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Abstract

We compute the differential volume element of a family of metrics on the multinomial simplex.
The metric family is composed of pull-backs of the Fisher information metric through a continuous
group of transformations. This note complements the paper by Lebanon [3] that describes a metric
learning framework and applies the results below to text classification.



 



1 Basic Concepts from Riemannian Geometry

We start with a brief discussion of some basic concepts from differential geometry and refer to
[1] for a more detailed description. A Riemannian metric g, on an nth dimensional differentiate
manifold .A/f, is a function that assigns for each point of the manifold x G Ad an inner product on
the tangent space TXM. The metric is required to satisfy the usual inner product properties and
to be C°° in x.

The metric allows us to measure lengths of tangent vectors v G TXM as \\v\\x — yjgx{v,v), leading
to the definition of a length of a curve on the manifold c : [a, b] -» M as Ja \\c(t)\\dt. The geodesic
distance function d(x, y) for x, y G M. is defined as the length of the shortest curve connecting x
and y and turns the manifold into a metric space.

For a Riemannian manifold (M,g) the differential volume element of the metric at x G M is
given by the square root of the determinant dvolg(x) — y/detg(x). The volume element dvol(x)
summarizes the size of the metric at x in a scalar. Intuitively, paths crossing areas with high volume
will tend to be longer than the same paths over an area with low volume.

Let F : M —• J\f be a diffeomorphism of the manifold M onto the manifold AT. Let TxM,TyN
be the tangent spaces to M. and J\f at x and y respectively. Associated with F is the push-forward
map F* that maps v G TXM to v' G TF^J\f. It is defined as

v(h oF) = {F*v)h, V/i G C°°(N).

Intuitively, the push forward maps velocity vectors of curves to velocity vectors of the transformed
curves.

Assuming a Riemannian metric h on A/*, we can obtain a metric Fft on M called the pullback
metric

F*hx(u,v) — hF(x}(F*u,F*v)

where F* is the push-forward map defined above. The importance of this map is that it turns F
(as well as F"1) into an isometry; that is,

dF*h(x,y) = dh(F(x),F(y)).

2 A Family of Metrics on the Simplex

We start by defining the n-simplex by

{ n+l
i

Vn= f

1=1

and the n-positive sphere by

{ n+l
x t K • vt, ̂  / u,

The interior of the above manifolds will be dennoted by hit7^ or int<S+



Figure 1: The action of Fx (left) and F'1 (right) o n ? 2 f o r A = ( | , | , | )

Consider the following family of diffeomorphisms F\ : intPn —• infPn

where x • A is the scalar product YA=I
 xi^i- The family F\ is a Lie group of transformations under

composition that is isomorphic to infPn. The identity element is ( ^ y , . . . , ^ j ) and the inverse
of F\ is (FA)" 1 — FJI where r\i — y1 \K • The above transformation group acts on x G infPn by
increasing the components of x with high Â  values while remaining in the simplex. See Figure 1
for an illustration of the above action in 7̂ 2-

We study the volume properties of metrics on Vn that are expressed as pull-backs through F^J
of the Fisher information metric J

n+l ,

We now describe a well-known way of characterizing the Fisher information on Vn as a pull-back
metric from the positive n-sphere 5+ (see for example [2]). The transformation R : Vn -> S+
defined by

R(x) = (y/x{, . . . , v^n+l)

pulls-back the Euclidean metric on the surface of the sphere to the Fisher information on the
multinomial simplex. As a result we have that F£ J may also be characterized as the pull back of
the metric inherited from the Euclidean space on <S+ through

Fx(x) =
A ? • • * i

Xn+l^>

x - A
•n+l A E



3 The Differential Volume Element of F{J

We start by computing the Gram matrix [G]ij = F£J(di,dj) where {di}f=1 is a basis for TxVn

given by the rows of the matrix

u =

/ I 0 ••• 0 - 1 \
0 1 ••• 0 - 1

prcxn+l (1)
: 0 ••• 0 - 1

\0 0 ••• 1 - 1 /

and computing detG in Propositions 2-1 below.

Proposition 1. The matrix [G]ij = F^J(di,dj) is given by

G = JJT = U(D - XaT)(D - XaT)TUT (2)

where D € K n + l x n + 1 js a diaqonal matrix whose entries are \D\a = W-̂ - ,\ and a is a column
1 V * 2v A-a;

vector given by [a]i = y ^ 2(A-̂ )3/2

Note that all vectors are treated as column vectors and for A, a G Rn + 1 , AaT G ] ^ r i + l x n " f l is
the outer product matrix [AaT]^- = A^ay.

Proof. The j th component of the vector F\*v is

rA , d (Xn+tVn)X

1
2

1
2

(x + tv) - X

j +tVj)Xj

t=0

T a k i n g t h e r o w s of C/ t o b e t h e b a s i s { d i } 2 = 1 for Tj. 'Pn w e h a v e , for i — l , . . . , n a n d j =

[A*^],- =
' X 7 A o

2(x • A)3/2
- A

2Cr • X)3/2 \ x r

If we define J G R n x n + 1 to be the matrix whose rows are {F*di}f=1 we have

J = U(D - XaT).

Since the metric F^J is the pullback of the metric on <S+ that is inherited from the Euclidean
space through F\ we have [G]ij = A*5i • F\*dj hence

G - JJT = U(D - XaT)(D - XaT)TUT.

•



Proposition 2. The determinant of F?J is

det FXJ <x
(x-A) n + 1 ' (3)

Proof. We will factor G into a product of square matrices and compute det G as the product of the
determinants of each factor. Note that G = JJT does not qualify as such a factorization since J is
not a square matrix.

