
A Markov Model
for the Acquisition of Morphological Structure

Leonid Kontorovich1 Dana Ron2 Yoram Singer3

June 3, 2003

CMU-CS-03-1473

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

'Carnegie Mellon University, l kon to r@cs . emu . edu
2Tel-Aviv University, danar@eng . t a u . a c . i l
3Hebrew University, s inger@cs . h u j i . a c . i l
Part of this research was done while L.K. was at the Hebrew University of Jerusalem. This research was supported by the

F.I.R.S.T program of the Israeli Science Foundation. The work of L.K. at CMU was supported by NSF grant EIA-0205456.

Keywords: morphology, Markov, probabilistic suffix tree

Abstract

We describe a new formalism for word morphology. Our model views word generation as a random walk on
a trellis of units where each unit is a set of (short) strings. The model naturally incorporates segmentation
of words into morphemes. We capture the statistics of unit generation using a probabilistic suffix tree (PST)
which is a variant of variable length Markov models. We present an efficient algorithm that learns a PST over
the units whose output is a compact stochastic representation of morphological structure. We demonstrate
the applicability of our approach by using the model in an allomorphy decision problem.

1 Introduction

There has been much recent work on modeling and learning morphology. It seems reasonable to consider
the Workshop on Morphological and Phonological Learning1 as representative of the state of the art in the
field. Reading the presented publications, one gets the sense that morphology does not present as daunting
a problem to the scientific community as, say, speech recognition — if one is willing to invest enough
human-labor, one will get a morphological analyzer for a given language.

Indeed, a voluminous amount of formal work on morphology has been devoted to finding a formalism
using finite state automata for analyzing morphological structure. The most popular approach is based on
the notion of two-level morphology which is modeled by a two-tier automaton. See for instance [9, 10] and
the references therein. Much of the work on finite state automata for morphological structure has focused
on studying the formal properties of the automata and has not involved any learning. While the two-level
morphology is rich enough to capture the morphological structure of natural languages, the induction of an
automaton for the morphological analysis of a given language often proceeds by compiling rules that were
listed by humans.

The amount of human labor that is required to build finite state automata for morphology has spurred
research on automatic and unsupei"vised methods for morphological structure induction using machine learn-
ing techniques. We now discuss a few of the approaches that have been taken. The summary below is by
no means comprehensive and our goal is merely to underscore what is common to the various unsupervised
methods for morphological analysis which motivated this work.

Morphological analysis is often viewed as the process of discovering the affixes of a language, ignor-
ing to a large extent the nonconcatenative phenomena that are certainly non-negligible even in the Indo-
European languages (see for instance [5, 6, 8, 16, 17]). Various unsupervised and lightly-supervised meth-
ods for automatic acquisition of morphological structure and analysis have been proposed [2, 8, 11, 17],
often with impressive results.

The vast majority of the work translates the problem of learning morphological structure into a problem
of clustering sequences or of splitting whole words into sub-sequences. For instance, Baroni et al. [2]
employ a similarity measure to cluster and discover morphologically related words. In a widely cited work,
Goldsmith [8] achieves unsupervised learning of the suffixes of a language using minimum description
length (MDL) scoring. Neuvel and Fulop [11] propose a method for discovering "word-formation strategies"
of a language without explicitly relying on the notion of a morpheme. Their method is based on a notion
of similarity between morphologically related strings. Snover et al. [17] propose a probabilistic language
generation model based on an inverse-square distribution for the number of affixes and the stem and affix
length of words.

There have been also more direct attempts to learn a deterministic finite state automaton for phonological
and morphological rules [7, 18]. These approaches are based on the assumption that a deterministic finite
state machine can be inferred from almost unstructured data and rely on automaton induction techniques
that are guaranteed to work in the limit of an infinite number of examples (see for instance the analysis
of OSTIA in [12]). However, passively learning automata from a finite sample is known to be hard in an
information theoretic sense [1]. Furthermore, Ristad [14] provides an elaborate formal morphophonemic
model and proves that learning his model is also NP-hard.

The various difficulties outlined above have motivated the approach we describe in this paper. Our
method of addressing these problems is based on a new probabilistic model for morphological structure.
Informally, we view word generation as biased random walks on trellises, where the trellises capture mor-
phological structure. Such trellises are translated and generated by a probabilistic suffix tree (PST) [15, 19]

111 July 2002, www . ldc . upenn . edu/maxwell/MorphologyLearning . html

which we describe in the sequel. The learning problem then reduces, to a large extent, to the problem of in-
ferring a hidden alphabet over which the PST operates. To render the learning task feasible, we provide the
algorithm with more explicit supervision in the form of alignments of words belonging to the same root. By
limiting the structure of the internal alphabet of the PST and providing the learning algorithm with partially
parsed and aligned words we are able to devise an algorithm that seems to sidestep the intractability issues
of the more general morphological structure.

The paper is organized as follows. In Sec. 2 we present our formalism for bounded morphological struc-
tures and describe our generative model for capturing the statistics of word generation from morphological
structures. In Sec. 3 we describe our learning algorithm for the generative model. In Sec. 4 we describe
and analyze the results of applying our model and learning algorithm to the task of structure acquisition in
Latin.

