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Abstract
Since the early 1960's, researchers have built a number of programming languages and
environments with the intention of making programming accessible to a larger number of
people. This paper presents a taxonomy of languages and environments designed to make
programming more accessible to novice programmers of all ages. The systems are organized
by their primary goal, either to teach programming or to use programming to empower their
users, and then by the authors' approach to making learning to program easier for novice
programmers. The paper explains all categories in the taxonomy, provides a brief description
of the systems in each category, and suggests some avenues for future work in novice
programming environments and languages.
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1. INTRODUCTION
Learning to program can be very difficult for beginning students of all ages. In addition

to the challenges of learning to form structured solutions to problems and understanding

how programs are executed, beginning programmers also have to learn a rigid syntax and

commands that may have seemingly arbitrary or perhaps confusing names. Tackling

these challenges all simultaneously can be overwhelming and often discouraging for

beginning programmers. Since the early 1960's, researchers have built a number of

programming languages and environments with the intention of making programming

accessible to a larger number of people. This paper presents a taxonomy of these

languages and environments and discusses the challenges they address.

For the purposes of this paper, we define programming as the act of assembling a set of

symbols representing computational actions. Using these symbols, users can express their

intentions to the computer and, given a set of symbols, a user who understands the

symbols can predict the behavior of the computer. This definition excludes many of the

programming through demonstration systems in which the computer develops sequences

of instructions and when to execute those instructions internally by observing the user in

such a way that the user cannot accurately predict the actions of a program in all

circumstances.

In this paper, we describe the high level organization of the taxonomy, present the

taxonomy and briefly describe all of the categories and systems within those categories.

We then present a table of the most influential systems and a table comparing the survey

systems based on what programming constructs they support and their approaches to

making programming more accessible to novice programmers. Finally, we summarize the

approaches and discuss some possible avenues for future work in this area.

2. TAXONOMY

In creating a programming environment for novices, one of the first questions that must

be answered is why novices need to program. There are a variety of possible motivations

for learning to program: to pursue programming as a career path, to learn how to solve

problems in a structured and logical way, to build software customized for personal use,

to explore ideas in other subject areas, etc. The systems in this taxonomy (see Figure 1)

fall into two large groups: systems that attempt to teach programming for its own sake

and those that attempt to support the use of programming in pursuit of another goal
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Because these two goals place very different constraints on systems, the taxonomy is

organized first by the system goals, either teaching or using programming, and, second,

by the primary aspect of programming that the system attempts to simplify. Each system

appears in the taxonomy only once. However, many of the systems in the taxonomy have

built on the ideas of earlier systems. So, a system that was influenced by natural language

programming may not be classified with other natural language systems if the natural

language influence was not the primary concern in building the system.

3. TEACHING SYSTEMS
These systems were designed with the goal of helping people learn to program. Most of

the systems in this category are (or include) simple programming tools that provide

novice programmers exposure to some of the fundamental aspects of the programming

process. After gaming experience with a teaching system, students are expected to move

to more general-purpose languages such as Java, C, or C++. A few systems attempt to

provide support in learning a more general language from the start. Because students

interacting with teaching systems are expected to transition to general purpose languages,

many teaching systems have similarities to general-purpose languages. Knowing that a

student will eventually have to do for loops in a Java-style, the designers of teaching

languages are less likely to introduce a different style of looping. Because general-

purpose languages are not always designed with beginners in mind, the systems in this

category are juggling two possibly conflicting goals: making it easier for beginners to get

started programming and giving students a background that makes it easy for them to

transition from the teaching system to a general-purpose language.

The teaching systems focus on several areas that can be difficult for novice programmers.

The majority of the systems in this category address the mechanics of programming: both

expressing intentions to the computer and understanding the actions of the computer.

Other systems attempt to place programming in a context that is accessible and

motivating to a wider audience of people, either by providing concrete reasons for

programming or by supporting novice programmers working together and learning from

one another.

3.1 Mechanics of Programming

The systems in this category are designed around the hypothesis that the primary barrier

in learning to program lies in the mechanics of writing programs. To successfully write a

program, users must understand several topics: how to express instructions to the



computer (e.g. syntax), how to organize these instructions (e.g. programming style), and

how the computer executes these statements. Systems in this category attempt to make it

easier for beginners to learn one of these three skills.

