Computing the Volume Element of a Family of Metrics on the Multinomial Simplex

Guy Lebanon
June 2, 2003
CMU-CS-03-145 3

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Keywords: Riemannian geometry, information geometry, metric learning, text classification

Abstract

We compute the differential volume element of a family of metrics on the multinomial simplex. The metric family is composed of pull-backs of the Fisher information metric through a continuous group of transformations. This note complements the paper by Lebanon [3] that describes a metric learning framework and applies the results below to text classification.

1 Basic Concepts from Riemannian Geometry

We start with a brief discussion of some basic concepts from differential geometry and refer to [1] for a more detailed description. A Riemannian metric g, on an nth dimensional differentiable manifold \mathcal{M}, is a function that assigns for each point of the manifold $x \in \mathcal{M}$ an inner product on the tangent space $T_{x} \mathcal{M}$. The metric is required to satisfy the usual inner product properties and to be C^{∞} in x.

The metric allows us to measure lengths of tangent vectors $v \in T_{x} \mathcal{M}$ as $\|v\|_{x}=\sqrt{g_{x}(v, v)}$, leading to the definition of a length of a curve on the manifold $c:[a, b] \rightarrow \mathcal{M}$ as $\int_{a}^{b}\|\dot{c}(t)\| d t$. The geodesic distance function $d(x, y)$ for $x, y \in \mathcal{M}$ is defined as the length of the shortest curve connecting x and y and turns the manifold into a metric space.

For a Riemannian manifold (\mathcal{M}, g) the differential volume element of the metric at $x \in \mathcal{M}$ is given by the square root of the determinant $\operatorname{dvol} g(x)=\sqrt{\operatorname{det} g(x)}$. The volume element $\operatorname{dvol}(x)$ summarizes the size of the metric at x in a scalar. Intuitively, paths crossing areas with high volume will tend to be longer than the same paths over an area with low volume.

Let $F: \mathcal{M} \rightarrow \mathcal{N}$ be a diffeomorphism of the manifold \mathcal{M} onto the manifold \mathcal{N}. Let $T_{x} \mathcal{M}, T_{y} \mathcal{N}$ be the tangent spaces to \mathcal{M} and \mathcal{N} at x and y respectively. Associated with F is the push-forward map F_{*} that maps $v \in T_{x} \mathcal{M}$ to $v^{\prime} \in T_{F(x)} \mathcal{N}$. It is defined as

$$
v(h \circ F)=\left(F_{*} v\right) h, \forall h \in C^{\infty}(\mathcal{N})
$$

Intuitively, the push forward maps velocity vectors of curves to velocity vectors of the transformed curves.

Assuming a Riemannian metric h on \mathcal{N}, we can obtain a metric $F^{*} h$ on \mathcal{M} called the pullback metric

$$
F^{*} h_{x}(u, v)=h_{F(x)}\left(F_{*} u, F_{*} v\right)
$$

where F_{*} is the push-forward map defined above. The importance of this map is that it turns F (as well as F^{-1}) into an isometry; that is,

$$
d_{F^{*} h}(x, y)=d_{h}(F(x), F(y)) .
$$

2 A Family of Metrics on the Simplex

We start by defining the n-simplex by

$$
\mathcal{P}_{n}=\left\{x \in \mathbb{R}^{n+1}: \forall i, x_{i} \geq 0, \sum_{i=1}^{n+1} x_{i}=1\right\}
$$

and the n-positive sphere by

$$
\mathcal{S}_{n}^{+}=\left\{x \in \mathbb{R}^{n+1}: \forall i, x_{i} \geq 0, \sum_{i=1}^{n+1} x_{i}^{2}=1\right\}
$$

The interior of the above manifolds will be dennoted by $\operatorname{int} \mathcal{P}_{n}$ or $\operatorname{int} \mathcal{S}_{n}^{+}$.

