NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

Carnegie Mellon

NAMT
 $91-001$

Jacobians and Hardy Spaces

P.L. Lions
Ceremade
Université de Paris-Dauphine
Place de Lattre de Tassigny
75775 Paris Cédex 16
FRANCE

Research Report No. 91-NA-001
May 1991

Center for
 Nonlinear Analysis

Department of Mathematics
 Carnegie Mellon University Pittsburgh, PA 15213-3890

Sponsored by
U.S. Army Research Office

Research Triangle Park North Carolina 27709

National Science Foundation 1800 G Street, N.W.
Washington, DC 20550

University Libraites Darnegie Mellon University
Dittsburgh, PA 15213-3890

Jacobians and Hardy Spaces

P.L. Lions
Ceremade Université de Paris-Dauphine Place de Lattre de Tassigny 75775 Paris Cédex 16
FRANCE

Research Report No. 91-NA-001

May 1991

Jacobians and Hardy Spaces

P. L. Lions
Ceremade
Université Paris-Dauphine Place de Lattre de Tassigny
75775 Paris Cédex 16
FRANCE

Introduction

We wish to illustrate here the links between various nonlinear quantities identified by the compensated-compactness method (L. Tartar [9],[10]), F. Murat [6],[7]) and the Hardy spaces. A systematic study of this matter can be found in R. Coifman, P. L. Lions, Y. Meyer and S. Semmes [3], and we want to illustrate it on the particular example of the Jacobian.

More precisely, we consider $J(u)=\operatorname{det}(\nabla u)$ when $u \in W^{1, p}\left(\mathbb{R}^{N}\right)^{N}$ for some $p \in[1 . \infty[$ where $N \geq 2$. This quantity clearly makes sense in $L^{1}\left(\mathbb{R}^{N}\right)$ if $p=N$; however, in that case, there are various reasons to guess that $J(u)$ might be slightly better than L^{1}. First of all, it is a classical fact that J is weakly sequentially continuous on $W^{1, N}\left(\mathbb{R}^{N}\right) N$ - this fact is one of the key ingredients in J. Ball's theory of polyconvex functionals in Nonlinear Elasticity [1]. Next, several results by H. Wente [12], L. Tartar [11] indicate that L^{1} is not optimal - see also H . Brézis and J. M. Coron [2]. Finally, the last piece of evidence is a striking recent result due to S. Müller [4] showing that if $\left.u \in W_{10 c}^{1, N_{(\mathbb{R}}}{ }^{N}\right) N$ and $J(u) \geq 0$ a.e., then $J(u) \log (1+J(u)) \in$ $L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$.

We will show below in Section 2 how all these results can be recovered from the following statement: $J(u) \in \mathscr{H}^{1}\left(\mathbb{R}^{N}\right)$ if $u \in W^{1, N}\left(\mathbb{R}^{N}\right)^{N}$. Here and everywhere below, we denote by $\mathscr{O}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{N}}\right)$ the following Hardy spaces:

$$
\begin{equation*}
\mathscr{H}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{N}}\right)=\left\{\mathrm{f} \in \mathrm{~S}^{\prime}\left(\mathbb{R}^{\mathrm{N}}\right) / \sup _{\mathrm{t}>0}\left|\mathrm{~h}_{\mathrm{t}} * \mathrm{f}\right| \in \mathrm{L}^{\mathrm{p}}\left(\mathbb{R}^{\mathbf{N}}\right)\right\}, \mathrm{p}>0, \tag{1}
\end{equation*}
$$

where h_{t} is a regularization kernel satisfying, for example

$$
\begin{equation*}
\mathrm{h}_{\mathrm{t}}=\frac{1}{\mathrm{t}^{\mathbf{N}}} \mathrm{h}(\dot{\bar{t}}), \mathrm{h} \in \mathscr{D}\left(\mathbb{R}^{\mathrm{N}}\right), 0 \leq \mathrm{h} \text { on } \mathbb{R}^{\mathrm{N}}, \text { Supp } \mathrm{h} \subset \mathrm{~B}_{1}, \tag{2}
\end{equation*}
$$

