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1. Introduction

We here present a theory of thermodynamical equilibrium for materials for which

the free-energy density y(x) depends not only cm the cwwcntration (amass density) ufx)

and its gradient u'(x)% but also on um(x)% the second gradient of u. We show that a broad

class of such materials can exhibit equilibrium states that arc periodic in a nontrivial way.

So as to be able to discuss periodic states, we drop Ac assumption of finite mass

and volume usually made in theories of equilibrium and consider unidimensional bodies of

Ufinite extent. Here, the set 5 of states will be a set of measurable functions u from IR to

IR for which the average value•

„ 1 f
^ u > • • Jpm i v I

X-+~ 2A J

is finite and independent of xQ.# We refer to the value ufxj, of a state u at a point x as the

* If uf *J is bounded and measurable, and (f the limit in (LI) exists for a value of xo> then

that limit exists for all x0 and is independent of xQ.

concentration at x and to <u> as the average concentration. We do not treat variations in

temperature. A state u determines a (Helmholt2)^e-ener^y^eW y t and for the



 



 



free-energy density at a point x we write itfx), or yfjx) if we wish to emphasize the

dependence of the function yon the function u. The material of which the body is

composed is characterized by the mapping u\-*y/u. Here this mapping is determined b ; a

continuously differentiate function yr from D «IRN+1 into IR, where Af is the order of the

material. For Gibbsian or zeroth-order materials, D is IR, and yr gives the free-energy

density at x in the state u as a function of the value of the concentration at x, i.e.,

For an Nth order material, yr gives yrjx) as a function of u(x) and the first N derivatives

of u at x, namely u'(x),... 9t/
S)(x).* Thus, for first-order materials, or materials of

* For simplicity of analysis we take the codomain of states u to be all of IR and the domain

of yr to be IR**1, albeit concentration (i.e., mass density) is never negative. Without

great difficulty our results can be shown to hold when the set S of states u is restricted to

those which are everywhere positive, provided appropriate growth conditions be assumed

for the functions aQ h>y(cx0, a r . . . ,aN) as ao-K)+.

Van der Wools type,

Wjx) - V(u(x),u'(x)) , JC € IR, (1.3)



while for second-order materials, the main subject of this paper,

Vjx) -V(u(x),u'(x),um(x)), x e JR. (1.4)

We shall follow the general approach of Gibbs to thermostatics and say that a state u is one

of equilibrium if it minimi?^, in a sense to be explained below, an avenge of the free

energy subject to appropriate constraints on the fields with which u is compared

For each material, depending on its order N and the function yr, there is a set

W(y) of functions u in 5, with uW~l) locally absolutely continuous (in the case N £ 1),

for which YU is in the class of locally Lebesgue-integrable functions firom IR to IR, and for

which the mean value*

# We use the expressions "mean value" and "average value" to distinguish between

and < y > defined in equations (1.5) and (1 -7).

^fc^sf [ v ( 1-5 )

is finite and independent of xQ. We call [ y j the mean free energy of the state u. Whenever



u is in W(yr) there is a state v for which*

Lemmata 2.1 and 2.2 give broad generalizations of this observation.

(0 <v> « <u> , (1.6)

(it) Vy has an average value, i.e.,

<VV>:
: c & BT f Vv

is a real number independent of JC0, and

= [yj . (1.8)

Thus, for each state u in W(\j/) there is another state v that has the same average

concentration as u and gives rise to an average free energy equal to the mean free energy of

u; if, however, the state u is such that v^ does not have an average value in the sense of

(1.7), but only a mean value in the sense of (1.5), there is no guarantee that v can be

chosen so as to be also close to u in a natural metric on W(\j/).

For each a we write U(a) for the set of states for which [ y j is independent of xQ

and the average value of the concentration is a, i.e.,

U(a):=[ueW(y) \ <u> = a ) , (1.9)

and we write *F(a) for the infimum of [ y j for such states:



V(a): = inf { [yrj \u e Ufa) ) . (1.10)

Assumptions to be made below* about yr will imply that ¥fa) is finite. A function M* in

* The assumptions ait growth conditions for yr. For the important case of second-order

materials, the assumptions are stated at the beginning of Section 3. For zeroth-order and

first-order materials, the "standard assumption" (stated later in this Introduction) and

non-negativity of vin (124) insure that Yfa) is finite for each a. A condition sufficient for

general materials of order N £ 1 is given in Lemma 2.3.

Ufa) is called an equilibrium state (with average concentration a) if

[Y#]-V(a)9 (1.11)

i.eM if it minimizes the mean free energy subject to the constraint < u > = a.

The main problem of our subject is that of characterizing equilibrium states u* and

the equilibrium response function *¥.

The theories of equilibrium for zeroth- and first-order materials art highly

developed subjects. The classical results for such materials are for bodies of finite extent,

but itst on methods that can be employed to describe equilibrium states of unbounded

bodies. To have a background against which one can view the corresponding theory of



second-order materials, in this^ptroduction we shall discuss briefly the equilibrium of

bodies of infinite extent composed of zeroth- and first-order materials. Later in the paper

we shall show that a principal difference between certain second-order materials and the

classical lower-order materials is that for the second-order materials nontrivial periodic

equilibrium states play a central role in the relation between die functions y and *F. It is

possible that the theory of such second-order materials may supply insight into periodic

layering phenomena observed in various types of mixtures, such as concentrated soap

solutions and metallic alloys, but in this paper we prefer not to refer to applications. Before

applications can be considered, the mathematical implications of the theory must be

examined. We hope that this paper will convince the reader that the theory of second-order

materials is not just a perturbaticm of the more familiar theories of lower-order materials,

but is instead a rich subject that raises interesting mathematical issues.

For a general Nth order material, the function yr0, defined in terms of yr by

) s V(u>° °) • n c IR • (1.12)

is called the homogeneous response function for free energy. For a zeroth-order material

yrQ is the same as y, while for the first- and second-order materials yo(u) « yf(u,0)



and WQ(U) = vfaf0 t0J, respectively. As \jr is assumed to be continuously differentiable

on D «IR^*1 , y 0 is continuously differentiable on IR. A point v in IR is a support point

s I R ; (1.13)

v is an exposed point for y 0 if, in addition,

V0(u) > V0(v) + V̂ o' (y)(u - v;, when u * v . (1.14)

As is common practice in the thermodynamical literature, we assume here that v^

obeys the following standard assumption.- Either (i) or (ii), below, holds:

(i) Yo is strictly convex on IR; i.eM y0' is strictly increasing on IR

(or, equivalently, every point in IR is an exposed point of v^);

(ii) there are two numbers uy u^ with ux < u2 such that y0 is strictly

convex on Ix = (-«>, ux) and /2 - (uv **) and is strictly concave on (uv u2),

i.e., YQ is strictly increasing on Ix and 72 and strictly decreasing on (uy u2).