3J.I Expressing Programs

In most general-purpose languages, users create programs by typing syntactic sentences

into a text editor. Beginning programmers often have trouble translating their intentions

into syntactically correct statements that the computer can understand. The systems in

this category explore two possible avenues for making this process easier for beginning

programmers: improve the language such that beginners have an easier time learning or

find alternate ways for beginners to communicate their instructions to the computer.

3.1.1.1 SIMPLIFY TYPING CODE

Many general-purpose languages have been influenced by the need for sufficient power

to tackle arbitrary programming tasks and a desire to make the programming language

easier to implement, making the resulting languages unnecessarily difficult for beginning

programmers. The systems in this category examine three approaches to making

languages more approachable for beginning programmers: simplifying the language,

tailoring the language for a specific, small domain of programming problems, and

preventing syntax errors.

1.1.1.1.1. Simplify the Language

General-purpose languages typically include a large variety of syntactic elements that can

be particularly difficult for beginners because these syntactic elements don't have an

obvious meaning. The languages in this category use a few simple observations to

decrease the number of potentially confusing syntactic elements beginning users

encounter while trying to maintain as much similarity as possible to general-purpose

languages. General-purpose languages often contain unnecessary syntax, use commands

whose names are unfamiliar or have different meanings in spoken English, have

inconsistent uses for syntactic elements, or include features inappropriate for beginning

programmers. Using these observations, it is possible to make a language syntactically

easier for beginners to handle without fundamentally changing the common control

structures found in general-purpose languages. Consequently, when a student moves from

one of these languages to a general-purpose language, they should be able to transfer

their knowledge from the teaching language.



BASIC: J.G. Kemeny and T. Kurtz, Dartmouth College, 1963 [Kurtz, 1981]
Basic was designed to teach Dartmouth's non-science students about computing through

programming. FORTRAN and ALGOL, the commonly used languages at the time, were

both large and complex. Kemeny and Kurtz believed that the students would "balk at the

seemingly pointless detail" (Kurtz, 1981). After considering using subsets of FORTRAN

or ALGOL, Kemeny and Kurtz agreed they would have to create their own language. The

BASIC (Beginners All-purpose Symbolic Instruction Code) language was designed to

support a small set of instructions and remove unnecessary syntax. The environment was

designed to have rapid turn-around time and sacrifice computer time for user time (in

1963, the computer science community was arguing against high level languages because

the compilation time was seemingly wasted computation).

Statements in BASIC consist of three parts: a line number (e.g. 110), an operator (e.g.

LET), and an operand (e.g. S = S + 1). All commands begin with an English word to

make the language easier for the novice; the designers believed that LET S= S + I would

be easier for students to understand than S = S + I. Figure 2 (below) shows a simple

summation loop in both FORTRAN and BASIC. While the statements have a similar

structure, the BASIC program uses language more suitable for a novice, removes

elements like labels (e.g. 30) that require a more detailed understanding of the program

counter, and does not depend on spacing for syntactic meaning.

FORTRAN
do30i

m =
= 1, 10
m + I

30 continue
Figure 2.

BASIC.

BASIC:
100FORI=I TO
110LETS = S + I
120 NEXT I

A for loop to compute the sum of the numbers from 1 to 10 written

10

in FORTRAN and

SP/k: R.C Holt et ai, University of Toronto, 1977 [Holt, 1977]

SP/k is a subset of PL/1 chosen for teaching introductory programming. The features of

the SP/k language were chosen to remove redundant constructs, inconsistencies in the

language that go against students' intuitions (in PL/1 the expression 25 + 1/3 evaluates to

5,3333), constructs that are easily misused such as pointers, and constructs like

concurrent programming that are suited for advanced programmers. The difficulty of

compiling constructs was also considered. The result of pruning was a simpler language

for introductory programming that both students and teachers generally preferred over

FORTRAN. The authors also provided an order for introducing programming constructs



as a sequence of subsets of SP/k. SP/1 introduces expressions and output. By SP/8,

students have learned all of SP/k. By introducing things gradually, students can master a

small piece of the language at a time, allowing them to devote more time to problem

solving than memorizing the features of the language.

