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ABSTRACT. Recently, Gurtin and Struthers [2] developed a dynamical theory of
phase transitions in crystal-crystal systems in which the interface is sharp, coherent, and
endowed with energy, entropy, and superficial force. A fundamental conceptual ingredient
of the theory is the use of three force systems: deformational forces that act in response to
the motion of material points; accretive forces that act within the crystal lattice to drive
the crystallization process; attachment forces associated with the attachment and release
of atoms as they are exchanged between phases. Here I will discuss the main results of the
theory, which are constitutive equations and balance laws for the interface.

CONSTITUTIVE THEORY. The surface energy and the accretive and defor-
mational surface stresses are allowed to depend on the bulk deformation gradient F, the
normal n to the interface, the normal speed v of the interface, and a list z of subsidiary
variables of lesser importance. It follows, as a consequence of thermodynamic admissi-
bility, that: the surface energy and the accretive and deformational surface stresses are
independent of v and z, and depend on F at most through the tangential deformation
gradient -F; in fact, the energy

(1) V> = ? ( * > )

completely determines the surface stresses through relations, the two most important of
which are:

(2) S = dg9{F, n), c = -Dj{F, n),

in which S is the deformational (Piola-Kirchhoff) surface stress, C is the normal accretive
stress, dp is the partial derivative with respect to -F, and JDn is the derivative with respect
to n following the interface. A further consequence of thermodynamics is an explicit
expression for the normal attachment force 7r:

(3) * = Jk + # + bvy b = fe(F,n,t;,z) > 0,

where ^ is the difference in bulk energies, while k is related to changes in momentum and
kinetic energy across the interface. These results imply that the sole source of dissipation
is the exchange of atoms between phases, with bv2 the dissipation per unit interfacial area.
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INTERFACE CONDITIONS. The system of constitutive equations and balance
laws combine to give the interface conditions1

{ ]

with

g = _ ^ _ divsc + (FTS) L.

The subscripts 1 and 2 denote the two phases: ^ i and \&2 axe the bulk energies per unit
reference volume; Si and S2 are the bulk Piola-Kirchhoff stresses; Fx and F2 are the bulk
deformation gradients; Vj and v2 are the material velocities; p is the reference density.
The remaining quantities concern the interface: L is the curvature tensor with K, its trace,
the total curvature; divs is the surface divergence.

SIMPLIFIED EQUATIONS.2 Assume that both phases are isotropic with lin-
earized stress-strain relations in each phase, and neglect all interfacial terms with the
exception of the dissipative term bv in (4). Then for longitudinal motions with scalar
displacement u(x,t) and scalar tensile stress a(x,f) the basic equations are3 the bulk
equations

(phase 1) c\uxx = utu a = pxuz, xj> = l^\u\

(phase 2) c\uxz = uiU cr = crQ + /32ux, t/> = ^0 + 0o"x + g

and the interface conditions

[a] = -

where cf = fii/p with fa the elastic moduli; ao and ^ are constants; [ ] denotes the jump
across the interface; () designates the average interfacial value.

1 For statical situations: (4)i was derived by Gurtin and Murdoch [6] as a consequence
of balance of forces; (4)2 and its counterpart for crystal-melt interactions were derived by
Leo and Sekerka [5] (cf. Johnson and Alexander [3,4]) as Euler-Lagrange equations for
stable equilibria. In the absence of surface stress and surface energy (S = 0,C = 0, tp = 0):
(4)i is a standard shock relation; (4)2 (with 6 ^ 0) was established by Abeyaratne and
Knowles [7] and Truskinovsky [11]. Counterparts of (4) for a rigid crystal in an inviscid
melt were derived in [8]; an analog of (4)2 for a rigid system was given in [1].

2 Cf. [9]
3 Cf. Abeyaratne and Knowles [10], whose treatment is slightly different.



For antiplane shear with scalar displacement u(x, y, t) and shear-stress vector T(x, y, t)
the basic equations are the bulk equations

(phase 1) s\Au = «„, T = mVu, V> =

j V = Vo + T 0 • Vu + -

and the interface conditions

[T] • n =/w2[Vu] • n, [ut] = -v[Vu] • n,

where A is the laplacian; s? = Pi/p with /ij the shear moduli; To and xpo &re constants.
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