2 Formal setting

In this section we present the definitions for our morphological structure. We then proceed to formally
describe the generative model we employ.

2.1 Morphological structure

Units and morphemes: A unit U over an alphabet S is a finite set of U{ G £*, U = {^i, ^ 2 , . . . , un},
satisfying the following restrictions:

• If U consists of a single element, that element must be a literal in S or e:

U = {u} =>ue £ U { e } .

• No element of U may be longer than M: Vu E U, \u\ < M for some fixed constant M > 0 (for all
our computations, we set M = 1).

We denote by U the (finite) set of all possible units over E and call it the unit space.

A unit U generalizes a literal a G S in two ways. First, a unit may contain strings longer than a single
literal long. Second, a unit may contain several literals. Most generally, a unit contains strings of varying
lengths.

The intuition is that the elements of a unit are somehow "related" or "interchangeable". For example, af-
ter seeing the English words illegal, impractical, ineligible, irreplaceable, (and knowing that they all contain
the "same" prefix), it is natural to define the unit U = {I, m, n, r} for the different ways in which the prefix
may end. Incidentally, in this case U corresponds to a known phonetic class — the so-called liquids. That
is not a coincidence: the intended interpretation for a unit is "a collection of strings related phonetically
or grammatically". Another example: in Russian, we have iskat' ("to search") and ixu ("I search")2; the
numerous examples of this kind necessitate the unit U = {sk, x}.

We define a morpheme fi to be a sequence of units: \x — {U1U2 . . . UT), where Ut G U. We use
triangular brackets to emphasize that \i is an ordered sequence whose elements may repeat, and omit the
commas between the terms to evoke a concatenative association. This is a formalization of the less formal
definition of "morpheme" from linguistics - "the smallest unit of meaning", "the smallest part into which

2Throughout this work, when providing examples we use a quasi-morphophonemic representation that seems best to illustrate
a point; it should not be taken literally and may contain minor inconsistencies.

a word can be meaningfully broken down", etc. If we have the units U\ = {i} and C/2 = {I, nn, n, r}, then
the morpheme /i = (U1U2) = {{«}{', m, n, r}> captures the common prefix in the words illegal, impractical,
ineligible, irreplaceable. Another example: after seeing theater and theatrical, and assuming we have the
units {t}, {h}, {e}, {a}, {r}, {e,e}, we build the morpheme \i = ({t}{h}{e}{a}{t}{e,e}{r}) to capture
the theater! theatr- root. We can also understand the definition of a morpheme as follows. A morpheme has

• g :

Figure 1: The morpheme ({r}{i,a, u}{n}{g}) visualized as a trellis with 3 paths, corresponding to ring,
rang, and rung.

the structure of a trellis where units are the basic building blocks that make up these morpheme-trellises in
a given language. A particular word is derived from a given morpheme by traversing the morpheme's trellis
and outputting a string form S* at each traversed node. An illustration of this alternative view is given in
Fig. 1.

Span and allomorph: We next define the span of a sequence of units u) = C/1C/2 • • • UT by span(a>) =
{u € S* \u = u\U2 . . . UT, ut € Ut}. (The unit sequence u may be a single morpheme or a string of
morphemes.) An allomorph a of a morpheme /i is an element of its span: a G span(/i). We shall use "the
span of /x" and "the allomorphs of /i" interchangeably. Identifying morphemes with trellises as above, the
span of a morpheme is seen to be the set of all string-paths through the morpheme-trellis. For example,

span(({i}{l, m, n, r})) = {il, im, in, ir}

and
span(({t}{h}{e}{a}{t}{e,e}{r})) - {theater,theatr}.

Observe that our formalism embodies an abstraction from the specifics of a particular encoding, whether
it be phonetic, morphophonemic, orthographic, or other. For example, the Latin word for "night" is nox
and when inflected, its stem becomes noct-. In the orthographic transcription, we would have the mor-
pheme ({n}{o}{x, ct}). If the transcription were phonetic, however, we might get a different morpheme:
({n}{o}{k}{t, e}) (the latter being "truer" to the underlying morphophonemic process).

A morpheme // defines a language over S*, namely, its span. It is easy to see that, for a fixed set of units
W, the class of languages defined by the morphemes is strictly weaker than bounded expressions. On one
hand, any finite collection of strings is captured by some bounded expression. On the other hand, the strings
a and b cannot be allomorphs of the same morpheme unless the units U\ = {a,e} and U<i — {b,e}, or
Us = {a, b} are in W. The formalism, as presented so far, is clearly far from being complete. For example,
it does not allow precise definitions of morphological synthesis or analysis, and does not handle inflections.
We do have a more comprehensive morphological formalism, which we intend to include in a long version
of this work. While the extended formalism is capable of capturing more complex morphological structures,
its complexity makes the learning problem much more difficult. In order to facilitate efficient learning of
morphological structure, we therefore confine ourselves to the rather restrictive formal structure that was
given above.