Turing: R.C. Holt and J.R. Cordy, University of Toronto, 1988 [Holt and Cordy, 1988]

The Turing language was developed as a general-purpose and instructional language for

the Computer Science Department at the University of Toronto. Consequently, while the

designers intended that Turing be used in teaching programming, the goals for the

language included many programming power and implementation concerns. The Turing

language contains all the features of Pascal (see section 3.1.2.1) and adds dynamic arrays,

modules, and varying length strings. In addition, Turing simplifies the syntax by

removing the requirement for headers declaring the name of the program and semi-colons

at the end of each statement.

Blue Language: M. Kolling and J. Rosenberg, University of Monash, 1996 [Kolling and
Rosenburg, 1996]

Blue is an object-oriented language designed to be taught as a first language. After using

Blue for a year, students are expected to move to an industrial language, such as C++.

The designers of the language used four criteria in creating Blue: there should be only

one way to do everything; the language should cleanly reflect the theoretical model; the

language should be readable so students can learn by reading examples; and the language

should explicitly support software engineering mechanisms like pre and post conditions.

The Blue language is a pure object-oriented language that supports single inheritance,

garbage collection, and strong static typing. Classes are defined in single files with a

structure that clearly reflects which routines others can call and which routines are

internal to the class by placing routines in separate internal and interface areas within the

file. Routine definitions include explicit pre and post conditions. Blue provides a single

loop structure that consists of a set of statements followed by a list of conditions that

should cause the loop to exit which can be used to create loops that function like

traditional for and while loops. Each loop exit condition can include statements to

execute if the loop exits on that particular condition. The designers of the language also

created an environment for beginning programmers that will be discussed separately.

JJ: J. Motil and D. Epstein, California State University and California Institute of
Technology, 1998 [Motil and Epstein, 1998]



Full featured, general-purpose languages force beginning students to focus on the syntax

rather than the problem they are trying to solve in writing a program. JJ (Junior Java) is a

language designed to remove much of the syntactic complexity to allow students to focus

on the concepts of programming. It removes much of the punctuation such as braces and

semi-colons and has only one way to do anything; there is one integer type, one way to

create a comment, etc. The language also provides an easy migration to Java after the

first half of the semester. Students can either do this by hand or the environment can

convert their JJ code to Java automatically. Figure 3 shows an example of computing

weekly pay in JJ and the equivalent code in Java. Due to lack of adoption, the designers

of JJ have moved towards concentrating on better compilation error messages and

allowing students to program over the web.

Computing weekly pay in JJ:
If (hours <= 40) then

Set pay = 10 * hours
Else

Set pay =
400 + 15* (hours - 40)

End If

Output "The pay is "
Outputln pay

The same code in Java:
if (hours <= 40) {

pay = 10 * hours;
} else {

pay =
400 + 15 * (hours - 40) ;

} // Endlf

System, out.print ("The pay is " );
System.out.prin tin ( pay );

Figure 3. A short segment of code to compute a worker's weekly pay shown in both JJ and Java. Note

the line by line correspondence.

GRAIL: L. Mclver, Monash University, 1999 [Mclver, 1999, 2001]

GRAIL was developed in response to the hypothesis that "it is the unfamiliarity of

'hieroglyphics' (i.e. the language syntax) and the sheer complexity of the full theory that

are the primary stumbling blocks for the novice" (Mclver, 2001). Three guiding

principles governed the design of GRAIL: maintain a consistent syntax; use terms that

novice programmers are likely to be familiar with and avoid standard programming terms

that have different meanings in English; and include only constructs that are fairly simple

and have a "single, obvious syntax" (Mclver, 2001). These guidelines led to an

imperative language with many small differences from commonly used teaching

languages such as Pascal (see section 3.1.2.1). The list of changes is too long to

reproduce here, but we list a few to give the reader a feel for the kinds of changes made

for the GRAIL language. Rather than using * for multiplication, GRAIL uses x because it

is a symbol that novice programmers will understand from mathematics classes. Values

are assigned using an arrow indicating where the answer will be placed since a = b is



ambiguous. Mclver removed pointers because they are difficult to use correctly; using

pointers it is very easy for beginners to create problems they cannot easily understand or

explain. The full details of the GRAIL language can be found in Mclver's thesis.

