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NON-MONOTONIC TRANSFORMATION KINETICS AND THE MORPHOLOGICAL
STABILITY OF PHASE BOUNDARIES IN THERMOELASTIC MATERIALS

ELIOT FRIED

Center for Nonlinear Analysis, Department of Mathematics,
Carnegie Mellon University, Pittsburgh, PA 15213-3890

The linear stability of an isothermal two-phase process involving a planar phase boundary of
normal type is analyzed. Results are obtained for cases wherein: t. the temperature field is unaltered
as a consequence of the disturbance which is imposed, it. the process is initially static, ttt. the phase
boundary associated with the process propagates steadily with non-zero velocity. In the first case the
linear stability criteria are equivalent to those obtained in a related purely mechanical investigation. In
the second case the process is found to be linearly stable. In the last case it is shown that instability
can arise under a variety of circumstances. Of particular interest is a case where the kinetic relation is
mechanically stable but thermally unstable-^ in this case the transformation process is unstable with
respect to disturbances which include only suitably long waves, implying that a state involving a highly
wrinkled interface is favored over one involving a planar interface.

1. Introduction. The morphological features of multiphase equilibria in solids capable of sustaining
diffusionless phase transformations typically involve complex arrangements of mariensitic plates, oriented
along specific crystallographic axes, within an austenitic matrix.1 Much attention has been directed toward
the continuum mechanical modeling of such solids. The most straightforward contexts in which to pursue
such an approach are afforded by finite elasticity and finite thermoelasticity. In order to model solids which
exhibit multiphase equilibria within these contexts it is necessary to consider materials characterized by
constitutive response functions (i.e., elastic potentials and Helmholtz free energies in the cases of elasticity
and thermoelasticity, respectively) which depend upon the deformation gradient in a non-convex fashion.
ERICKSEN [7,8], FONSECA [9], FOSDICK k MACSITHIGH [10,11] JAMES [15-17] and others have studied the
absolute minimizers of non-convex functionals corresponding to such response functions. These minimizers
display fine-scale structure akin to that observed in actual multiphase equilibria.

A question which arises at this stage concerns the manner in which such equilibria are reached. Given
the apparent success of the continuum mechanical approach in the static setting, it is natural to wonder
whether studies performed within a fully dynamical context will yield useful information pertaining to the
evolution from single to multiphase states and, in particular, the development of plate-like morphology.

Except for the work of SILLING [24] and FRIED [12,13], most of the continuum mechanical explorations
into the role of dynamics in diffusionless phase transformations have been confined to one-dimensional bar
theories.2 To address the morphological issues at hand it is clearly necessary to work in a multidimensional
context. In [24] SILLING performs an asymptotic analysis which shows that a particular isotropic hyperelastic
material with non-convex potential is able to sustain a steady state involving a single cusped surface of
strain discontinuity, i.e., phase boundary, which propagates at constant velocity. This phase boundary is
reminiscent in structure to a martensitic plate of the type mentioned above. One conclusion reached in
[24] is that isotropic materials can exhibit non-planar phase boundaries. This suggests that, although the
important features of orientation are lost by restricting attention to isotropic materials, working within the
more analytically tractable setting provided by such materials may lead to qualitative insights concerning
phase boundary kinetics and the development of plate-like structures.

In [12] the linear stability of a transformation process is studied using a class of materials of which that
used in [24] is an element. The process involves a steadily propagating planar phase boundary of normal
type. The analysis reveals a condition necessary and sufficient for the process to be linearly stable: the kinetic
response function—which relates the driving traction acting on a phase boundary to the normal velocity of
the phase boundary—must be a locally increasing function of its argument at the value corresponding to
the undisturbed transformation process. This result does not depend on the wave-number associated with