where we denote by B_{λ} the open ball of radius λ and by $B_{\lambda}(x)=B(x, \lambda)$ the open ball centered at x of radius $\lambda\left(\mathrm{B}_{\lambda}=\mathrm{B}_{\lambda}(0)=\mathrm{B}(0, \lambda)\right)$. We shall see in fact that $\mathrm{J}(\mathrm{u}) \in \mathscr{H}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{N}}\right)$ if $\mathrm{u} \in \mathrm{W}^{1, \mathrm{pN}}\left(\mathbb{R}^{\mathrm{N}}\right)^{\mathrm{N}}, \frac{\mathrm{N}}{\mathrm{N}+1}<\mathrm{p} \leq 1$ and that $\mathrm{J}(\nabla \phi)=\operatorname{det}\left(\mathrm{D}^{2} \phi\right) \in \mathscr{H}^{\mathrm{p}}\left(\mathbb{R}^{\mathrm{N}}\right)$ if ϕ $\epsilon W^{2, p N}\left(\mathbb{R}^{N}\right)^{N}, \frac{N}{N+2}<p \leq 1$. Of course, one has to interpret $J(u)$ or $J(\nabla \phi)$ in a distribution sense explained below when $\mathrm{p}<1$.

We present in Section 3 a proof of these facts. To simplify the presentation and the notations we restrict our attention here to the case when $\mathrm{N}=2$.

2. Main results and consequences.

Of course, if $u \in W^{1,2}\left(\mathbb{R}^{2}\right)^{2}, J(u)=\operatorname{det}(\nabla u) \in L^{2}\left(\mathbb{R}^{2}\right)$. But, one easily checks that

$$
\begin{equation*}
\mathrm{J}(\mathrm{u})=\partial_{1}\left(\mathrm{u}_{1} \partial_{2} \mathrm{u}_{2}\right)-\partial_{2}\left(\mathrm{u}_{2} \partial_{1} \mathrm{u}_{2}\right) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right) \tag{3}
\end{equation*}
$$

and this last expression is well-defined (in the sense of distributions) whenever $u \in W^{1, \frac{4}{3}}\left(\mathbb{R}^{2}\right)^{2}$: indeed, one then deduces from Sobolev embeddings that $u \in L^{4}\left(\mathbb{R}^{2}\right)^{2}$ and thus $|u||\nabla u|$ is integrable.

Next, if $u=\nabla \phi$, further cancellations of $J(u)$ take place and we may write

$$
\begin{equation*}
\mathrm{J}(\nabla \phi)=-\frac{1}{2} \partial_{1}^{2}\left(\left(\partial_{2} \phi\right)^{2}\right)-\frac{1}{2} \partial_{2}^{2}\left(\left(\partial_{1} \phi\right)^{2}\right)+\partial_{12}^{2}\left(\partial_{1} \phi \partial_{2} \phi\right) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right) \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{J}(\nabla \phi)=\frac{1}{2} \partial_{1}^{2}\left(\phi \partial_{2}^{2} \phi\right)+\frac{1}{2} \partial_{2}^{2}\left(\phi \partial_{1}^{2} \phi\right)-\partial_{12}^{2}\left(\phi \partial_{12}^{2} \phi\right) \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{2}\right) . \tag{5}
\end{equation*}
$$

