
Simultaneous Source Location

Konstantin Andreev1 Charles Garrod2 Bruce Maggs2

Adam Meyerson2

July 11, 2003
CMU-CS-03-162 o

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

1 Mathematics Department, Carnegie Mellon University, konstficmu.edu
2Computer Science Department, Carnegie Mellon University, { Charlie, bmm,adam}Qcs. cmu.edu

in V that are not permitted to act as sources, or have costs associated with making various nodes sources
and seek to find a set S of minimum cost. We will also consider simplifications of the problem that place
restrictions on the graph G (for example by bounding the treewidth).

3 Solving Simultaneous Source Location on Trees
Suppose our graph G = (V,E) is a tree. This special case allows us to solve SSL exactly by dynamic
programming. For each vertex v and number of sources z, we define f(v,i) to be the amount of flow that
must be sent to v by its parent in order to satisfy all demands in the subtree of v, assuming this subtree
contains i sources. Our algorithm assumes that the tree is rooted and binary; in general we can create an
equivalent binary tree by creating virtual nodes and connecting them by edges of infinite capacity, as shown
in Figure 2. For convenience, for each node v we define u(v) to be the capacity of the edge from v to its
parent.

Our algorithm is described in Figure 1.

Algorithm Binary Tree (G, d)

1. Initialize f(v, i) = oo for all v € V and 0 < i < \V\

2. For each leaf vertex v G V:

(a) Set f(v,0) = dv.

(b) Set /(v, i) = -u(v) for alH > 1.

3. Consider any vertex v with children vi,v2 for whom / has been computed:

(a) Loop over all values of i\ and %2 with 0 < i\,i2 < |^|.
(b) If/(vi,ii) < u{v\) and f(v2,i2) < ^(^2) then:

i. Set f(v, %i + i2) = min(/(v, h + z2), max(f(vu h) + /(>2, h) + dv, -u(v))).
ii. Also set f(v,ii -M2 + 1) = —u(v).

4. Continue until / is defined at all vertices.

5. Return the minimum k such that /(r, k) < 0 where r is the root.

Figure 1: Algorithm for SSL on a Binary Tree

Assuming that the above algorithm computes f(v,i) correctly for each vertex, the correctness of the
result is immediate. We need to show that /(v, i) correctly represents the minimum amount of flow that
must be sent from the parent of v provided the number of sources in the subtree is i.

Theorem 3.1. The algorithm described produces an exact solution to the source location problem on a binary
tree.

Proof. The proof will be by induction. Our base case is at the leaves. Either a leaf is a source or it is not.
If the leaf v i s a source, then it requires no flow from its parent, and can send at most u(v) flow upwards
along its edge. This yields f(v, 1) = —u{v). On the other hand, if the leaf is not a source it requires flow
dv (its demand) from the parent, so f(v, 0) = dv. Of course, it might not be feasible to send this amount of
demand if dv > u(v).

We now consider any node v. Suppose we have correctly computed f(vi,ii) and f(v2,i2) for all values
ii,i2 for the children of node v. Suppose we would like to compute /(v, i). There are i sources to be placed
in this subtree. If v is not a source itself, then all the sources are in the child trees. The total demand sent
into v will have to be enough to satisfy the demand dv and additionally to satisfy any residual demand on
the children. This means /(v, i) = min(max(dv + f(v 1, ii) + /(^2> i — î)» -u(v))) where the minimum is over

choices of i\ and the "max" term ensures that a child node cannot provide more flow to its parent than the
capacity of their connecting edge. This is exactly what will be computed in the algorithm, in step 3b(z).
Notice that if satisfying either child tree in this way would require overflowing a capacity u(vi) or u(v2)
then this allocation of sources to subtrees is not feasible and so should not be considered; this is resolved in
step 3b. However, it is also possible that v is itself a source. In this case, provided there is some choice of
ii < i — 1 such that /(vi,ii) < u(vi) and f(v2,i — i\ — 1) < ^(^2), we will be able to produce a solution.
This solution can send u(v) upwards since v itself is a source. This is dealt with in step 3b(ii). It follows
that the algorithm computes exactly the correct values /(v, i) and the algorithm solves SSL. •

Theorem 3.2. We can solve SSL in time O(n3) on a tree, even if some nodes are disallowed as sources.