1.1.1.1.2. Prevent Syntax Errors
One of the largest and most frustrating challenges for novice programmers is syntax. The

Cornell Program Synthesizer [Teitelbaum and Reps, 1981], which was a prototype

system that removed the ability for students to make syntax errors by presenting the set of

allowed commands at each point in the program code, inspired the systems in this

category. The prototype system was limited to 24 lines and included a limited subset of

PL/1. The presentation of allowable commands made it impossible to compose a

syntactically invalid program. The systems in this category were an attempt to make a

more versatile structure editor that was useful to novice programmers. They are not

languages, but environments that prevented novices from making syntax errors with

existing languages such as Pascal and Fortran.

GNOME: P. Miller et al, Carnegie Mellon University, 1984 [Miller et al, 1994]

The GNOME environments were created for Karel the Robot, Pascal, Fortran, and Lisp

and used an abstract syntax tree to detect syntax errors as they occurred. GNOME

displayed programs hierarchically, encouraging students to think about programs as

hierarchical collections of procedures. Students navigated through their programs using

arrow keys that corresponded to movements in the abstract syntax tree; GNOME

displayed program segments in the familiar textual form. When the programmer

attempted to move the edit cursor, GNOME analyzed the program, reported any syntax

errors, and prevented the programmer from moving on until the program was

syntactically correct. The programmer could also request an analysis of the program at

any time. While this environment prevented syntax errors, it actually required students to

think more about syntax than they previously had: they needed to have a mental model of

the syntax tree to navigate through the system; the abstract syntax representation

sometimes differed from the textual representation (particularly with mathematical

equations); and the requirement for syntactic correctness sometimes prevented students

from making desired changes in the program because the fastest route to a correct

program required intermediate stages that were not syntactically correct.



MacGnome: P. Miller et al, Carnegie Mellon University, 1986 [Miller et al, 1994]

The MacGnome project attempted to cleanly integrate structure-editing capabilities of

GNOME with the text-editing model present in traditional programming editors. The

GNOME project demonstrated that students have difficulty navigating in the abstract

syntax tree; to alleviate this problem, MacGnome allowed students to navigate using

point and click with a mouse. In GNOME, students often had trouble modifying code

because of the requirement to maintain syntactic correctness. Rather than requiring

syntactic correctness at all times, the MacGnome project editors converted the syntax tree

into a textual representation to allow editing without syntactic constraints. Once the user

finished editing, it converted the modified code back to tree representation using an

incremental parser. By allowing students to edit code textually, the MacGnome

environment could not prevent syntax errors. However, MacGnome detected and reported

all syntax errors as soon as the code was parsed, allowing students to correct them before

moving to other sections of the program. The novice programming environments

produced as a result of the MacGnome project are called Genies.

3.1.1.2 FIND ALTERNATIVES TO TYPING PROGRAMS
Despite the attempts to make programming languages simpler and more understandable,

many novices still struggle with syntax: remembering the names of commands, the order

of parameters, whether or not they are supposed to use parentheses or braces, etc.

Another large set of systems are designed around the belief that to enable novices to

understand what programming really is, we need to bypass the syntax problems

altogether. The systems in this category represent three major approaches to bypassing

syntax: creating objects that represent code that can be moved around and combined in

different ways, using actions of the user within the interface to define programs, and

providing multiple methods for creating programs.

1.1.1.1.3. Construct Programs Using Objects
The systems in this group use graphical or physical objects to represent elements of a

program such as commands, control structures, or variables. These objects can be moved

around and combined in different ways to form programs. Novice programmers need

only to recognize the names of commands and the syntax of the statements is encoded in

the shapes of the objects, preventing them from creating syntactically incorrect

statements.



Play: S. Tanimoto and M. Runyan, University of Washington, 1986 [Tanimoto and
Runyan, 1986]

Play is a system designed to allow preliterate children to create graphical plays using an

iconic language. Stories consist of a linear sequence of actions that is displayed at the top

of the screen, above the story's stage, as a sequence of icons similar to a comic strip. The

character, what the character should do, and one additional piece of information, typically

a direction to move, all selected from menus, specify each action in the story. Play also

provides a character editor where children can draw additional images of their characters

and compose those images to create new animations. Play does not allow children to use

more complicated control structures such as loops and conditionals or define procedures.

