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1. Introduction.
There are situations of interest in which the motion of a phase

interface is essentially independent of the behavior of the
corresponding bulk phases. One of the first models of such phenomena
was proposed by Mullins [Mu] to study the planar motion of grain
boundaries; this model is based on the relation1

V = K. (1.1)

with V the normal velocity and K the curvature of the interfacial
curve. The relation (1.1) yields a parabolic partial differential
equation for the evolution of the interface; when the interface is
represented (locally) as a graph y = h(x,t), this equation has the
form2

ht = (sin2B)hxx, (1.2)

1 Allen and Cahn [AC] and Rubinstein, Sternberg, and Keller [RSK] deduce the equation V«K

as a formal approximation to the Landau-Ginzburg equation.

^Subscripts denote partial derivatives with respect to the corresponding variable: a prime

will denote differentiation with respect to 6.
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where B is the angle to the interface normal, chosen so that BeCO.ir)
(_ and h x tanB=-1. The relation (1.1) has a large mathematical

l i te ra ture; 3 its major consequence4 is that all interfaces, no
matter their initial shape, shrink to a point in finite time, with
asymptotic shape a circle.

Mullins's theory was generalized in [61] (cf. [AG]) to include
anisotropy and the possibility of a difference in bulk energies between
phases. The resulting equation is5

a(B)V = [f(8) + f"(B)]K - F, (1.3)

with f(B)>0 the interfacial energy, a(B)>0 a kinetic coefficient, and
F the (constant) difference in bulk energies. When

g(8) := f(8) + f"(8) (1.4)

is strictly positive, the underlying partial differential equation is
parabolic and the interface is fairly well-behaved;6 linearization of

v . (1.3) about a flat interface yields the "heat equation"

ut - °cuxx (1.5)

for the slope

u := hx. (1.6)

Here oc = g(iT/2)/a(7T/2) when the angle of the flat interface is
B = TT/2, an assumption that involves no loss in generality.

Material scientists use energies for which g(8)<0 for certain
intervals of 8 [CH,Gj]. Unfortunately, this renders the underlying
3Cf. Brakke [BR], Sethian [Se], Abresch and Langer [AL], Gage and Hamilton [GH]( Grayson

[Gr], Qsher and Sethian [OS], Evans and Spruck [ES], and the references therein.
4[GH], [Grl.
5The special case V«-* (8) was introduced by Frank [Fr].
6Cf. Angenent[An]; Chen, Giga, and Goto [CGG]; Soner [So].c
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differential equation backward parabolic and inherently unstable; in
fact, (1.5) is then the backward heat-equation, since oc<O. One can
exclude the unstable angles by inserting corners in the crystal [AG];
this leads to facets and wrinklings, and to a free-boundary problem
since the positions of the corners vary with time.

To analyze behavior within the unstable range of angles a
regularization of the underlying equations is needed. Such a
regularization, proposed in [AG], has the form

a(8)V * g(8)K - F - e(Kss + JK3) (s = arc length) (1.7)

with e>0 small, and leads to a fourth-order parabolic equation for
the evolution of the interface.

The angle-intervals in which g(8)<0 are very much like the
spinodals encountered in the Korteweg-Cahn-Hilliard theory of phase
transitions (cf., e.g., [Ca]), and we refer to such intervals as
interfacial spinodals. When linearized about a flat interface at angle
8 = TT/2, (1.7) has the form

V ut = ocuxx - 6uxxxx ( 1 8 )

with oc = g(TT/2)/a(iT/2), 6 = e/a(ir/2); and oc<0 when 8 = IT /2 lies
in a spinodal. The relation (1.8) is the linear equation used by Cahn
[Ca] in his treatment of spinodal decomposition.

The main purpose of this paper is to present a derivation of (1.7).
The chief ingredient is a constitutive dependence of interfacial energy
on curvature, an idea that traces back to Gibbs [Gi] and Herring [He].
A curvature-dependent energy requires interfacial couples and a
corresponding balance law for torques, a possibility not encompassed
within the framework of [G1.G2.AG].

We begin with a discussion of force and torque balances for
evolving interfacial curves. We next introduce an inequality that
represents a mechanical version of the second law, and use this
inequality to deduce suitable constitutive relations for the interface.
The resulting constitutive equations and the force and torque balances

V together yield the evolution equation (1.7). Finally, we discuss the
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similarities between the theory based on (1.7) and Cahn's theory of
spinodal decomposition.

