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1. INTRODUCTION
Ericksen [1961,1991], in his studies of liquid crystals, and Toupin

[1964], in his theory of oriented hyperelastic materials,1 introduce
the macroforce and microforce balances

(Tn + [b - 0, (1.1)
dP P

J in • ((fe + k) « 0, (1.2)
dP P

in conjunction with the macromoment balance

JpxTn + |pxb + JdlxTn + \&xb « 0. (1.3)
dP P dP P

Here (and throughout the paper) the time is fixed, P is a control
volume, n is the outward unit normal to dP, and p(x) is the
position vector from the origin:

*Cf. Truesdeli ond Noll [1965], Part (p) of Sect. 98.



P(X) « X - 0. (1.4)

Further, v is the material velocity, while d, the director, is a
vector field that represents the fine structure; and the indicated
forces and stresses have a physical interpretation suggested by the
following nomenclature:

T macrostress
b body macroforce

T microstress

b body microforce

k Interactive microforce2

with inertia! forces included in the body forces.
The derivations of (1.1)-(1.3) given by Ericksen and Toupin are

essentially variational in nature, and therefore the resulting balance
laws are appropriate only to nondissipative systems, although they are
often extended by f iat to more general continua.

Here we take a different viewpoint: we derive the basic balance
laws as consequences of invariance of power under changes in
observer.3 In a purely mechanical theory the relevant power is that
expended to induce changes in energy with t ime; in the theories
described by Ericksen and Toupin this expended power has the form

n(P) « jTn v + |b v + JTn iS' + (b-d'. (1.5)
dP P dP P

The standard invariance of (1.5) yields the macroforce balance (1.1) and
the macromoment balance (1.2). but i t cannot yield the microforce
balance (1.3), since the interactive force k is not present in (1.5), and
since the director d is invariant under Galilean changes.

2i.e., the Interactive force between the gross and fine structures, to be described later.
3Cf. Noll [1963], Green and Rivlin [1964a,1964b].



The novelty of our approach consists In our use of two
hypotheses: the availabil i ty of a "microscope", mathematized by the
introduction of a scale parameter e; the existence of total and fine
power expenses and the invariance of the corresponding power
funct ionals in the l im i t e-»O+. These hypotheses yield, as
consequences, the balance laws (1.1) -(1.3) together w i th a
micromoment balance

f pxTn + |px(6 + k) + \m « 0, (1.6)

8P P P

where m is an Interactive microcouple. The relation (1.6) is not
included among the balances derived by Ericksen and Toupin. We view
the microcouple m as indeterminate, since i t does not enter our
expression (3.6) for the expended power; granted that interpretation,
the balance law (1.6) adds nothing essential to the theory.

Finally, for completeness, we write a (mechanical) expression for
the second law in terms of a global dissipation inequality, and use i ts
localization, in the standard manner, to deduce constitutive relations
for oriented hyperelastic materials and nondissipative liquid crystals.

We do not discuss the form of the inertial terms.4

2. GROSS AND FINE CONSTITUENTS. FORCE SySTEMS. EXPENDED POWER.
We view each material point of the body as a superposition of a

gross and a fine structure.5 We consider the time as f ixed in the
ensuing discussion, and we assume that the body occupies a region 6
at this time. We write v(x) for the material velocity at the point
X€B,

v(x) - icurlv(x) (2.1)
4Cf. Ericksen [1961,1991], Toupin [1964].
5The terms "gross" and "fine" refer to particular structures, vhile "macro" and
"micro" refer to quantities that enter balance lavs such as (1.1) and (1.2).



for the corresponding spin, and V for the material time-derivative
of a function f.