In case (u) there are precisely two numbers, KO, ufi, with wa< ^ such that



and each point u with u < na or u>u~ is an exposed point for y 0 ; ua and u^ are support

points for y^.

Zeroth-Order Materials

Consider now a Gibbsian material, so that y 0 « yr. Suppose first that a is a

support point for yQ. Then for each u in S,

\jf(u(x)) £ \jf(a) + v'(a)(u(x) -a) % for all x € IR, (1.16)

and hence for each u in U(a),

Wu] 2t w(a) + yYfl) < u - a > = vfa) . (1.17)

Thus, for u in C/faj, [ v^J 2̂  w(a) * V 0̂(fl̂  and, of course, if u m a, [ v^] = v f̂aj =

yof a). Hence, for a Gibbsian material, if a is a support point for \j/Qy the homogeneous

state u e a is a state of equilibrium.

For an exposed point a this last statement can be strengthened to the assertion that

each equilibrium state u* in U(a) is nearly the same as the constant field u s a in the sense

that

[|u*-iz|] « 0 . (1.18)
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In fact, if a is an exposed point, it is easily seen that for each S> 0 an equilibrium state u*

in U(a) must satisfy [\u*-a\(6)] = 0, where M(S) = Irl if Irl > S and M(S)« 0 if Irl £ 5,

and it then follows that [ \u* - a| ] £ 5for all £> 0.

For Gibbsian materials obeying the standard assumption, when u s a is an

equilibrium state, a is a support point of ys0. To see this (and much more), it suffices to

consider only case (ii) of the standard assumption with a between ua and u~ > because the

values of a obeying

a « ft*a + o-e>0 (o<e<i; , a.i9)

are the only values that are not support points for v^. In Gibbs' classical theory of bodies

of finite extent [1873][1875], when a is as in (1.19), each equilibrium state \t with average

value a equals ua on fraction 0 of the total mass and u^on the remaining fraction, 1 - ft In

the present theory of bodies of infinite extent, the following assertions hold: For each

measurable subset A of IR whose characteristic function xA obeys the relation

fc2T [ XA(x)dx (1.20)

for some (and hence every) choice of JC0, Ac function



11

with B the complement of A, is an equilibrium state for which the average concentration is

a and the mean free energy [ y^* ] obeys

[¥>] - <VU*> - W « *vfaj + fl-4) ^ V * V(a) . (1.22)

Moreover, every equilibrium state u* with <u» > « a is "nearly the same9* as some state u*

obeying (1.21) with A as in (1.20), in the sense that,

[\u* - * J ] « 0 . (1.23)

This implies that if a is not a support point for \j/Q, then u m a is not an equilibrium state.

From the obseivaticms just made, particularly the relations (1.22), we may conclude that,

for a Gibbsian material obeying the standard assumption, the equilibrium response function

*F is conv v^.# In fact, this conclusion holds under

* conv yrQ, the "convex envelope" of v^0, is the largest convex function that nowhere

exceeds v 0̂.

hypotheses on yrQ that are far mort general than the standard assumption.

It should be noted that when the average concentration a is not an exposed point or

a limit of exposed points for y?0, each equilibrium state u* of the Gibbsian material with

<u*> as a is nonuniform and, under the standard assumption or appropriate generalizations
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thereof, is a state with two phases;* the thermodynamics of zeroth-order materials gives no

Here u*(x) equals ua in one phase and u~ in the other.

information about the, in general many, boundaries between the regions of ccmstant

concentration.

For materials of order N £ 1 we shall take 5 to be the set of functions u from IR to

IR for which u, u\ « " , . . . , u(N~l) art in L~(IR) and are locally absolutely continuous and

for which u has a finite average value <u> given by (1.1). Once we assume u to be

essentially bounded, the limit (1.1) is independent of xQ.
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First-Order Materials

The commonly considered examples of first-order materials are those for which y

has the form

* " \f (1.24)

where yfQ and v are continuously differentiate functions with \j/Q obeying the standard

assumption and v everywhere positive *

If v(u) in (1.24) were negative for an interval of values of u, there would be no

equilibrium states for any specified value of the average concentration a. It is usual to

assume that v is a positive constant.

If we write ^ for the equilibrium response function of the material defined by

(L24) and ¥ 0 for the equilibrium response function of the zeroth-order material with y

equal to the function y 0 in (1.24), then, clearly, for all a in IR,

Y0(a) £ YJa) . (1.25)

Let a be given, and let u belong to the set Ufa) for a first-order material obeying (1.24); by

(1.25), if [ y j s *oMt * c n u * m ^^^b" 1" 1 1 s ^ ^ o f A c first-order material. Here, as

for zeroth-order materials, the constant function u m a is an equilibrium state if and only if a

is a support point for yQ. Moreover, as v is positive and y 0 obeys the standard
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assumption, one can again show that when a is an exposed point (1.18) is a necessary (but

not sufficient) condition for a state u* in U(a) to be an equilibrium state. Consequently, if

a is an exposed point for y0 the first-order material ~as no nontrivial periodic equilibrium

fields with average value a. In fact, one can show that when yrQ obeys the standard

assumption there are no nontrivial periodic equilibrium states, and in case (u) of the

standard assumption, for a in (ua> uB)% i.e., when a is not a support point for y/0% there are

no periodic equilibrium states, not even constant ones.

We consider now case (ii) of the standard assumption and give some examples of

equilibrium states with average concentration a in fuQ, u^).

When

* - 2 K + V ' (L26)

so that 6 = • in (1.19), any non-constant function w* with

\ v(u')(u

i.e., obeying
u*(x)
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with xQ arbitrary,gives an equilibrium state with <u*> « a. The function ut • defined by

(1.28) with the choice of • on the left, is an increasing function that equals a at x0 and

approaches^ as x - * ~ and ua as x-»-•©. On the other hand, Aw function uZ obtained

by choosing - on the left in (1.28) is a decreasing function that approaches ua as x ->o*

P

* If u(x) be identified with the stretch at axial location x in a long fiber, then the functions

ut and i£ describe the equilibrium configurations called "fully developed draws9* in a

theory [1983] [1985] [1988] of elastic materials susceptible to cold drawing. In that

theory the present VQ(U) is equal to the tension (per unit of undeformed cross-sectional

area) the fiber would be bearing if it were homogeneously stretched by amount u, and \(u)

is determined when WQ(U) i s known, i.e., v(u) - y^P1 WQ(U)U(^ - 1J"\

diameter of the unstretched fiber.