2. Grains.
We consider a planar theory in which a grain Q is a region in

IR2 with boundary dQ the interface between the grain and its
ancillary phase. We assume that dQ is a smooth curve, we write
n(x) for the outward unit normal to dQ at x, and we define a unit
tangent l(x), the direction of increasing arc length s, so that
{<t(x),n(x)} is a positively oriented basis of IR2. We then have the
Frenet formulae

ns = -K*. <ts = Kn, (2.1)

c

with K(x) the curvature of dQ. We define the angle 8(x), as a
smooth function of x, through n = (cosB.sinB), I = (sinB.-cosB);
then

K = Bs. (2.2)

We consider grains Q(t) that evolve with time t, under the
assumption that dQ(t) is a smoothly evolving curve (in the sense of
[AG]). We write V(x,t) for the normal velocity of dQ(t) in the
direction n(x,t). Let V(x,t) = V(x,t)n(x,t). Fix t and xedQU) and
(for T sufficiently close to t) let y(T) denote the curve that
passes through x at time t and has

dy(T)/dT = V(y(T),T). (2.3)

Then the normal time-derivative $°(x,t) (following dQ(t)) of a
scalar or vector function *(x,t) is defined by

*°(x,t) := (d/dT)*(y(T),T)|T=t, (2.4)

and we have the identities7

7Cf. (2.17) and (2.18) of [AG].



r e° - v8. K° = vss + K2v,

(••), = (*s)° - KV*S. ( 2 5 )

An interface is convex if K nowhere vanishes. In this case we
may use (8,t) as independent variables when describing interfacial
quantities: writing K = K(8,t) and V = V(8,t), we have the identity8

Kt = K2(Ve8 + V). (2.6)

By an interfacial subcurve we mean a smoothly evolving curve
n,(t) with n,(t)cdQ(t) at each time t. Let n,(t) be an interfacial
subcurve; let x^t) and x2(t) denote the initial and terminal points
of n,(t); let v^t) and v2(t) denote the corresponding endpoint
velocities

v^t) := dx^O/dt, v2(t) := dx2(t)/dt. (2.7)

1 Further, for any smooth function f(x,t), let

f,(t) := f(x1(t),t), f , ( t ) != (d/dt)f(x1(t),t), (2.8)

so that the superscript dot here signifies time-differentiation
following an endpoint. We then have the identities

n r v, = V,, V = (fo)< + ( f s ^ i - v , . . (2.9)

The identity (2.9)1 follows from (2.20)1 of [AG]; to establish (2.9)2 we
take f = f(s,t) in (2.8) and use (2.16) and (2.2O)1 of [AG].

Given a smooth function 4>(x,t) and a smooth vector function
C(x,t), we write9

C
8Cf. (2.23^ of [AG].
9Here and henceforth ve omit the argument t in the integration-set.



V dn,

l c v d * - C 2 V 2 " C i v v
dn.

dn.

We then have the following integral identities; in the third of these ff
and | are the tangential and normal components of C (see (3.1)
below).

= J*sds.
dn, n,

(d/dt)J*ds = J(*°-*KV)ds +
t i an, (2.11)

( di n, dn,

l*( fdJ" " I [ *s f ° + * ( f s ) ° - KV*f s]ds +
dn, n, dn.

Equation (2.11)1 is a direct consequence of (2.10).,; (2.11)2 follows
from (2.20) r (2.32), and (2.34) of [AG]; (2.11)3 follows from (2.5).,, (2.9),
and (2.11).,; (2.11)lf is a consequence of (2.5)3 and (2.9)2.

3. Mechanics. Balance of forces and torques.
We consider a theory in which the mechanics of an evolving grain

Q(t) is described by four functions of X€dQ(t) and time t:

C(x,t) interfacial stress,
M(x,t) interfacial couple-stress,
b(x,t) body force,
m(x,t) body couple.



C(x,t) and M(x,t) represent the force and couple within the

C' interfdce exerted across x at time t, while b(x,t) and m(x,t)

represent the force and couple exerted on the interface by the bulk
material of the grain and its ancillary phase.