Our theory differs from the classical theories of continuum
mechanics in the presence of a scdle for the fine structure: the fine
structure "appears" when the system is observed through a microscope
of magnification 1 + e, e>0. To within terms of o(e) this fine
structure manifests itself, at each xeB, through a director fi(x)
such that x + ei(x) marks the force center of the fine structure at
x. The material point of the fine structure that occupies x is
therefore seen — under the microscope — at x + ei(x), and hence the
effective material velocity of the fine constituent is the fine
velocity

v8 - v + ed* + o(e), (2.2)

while the effective spin of the fine constituent is presumed given by

¥ e = v + o(1). (2.3)

We now introduce force systems for the gross and fine
structures; each of these systems should be considered as accounting,
in principle, for the self interactions within each structure as well as
for the complex mutual interactions between structures. Since the
kinetic contribution of the fine structure is 0(e), corresponding
forces will contribute to the power (in the limit e-»0+) only if these
forces are 0(e"1). For that reason we allow the asymptotic expansions
of each of the forces to begin with a term of that order. Precisely,
there are two distinct force systems, and. to within terms that vanish
with e, they are specified as follows:



gross force system

fine force system

stress
body force

stress
body force
interactive force

m Interactive couple.

and "0" (which are

U £> ^ W UUU^j • VUU A

We will refer to the terms subscripted by " - 1 1

0(1) in e) as the singular and regular parts, respectively, of the
corresponding fields.

We characterize forces and couples through the manner in which
they expend power. The gross stress and body force at a point xeB
expend power over the material velocity v(x), the fine stress, body
force, and interactive force expend power over the fine velocity ve(x),
and the fine couple imi8(x) expends power over the fine spin Ve(x). In
the list of gross forces we could also have included an interactive
force k8 and an Interactive couple me; since we never study the
gross structure by itself, these interactions are irrelevant to our
presentation.

In view of this discussion, the total power expended on a
control volume P is given by

iTtot(e.P,v,ir)
dP

J(
P (2.4)

interactive forces are not included, since they are presumed interndl
to the combined system of gross and fine structures. Further, the
power expended by the fine structure has the form



dP P (2.5)

The actual power is the total power expended as observed
without a microscope

iKP.v.d') « lime_o+TT tot(e,P,v.$'). (2.6)

and we assume that:

(A1) the total power TT(P.V,^') is finite.

This assumption has two consequences. First ly, (2.6) and (A1)
yield the relation

^n + T^rO-v + j(b_t + b.t)-v - 0, (2.7)

3P P

showing that the singular terms in the expansions for the gross and
fine stresses and body forces measure mutual interactions of the two

structures. (I t is tempting to assume that T ^ « - T M , bw1«-b.1, but

we do not find this necessary.) Secondly, (2.4) and (2.7) yield

.v.m = |(Ton + Ton)v + |(bo + bo)-v +
dP P ap P (2.8)

We therefore arr ive at the desired expression (1.5) for the power
provided we define

(2.9)

Thus the microstress is the singular part of the fine stress, while the



macrostress is the sum of the regular parts of the gross and fine
stresses; analogous assertions apply to the body force.

The power expended by the fine structure is infinite in the limit
e->0+, but scaled by e it is not: we refer to

Hnine<P.v.v fd
I) - l i m ^ o ^ e T T ^ C e . P . v . v . i 1 ) } (2.10)

as the scaled fine power. By (2.5) and (2.9),

ne_f1ne(P.v,w,d1) = jTn-v + \{fov + k v + m - v ) , (2.11)

dP P

with

s_v m = m.r (2.12)

3. INVARIANCE UNDER CHANGES IN OBSERVER
We consider only observer changes that leave the body invariant

at the particular time in question. A change of this type is specified
by vectors c and q in conjunction with the following transformation
rules for the material velocity v, the spin v , and the director
velocity d1:

v(x) —» v*(x) = v(x) + c + qxp(x),
v(x) -» v* (x ) - v(x) + q, (3.1)

d'(x) — (d')»(x) - d'(x) + qxd(x).

with c the velocity, q the spin about the origin, and p(x) ,
defined by (1.4), the position vector from the origin. The stresses,
forces, and couples of the theory are assumed invariant under an
observer change of this type.

A basic assumption of our theory is:



(A2) the actual power as well as the scaled fine power are invariant:

iKP.v.d1) -

for all changes in observer.