Sample micrographs depicting such states are provided by ZACKAY et al. [27].
2 See, for example, ABEYARATNE & KNOWLES [1,2,4], JAMES [18] and PENCE [23]. UniVCfSltV LlblHrJPk
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the initial disturbance to which the process is subjected. A necessary consequence of the results given in
[12] is that the process can be unstable only if the kinetic response function depends on its argument non-
monotonically. Non-monotonic kinetic response functions are admissible under the Clausius-Duhem version
of the second law of thermodynamics (specialized appropriately to isothermal conditions consistent with
[12]); furthermore, the work of OWEN et al. [22] suggests that a non-monotonic relation between interfacial
driving traction and normal velocity may explain the emergence and growth of plate-like structures within
martensitic solids. Under such kinetics, the results obtained in [12] suggest that, in a fully nonlinear context,
an evolution from planar to plate-like phase boundary morphology is possible within the confines of a purely
mechanical theory.

Thermal effects are absent in [12]. However, the experimental work of CLAPP &; Yu [5], CONG DAHN et
al. [6], GRUJICIC et al. [14], and others indicates that temperature effects play a significant role in the kinetics
of phase boundaries in diffusionless phase transformations. The investigation performed in [13] explores
the linear stability of the isothermal extension of the process considered in [12] within a thermomechanical
context. It is shown in [13] that the inclusion of thermal effects allows for a rich set of linear stability
criteria where, in particular, morphological instability can occur even when the transformation kinetics are
mechanically stable in the sense of [12] and, furthermore, the value of the wave-number associated with the
initial disturbance to which the transformation process is subjected plays a significant role in its stability.

This paper extends the results of [13] and clarifies their relation to those of [12]. It is organized as
follows. In section 2 the notation, kinematics, fundamental balance principles and imbalance principle,
as well as the constitutive assumptions which will be needed thereafter are introduced. The notion of a
thermoelastic antiplane shear is defined in Section 3. A description of the transformation process to be
studied is given in Section 4. Finally, Section 5 is concerned with a normal mode analysis of this process.

2. Preliminaries. In the following HI and <E denote the sets of real and complex numbers. The
intervals (0,oo) and [0,oo) are represented by IR+ and H+. The symbol £ represents real three-dimensional
Euclidean space. If U is a set, then its closure is designated by U. The complement of a set V with respect
to U is written as U \ V> and the Cartesian product of U and V is denoted by U x V.

Vectors and linear transformations from £ to £ (referred to herein as tensors) are distinguished from
scalars with the aid of boldface type—lower and upper case for vectors and tensors, respectively. Let a
and b be vectors in £, their inner product is then written as a • b; the Euclidean norm of a is, further,
written as |a| = y/a. a . The set of unit vectors in £ is designated by AT. The symbol C refers to the set of
tensors, while £+ denotes the set of all tensors with positive determinant. If A £ £, then A T represents
its transpose; if, moreover, A € £+, then the inverse of A and its transpose are written as A"1 and A~"T,
respectively. If A and B are tensors then their inner product is written as A • B = tr A B T .

When component notation is used, Greek indices range only over {1,2}; summation of repeated indices
over the appropriate range is implicit. A subscript preceded by a comma denotes partial differentiation
with respect to the corresponding coordinate. Also, a superposed dot signifies partial differentiation with
respect to time.

Consider, now, a body which occupies a region H C £. A motion of the body on a time interval T C IR
is a one-parameter family of invertible mappings y(-,t) : n —• H\, with y(x,*) = x + u(x,*) V(x,f) 6 M.
Here M = H x T is the trajectory of the motion. Assume that the deformation y, or equivalently the
displacement u, is continuous with piecewise continuous first and second partial derivatives on M. Let
St C H be defined so that, at each t 6 T, y(-,<) is twice continuously differentiate on H \ St.