We decompose the interfacial stress into normal and tangential
components,

C = ffl + | n , (3.1)

with or(x,t) the surface tension and |(x,t) the surface shear, and
we refer to

v := b n, (3.2)

as the normal interaction.
The balance laws of our theory are balance of forces and

torques:

i JC + |bds = 0,
1 ** * (3.3)

J(rxC + M) + | ( rxb + m)ds • 0,
dn, n,

with r (x) = x - x 0 the position vector from an arbitrary point x0, and
with "x" denoting the scalar-valued vector product in IR2. These
balance laws must hold for all interfacial subcurves n,(t), and are
hence equivalent to the local balance laws

Cs + b = 0, Ms + m • | = 0, (3.4)

where we have used the identities * = r s and | = -txC. Note that, by

(2.1), the normal component of (3.4)1 is

| s + crK + TT = 0. (3.5)

1 We characterize forces and couples by the manner in which they
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expend power. Consider an arbitrary interfacial subcurve n,(t). Since
C and M act on the endpoints of n,(t), we assume that C expends
power over the endpoint velocities, while M expends power over the
rotation rate of the interface following the endpoints. On the other
hand, since b and m act along the length of n,(t), we assume that
b expends power over the normal velocity V of the interface, while
m expends power over the rotation rate B° following the interface.
The power expended on n,(t) is therefore given by10

|[C-vaJl + M(Bdnn + J(bVn + mB°)ds (3.6)

and, in view of (2.11)3I|, (3.4)2, and (3.5), has the alternative form

J[MK°- (o- + MK)KV]ds + J(o-+ MKU-v^. (3.7)

n, dn.

The term MK° represents power expended in bending the interface,
while -(&+ MK)KV represents power expended in creating new
interface. Here, interestingly, both the surface tension and the
interfacial couple-stress work to create new surface. The final term
(cr+ MK)4-vdiL compensates for the tangential motion of the interface.

Combining (3.4)2 and (3.5), we arrive at the basic balance law of
our theory:

Mss + ms - oK - IT = 0. (3.8)

4. Energetics. The dissipation inequality.
We associate with each interfacial motion two energies:

f(x,t) interfacial energy,
F bulk energy.

10Cf. [G1-G3] for the terms involving C and b.



f(x.t). defined for xedQU), represents the energy of the interface
per unit length; F, measured per unit area and assumed constant, is
the bulk energy of the grain minus that of the ancillary phase.

Let R be a fixed region of space and let

ft(t) := Q(t)HR, n,(t) := dQ(t)riR.

Then

|fds + JFda
n, ft

represents the total energy of R, while

J[C.vdJt + M(BdJt)-]

dn,

is the power expended on R by the interfacial force and moment. The
body force b and the body couple m represent interactions within
R (cf. (3.6)); consequently they do not expend power on R.

For a purely mechanical theory the second law is the assertion
that the rate of energy increase cannot be greater than the power
expended. A precise statement of this global dissipation inequality is
that

(d/dt){|fds + JFda} < |[CvdJt + M(Bann (4.1)

n, <R dn,

for any region R.
The only portion of (R(t) not stationary is n,(t). Thus

(d/dt)area(ft) = JVds. (4.2)
n,

| and, since F is constant, we may use (2.11)2> (3.1), and the identity of
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(3.6) and (3.7) to write (4.1) in the form

J{ f° - NK° + m 0 ° + (cr + MK-f)KV + (TT + F)V}ds +

^ < 0. (4.3)

This inequality must hold for all regions R, or equivalently, for all
interfacial subcurves *( t) . By arbitrarily varying the endpoints of
n,(t) we can arbitrarily vary the term 4 -v^ without affecting the
other terms in (4.3); thus11

f « cr + MK, (4.4)

and interfacial energy is generally not equal to surface tension alone:
there is an additional term to account for interfacial bending.

Finally, since n,(t) is arbitrary, (4.3) and (4.4) yield the local
dissipation inequality

f° - MK° + m8° + (TT + F )V < 0. (4.5)

5. Constitutive equations.
As constitutive equations we allow the interfacial energy, the

interfacial couple-stress, the body couple, and the normal interaction
to depend on the orientation of the interface through a dependence on
the angle 8, on the "bending" of the interface through a dependence on
the curvature K, and on the kinetics of the interface through a
dependence on the normal velocity V. Thus

z := (B.K.V)

is the list of constitutive variables, and the constitutive assumptions
have the form

C nCf. [G2,G3].
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f = r ( z ) , M = rT(z),

V.- m = m"(z), IT = iT(z). ( 5 1 )

Because of (4.4) we do not specify a separate constitutive equation for
the surface tension o\ The surface shear | and the tangential
component b I of b do not enter the dissipation inequality (4.5),
and for that reason are taken to be indeterminate (not specified by
constitutive equations).12 In principle, once the balance equation (3.8)
has been solved for the interfacial motion, then (3.4)2 determines |
and, with this, the tangential component of (3.4)., determines b I.