If 6 in (1.19) is not 1/2, there are again equilibrium states with average

concentration a, but they are not monotonic in x; nor are they constant or periodic. To see
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how one such class of equilibrium states can be constructed,* let/ * [a b], with

As will be clear from arguments given in Section 2, the equilibrium fields constructed

here can be replaced by others. The present construction uses the functions i£

and u* which ait familiar in theories of the structure of interfaces between stable

homogeneous phases with densities ua, u^

n = 0, ± 1, ± 2 , . . . , be closed intervals whose length bn - an grows without bound as

n -» + •© and as n —»- *©; suppose that In precedes / | |+1 with unit distance between the

two intervals, i.e., that a^l« fcn+l; and lcto:o(n) be the point in In such that

6, for even n, (L29a)

6, for odd n. (1.29b)

Now, let u* be the continuous function on IR defined so that

(1) on / , n even, u* = ut with uX the increasing function given by (1.28) with



17

(2) on / , n odd, u* =i£ with i£ the decreasing function given by (1.28) with

(3) on the unit interval separating Im and / ^ , u* is an affine function-

Such a function u* is piecewise continuously differcntiablc on IR and possesses a bounded

first derivative. Moreover, u* has average value a and is an equilibrium field. For a given

a in (ua% u~ ) , the class of equilibrium fields that can be constracted by this procedure is by

no means exhaustive.

The construction just given makes it easy to see that the equilibrium response

functions ^ , for a first-order material obeying (1.24), and *F0, for the zeroth*order

material with the same homogeneous response function y 0 , are equal and given by:

0 . d-30)

Preliminary Remarks on Second-Order Materials

For materials of order two, we have frequent occasion to consider functions ?

related to \p by an equation of the form,
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p(utu\u") « vfu.u'.u") -Xu , (1.31)

in which A is a constant For each A, the set W(<p) is the same as W(y/), and for every u

in W(9h [<Pul given by (1.5) with

*«to - ?f«rx;,ii'W.«1W> . d-32)

is related to [ y j by

We write <fl(AJ for the infimum of [<pj as u varies over all WYyj without constraint on

the average value of u:

*(X) * inf { [f»J | if e wrr)) •

Suppose now that this infimum is attained at a function ux, i.e., that

tM2 (1.35)

Then, if we put ax = < u x> , uk certainly minimizes [ 9J over the set of u in W( yr)

with <u>- av or, by (1.33),

[q>u ] - inf { I r j - ^ A I M € w<*)> <u> = ax) , (1.36)>u

and hence «A minimiaes

U(ax)} = V(ax) . (1.37)
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Although we have this expected relation between the problem of minimizing [?J without

a constraint on < u > and that of minimizing [yr ] with <w> preassigned, even in cases

in which one can show that the former problem has a solution, it is not an elementary

matter to show that the latter problem has a solution for an arbitrarily preassigned value of

< u > . Nevertheless, it is convenient to study Ac former and apparently easier problem.

When y has the form,

vKu, u\ u") = jro(ii) - b(u? + c(u*)2 (1.38)

with b a positive constant and y 0 a twice-diffcrcntiablc function obeying the standard

assumption, existence of a minimizcr for [<pu] = [Yu~ fa] on the set W( \js) requires that

c be positive. In such a case, one expects that, for a broad class of functions y 0 , [<pu]

will have a minimum on W(\jr) but this minimum will not be attained at a constant field u*

if c is sufficiently small or b sufficiently large. To discuss the implications of results of

Leizarowitz and Mizel [1989] that shed light on the matter, let us suppose that (138) holds

with

J>>0, c > 0 , (1.39)

and that \p0 obeys the standard assumption as well as the growth condition
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o - d , ( a > 2 , 0>O f d>0). (1.40)

Arguments given by Leizarowitz and Mizel show that for a class of second-order materials

that includes those obeying (L38)-(L40), the infimum (1.34) is finite and is attained at

periodic states uk whose free energy is not raised by perturbations on intervals of finite

length, i.e., for which

f[ V (x)-Y M]dx * 0 (1.41)

for all continuously differentiate functions v of compact support in IR for which v' is

absolutely continuous. Moreover, when b exceeds a critical value which depends on A, the

xninimizers uk art not constant functions.

Note: as v̂ 0 is hert twice-differentiable, once it is assumed that y'o obeys the

standard assumption it follows that yr is positive on a set that is everywhere dense

either in IR or in the complement in IR of a bounded interval [u^i^]. If this property of

yrQ is slightly strengthened by assuming not only the standard assumption but also that

there is a bounded interval / such that for u outside of /, yr" (u)> e\u\s for some

E > 0, S > 0, then the growth condition (1.40) is automatically satisfied.

In this paper we shall show that, for a broad class of second-order materials* that
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# The class is defined by the relations (3.1) - (3.4),

includes those that obey (1.38) - (1.40), the infimum, Y2(a)t of [yru ] over Ufa) is finite

and is attained for each a in IR, and the resulting equilibrium response function ^ is a

convex function from IR into IRwith

<F2 £ c o n v v v (1.42)

Furthermore, we shall show that, for each compact interval /, if (1.38) - (1.40) holds*

* A generalization of (1.38) - (1.40) that suffices for (1.43) is given in the paragraph

containing (3.5).

with b sufficiently large, (1.42) becomes

*F2(a) < conv YQ(a), for all a € / , (1.43)

and this implies that there are no homogeneous equilibrium states with average

concentration a in /. However, for sufficiently large a, f^a) « ipo(a). We shall show

further that, for such second-order materials, when a is an exposed point or a limit of

exposed points of X¥T among the equilibrium states with average value a art states which

form periodic phases in the sense that for them u is a periodic function on IR,* whereas for
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This is the principal content of Lemmata 3.1 and 32.

the other values of a, i.e., for values that ait not extreme points of the function *¥T among

the equilibrium states in Ufa) are states dial can be regarded as asymptotically

twice-periodic mixtures of pairs of periodic states*

Lemma 3.3.

Before presenting our theory of second-order materials in Section 3, we derive, in

Section 2, some general properties of materials of order one or higher, such as the

convexity of *F, and we develop a method for showing that ¥ is finite-valued. It is there

that we introduce the definition that renders precise the concept of a "mixture of states" *

and employ that definition to show that for each u in W(\j/) there is a v for

Definition 2.2.

which (1.6) - (1 .8) hold.

The main results for second-order materials are brought together in Theorems 3.1

and 3.2. Theorem 3.1 summarizes results proven in Lemmata 3.1 - 3.3 about the

existence of periodic and asymptotically-twice periodic equilibrium states with specified
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values of a. In Theorem 3-2, which is applicable to materials of order N £ 2, we give a

general condition on yr under which conv yrQ exceeds W.