2.2 Generative model: Variable-Context Probabilistic Suffix Trees

Human language morphology is inherently ambiguous. For example, there is more than one way to synthe-
size the past tense of dream (dreamed and dreamt) and more than one way to analyze the word resent ('to
dislike' or 'sent again'). Thus the structural formalism ought to have an accompanying probabilistic gener-
ative model Pr(/i, u) £ [0,1], which assigns a probability to the event of generating the sequence of units
UJ and its word-realization u. Given a generative model we can use it for both synthesis and analysis. The
synthesis map $ takes strings of units (which may consist of several morphemes) to their "most probable"
word-realizations:

— 'argmax Pr(w|/i, context). (1)

The analysis map ^ is a sort of inverse of synthesis - it takes words in a language to their "most probable"
parent unit sequences:

^(u) — argmax Pr(w|/x, context). (2)

(Without committing to a specific definition of context, what we have in mind is sufficient neighboring
units to remove the types of ambiguities mentioned above.3)

In what follows we suggest a particular generative model which is a certain type of Markov model. It
is important to emphasize that the descriptive formalism we introduced in the previous subsection does not
force a unique generative model. What we describe here is simply one of many possibilities. We start with
a high level description of the model and then turn to a more formal definition.

A High Level Description. Our model generates sequences of pairs, [unit,substring] where the substring
in the pair always belongs to the unit in the pair. The idea is that the projection of such a sequence on the
first element of each pair (the unit), results in a morpheme (or a concatenation of morphemes), while the
projection on the second element results in an allomorph (or concatenation of allomorphs). Note that the
allomorph always belongs to the span of the corresponding morpheme. In some cases we may view the units
in the sequence as being "hidden", similarly to the way states in a Hidden Markov Model are hidden. In
other cases, such as during the learning phase, the units are partially hidden (see Subsection 3.2 for further
elaboration). However, it will be convenient at this stage to view both parts of the pairs in the sequence as
observed.

These sequences are generated iteratively, one pair at a time. The probability distribution on the next
pair that is output, depends on (some of) the pairs previously generated (the "history" or "context"). Here
we actually assume that the next-pair distribution depends only on the units previously generated, and not
on the substrings. This assumption is elaborated subsequently. An important aspect of our model is that the
length of the context (the number of previously output units) that determines the distribution on the next pair
may vary.

The intuitive explanation behind the variable contexts that are used for generating the next pair is that
different contexts have different degrees of "predictive power". For example, suppose that we have a unit for
each letter in the English alphabet, and that the unit is a singleton set that contains only the given letter. In
this special case, there is a one-to-one mapping between units and the single symbol they contain. We hence
view the output sequence as a string over the English alphabet, which we denote by S. Suppose that given
a sequence of English text, u\. ..UT £ S T , we are trying to predict the next letter, UT+I- If t*r = q l ^ n
this context is pretty much sufficient — we can say with a high confidence that UT+I = u. Other letters are

3The dreamed/dreamt ambiguity is unlikely to be resolved by any local neighbors; the choice is more a function of the overall
discourse style. For the purpose of the formalism, we include this with the "context".

less informative and a longer context is required. This suggest to have a variable context length. In addition,
since our model is constructed based on a limited-size data set, longer contexts appear less often and are
hence are less reliable statistically. We will take this into account in the learning phase. We now proceed to
formalize the above description.

A Formal Definition of the Model. Let W C U denote a fixed set of units, and let Stree = W x E*. We
refer to £tree as our symbol alphabet, where each symbol consists of a pair [[/, u], U G W\ u G U C £*.
Our model generates sequences [C/i, ui], [£/2, u2]... G ££ree in the following probabilistic manner. Suppose
that the sequence generated up to time T is [U\, u\]... [UT, UT\. Then the distribution over the next symbol
(pair) \UT+\, UT+I] is determined by the last d units Ur-d+i • • • #T> where d < D, and Z) is the maximum
order of the model.

Specifically, our model is a slight variant of a Probabilistic Suffix Tree (PST), of maximum order D. We
later explain in what sense our model differs, and for the sake of brevity, we refer to our variant as a PST.

Figure 2: Variable context suffix tree.

A PST is represented by a tree of depth at most D, and degree |W|. Every edge of the tree is labeled
by a unit in W, where the \W\ edges between a node and its children are labeled by the different units in
W. The nodes of the tree are labeled by sequences over W: the root of the tree is labeled by the empty
sequence A, and the label of every other node is the sequence of units on the path from the node to the root.
Every node represents a context, where the length of the context is the depth of the node in the tree. For an
illustration, see Fig. 2.

With each node in the tree we associate a next-symbol probability distribution. Namely,

• 7 : W-D x S t ree —>> [0,1] is the (conditional) next-symbol probability distribution, where for each
node q = U\... Ud G Wd in the tree, we have

A sequence is generated as follows. Let U\... UT be the sequence of units generated up to time T. That
is, U\ . . . UT is the projection of the output sequence [C/i, u\]... [UT, UT] onto the first coordinate of each
pair. Then, the next symbol [U,u] G £ t r e e is selected probabilistically according to y(q, •), where q —
Ur-d+i • • • UT is the deepest node in the tree that corresponds to a suffix of U\... UT-

The difference between a PST as define above and PST's as defined in other works (cf. [15, 19]), is
that we assume that the next symbol probability distribution at time T + 1 depends only on the sequence of

d < D units Ur-d+i - -UT that were previously generated, and not on the d < D symbols ur-d+i >..UT
generated, as is more standard. In other words, we take a projection of the sequence of symbols onto the
first part of each symbol, and condition the next symbol only on the projection.

