
A Fast Multi-Resolution Method for Detection of
Significant Spatial Overdensities

Daniel B. Neill Andrew W. Moore
June 2003

CMU-CS-03-1543

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Keywords: algorithms, biosurveillance, cluster detection, spatial scan statistic

Abstract

Given an iVxA^ grid of squares, where each square s^ has a count c^ and an underlying
population Pij, our goal is to find the square region 5 with the highest density, and to
calculate the significance of this region by Monte Carlo testing. Any density measure D,
which depends on the total count and total population of the region, can be used. For
example, if each count ĉ - represents the number of disease cases occurring in that square,
we can use Kulldorff 's spatial scan statistic DK to find the most significant spatial disease
cluster. A naive approach to finding the region of maximum density would be to calculate the
density measure for every square region: this requires O(RN3) calculations, where R is the
number of Monte Carlo replications, and hence is generally computationally infeasible. We
present a novel multi-resolution algorithm which partitions the grid into overlapping regions,
bounds the maximum score of subregions contained in each region, and prunes regions which
cannot contain the maximum density region. For sufficiently dense regions, this method finds
the maximum density region in optimal O(RN2) time, and in practice it results in significant
(10-200x) speedups as compared to the naive approach.

1 Introduction
This paper develops fast methods for detection of spatial overdensities: discovery of spatial
regions with high scores according to some density measure, and statistical significance
testing in order to determine whether these high-density regions can reasonably have occurred
by chance. A major application of this work is in epidemiology: efficient algorithms are
needed to identify clusters of disease cases, for purposes ranging from detection of bioterrorist
attacks (ex. anthrax) to identification of environmental risk factors for diseases such as
childhood leukemia (Openshaw et al, 1988; Waller et al, 1994; Kulldorff and Nagarwalla,
1995). Kulldorff (1999) also discusses many other possible fields of application, including
astronomy (identifying star clusters), military reconnaissance, and medical imaging.

We consider the case in which counts are aggregated to a uniform two-dimensional grid.
Assume an N x N grid of squares G, where each square ŝ - G G is associated with a count Cij
and an underlying population pij. For example, in epidemiology, the count of a square may
be the number of disease cases occurring in that geographical region in a given time period,
while its population may be the total number of people "at-risk" for the disease. Our goal
is to find the square region S* C G with the highest density according to a density measure
D\ S* — argmaxs D(S). We use the abbreviations mdr for the "maximum density region"
£*, and mrd for the "maximum region density" D(S*), throughout. The density measure D
must be an increasing function of the total count of the region, C(S) — Y^i^~X Hf=jo~l Cij,
and a decreasing function of the total population of the region, P(S) — EiLtcf"1 Y,f=fc~l Pij-
In the simple case of a uniform underlying population, P{S) oc fc2, where k is the size of
region S. But we focus on the more interesting case: non-uniform populations.

The problem of finding significant spatial overdensities is distinct from that solved by
grid-based hierarchical methods such as CLIQUE (Agrawal et al, 1998), MAFIA (Goil et
al, 1999), and STING (Wang et al, 1997), which also look for "dense clusters." There are
three main differences: generalization of the density measure, applicability to non-uniform
underlying populations, and testing for statistical significance. First, our method is appli-
cable to any density measure D, while the other algorithms are specific to the "standard"
density measure Di(S) — pjfj- The Di measure is the number of points per unit population,
or assuming a uniform population, number of points per unit area; in our epidemiological
example this corresponds to finding the region with the highest observed disease rate. Unlike
many other density measures, D\ is monotonic: if a region S with density d is partitioned
into any set of disjoint subregions S\... Sn, at least one subregion will have density d1 > d.
Thus it is not particularly useful to find the "region" with maximum Du since this will be
the single square with the highest value of ̂ -. Instead, the other algorithms search for maxi-
mally sized connected regions with D\ density greater than some threshold; they rely heavily
on the monotonicity of Di by first finding dense "units" (i.e. individual l x l squares), then
merging adjacent dense units in bottom-up fashion. For a non-monotonic density measure
such as Dr — -p? (where 0 < r < 1), it is possible to have a large dense region where none
of its subregions are themselves dense, so a bottom-up merging approach may not succeed.
We focus on finding a single, maximum density region with respect to an arbitrary non-
monotonic density measure, and thus use an approach which is substantially different from
CLIQUE, MAFIA, or STING. Our method also differs from these in that it deals with non-

uniform underlying populations: this is particularly important for real-world epidemiological
applications. Note that we cannot simply "normalize" the problem by computing densities
of each individual square; for non-monotonic density measures, an overdensity is more signif-
icant if the underlying population is large, so we must take populations into account as well.
This brings us to the third difference between our algorithm and those mentioned above: the
need for statistical significance testing. Our goal is not only to find the maximum density
region, but also to test whether that cluster is a true "overdensity" or if it is likely to have
occurred by chance; we discuss this process in more detail in the following subsection.

1.1 The spatial scan statistic

A non-monotonic density measure which is of great interest to epidemiologists is Kulldorff Js
spatial scan statistic (Kulldorff, 1997), which we denote by DK- The spatial scan statistic
assumes that counts ĉ - are generated by an inhomogeneous Poisson process with mean qp+j,
where q is the underlying "disease rate" (or expected value of the D\ density). We then
calculate the log of the likelihood ratio of two possibilities: that the disease rate q is higher
in the region than outside the region, and that the disease rate is identical inside and outside
the region.1 For a region with count C and population P , in a grid with total count Ctot
and population PtoU we can calculate DK = C log^ + (Ctot - C) log p^*Zp - C ^ l o g ^ ,
if ^ > p ^ , and 0 otherwise. Kulldorff (1997) demonstrated that the spatial scan statistic
is individually most powerful for finding a single significant region of elevated disease rate:
it is more likely to detect the overdensity than any other test statistic, and thus we focus
primarily on this density measure in our experiments. We should note, however, that our
algorithm is general enough to use any density measure, and in some cases we may wish to
use measures other than Kulldorff's. For instance, if we have some idea of the size of the
maximum density region, we can control this by using the Dr measure, with larger values of
r corresponding to tests for smaller clusters.