Figure 1: The action of F_{λ} (left) and F_{λ}^{-1} (right) on \mathcal{P}_{2} for $\lambda=\left(\frac{2}{10}, \frac{5}{10}, \frac{3}{10}\right)$
Consider the following family of diffeomorphisms $F_{\lambda}: \operatorname{int} \mathcal{P}_{n} \rightarrow \operatorname{int} \mathcal{P}_{n}$

$$
F_{\lambda}(x)=\left(\frac{x_{1} \lambda_{1}}{x \cdot \lambda}, \ldots, \frac{x_{n+1} \lambda_{n+1}}{x \cdot \lambda}\right), \quad \lambda \in \operatorname{int} \mathcal{P}_{n}
$$

where $x \cdot \lambda$ is the scalar product $\sum_{i=1}^{n+1} x_{i} \lambda_{i}$. The family F_{λ} is a Lie group of transformations under composition that is isomorphic to int \mathcal{P}_{n}. The identity element is $\left(\frac{1}{n+1}, \ldots, \frac{1}{n+1}\right)$ and the inverse of F_{λ} is $\left(F_{\lambda}\right)^{-1}=F_{\eta}$ where $\eta_{i}=\frac{1 / \lambda_{i}}{\sum_{k} 1 / \lambda_{k}}$. The above transformation group acts on $x \in \operatorname{int} \mathcal{P}_{n}$ by increasing the components of x with high λ_{i} values while remaining in the simplex. See Figure 1 for an illustration of the above action in \mathcal{P}_{2}.

We study the volume properties of metrics on \mathcal{P}_{n} that are expressed as pull-backs through $F_{\lambda}^{*} \mathcal{J}$ of the Fisher information metric \mathcal{J}

$$
\mathcal{J}_{i j}(x)=\sum_{k=1}^{n+1} \frac{1}{x_{k}} \frac{\partial x_{k}}{\partial x_{i}} \frac{\partial x_{k}}{\partial x_{j}} .
$$

We now describe a well-known way of characterizing the Fisher information on \mathcal{P}_{n} as a pull-back metric from the positive n-sphere \mathcal{S}_{n}^{+}(see for example [2]). The transformation $R: \mathcal{P}_{n} \rightarrow \mathcal{S}_{n}^{+}$ defined by

$$
R(x)=\left(\sqrt{x_{1}}, \ldots, \sqrt{x_{n+1}}\right)
$$

pulls-back the Euclidean metric on the surface of the sphere to the Fisher information on the multinomial simplex. As a result we have that $F_{\lambda}^{*} \mathcal{J}$ may also be characterized as the pull back of the metric inherited from the Euclidean space on \mathcal{S}_{n}^{+}through

$$
\hat{F}_{\lambda}(x)=\left(\sqrt{\frac{x_{1} \lambda_{1}}{x \cdot \lambda}}, \ldots, \sqrt{\frac{x_{n+1} \lambda_{n+1}}{x \cdot \lambda}}\right), \quad \lambda \in \operatorname{int} \mathcal{P}_{n}
$$

3 The Differential Volume Element of $F_{\lambda}^{*} \mathcal{J}$

We start by computing the Gram matrix $[G]_{i j}=F_{\lambda}^{*} \mathcal{J}\left(\partial_{i}, \partial_{j}\right)$ where $\left\{\partial_{i}\right\}_{i=1}^{n}$ is a basis for $T_{x} \mathcal{P}_{n}$ given by the rows of the matrix

$$
U=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & -1 \tag{1}\\
0 & 1 & \cdots & 0 & -1 \\
\vdots & 0 & \ddots & 0 & -1 \\
0 & 0 & \cdots & 1 & -1
\end{array}\right) \in \mathbb{R}^{n \times n+1}
$$

and computing $\operatorname{det} G$ in Propositions 2-1 below.
Proposition 1. The matrix $[G]_{i j}=F_{\lambda}^{*} \mathcal{J}\left(\partial_{i}, \partial_{j}\right)$ is given by

$$
\begin{equation*}
G=J J^{\top}=U\left(D-\lambda \alpha^{\top}\right)\left(D-\lambda \alpha^{\top}\right)^{\top} U^{\top} \tag{2}
\end{equation*}
$$

where $D \in \mathbb{R}^{n+1 \times n+1}$ is a diagonal matrix whose entries are $[D]_{i i}=\sqrt{\frac{\lambda_{i}}{x_{i}}} \frac{1}{2 \sqrt{\lambda \cdot x}}$ and α is a column vector given by $[\alpha]_{i}=\sqrt{\frac{\lambda_{i}}{x_{i}}} \frac{x_{i}}{2(\lambda \cdot x)^{3 / 2}}$

