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Abstract

We compute the differential volume element of a family of metrics on the multinomial simplex.
The metric family is composed of pull-backs of the Fisher information metric through a continuous
group of transformations. This note complements the paper by Lebanon [3] that describes a metric
learning framework and applies the results below to text classification.






1 Basic Concepts from Riemannian Geometry

We start with a brief discussion of some basic concepts from differential geometry and refer to
[1] for a more detailed description. A Riemannian metric g, on an nth dimensional differentiable
manifold M, is a function that assigns for each point of the manifold z € M an inner product on
the tangent space T, M. The metric is required to satisfy the usual inner product properties and
to be C°° in x.

The metric allows us to measure lengths of tangent vectors v € T, M as ||v||z = \/gz(v,v), leading

to the definition of a length of a curve on the manifold ¢ : [a,b] — M as [ f l|é(t)]|dt. The geodesic
distance function d(z,y) for z,y € M is defined as the length of the shortest curve connecting x
and y and turns the manifold into a metric space.

For a Riemannian manifold (M, g) the differential volume element of the metric at z € M is
given by the square root of the determinant dvolg(z) = \/det g(z). The volume element dvol(x)
summarizes the size of the metric at x in a scalar. Intuitively, paths crossing areas with high volume
will tend to be longer than the same paths over an area with low volume.

Let F : M — N be a diffeomorphism of the manifold M onto the manifold N. Let T, M, TyN
be the tangent spaces to M and N at x and y respectively. Associated with F' is the push-forward
map Fl that maps v € T, M to v/ € Tp;)N. It is defined as

v(ho F) = (F,v)h, Yh € C®(N).
Intuitively, the push forward maps velocity vectors of curves to velocity vectors of the transformed
curves.

Assuming a Riemannian metric h on N, we can obtain a metric F*h on M called the pullback
metric

F*hx(u, U) = hF(I)(F*u, F*’U)

where F, is the push-forward map defined above. The importance of this map is that it turns F
(as well as F~!) into an isometry; that is,

dp=n(2,y) = dn(F(z), F(y)).

2 A Family of Metrics on the Simplex

We start by defining the n-simplex by

n+1
Pn = {xéR"“ 1 Vi, x; > 0, inzl}

and the n-positive sphere by

n+1
ng{xeRn“:vz‘,xizo, sz:l}.

i=1

The interior of the above manifolds will be dennoted by intP, or intS;.



Figure 1: The action of F (left) and F} ' (right) on P; for A = (T%’ I%’ %)

Consider the following family of diffeomorphisms F) : intP, — intPy,

A A
Fi(z) = (ilix"ﬁ; A"“), A € intP,

where z - \ is the scalar product E?__‘_"ll ;M. The family F) is a Lie group of transformations under

composition that is isomorphic to intP,. The identity element is (%H, ..

of Fy is (F\)~! = F, where n; = % The above transformation group acts on z € intP, by

1 .
-» mg1) and the inverse

increasing the components of = with high \; values while remaining in the simplex. See Figure 1
for an illustration of the above action in Ps.

We study the volume properties of metrics on P, that are expressed as pull-backs through F{J
of the Fisher information metric J

n+1

1

— Tk Ox; Ox;

We now describe a well-known way of characterizing the Fisher information on P, as a pull-back
metric from the positive n-sphere S; (see for example [2]). The transformation R : P, — S;F
defined by

R(@) = (V&L - .+ v/EnrD)

pulls-back the Euclidean metric on the surface of the sphere to the Fisher information on the
multinomial simplex. As a result we have that Fy.7 may also be characterized as the pull back of
the metric inherited from the Euclidean space on S;I through

) A
Ey(z) = (N/% f"-*f;%) A € intP,.