Note that (4) makes sense as soon as $\phi \in \mathrm{W}^{1,2}\left(\mathbb{R}^{2}\right)$ while (5) makes sense if $\phi \in \mathrm{W}^{2,1}\left(\mathbb{R}^{2}\right)$ (since it implies $\phi \in \mathrm{C}_{0}\left(\mathbb{R}^{2}\right)$). In fact, the two expressions are easily shown to be equal if $\phi \in \mathrm{W}^{2,1}\left(\mathbb{R}^{2}\right)$ since $\mathrm{W}^{2,1}\left(\mathbb{R}^{2}\right)$ embeds into $\mathrm{W}^{1,2}\left(\mathbb{R}^{2}\right)$ and $\partial_{\mathrm{j}}\left(\phi \partial_{\mathrm{j}} \phi\right)=\phi \partial_{\mathrm{j}}^{2} \phi+\left(\partial_{\mathrm{j}} \phi\right)^{2}\left(\forall_{\mathrm{j}}\right)$, $\partial_{1} \phi \partial_{2} \phi+\phi \partial_{12}^{2} \phi=\frac{1}{2} \partial_{1}\left(\phi \partial_{2} \phi\right)+\frac{1}{2} \partial_{2}\left(\phi \partial_{1} \phi\right)$. Notice, finally, that by Sobolev embeddings, (4) makes sense if $\phi \in \bar{W}^{2,1}\left(\mathbb{R}^{2}\right)=\left\{\phi \in W^{1,1}\left(\mathbb{R}^{2}\right) / \partial_{i, j}^{2} \phi\right.$ is a bounded measure on $\left.\mathbb{R}^{2}\left(\forall_{i, j}\right)\right\}$.

We may now state our main results:

Theorem 1: Let $\mathrm{p} \in\left(\frac{4}{3}, 2\right]$ and let $u \in \mathrm{~W}^{1, \mathrm{p}}\left(\mathbb{R}^{2}\right)^{2}$, then $\mathrm{J}(\mathrm{u}) \in \mathscr{\mathscr { O }}^{\mathrm{p} / 2}\left(\mathbb{R}^{2}\right)$.

Theorem 2: Let $\mathrm{p} \in(1,2]$ and let $\phi \in \mathrm{W}^{2, \mathrm{p}}\left(\mathbb{R}^{2}\right)$, then $\mathrm{J}(\nabla \phi) \in \mathscr{\mathscr { H }}^{\mathrm{P} / 2}\left(\mathbb{R}^{2}\right)$.

Remarks: 1) These results also hold locally.
2) The borderline cases $\mathrm{p}=\frac{4}{3}$ or $\mathrm{p}=1$ can also be studied - see also section 3 below.
3) One recovers immediately S. Müller's result [4] from Theorem 1 since if $f \in \mathrm{~L}_{\text {loc }}^{1}, f \geq 0$ a.e. then $f \in \mathscr{O}_{1 \text { oc }}^{1}\left(\mathbb{R}^{N}\right)$ if and only if $f \log (1+f) \in \mathrm{L}_{\text {loc }}^{1}$ (see E. Stein [8]).
4) Observing that $\mathscr{F}^{1}\left(\mathbb{R}^{2}\right) \in \mathrm{W}^{-1,2}\left(\mathbb{R}^{2}\right)$, one deduces that $W=(-\Delta)^{-1} J(u) \in W^{1,2}\left(\mathbb{R}^{2}\right)$ and $J(u) \in W^{-1,2}\left(\mathbb{R}^{2}\right)$ if $u \in W^{1,2}\left(\mathbb{R}^{2}\right)^{2}$. Furthermore, in that case, one sees that $\partial_{i, j} W \in \mathscr{F}^{1}\left(\mathbb{R}^{2}\right)\left(\forall_{i, j}\right)$ and this yields: $W \in \mathscr{F} L^{1}\left(\mathbb{R}^{2}\right)$. We recover in this way the results mentioned in the Introduction.
5) One can define a linear continuous map P from $\mathscr{E}^{q}\left(\mathbb{R}^{N}\right)$ into $L^{q}\left(\mathbb{R}^{N}\right)$ for $0<q<1$ which consists in taking the "a. e. part" of a distribution f in $\mathscr{F}^{q}\left(\mathbb{R}^{N}\right)$: more precisely, $\operatorname{Pf}=\lim _{t \rightarrow 0}$ a.e. $h_{t} * f$. Of course, $\operatorname{Pf}=f$ if $f \in \mathscr{F}^{1}$ or L^{1} and Pf is the regular part of f if f is a bounded measure.
Next, one remarks that when $\mathrm{p}<2$, one can also define a.e. $\operatorname{det}(\mathrm{zu})$ or $\operatorname{det}\left(\mathrm{D}^{2} \phi\right)$ obtaining thus a measurable function which lies obviously in $\mathrm{L}^{\mathrm{p} / 2}$. We denote by $\operatorname{Det}(\mathrm{\nabla u})$ or $\operatorname{Det}\left(\mathrm{D}^{2} \phi\right)$ these functions. Then, the above results yield easily: $\operatorname{Det}(\nabla \mathfrak{u})=P(J(u))$, $\operatorname{Det}\left(\mathrm{D}^{2} \phi\right)=\mathrm{P}(\mathrm{J}(\nabla \phi))$.
These relations yield and extend another recent result of S . Müller [5].