Once we have found the maximum density region (mdr) of grid G according to our density
measure, we must still determine the statistical significance of this region. To do so, we must
deal with the problem of multiple hypothesis testing: even in a dataset where all counts are
generated independently (and thus, there is no spatial component to the clustering) there
will be random variation in the region densities, and by chance some regions will have higher
densities than others. This problem is amplified by searching over millions of regions- the
region with the highest score is going to appear very significant, even if there is no spatial
process in operation. For a simple example, consider a grid where each square has population
1000 and number of cases independently distributed with mean and variance 100. For an
8 x 8 grid, we would be very surprised to see a square with count 150 (probability 1 in
50000), but for a 1024 x 1024 grid this would be a fairly common occurrence (probability 1
in 4). Since the exact distribution of the test statistic is only known in special cases (such
as Di density with a uniform underlying population), in general we must perform Monte
Carlo simulation for our hypothesis test. To do so, we run a large number R of random
replications, where a replica has the same underlying populations pij as G, but assumes a

1In both cases, we assume that q is uniform within the region, and uniform outside the region.

uniform disease rate qrep = p^[^j for all squares. For each replica G1', we first generate
all counts Qj randomly from an inhomogeneous Poisson distribution with mean qrepPiji then
compute the maximum region density (mrd) of G' and compare this to mrd(G). The number
of replicas G with mrd(G') > mrd(G), divided by the total number of replications R, gives
us the p-value for our maximum density region. If this p-value is sufficiently low (for example,
less than .05), we can conclude that the discovered region is statistically significant (unlikely
to have occurred by chance) and is thus a "spatial overdensity." If the test fails, we have
still discovered the maximum density region of G, but there is not sufficient evidence that
this is an overdensity.

1.2 The naive approach

The simplest method of finding the maximum density region is to compute the density of all
square regions of sizes k = kmin . . . N.2 Since there are (N - k + I)2 regions of size k, this
gives us a total of O(N3) regions to examine. We can compute the density of any region S in
O(l) time, by first finding the count C(S) and population P{S), then applying our density
measure D(C(S),P(S)).3 From this, it is clear that the mdr of an N x N grid G can be
computed in O(N3).

However, significance testing by Monte Carlo replication also requires us to find the
mrd for each replica G", and compare this to mrd(G). Since calculation of the mrd takes
O(NS) time for each replica, the total complexity is O(RN3), and R is typically large (we
assume R = 1000). Several simple tricks may be used to speed up this procedure for cases
where there is no significant spatial overdensity. First, we can stop examining a replica G'
immediately if we find a region with density greater than mrd(G). In this case, the exact
mrd of G' does not matter; we already know that it is greater than mrd(G). Second, we can
use the Central Limit Theorem to halt our Monte Carlo testing early if, after a number of
replications R' < i?, we can conclude with high confidence that the region is not significant.
For cases where there is a significant spatial overdensity, the naive approach is still extremely
computationally expensive, and this motivates our search for a faster algorithm.

2 Overlap-multires partitioning

Since the problem of detection of spatial overdensities is closely related to problems such as
kernel density estimation and kernel regression, this suggests that multi-resolution partition-
ing techniques such as kd-trees (Preparata and Shamos, 1985) and mrkd-trees (Deng and
Moore, 1995) may be useful in speeding up our search. The main difference of our problem
from kernel density estimation, however, is that we are only interested in the maximum
density region; thus, we do not necessarily need to build a space-partitioning tree at all res-
olutions. Also, the assumption that counts are aggregated to a uniform grid simplifies and

2We assume that a region must have size at least kmin to be significant, for some constant kmin > 1; we
use kmin = 3 here.

3 An old trick allows us to compute the count of any kxk region in 0(1) time: we first form a matrix of the
cumulative counts, requiring time O(N2)1 then each region's count can be computed by adding/subtracting
at most four cumulative counts. An identical trick can be performed with the populations.

Figure 1: The first two levels of the overlap-multires tree. Each node represents a gridded region (denoted
by a thick square) of the entire dataset (thin square and dots).

speeds up partitioning, eliminating the need for a computationally expensive instance-based
approach. These observations suggest a top-down multi-resolution partitioning approach, in
which we search first at coarse resolutions (large regions), then at successively finer resolu-
tions as necessary. One option would be to use a "quadtree" (Samet, 1990), a hierarchical
data structure in which each region is recursively partitioned into its top left, top right,
bottom left, and bottom right quarters. However, a simple partitioning approach fails be-
cause of the non-monotonicity of our density measure: a dense region may be split by the
partitioning process into two or more separate subregions, none of which is as dense as the
original region. This problem can be prevented by a partitioning approach in which adjacent
regions partially overlap, an approach which we call "overlap-multires partitioning."

To explain how this method works, we first define some notation. We denote a region
S by an ordered triple (#,?/,£;), where (x,y) is the upper left corner of the region and k
is its size. Next, we define the u;-children of a region S = (x,y,k) as the four overlapping
subregions of size k — u) corresponding to the top left, top right, bottom left, and bottom
right corners of S: (x, y, k — a;), (x + u,y,k — cj), (x, y + UJ, k — a;), and (x + u,y + uj,k — UJ).