The present theory suggests a procedure of homogenization which we discuss in a

preliminary way in Section 4. The procedure associates with bounded functions u on the

real line Young measures obtained as limits for small £ of the functions u£ defined on

/ j « [-1,1] by the rescaling operation: n£ (y) « u(y/e). In some important cases, e.g.,

when the function u is periodic or represents an asymptotically twice-periodic mixture of

states, the limit of ut as t -» 0 is fiber-constant, i.e.t is a Young measure that is

independent of y in Iy When this is the case, we say that u is pseudoperiodic. It can be

shown that the class of pseudoperiodic functions includes those that are almost periodic in

the sense of Besicovitch. Theorem 4.1, whose proof will be presented elsewhere,

provides conditions on the function y/ for materials of order N £ 2 sufficient to guarantee

that for each a in IR there is a pseudoperiodic equilibrium state uQ with <u> = a.
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2. General Observations

We here derive general properties of materials of order N £ 1. As mentioned in the

Introduction, we take the set 5 of states to be the set of functions u from IR to IR for which

u, u ' , . . . , i/N~l) ait locally absolutely continuous and are in LT(TR)> and for which u has

a finite average value <n>. Recall that yr is a continuously differentiate function from

IRN+1 to IR and that we write W(\jr) for the set of u in S for which y^ is locally

Lebesgue-intcgrable and [ y^] , defined in (1.5), is finite and independent of xQ. We again

define Ufa) and V(a) by (1.9) and (L10). Throughout most of this section we shall

assume that, at least for one a in IR, say ao, *F(a J > - o©. Lemma 23 , presented at the

end of the section, implies that V is real-valued on IR for N = 2 under hypotheses

weaker than (138) - (1.40).

The set W0(yr) of functions defined in Definition 2.1 below is a subset of 5

containing W(Y); W0(jff) need not equal W(yr) because, even when the limit inferior seen

in (L5) is finite for some value of JC0, say xQ * 0, it is not automatically independent of x0.

The set WQ(Y)> and the larger set W°(\ir) of Definition 23 , supply natural settings for

demonstration of the observation summarized in equations (1.6) - (1.8).



25

Definition 2.1. (1) For each integer N, let WQ(y) be the set of measurable functions

u:IR-»]R for which

(0 u , « ' , . . . , t/N~X) are in Lm(JR) and are locally absolutely continuous;

(w) Wu '• * V(u> « ' . • • • . iF*) is locally Lebesgue-integrable;

x
(jit) 5 Y J ufo) dx has a finite limit as X -* ~ , and hence, by (0, u is in S and

x

X

-X

has an average value <u> obeying (1.1) for every x0;

(iv) the number,
X

(2.1)l r

"*** J
-x

is finite.

(2) Let W^y) be the set of u in W0(yr) for which

(iv)' there is a number <vtt> such that

<V^> = iim -sry yfjx)dx (2.2)

for every xQ\ of course, <y,> « [ y j o *
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We now state a technical definition to be employed in the proof of Lemma 2.1

below. This definition renders precise the concept of a mixture of states.

Definition 22. Let {nm}f m £ 0, be a sequence of states in WQ(y)f {Am} a sequence of

positive real numbers, and {*m} a sequence of positive integers. Put

Jm « [- Aj2t AJ2] for m £ 0 ; (2.4)

/_! = [~AJ2% AJ2]; Im = ( a ^ r a J for m ̂  0 . (2.5)

Form^O, let u be the function on / defined by
m

A .

where*

* For a real number s, [s] is the largest integer not exceeding s.

(2.7)

and hence/ maps IR into Jm. The mixture of the sequence {um] (subject to {Am),

fit }) is the function
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defined on IR by

u(x) - ujx) for x in / . m * 0 , (2.9a)

fcj * uQ(x) for x in 7^ f (2.9b)

ufxj * ttfjc+a^^am) for x in ( - am, - a ^ ] , m £ 1 . (2.9c)

It will be noticed that this construction of u does not require knowledge of the

functions um on all of IR, for it can be implemented whenever the domain of each u

contains the associated interval J defined in (2.4).

Lemma 2.1. For each u in W0(yir) there is a v in W^yr) with

* [V^]o- (2.10)

Proof: Given u in WQ(Y), let {%m} be an unbounded increasing sequence of positive

numbers for which, as m —> «>,

A m J
-X

For each m£0, put
x

(2.12)V J
-X
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and let {*m} be an increasing sequence of positive integers such that, as m -» «>,

/ £ - * 0 , (2.13a)
J«0

m
, -> 0 . (2.13b)

For each m £ 0, let 7 be as in (2.4) with

and construct as follows a sequence {vw} with vm in C^'V^j, m £ 0 :

vm(x)*u(x) forxe[-Xm,Xml (2.15a)

vm(x>my'Jx>my'ix> - . . . - ^ W - 0 f o r * - ± f f m + i ; , (2.15b)

v is a polynomial of degTee 27V-1 on [-X - 1 , -X ) and on (X , X +1). (2.15c)

Note that vm is fully determined by these conditions. Because

sup {\u(x) I, \u'(x) I , . . . , I i / ^ W ! } < « » , (2.16)

XEIR

as x varies over the sets Qm « tt , X + l ] u f-X - 1 , -X ] , the quantities V^(x)
tn wfl fn fn If* IF*

have a (finite) bound that is independent of m, and hence the restrictions to Qm of the

functions y are bounded, uniformly in m. It is not difficult to verify that the function
m

v*Mix({vm}fUJ,{/:m}) (2.17)

obeys (2.10). To this end one should note that, because v is bounded, (2.13a) implies that

the oscillations of - j \\(x)dx vanish as X -» oo . On the other hand, (2.13b) implies
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not only that ^ J Yy(x)dx has the same property but that this lin t is unaffected by

shifts of the origin of the x-axis; q.c.d

Definition 23. Let W°(yr) be the set of measurable functions u on IR obeying items (i)

and (ii) of Definition 2.1 and the following weakened fonn of items (Ui) and (iv):

(w) There are two (finite) numbers, [u]° and [y/J0 and at least one sequence

{X0} for which, as n -4 ~ , X0 -> ~ and both

x;
1 f r io 1 f

n J 2XB J
(2.18)

Clearly, WJyr) C W°(Y), and the proof of Lemma 2.1 gives us also

Lemma 22. For each u in W°(ylr) there is a v in W^yr) with

[u]\ < y r > . [w ] # . (2.19)

This generalization of Lemma 2.1 is employed in the proof of the following

theorem giving the extension to the present theory of Gibbs1 observation that, for bodies of
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finite extent composed of zeroth order materials, the equilibrium response function %

defined in equation (1.10), is convex. The extension is not trivial, because, as we

mentioned in the Introduction, there are materials (of order greater than 1) for which V is

not everywhere equal to conv y ^ . The utility of Lemma 22 lies in the faa that it permits

us to replace (1.10) by

{ I [u]* = a } . (2.20)

We shall use also the following corollary to Lemma 2.1:

ue Wjyr), <u> = a }. (2.21)

Note: (2.20) and (2.21) hold whether or not *F(a) is finite.

Theorem 2.1. Vis a convex real-valued function on IR. In particular, Vis continuous.