3 Proofs

Theorems 1-2 follow immediately from the following lemma and the classical maximal theorem:

Lemma 3: 1) Let $u \in W^{1,4 / 3}\left(\mathbb{R}^{2}\right)^{2}$; then we have for all $t>0, x \in \mathbb{R}^{2}$

$$
\begin{equation*}
\left|h_{t} * J(u)\right| \leq C_{0}\left(f_{B(x, t)}|D u|^{4 / 3} d x\right)^{3 / 2} \tag{6}
\end{equation*}
$$

(2) Let $\phi \in \mathrm{W}^{2,1}\left(\mathbb{R}^{2}\right)$; then we have for all $\mathrm{t}>0, \mathrm{x} \in \mathbb{R}^{2}$

$$
\begin{equation*}
\left|h_{t} * J(\nabla \phi)\right| \leq C_{0}\left(\int_{B(x, t)}\left|D^{2} \phi\right| d x\right)^{2} \tag{7}
\end{equation*}
$$

Remarks:

1) Here and everywhere below, C_{0} denotes various constants independent of t, x, u, ϕ.
2) The estimate (7) is still true for $\phi \in \bar{W}^{2,1}$ provided we define $J(\nabla \phi)$ by (4) and the right hand side is replaced by the total mass of the measure $\sum_{i, j}\left|\frac{\partial^{2} \phi}{\partial x_{j} \partial x_{j}}\right|$ on the ball $B(x, t)$.
3) Those estimates allow, in fact, to investigate the borderline cases $\mathrm{p}=\frac{4}{3}$ or $\mathrm{p}=1$.

Proof of Lemma 3: We begin with Part 1). Using (3) and integrating by parts, we find
(8) $\quad h_{t} * J(u)=\int u_{1}(y)\left[\partial_{2} u_{2}\right.$ (y) $\left.\frac{1}{t^{3}} \partial_{1} h\left(\frac{x-y}{t}\right)-\partial_{1} u_{2}(y) \frac{1}{t^{3}} \partial_{2} h\left(\frac{x-y}{t}\right)\right] d y$.

But, clearly, these expressions are left invariant if we subtract constants from u_{1} and u_{2}. Therefore, in particular, we have, denoting by $f_{B(x, t)} u=\frac{1}{|B(x, t)|} \int_{B(x, t)} u(y) d y$,

$$
\begin{equation*}
h_{t} * J(u)=\int \frac{1}{t}\left(u_{1}-\int_{B(x, t)} u_{1}\right)\left[\partial_{2} u_{2}(y) \frac{1}{t^{2}} \partial_{1} h\left(\frac{x-y}{t}\right)-\partial_{1} u_{2}(y) \frac{1}{t^{2}} \partial_{2} h\left(\frac{x-y}{t}\right)\right] d y \tag{9}
\end{equation*}
$$

We now apply Hölder's inequality to find

$$
\begin{equation*}
\left|h_{t} * J(u)\right| \leq C_{0}\left(f_{B(x, t)}\left|\frac{1}{t}\left(u_{1}-f_{B(x, t)} u_{1}\right)\right|^{4} d y\right)^{1 / 4}\left(f_{B(x, t)}|D u|^{4 / 3} d y\right)^{3 / 4} \tag{10}
\end{equation*}
$$

And we obtain (6) by recalling the Sobolev-Poincaré's inequality

$$
\begin{equation*}
\left(\left.f_{B(x, t)} \frac{1}{t}\left(u_{1}-f_{B(x, t)} u_{1}\right)\right|^{4} d y\right)^{1 / 4} \leq C_{0}\left(f_{B(x, t)}|D u|^{4 / 3} d y\right)^{3 / 4} \tag{11}
\end{equation*}
$$