Show and Tell: T. Kimura et al, Washington University and Bell Labs, 1990 [Kimura et
al, 1990]

Show and Tell is a data flow based visual language designed for children. A program in

Show and Tell consists of a series of connected boxes. A box can represent a value or an

operation on values. The program includes boxes that represent basic arithmetic

functions, system input and output, and some special purpose boxes that play sounds or

act as timers, etc. Children can build procedures by drawing their own icon for a box and

defining what should happen in the procedure using other boxes. Procedures can call

themselves. Because boxes are not permitted to form cycles or loops, users cannot

construct for and while loops. However, Show and Tell provides an iteration box that

provides bounded iteration, in other words, the function will continue repeating until a

boundary value is reached. If two connecting boxes contain different values (e.g. 2 and

3), they and their parent box are marked "inconsistent" and become invisible to the other

boxes. By checking for consistency and inconsistency in particular boxes, children can

represent simple Boolean conditions.

My Make Believe Castle: Logo Computer Systems Incorporated, 1995 [LCSI, 1995]
My Make Believe Castle is a play program for children ages 4-7 that contains activities

designed to help develop children's problem solving, critical thinking, sequential

planning, and memory. The castle consists of a number of rooms, each containing an

activity. In the courtyard of the castle, characters such as the dragon, prince, princess, and

horse move around. When the user clicks on them with a particular tool, they will dance,

slip on banana peels, do somersaults, etc. After children have played in the courtyard

space, they can be introduced to a very simple, rule-based programming system.. Editors

for each character allow children to specify which action a character should take when it

meets another specific character. A typical rule might be '"Nicky dances when it meets



the horse" (see Figure 4). Rules are specified graphically; children select the action using

icons and the character that should trigger the action by selecting a picture of that

character.

Figure 4. A view of the My Magic Castle courtyard. The user is creating the rule "Nicky should

dance when it meets the horse."

Thinkin' Things Collection 3- Half Time: Edmark Corporation, 1995 [Edmark, 1995]

Half Time is one of the activities in the computer game Thinkin' Things Collection 3.

The activity revolves around creating a half time show (see Figure 5). Users can select

characters from the top left and drag them onto the field; each half time show can have a

total of thirty characters across three types (such as tuba, percussion, and trumpet

players). At the bottom of the screen, there is a line for each of the three types of

characters in which users can drop instructions for them to perform. The available

instructions are similar to those of the Logo (see section 4.1.2.1) turtle: move forward,

turn left and right, turn randomly, pause, pen down and up, etc. Programs are created by

dragging the icons for instructions (shown below the football field) into the lines for a

particular type of character. Counted loops are supported, but no other block statements

are available.



Figure 5. A screenshot of Half Time from Thinkin Things Collection 3

LogoBlocks: A Begel, MIT Media Lab, 1996 [Begel, 1996, MIT Media Lab]

LogoBlocks is a graphical programming language designed for the Programmable Brick,

a precursor to the commercial Lego Mindstorms system [Lego], developed by the MIT

Media Lab (see Figure 6). In LogoBlocks, labeled graphical shapes represent commands

in BrickLogo, an extension of Logo (see section 4.1.2.1) that provides commands for the

Programmable Brick. These graphical blocks can be dragged off a tool palette on the side

of the screen to a main work area where they can be placed next to other blocks to form

programs. Like many visual programming environments, changes to programs may

require the user to move existing statements to make room for new ones. The parts in the

palette can take several forms, for example a block marked 'A1 specifies the motor A as

the recipient of commands following it, but, by clicking on the 'A' block, the user can

turn it into a 'B* or an *AB' block. Commands and conditionals also have multiple forms;

the blocks in the tool palette represent kinds of objects rather than all available objects.

Commands and conditionals requiring arguments have shapes with cutouts for placing

the arguments so that it is clear both that the command requires an argument, and the type

of the argument which is specified by the shapes of blacks that will fit into the cutout.

