnormal to d£l, dS is the area element of dQ. Let

(ci, e2, v) be a right handed basis for i?3, we have

0 0 1
a/2
dxi
dh
dxi

*&
dxi

§L
dxi

2A
dxi
dh
dx%

Vl

dx2

d&
dx2

dx2

dj±
dx2

dh
dx2

0?
v2

dh
dX3

dh
dx3

8h
8x3

ax3

8X3
dh
0X3

vz

dh
8ei

ft
0

Sh.
8ei
dh,

dei

dei0

I
8e2

0
Sh
de2

9e2

dh
9e3
0

•

•

1

•

1

where "•* denotes an entry which is of no use.
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From all of the calculations above, we get

jfKdiv/)' - tKV/fl* = 21 x • J £ A *LlS. (8.2)

Proposition 2 is proved.

As one might notice, the right side of (8.1) resembles strongly the expression

/ ^ / • J£ A -§^dS in [BCL]. The proof of Lemma 4.2 is in fact a compact form of the

above proof.

For liquid crytstals, the director vector u satisfy |u| = 1, therefore, both ^ , ^

are perpendicular to u and
du du

"a" A — = u J,
aei oe2

here J is the Jacobian of the map u : dil —> S2.

Proposition 3 For liquid crystals, ifu is the director vector field of the optic axises,

and if there is no defect (or singular point) on dil, then

I [(divu)2 - tr(S7u)2)dx = 2 / (x • u)JdS
JU JdQ

where J is the Jacobian of the map u : dtt —• S2, and dS is the area element on dCl.

Proof: Since we have assumed there is no defect or singular point on dfi, u can be

approximated by smooth /'s in Sobolev space H1^) with the same boundary values.

( | / | does not need to be | / | = 1). By Proposition 2 and the preceding remarks,

/ [(divu)2 - tr(\/u)2]dx = 2 / (x • u)JdS.
Jn JdQ

x

Some remarks to Proposition 3 might be interesting. If VI = B and u = x/\x\ then

(x • n) = 1, J = 1 so the integration is 8?r. K u is planar, i.e., if u takes on values

in a grand circle of 52 , then J = 0, so the integration is identically zero. Physically,

it is an open problem how to measure the elastic constant associated with the null

lagrangian energy in liquid crystals. ( all of the other elastic constants have some

experimental ways to measure them out.)
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