Next, we define a region as "even" if its size is 2k for some k > 2, and "odd" if its size
is 3 x 2k for some k > 0. We define the "gridded children" (g-children) of an even region
S = (x,y,k) as its {^-children for a; = | . Thus the four g-children of an even region are
odd, and each overlaps | with the child regions directly adjacent to them. Similarly, we
define the g-children of an odd region 5 = (x,y,k) as its o;-children for uo = | . Thus the
four g-children of an odd region are even, and each overlaps \ with the directly adjacent
child regions. Note that even though a region has four g-children, and each of its g-children
has four g-children, it has only nine (not 16) distinct grandchildren, several of which are
the child of multiple regions. Figure 1 shows the first two levels of such a tree. Next, we
assume that the size of the entire grid is a power of two: N = 2n for some positive integer
n. Thus the entire grid G — (0, 0, N) is an even region. Based on this assumption and the
definitions above, we define the set of "gridded" regions of G as G and all of its "gridded
descendents" (its g-children, g-grandchildren, etc.). Our algorithm focuses its search on the
set of gridded regions, only searching non-gridded regions when necessary. This technique
is useful because the total number of gridded regions is O(N2), as in the simple quadtree

partitioning method.4 This implies that, if only gridded regions need to be searched, our total
time to find the mdr of a grid is O(N2). Since it takes Q(N2) time to generate the grid, this
time bound is optimal.

2-1 Top-down pruning

This result leads us to the necessary question, when can we search only gridded regions, or
alternatively, when does a given non-gridded region need to be searched? Our basic method
is branch-and-bound: we perform a top-down search, and speed up this search by pruning
regions which cannot possibly contain the mdr. Our first step is to derive an upper bound
Dmax(S, k) on the density of subregions of minimum size k contained in a given region S; we
examine how these bounds can be calculated in the next subsection. Then we can compare
Dmax(S, k) to the density D(S*) of the best region found so far: if Dmax(S, k) < D(S*), we
know that no subregion of S with size k or more can be the mdr.

We can use this information for two types of pruning. First, if Dmax(S, kmin) < D(S*),
we know that no subregion of S can be optimal; we can prune the region completely, and
not search its (gridded or non-gridded) children. Second, we can show that (for 0 < k < n)
any region of size 2k +1 or less is contained entirely in some odd gridded region of size | x 2k.
Thus, if Dmax(G,2n~1 + 2) < D(S*) for the entire grid G, any optimal non-gridded region
must be contained in an odd gridded region. Similarly, if Dmax(S,2k + 2) < D(S*) for an
odd gridded region S of size 3x2 f c , then any optimal non-gridded subregion of S must be
contained in an odd gridded subregion of S. Thus we can search only gridded regions if two
conditions hold: 1) no subregion of G of size 2n~~1 + 2 or more can be optimal, and 2) for
each odd gridded region of size 3 x 2fe, no subregion of size 2k + 2 or more can be optimal.

2.2 Bounding subregion density

To bound the maximum subregion density Dmax(S, k), we must find the highest possible
score D(Sf) of a subregion Sf C S of size k or more. Let C = G(5), P — P(S), and
K = size(5). We assume that all of these are known, as well as lower and upper bounds
[dmin, dmax] on the Di density of subregions of S. Let c — C(S"), p = P(Sf), and d = f&fn;
these are presently unknown. Our first observation is that the maximum possible density
of Sf occurs when all of S — S' has the minimum allowable D\ density dmin. This gives
us pd + (P - p)dmin = C; solving for p, we obtain p — C7*ti

dmin and c = dp = f_~frfym/*,.
u drain -L ^min / &

Note that since both p and c decrease with increasing d, we are not guaranteed that the
maximum of D(S') occurs at d = dmax. However, we can prove (for both the DK and Dr

density measures) that no local maxima occur for d in (^, dmax). Thus the maximum occurs
either at d — ̂ or d = dmax. If d = ^, we obtain c = C and p = P, giving a density identical
to the parent region. Hence, we know that if D(S') > D(S), the maximum value of D(S')

4 This result is surprising since there are twice as many levels of recursion as for simple partitioning
(21og2 N, as opposed to log2 N). But in fact, we find that the overall branching factor per two levels is four,
identical to the branching factor per level for simple partitioning. For a more detailed proof, we first note
that the number of regions at level 2z is (2 i+1 - I)2, and the number of regions at level 2z -h 1 is 4 x (2 i+1 - I)2.
Thus the sum is 0 ^ N 5 x 22i+2) = 0(£l£i " 4 0 = O(N2).

occurs when d = dmax. Thus the corresponding population and count are p = f~p^in and
c = dmaxP, and then D(c,p) is an upper bound on Dmax(S, k).

We can place tighter bounds on Dmax(S, k) if we also have a lower bound pmin(S, k) on
the population of a size k subregion S' C S: in this case, if the value calculated for p in the
equation above is less than pmin, we know that D{cl,pmin), where d = C-(P-pmin)dmin, is a
tighter upper bound for Dmax(S, k). We can bound pmin in several ways. First, if we know the
minimum population ps,min of a single square s G 5, thenpmin > k2ps^min. Second, if we know
the maximum population ps,max of a single square s e S, then pmin > P — (K2 — k2)ps,max.