Because of the linearity (in the kinematic variables) of the
expressions for the power, these assumptions of invariance are
equivalent to the simpler requirements:

n(P,c.O) = 0. ir(P.qxp,qx$) » 0, ( 3 2 )

' 0 . 0 ' 0 ) " °. TT6_f1ne(P,O.qxp,qx0) - 0

for all vectors c and q. The relations involving c yield force
balances, while the relations involving q yield moment balances.
Precisely, we have the following:

Result. If the actual power expense is well defined and
invariant under observer changes, and if the fine power expense scaled
by e is so invariant in the limit e-»0+, then:
(i) the macro and micro stresses, body forces, and couple defined by

(2.9) and (2.12) obey the force and moment balances (1.1)-(1.3)
and (1.6);

(ii) the expended power has the form (1.5).

The balances are required to hold for every control volume P
and therefore imply the local force balances

divT + b - 0, divT + 6 + k = 0 (3.3)

and the local moment balances



skw(T + T i T + d8k) - 0. ( 3 4 )

m » the axial vector of -2skwT.

where © is the director gradient

B • gradi. (3.5)

Further, using the force balances ve can express the expended power
(1.5) in the form

IT(P) = J{(T + BTT)gradv + 1-B' - k-d*}. (3.6)
P

All of the above relations are with respect to the current
configuration of the body. If, Instead, we use a fixed reference
configuration, and refer the basic quantities to this configuration using
"Piola-Kirchhoff" descriptions6

JTF"T. TR = J T F \ ( 3 7 )

where F is the deformation gradient of the (gross) motion relative to
this reference configuration and J = detF, then the local balance laws
(3.3) take the form

DivTR + bR - 0. DivTR + hR + kR - 0. (3.8)

with Div the divergence relative to position in the reference
configuration.

6Cf.. e. g.. Gurtin [1961], p. 178.
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4. ENERGETICS. DISSIPATION INEQUAUTy
Within a mechanical theory of the type considered here, the

second lav is the assertion that the rate of energy increase cannot be
greater than the expended power; precisely, given an arbitrary control
volume P,

< n(P), (4.1)

where p is the macromass density (consistent with the usual local
mass balance), y is the macroenergy per unit mass, and the
superscript dot here indicates the derivative with respect to time
following the material subbody that occupies . P at the time in
question. Since P is arbitrary, (3.6) and (4.1) yield the local
dissipation inequality

p i / < (T + iTT)-gradv + T-B' - k-d". (4.2)

An equivalent relation holds using the referential quantities
described in (3.7) in conjunction with the macroenergy (per unit
referential volume),

(4.3)

the resulting relation is

¥R" i TRF' • TReR" - kR-d\ (4.4)

with

6R = Vd . (4.5)

V denoting the referential gradient.
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5. ORIENTED HyPERELASTIC MATERIALS
We now specialize the theory to oriented hyperelastic materials

defined by constitutive equations of the form

V>R. TR, TR, kR functions of (F.BR,i). (5.1)

The standard proceedure7 of requiring that all "processes" related
through the constitutive relations (5.1) be consistent with the
dissipation inequality (4.2) then yields the result that the constitutive
equation

) (5.2)

for the macroenergy determines the other constitutive quantities
through the relations

TR - dF¥(F.BR .d).

©R,ia), (5.3)

6. LIQUID CRUSTALS
As is standard with theories of fluid behavior, we refer all

quantities to the current configuration. We assume that the body is
incompressible and homogeneous in the sense that

divv « 0, p « constant; (6.1)

we write the stress T + HTT in the form

7Cf. Coieman and Noll [1963].
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T + i T T = S + pi,

with S, traceless. the "extra stress" and p the (indeterminate)
pressure; and we lay down constitutive equations of the form

y, S, T, k functions of (B.d). (6.2)

Compatibility with the dissipation inequality (4.2) then yields the
reduced equations

T - -p1 - ©TT,

T = d8*(B.U). (6.3)

k = -d

with * the response function for the macroenergy:

y « 4>(B.d). (6.4)
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