Proof. We first note that as ŷ 0 is real-valued, for each a in IR, *¥(a) < *©. We have

assumed that there is a point a0 at which Y(ao) > - «>; clearly, at that point, ¥f ao) is a

real number. Let ax and a2 in IR with ax<a2 be given, and for a given ©in (0,1) put

a - e ^ + O - Q a j . (2.22)

We wish to show that
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(2.23)

To this end we let Uj and u2 be any two functions in Wffi) with < Uj > = av

< Uj > * dy then, as X -»«>,

x
>, 1 - 1 , 2 . (2.24)i J «/*'* -> «< • sr J

Let {&£} and { ^ J be bounded increasing sequences of positive integers such that

e
(2.25)

and use these sequences to define (*m) by

* 0 = l , and *2m-i s*m' *2mcJt2« formal. (2.26)

With

i40 = 2, and A2m~A2j»-\ as2(m+l), f o r m a l (2.27)

define 7 . by (2.4), and construct {v_} with v in C?~l(J), m^O, as follows:
wri wwl wwi wn

\Jx) m u.(x) (if m is odd) and • uJx) (if m is even), forx € [ \ - \ A* i A_- l ] , (2.28a)

vjx) * \'Jx) * . . . « v ^ 1 Vx; « 0, for x * ± Am/2, (2.28b)

v^ is a polynomial of degree 2N-1 on [-\Am, \-\AJ and on ( J A ^ - 1 , | i 4 m ] . (2.28c)

These conditions determine a unique vm in d*~l(Jm)- Now, put
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X
m
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v « M i x ( { v m } , U m } , { * m } ) . (2.29)

It is clear that v satisfies items (i) and (ii) of Definition 2.1. Moieover, with

B 7 7 / ) , (2.30;

we have, as it -»•»,

\(x)dx -+ 6<M,> + f l -^<u 2 > , (2.31a)

2^- f vjx)dx -> 6<yru> + (l-6)<yru> , (2.31b)

and, hence, v satisfies item (w) of Definition 2.3 and is in W°(y) with

[v]° = a, [yv]° -e<vm> + (l-e)<yu> . (2.32)

o

In view of (2.21), *F(a) £[YV] , and we have

> (2-33)

for eac/j pair (uv u2) of the functions in Wjyr) with < ux > « a r < u2 > = fl2. The

relation (2.23) follows forthwith from (2.21) and (2.33), and hence Vis convex on IR .
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As Vis convex, is strictly less than «>, and has a finite value at ao, V is real-valued on IR;

q.e.d.

Now, for each X in IR let

0(X): « inf{ [ y j -A<u> | ue W(y) } , (2.34)

and note that, by Lemma 2.1,

O(X) «inf {<vu>-X<u> | U*WX(Y) }. (2.35)

When we interpret *F(a) as the mean Helmholtzfree energy for equilibrium at

average concentration a , it is not inconsistent with the terminology of chemical

thermodynamics to then refer to &(X) as the mean Gibbsfree energy for equilibrium at

potential# X.

Le., for equilibrium at value X of the chemical potential.

The convex conjugate *F* of the convex function *P is, by definition*

., [1970].

¥*(X) : =* sup { aX- H*{a) \ a € IR } . (2.36)
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Theorem 22. The Gibbs function O: JR -> [ - «>,« ] defined in (2.34) is concave on

IR; in fact

O m - V* . (2.37)

If 0 > - eo on IR, then fand 0 are continuous real-valued functions and

Y(a)l\a\ -> ~ , is l a U « , (2.38)

«<A;/IAI -» - « , as U I - > ~ . (2.39)

. In view of (2.35) and (2.36),

= sup sup{ Afl-< y >\ueW.(y/), <u>~a

= sup { ^ - W |fl€ IR } « «P'CA; , (2.40)

which proves (2.37) and the convexity of -<P on IR, i.e., the concavity of <T> on IR.

Now, suppose <P > - o° on IR. Then, as 0 is concave, either 4> m oo or Q> is real-valued

and continuous on IR. Since for each a,

u real-valued and continuous, and, by Theorem 2.1, Vis real-valued on IR. As

Hty* =«F**=«f', (2.42)



35

(2.39) follows. As *F* = -4> , and - # is real-valued and convex on 1R, the same type of

reasoning yields (2.38); q.e.d

Remark. Our proofs that •Pis convex and never +~, and the implication that 4>is concave

ait indq>endent of our assumption that that is a point ao at which ¥f ao) > - •*. To show

that *Fis real-valued for a particular class of materials, one may first show that for that

class of materials <t> is ital-valued and hence (2.41) yields not only Y(a) < ~ , but also

*F(a) > - » for all a. Moreover, (2.41), convexity of V, and real-valuedness of Q>

suffice for proof of (2.38) and (2.39). The function <P is real-valued under very general

conditions on yr. Such a set of conditions is provided by the following lemma.

Lemma 23. Let yr be a continuous function from IR^1 to IR obeying, for each triple

(H\s ,r) in I R x I R ^ x I R ,

e i M r i - c 2 | s | r * + c3|z|r> + <* £ yr(w%s,z)t (2.43)

where rf, c , yi are constants and

l £ r 2 < V ^ 2 ^ % ' 1 < r 3 ' Md c y >0 for j = 1,2,3. (2.44)
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Then 0>(X)% defined by (2.34), is finite for each real number X. In fact, there is then a

real-valued function Af^of X which is bounded on each compact interval and is such that,

for every X £ 1 and every u in d*ml([-X, X]) with u^'l) absolutely continuous,

- Xu] dxJ
-x

(2.45)

-x

Proof. As , . . . , 0), our goal is to show that G>(X) is not - « » . Let / be a

closed interval with length |/1 obeying 1 < |71 < 2 , and letp obey 1 £ p < » .

According to the interpolation inequality for Sobolev spaces* for each e> 0 there is a

E.g., [1975], p. 70.

positive constant c(e) such that

/ /

; = 1 N - l , (2.46)

for every u in C*(/) with u(W4) absolutely continuous. Hence,

Jl-oy, 1 ' 0 f, wi.n.l , J , ,r,
.J; J V

(2.47)

with a 1, and this implies
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I \u®\7idx £ It [ \umpdx + c(c) I \u ̂ dx + 2c, > 1 N-l . (2.48)

J/ J' J/

Nowf for X£l let u be a function in (f'l([-Xt X]) with u^"^ absolutely continuous.

Choose an / so that DC/I * ft is an integer. By applying (2.48) to the function u on each of

the intervals / « / m - [-X+(m-2)/f -X+m/], m=lf..Mftf and summing over mt one

obtains, forysl,. . . , N-l,

X X X

H j W«>| •</, , y j |u« I** • # J |. |*-x • 2e .