At the beginning of our algorithm, we calculate ps,max(S) = maxp^ and ps,min{S) =
minp^ (where sy G S) for each gridded region S. This calculation can be done recursively
(in bottom-up fashion) in O(N2) time, since ps,max/min(S) is equal to the maximum/minimum
Ps,max/min of its gridded children. The resulting population statistics are used for the original
grid and for all replicas. For non-gridded regions, we use the population statistics of the
region's gridded parent (either an odd gridded region or the entire grid G)\ these bounds
will be looser for the child region than for the gridded parent, but are still correct.

We also initially calculate dmax and dmin. This is done simply by finding the global
maximum and minimum values of the D\ density: dmax = max p-jJU (where S' C G and
size(5') = kmin), and dmin — min ^ (where ŝ - G G).5 Alternatively, we could compute dmax

and dmin recursively (bottom-up) for each gridded region S. This procedure is still O(N2),
but takes significantly longer than computing global values for dmin and dmax, and values
must be recomputed for each replica. Use of the more accurate approximation of dmax results
in fewer regions being searched, but typically the reduction in search time is outweighed by
the extra cost of computing densities over all gridded regions. In practice, we find that the
global values are sufficient for good performance on most test cases.

2.3 The algorithm
Our algorithm, based on the overlap-multires partitioning scheme above, is a top-down,
best-first search of the set of gridded regions, followed by a top-down, best-first search of
any non-gridded regions as necessary. We use priority queues (ql,q2) for our search: each
step of the algorithm takes the "best" (i.e. highest density) region from a queue, examines it,
and (if necessary) adds its children to queues. The o;-children and g-children of a region S are
defined above; note that the 1-children of S are its o;-children with u — 1. We also assume
that regions are "marked" once added to a queue, so that a region will not be searched
more than once. Finally, we use the rules and density bounds derived above to speed up our
search, by pruning subregions when Dmax(S,k) < D(S*). The basic pseudocode outline of
our method is as follows:

Add G to ql.
If D_max(G,N/2+2)>mrd, add 1-children(G) to q2 with kl=N/2+2.
While ql not empty:

5 We can use the tighter bound for dmax since we are using it to bound the density of a square region S'
of size at least kmin; we cannot use the tighter bound for dmin since we are using it to bound the density of
S — Sf, which is not square.

Get best region S from ql.
If D(S)>mrd, set mdr=S and mrd=D(S).
If D_max(S,k_min)>mrd, add g-children(S) to ql.
If size(S)=3(2~k) and D_max(S,2~k+2)>mrd,
add l-children(S) to q2 with kl=2~k+2.

While q2 not empty:
Get best region S and value kl(S) from q2.
If D(S)>mrd, set mdr=S and mrd=D(S).
If D_max(S,kl(S))>mrd, add l-children(S) to q2 with same k l .

These steps are first performed for the original grid, allowing us to calculate its mdr and
mrd. We then perform these steps to calculate the mrd of each replica; however, several
techniques allow us to reduce the amount of computation necessary for a replica. First, as
discussed above, we can stop examining a replica G' immediately if we find a region with
density greater than mrd(G). This is especially useful in cases where there is no significant
spatial overdensity in G. Second, we can use mrd(G) for pruning our search on a replica G":
if Dmax(S, k) < mrd(G) for some S C G", we know that no subregion of S of size k or more
can have a greater density than the mdr of the original grid, and thus we do not need to
examine any of those subregions. This is especially useful where there is a significant spatial
overdensity in G: a high mrd will allow large amounts of pruning on the replica grids.

We also note an important correctness property of our algorithm. Assuming all lower
and upper bounds on population and density are correct (as is the case for the version of
the algorithm presented so far), the algorithm will search all regions that could possibly be
the mdr of G. Moreover, for each replica G', the algorithm will search all regions that could
possibly have density at least mrd(G). Thus, if D(S) is computed exactly, the algorithm
will achieve the correct answer for the mdr S* = argmax^ D(S) and the mrd D(S*), as well
as a low-expected-error Monte Carlo estimate of the significance of the maximum density
region. Note that we are not guaranteed that the algorithm will search the minimum number
of regions necessary to find the mdr, and in fact, we can improve the performance of the
algorithm by deriving tighter bounds on the maximum score of a subregion. This is the
subject of the next section.

3 Improving the algorithm

The exact version of the algorithm uses conservative estimates of the D\ densities of S' and
S — Sf (dmax and dmin respectively), and a loose lower bound on the population of S", to
calculate Dmax(S,k). This results in an upper bound on Dmax which is guaranteed to be
correct, but is very loose and allows little pruning to be done. We can derive tighter bounds
on Dmax in two ways: by using a closer approximation to the Dx density of S — S", and by
using a tighter lower bound on the population of Sf. These improvements will be discussed
in the following two subsections.

3.1 The outer density approximation

To derive tighter bounds on the maximum density of a subregion S' contained in a given
region 5, we first note that (under both the null hypothesis and the alternative hypothesis)
we assume that at most one disease cluster Sdc exists, and that the disease rate q is expected
to be uniform outside Sdc (or uniform everywhere, if no disease cluster exists). Thus, if Sdc is
contained entirely in the region under consideration 5, we would expect that the maximum
density subregion Sf of S is Sdc, and that the disease rate of S — Sf is equal to the disease
rate outside S: E [pr^J = p*°|Zp = dout. Assuming that the Di density of S — S1 is equal to
its expected value douU we obtain the equation pdmax + (P — p)dout = C. Solving for p, we
find P = dl'J-ZL' T h e n Dmax(S, k) = D(c,p), where c = dmaxp.