Adopt the global balance laws of continuum thermomechanics for mass, momentum, moment of mo-
mentum, and energy, and the Clausius-Duhem statement of the global imbalance of entropy production.
The nominal forms of these principles yield the following local field equations and inequality, which hold
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on M \ S,

£ = p(y) J, V • S -f gb = gii, SF = FS, S • F + V • q + gr = ge, V • (—) 4- -r < Qf), (2.1)

and local jump conditions, which hold on 27,

[QVn] = 0, [Sn] + [6Vnu\ = 0, [Sn u] + [q n] + [gVn(e + ±|ii|2)] = 0, [3L2] + [gVnt]} < 0, (2.2)

where [#(•,<)] denotes the jump in g(-,t) across St at < G T. In (2.1) and (2.2) £ : 71 —• IR+ is the nominal
mass density, p : y(M \ 27) —• IR+ is the mass density in the current configuration, J : M \ 27 —• IR+ is
the Jacobian determinant of the deformation gradient tensor F : M. \ 27 —* £+, b : A^ —• S is the nominal
body force per unit mass, S : M \ 27 —• C is the nominal stress tensor, q : .M \ 27 —> S is the nominal heat
flux vector, r : A4 —• IR is the nominal heat supply per unit mass, e : M \ 27 —* IR is the nominal internal
energy per unit mass, 0 : M —• IR+ is the nominal absolute temperature, and 77 : M \ 27 —* IR is the nominal
entropy per unit mass. In (2.2), n(-,t) : St —• M and ^(-jf) : St —> IR orient and give the normal velocity
of St at t G T, respectively. Note that in deriving (2.1) and (2.2) it has been assumed that S, q, e, 9 and
77 are continuous and piecewise continuously differentiate on their domains of definition. The stipulated
smoothness of u and 0 yields the following kinematic jump conditions, which supplement (2.2) on 27,

[u] = 0, [0] = 0. (2.3)

Observe that (2.2)i and (2.3)2 together imply the following simplified versions of (2.2)2,3,4:

[SnJ -f eVnfu] = 0, [Sn • u] + [q • n] + £Vn[(£ + | l u | 2 ) ] = 0> ^fa * n ] + £^[77] < 0. (2.4)

Furthermore, the jump conditions (2.4)2,3 can, using (2.4)i and (2.3) as in [3], be rewritten as

[q • n] + (/ + g0fri])Vn = 0, fVn > 0, (2.5)

where / = g[tpj — ((S)) • [F] is the driving traction which acts on 27, tp = e — Orj is the nominal Helmholtz
free energy per unit mass, and ((</(•,<))) denotes the average of a function #(-,t) across St at t G T.

Suppose, from now on, that the body is composed of a homogeneous and isotropic thermoelastic
material of the type used in [13,19]. Such a material can be thought of as a thermoelastic analogue of a
generalized neo-Hookean material in that its thermomechanical response in all three dimensional isochoric
deformations is fully determined by a shear stress response function, r : IR+ x IR+ —• IR+, and a heat flux
response function, K : IR+ x Et+ —• IR+—both of which depend only on a scalar measure of shear strain,
7 = y/F • F — 3, and the nominal absolute temperature. For the purposes of the current investigation, it
is assumed that both r and K are twice continuously differentiate on their common domain of definition.
The shear stress response function r is allowed to lose monotonicity in the sense that

d7r > 0 on AxUA3, 37r < 0 on A2, (2.6)

where Ax = { ( T , * ) | 0 < 7 < gt(0),0 G (*•,*•)}, A2 = {(7,»)!*,(*) < 7 < 9r(0),0 G ( ^ , ^ ) } , A3 =
{(7>e)\9r(6) < T < oo,0 G (0*,0*)}, and the functions gt : (0*,$*) -+ IR+ and gr : (0*,0*) -* IR+ sat-
isfy the inequality gt(0) < gr(0) V̂  G (0+,0*). This renders the material non-elliptic and, hence, capable of
sustaining equilibrated deformations with discontinuous gradients. The sets Ai and As are referred to as
the high and low strain elliptic phases of a material of this kind. Specification of the monotonicity properties
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of T on the remainder of IR+ x IR+ is not needed for the sequel. For future reference, the nominal stress
tensor, nominal entropy per unit mass and nominal heat flux vector are given in terms of r and K by