For some problems concerning human language morphology, such as for the purpose of synthesizing
words, this assumption is too strong. Indeed, the actual substrings output, UT-D+I • • • UT, and not only the
sequence of units, may matter. A full model would condition the event [UT+I,V>T+I] on the entire d < D-
history [Ur-d+iiUT-d+i] • • • \UT, UT\- Since in this investigation we only deal with the analysis mapping
(see Subsection 4.1), this approximation seems appropriate.

3 Learning Algorithm

3.1 Overview

Since our learning process has several stages, we first present a high-level overview of the learning algo-
rithm, and then give more details on each stage. Our initial data consists of subsets of words, where each
subset contains several allomorphs that belong to the span of a single morpheme (or possibly each word is a
concatenation of several allomorphs from the spans of a fixed list of morphemes). We start by aligning the
words in each subset and obtaining in this way sequences of [unit,substring] pairs that are suited for training.
We then compute empirical next-symbol probability distributions 7(-, •) based on raw counts. In the next
stage we perform a certain smoothing process on these empirical probabilities. Using these smoothed counts
we decide what units should be merged. Given the new units, we reparse the subsets of input strings and
thus obtain modified sequences of [unit,substring] pairs. We continue smoothing, merging and reparsing,
until no improvement is obtained by merging.

1. input aligned, unit-segmented strings

2. compute 7(-, •) using raw counts

3. smooth the raw probabilities

4. merge units

5. (reparse the input strings)

6. if nothing left to merge, stop; else goto 1

Figure 3: Learning algorithm overview.

3.2 Training data

An ideal training set would consist of segmented and aligned morpheme/allomorph sequences. For example,
the Latin verb ago means 'I do/act/drive' and the prefix com- has the general meaning of 'with' and can act
as an intensifies When these are concatenated, several things occur at the morphological level4 (Fig. 4). In
the perfect tense, there is a different stem change: we have ago —> egi ('I acted'), where a short a becomes a

4There is also a semantic change: cogo means 'I compel'. However, we currently make no mention of semantics.

COm + a g o —> * CO ma gO (direct concatenation)

—•> *COagO (intervocalic m disappears)

—> COgO (a is absorbed into o)

Figure 4: (*) indicates an unattested or hypothetical intermediate form.

long e. Likewise, in the perfect passive participle we get actus ('the thing having been acted').5 Information
of this sort would be presented roughly as shown in Fig. 5 in a standard Latin dictionary. We transcribe all
of this morphological information as in Fig. 6. From there, this information is naturally expressed in terms
of sequences of [unit,substring] pairs (Fig. 7).

ago, egi, aCtUS to do/act/drive
COgO, COegi, COaCtUS to compel

exigo, exegi,exactus to exact

Figure 5: Typical Latin dictionary entries.

1.
2.
3.
4.
5.
6.
7.
8.
9.

/-aei/cg/-t/
/-aei/cg/-t/
/-aei/cg/-t/
/c/o/-lmnr/#/-aei/cg/-t/
/c/o/-lmnr/#/-aei/cg/-t/
/c/o/-lmnr/#/-aei/cg/-t/
/e/-cfx/#/-aei/cg/-t/
/e/-cfx/#/-aei/cg/-t/
/e/-cfx/#/-aei/cg/-t/

[ag-]
[eg-]
[act]
[co-#-g-]
[co-#eg-]
[co-#act]
[ex#ig-]
[ex#eg-]
[ex#ag-]

Figure 6: Examples of aligned morpheme (left) and allomorph (right) transcription. Note that the data structure used
here forces M = 1.

Note that we have introduced a morpheme break unit [/# = {e}, whose function is to indicate morpheme
boundaries for the PST. The unit U# serves two purposes. During synthesis, the morpheme boundaries it
demarcates are essential for capturing morphotactic phenomena. During analysis, inferring the presence of
[/# amounts to segmenting words into morphemes - something our model yields quite naturally with no
added effort.

The training setup we've described above is perhaps overly idealistic and we might consider various
relaxations of it. The former might be called the "intact morphemes with placeholders" scenario, in the
sense that, for example, the morpheme ({c}{o}{l, m, n, r, e}) remains intact even though we don't observe
any literal of the {I, m, n, r, e} unit in the cogo/coegi/coactus entry in Fig. 6. Since we have observed the
other allomorphs of this morpheme in the other entries, we have left a placeholder in the alignment for this
unit.

One might imagine less propitious learning scenarios - for example, we might be forced to rely only on
local alignment information, as in Fig. 8.

As a further relaxation, one might consider removing the morpheme break unit U# from the training da-

5Note that we do not concern ourselves with the inflectional endings -o, -i, -us, etc.; only stem changes such as ag -̂» eg —> act
interest us for now. In future work, we will address the issue of inflectional affixes.

1.1
1.2
1.3
2.1
2.2
2.3
3.1
3.1
3.1

[ag-]
[eg-]
tact]
[co#-g-]
[co#eg-]
[cotact]
[ex#ig-]
[ex#eg-]
[extact]

2.
3.
4.
5.
6. { } ,] , [{ } ,] , [{ ,

Figure 7: Obtaining [[/, w] sequences from alignments.