The problem with this approach is that we have not compensated for the variance in
densities: thus our calculated value of Dmax is an upper bound for the maximum subregion
density D(Sf) only in the most approximate probabilistic sense. We would expect the D\
density of S — S' to be less than its expected value half the time, and thus we would expect
D(Sf) to be less than Dmax at least half the time; in practice, our bound will be correct more
often than this, since we are still using a conservative approximation of the D\ density of Sf.
Note also that we expect to underestimate Dmax if the disease cluster Sdc is not contained
entirely in S: this is acceptable (and desirable) since a region not containing Sdc does not
need to be expanded.

We can improve the correctness of our probabilistic bound by also considering the variance
of ^5^ - p^~p. Assuming that all counts outside Sdc are generated by a inhomogeneous
Poisson distribution with parameter qpij, we obtain:

2 \C-c _ Ctot ~ C] = 2 [Po(g(P-p)) _ Po(q(Ptot ~ P))] = q q = q(Ptot ~ p)
° [P-P Ptot-P\ ° I P - P Pfa*-P J P-p Ptot-P (P - p){Ptot - P)

Since the actual value of the parameter q is not known, we use a conservative empirical
estimate: q = p

C(pt .6 From this, we obtain a [TT^ — p(p'~pl = J,„ 5?%* „-,. Then we can
compute p by solving the equation pdmax + (P — p)(dout — ba) = C, and obtain c = rfma^P
and î maj: = D(c,p) as before.

By adjusting our approximation of the minimum density in this manner, we compute a
higher score Dmaxj reducing the likelihood that we will underestimate the maximum sub-
region density and prune a region that should not necessarily be pruned. Assuming the
normal approximation to the Poisson distribution, the Dx density of S — Sf will be greater
than dout — ba with probability P(Z < 6), where Z is chosen randomly from the unit normal
distribution. Thus for 6 = 2, there is an 98% chance that we will underestimate the D\
density of S — 5", and thus have a guaranteed correct upper bound for the maximum sub-
region density. In practice, the true value of the maximum subregion density will be lower
than our computed value of Dmax more often, since we are using conservative estimates
for dmax and q. From this calculation, we can compute a (very conservative) lower bound
on the probability that our algorithm will find the correct region: assuming that there is

6For Monte Carlo replicas of a grid G, we could also use the exact value q = qrep = pt
ot

t(Gl, though this
is not done in our experiments.

only one top-down path through the multi-resolution hierarchy to the correct region, and
assuming independent probabilities of pruning at each resolution, we obtain an accuracy of
(.98)L, where L is the number of levels of hierarchy we must search to obtain the correct
region (worst case O(N), but typically proportional to logN). In practice, however, our
accuracy is much higher than this for three reasons: conservative estimates of dmax and g,
high correlation between probabilities of pruning at different resolutions, and multiple paths
through the multi-resolution hierarchy. In fact, our experiments demonstrate that 6 = 1 is
sufficient to obtain the correct region with over 90% probability (approaching 100% for suf-
ficiently dense regions). Thus, though our algorithm is approximate (and thus, correctness
is not guaranteed), it is very likely to converge to the globally optimal mdr. Hence it differs
from approximate methods such as "bump hunting" (Friedman and Fisher, 1999) or greedy
search techniques, which typically converge to a local maximum without any probabilistic
guarantees on global optimality.

3.2 Cached population statistics
Though the approximate algorithm as presented above achieves high accuracy and fast per-
formance for most test cases, it does not perform well on test cases where there is a large
spatial variation in the square populations pij. To solve this problem, we cache the sufficient
statistics (Moore and Lee, 1998) for populations needed to perform pruning in our algorithm.
For each gridded region S and each size k that is relevant for S, we cache the minimum pop-
ulation Pmin(S^k) of size k subregions S' C S. For every gridded region 5, we must know
Pmin(S,kmin) for pruning; since Pmin(S,kmin) is equal to the minimum pmin of the gridded
children of 5, we can compute these values recursively (bottom-up) in O(N2) time. For the
entire grid G, we must know pmin{G, y + 2); this can be found by searching over the O(N2)
regions (gridded and non-gridded) of size y + 2. Finally, for each odd gridded region S of size
A:, we must find PminiS, | + 2). To do this, we search exhaustively over all regions (gridded
and non-gridded) of size | + 2 for each value k = 3 x 2X. Since there are O(logiV) values
of k to search, and each search takes O(N2) time, the total complexity is O(N2\ogN). At
first glance, the additional log N factor makes this method undesirable. However, since each
Monte Carlo replica has the same underlying population statistics as the original grid, we
only need to cache the population statistics once, then can use them for all replicas. Under
the reasonable assumption that log TV < i?, we obtain total complexity O(RN2), and thus
an amortized O(N2) per replica. In practice, we find that caching population statistics can
be performed in under one minute fo ra512x512 grid, while speeding up performance (on
highly non-uniform populations) by a factor of 500.

4 Results

We first present two sets of experiments on artificially generated grids (for the exact and
approximate versions of the algorithm), then present results on a grid generated from real-
world case data. An artificial grid is generated from a set of parameters (AT, fc, //, a, ql', q").
The grid generator first creates anJVxiV grid, and randomly selects a k x k "test region."
Then the population of each square is chosen randomly from a normal distribution with

9

mean \i and standard deviation a (populations less than zero are set to zero). Finally, the
count of each square is chosen randomly from a Poisson distribution with parameter
where q — q1 inside the test region and q = q" outside the test region.