Note that all vectors are treated as column vectors and for $\lambda, \alpha \in \mathbb{R}^{n+1}, \lambda \alpha^{\top} \in \mathbb{R}^{n+1 \times n+1}$ is the outer product matrix $\left[\lambda \alpha^{\top}\right]_{i j}=\lambda_{i} \alpha_{j}$.
Proof. The j th component of the vector $\hat{F}_{\lambda *} v$ is

$$
\begin{aligned}
{\left[\hat{F}_{\lambda *} v\right]_{j} } & =\left.\frac{\mathrm{d}}{\mathrm{~d} t} \sqrt{\frac{\left(x_{j}+t v_{j}\right) \lambda_{j}}{(x+t v) \cdot \lambda}}\right|_{t=0} \\
& =\left.\frac{1}{2} \frac{v_{j} \lambda_{j}}{\sqrt{\left(x_{j}+t v_{j}\right) \lambda_{j}} \sqrt{(x+t v) \cdot \lambda}}\right|_{t=0}-\left.\frac{1}{2} \frac{v \cdot \lambda \sqrt{\left(x_{j}+t v_{j}\right) \lambda_{j}}}{((x+t v) \cdot \lambda)^{3 / 2}}\right|_{t=0} \\
& =\frac{1}{2} \frac{v_{j} \lambda_{j}}{\sqrt{x_{j} \lambda_{j}} \sqrt{x \cdot \lambda}}-\frac{1}{2} \frac{v \cdot \lambda \sqrt{x_{j} \lambda_{j}}}{(x \cdot \lambda)^{3 / 2}}
\end{aligned}
$$

Taking the rows of U to be the basis $\left\{\partial_{i}\right\}_{i=1}^{n}$ for $T_{x} \mathcal{P}_{n}$ we have, for $i=1, \ldots, n$ and $j=$ $1, \ldots, n+1$,

$$
\begin{aligned}
{\left[\hat{F}_{\lambda *} \partial_{i}\right]_{j} } & =\frac{\lambda_{j}\left[\partial_{i}\right]_{j}}{2 \sqrt{x_{j} \lambda_{j}} \sqrt{x \cdot \lambda}}-\frac{\sqrt{x_{j} \lambda_{j}}}{2(x \cdot \lambda)^{3 / 2}} \partial_{i} \cdot \lambda \\
& =\frac{\delta_{j, i}-\delta_{j, n+1}}{2 \sqrt{x \cdot \lambda}} \sqrt{\frac{\lambda_{j}}{x_{j}}}-\frac{\lambda_{i}-\lambda_{n+1}}{2(x \cdot \lambda)^{3 / 2}} \sqrt{\frac{\lambda_{j}}{x_{j}}} x_{j} .
\end{aligned}
$$

If we define $J \in \mathbb{R}^{n \times n+1}$ to be the matrix whose rows are $\left\{\hat{F}_{*} \partial_{i}\right\}_{i=1}^{n}$ we have

$$
J=U\left(D-\lambda \alpha^{\top}\right)
$$

Since the metric $F_{\lambda}^{*} \mathcal{J}$ is the pullback of the metric on \mathcal{S}_{n}^{+}that is inherited from the Euclidean space through \hat{F}_{λ} we have $[G]_{i j}=\hat{F}_{\lambda *} \partial_{i} \cdot \hat{F}_{\lambda *} \partial_{j}$ hence

$$
G=J J^{\top}=U\left(D-\lambda \alpha^{\top}\right)\left(D-\lambda \alpha^{\top}\right)^{\top} U^{\top} .
$$

Proposition 2. The determinant of $F_{\lambda}^{*} \mathcal{J}$ is

$$
\begin{equation*}
\operatorname{det} F_{\lambda}^{*} \mathcal{J} \propto \frac{\prod_{i=1}^{n+1}\left(\lambda_{i} / x_{i}\right)}{(x \cdot \lambda)^{n+1}} \tag{3}
\end{equation*}
$$

Proof. We will factor G into a product of square matrices and compute $\operatorname{det} G$ as the product of the determinants of each factor. Note that $G=J J^{\top}$ does not qualify as such a factorization since J is not a square matrix.