Proof. The running time of the algorithm described is O(n3). For each node we must do O(n2) work to
compute f(v,i) for all i. This involves considering all possible values ii,i2 for the two children.

If our tree is non-binary we can replace any node with more than two children by multiple nodes as
shown in Figure 2. This increases the number of nodes by at most a constant factor.

Figure 2: By adding additional nodes linked by infinite capacity, we can convert any non-binary tree into an
equivalent binary tree by only doubling the number of nodes in the tree.

We can also modify our algorithm to disallow certain nodes as sources. If a leaf v cannot be a source,
then we ignore step 2b and instead set f(v,i) = dv for all i. If some higher node cannot be a source, then
we remove step 3b(ii) for that node (this step considers the case where v is a source). The correctness proof
is the same as before. •

4 Using Racke's Result
In recent work, Harold Racke showed that for any undirected graph, it is possible to construct a tree which
approximately captures the flow properties of the original graph[18]. Later work [6, 11] improved the result
and described a polynomial-time algorithm to construct such a tree. The most recent result is stated more
precisely in the following theorem:

Theorem 4.1. Given any capacitated, undirected graph G = (V,E,u : E —• R+), there exists a capacitated
tree T = (V71, Ex, u : ET —* -R"1") with the following properties:

1. The vertices ofV are the leaves ofT.

2. For any multicommodity flow F which is feasible on G, there exists a flow of equal value between the
corresponding leaves on T.

3. For any flow FT feasible between the leaves of T, there is a feasible -FT flow on G for some p =
O(log2nloglogn).

This gives us an approximation for the source location problem. We first construct a tree T as described
above. We then solve SSL on the tree, permitting only the leaves to act as sources, using the algorithm of
Section 3. We consider using the sources we have obtained on the original graph. We know there exists a
flow FT on the tree from our selected source nodes which satisfies all the demands. It follows that -FT is
feasible on the graph. We conclude that if we violate the capacities by a factor of p = O(log2nloglogn),
then we have a feasible solution to source location. On the other hand, any feasible solution on the graph
must also be feasible on the tree. This allows us to produce an exact solution (in terms of the number of
sources) while increasing the capacities by O(log2nloglogn).

In fact, we can improve the result described. If we consider the proof technique used by Harrelson et
al. [11], one of the logarithmic factors arises from the non-equality of the minimum cut and maximum flow
for multicommodity flow [4]. Since SSL is a single-commodity flow, we can improve the approximation bound
to O(lognloglogn) on the capacities.

Theorem 4.2. We can produce an optimum (in terms of number of sources) solution to SSL in polynomial
time, if we permit O(lognloglogn) stretch on the capacities.

Our results also have interesting implications for directed graphs. Consider the possibility of a Racke-like
representation of a directed graph by a tree, where the capacity on an edge when routing "upwards" might
differ from the "downwards" capacity. Suppose such a thing existed, and could be computed in polynomial
time, for some factor p. This would enable us to solve SSL exactly on directed graphs, while exceeding
capacities by a factor of p. But this is NP-Hard, as will be shown in Section 6.2. Thus we have the following:

Theorem 4.3. No Racke-like decomposition of a directed graph into an p-approximately flow-conserving
tree can be computed in polynomial time, for any value of p polynomial in n.

Note that our hardness result is a computational hardness result and assumes a tree-like structure de-
composition. Azar et al. [5] have found an existential hardness result which is true for any decomposition,
but their bound is weaker: O(y/n).