/ae/cg/-t/
/ae/cg/-t/
/ae/cg/-t/
/c/o/#/-ae/cg/-t/
/c/o/#/-ae/cg/-t/
/c/o/#/-ae/cg/-t/
/e/x/#/aei/cg/-t/
/e/x/#/aei/cg/-t/
/e/x/#/aei/cg/-t/

Figure 8: The right column is superfluous: we form the units out of the columns of each local alignment.

ta, and perhaps even all of the alignment information, feeding the learner just the groups {cog, coeg, coact},
etc. Although we have ideas for learning in various settings, in this paper we shall stick to the simplest one,
with a minor twist of difficulty described below.6

Using the notation presented in the previous section, the training data that is given to the learning al-
gorithm consists of sequences of pairs [C/i, u\]... [UT, V>T], where Ui E Ui, and each Ui is a subset of a
real unit U E W. We refer to Ui as a pre-unit, and assume that there are no two identical pre-units that
are subsets of two different units. The set of pre-units is denoted VV. Hence, we do not assume that we
get the actual sequences of symbols generated by the target model, but rather we have partial information
concerning these sequences. Note that if the units were completely "hidden" (that is, if the pre-unit Ui to
which Ui belongs is simply {^}), then the problem of learning PST's, even of order 1, would be as hard as
learning an HMM.

3.3 Empirical probabilities

Given the input data as described above, we define the empirical probabilities induced by the data, in a
natural manner. For sake of notational simplicity, we use Ui and not Ui with the understanding that Ui is a
pre-unit and not necessarily a unit. Similarly, we use W and not VV. Let S be a data sample consisting of
sequences of the form \U\,u\]... [UT, UT] € ££ree.

• For any subsequence q = U\... Ua E Wd, d < D, let N^ be the number of occurrences of q in S.
That is, the number of occurrences of the form [*,*]... \U\ , *] . . . [C/d, *]...[*,*] in S.

For any q = U\.. Md and pair [17, u] E S t r ee , let N^rUu, be the number of occurrences of q that are
followed by [U,u].

6An excellent question is how one obtains such data. We created our training set starting with essentially a Latin dictionary as in
Fig. 5 and running standard alignment algorithms with various Latin-specific heuristics. In the future we plan to address the issue
of automating this process further.

• Given the above let
N

denote the next-symbol empirical probability distribution.

3.4 Smoothing empirical probabilities

Given the empirical probabilities 7 as defined above, we can easily construct a PST whose nodes correspond
to subsequences of (pre-)units that occur in the data, and whose next next symbol probability distributions
are 7. However, even if the pre-units we have were actually the correct units, such a PST would most
probably be a bad hypothesis of the target PST due to the unreliability of some of the empirical counts. In
order to address this difficulty we would like to assign weights to the nodes of this "empirical PST", and
to output as our hypothesis a weighted version of this tree. Intuitively speaking, the weight of each node
measures how "reliable" this node is as compared to its parent (and other ancestors in the tree).

More precisely, an empirical PST with empirical probabilities 7 and weights a(q) assigned to its nodes
q = JJi... Ud, d > 1, induces the following next symbol probability distributions. For each node q =
U\... Ud, and pair [[/, u]9

where q^-.d] = U2 Ud is the parent of q in the tree, and in general, for 1 < % < j , we let q^ = Ui...Uj.
If we want to unravel the recursion then we get that for d > 0,

where a(X) = 1.

3.5 The smoothing procedure

We now discuss a procedure for obtaining the smoothing weights (that is, the a's). This procedure is
performed for a fixed set of (pre-)units. We later discuss how pre-units are merged so as to obtain units.
Our smoothing method builds upon previous work and combines the online Bayesian averaging procedure
for context tree weighting [13, 19] with EM-based techniques for smoothing word probabilities in n-gram
models <cf. [3]).

It is assumed that the corpus has been split into two parts: a training sample (~ 90%) denoted S, and
a validation sample (~ 10%) denoted V. We use the validation sample to set the weights a(q), using the
counts Nl[UM.

The a's are computed iteratively, using a straightforward to derive EM update rule. We initialize
a^\q) = 0.5 for every q. For every t > 0 we let 7W(A, [U,u]) be as in Equation (3), with a^(q) in
place of a(q).

Given this we iterate:

y(t)

[U,u]

The update rule in (5) is derived as follows. Fix a sequence q — U\... Up, put qd = q[D-d+\:D] f° r

d — 0 , 1 , . . . , D. To compute a(g<j), assume a(qa-i) and 7(^ -1) were already computed. Observe that
a(qd) is the probability that, given the history qd, the probability of the next symbol is conditioned on all of
qd, while (1 — a(qa)) is the probability that this event is conditioned on qa-i- Define the indicator variable
I[u,u]t0 t>e 1 if ̂ e generation of [[/, u] was conditioned on the full qd history and 0 if it was conditioned on
qd-i. Initialize a^(qd) — 0 and assume t iterations have been executed. The (additive) contribution of q&
to the log-likelihood of the held-out data is

K[u,u] [l[U,u] log(a(()7(f)) + (1 - I[UM) log[(l - a«)7W]] (6)

where 7 is computed as in Equ. (3) and several qd and [[/, w] arguments/subscripts have been omitted for
readability. The E-step is to set the "hidden" variable I[u,u] equal to its current expected value; we define

(7)

«W(grf)-7to,[t/,n]) ,R,

~~ —^w *

The M-step is to maximize o^t+l\qd) at the next iteration; this is achieved by replacing a^ with a^+1) in
(6), differentiating CQd w.r.t. a^t+l\qd), and setting the derivative to 0.