If we put t« c3/(4Nc2), ^ - (N-l)c(c), and ^2 • ( N - l ) e - d, then (2.49) and (2.43)

yield
x x x

-x -x -x

Let

and note that as Yl>y2tl, we have Mx < « , and the relation (2.45) follows from

(2.50). As (2.45) yields Cf(X) t -M A , the lemma is proven.
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3. Equilibrium of Second-Order Materials

In this section we discuss a class of second-order materials for which v^ in the

equation

Y^vfa.u'.O. (3.1)

is in C^IR3), is convex in its last variable, U.9

&V(w9pfr)/arh>09 (3.2)

and satisfies

cjw |r> - c2|p|r* + c3|r |y> + d £ V<w,p,r) £ f{w%p) + cA\r \y> , (3.3)

where/is a continuous function, dfc.,yi are constants, and

1 £ y2 < yx f y2 £ y3 , 1< y3, and c.> 0 for ; « 1,.,.,4. (3.4)

This class of materials includes those for which (1.38) - (1.40) hold. Each material

obeying (3.1) - (3.4) also obeys the hypotheses of Lemma 2.3 and hence the assumptions

of Section 2. In particular, Theorem 2.1 and Lemmata 2.1 and 2.2 can be employed here.

The results of Leizarowitz and Mizel [1989] described in Section 1 are also valid under the

present assumption of (3.1) - (3.4).

We shall here present a method by which one can construa states uQ that solve the

constrained minimization problem,

(P) Find »fii;-inf{[y]|ii€W^f <«>-fl}f *eIR,
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using states uk that solve the unconstrained problem

(P*) Find 4>(X) *inf [tya]-Xu \ueW(yr) }, XelR

We shall observe that for certain values of a, namely those that are exposed points of the

function % there are corresponding values of X such that every state uk that solves* (P*)

* We say that u " solves** (P*) or (P^) if the infimum in that problem is attained at u.

also solves (Pfl). However, in general there may be values of a for which

states that solve (Pfl) cannot be obtained in this manner. We shall show that, for each such

value of a, (Pfl) is solved by either a limit of a sequence {u^ } of states, with u^ solving

(P**), or by a mixture of two such limiting states. This will lead us to the following result

(Theorem 3.1): For every a, there is a state uQ that solves (Pfl) and that is either periodic or

is a mixture of a pair of periodic states. We shall also observe (Theorem 3.2) that, for

materials obeying relations of the form

V(w,p,r) £ h(w, r) - bg(p) (3.5)

in which b is a positive constant and h and g are non-negative continuous functions with

g(p) s 0 only when p = 0, for each compact interval / there is a critical value
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b0 * bQ(h> g, I) of b such that if b exceeds bQ and a is in I, (P^) is not solved by states for

which ua is constant on IR. Materials obeying the relations (1.38) - (1.40) obey not only

(3 .1) - (3 .4) , but also (3.5).

The concepts of support point and exposed point, mentioned in Section 1,* are here

# Cf. (1.13) and (1.14).

employed in a form that is meaningful for functions not necessarily differentiable

everywhere. We say that a point a in IR is a support point for a real-valued function g on IR

if there is a A in IR such that,

g(y) £ g(a) + X(y-a), for all y € IR; (3.6)

a is an exposed point if, in addition, there is a A in IR for which,

g(y) > S(&) + My - <*)> when y * a . (3.7)

The set dg(a) of all A in IR for which (3.6) holds is the subdifferential of g at a.

As !P is convex, when V is real-valued d*F(a) is a nonempty bounded set for

each a in IR ,* and H? is differentiable at a if and only if &¥ is a singleton, in which case

Vid., e.g., [1970].
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« { *F'(a) } . If ¥ is not differentiable at a, then &F(a) * » compact interval

[ Xj(a), X/a) ] with Xl< A,, and in that case (3.7) must hold for each A in

( Xfa)% \{a)). Thus, every point at which Hf is not differentiable is an exposed point for

Concerning exposed points for *P, we have the following lemma, which holds for

general materials obeying the hypotheses of Section 2, once it is granted that <!>, and hence

«P, is real-valued.

Lemma 3.1. Let a be an exposed point for •F, and let A obey (3.7) with g * *F. Then

every function uA in W(y) at which the infimum in (P*) is attained, i.e., for which

u ] - A<uA> « *fX), is one at which the infimum in (Pa) is attained, i.e., is in U(a)

Proof. If «A minimizes the right side of (2.34), we have, by (2.37),

] - A<uA> = *(k) «inf { 9(y)- Xy\y € IR } . (3.8)

Our assumptions about a and X assert that

V(y)-Xy > V(a)-Xa, for y*a, (3.9)
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and hence the infimum in (3.8) is attained when, and only when, y = a. Thus,

- Xa = [ vuj - A<«A> * «Pf<«A>; - A<aA> , (3.10)

and on comparing this with (3.8) we deduce first that <*.£> • a and then that

For materials obeying (3.1) - (3.4), the Lemma just proven and the results of

Leizarowitz and Mizel [1989] inply that when a is an exposed point for VP there is a

periodic state ua that solves the problem (Pfl).

We consider now points a which ait not exposed points for *F. As V is convex,

for each such point there are numbers ax » ax(a) < a2 « a2(a) and X^X^a) for which

*(y)-Aify-a)+V(a)9 for y in [ava2). (3.11)

By (2.38), the interval [fl ra2] is bounded; we take it to be the maximal inteival containing

a on which (3.11) holds, i.e., on which *¥ is affine. Qearly, the infimum in (3.8) with

A « XQ(a) is attained if and only if y is in [av a 2 ] . Therefore, if v is a solution

then, as in the proof of the previous lemma, it follows that aQ> the average of v, is in

[av a2] and consequently v solves (Pfl ). Thus, given X^a) for an a which is not

exposed, we can find a state v that solves a constrained problem (Pfl ) with aQ in [av

but an need not equal the original a.
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In our treatment of the problem (Pfl) for values of a that are not exposed points for

¥*, we confine our attention to second-order materials obeying (3.2) - (3.4). For our next

lemma we employ the following result, recently obtained by Leizarowitz [1990] using a

refinement of arguments given in [1989]: Let I be a bounded interval. As X varies over J,

for each X a periodic function ux that solves (P*) can be selected so that (i) the set

{ Tk j X € / }, with Tx the minimal period ofux, is bounded, and (ii) the functions ux and

ux% Xelt are uniformly bounded.

Lemma 32. Assume (3.1) -(3.4), and suppose that [ava2] is a maximal interval on

which y i s affine. Then there are periodic functions u and u in WJyr) that solve the

problems (Pfl ) and (P ) .

Proof. We consider a2 . The proof for ax is analogous. If *Fis not differentiable at aT

then a2 is an exposed point for Vand the required result follows from Lemma 3.1.

Therefore, we suppose that Vis differentiable at a2 and note that V is then continuous at

a2. We claim that, for every £> 0, the interval Je^(ctr a2 + e) contains an exposed

point for *F. As this is obvious if there is a point in J£ at which *F is not differentiable,
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we suppose for the moment that there is an e > 0 such that H? is continuous on Jg.