5 Simultaneous Source Location with Bounded Treewidth

5.1 Defining Treewidth

The notion of treewidth was introduced by Robertson and Seymour [19]. Many problems that are in general
intractable become polynomial-time solvable when restricted to graphs of bounded treewidth. Furthermore,
many graphs arising from natural applications have bounded treewidth. A good survey on the topic is given
by Bodlaender [7]. Here is one of the many equivalent definitions of treewidth:

Definition 5.1. A graph G = (V, E) has treewidth k if there exists a tree r = (Vr,ET) along with a mapping
/ : VT —•» 2V with the following properties:

1. For alia G FT, \f(a)\ < k + 1.

2. For any (u, v) G E there exists some a G VT such that w, v G f(a).

3. For any a, /?, 7 G Vr where /3 lies along the path from a to 7, if for some x G V we have x G f(a) and
x G f(j), then we must also have x G /(/?).

These conditions essentially state that each tree vertex represents some subset of at most k graph vertices,
each edge in the graph has its endpoints represented together in at least one of the tree vertices, and the set
of tree vertices which represent a single graph vertex must form a contiguous subtree.

We observe that it is possible to produce such a tree decomposition for a graph of treewidth k in time
linear in the number of nodes and vertices (but exponential in k). Assuming k is constant, we are able to
produce a tree decomposition - and thereby implicitly detect graphs of constant treewidth - in polynomial
time. In general, however, computing the treewidth of an arbitrary graph is NP-Hard.

5.2 Nice Decompositions
Bodlaender [8] also introduced the notion of a nice decomposition and proved that any tree decomposition
of a graph can be transformed into a nice decomposition still of polynomial size. In a nice decomposition,
each node a £ VT has one of the following types:

• A leaf node a has no children, and |/(a) | = 1

• An add node a has one child (5 with f(a) = /(/?) U W f°r s o m e node v eV

• A subtract node a has one child (3 with f(a) = f(/3) — {v} for some node v € /(/?)

• A merge node a has two children /?, 7 with f(a) = /(/?) = /(7)

In addition, the nice decomposition has a root node p (which is a subtract node) with f(p) empty.

5.3 Approximation for Graphs of Bounded Tree width
Suppose we are given a graph G = (V, E) with treewidth /c, for which we would like to approximate the SSL
problem. Our algorithm takes in some set of current sources 5 along with a graph (V, E) and returns a set
Sf of sources which are feasible for the given graph. Our algorithm for this problem appears in Figure 3.

Algorithm SL(S,V,E)

1. Check whether the source set 5 is feasible for (V, E); if so return 5

2. If not, find sets X and Bx that have the following properties:

(a) \Bx\<k + l

(b) For all (ar, y) e E with x € X and y G V - X, we have x e Bx

(c) S ' l J^ — X) is not a feasible source set

(d) S \J(V - X) |J Bx is a feasible source set

3. Recursively solve SL(S |J J5X, (V - X) \J Bx, E)

Figure 3: Algorithm for SSL with treewidth k

We claim that the set SR of returned sources has \SR\ < (fc + 1)|S*| where |5*| is the smallest feasible
set of sources for (V, E) which includes the given set 5 as a subset.

Lemma 5.2. Assuming we are always able to find sets X and Bx with the properties described, algorithm
SL is a (k -f 1)-approximation for the source location problem.

Proof. We will prove the lemma by induction on the number of sources required by the optimum solution. If
the optimum requires no sources (in other words, 5 is feasible by itself) then the algorithm will not require
any additional sources either (producing a trivial k+ 1-approximation). Otherwise, we suppose the optimum
requires at least t more sources (for some t > 0). We find a pair of sets X, Bx> The optimum must include
at least one source from the set X - 5, since 5 (J(V — X) is not feasible. Consider the flow structure of the
optimum solution. Any flow that passes from a source in X to some node in V — X must travel through Bx -
If Bx are all sources, we can assume that no flow travels from sources in X — Bx to nodes in V — X (or vice
versa), since such flow could equivalently originate from Bx> Consider adding all the sources of the optimum
solution that are not in X to the set of sources Bx U &- This must be a feasible solution. It follows that the
recursive SSL problem on SL(5(JBx, (V — X)\JBx,E) requires at most t — 1 additional optimum sources,
so by induction we will produce a solution which uses at most (k + l)(t — 1) 4- \Bx\ < (k + \)t sources in
addition to 5. •

Of course, we still need to prove that we can always find the sets X, Bx with the required properties in
polynomial time. In a general graph, such a pair of sets might not even exist, but we will use the assumption
of treewidth k to prove existence and the ability to find the sets in polynomial time.