First, we used artificial grids to measure the performance of the exact algorithm, as
compared to the naive approach. The exact algorithm was tested for grids of sizes N = 64,
128, and 256. For each trial, we used fi = 104 and a = 103; a test region of size k — ^
was randomly selected, and the disease rate q was set to r x .001 inside the test region and
.001 outside the test region. By observing the performance of the algorithm for varying
r (see Table 1), we found that the exact algorithm performs faster than naive only for
sufficiently dense regions. We observed three distinct cases: for very dense regions (r > 25),
the algorithm's runtime (and number of regions searched) increased optimally as O(iV2), as
compared to the naive algorithm's complexity of O(7V3), and as a result significant speedups
were observed. For r = 30, we observed speedups of xl5/x29/x60 for TV = 64, N = 128, and
N — 256 respectively. For less dense regions (8 < r < 25), the exact algorithm's runtime
increased approximately as O(7V3), but performed faster than naive by a constant factor. For
r = 10, a speedup of 1.8-3.5x was observed. For even less dense regions (r < 8), the exact
algorithm took longer to run than naive: for r = 5 a slowdown of 2.0-2.6x was observed,
and for r = 2 a slowdown of 9.0-9.2x was observed. From these results, it is clear that
the loose population and density bounds used in the exact algorithm prevent it from doing
large amounts of pruning unless the maximum density region is obvious, and thus the exact
algorithm is insufficient for our purposes.

Second, we used artificial grids to measure the performance and accuracy of the ap-
proximate algorithm. We tested six variants of the algorithm: three different adjustments
for density variance (6 — 0,1,2), each with and without cached population statistics. The
approximate algorithm was tested for grids of size TV = 512; test region sizes of k = 16
and k — 4 were used, and the disease rate q was set to .002 inside the test region and .001
outside the test region. We used three different population distributions for testing: the
"standard" distribution (fi = 104, a = 103), and two types of "highly varying" populations.
For the "city" distribution, we randomly selected a "city region" with size 16: inside the
city, square populations were generated with JJL — 107 and a = 106, and outside the city,
square populations were generated with // = 104 and a = 103. For the "high-a" distribution,
we generated all square populations with // = 104 and a = 5 x 103, giving many squares
zero population. We first compared the performance of each variant of the algorithm to the
naive approach for the six test cases; see Table 2 for results. For large test regions, on the
standard and city distributions, all variants of the algorithm had runtimes of ~20 minutes,
as compared to 44 hours for the naive approach, a speedup of 122-155x. For the other test
cases, we observed two main phenomena: performance generally decreased with increasing
6, and the use of cached population statistics (cps) significantly improved performance. For
6 = 1 , the algorithm with cps achieved a 151x speedup for the large test region/high-cr case,
while the algorithm without cps achieved only a 15x speedup. Similar results were observed
for the small test region/standard case (88x speedup as opposed to 30x), and the small test
region/city case (20x speedup as opposed to 6x). For the small test region/high-a case, the
algorithm with cps achieved high speedups (146x/75x/13x for 6 = 0,1, 2), but without cps
it took significantly longer to run than the naive algorithm (we stopped the runs after 150

10

hours, so these results are not included in the table).
Next, we tested accuracy by generating 50 artificial grids for each population distribution,

and computing the percentage of test grids on which the algorithm was able to find the
correct mdr (see Table 3). For the large test region (k = 16), all variants were able to
find the correct mdr with high accuracy (97% for 6 = 0, 100% for 6 = 1 and 6 = 2). For
the small test region, accuracy improved significantly wth increasing 6: the non-variance
adjusted version (b = 0) achieved only 45% accuracy, while the variance adjusted versions
(6 = 1 and 6 = 2) achieved 89% and 99% accuracy respectively. These results demonstrate
that the approximate algorithm (with variance adjustment and cached population statistics)
is able to achieve high performance and accuracy even for very small test regions and highly
non-uniform population distributions.

Finally, we measured the performance of the approximate algorithm on a grid generated
from real-world data. We used a database of (anonymized) Emergency Department data col-
lected from Western Pennsylvania hospitals in the period 1999-2002. This dataset contained
a total of 630,000 records, each representing a single ED visit and giving the latitude and
longitude of the patient's home location to the nearest .005 degrees (~ | mile, a sufficiently
low resolution to ensure anonymity). For each record, the latitude L and longitude / were
converted to a grid square S{j by i — L~^in and j = l"^n; this created a 5 1 2 x 5 1 2 grid.
We tested for spatial clustering of "recent" disease cases: the "count" of each square was
the number of ED visits in that square in the last two months, and the "population" of that
square was the total number of ED visits in that square. See Figure 2 for a picture of this
dataset, including the highest scoring region.

We tested six variants of the approximate algorithm on the ED dataset; the pres-
ence/absence of cached population statistics did not significantly affect the performance
or accuracy for this test, so we focus on the variation in 6. All three variants (6 = 0,1,2),
as well as the naive algorithm, found the maximum density region (of size 101) and found it
statistically significant (p-value 0/1000). The major difference, of course, was in runtime and
number of regions searched (see Table 4). The naive algorithm took 2.7 days to find the mdr
and perform 1000 Monte Carlo replications, while each of the variants of the approximate
algorithm performed the same task in ~2 hours or less. The approximate algorithm took
19 minutes (a speedup of 209x) for 6 = 0, 47 minutes (a speedup of 85x) for 6 = 1, and 126
minutes (a speedup of 31x) for 6 = 2. Thus we can see that all three variants find the correct
region in much less time than the naive approach.7 This is very important for applications
such as real-time detection of disease outbreaks: if a system is able to detect an outbreak
in minutes rather than days, preventive measures or treatments can be administered earlier,
possibly allowing many lives to be

7 It should also be noted that alternative algorithms such as those presented in Kulldorff (1999) would be
infeasible for this dataset, since there are M = O(N2) population points, and G = O(N2) grid points, so
Kulldorff's algorithm 14.3.6 is 0(GM log M + RGM) = O(NA logiV + RN4).