Given an evolving grain Q(t), the constitutive equations (5.1)
may be used to compute a corresponding constitutive process. A basic
hypothesis13 of our theory is that constitutive processes be
consistent with the local dissipation inequality (4.5). This assumption
has important consequences.14

Substituting (5.1) into (4.5), we find that

( r v ( z )V° + irK{z) - rT(z)]K° + irB(z) * rrT(z)]Bo +

+ F]V < 0.

Given a value z0 of the constitutive list, one can find an evolving
grain Q(t) such that, at some point and time, (8,K,V) = z0, but
(8O,K°,V°) is arbitrary. Thus

r v (z ) - 0. rrT(z) = -rB(z), M~(z) = f \ U ) ,

< 0,

and we are led to the following constitutive restrictions:

12Cf. classical beam-theory, in which the shear force is regarded as a reaction to the

constraint that the cross section remain normal to the center line, and is hence indeterminate.

We assume the availability of external body forces and body couples to ensure balance of

forces and moments (cf. [61], Footnote 13).
14We sketch the derivation of these consequences; they are minor modifications of results

given in [G1.AG] (Compatibity Theorem).
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(i) f, m, and M are independent of V, and fXB.K) generates
r m and M through

m = -re(B,K), M = rK(B,K); (5.2)

(ii) the normal interaction is given by a relation of the form

1T- -F- -BV, a = a~(8,K,V) > o. (5.3)

Conditions (i) and (ii) are also sufficient that (4.5) hold in all
constitutive processes.

The relations (5.2) imply the Gibbs relation

f° = MK° - mB°. (5.4)

In view of (5.3) and (5.4), the left side of (4.5) is -aV2, which
identifies this quantity as the sole rate of energy dissipation; indeed,
tracing backwards the argument leading to (4.5), we find that

^ -JaV2ds (5.5)
n,

represents the left side of (4.1) minus the right. Further, if we take
R in this difference to be a region containing Q(t) in its interior, so
that (R(t) = Q(t) and * ( t ) = dQ(t), then, in view of (4.2), we are led to
the global growth relation:

( d / d t ) { ) f d s + Farea(QU))} = -JaV2ds < 0, (5.6)
dQ 3Q

so that the total energy is a Lyapunov function for interfacial
evolution.

6. Evolution equations for the interface.
The evolution equations of the theory are:
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Mss + ms - fK + MK2 + F + aV = 0,

v f = r(8,K), m = -rB(B.K). (6.D

M = rK(e,K), a = a"(8,K,V).

The general equations (6.1) are difficult, and for that reason we
consider a model in which the interfacial energy has a relatively
simple dependence on curvature and the kinetic coefficient depends
only on the angle:

f = fo(8) + JsK2, a = ao(B), (6.2)

with fo(8),ao(B),s>O. Then

m = -fo'(8), M = 6K, (6.3)

and, writing a(8) = ao(8), (6.1) reduce to

( _ a(8)V = g(8)K - e(Kss + JK3) - F, ( 6 4 )

g(8) = fo(8) + fo"(8).

The theory of [AG] concerns the nonregularized equation

a(8)V = g(8)K - F, (6.5)

which exhibits backward-parabolic behavior when 8 lies in an
interface spinodal; that is, an angle interval within which g(8)<0.
The spinodals were excluded in [AG] with the aid of corners. The
location15 of such corners depends on the shape of the Frank diagram
T, which is the polar diagram of f(8)"1: given a corner c, the
interfacial stress must be continuous across c to ensure compliance
with balance of forces (3.3)^ this continuity is ensured provided the
two angles that define c correspond to bitdngency angles (of a
bitangent to T). We use the term globally unstable segment, or more

I" 15Cf. [AG]. Part m.
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succintly GUS, for any maximally connected portion of T that does
f not lie on the boundary ft of the convex hull of T. Then each

spinodal belongs to a GUS, and the initial and terminal angles of any
GUS are bitangency angles. A given spinodal can therefore be
eliminated by a corner whose angles are the initial and terminal angles
of the corresponding GUS. (Such corners are called admissible.) This
is exactly the proceedure followed in [AG].