S = M(7,0)(F - F"T) , QTJ = - d0 r(/c, 0) <f/c, q = K(y, 0) V0, (2.7)
Jo

for isochoric deformations of a material within the class under consideration. Here M : fll+ —• IR is the
secant modulus in shear for isochoric deformations of a material of the type at hand and is defined so that
M(7,0)7 = r(7,0) V(7,0) G IR+ x Ht+. For a thermoelastic material (2.1)3 is automatically satisfied on
M\E. Observe that the conductivity response function K is restricted so as to assume only positive values.
It is easily shown that this limitation is sufficient to guarantee the satisfaction of (2.1)s on M\E. Therefore,
the local balance equations (2.1)3,5 are ignored hereafter. Note that, once F is known, the current mass
density p can be calculated directly from (2.1)i—which is also neglected in the following.

3. Thermoelastic antiplane shear. Suppose that H is a cylindrical region with cross-section
V. Let {ei,e2,e3} be a fixed orthonormal basis for £ chosen so that e3 is parallel to the generators of
1Z. If the displacement field u associated with the deformation y takes the form u(x,tf) = u(xi,£2>0e3
V(x,<) 6 M and, in addition, the nominal absolute temperature field is independent of the 23-coordinate,
a process is a thermoelastic antiplane shear, normal to the plane spanned by ei and e2. It is clear from
(2.7) that the remaining field quantities, as well as any surface of discontinuity involving them, must be
similarly independent of the ̂ -coordinate. Refer to u as the out-of-plane displacement field. Note that
the deformation associated with a thermoelastic antiplane shear is isochoric. It is, therefore, legitimate to
subject a body composed of a material with the constitution introduced in Section 2 to such a process. For
a material of this type, it can be shown, using (2.7), that (2.1)2,4 hold on M \ E if and only if

0)ti,a),a= gu, (K(7,0)0iQ),a=QOri, (3.1)

hold on O\r, where Q = V x T and F = {(xi,x2,t)\(xux2) eStnV,teT}. Similarly, (2.4)i and (2.5)
hold on £ if and only if

[M(T, 0)u,a nQ] + eVn W = 0, [ff(7,0)0,a na] + (*>%] + f)Vn = 0, fVn > 0, (3.2)

hold on F. For thermoelastic antiplane shear note that 7 = y/u}Quia on fi\F. Clearly, the jump conditions
(2.3) hold on E if and only if the following jump conditions hold on F:

[«] = 0, [9} = 0. (3.3)

Before proceding consider the inequality (3.2)3. If F represents the trajectory of a cross-section of
a classical shock—a surface of discontinuity which does not separate different phases of the material at
hand—(3.2)3 is satisfied by requiring that the sign of Vn(-,t) in the Rankine-Hugoniot relation

(which is a consequence of (3.2)i and (3.3)i) is chosen pointwise so that /(-,t)Kj(-,f) > 0 on St H V
V̂  € T. On the other hand, if F represents the trajectory of the cross-section of a phase boundary, the
foregoing procedure is insufficient to obtain uniqueness in the solution of initial boundary value problems
which involve metastable data.3 This difficulty can be circumvented by supplementing the constitutive

For a discussion of this issue see ABEYARATNE & KNOWLES [1-4] and TRUSKINOVSKY [26].
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information provided by r and K. An approach to this, taken by ABEYARATNE & KNOWLES in [1-4], entails
the provision of a kinetic relation which determines how the driving traction, the normal velocity of the
phase boundary and the local absolute temperature of the phase boundary are related. Two cases motivated
by the discussion in [3] can be considered. In the first case a kinetic response function V : IR x IR+ —* IR
is specified so that, on the trajectory F of any phase boundary cross-section,

Vn = V(f/0,0), (3.5)

where, sufficient to satisfy (3.2)3 on T, V($,0)$ > 0 V(#,0) € IR x (0*,0*). In the second case a kinetic
response function <p is furnished so that, on the trajectory F of any phase boundary cross-section,

/ = 00(^,0), (3.6)

where, sufficient to satisfy (3.2)3 on J1, ${V,0)V > 0 V(V,0) £ IR x (0*,0*). In both cases no stipulations
are imposed regarding the monotonicity of the kinetic response function. However, it is assumed that the
kinetic response function is continuously differentiable on its domain of definition. For future reference, this
restriction implies that whichever of

V(O,0) = O, 6.V{*,0)\^o>0, or *>((),<?) = 0, 6MV,0)\VmO>0, (3.7)

is appropriate to the form of kinetic relation imposed is satisfied for each 0 £ (0*,0*).