Then, *F\J£ ) is an interval and this interval is not degenerate, because, by the maximality

of [av fij] , *F'(a)> Y'(a2) for each a i n / £ , and V is continuous at uT As the

maximal nonsingleton subsets of J£ on which V is constant are disjoint intervals, they

form a countable set; if Q is their union, *F'(Q) cannot cover the interval *F'(7e )• Thus,

Je\(Q) is not empty. I fa is in / C VG; then *F'(a-S) < ¥'(a) < Y'(a+8) for every

S > 0, and hence a is an exposed point for *F.

In view of the above, there is a strictly decreasing sequence {«<n)} of exposed

points for *F with a(>l) -» a2. For each n, let A(n) be a number in <W(a{>i)) such that

(3.7) holds with s = «F, fl«fl<B), A « A ( B ) . Then "PY^ < ^ ^ ^Yfl(n)+^ «»d

hence A(n) -» AQ = Y'(a2). As C> is finite-valued and concave, <t> is continuous and

O(X(n)) -» tffA^. If u{H) minimizes the right side of (2.34) with A = X(H\ by Lemma

3.1, <u, > « fl(n) and C>CA(n); « [ r ] - A(B)a(w) « ^fl ( n ); - A (nVn). Thus,

by the continuity of <P and SP:

Now, in view of the theory presented in [1989] and the previously mentioned result of

n(n)Leizarowitz [1990], we can choose the functions n(n) that solve (P*") so that they are
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periodic and their minimal periods 7*1* are bounded and, moreover, so that the functions

w(n) and H^J are uniformly bounded on IR and each function K(||) obeys (1.41). In view

of the coerrivity relation (2.45), which is implied by (3.3), we conclude that the functions

n(||) are also uniformly bounded in the space w£ r 3 formed from functions v on IRwith

v and v# absolutely continuous and with |v"|7' locally integrable. By extraction of a

subsequence, we obtain a new sequence of periodic functions u(f|) whose minimal periods

7*1* converge while {w(||)} converges weakly in W2*r* and uniformly in C^JR) to a

periodic function un in W2*7* with period Tft*lim 7<n). Then

< u o > = Jm<«(B)> = a2 . (3.13)

and, by Tonelli's theorem on lower semicontinuity,

. (3.14)

As [Y ] • ¥fa(n); and bm *F(a(n)) = ¥(a2), (3.14) yields

[Yj*W(aJ. (3.15)

Hence uQ is a periodic function that solves problem (P ), which completes our proof. It

is not difficult to see that u0 describes a state of minimal free energy in the sense of (1.41)

and, by (3.11), is a state at which the infimum (2.34) is attained with

Le.,
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Definition 3.1. We say that a continuous real-valued function u on 1R is an asymptotically

twice-periodic mixture of two periodic, continuous functions u0), ii^on IR if K is

uniformly bounded and there is a sequence [K.) of disjoint intervals with | ATf. | -> ~

such that:

(i) OnK\, M«ii0 ) iflisoddandttsii^if/iseven.

(ii) Km ^ X l * . r V | * ltwitfa

i odd
(iii) With / as in (ii), converges to a positive number r as X

i even

The number 8= T/(1+T) is called the fraction of the mixture containing w(l).

Lemma 33. Assume (3.1) - (3.4). Let [av a2] be as in Lemma 3.2, and let uQ and

14 be periodic functions in W^yr) that solve (Pfl ) and (P ). If a is interior to [ay a2],

U., if a = ebj -f (l-8)fl2 with 0 < 6 < 1, then the problem (Pfl) is solved by an

asympotically twice periodic mixture u* of uQ and u with © the fraction of the mixture

containing^ .
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Proof. Let T. be a (not necessarily minimal) period of u , ; « 1,2. If H. is constant
J Oj J

put Tj » 1. Let { v j be an unbounded sequence of positive numbers for which as n -*

6 and —%* > 0 . (3.16)
"2/2" ^ l - 6 ";»

SV2i,
M>0

Let X = vj. ifmisoddandX « v T , i f m i s even, and put J - [ -X-1 , Jf+1] .

Define vm on the interval Jm by the equations (2.15a)-{2.15c) of the proof of Lemma 2.1

with N « 2 and u - uQ for m odd and « « « for m even. Finally, put

«• = Mix({vm},UJ,{ikm}) (3.17)

with

Am~2(Xm-l), kmml. (3.18)

Then «' is in WJijr) ,

() ( K = fl , (3.19)

and

> = $< ¥a> + (l-©)< ¥o> = e^flj) • (l-e)«Ka2) • (3.20)

As Vis affine on [«,, a 2 ] , (3.20) yields

<V>> - t f l ) . (3.21)
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which completes the proof.

Let g be a real-valued convex function on IR. A number a is called an extreme

point for £ if it is not interior to an interval on which g is affine, Le., if there is no open

interval (a^.a^) with ae(ava2) and no Xin R , for which g(y) « g(ax) +

for ally in [a19a2] •

Lemmata 3.1 - 3.3 and remarks made in their proofs yield the following two

theorems.

Theorem 3.7. If the material is of order 2 and \jf obeys (3.2) - (3.4), then for each a in

IR the convex function V is finite-valued and there is an equilibrium state uQ with

= a. If a is an extreme point for % then uQ can be chosen to be a periodic function

that describes a state of minimal free energy in the sense of (1.41). On the other hand, if a

is not an extreme point for % and if u and u are two periodic equilibrium states with

<u > s 0 , and <u > S ( L , where a, and &, are the end points of the maximal interval
6j 1 flj * l *

containing a on which *F is affine, then the state uQ can be chosen to be an asymptotically

twice-periodic mixture of the states uQ^ and u .
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The following theorem applies to a class of materials of order N £ 2 that includes

not only those of order 2 obeying (138) and (139), or their generalization (35), but also

those of order N £ 2 for which y is a continuous function on IRf̂ "1* obeying, for each

triple (w, S, z) in IR x IR^1 x IR ,

y(w, s, z) £ c( \w |+|z| )"' - b\s\P> + r\, (3.22)

where vy vy b% cv and r\ art positive constants, and, as in (2.43), w = u,

« - ( n V . . . ! ! ^ " ) . and Z - I I 0 ^ .

Theorem 32. Suppose y is a continuous function on IR^*1, N ^ 2, obeying

V K U , W \ W V M K ( A 0 ) S *(Mtii
# u<">)-**(*' w^ 1 ) ) (3.23)

with b a positive constant and with h and g continuous non-negative functions on IR^1

and IR "̂1, respectively. Assume that g is positive definite in the sense that

g(sy...fsNl) = 0 if $,.«() for i^l , . . . ,AM, *ndg(sv...,sN j) > 0 otherwise. Define

*P and v̂ 0 by (1.10) and (1.12). For each compact interval / in IR, there is a positive

number bQ « bQ(h, g, I) such that if b>bQ, then for each a in /,

( ) conv \jro(a) f (3.24)
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and hence there is no spatially uniform (i.e., almost everywhere constant) equilibrium state

with average value a.

