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Introduction

We wish to illustrate here the links between various nonlinear quantities identified by

the compensated-compactness method (L. Tartar [9],[10]), F. Murat [6],[7]) and the Hardy

spaces. A systematic study of this matter can be found in R. Coifman, P. L. Lions, Y. Meyer

and S. Semmes [3], and we want to illustrate it on the particular example of the Jacobian.

More precisely, we consider J(u) = det(vu) when u 6 W )P(R ) for some p G [l.a>[

1 Nwhere N > 2. This quantity clearly makes sense in L (R ) if p=N; however, in that case, there

are various reasons to guess that J(u) might be slightly better than L . First of all, it is a
I N N Nclassical fact that J is weakly sequentially continuous on W ' (R ) — this fact is one of the

key ingredients in J. Ball's theory of polyconvex functionals in Nonlinear Elasticity [1]. Next,

several results by H. Wente [12], L. Tartar [11] indicate that L is not optimal — see also H.

Brezis and J. M. Coron [2]. Finally, the last piece of evidence is a striking recent result due to

S. Miiller [4] showing that if u 6 w J ^ ( R N ) N and J(u) > 0 a.e., then J(u)log (1+J(u)) e

T1 fwp\L ( R )
We will show below in Section 2 how all these results can be recovered from the

following statement: J(u) € ^ X (R N ) if u € W1 > N(RN)N . Here and everywhere below, we

denote by <#p (R ) the following Hardy spaces:



(1) c#P(IRN) = {f 6 S'(RN) / sup |h * f| € LP(RN)} , p > 0,
t>0

where h, is a regularization kernel satisfying, for example

(2) ht = ^ h (1), h 6 ^(RN) , 0 < h on RN, Supp h c B p

where we denote by B, the open ball of radius A and by B ,(x) = B(x,A) the open ball
A A

centered at x of radius X (B, = B, (0) = B (0, X)). We shall see in fact that

J(u) G <#p (RN) if u G W l j P N (RN)N , ^ < p < 1 and that J(v^) = det (D2^) G ^ P ( K N ) if

6 W 2 ) P N (RN)N , ^ j < p < 1. Of course, one has to interpret J(u) or J (v^) in a distribution

sense explained below when p < 1.

We present in Section 3 a proof of these facts. To simplify the presentation and the

notations we restrict our attention here to the case when N = 2.



2. Main results and

Of course, if u e W1>2(R2)2, J(u) = det(vu) € L2 (R2). But, one easily checks that

(3) J(u) = dx (u^jiij) - d^d^) in 3' (R2),

4
5 2 2

) :
1 5 2

and this last expression is well-defined (in the sense of distributions) whenever u € W ' (R )

indeed, one then deduces from Sobolev embeddings that u e L (R ) and thus |u| |vu| is

integrable.

Next, if u = v^ , further cancellations of J(u) take place and we may write

(4) J(vf) = - \ d[ ((d2 4)2) - 1 % {{dx ̂ )2) + d{2 (d1 4 d2 4) in ̂ »'

or

(5) J(vfl = \d[ (^ 2 )̂ + J ̂  ( ^ 4) - d{2 ( ^ 2 4) in

Note that (4) makes sense as soon as j> 6 W1'2 (R2) while (5) makes sense if 4 6 W2'1 (R2)

(since it implies ^ 6 Co (R )). In fact, the two expressions are easily shown to be equal if

€ W2)1(R2) since W2'1 (R2) embeds into W1)2(R2) and dU d-4) = 4&\4 + (d. 4)2 (V-),
I ! J J J J J

4 = 2d1(4d24) + 2d2(4 dx 4). Notice, finally, that by Sobolev

embeddings, (4) makes sense if 4 € W2>1(R2) = {4 e W1'1(R2)/ d\ • 4 is a bounded measure

on R2(Vy) }.

We may now state our main results:



Theorem 1: Let p G (j , 2] and let u G W1>p (R2)2, then J(u) G <#p/2(R2).

Theorem 2: Let p G (1,2] and let $ G W2)P(R2), then J(v^) G <3fp/2(R2).