4. Description of a particular transformation process. From now on, suppose that H = £ and
consider a process involving a non-elliptic thermoelastic material of the type introduced in Section 2 on the
time interval (—oo, 0) with an out-of-plane displacement field txo(-,<) given, for each t in (—oo, 0), by

( 4 1 )

and an absolute temperature field 60 in (0*., 0*) which is constant on H x (—oo, 0), where the amount of shear-
temperature pairs (7/,0o) and (7r)0o) are contained in either A3 x A\ or A\ x A3. Then there is no loss in
generality incurred by assuming that VQ > 0. It is clear that u0 and 60 satisfy (3.1)1,2 on (IR? x (—oo,0))\rb
with To = {(xi,X2,i)\(xi,X2) € At,t G (-00,0)} and At = {(xi,x2)\x1 = v0t,x2 € M}. For each t in
(—00,0) the moving line A% is the cross-section of a planar phase boundary. Restrict VQ SO that the phase
boundary propagates at a locally subsonic velocity, viz.

} (4.2)

Assume, to comply with the jump conditions in (3.2)i |2 and (3.3) on To, that the constants 7/, yr) v/,
vr, and vo associated with (4.1) satisfy the following equations:

(7r - 7i)v0 + vr - v\ = 0, r(jr,0O) - r(7/, 0O) + gvo(vr - v/) = 0, (/0 + Q60(rjr - Tfl))v0 = 0. (4.3)

Suppose, also, that the kinetic relation holds on Fo so that the parameters 7/, 7,., v/, vr, and t;0 satisfy
whichever of

vo = V(fo/0o,0o), fo = 0o£(vo,0o)> (4.4)

is appropriate, where /o is given by

/o= / ^(7^o)d7-iW7r,»o) + r(7i,ffo))(7r-7i)- (4.5)
J 7
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Observe, since vo > 0, that /o must be non-negative by (3.2)3 .

In a coordinate frame moving with the phase boundary, the process described above involves a piecewise
homogeneous strain field and a homogeneous temperature field. If (77,^0) € A3 and (7r,#o) € Ai then the
process is one wherein the high strain elliptic phase of the material at hand grows, isothermally, at the
expense of the low strain elliptic phase; the interpretation when (7/, 0Q) £ A\ and (jr, #o) € A3 is analogous.
In both cases, for the duration of the process, the discontinuity involved is a normal phase boundary (i.e.,
the angle between the limiting values of the gradient of u on either side of the phase boundary is zero at
every point of the phase boundary over the time interval (—00,0)).

The parameter £Q = £#o(*7/ — Vr) — /o is the latent heat of transformation associated with the process
described above. From (4.3)3 it is clear that £0 must be zero if vo > 0—which agrees with the intuitive
notion that the heat given off during the transformation process must be zero due to the absence of heat
flux. Recall that, since the kinetic response function is continuous, vo = 0 if and only if /o = 0. Hence,
when vo = 0, the latent heat of transformation simplifies to £0 = p0o(r)i — t)r); so, unlike the case when
vo > 0, it is evident that (4.3)3 is satisfied for any real value of £Q when v0 = 0.