By factoring a diagonal matrix $\Lambda,[\Lambda]_{i i}=\sqrt{\frac{\lambda_{i}}{x_{i}}} \frac{1}{2 \sqrt{x \cdot \lambda}}$ from $D-\lambda \alpha^{\top}$ we have

$$
\begin{align*}
J & =U\left(I-\frac{\lambda x^{\top}}{x \cdot \lambda}\right) \Lambda \tag{4}\\
G & =U\left(I-\frac{\lambda x^{\top}}{x \cdot \lambda}\right) \Lambda^{2}\left(I-\frac{\lambda x^{\top}}{x \cdot \lambda}\right)^{\top} U^{\top} \tag{5}
\end{align*}
$$

We proceed by studying the eigenvalues and eigenvectors of $I-\frac{\lambda x^{\top}}{x \cdot \lambda}$ in order to simplify (5) via an eigenvalue decomposition. First note that if (v, μ) is an eigenvector-eigenvalue pair of $\frac{\lambda x^{\top}}{x \cdot \lambda}$ then $(v, 1-\mu)$ is an eigenvector-eigenvalue pair of $I-\frac{\lambda x^{\top}}{x \cdot \lambda}$. Next, note that vectors v such that $x^{\top} v=0$ are eigenvectors of $\frac{\lambda x^{\top}}{x \cdot \lambda}$ with eigenvalue 0 . Hence they are also eigenvectors of $I-\frac{\lambda x^{\top}}{x \cdot \lambda}$ with eigenvalue 1 . There are n such independent vectors v_{1}, \ldots, v_{n}. Since trace $\left(I-\frac{\lambda x^{\top}}{x \cdot \lambda}\right)=n$, the sum of the eigenvalues is also n and we may conclude that the last of the $n+1$ eigenvalues is 0 .

The eigenvectors of $I-\frac{\lambda x^{\top}}{x \cdot \lambda}$ may be written in several ways. One possibility is as the columns of the following matrix

$$
V=\left(\begin{array}{ccccc}
-\frac{x_{2}}{x_{1}} & -\frac{x_{3}}{x_{1}} & \cdots & -\frac{x_{n+1}}{x_{1}} & \lambda_{1} \\
1 & 0 & \cdots & 0 & \lambda_{2} \\
0 & 1 & \cdots & 0 & \lambda_{3} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & \lambda_{n+1}
\end{array}\right) \in \mathbb{R}^{n+1 \times n+1}
$$

where the first n columns are the eigenvectors that correspond to unit eigenvalues and the last eigenvector corresponds to a 0 eigenvalue.

Using the above eigenvector decomposition we have $I-\frac{\lambda x^{\top}}{x \cdot \lambda}=V \tilde{I} V^{-1}$ and \tilde{I} is a diagonal matrix containing all the eigenvalues. Since the diagonal of \tilde{I} is $(1,1, \ldots, 1,0)$ we may write $I-\frac{\lambda x^{\top}}{x \cdot \lambda}=$ $V^{\mid n} V^{-1 \mid n}$ where $V^{\mid n} \in \mathbb{R}^{n+1 \times n}$ is V with the last column removed and $V^{-1 \mid n} \in \mathbb{R}^{n \times n+1}$ is V^{-1} with the last row removed.