Lemma 5.3. If the current set of sources S is not feasible for the graph G = (V, E) with treewidth k, then
there exists a pair of sets X, Bx with the required properties; furthermore, such a pair of sets can be found
in polynomial time.

Proof. We produce a tree decomposition (r, /) of G. For each tree node a, we define r a to be the subtree
of r rooted at a. We define f(ra) = U/3GTQ /(/?)• For each node a we will test whether S\J(V — f(ra)) is a
feasible set of sources. We find node a such that S \J(V — f(ra)) is infeasible, but such that S \J(V — f(r@))
is feasible for each child j3 of a. Note that such an a must exist; we simply travel upwards from the each
leaf of the tree until we find one. We now consider returning X = f(ra) and Bx = /(<*). We will show that
these sets satisfy the required properties.

Since the graph has treewidth k we know \Bx\ = \f(&)\ < k + 1. Consider any (x,y) G E with x G X
and y e V — X. From the definition of treewidth, there must exist some node /3 with x,y e /(/?)• Since y
is not in f(ra) we conclude that /? is not in ra. On the other hand, there is some node 7 G ra such that
x G f(j) (this follows from x G X). The path from 7 to (3 must pass through a, so the treewidth definition
implies x G /(a) and therefore x G Bx as desired. The selection of a guarantees that S{j(V — X) is not a
feasible source set. This leaves only the fourth condition for us to prove.

We consider the children of a. A pair of children 71,72 must have /(71) f]/(72) € f(a) because of the
contiguity property of tree decomposition. Thus the sets of nodes represented by the subtrees of the children
can intersect only in the nodes of Bx = /(»)• We know that for each child 7, the set of nodes S \J(V — /(r7))
would be feasible. It follows that we can cover all the demand of /(r7) using nodes of 5 and nodes external
to the set. Since the children sets are disjoint except for nodes which we have declared to be sources, the
flows to satisfy each child subtree are edge-disjoint; any flow from external nodes must also pass through
Bx, and we conclude that wre can cover /(r7) using S |JBx> It follows that we can cover all of X using the
sources S\jBx, making S{jBx \J(V — X) a feasible source set for the entire graph. •

Theorem 5.4. Algorithm SL produces a k + 1-approximation to the SSL problem on a graph of treewidth k.

5.4 Bounded Treewidth with Capacity Stretch

We will describe an exact algorithm for the SSL problem on graphs of bounded treewidth. The running time
of this algorithm will be exponential in the treewidth, and also depends polynomially on the maximum edge
capacity. In the general case where the capacities may be large, we will use the technique of Section 8 to
obtain a solution with 1 + e stretch on the edge capacities.

Suppose we have found a nice tree decomposition (r, /) . We will construct a set of vectors of dimension
k + 3. Each vector has the following form:

Here a € VT, 0 < i < \V\, and the fi are feasible flow values (we assume these are from a polynomially-
bounded range of integers). Let Sa = f(ra) — f(cv) represent the nodes represented by the subtree rooted
at a minus the nodes of its boundary (the nodes of f(a) itself). A feasible vector represents the excess flow
needed to be sent directly from the nodes of f(a) to Sa to satisfy all the demand in Sa if Sa contains i
sources.

We observe that if k is a constant and flow is polynomially-bounded, then the number of possible vectors
is polynomial in size. We will determine which such vectors are feasible in polynomial time, then use this to
solve SSL. Our algorithm is in Figure 4.