3.6 Merging units

As noted previously, the problem with the units observed in the training data is that they may be fragmentary
and over-specific. For example, we may have the following morphemes in the training data:

and
/ijoin = ({i}{u}{n}{c,g,x}{t,e})

raising the question of whether we have observed two distinct units U\ = {c, h,x} and U2 = {c,g, x} or
two instances of a single unit C/3 = U\ U U2 = {c, g, h, x}. We cast this question in terms of hypothesis
testing and use the likelihood-ratio test, described in the sequel.

Define a merge operator, whose argument is a set of units, {U\, t / 2 , . . . , Un} and whose action is to
replace each occurrence of U{9 1 < i < n in the training data with U' = [)? U{. Of course, after such a
merger, the likelihood of the observed data will also change.

For any subsequence q = U\... Up and pair [[/, u], define

10

prefix
-
in
in
-
com
ex
-
com
ex
-
-
ad
-
-

root

iac
iac
iac
ag
ag
ag
ag
ag
ag
ag
tang
tang
tang
tang

form
1 pers. sng. pres. ind. act.

1 pers. sng. pres. ind. act.

1 pers. sng. perf. ind. act.

1 pers. sng. pres. ind. act.

1 pers. sng. pres. ind. act.

1 pers. sng. pres. ind. act.

1 pers. sng. perf. ind. act.

1 pers. sng. perf. ind. act.

1 pers. sng. perf. ind. act.

perf. pass. part. masc. sng.

1 pers. sng. pres. ind. act.

1 pers. sng. pres. ind. act.

1 pers. sng. perf. ind. act.

perf. pass. part. masc. sng.

result
iacio
inicio
inieci

ago
cogo
exigo
egi
coegi
exegi
actus
tango
attingo
tetigi
tactus

comment
"I throw"

a reduces to e with prefix

a lengthens to to e in perfect

"I act"

nasal m disappears, vowel a reduces to e

a reduces to i

stem vowel lengthens in perfect

stem vowel lengthens in perfect

stem vowel lengthens in perfect

g alternates with Ct in perfect part.

"I touch"

d assimilates to t, a reduces to i

reduplication and nasal infix reduction in perf.

g alternates with Ct in perfect part.

Figure 9: Examples of morphological structures in Latin.

where ^g[Uu] and 7(9, [U,u]) are as in Subsections 3.3 and 3.4, and OlogO = 0. Using simple algebraic

manipulations, we can write now the log-likelihood of the data in terms of £S\Uu-\ as follows,

ClLuV (10)

Let CQ be the log-likelihood of the data before the merger of a set of units and Cf its log-likelihood after
the merger. We are thus faced with a classical hypothesis testing problem: whether the two units should be
kept intact (the null hypothesis) or be merged. The likelihood-ratio is the optimal procedure for a single
hypothesis testing problem [4]. The log-likelihood ratio in our case amounts to computing ACS = Cf — CQ
for all legal mergers. An ideal algorithm for discovering the best set of units would find all the sets of units
whose merger would maximize ACS = Cf — £Q , and merge them. Unfortunately, such an algorithm would
be rather inefficient. Therefore, instead of considering all subsets of units for merging, we examine them
two at a time. The actual computation is made more efficient by the fact that when considering the units U\
and U2 for merger, we need not compute the whole sum in Equation (10) — we only sum over those terms
in which either of U\ or U2 appears. Thus we greedily merge pairs of units until there is no longer a pair
whose merger increases the likelihood of the data. The appendix shows the calculations involved in such a
merger.

Remark Note the following potential problem with our merging procedure. Suppose there is one real
unit, U\ = {a, u, i} and another real unit, U2 = {a, u, e}. If we were to observe the pre-unit U = {a, u},
sometimes as a realization of U\ and sometimes of t/2, then our procedure would merge U with at most one
of (C7i, U2), but not with both. Let us call this the problem of merging without replacement. To address this
issue we make the simplifying assumption that every pre-unit we observe belongs to exactly one real unit.
We do not know if there is an efficient way to merge with replacement (the naive method would require an
exponential calculation).

11

% False Positive

Figure 10: False-negative vs. false-positive curves for the learned (merged) and initial (unmerged) PST.

4 Evaluation

Our training data consisted of 1684 groups of segmented and aligned Latin verbs (one such group is dis-
played in lines 4-6 of Fig. 6), resulting in a total of 5145 sequences of [U,u] pairs. A separate test set
consisted of 100 groups totalling 297 [[/, u] sequences. We chose Latin as a test case because of its rich
yet regular morphology. Latin being an Indo-European language, its morphology is concatenative, yet dis-
plays numerous nonlinear phenomena, such as prefix- and tense-dependent vowel reduction, assimilation,
reduplication, and various consonant alternations. We provide a few illustrations of these phenomena in
Fig. 3.6.