We have then,

$$
\begin{aligned}
\operatorname{det} G & =\operatorname{det}\left(U\left(V^{\mid n} V^{-1 \mid n}\right) \Lambda^{2}\left(V^{-1 \mid n \top} V^{\mid n \top}\right) U^{\top}\right) \\
& =\operatorname{det}\left(\left(U V^{\mid n}\right)\left(V^{-1 \mid n} \Lambda^{2} V^{-1 \mid n \top}\right)\left(V^{\mid n \top} U^{\top}\right)\right) \\
& =\left(\operatorname{det}\left(U V^{\mid n}\right)\right)^{2} \operatorname{det}\left(V^{-1 \mid n} \Lambda^{2} V^{-1 \mid n \top}\right) .
\end{aligned}
$$

Noting that

$$
U V^{\mid n}=\left(\begin{array}{ccccc}
-\frac{x_{2}}{x_{1}} & -\frac{x_{3}}{x_{1}} & \cdots & -\frac{x_{n}}{x_{1}} & -\frac{x_{n+1}}{x_{1}}-1 \\
1 & 0 & \cdots & 0 & -1 \\
0 & 1 & \cdots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

we factor $1 / x_{1}$ from the first row and add columns $2, \ldots, n$ to column 1 thus obtaining

$$
\left(\begin{array}{ccccc}
-\sum_{i=1}^{n+1} x_{i} & -x_{3} & \cdots & -x_{n} & -x_{n+1}-x_{1} 1 \\
0 & 0 & \cdots & 0 & -1 \\
0 & 1 & \cdots & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & -1
\end{array}\right)
$$

Computing the determinant by minor expansion of the first column we obtain

$$
\begin{equation*}
\operatorname{det}\left(U V^{\mid n}\right)^{2}=\left(\frac{1}{x_{1}} \sum_{i=1}^{n+1} x_{i}\right)^{2}=\frac{1}{x_{1}^{2}} \tag{6}
\end{equation*}
$$

We now turn to computing $\operatorname{det} V^{-1 \mid n} \Lambda^{2} V^{-1 \mid n \top}$. The inverse of V, as may be easily verified is,

$$
V^{-1}=\frac{1}{x \cdot \lambda}\left(\begin{array}{ccccc}
-x_{1} \lambda_{2} & x \cdot \lambda-x_{2} \lambda_{2} & -x_{3} \lambda_{2} & \cdots & -x_{n+1} \lambda_{2} \\
-x_{1} \lambda_{3} & -x_{2} \lambda_{3} & x \cdot \lambda-x_{3} \lambda_{3} & \cdots & -x_{n+1} \lambda_{3} \\
\vdots & \vdots & & \ddots & \\
-x_{1} \lambda_{n+1} & -x_{2} \lambda_{n+1} & \cdots & \cdots & x \cdot \lambda-x_{n+1} \lambda_{n+1} \\
x_{1} \lambda_{1} & x_{2} \lambda_{1} & \cdots & \cdots & x_{n+1} \lambda_{1}
\end{array}\right)
$$

Removing the last row gives

$$
\begin{aligned}
V^{-1 \mid n} & =\frac{1}{x \cdot \lambda}\left(\begin{array}{ccccc}
-x_{1} \lambda_{2} & x \cdot \lambda-x_{2} \lambda_{2} & -x_{3} \lambda_{2} & \cdots & -x_{n+1} \lambda_{2} \\
-x_{1} \lambda_{3} & -x_{2} \lambda_{3} & x \cdot \lambda-x_{3} \lambda_{3} & \cdots & -x_{n+1} \lambda_{3} \\
\vdots & \vdots & & \ddots & \\
-x_{1} \lambda_{n+1} & -x_{2} \lambda_{n+1} & \cdots & \cdots & x \cdot \lambda-x_{n+1} \lambda_{n+1}
\end{array}\right) \\
& =\frac{1}{x \cdot \lambda} P\left(\begin{array}{ccccc}
-x_{1} & x \cdot \lambda / \lambda_{2}-x_{2} & -x_{3} & \cdots & -x_{n+1} \\
-x_{1} & -x_{2} & x \cdot \lambda / \lambda_{3}-x_{3} & \cdots & -x_{n+1} \\
\vdots & \vdots & & \ddots & \\
-x_{1} & -x_{2} & \cdots & \cdots & x \cdot \lambda / \lambda_{n+1}-x_{n+1}
\end{array}\right) .
\end{aligned}
$$

where

$$
P=\left(\begin{array}{cccc}
\lambda_{2} & 0 & \cdots & 0 \\
0 & \lambda_{3} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{n+1}
\end{array}\right)
$$