Theorem 5.5. If there are F possible flow values, the BTW algorithm shown in Figure 4 runs in time
O(kn2NF2k+2) where n = \V\ and N = \VT\ and k is the treewidth.

Proof. The total number of possible feasible vectors is upper bounded by NnFhJrl. Consider what happens
when we look at node a. If this is a leaf, we do O(l) work. If it is an add node, we will have to build one

vector for each of the vectors for /?, of which there are at most nFk+1. Each of these constructions takes
at most O(k) steps, yielding knFkJrl work. If a is a merge node, then we must construct a vector for each
pair of vectors for the children; there are at most n2F2k+2 such pairs and constructing the sum takes O(k)
time, for kn2F2k+2 work. If a is a subtract node, then for each of the child's vectors we will (at worst)
consider every possible allocation of flow. There are at most Ffc+1 such allocations for each of the nFk+l

child vectors. Combining these, we see that in the worst case, we will perform O(kn2F2k~*~2) operations for
each node of the tree decomposition, for O(kn2NF2kJt2) total time. •

This running time is polynomial assuming that F is polynomial and k is a constant. If the number of
possible flow values is not polynomial, we can use the result of Section 8 to effectively reduce the number of
flow values. This will cause us to exceed the graph capacities by a factor of 1 + e.

Algorithm BTW

1. Start with the empty set of feasible vectors.

2. Consider each node a from the bottom up:

• If a is a leaf, then add vector (a, 0,0).

• If a is an add node with child /3, then for each feasible vector for /?, copy that vector for a, placing
flow 0 in the new position corresponding to the additional node in f(a) — /(/?).

• If a is a merge node with children /?, 7 then for each pair of feasible vectors xp, x7 for the children,
create a vector for a: xa — xp + x1 (adding the number of sources and the flows while changing
the choice of node from VT to a).

• If a is a subtract node with child /?, then consider each feasible vector xp for the child. Let the
subtracted node be b € /(/?) — /(<*)• This node requires some flow r& which is the sum of the
demand d^ and the flow value for b in xp. We consider all feasible allocations of flow F(a) to
nodes a G f(a) such that |F(a)| < u(b,a) and Ylaef(a) F(a) — rb- For each such allocation we
construct a vector xa whose number of sources is equal to xp and with flow value at a equal to
the flow value in xp plus F(a). This corresponds to refusing to make b a source. We now consider
making b a source. This corresponds to creating a vector xa with one more source than the vector
xp. We set the flow value for a node a G f(a) to be the flow value in xp minus u(b, a).

3. Now consider all vectors for the root node p. These are simply pairs (/>, i) since f(p) is empty. We
return the minimum value of i such that (p, i) is in the feasible set.

Figure 4: Exact Algorithm for SSL with Treewidth k

5.5 Lower Bound for Treewidth 2 Graphs
We show that the SSL problem is NP-Hard even on graphs with treewidth two.

Theorem 5.6. SSL is NP-Hard even on graphs with treewidth two.

Proof. The proof is by reduction from subset sum. We are given a set of numbers {xi,X2? • • • ?#n}> and
would like to determine whether some subset of the given inputs sums to A. Suppose the sum of all the
numbers is 5. We construct an SSL instance with 2n + 2 nodes. Each number will be represented by a pair
of nodes of demand 5 with an edge of capacity 5 between them. Our example is a four level graph. On the
first level we have a node of demand A which connects to one side of every pair of nodes that represent a
number. The capacity on the edge between the A node and the number x{ node is exactly X*. The number
nodes from the second level are paired with the nodes from level 3. All nodes from level 3 are connected to
a single node at level 4 with an edge of capacity corresponding to their number. The node at level 4 has
demand S — A. This graph is shown in Figure 5. If there exists a subset of the numbers summing to A, then
we can place sources on the lefthand node for each of the numbers in that subset and the righthand node

for all the other numbers; it is straightforward to see that this is a feasible SSL making use of n sources.
On the other hand, consider a SSL solution. We must select one of the two nodes for each of the numbers
(otherwise there is not enough capacity to satisfy them). It follows that the SSL uses at least n sources.
If exactly n sources are used, then the result corresponds to a subset sum solution. It follows that solving
source location exactly on this graph will solve subset sum. The graph given has treewidth two; we can see
this because if we remove the node of demand A, the remaining graph is a tree. We take the (treewidth one)
tree decomposition and add the node of demand A to the subset f(a) for all a. This is a tree decomposition
of width two. •