3 The Differential Volume Element of F}J

We start by computing the Gram matrix [G);; = FyJ(0;,0;) where {0;}j_, is a basis for TPy,
given by the rows of the matrix

10 0 -1
01 0 -1

U=|. . 0 1 e RV (1)
0 0 1 -1

and computing det G in Propositions 2-1 below.
Proposition 1. The matriz [G;; = FxJ(0;,0;) is given by
G=JJT=UD - ") (D-X")TUT (2)

where D € R+ 45 o diagonal matriz whose entries are [D];; = —L;\: 5 \/1/\—1 and a is a column
V zi 2v/n
. L A z;
vector given by [a]; = V 2 hap

Note that all vectors are treated as column vectors and for A, a € R*t1 \aT e RrTIxn+l g
the outer product matrix [)\aT],-j = A\

Proof. The jth component of the vector v is

« d [(z;+tvj)A;

Bl = 2, [ Ei )N

[F) U]J dt\ (z+1tv) -\ o
_1 VA 1o Ay(m5 4ty Ay
2/(zj+to))Aj\/(z+tv)- X _ 2 ((x +tv) - A)3/2 t=0

UJ/\] lv- /\\/.’Ij/\j
/T 2 (z- AP

Taking the rows of U to be the basis {0;}]-; for TP, we have, for i = 1,...,n and j =
1,....,n+1,

[\’le—-

& a1 A;10i)5 VT
B0l = 5 S A)Bﬂa 4

0] T 5] n+1 )\j )\ - )\n+1
2Vz z; 2z N\)3?

If we define J € R™*"*1 to be the matrix whose rows are {F,ﬁi}?zl we have
J=U(D - Xa").

Since the metric FYJ is the pullback of the metric on S,/ that is inherited from the Euclidean
space through F) we have [G];; = F).0; - F).0; hence

G=JJ"=UD-xa")(D-xa")TUT.




Proposition 2. The determinant of F. YJ is

n+1 z;
det FYJ o H(%Z (3)

Proof. We will factor G into a product of square matrices and compute det G as the product of the
determinants of each factor. Note that G = JJ ' does not qualify as such a factorization since J is
not a square matrix.

By factoring a diagonal matrix A, [A]; = ,/%‘lﬁ L_ from D — Aa' we have

i 2vVT A\
J=U<I—:L)‘>A (4)
_ Az 9 ArT\ " T
6o (120w (125 o .

We proceed by studying the eigenvalues and eigenvectors of I — Z—I; in order to simplify (5)

via an eigenvalue decomposition. First note that if (v, u) is an eigenvector-eigenvalue pair of )‘—21
then (v,1 — p) is an elgenvector—elgenvalue pair of I — 2%. Next, note that vectors v such that
zTv = 0 are eigenvectors of );f” with eigenvalue 0. Hence they are also eigenvectors of I — 2% )\

with eigenvalue 1. There are n such independent vectors vy, ...,v,. Since trace(I — ’ET) =n, the
sum of the eigenvalues is also n and we may conclude that the last of the n + 1 eigenvalues is 0.

The eigenvectors of I — ,\ may be written in several ways. One possibility is as the columns of
the following matrix

S SRR
1 0 0 A2

v=]| 0 1 .- 0 A3 | e grtixntl
0 o - 1 Ant1

where the first n columns are the eigenvectors that correspond to unit eigenvalues and the last
eigenvector corresponds to a 0 eigenvalue.

Using the above eigenvector decomposition we have I — <% = VIV~ and I is a diagonal matrix
containing all the eigenvalues. Since the diagonal of Iis (1 1,...,1,0) we may write ’;f T =

Viny=1n where VI* € R*1%7 is V' with the last column removed and V-1 ¢ Rrxntl jg -1
with the last row removed.

We have then,
det G = det(U(Van-lln)AQ(V—llnTv|nT)UT)
— det((Uv|n)(V—llnAQV—llnT)(V|nTUT))
= (det(UVI™)? det(V—UmA2Y—1inT)y,



Noting that

_zy _1x3 _Zn  _Znt1 _q
T I 1 T
1 0 0 -1

yvin=1 0 1 0 -1 € R™"
0 0 1 -1
we factor 1/z; from the first row and add columns 2,...,n to column 1 thus obtaining
- Z?:ll T —T3 0 —Tp —Tpp1 — 21l