$\left[V_{n}^{-1} \Lambda^{2} V_{n}^{-1 \top}\right]_{i j}$ is the scalar product of the i th and j th rows of the following matrix

$$
V_{n}^{-1} \Lambda=\frac{1}{2}(x \cdot \lambda)^{-3 / 2} P
$$

$$
\left(\begin{array}{ccclc}
-\sqrt{x_{1} \lambda_{1}} & x \cdot \lambda / \sqrt{x_{2} \lambda_{2}}-\sqrt{x_{2} \lambda_{2}} & -\sqrt{x_{3} \lambda_{3}} & \cdots & -\sqrt{x_{n+1} \lambda_{n+1}} \\
-\sqrt{x_{1} \lambda_{1}} & -\sqrt{x_{2} \lambda_{2}} & x \cdot \lambda / \sqrt{x_{3} \lambda_{3}}-\sqrt{x_{3} \lambda_{3}} & \cdots & -\sqrt{x_{n+1} \lambda_{n+1}} \\
\vdots & \vdots & & \ddots & \\
-\sqrt{x_{1} \lambda_{1}} & -\sqrt{x_{2} \lambda_{2}} & \cdots & \cdots & x \cdot \lambda / \sqrt{x_{n+1} \lambda_{n+1}}-\sqrt{x_{n+1} \lambda_{n+1}}
\end{array}\right) .
$$

We therefore have

$$
V_{n}^{-1} \Lambda^{2} V_{n}^{-1 \top}=\frac{1}{4}(x \cdot \lambda)^{-2} P Q P
$$

where

$$
Q=\left(\begin{array}{cccc}
\frac{x \cdot \lambda}{x_{2} \lambda_{2}}-1 & -1 & \cdots & -1 \\
-1 & \frac{x \cdot \lambda}{x_{3} \lambda_{3}}-1 & \cdots & -1 \\
\vdots & & \ddots & \vdots \\
-1 & -1 & -1 & \frac{x \cdot \lambda}{x_{n+1} \lambda_{n+1}}-1
\end{array}\right)
$$

As a consequence of Lemma 2 in the appendix we have

$$
\operatorname{det} Q=x_{1} \lambda_{1} \frac{(x \cdot \lambda)^{n}}{\prod_{i=1}^{n+1} x_{i} \lambda_{i}}-x_{1} \lambda_{1} \frac{(x \cdot \lambda)^{n-1} \sum_{j=2}^{n+1} x_{j} \lambda_{j}}{\prod_{i=1}^{n+1} x_{i} \lambda_{i}}=x_{1}^{2} \lambda_{1}^{2} \frac{(x \cdot \lambda)^{n-1}}{\prod_{i=1}^{n+1} x_{i} \lambda_{i}} .
$$

The determinant then is

$$
\operatorname{det} V_{n}^{-1} \Lambda^{2} V_{n}^{-1 \top}=(1 / 4)^{n}(x \cdot \lambda)^{-2 n}\left(\prod_{i=2}^{n+1} \lambda_{i}\right) x_{1}^{2} \lambda_{1}^{2} \frac{(x \cdot \lambda)^{n-1}}{\prod_{i=1}^{n+1} x_{i} \lambda_{i}}\left(\prod_{i=2}^{n+1} \lambda_{i}\right)=\frac{x_{1}^{2}(x \cdot \lambda)^{n-1}}{4^{n}(x \cdot \lambda)^{2 n}} \prod_{i=1}^{n+1} \frac{\lambda_{i}}{x_{i}}
$$

The determinant of G is

$$
\operatorname{det} G=\left(\operatorname{det} U V_{n}\right)^{2} \operatorname{det} V_{n}^{-1} \Lambda^{2} V_{n}^{-1 \top}=\frac{1}{x_{1}^{2}} \frac{x_{1}^{2}(x \cdot \lambda)^{n-1}}{4^{n}(x \cdot \lambda)^{2 n}} \prod_{i=1}^{n+1} \frac{\lambda_{i}}{x_{i}} \propto \frac{\prod_{i=1}^{n+1}\left(\lambda_{i} / x_{i}\right)}{(x \cdot \lambda)^{n+1}}
$$

Note that the determinant does not depend on the choice of the basis for $T_{x} \mathcal{P}_{n}$ and is symmetric in all $n+1$ variables

Acknowledgements

I thank John Lafferty and Leonid Kontorovich for interesting discussions and helpful comments.