Proof. Let v « sin x, and put

K m sup { *(v(x)+a, v'(x),...f v
w ( x ) ) I x € IR f a € / } f <3.25a)

cr = min { *(v'(x),..., v(AL1)(x)) | x € IR } . (3.25b)

As the set { (v'(x),..., v(AM)(x)) | x € IR } is compact in IB?'1 and does not contain

(0,...,0), the number c is positive. By (3.23),
2*

(x)dx £ K - be . (3.26)Wy+* In) ^
0

Now, as V is continuous, for each compact interval /, the number,

fi« min { conv V 0̂(fl) | a € / } , (3.27)

is finite. As a> 0, there is a number f?0 such that for all b > bQ

K-bc<fi (3.28)

and, in view of (1.10) and (3.26),

for each a in /; q.e.d.
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Of course, the hypothesis of Theorem 32 docs not insure that the infimum in

(1.10) is attained or even that ¥fa) in (3-24) is > - ~.

Arguments we have given in this section, particularly in the proof of Lemma 3.1,

and the paragraph containing equation (3.11), justify the following general remark about

materials with N £ 1.

RemarL Consider a material of order one or higher, and suppose that yt is such that for

each A in 1R there is a state that solves (P*). Le., that for each A the infimum

G>(X) of { [yrM-Au] \ ue W(yr) } is finite and is attained at a function in W(yr) .

(i) If a « < ux>, where ux solves (P*), then not only is ux an equilibrium state

with average concentration a, but

Wa) « <K>0 + A*. (3.30)

(if) Whenever a is an exposed point for the finite-valued convex function %

equilibrium states with average concentration a may be found as follows: Let A be

one of the numbers for which

¥(y) > V(a) +My-a) when y*a\ (3.31)

each state uk that solves (P*) is an equilibrium state with <ux> « a; if *P is

differentiate at the exposed point a, then A is unique and A = Y'ia).
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4. Remarks on Homogenization

In the theory presented in this paper we have regarded bodies of infinite extent as

limits of bodies of finite extent Indeed, we have defined averages of functions on IR to be

the limits of averages over intervals of finite length; e-g., if u on IR is such that <u> in

(LI) exists, then

< u > = Km <n> x » (4.1)

where
x

: s S f J<u>x: « w I udx (4.2)

is the average value of the concentration for a body of length 2X whose state u is

obtained by restricting u: IR -» IR to the interval Ix « [-X, X ] . Here, in a trivial sense,

the state u of an infinite body is the pointwise limit, as X -* ~ , of the states of finite

bodies.

There is, however, a way to start with one-parameter families of functions u\ and
lx

build up a theory appropriate to the limit of large X in which <u> and [ y j of the

present theory may be interpreted as quantities defined for states of a limiting body of finite

length. In this procedure, as X increases the x-axis is rescaled by the transformation

a , e = VX, (4.3)
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and thus at each stage one deals with function u£ defined on the interval / j « [ - 1 , 1] by

ujy) « u(x) « u(y/e). (4.4)

An expected feature of this procedure of homogenization is that as X -4 ©©the limit ofu£

will be not a function, but a Young measure. We briefly examine the procedure below.

Let yr be the Helmholtz free-energy function for a material of the order N £ 1,

and let W(yir) be defined as in the first paragraph of Section 2. For each u in W(yr),

the derivatives of the function u£ on /j obtained from the restriction of u to Ix as in

(4.5) obey

u'(y/e) « a*;6>J, um(ylt) « e2«;fy; , etc. (4.5)

We continue to write < • >x for the average value of a function on Ix. Clearly,

<u>x: = <ii f>r (4.6)

With the notation,

v*(y) s v<v(y)> t*'(yU &*&) &vw(y)). (4.7)

we have, by (1.4), (4.4), and (4.5),
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X

1 t
<¥u>y' 'rU^X

-X

1

* 2 I Vu toWy •<Vr« >\ • (4.8)

As u is in W(y), (4.6) and (4.8) yield,

< « > , (4.9)

(4.10)

As each u in W(\jr) is in LT(JR), the family {ue} is a bounded subset of

L~(L), and it follows that each sequence [e } with e -»0 has subsequence {e ,}

for which, in the sense of weak convergence of measures,

KA*>> (4.11)

where v * v(y; dA) is a Young measure. That is, for each Borcl set £ in IR, the

function y h v ( y ; f ) is a Borel measurable function, while for almost every y in Iy

E h* v (y; £) is a probability measure CHI IR. Furthermore, given the subsequence

{u } for which (4.11) holds, by an elaboration of the method of Lemma 2.1 one can

construct a state v in 5 that obeys (2.10) and is such that for a certain Young measure

y: (i) the analogue of (4.11) holds for every sequence {e^ converging to zero, i.e., as

£-4 0,
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vtAr. (4.12)

and (ii) y determines a Borel probability measure M that is independent of y, namely,

r(y,E) « M(E) for all Borel sets £, for almost all y in / , . (4.13)

Consequently, the first moment of the probability measure fi gives the average value of u:

m

I (4.14)

States that correspond to such fiber-constant Young measures can be regarded as

possessing a generalized type of periodicity.

Definition 4.1. A function u in 5 is called pseudoperiodic if there is a Young measure y on

Ix that obeys (4.13) and is related to the functions [u£] by (4.12).

Remarks, (i) It is IK* difficult to verify that if a continuous function u describes

a periodic state or an asymptotically twice-periodic mixture in the sense of Definition 3.1,

then u is pseudoperioidic.
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(ii) It can be shown that essentially bounded functions u on IR which

air almost periodic in the sense of Besicovitch arc also pseudoperiodic. The ccmnection

between these generalized notions erf periodicity will be further developed elsewhere.

The construction mentioned above ensures that for each u in W(\j/) there is a

corresponding pseudoperiodic state uinW(yr) satisfying the conditions

By using the preceding observations, one can obtain an existence result for

functions solving the unconstrained problem (P*) for materials of arbitrary order N £ 2.

That existence result, together with the theory of Section 3, leads to the following theorem

for materials obeying the natural extension to higher-order materials of the hypotheses

(3.1)-(3.4).

Theorem 4.1. Suppose that for a material of order N £ 2 the function yf is in C2(JPF) and

obeys, for each triple (wf s , z) in IRx W? l x IR,

d2yKw,s,z)fdz2 Z 0 (4.16)

and
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cAw |r* - cAsl7* + cAz \r* + d £ w(w%sfz) £ f(wt s) + cAz I73, (4.17)

with/ continuous, d, c.t r constant, and

\Zy2<ylt Y2*y3, l<7y and c.>0 for ^ * 1 4. (4.18)

Then not only is *Pa real-valued convex function in accord with Theorem 2.2 and Lemma

2.3, but for each a in JR there is a pseudoperiodic equilibrium state uc in Wx(y) with

Proofs and applications of the above observations will be presented elsewhere.
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