Suppose, in addition to all the above, that the kinetic response function is chosen so that whichever of

8*V(*,°)\ , #0, dvv(V,*)\Vno*0 (4.6)

is appropriate holds. This precludes the necessity of a higher order expansion in the analysis which follows.
Let T be chosen so that both gcd = - 0 O /0

7<l ^r(*,0) |*-*o dn> 0 and Qb2
d = M(yd,6o) > 0 for d equal to /

or r. Hereafter, the subscript d stands for either / or r; statements which involve an expression subscripted
with d hold for d equal to / and r. The restrictions on cd amount to requiring that both nominal specific heats
associated with the transformation process are positive, while those on bd require that the Baker-Ericksen
inequalities are satsified throughout the transformation process. Assume also, for mathematical simplicity,
that 90r(7/,0)|0-0o = d$T(yr,0)\e=zeo = 0. By virtue of this stipulation, the coefficients of thermoelastic
coupling in the tranformation process are both identically zero. The thermal and mechanical fields remain
coupled, however, through the jump conditions (3.2)i,2 and the kinetic relation (3.5) or (3.6).

5. Normal mode analysis of the transformation process. Suppose that at the instant t = 0
the out-of-plane displacement and velocity fields, the absolute temperature field, and the configuration of
the phase boundary (associated with the transformation process specified in Section 4) are subjected to
a perturbation—which is itself a thermoelastic antiplane shear. Assume that this perturbation initiates a
thermoelastic antiplane shear with out-of-plane displacement field u = tio + w and absolute temperature
field 0 = #o "I- T which are weak solutions of (3.1) on i? and have gradients which allow (3.2)1,2 and one of
(3.5) or (3.6) to be satisfied on a single phase boundary with cross-sectional trajectory F = {(xi, £2,, t)\zi =

vot -f s(x2,t)9X2 £JR,t£ IR+}, where the amplitudes of w, T and s are all assumed to be small in some
appropriate sense.

Linearization of the jump conditions (3.2)^2 under this assumption yields the equations

[(a2 - vl)w9l ]' = 2vo(7r - yi)i, [kT* ) ' + gvolcT]] = gvo(yr - 7/)(((a2 - » o K i )> + 4)*, (5.1)

which hold on / = {(xux2>i)\xi = v0t ,z2 € IR,< E IR+}, where Qa2
d = d7r(7,0o)|7=7, and kd = K(yd,0o).

Linearization of the kinematic jump conditions (3.3) and kinetic relation results in the following conditions—
which also hold on /:

K' = (Ti-7r)«, Pl = 0, i=^(((a2-v0
2Ki)) + K + ^ ) T . (5.2)
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The constants vt and v« in (5.2)3 are defined by

60

if the kinetic relation is specified in the form (3.5), or

if the kinetic relation is provided in the form (3.6).
Next, taking the fact that (3.1) and (3.2) also hold on 7, linearization of (3.1) gives the field equations

a2dw>n + b^w ,22 = # , <*dT,0fi = 7 \ (5.5)

which prevail on Qd—with J2, = {(*i,*2,*)l *i < vo*,*2 € IR,t G Et+} and tfr = (IR2 x IR+) \ Qh

Because of the restrictions which have been placed on the values of the various constitutive response
functions which comprise their coefficients, (5.5)i and (5.5)2 are hyperbolic and parabolic, respectively, on
their domains of definition. Observe that these equations are linear with constant coefficients and hold on
rectangular domains. The equations (5.1)—(5.3) are also linear with constant coefficients and hold on the
planar cross-sectional trajectory which separates fi\ and Qr. This suggests the Ansatz:

w(xux2jt) = Wdtt***-"^***** V(xi,*2,t) G !2d,

T(zux2,t) = e a e ^ - ^ V ^ e ' * V(*i ,* 2 ,0 G Odt (5.6)

s(x2,t) = SeiKX2ept V(ar2,<) G IR x IR+.