We now turn to part 2), which is proven in a similar way using either (4) or (5): we use for instance (4) and obtain as above

$$
\begin{gather*}
\mathrm{h}_{\mathrm{t}} * \mathrm{~J}(\nabla \phi)=-\frac{1}{2} \int\left(\partial_{2} \phi(\mathrm{y})^{2} \frac{1}{\mathrm{t}^{4}} \partial_{1}^{2} \mathrm{~h}\left(\frac{\mathrm{x}-\mathrm{y}}{\mathrm{t}}\right) \mathrm{dy}+\right. \tag{12}\\
-\frac{1}{2} \int\left(\partial_{1} \phi(\mathrm{y})^{2} \frac{1}{\mathrm{t}^{4}} \partial_{2}^{2} \mathrm{~h}\left(\frac{\mathrm{x}-\mathrm{y}}{\mathrm{t}}\right) \mathrm{dy}+\int \partial_{1} \phi(\mathrm{y}) \partial_{2} \phi(\mathrm{y}) \frac{1}{\mathrm{t}^{4}} \partial_{12}^{2} \mathrm{~h}\left(\frac{\mathrm{x}-\mathrm{y}}{\mathrm{t}}\right) \mathrm{dy}\right.
\end{gather*}
$$

Then we observe that this quantity is left invariant if we add to ϕ an arbitrary affine function so that, in other words, we may subtract respectively from $\partial_{1} \phi, \partial_{2} \phi$ the following quantities $\int_{\mathrm{B}(\mathrm{x}, \mathrm{t})} \partial_{1} \phi, \int_{\mathrm{B}(\mathrm{x}, \mathrm{t})} \partial_{2} \phi$.

We then find

$$
\begin{equation*}
\left|h_{t} * J(\nabla \phi)\right| \leq C_{0} f_{B(x, t)}\left|\frac{1}{t}\left\{\nabla \phi-f_{B(x, t)} \nabla \phi\right\}\right|^{2} d y \tag{13}
\end{equation*}
$$

and we conclude again by Sobolev-Poincaré's inequality:

$$
f_{B(x, t)}\left|\frac{1}{t}\{f-\underset{B(x, t)}{f} f\}\right|^{2} d y \leq C_{0}\left(f_{B(x, t)}|D f| d y\right)^{2}, \text { for all } f \in W^{1,1}\left(\mathbb{R}^{2}\right)
$$

References:

[1] J. Ball: Arch. Rat. Mech. Anal., 63(1977), p. 337-403.
[2] H. Brézis and J. M. Coron: Comm. Pure Appl. Math., 37(1984), p. 149-187.
[3] R. Coifman, P. L. Lions, Y. Meyer and S. Semmes: work in preparation, see also C. R. Acad. Sci., Paris, 309(1989), p. 945-949 and Exposé no. XIV in Séminaire Equations aux Dérivées Partielles, 1989-1990, Ecole Polytechnique, Palaiseau, 1990.
[4] S. Müller: Proc. A.M.S., 21(1989), p. 245-248.
[5] S. Müller: Det=det. A remark on the distributional determinant. Preprint.
[6] F. Murat: Ann. Sci. Num. Sup. Pisa, 5(1978), p. 489-557 and 8(1981),p. 69-102.
[7] F. Murat: In International Meeting on Recent Methods in Nonlinear Analysis, Roma, May 8-12, 1978, Pitagora, Bologna, 1973.
[8] E. Stein: Studia Math., 32(1968), p. 305-310.
[9] L. Tartar: In Nonlinear Analysis and Mechanics, Heriot-Watt Symposium, Vol. IV, Pitman, London, 1979.
[10] L. Tartar: In Systems of Nonlinear Partial Differential Equations, Reidel, Dorchecht, 1983.
[11] L. Tartar: In Macroscopic Modelling of Turbulent Flows, Lecture Notes in Physics, 230, Springer, Berlin, 1985.
[12] H. Wente: Manuscripta Math, 11(1974), p. 141-157.

SEP 222003