Figure 5: Simultaneous Source Location is NP-Hard even on graphs of treewidth two. To satisfy each demand
in this graph using only n sources we must find a partition of {#i, X2,.. • , xn] whose sums are A and S — A.

6 Simultaneous Source Location on Directed Graphs

6.1 Greedy O(logn) Approximation

We are given a directed graph G = (V,E) for which we would like to approximate the SSL problem. We
propose a simple greedy algorithm. We start with no sources and no demand satisfied. We add the source
which maximizes the increase in the total satisfied demand. We repeat this until all demand is satisfied.

Theorem 6.1. The greedy algorithm gives an O(logn) approximation on the number of sources with no
violation of the capacities.

Proof. Suppose that the optimum solution uses t sources. At some point in time, suppose our current set of
sources can cover demand d and the total demand in the graph is D. Consider the residual graph after adding
the flows from our sources to satisfy demand d. The residual demand is D — d, and if we were to add all
the optimum sources we would be able to satisfy the full residual demand (note that this is essentially single
commodity flow since sources are equivalent). It follows that we can add one source to the residual graph
to satisfy demand ^f^. We apply the standard greedy analysis for problems like SETCOVER to show
that the full demand will be covered in O(logD) steps. Assuming that the maximum and minimum demand
are within a polynomial factor of one another, we are done. Otherwise, we can apply scaling arguments of
Section 8 to give the desired O(logn) factor. •

6.2 Lower Bound for Directed Graphs

We show that O(log n) is the best approximation factor we can expect to obtain for the directed SSL problem
in polynomial time, due to a reduction from set cover.

Theorem 6.2. We cannot approximate directed SSL to better than O(logn) in the worst case, unless NP C

Proof. Suppose we would like to solve a set cover instance. We construct a graph with one node for each
set, one node for each element, and one additional node. The additional node is connected by a directed

edge of capacity one to each of the sets. Each set is connected by a directed edge of capacity TV, where
N is more than the sum of the number of sets and elements, to each of its elements. The additional node
has demand one, each set has demand one, each element has demand TV. We solve the SSL problem to
some approximation factor p on this graph. We first observe that no element should be selected as a source;
otherwise we could simply select one of the sets containing that element as a source instead. Second, we
observe that the additional node will be selected as a source. We have a solution consisting of pt nodes,
where t is the optimum. Consider the set nodes that we selected as sources. Every element node must be
connected to one of these set nodes in order for its demand to be satisfied (note N is greater than the number
of sets). It follows that we have a set cover of size pt — 1. Similarly, observe that any set cover, plus the
additional node, forms a feasible SSL solution. So we have obtained a ^fy > p approximation to set cover.
This is unlikely for p smaller than logn due to the results of Feige [10]. •

We observe that even if we are allowed to violate edge capacities by some large factor (say less than A7"),
the reduction from set cover still holds.

7 Lower Bound for Undirected Graphs

We show that SSL does not have a polynomial-time approximation scheme via an approximation-preserving
reduction from vertex cover.

To see this first consider a vertex v of degree two whose demand is some value x, and the capacity of
each edge adjacent to v is also x. We claim that if v is not a source that v cannot produce any net outflow
in a valid solution. Since v consumes x demand itself and only x flow can be routed to v along either of its
adjacent edges, any additional outflow would have to be routed to v via the same edge by which it leaves.
The outflow from v can therefore be combined with the inflow within the same edge, creating an equivalent
solution with no outflow. We use a large number of these objects in our vertex cover reduction.