11

r
' #

Figure 2: The left picture shows the "population" distribution within Western PA and the right picture
shows the "counts" distribution. The winning region is shown as a square.

5 Conclusions

Thus we have presented a fast overlap-multires partitioning algorithm for detection of spatial
overdensities, and demonstrated that this method results in significant (10-200x) speedups
on both real and artificially generated datasets. Our current focus is application of this algo-
rithm to the real-time monitoring and detection of disease outbreaks, based on national-level
hospital and pharmacy data. We are currently examining how to detect statistically signif-
icant indications of a disease outbreak based on changes in the spatial clustering of disease
cases; this is similar to, but distinct from, the space-time statistic of Kulldorff (2001), since
KulldorfFs method detects clusters which persist over time rather than "new" outbreaks.
Application of a fast partitioning method based on the techniques presented here may allow
us to achieve the difficult goal of automatic real-time detection of disease outbreaks.

References

• R. Agrawal, et al. 1998. Automatic subspace clustering of high dimensional data for data mining
applications. Proc. ACM-SIGMOD Intl. Conference on Management of Data, 94-105.
• K. Deng and A. W. Moore. 1995. Multiresolution instance-based learning. Proc. 12th Intl. Joint
Conference on Artificial Intelligence, 1233-1239.
• J. Friedman and N. Fisher. 1999. Bump hunting in high-dimensional data. Statistics and
Computing 9(2), 1-20.
• S. Goil, et al. 1999. MAFIA: efficient and scalable subspace clustering for very large data sets.
Northwestern University, Technical Report No. CPDC-TR-9906-010.
• M. Kulldorff. 1997. A spatial scan statistic. Communications in Statistics: Theory and Methods
26(6), 1481-1496.
• M. Kulldorff. 1999. Spatial scan statistics: models, calculations, and applications. In Glaz and
Balakrishnan, eds. Scan Statistics and Applications. Birkhauser, Boston, MA, 303-322.
• M. Kulldorff. 2001. Prospective time periodic geographical disease surveillance using a scan
statistic. Journal of the Royal Statistical Society A 164(1), 61-72.
• M. Kulldorff and N. Nagarwalla. 1995. Spatial disease clusters: detection and inference. Statistics
in Medicine 14, 799-810.
• A. W. Moore and M. S. Lee. 1998. Cached sufficient statistics for efficient machine learning with
large datasets. J. Artificial Intelligence Research 8, 67-91.

12

Table 1: Performance of exact algorithm

method
naive
exact
exact
exact
exact
exact
naive
exact
exact
exact
exact
exact
naive
exact
exact
exact
exact
exact

test
AT = 64

N = 64, r = 30
AT = 64, r = 20
N = 64, r = 10
N = 64, r = 5
N = 64, r = 2

AT = 128
AT = 128, r = 30
AT = 128, r = 20
N = 128, r = 10
N = 128, r = 5
AT = 128, r = 2

N = 256
AT = 256, r = 30
N = 256, r = 20
N = 256, r = 10
N = 256, r = 5
N = 256, r = 2

time (orig+lOOO reps)
0 : 00.28 + 4 : 39
0 : 00.80 + 0 : 18
0 : 00.96 + 0 : 18

0:02 + 1: 18
0 : 03 + 9 : 22
0 : 04 + 41 : 40
0 : 02 + 38 : 50
0 : 0 7 + 1 : 14
0 : 09 + 1 : 22

0 : 15 + 14 : 54
0 : 20 + 1 : 33 : 36
0 : 28 + 5 : 54 : 19
0 : 20 + 5 : 37 : 03

0 : 58 + 4 : 38
1 : 16 + 10 : 08

1 : 51 + 3 : 10 : 30
2 : 35 + 14 : 30 : 50
3 : 50 + 51 : 24 : 00

regions
8.9 x
1.2 x
1.5 x
3.2 x
4.6 x
6.3 x
7.1 x
1.2 x
1.6 x
2.6 x
3.4 x
4.7 x
5.6 x
9.6 x
1.3 x
1.9 x
2.7 x
3.6 x

(orig+lOOO
104

104

104

104

104

104

105

105

105

105

105

105

106

105

106

106

106

106

+ 8.9 x
+ 1.8 x
+ 4.6 x
+ 1.3x
+ 1.0x
+ 4.3 x
+ 7.1 x
+ 3.2x
+ 4.0 x
+ 1.5x
+ 9.8 x
+ 3.4 x
+ 5.6 x
+ 3.6 x
+ 6.3 x
+ 1.9x
+ 8.2 x
+ 2.8x

reps)
107

103

104

106

10v

107

108

104

105

107

107

108

109

105

106

108

108

109

speedup
xl

xl5
xl5
x3.5

xO.49
xO. l l

x l
x29
x26
x2.6

x0.41
xO. l l

xl
x60
x30
xl.8

x0.39
xO.ll

• S. Openshaw, et al. 1988. Investigation of leukemia clusters by use of a geographical analysis
machine. Lancet 1, 272-273.
• F. P. Preparata and M. I. Shamos. 1985. Computational Geometry: An Introduction. Springer-
Verlag, New York, NY.
• H. Samet. 1990. The Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading,
MA.
• L. A. Waller, et al. 1994. Spatial pattern analysis to detect disease clusters. In Nicholas Lange,
et al, eds. Case Studies in Biometry. Wiley, New York, NY, 3-23.
• W. Wang, et al. 1997. STING: a statistical information grid approach to spatial data mining.
Proc. 23rd Conference on Very Large Databases, 186-195.