The constant wave-numbers £<j and Cd a r e required to have positive real parts for d = / and negative
real parts for d = r, so that the perturbation decays in the far-field. The constant wave-number K is
assumed to be real, but non-zero, while the constant growth-rate p may be complex. Observe that the
initial disturbance associated with an arbitrary perturbation of the transformation process described in
Section 4 can be decomposed in the form (5.6) via a two-dimensional Fourier transform. Therefore, it
seems reasonable to expect that the linear stability of the transformation process under consideration can
be understood by determining p as a function of £/, £r, £/, (r and K. However, £/, £r, Q and £r are determined
by (5.5) in the form

_ f J 2 Qr - 5 - , (5.7)

where fd(nyp) = ^ ( a j - vg)65#c2 + a2
dp

2 and /id(/c,p) = y/v% + 4ad(ad/c2 +p) . This fixes ^, ^r, 0 and Cr in
terms of /c—which narrows the class of initial disturbances which can be decomposed in the form (5.6). From
now on, restrict attention to perturbations where the initial disturbance can be decomposed in the form
(5.6) with £/, fr, 0 and Cr given by (5.7). Such perturbations are henceforth referred to as admissible. Given
(5.7), (5.1)-(5.2) provide a homogeneous system of five linear equations in the five unknown amplitudes Wu
Wr, 0/ , 0ri and 5. The determinant of this system, therefore, provides a dispersion relation involving p
and K, viz.

VOA(K,P)) +p ( l + -^A(«,p)) = 0, (5.8)
QV+
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where T(K,P) and A(»c,p) are defined as follows:

T0:p (
1 ' W " M*,P) + fr(K,P) ' HK'P) - (C, - Cr)v0 + e,h,(K,p) + Crhr(K,p) '

Note that v« = 0 is precluded by (4.6), (5.3)i and (5.4)i. The linear stability of the process at hand with
respect to an admissible perturbation is determined by the signs of the real parts of the zeros of (5.8) as
functions of K. Zeros of (5.8) with positive real parts are called unstable zeros of the dispersion relation.

The dispersion relation can now be specialized. Three major cases will be considered. These are: i.
T = 0 on /?, ii. vo = 0, and Hi. Vo > 0. In case t (5.8) simplifies to

_ , (71 -
p +

Assume that Vo ̂  0, since this alternative is encompassed by case it. Note that (5.10) is formally identical
to the dispersion relation obtained in the purely mechanical analysis of [12]. Based upon the results of [12],
it is clear that a necessary and sufficient condition for the existence of an unstable zero to (5.10) is that
v* < 0. This is true independent of the value of K G IR \ 0. Hence, when T = 0 on /?, the transformation
process is linearly unstable with respect to an admissible perturbation if and only if the kinetic response
function allows v* < 0. Since v0 ̂  0, there are no restrictions pertaining to the monotonicity of the kinetic
response function. Hence, from the alternate definitions (5.3)i and (5.4)i of v*, the transformation process
will, in the present case, be linearly unstable with respect to any admissible perturbation if and only if
the kinetic response function is a locally decreasing function of its first argument. Such a kinetic response
function is referred to as mechanically unstable.

Next, in case ti, setting v0 = 0 in (5.8) gives

* — 1 /T5 9 , *) , / i 9 9 i 9 ' / 7 9 i V

|K +P TflrV^r^ ' P C\\/OLi\pnK + PJ

Let the square roots which appear in (5.11) be defined, as is natural, so that, for p G IR,

bW + p2 > 0 => 6 /̂c2 + p2 > 0, adK
2 + p > 0 =» a^/c2 + p > 0; (5.12)

then,

Re(b2
dK

2 + p2) > 0 =» Rey/b2K2+p2 > 0, Re(ad/c2 + p) > 0 =• Re^/adK
2 + p > 0. (5.13)

Then, as in case i, necessary and sufficient for the existence of an unstable zero to (5.11) is that v* < 0.
From (3.7)2,4 this cannot occur when v0 = 0. Hence, as shown in [13], if it is static the transformation
process is linearly stable with respect to all admissible perturbations.