Now consider a vertex cover problem on a graph G = (V,E). We create a SSL problem on a flowgraph
Gf = (V\ E', c, d), prove that a size k vertex cover implies a set of k sources that satisfies G', and also prove
that any solution requiring k < n sources has a corresponding vertex cover of size k in G, where n = \V\
is the number of vertices in G. For each vertex v £ V, create a "base" vertex vf e V with 0 demand. For
each edge e = (v^Vj) G E create 3n + 1 "stack" vertices in V, each with demand 1 and having capacity 1
edges to the associated base vertices v[and Vj as shown in Figure 6. Notice that just as selecting a vertex
covers all of its adjacent edges in the vertex cover problem, making the base vertex a source in our flow
graph satisfies all the demand of its adjacent edge stacks. Thus, a vertex cover of size k in G implies a set
of k sources in G' that satisfies all the demand in the graph. Now suppose we have, a set of k < n sources in
G' that satisfies all the demand in the graph. Suppose for sake of contradiction that there is an edge stack
s in G1 such that neither of its associated base vertices is a source. This stack comprises a total demand of
size 3n + 1 that must somehow be satisfied. Consider now the set of all vertices in 5 and all vertices adjacent
to s's base vertices, noticing that each of these is a stack vertex, which is an object of the form discussed
in the previous paragraph. Each of these vertices can create no net outflow unless it is itself chosen as a
source. However, at least 3n + 1 flow must be generated from these sources to satisfy the vertices in s. But
each of these vertices can satisfy at most a demand of three even if chosen as a source - one unit satisfying
its own demand, and two units of total outflow out of its edges. At least ^ ^ of these vertices therefore
must be sources, contradicting the claim that our solution is of size at most n. We then have that each edge
stack is satisfied by at least one of its associated base vertices, and since at most k base vertices are sources
in the flow graph we have a vertex cover of size at most k in G. Hastad [12] showed that vertex cover is
inapproximable within | .

Theorem 7.1. Simultaneous Source Location is 1.36067 - e hard on general undirected graphs if edge ca-
pacities are not violated.

The proof follows from the reduction above and the recent hardness results by Dinur and Safra [9].

stacks

(o) } base vertices

Figure 6: Simultaneous Source Location is as hard as vertex cover on undirected graphs. In this example,
edge ei connects vertices v\ and V2 in the original graph.

8 Dealing with Super-Polynomial Capacities

Some of our analyses assume that there are only a polynomial number of capacities. Here we present a method
to extend those analyses to when the capacities are super-polynomial, allowing us to satisfy demands while
exceeding capacities by a 1 + e factor in those cases.

When capacities are super-polynomial, we express the flow and capacity of each edge as aFl for some
value of i (which might be different from edge to edge) and some value of a which is between F and F2.
This can be done by rounding every flow up to the nearest value. Once this is done, we might no longer
have a feasible flow. The new capacities (which might be larger than the old capacities by a 1 + y factor)
will not be exceeded. However, flow conservation may no longer hold. Consider any node. If the original
inflow was / then the outflow was / also. But it is possible that after this rounding upwards, the inflow is
still / and the outflow has increased to / (I + ^) . We consider such a flow to be feasible. This means that a
node might effectively "generate" some amount of flow, but this amount is at most y of the inflow.

Now consider any graph with a feasible flow under the representation described above. We would like to
transform this into a real flow. If we consider splitting the "generated" flow equally among outgoing edges,
we will see that as flow passes through a node the percentage of "real" flow might decrease by a factor of
•p—-. In the worst case, some edge might have a fraction of "real" flow equal to (j^y)n > 1 — y>

We let F = j . It follows that we can satisfy at least 1 — e of each demand while exceeding capacities by
a factor of 1 + ^. Since we can scale the flows and capacities, this means we can satisfy the demands while
exceeding capacities by 1 + e factor.

This is useful in bounding the running time and approximation factor of various techniques for approxi-
mating SSL.

