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1. Introduction.
There are multiphase processes that are essentially isothermal

with kinetics driven by mass transport and stress, an example being
coarsening or Ostwald ripening, in which a phase, quenched into a
metastable state, exibits late-stage kinetics characterized by the
dissolution of second-phase domains with large interfacial curvature at
the expense of domains with low interfacial curvature. In [1] we
developed a continuum-mechanical framework within which such
processes can be discussed. We here discuss the results of [1].

We consider a two-phase system consisting of bulk regions
separated by a sharp interface endowed with energy and capable of
supporting force, following — and in certain respects generalizing —
the framework set out in [2-5]. We base our discussion on balance
laws for mass and force in conjunction with a version of the second
law appropriate to a mechanical system out of equilibrium. We assume
that mass transport is characterized by the bulk diffusion of a single
independent species; we neglect mass diffusion within the interface.

2. Theory without deformation.
We neglect deformation and bulk stress, but allow the diffusion

potential (chemical potential) to be discontinuous across the interface.
We develop a heirarchy of free-boundary problems at various levels of
approximation, framed in terms of the departure u«p.-u.o of the
diffusion potential \L from the transition potential u. which is the



(' potential at which the phase change would occur were interfacial
structure neglected. For small departures from JJL0 the basic system
of equations, neglecting diffusional transients, consists of a PDE in
bulk supplemented by three interface conditions. The PDE has the form

divh - 0. (1)

where h, the mass flux, is given by

h - - D a V u in phase oc,

h - -DpVu in phase p, ( 2 )

with DK and Dp constant mobility tensors. The first interface
condition Is balance of mass

h'-v - AV - h + v - BV m J, (3)

V in which h" and h+, respectively, represent the limits of h from
the oc and p phases, A and B are constants representing the
density in the oc and J3 phases at the potential JI0, v is the unit
normal to the interface directed out of phase oc, and V is the
normal velocity of the interface. The second interface condition,
essentially constitutive, characterizes the net mass flux J defined
in (3):

J - -b21(v)V - b22(v)[u], ( 4 )

where b21(v) and b22(v) are constitutive moduli, while [ ] (in
boldface) denotes the jump across the interface (J3 minus oc). The third
interface condition generalizes the classical "Gibbs-Thomson relation"
to situations In which the chemical potential is discontinuous across
the Interface:

r Bu+ - Au" - f(v)K + div^c(v) - b^CvJV - b12(v)[u], (5)



c
where f(v) Is the interfacial energy,

c(v) - -3v f (v) (6)

1s the surface shear, b^v) and b12(v) are constitutive moduli, and
div^ Is the surface divergence.

We also establish global growth relations for solutions of the
underlying equations. In particular, solutions of the quasi-static
equations (l)-(6) consistent with the boundary condition

hn « 0 on dQ (7)

satisfy

voKQ*)1 - 0. {|f(v)da}' i 0. (8)

Here Qa(t) is the region occupied by phase a. while 4,(0 = dQtt(t)
represents the interface. The relations (8) yield a formal justification
for the statical Wuiff problem, which, in the present context, is to

minimize |f(v)da (9)

over all interfaces 4,»dQtt with vol(Qa) prescribed.

3. Theory with deformation and bulk diffusion.
We include deformation and stress, but limit our discussion to a

continuous potential and to a coherent interface. In addition, we
consider only infinitesimal deformations, neglecting Inertia. We derive
a quasi-static theory analogous to (1)-(6). The bulk equations of this
theory are



divT-O, divh-0 (10)

supplemented by (2), where T, the stress, Is given by the stress
strain relations

T « La[E-E0 oJ In phase a,

T - LjjtE-Eop] In phase 0,

with La and Lp the (constant) elasticity tensors,

E - { ( V u + VuT ) (12)

the strain tensor, and EOoc and Eop the (constant) stress-free
strains in phases <x and J3. The corresponding interface conditions are

[W(E-E0)3 - T v [ V u ] v + f(v)K + div^c(v) - b(v)V, ( 1 3 )

( « [h] v. CT]v « 0,

where W(E-E0 ) is the strain energy, defined, e.g., in phase oc by
J [E -E 0 o t ]L a [E -E 0 a ] , b(v) is a constitutive modulus, and I is a
constant. We consider solutions of (10)-(13) consistent with (7) and
the dead-load condition

u'«0 on a portion U of dQ, Tn«T*n on the remainder, (14)

with T * (»constant) prescribed, where Q, with outward unit normal
n, is the fixed region of space occupied by the body. We prove that
such solutions satisfy the global growth relations

voKQJ" - 0. ( 1 5 )

{J{W(E-E 0 ) -T # - (E-E 0 ) }dv + |f(v)da}' < 0,
Q o,



relations that suggest the following variational problem: given
vol(Qa) and boundary displacements g(x) on U,

minimize | {W(E-E 0 ) -T*(E-E 0 ) }dv + |f(n)da (16)
Q 4,

over all interfaces 4,-dQa and all displacement fields u that are
continuous across 4- and satisfy u«g on U. This problem — a
natural generalization of the Wulff problem — is purely mechanical: the
diffusion potential is not involved.

We also discuss a quasi-linear theory in which the elliptic
equations (2), (1O)2 are replaced by parabolic equations. This theory
leads to the following variational problem, in which the diffusion
potential plays an important role:
minimize

TME o ]vo l (Q a ) + |{W(E-E0)-T*-(E-E0) + Cu2}dv + |f(v)da
Q 4,

(17)
subject to

-[AlvoUQJ + l(2Cu + G(E-E0)}dv - m0

Q

over all interfaces <̂ «=9Qa and all displacement fields u that are
continuous across 4< and satisfy u • g on U. Here C is a
constitutive modulus having values Ca and Cp in phases <x and p,
while m0 is a prescribed constant.
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