By factoring a diagonal matrix A, [A]u = v / ^ 2 / ,A fr°m •£> ~ ^aT w e n a v e

J = U [I-
XxT

x • A

x-X

A

A
UT.

(4)

(5)

We proceed by studying the eigenvalues and eigenvectors of / — ̂ - in order to simplify (5)

via an eigenvalue decomposition. First note that if (v, ji) is an eigenvector-eigenvalue pair of ^ -

then (i;, 1 — ji) is an eigenvector-eigenvalue pair of / — ̂ - . Next, note that vectors v such that

xTv = 0 are eigenvectors of ^^- with eigenvalue 0. Hence they are also eigenvectors of I — ^ -

with eigenvalue 1. There are n such independent vectors v\,..., vn. Since trace(/ — ̂ - ) = n, the

sum of the eigenvalues is also n and we may conclude that the last of the n + 1 eigenvalues is 0.

The eigenvectors of 7 — ^ - may be written in several ways. One possibility is as the columns of
the following matrix

Xn+1

V =

1
0

V

Xl

0

0

0
0

A2

A3

where the first n columns are the eigenvectors t h a t correspond t o unit eigenvalues and the last
eigenvector corresponds to a 0 eigenvalue.

Using the above eigenvector decomposition we have I — ̂ LL = VIV l and / is a diagonal matrix
containing all the eigenvalues. Since the diagonal of / is ( 1 , 1 , . . . , 1,0) we may write I — ^ - =
y\ny-\\n w h e r e yl™ £ jjn+ixn j s y w i t j 1 t j i e i a s t c o i u m n removed and V~l\n E Rnxn+1 is V'1

with the last row removed.

We have then,

detG = det(U(V\nV-lln)A2(V-llnTV\nT)U T)

= (det(UV\n)j2



Noting that

XI

1
0

0 •••
1

XI

0
0

- 1
- 1

V o o ••• i - l /

we factor 1/xi from the first row and add columns 2 , . . . , n to column 1 thus obtaining

0
1

0
0

xn z
0 - 1
0 - 1

\ 0 0 ••• 1 - 1 /

Computing the determinant by minor expansion of the first column we obtain

/ Xl
(6)

We now turn to computing det V 1lnA2y 1 'nT. The inverse of V, as may be easily verified is,

Jb /A .

v~' = • A

• A -
-x n + iA 2

- x n + i A 3

x • A —

Removing the last row gives

x - A

-X1A3

/ _

x • A — X2A2 —X3A2

x • A - X3A3

-x n + iA 2

• A

X\ X - A/A2 — X2

—X2 X • A/A3 — X3

\-Xi -X2

x • A — n + i n + i

-xn+i \
-xn+\

x • A/An+i - xn+ij

where

P =

(\2 0 ••• 0 \
0 A3 ••• 0

O 0 0



[Vn A Vn }ij is the scalar product of the ith and j t h rows of the following matrix

(—\Jx\\\ X
X V xn+\Xn+i

X

We therefore have

where

VKV

Q =

/ x-X
x2X2

- 1
- 1 - 1

- 1

\ - 1 - 1 - 1 x-X

As a consequence of Lemma 2 in the appendix we have

det Q = xi
+ 1

z = l X%A%
n?=i

The determinant then is

(n+\ \n—1 Jl(^ \\n-l ™+! X

4 n ( x • X)2n A l ^T

The determinant of G is

de t G =
r»_1 71+1

V.-A'V.-" , i g cc

•
Note that the determinant does not depend on the choice of the basis for TxVn and is symmetric

in all n + 1 variables
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Appendix

A The Determinant of a Diagonal Matrix plus a Constant Matrix

We prove some basic results concerning the determainants of a diagonal matrix plus a constant
matrix. These results are useful in proving Proposition 1.

The determinant of a matrix det A G Rnxn may be seen as a function of the rows of A, {Ai}f=1

f :R n x ••• x K n ^ l f(Au...,An) = d e t A

The multilinearity property of the determinant means that the function / above is linear in each
of its components

Vj = l , . . . , n

Lemma 1. Let D e R n x n be a diagonal matrix with D\\ — 0 and 1 a matrix of ones. Then

m

1=2

Proof. Subtract the first row from all the other rows to obtain

/ - I - 1 . . . - 1 \
0 D22 -" 0

V 0 0 ..- D m m J

Now compute the determinant by the cofactor expansion along the first column to obtain

m

det(D - 1) = (-1) Y[Djj+0 + 0 +"- + 0.
3=2

•
Lemma 2. Let D £ R n x n be a diagonal matrix and 1 a matrix of ones. Then

2=1 i= l j^i

Proof. Using the multilinearity property of the determinant we separate the first row of D — 1 as
(Dn, 0 , . . . , 0) + (—1, . . . , —1). The determinant det D — 1 then becomes det A + det B where A is
D — 1 with the first row replaced by ( D n , 0 , . . . , 0) and B is the D — 1 with the first row replaced
by a vector or —1.

Using Lemma 1 we have det B = — YYj=2^Jj- The determinant det A may be expanded along
the first row resulting in det^4 = D\\M\\ where M\\ is the minor resulting from deleting the first
row and the first column. Note that M\\ is the determinant of a matrix similar to D — 1 but of
size n — 1 x n — 1.



Repeating recursively the above multilinearity argument we have

3=2 \ j=3 \ j=4

1=1 1=1 j^i

D

References

[1] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Aca-
demic Press, 2003.

[2] R. E. Kass. The geometry of asymptotic inference. Statistical Science, 4(3):188-234, 1989.

[3] G. Lebanon. Learning riemannian metrics. In Proc. of the 19th Conference on Uncertainty in
Artificial Intelligence. Morgan Kaufmann publishers, 2003.