The properties of <T alluded to above suggested the term
interface spinodal; these properties also suggest the term interfacial
phase for each maximally connected portion of TfljO. Adjacent
interfacial phases are then connected by a GUS and therefore
correspond to an admissible corner.

The regularized equation (6.4) should be appropriate to study the
behavior of the interface within the spinodal intervals. In fact, if B1

and B2 with 0 < B 2 - 8 1 < T T are the angles that define the corner
between two given interfacial phases, then the behavior of the
interface within the corner might be modeled by the system

(^ a(B)V = g(8)K - e(Kss + iK3) - F -oo<s< + oo, t>0,
B(-oo.t) = Br B(+oo,t) - B2 t>0,
B(s,O) = B0(s) -oo<s<+oo,

with initial data B0(s)€(Br82) and with the limits at s = ±oo in the
C2-topology.

The evolution equations simplify when the interface is convex.
The relevant differential equations are then (2.6) and (6.4); thus, since
Kss = jK(K2)B0, the interface evolves according to

Kt = K2(Vee + V), ( 6 6 )

a(B)V = g(B)K - ieK[(K2)8e + K2] - F

(with Kt the derivative holding 8 fixed).

For a steady convex motion,^

16Cf. [AG], Sects. 2.2, 6.
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K = K(8), V = Un(8), (6.7)

with U the steady velocity, and (6.6) reduce to

g(8)K - ieK[(K2)89 + K2] = F + a(8)Un(8). (6.8)

The problem of finding a steady convex solution (with the interface
unbounded) consists in solving (6.8) on an angle interval (B^B.̂ ),
0 < 8 2 - 8 1 < I T , subject to

KO^ = K(82) = 0, K(8) * 0 for 8e(erB2). (6.9)

By (6.8) and (6.9), 81 and 82 must be consecutive zeros of
F + a(8)Un(B). Assume that the polar diagram Polar(a) of a(8) is
convex. Then 81 and 82 are consecutive zeros of F+a(8)Un(B)
provided the line perpendicular to U through the tip of the vector
-(F/IUI2)U intersects Polar(a) at the angles 81 and 82. For e = O,
if the interval (81,B2) belongs to a spinodal, then (using the analysis
and terminology of [AG]) there is a solution of (6.8), (6.9), and this
solution corresponds to an advancing bump, emphasizing the instability
of the spinodals. It would be interesting to see if such solutions are
possible when e>0.

7. Linearized equations. Spinodal decomposition on the
interface.

We now discuss an interface that is close to a flat interface at
angle B = TT/2. We represent the interface as the graph of a function
y = h(x,t), (with orientation such that arc length increases with
increasing x), and let

u := hx, (7.1)

so that

utanB = - 1 , V = (sinB)ht, K = (sin8)3hyx, ,_, _
1 A* C7.2;

(sin8)a/ax.
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f We substitute the identities (7.2) into (6.4), and then linearize under
the assumption that the derivatives of h are small; the result is

ht = ochxx - 6hxxxx - J3, (7.3)

where oc = g0 /a0 , J3 =F/a0 , 6 = e/a0, and the subscript zero indicates
evaluation at 8 = TT/2.

Differentiating (7.3) with respect to x yields

ut = ocuxx - 6uXXXXl (7.4)

which is exactly the linear equation used by Cahn [Ca] in his discussion
of spinodal decomposition; this further supports the analogy between
interfacial phases as defined in Section 6 and the more standard bulk
phases. Following Cahn, we note that (7.4) has solutions of the form

u(x,t) = CeptsinXx (7.5)

provided

p = p(x) = - ocX2 - 5X\ (7.6)

If the angle I T / 2 lies in a spinodal interval, then oc<0 and spatial

oscillations of frequency X between 0 and (locl/5)? are unstable,

with a maximum of p(X) occuring at X = Xm = (J loc l /6 ) 2 ; this

indicates that spatial patterns of frequency Xm should be most often

observed.
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