We note that the training data started out with 39 units (candidates), and after iterated greedy pairwise
merging we ended up with 23 units. Browsing the results that the merging procedure produces reveals a
reasonable set of units. Of course, the real test of this routine is how well the resulting morphological
engine can synthesize and analyze the forms. In this extended abstract we restrict our attention to analysis,
and provide experimental evidence to our model's capabilities.

4.1 Word Analysis

Analysis is the process of taking a set of strings {si}f=l C S* and producing a sequence of units u =
U\... UT such that {si} C span(a>). We may view analysis as an application of the \I> operator defined
in (2) to each Si, with the constraint that *b(si) = \P(SJ) for 1 < ij < K. Thus analysis subsumes
both alignment and segmentation: we align the strings Si by forcing them to be generated from the same
sequence of units and segment them by identifying indices t such that Ut = U# (the morpheme break) at
various locations in u.

The generative model we described above, which assigns probabilities to single sequences of [U,u]9 is
readily adapted to this task. For q G W D , U G W and u eU9 define

ueu

>V*= 5(q,U) •

Define A to be an alignment of {si}f=l i f i i s a X x T matrix over 2 U {•} (• denotes here the empty
symbol), and the ith row of A, with the D's removed, equals Sj. For u> = U\... UT, we say that u> is
compatible with alignment A if the tth column of A, -<4[*,t], is a subset of Ut (notation is slightly abused).

12

We define the following generation process for alignments: A sequence of T units is generated Markovially
with S(q, Ut) as the probability of the next unit being Ut conditioned on the context q G WD, and, given
the choice of Uu generating K independent emissions U{ e Uu according to /?(•, Ut, Ui). Let $tu denote the
number of times character u occurs in the tth column of A. Then the joint probability of (a;, A) is computed
to be:

Pr(u;, A) = Y[
t

-pr (P(<»[t-D+l:t],Ut+l,u))ttV

where the factorials come from the multinomial coefficient. Observe that for K — 1 this reduces to
Ut 7('? Wti ut])- OUT algorithm for computing the most probable (a;, A) for a given {s^ is based on the
Viterbi algorithm with a modification to handle remissions

4.2 Classification Based on Word Analysis

In order to evaluate the analysis capabilities of the model we have learned, we consider the problem
of determining, given two words si and 52 in a language, whether or not they are allomorphs of the
same morpheme. Our model provides a natural way of doing this: parse the words {51,52} together
to obtain Pr(u/ 1 2 \ A^) and then each one separately to obtain PT(U;^\A^) and Pr(a/2), A^). If
log(Pr(u/12\ A<12))) - log(Pr(a;(1), A&) • Pr(u/2), A^)) > r, for some fixed threshold r, output yes;
otherwise output no. The choice of the threshold r naturally affects the results in terms of the number of
false positives versus false negatives. The intuition behind parsing strings "together" vs. "separately" is
as follows. Let us view the negative log probability of a transition or emission as a part of the cost for a
parse. When we parse strings together, we only charge their unit (S) transitions once; when we parse strings
separately, we charge, the sum of the — logo's for each string. Thus the 6 contribution to the parse cost
will always be lower (more favorable) when we parse strings together. However, if two strings with wildly
different characters are forced to be generated by the same unit sequence, the emissions (3 are going to have
a low probability, resulting in a high parse cost. This captures the idea that allomorphs are realizations of
some underlying sequence of units.

The setup is as follows: we took the 100 test word groups, (297 actual words), and computed the edit
distance between each pair (with a cost of 1 for swap or delete). Then we took the 50 string pairs that came
from the same morpheme and had the highest edit distance, as well as the 50 string pairs that came from
different morphemes and had the lowest edit distance, and these 100 string pairs are the evaluation set. Note
that this deliberate choice of strings to compare makes it as hard as possible on our algorithm. In Fig. 10
we demonstrate the performance of our algorithm by ploting the percentage of false-negatives vs. the false-
positives. The curves in the figure illustrate how the performance of the merged units-PST is consistently
better than the initial PST that was merely smoothed. This behavior indicates that the Markovian trellis
model combined with the learning algorithm captured the stochasic properties of morphological structure.
The overall misclassification error of the learned PST is 11% while for the unmerged PST the error is 22%.
While this is a good indication that learning of the trellis statistics indeed took place, the error of the learned
PST is fairly high. We believe that this can largely be attributed to the relatively small number of examples.
In future research we plan to enrich our training set by using the learned PST as a boostrap mechanism to
segment and align more words.

13

5 Conclusion

Our fundamental assumption here is that it is much easier to obtain training data of the type that we use than
to manually list the morphological rules for a language. Indeed, the former task was accomplished by one
person with the aid of a computer in the timespan of about a week, while the latter has been known to be
far more labor-intensive. Another aspect that seems to set our work apart from many others is that while
heuristics often enter NLP algorithms, in our case their presence is limited to constructing the training data
- the learning algorithm itself is a faithful implementation of the simple computational model described.

Our work raises further questions of how to extract groups of morphologically related words from an
unlabeled corpus, and how to turn these into aligned strings to feed into our algorithm - we plan to address
these in future work.

Appendix

Here we give the calculations for the merging operation described in Sec. 3.6.