Remarks: 1) These results also hold locally.

2) The borderline cases P = 5 or p = 1 can also be studied — see also

section 3 below.

3) One recovers immediately S. Miiller's result [4] from Theorem 1 since if

f G Lj o c , f > 0 a.e. then f e <#}0C(RN) if and only if f log (1+f) G LjQC (see E. Stein [8] ).

4) Observing that <%l (R2) G W~1)2(R2) , one deduces that

W = ( - A ) " 1 J(U) G W1>2(R2) and J(u) G W~ l j2(R2) if u G W l j2(R2)2 . Furthermore, in that

case, one sees that 3 . . W 6 ^ ( R 2 ) (V. .) and this yields: W G <5rL1(R2). We recover in this

way the results mentioned in the Introduction.
a N a N

5) One can define a linear continuous map P from <^4(R ) into L4(R )
for 0 < q < 1 which consists in taking the "a. e. part" of a distribution f in ^ q ( R ): more

precisely, Pf = l im a.e. h, * f. Of course, Pf = f if f G <% or L and Pf is the regular part
t-*0 X

of f if f is a bounded measure.

Next, one remarks that when p < 2, one can also define a.e. det(vu) or det (D $) obtaining

thus a measurable function which lies obviously in Lp' . We denote by Det(vu) or Det(D ft)

these functions. Then, the above results yield easily: Det(vu) = P(J(u)),

These relations yield and extend another recent result of S. Miiller [5].



3 Proofs

Theorems 1 — 2 follow immediately from the following lemma and the classical maximal

theorem:

Lemma & 1) Let u 6 W1>4/3(R2)2; then we have for all t > 0, x e R2

(6) | ht*J(u)| < CQ( J- | D u | 4 / 3 d x ) 3 / 2 .
B(x,t)

(2) Let I € W2>1(R2); then we have for all t > 0, x 6 R2

(7) | ht*J(v*)| < CQ( -f |D 2 *|dx) 2 .
B(x,t)

Remarks:

1) Here and everywhere below, CQ denotes various constants independent of t, x, u, .̂

2) The estimate (7) is still true for ^ e W2>1 provided we define J(v^) by (4) and the

right hand side is replaced by the total mass of the measure S | « C | on the ball B(x,t).
^> J J J

3) Those estimates allow, in fact, to investigate the borderline cases P = j or p = 1.



Proof of Lemma £: We begin with Part 1). Using (3) and integrating by parts, we find

(8) ht*J(u) = J ux (y) [02u2 (y) ̂  d^p?) - ^ ( y ) ±3 d2 h(

But, clearly, these expressions are left invariant if we subtract constants from u. and

Therefore, in particular, we have, denoting by 4- u = rm—TT-T u(y)dy,
J . l 1 5 ^) 1 ; ! J

B(x,t) B(x,t)

(9) ht*j(u)=fl(u1- X ux) [v2(y) \ djb^f) - V2(y) 71
B(x,t) X l

We now apply Holder's inequality to find

(10) |h t*J(u) |<C 0 ( I | l ( u r I u ^ ^ d y ) 1 / ^ X | D u | 4 / 3 d y ) 3 / 4

B(x,t) B(x,t) B(x,t)

And we obtain (6) by recalling the Sobolev—Poincare's inequality

(11) ( -f i ( u r -f ^ i W / ^ C ^ -f |Du|4/3dy)3/4

B(x,t) B(x,t) B(x,t)

We now turn to part 2), which is proven in a similar way using either (4) or (5): we

use for instance (4) and obtain as above

(12) yJW) = - \ \{d2Kif V

t J t



Then we observe that this quantity is left invariant if we add to ^ an arbitrary affine function

so that, in other words, we may subtract respectively from d^$<$ the following quantities

B(x,t) B(l,t)

We then find

(13) |h t*J(v*) |<C0

B(x,t) B(x,t)

and we conclude again by Sobolev—Poincare's inequality:

"f \\{t- | f } |2dy<C0( I |Df|dy)2,forall
B(x,t) B(x,t) B(x,t)
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