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Generalized interface evolution with the Neumann boundary condition

YOSHIKAZU GIGA** AND MOTO-HlKO SATO**

1. Introduction.

We are concerned with geometric evolution (e.g. motion by mean curvature) of interfaces
in a smoothly bounded domain Q(C Rn) whose boundary dQ perpendicularly intersects
with interfaces. In [S] the second author extended a level set approach introduced by
Chen-Giga-Goto [CGG] and Evans-Spruck [ES] to this type of the Neumann problem and
obtained a unique global weak solutions for the initial value problem provided that ft is
convex. This note reports that the convexity assumption of Q can be removed. The details
and proofs will appear elsewhere.

One of key ingredients is the comparison principle for the Neumann boundary value
problem for singular degenerate parabolic equations. For the Neumann problem this prin-
ciple is first established by Lions [L] for the Hamilton-Jacobi equations. For nonsingular
degenerate elliptic equations the comparison principle is established by Ishii and Lions
[IL]. See also [I] for more general oblique boundary conditions. However, their argument
does not apply to singular equations. In [S] the second author obtained the comparison
principle for our problem assuming that Q is convex. His method appeals to the idea
of [GGIS] by regarding 6Q as space infinity. Unfortunately, the choice of test functions
does not apply to general domains. In this note we construct test functions by using local
coordinate patches near dQ so that they apply to general domains.

In [H] Huisken considers the interface intersecting perpendicularly with dQ and moving
by mean curvature. He constructed a global smooth evolution of interfaces when ft is a
cylindical domain D x R and the initial interface is the graph of a smooth function on D,
where D is bounded. Although our theory presented below assumes that ft is bounded, it
can be extended to cylindical domain D x R provided D is bounded. The motion by mean
curvature with right contact angle at dQ arises as a singular limit of a reaction-diffusion
equation with the Neumann condition [RSK].

*) Department of Mathematics, Hokkaido University



2. Comparison principle.

We here present a simple and typical version of our comparison principle rather than
stating its general form to avoid technical complexity. We consider an evolution equation
of the form

(1) ut+F(Vu,V2u) = Q in <? = (0,T]x

(2) du/dv = 0 on S = (0,T] x

where dfdv denotes the outer normal derivative on 8Q\ Ut = du/dty Vti = grad u\ V2u
denotes the Hessian of u in the space variables. We list assumptions on F.

(Fl) F : (Rn \ {0}) x Sn -> R is continuous, where Sn denotes the space o f n x n real
symmetric matrices equipped with usual ordering.

(F2) F is degenerate elliptic, i.e., F(p, X + Y) < F(p, X) for all Y > 0.
(F3) - o o < Fm(0,O) = F*(0,O) < oo where Fm and F* are the lower and upper semicon-

tinuous relaxation (envelope) of F on Rn x Sn , respectively, i.e.,

F.(PiX) = timud{F(q,y);9 ± 0, \p - q\ < e, \X - Y\ < e)

and F* = — (—F)m. Here |-X"| denotes the operator norm of X as a self adjoint operator
on Rn .

THEOREM 1. Let Q be a smoothly bounded domain in R n . Suppose that F satisfies
(F1)-(F3). Let u and v be, respectively, viscosity sub- and supeisolutions of (l)-(2). If
um(0,x) < vm(0,x), then u* < vm on Q.

A definition of a viscosity (sub) solution for the Neumann problem goes back to
[L] where the Hamilton-Jacobi equation is studied. We recall a definition of viscosity
subsolution of (l)-(2) for the reader's convenience. We refer to [CIL] and [I] for nonsingular
equations. Any function u : QuS —> R is called a viscosity subsolution of (l)-(2) if u* < oo
on Q and if, whenever <f> € C2(Q U 5), (t} x) G Q and (*• - <f>)(t, x) = max^u* - <f>), one
of the following holds

(3) Mt, •) +
(4) (3<l>/du)(t,x)<0 and z €

For example a function ti(<,a;) = —7.1 — |*|* a viscosity snbsolntion (actually solution) of
(l)-(2) with

(5) Ftp, X) = - trace((J - p 9 p/\p\3)X)

on an annulus 0 in R2 although du/dv < 0 may not hold on the inner circle of dil in
usual sense. One should be careful the meaning of (2).