9 Conclusions

We define the Simultaneous Source Location problem and solve the problem exactly on trees. We present
a (1 + e) violation of the capacities PTAS for graphs of bounded treewidth. On general graphs we find a
solution with exact number of sources which can exceed the capacities by at most a factor of O(log n log log n).
We show a O(logn) factor approximation on the number of sources with no violation of the capacities for
general directed graphs. We believe that many interesting applications of this problem involve graphs of low
treewidth; many of the connectivity graphs of real networks have been observed to have low tree width [8].

The main open problem is the approximability of SSL on undirected graphs of large treewidth. No
constant approximation on the number of sources is known, even if we allow constant violation of the
capacities. The only lower bound on approximability with exact capacities is 1.36067 — e. An approximation
factor asymptotically better than 2 would be a surprising improvement on existing vertex cover results [15].
One can also consider adding costs on the edges and/or the vertices.

10

References

[I] W. A. Aiello, F. T. Leighton, B. M. Maggs, M. Newman Fast algorithms for bit-serial routing on a
hypercube Mathematical Systems Theory, 1991

[2] K. Arata, S. Iwata, K. Makino, and S. Fujishige. Locating sources to meet flow demands in undirected
networks. Journal of Algorithms, 4%, 2002.

[3] V. Arya, N. Garg, R. Khandekar, V. Pandit, A. Meyerson, and K. Munagala. Local search heuristics
for k-median and facility location problems. Proceedings of the 33rd ACM Symposium on Theory of
Computing, 2001.

[4] Y. Aumann, Y. Rabani An O(logfc) approximate mincut max-flow theorem and approximation algo-
rithms SIAM Journal of Computing, 27(1), 1998

[5] Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial time.
Proc. 35th Annual ACM Symposium on Theory of Computing, 2003.

[6] M. Bienkowski, M. Korzeniowski, and H. Racke. A practical algorithm for constructing oblivious routing
schemes. Fifteenth ACM Symposium on Parallelism in Algorithms and Architectures, 2003.

[7] H. L. Bodlaender. Treewidth: Algorithmic Techniques and Results. Proceedings 22nd International
Symposium on Mathematical Foundations of Computer Science, 1997

[8] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical Compututer
Science, 209(1), 1998.

[9] I. Dinur and S. Safra. On the importance of being biased. Proceedings of the 3^rd ACM Symposium on
Theory of Computing, 2002.

[10] U. Feige. A threshold of Inn for approximating set cover. Journal of the ACM, 1995.

[II] C. Harrelson, K. Hildrum, and S. Rao. A polynomial-time tree decomposition to minimize congestion.
Fifteenth ACM Symposium on Parallelism in Algorithms and Architectures, 2003.

[12] J. Hastad, Some optimal inapproximability results. Proceedings 29th Ann. ACM Symp. on Theory of
Computing, ACM, 1-10, 1997

[13] P. Klein, S. A. Plotkin, S. Rao Excluded minors, network decomposition, and multicommodity flow.
Proceedings of the 25th ACM Symp. on Theory of Computing, 1993

[14] T. Leighton, S. Rao An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithms Proceedings of the 29th Symp. on Foundations
of Computer Science, 1988

[15] S. Khot and O. Regev. Vertex cover might be hard to approximate within 2 — e. Proceedings of the 17th
IEEE Conference on Computational Complexity, 2002.

[16] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric facility location
problems. APPROX, 2002.

[17] M. Pal, E Tardos, and T. Wexler. Facility location with nonuniform hard capacities. Proceedings of the
42nd IEEE Symposium on the Foundations of Computer Science, 2001.

[18] H. Racke. Minimizing congestion in general networks. IEEE Symposium on Foundations of Computer
Science, 2002.

[19] N. Robertson, P. D. Seymour Graph Minors II. Algorithmic aspects of tree width Journal of Algorithms
7, 1986.

[20] D. Shmoys, E Tardos, and K. Aardal. Approximation algorithms for facility location problems. Pro-
ceedings of the 29th ACM Symposium on Theory of Computing, 1997.

11