Let Nq^jj^ be the as in Sec. 3.3, with the superscript omitted for clarity. Here, all contexts q have the
maximum length D. Suppose we are merging units U^ and Ui2. We define an equivalence relation, = m , on
contexts by setting

q™ =mQW iff whenever rt'] ^ g(2)[i], we have {^^[i] ,^^} = {Uh,Ui2} (11)

(in other words, two contexts are = m equivalent if whenever they differ by a unit, that unit is either U^ or
Ui2).

Define a new unit U' = U^ U U{2 and let W = W U {U1} 7. Observe that the merging operation <p
(which replaces each occurrence of Uix and V{2 in the training data with Uf) collapses each equivalence
class of unmerged-unit contexts into a single merged-unit context:

if : WD -> {W)D.

Thus if q is a merged-unit context, ip~l{q) is the equivalence class of the unmerged-unit contexts that get
mapped to q.

Let Q{U{) C (W)D be the set of all length-!} strings of units that contain at least one occurrence of Ui\
let QiU^ ,Ui2) = QiU^) U Q(Ui2). The unmerged log-likelihood was computed in Eq. (10):

Nq,[u,u]\og(7(q,[U,u}))- (12)

We can now define the merged counts N' ,Uu,:

Nq[Uu]] (q i Q{U')) A (U ^ U')
K[U,u] = \ N*JlUiltu] + Nqi[UiatU] , {q i Q(U')) A(U = U') . (13)

'))A{U = U')

7Logically it might be more appropriate to define W = W \ {U^ , Ui2 } U {[/ '} , that is, to remove U^ and Ui2 from the set of
units. We only keep them for notational convenience.

14

Then, we get an expression for the merged log-likelihood:

£ m = E K[UMlogtf(q,[U,u])), (14)

where ^'(q, [[/, u]) is the context-smoothed next-symbol probability, computed from the renormalized merged
counts. The likelihood change, AC = Cm - Cu is simply the difference of the two sums in (14) and (12).
Note that the actual summation need only be carried out over those terms which have changed after the
merger, namely

AC = - J2 Nq^u]log(y(q,[U,u]))

E
Q(U')

+ E
Q(Uf)

E

References

[1] D. Angluin. A note on the number of queries needed to identify regular languages. Information and
Control, 51:76-87, 1981.

[2] M. Baroni, J. Matiasek, and H. Trost. Unsupervised discovery of morphologically related words based
on orthographic and semantic similarity. ACL Workshop on Morphological and Phonological Learn-
ing, 2002.

[3] P. Brown, V. Delia Pietra, P. de Souza, J. Lai, and R. Mercer. Class based n-gram models for natural
language. Computational Linguistics, 18(4):467-479, 1992.

[4] T. Cover and J. Thomas. Elements of Information Theory. John Wiley & Sons, Inc., 1991.

[5] M. Creutz and K. Lagus. Unsupervised discovery of morphemes. ACL Wksp. on Morp. and Phon.
Learning, 2002.

[6] E. Gaussier. Unsupervised learning of derivational morphology from inflectional lexicons. ACL Work-
shop Unsupervised Learning in Natural Language Processing, 1999.

[7] D. Gildea and D. Jurafsky. Automatic induction of finite state transducers for simple phonological
rules. In Proc. of the 33rd Annual Conf of the ACL, pages 9-15, 1995.

[8] J. Goldsmith. Unsupervised learning of the morphology of a natural language. Computational Lin-
guistics, 27(2):! 53-\9$, 2001.

[9] L. Karttunen. Finite-state constraints. In Intl. Conf on Current Issues in Computational Linguistics,
1991.

15

[10] K. Koskenniemi. Two-level model for morphological analysis. In Proc. of the Eighth Intl. Joint
Conference on Artificial Intelligence, pages 683-685, 1983.

[11] S. Neuvel and S. Fulop. Unsupervised learning of morphology without morphemes. ACL Workshop
Unsupervised Learning in Natural Language Processing, 2002.

[12] J. Oncina, P. Garcia, and E. Vidal. Learning subsequential transducers for pattern recognition and
interpretation tasks. IEEE Trans, on PAMI, 15(5):448^58, 1993.

[13] EC. Pereira and Y. Singer. An efficient extension to mixture techniques for prediction and decision
trees. Machine Learning, 36(3): 183-199, 1999.

[14] E. Ristad. Complexity of morpheme acquisition. In Language Computations. AMS, 1994.

[15] D. Ron, Y. Singer, and N. Tishby. The power of amnesia: learning probabilistic automata with variable
memory length. Machine Learning, 25(2): 117-150, 1996.

[16] P. Schone and D. Jurafsky. Knowledge-free induction of morphology using latent semantic analysis.
In Proc. of the 4th Confi on Computational Nat. Lang. Learning, 2000.

[17] M. Snover, G. Jarosz, and M. Brent. Unuspervised learning of morphology using a novel directed
search algorithm: Taking the first step. ACL Workshop on Morphological and Phonological Learning,
2002.

[18] P. Theron and I. Cloete. Automatic acquisition of two-level morphological rules. In Fifth Conference
on Applied Natural Language Processing, pages 103-110, 1997.

[19] F.M.J. Willems, Y.M. Shtarkov, and TJ. Tjalkens. The context tree weighting method: basic properties.
IEEE Trans, on Information Theory, 41(3):653-664, 1995.

16