Appendix

A The Determinant of a Diagonal Matrix plus a Constant Matrix

We prove some basic results concerning the determainants of a diagonal matrix plus a constant matrix. These results are useful in proving Proposition 1.

The determinant of a matrix $\operatorname{det} A \in \mathbb{R}^{n \times n}$ may be seen as a function of the rows of $A,\left\{A_{i}\right\}_{i=1}^{n}$

$$
f: \mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R} \quad f\left(A_{1}, \ldots, A_{n}\right)=\operatorname{det} A
$$

The multilinearity property of the determinant means that the function f above is linear in each of its components

$$
\begin{aligned}
\forall j=1, \ldots, n \quad f\left(A_{1}, \ldots, A_{j-1}, A_{j}+B_{j}, A_{j+1}, \ldots, A_{n}\right) & =f\left(A_{1}, \ldots, A_{j-1}, A_{j}, A_{j+1}, \ldots, A_{n}\right) \\
& +f\left(A_{1}, \ldots, A_{j-1}, B_{j}, A_{j+1}, \ldots, A_{n}\right)
\end{aligned}
$$

Lemma 1. Let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix with $D_{11}=0$ and 1 a matrix of ones. Then

$$
\operatorname{det}(D-\mathbf{1})=-\prod_{i=2}^{m} D_{i i}
$$

Proof. Subtract the first row from all the other rows to obtain

$$
\left(\begin{array}{cccc}
-1 & -1 & \cdots & -1 \\
0 & D_{22} & \cdots & 0 \\
\cdots & \cdots & \ddots & \cdots \\
0 & 0 & \cdots & D_{m m}
\end{array}\right)
$$

Now compute the determinant by the cofactor expansion along the first column to obtain

$$
\operatorname{det}(D-1)=(-1) \prod_{j=2}^{m} D_{j j}+0+0+\cdots+0
$$

Lemma 2. Let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix and $\mathbf{1}$ a matrix of ones. Then

$$
\operatorname{det}(D-\mathbf{1})=\prod_{i=1}^{m} D_{i i}-\sum_{i=1}^{m} \prod_{j \neq i} D_{j j}
$$

Proof. Using the multilinearity property of the determinant we separate the first row of $D-1$ as $\left(D_{11}, 0, \ldots, 0\right)+(-1, \ldots,-1)$. The determinant $\operatorname{det} D-1$ then becomes $\operatorname{det} A+\operatorname{det} B$ where A is $D-1$ with the first row replaced by $\left(D_{11}, 0, \ldots, 0\right)$ and B is the $D-1$ with the first row replaced by a vector or -1 .

Using Lemma 1 we have $\operatorname{det} B=-\prod_{j=2}^{n} D_{j j}$. The determinant det A may be expanded along the first row resulting in $\operatorname{det} A=D_{11} M_{11}$ where M_{11} is the minor resulting from deleting the first row and the first column. Note that M_{11} is the determinant of a matrix similar to $D-\mathbf{1}$ but of size $n-1 \times n-1$.

Repeating recursively the above multilinearity argument we have

$$
\begin{aligned}
\operatorname{det}(D-1) & =-\prod_{j=2}^{n} D_{j j}+D_{11}\left(-\prod_{j=3}^{n} D_{j j}+D_{22}\left(-\prod_{j=4}^{n} D_{j j}+D_{33}\left(-\prod_{j=5}^{n} D_{j j}+D_{44}(\cdots)\right)\right)\right) \\
& =\prod_{i=1}^{n} D_{i i}-\sum_{i=1}^{n} \prod_{j \neq i} D_{j j} .
\end{aligned}
$$

References

[1] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 2003.
[2] R. E. Kass. The geometry of asymptotic inference. Statistical Science, 4(3):188-234, 1989.
[3] G. Lebanon. Learning riemannian metrics. In Proc. of the 19th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann publishers, 2003.