3. Test functions.

The basic strategy of the pioof of Theorem 1 is to find a parabolic super 2-jet of

w(i,*,y) = u(t,x) -v(t,y)

at a point where u* > t>». This idea is the same as in [GGIS] and we also apply the
Crandall-Ishii lemma (see e.g. [CIL]). Since it is difficult to compare boundary condition
(4), we take a barrier near the boundary to avoid to handle (4). This idea is found in [S].

For e, 6, 7 > 0 we set

, c, y) = 6(<p(z) + <p(y) + 2/3) + 7 / ( T - <).

Here <p 6 C2(ft) is a 'barrier' function of dCl satisfying:

<p < -/3 < 0 in ft, v? = 0 on 0ft with a constant /3 > 0

u(z) = V<p{z)/\V<p(z)\ and |Vy>(*)| > 1 on dQ.

If E € C2(fl x fl) satisfies following conditions, the method of [GGIS] applies to establish
Theorem 1.

(Cl) S(a5,y)>co|*-2/|4 with c0 > 0.

(C2) |S. + S,| < cx\z - y\\ IS.I, |S, | < c2\z - y\*.

(C3) |S . . + S, f + aym + Evy\ < c s | * - y | 4 .

(C4) |S..|, IS.,1, |S f . | , |S,,| < c4|* - y\.

(C5) (i/(as), Zm(z, y)) > 0 for as € 0fl, y € Cl

(i/(y), -Ev(z, y)) < 0 for y € 8SI, z € 0

provided that |sc — y| is sufficiently small.

Here ( , ) denotes the inner product in Rn . If ft is convex, then E(x,y) = \z — y\* satisfies
(C1)-(C5). However, for nonconvex Q, this choice of S violates (C5).

LEMMA 2. Tiere exists E satisfying (C1)-(C5).

Sketch of the proof. For each o € 0ft there is a local coordinate x* — (x1* * * * > Xn)
such that Xn(x) = dist(c,dft) for a; € ft. Let j>a be a cut-off function near a so that

/8v = 0 on 0ft. We set



Let V»o be a cut-off function away from the boundary. We set

,y) = 1>o{x)if)O(y)\z - y|4 .

i
One can take finitely many {a*}£=1 so that the sum £) A* satisfies (C1)-(C5) provided

*=o
that \x — y| is sufficiently small. Here A* = Att with a = ah. We set

* = 0

with p(a) = 0 for small cr. With a choice dp one observes that E satisfies (C1)-(C5).

4. Interface evolution.

We remark that the theory in [CGG] and [GG] can be extended to the motion of interfaces
intersecting perpendicularly with dQ. The next lemma is fundamental to establish global
solution for the initial value problem of (l)-(2) by Perron's method.

LEMMA 3([S]). Assume the hypotheses of Theorem 1 concerning F. Suppose that F is
geometric. Then for u0 € C(Q) there is a viscosity subsolution u G C([0,T] x Q) of(l)-(2)
with u(0}x) = uo(z).

Although our theory applies to general interface equations as in [GG], we state our
results only for the motion by mean curvature just for simplicity.

THEOREM 4. Let DQ be an open set in Q. Let u0 € C(Q) satisfies Do = {x;uo(x) > 0}.
Tiere is a unique viscosity solution u € C([0,oo) x Q) for (l)-(2) vrith (5) for arbitrary
T > 0 such that u(0,x) = uo(x). The set D = {(*,«);u{t,x) > 0} is determined by DO

and called a generalized evolution by mean curvature with initial data Do and the right
angle boundary condition.

REMARK 5: In [GG] D(t) is determined by Do and To = {uo(x) = 0}. It turns out D(t)
is completely determined by D o as shown in [GGI].

REMARK 6: If we take S as sketched in §3, we need C3'1 regularity of 8Q. However, by
taking x more clever way, we only need C2 regularity of dQ to establish Lemma 2.
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