0 0 0 -1

0 1 .- 0 -1

0 o - 1 -1

Computing the determinant by minor expansion of the first column we obtain

| 1 n+1 2 1
det(UVIM?2 = [ — | =—. 6
(UVin) <x1 > ) r (6)
=1
We now turn to computing det V-1"A2V 1T The inverse of V, as may be easily verified is,
-.731/\2 T-A— ]32)\2 —$3)\2 —$n+1/\2
—T1)3 —Z2)3 T-A—1T3)3 —Tnt+1A3
V-—l _ 1 .
x . A . .
—ZT1An41 —T2Anq1 T A= Tpi1Angl
T1A1 TaA1 Tn4+1A1
Removing the last row gives
—ZT1A2  T-A— T2\ —T3\2 —Tpy1A2
V—1|n _ 1 —.’131/\3 —1‘2/\3 T-A— 1’3/\3 ‘$n+1/\3
- : :
—T1An41 —Z2An41 T+ A= Tni1Antl
—-r7 I- /\/)\2 ) —ZI3 —Tn+1
1 -7 —T9 x-A/A3 — 3 —ZTpt1
=——P
T-A
-1 —XT2 X - )‘/)‘n-i—l — Tn+1
where
Ao O .- 0
0 A3 0




[V,7 'A%V, 1T],; is the scalar product of the ith and jth rows of the following matrix

VA = 2(:1: \)732p

—Vx1A1 x-A/Vxado — Vo de —V/T3)3 —VZTn+1Ant1
-1\ —v/ T T A/Vx3dg —VxzAg - =/ Tn+1An+1

V1A —VTaAo 2 A VT A1 — VTnt1 et
We therefore have
VAT = 4(:u N 72pPQP

where

ZA -1 -1
-1 TA ] ... -1

: . o
-1 -1 -1 Tnt1dngl 1

As a consequence of Lemma 2 in the appendix we have

LA x - AL nfla:)\ )1
detQ:a}l/\l(:_*'—l)——iBl 1( ) n+1 =27 2)\2—(-%;1—_’_/112—.
[T2) =ik 21 T im1 TiNg

The determinant then is
n+1 _ n+1 —1 n+l
—1A27,—1T _ -2 2 2 351 - )\)n Ai
i—9 i=1 TiNi i=1
The determinant of G is

1:1: T - A"lnH l_[n+l( i/ ;)
_ 2 —1A2y,-1T 1 o —__1
det G = (det UV, )“det V7 “A°V, 551 4z N i o L2, (- A+l

|

Note that the determinant does not depend on the choice of the basis for T, P,, and is symmetric
in all n + 1 variables
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Appendix

A The Determinant of a Diagonal Matrix plus a Constant Matrix

We prove some basic results concerning the determainants of a diagonal matrix plus a constant
matrix. These results are useful in proving Proposition 1.

The determinant of a matrix det A € R®*™ may be seen as a function of the rows of A, {4;}7,
FiR % --xR*" =R f(A,...,Ay) = det A.

The multilinearity property of the determinant means that the function f above is linear in each
of its components

Vi=1,...,n f(A],...,Aj_l,Aj+Bj,Aj+1,...,A )=f(A1,... Aj 1,Aj,Aj+1, . ,An)
+f( j 13Bj7A]+1a An)

Lemma 1. Let D € R™" be a diagonal matriz with D11 = 0 and 1 a matriz of ones. Then

det(D H D;;.

Proof. Subtract the first row from all the other rows to obtain

-1 =1 - -1
0 Doy --- 0

0 0 -+ Dpm
Now compute the determinant by the cofactor expansion along the first column to obtain

m
det(D—1) = (1) [[ Dj; + 0+ 0+---+0.
Jj=2

Lemma 2. Let D € R™*"™ be a diagonal matriz and 1 a matriz of ones. Then

det(D H Dy — Z 11D

=1 j#i

Proof. Using the multilinearity property of the determinant we separate the first row of D — 1 as
(D11,0,...,0) +(—1,...,—1). The determinant det D — 1 then becomes det A + det B where A is
D-1 w1th the first row replaced by (D11,0,...,0) and B is the D — 1 with the first row replaced
by a vector or —1.

Using Lemma 1 we have det B = — H?:z Dj;. The determinant det A may be expanded along
the first row resulting in det A = D;;M;; where My, is the minor resulting from deleting the first
row and the first column. Note that M is the determinant of a matrix similar to D — 1 but of
sizen—1xn-—1.




Repeating recursively the above multilinearity argument we have

n n n n
det(D—l):—HDjj—{-Du —HDjj"".DQQ —HDjj+D33 —HD]‘]‘+D44(~..)

Jj=2 Jj=3 j=4 j=5
n n
=[1Du-> T2
i=1 i=1 jAi
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