13

method

Table 2: Performance of approximate algorithm, TV = 512

test time (orig+1000 reps) regions (orig+1000 reps) speedup
naive

6 = 0
6 = 1
6 = 2

cps, 6 = 0
cps, 6 = 1
cps, 6 = 2

6 = 0
6 = 1
6 = 2

cps, 6 = 0
cps, 6 = 1
cps, 6 = 2

6 = 0
6 = 1
6 = 2

cps, 6 = 0
cps, 6 = 1
cps, 6 = 2

6 = 0
6 = 1
6 = 2

cps, 6 = 0
cps, 6 = 1
cps, 6 = 2

6 = 0
6 = 1
6 = 2

cps, 6 = 0
cps, 6 = 1
cps, 6 = 2
cps, 6 = 0
cps, 6 = 1
cps, 6 = 2

all

std, k = 16
std, k = 16
std, k = 16
std, k = 16
std, k = 16
std, k = 16
std, k = 4
std, k = 4
std, k = 4
std, A; = 4
std, A; = 4
std, A; = 4

city, k = 16
city, A; = 16
city, k = 16
city, A; = 16
city, A; = 16
city, A; = 16
city, k — 4
city, A; = 4
city, A: = 4
city, A; = 4
city, k = 4
city, A; = 4

high-u, A; = 16
high-cr, A; = 16
high-cr, k = 16
high-cr, A; = 16
high-cr, A; = 16
high-cr, A; = 16
high-cr, k = 4
high-cr, A; = 4
high-cr, A: = 4

2 : 37 + 43 : 36 : 40

0 : 18 + 16
0: 17+17
0: 17+16
0:42 + 16
0 : 43 + 16
0 : 41 + 17
0:17 + 17

:35
:05
:50
:40
:20
00
50

0 : 18 + 1 : 26 : 00
0 : 25 + 10 : 10 : 30

0 : 41 + 17 : 00
0 : 41 + 29 : 10

0 : 42 + 1 : 13 : 00
0
0
0
0
0
0
0

19 + 18:55
19 + 19
18 + 18
42 + 16
46 + 20
41 + 18
17 + 28

35
40
30
40
40
00

0 : 19 + 7 : 14 : 40
0 : 27 + 28: 19:00

0 : 43 + 24 : 30
0:44 + 2 :11 : 00
0 : 47 + 7 : 06 : 50

1 : 29 + 28 : 00
2 : 22 + 2 : 54 : 20

4 : 22 + 12 : 33 : 50
0 : 41 + 17 : 00
0 : 41 + 16 : 40
0 : 41 + 17 : 00
0:44 + 17: 15
0 : 45 + 34 : 10

1 : 08 + 3 : 20 : 00

4.5 x 107 + 4.5 x 1010

6.6 x 103 + l . l x 104

7.5 x 103 + 2.1 x 104

8.7 x 103 + 8.6 x 104

6.7 x 102 + 9.4 x 103

7.5 x 102 + 1.4 x 104

8.8 x 102 + 3.2 x 104

2.4 x 103 + l . l x 106

1.4 x 104 + 7.0 x 107

1.5 x 105 + 5.9x 108

1.8 x 103 + 4.0 x 105

7.5 x 103 + 1.5 x 107

2.5 x 104 + 6.7x 107

6.6 x 103 + 1.5 x 104

7.8 x 103 + 3.7 x 104

1.0 x 104 + 1.2 x 105

9.0 x 102 + 1.2 x 104

9.8 x 102 + 2.1 x 104

1.3 x 103 + 5.3 x 104

1.7 x 104 + 5.5 x 107

3.4 x 104 + 4.0 x 108

1.7 x 105 + 1.5 x 109

4.3 x 103 + 3.3 x 107

1.9 x 104 + 1.2 x 108

1.3 x 105 + 4.5 x 108

1.2 x 106 + l.l x 107

2.0 x 106 + 1.0 x 108

3.8 x 106 + 6.9x 108

8.1 x 102 + 9.8 x 103

9.8 x 102 + 1.5 x 104

1.8 x 103 + 4.6x 104

3.2 x 103 + 5.5 x 106

6.2 x 104 + 1.9 x 107

5.2 x 105 + 2.1 x 108

xl

xl55
xl51
xl53
xl51
xl54
xl48
xl45
x30
x4.3
xl48
x88
x36
xl36
xl32
xl38
xl53
xl22
xl35
x93
x6.0
xl.5
xlO4
x20
x6.1
x89
xl5
x3.5
xl48
xl51
xl48
xl46
x75
xl3

14

Table 3: Accuracy of approximate algorithm

method test accuracy (k = 16) accuracy (k = 4)
6 = 0
6 = 0
6 = 0
6 = 1
6 = 1
6 = 1
6 = 2
6 = 2
6 = 2

standard
city

high-cr
standard

city
high-cr

standard
city

high-cr

96%
98%
98%
100%
100%
100%
100%
100%
100%

52%
36%
46%
90%
88%
90%
98%
98%
100%

Table 4: Performance on Emergency Dept. dataset

method time (orig+1000 reps) regions (orig+1000 reps) speedup
naive
6 = 0
6 = 1
6 = 2

4 : 05 + 65 : 50 : 00
4 : 20 + 14 : 36
4 : 22 + 42 : 20

4 : 36 + 2 : 01 : 12

4.5 x 107 + 4.5 x 1010

3.5 x 106 + 7.0 x 106

3.5 x 106 + 3.6 x 107

3.8 x 106 + 1.1 x 108

xl
x209
x85
x31

15