When v0 > 0, £0 = 0—as remarked in Section 4. Hence, in case in, (5.8) becomes

l-7r)2(fl(K,p)fr(K,p) + V2
0P

2) A +

V*(//(/C,p)-f /r(«,p)) V (ci-
(7l7r)(fl(K,p)fr(K,p) + V0P) A + 2v0V^ \ = Q

V(//(/Cp)f / ( « p ) ) V (ci-C)v0+Cthl(Kp) + Ch(Kp)J

Assume that v<> / 0 for otherwise (5.14) reduces to (5.10). In analogy to case ii, let the branches of the
square roots which appear in (5.14) be chosen so that, for p G IR,

(a2
d - vl)b2

dK
2 4- a\p2 > 0 =» /*(/c,p) > 0, vl + 4ad(adK2 + p) > 0 =» /irf(/c,p) > 0; (5.15)
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then, forp€<C,

> 0 => Re(/rf(*,P)) > 0> Re(^+4ad(ad/c2+p)) > 0 =» Re(M«>P)) > 0. (5.16)

It is then easy to show that at least one of v«, and vo must be negative in order for there to exist an unstable
zero to (5.14). Sufficient conditions for the existence of an unstable zero to (5.14) are more involved. Three
such conditions, which are presented in [13], follow. First, it can be readily shown that if both t;* < 0 and
vo < 0 then there must exist an unstable zero p to (5.14), independent of the choice of /c. This condition
resembles that found in case t. Second, it can be shown that if vm < 0 but vo > 0 and |v*|vo/c/ < 1 then
there exists an unstable zero to (5.14) as long as \K\ is sufficiently large so that

2|v,|t;o ( ,

Third, if v* > 0 but vo < 0 and v*|vo|/cf > 1 then it can be shown that there exists an unstable zero to

(5.14) whenever \K\ is sufficiently small so that

ci-Cr MM) M M ) 2tt»|t;o| ( .
+ *0 *o(l+£) C, + C' { }

From (5.17) and (5.18) it is evident that the last two sets of conditions exhibit a dependence on the wave-
number associated with the admissible perturbation.

Of particular interest is the third set of conditions. These show that a state involving a steadily
propagating planar interface can exhibit linear instability with respect to any admissible pertubation which
includes sufficiently long waves whenever the kinetic response function is mechanically stable but allows
vo < 0 and v«|vo|/c/ > 1. A kinetic response function which permits v* > 0, t>o < 0 and v*|v<>|/c/ > 1
is referred to as mechanically stable but thermally unstable. The experimental work of CLAPP & Yu [5]
indicates that there is as yet no reason to rule out the applicability of mechanically stable but thermally
unstable kinetic response functions. Under such kinetics, a competition is revealed between mechanically
stabilizing and thermally destabilizing effects. Competition of this sort is reminiscent of that discovered
in models for dendritic crystal growth (see, for example, [20], [21] and [25]). In the present circumstances,
mechanically stable but thermally unstable kinetics allow for the preference of a state which involves a
highly wrinkled interface over one which involves a planar interface. Similar conclusions are reached in
studies of dendritic crystal growth (again, consult [20], [21] and [25]).

In closing, a few directions in which this work might be extended are put forth. The foregoing results
apply only to processes which involve normal phase boundaries. An analysis of transformation processes
which involve oblique phase boundaries would, therefore, be interesting. It is expected that the stability
criteria corresponding to such processes will be significantly richer than those referred to above. The class
of materials which has been considered is isotropic. A study of the stability of two-phase processes in
anisotropic materials would be desirable, as it is anticipated that the stability criteria for such materials
will exhibit a directional dependence. The kinematics of this work have been restricted to those of antiplane
shear. Stability analyses within broader kinematical settings would be interesting, as it is possible that a
richer set of stability criteria may emerge therein. Finally, this analysis has been confined to the linear
regime. Since the kinetic response function is chosen to satisfy (3.5)3, it is expected that the fully nonlinear
problem is stable even when non-monotonic kinetics are present (except, perhaps, in the pathological case
where the kinetics are globally decreasing). The regime of linear instability should, therefore, be confined.
Limited growth may occur within this regime but then halt due to nonlinear effects—thus leading to the
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development of fine-scale structure. Investigatations of this possibility within a fully nonlinear setting via

nonlinear stability analyses and/or numerical simulations would, hence, be desirable.
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