LogoBlocks includes support for procedures; users can attach commands to purple

procedure blocks and name their procedures.



Figure 6. A LogoBlocks program that waits for a light sensor to get a reading of less than 10 and then

turns motor A on for 20 seconds.

Pet Park Blocks: A. Cheng, MIT Media Lab, 1998 [Cheng, 1998]

Pet Park Blocks is a graphical programming language, inspired by LogoBlocks, which

was developed for the Pet Park collaborative environment (described later). Animations

are represented by notched squares that fit together. Conditionals are represented by

squares with half oval cutouts where conditions can be added. Like LogoBlocks,

programming constructs are kept in a palette from which users can drag them onto an

active area. Pet Park Blocks provides a button mat allows users to see their Blocks

program as a textual program. This allows users to gradually transition to text-based

programming.

Drape: M. Overmars, Universiteit Utrecht, 2000 [Overmars]

Drape is a programming environment that allows users to draw pictures (see Figure 8).

There is a collection of pictorial icons on the left side of the interface that represent

different commands similar to the Logo (see section 4.1.2.1) turtle commands: pen up,

pen down, move in different directions, move in shapes, etc. The icons can be dragged to

the lines at the bottom of the screen that represent the program; commands are executed

from left to right. There are extra lines associated with their own icons that can serve as

procedure calls. The system does have support for some predefined blocks such as repeat

10 times (shown as xlO) However, to apply the repeat 10 to more than a single object, the



sequence needs to be enclosed in brackets, which introduces the possibility for syntax

errors in the form of mismatched braces.

[[> JO| _• ] _>•! « ] _QDJ f®
Easy | Normal| Advanced]

BEHGHHS

Figure 7. DRAPE Drawing and Programming Environment allows children to draw pictures.

Electronic Blocks: P. Wyeth and H. Purchase, University of Queensland, 2000 [Wyeth,
2000]

Unlike the graphical objects used to construct programs in other systems, Electronic

Blocks are physical Lego blocks designed to allow young children (ages 3-8) to create

Lego forms with interesting behaviors (see Figure 7). Preschool children can build block

towers that flash when they talk or cars that move when a flashlight shines on them.

Three types of blocks are provided: sensor blocks that can detect light, sound, and touch;

logic blocks that can compute AND, NOT, TOGGLE, and DELAY; and action blocks

that can produce light, sound, and motion. The syntax of Electronic Blocks is very

simple; the only requirements are that each stack includes a sensor block and an action

block and that the action block be at the bottom of that stack. Action blocks are smooth

on the bottom so they cannot be placed on top of other block types.
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Figure 8. Electronic Blocks: the three sensing blocks are pictured on the

left, the logic blocks in the middle, and the action blocks on the right.

Alice 2: Carnegie Mellon University, 2002 [www.alice.org]

Alice is a programming system for building 3D virtual worlds, typically short animated

movies or games (see Figure 10). In Alice users construct programs by dragging and

dropping graphical command tiles and selecting parameters from drop-down menus.

Figure 1 shows an Alice screen as a user creates a simple animation. To add to the current

animation, the user drags a graphical tile labeled with the name of the animation from the

selected object's animations, in this case the IceSkater's animations, displayed in the

lower left panel When the user drops the tile, the system automatically cascades to

menus that allow the user to select valid parameters for the chosen animation. In Figure

x, the user has just dragged IceSkater turn from the panel and has chosen to have

IceSkater turn right one full turn. Students can also add standard programming control

structures such as if-statements and loops by dragging if and loop tiles from the top bar.

Unlike many no-typing programming systems, Alice allows students to gain experience

with all of the standard constructs taught in introductory programming classes in an

environment that prevents them from making syntax errors
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Figure 9. Building my first animation in Alice. In my first animation, IceSkater moves forward while

she raises her leg. Then, if IceSkater is close to a hole in the ice, she falls through it.

Magic Forest: Logotron, 2002 [Logotron]

Magic Forest allows children ages four and up to play with, change, and create Activities

that consist of 2D sprites that can move around, change appearance, and react to simple

events. Each sprite can be given a set of Rules (represented by a scroll containing stones),

a combination of an event and a list of things that should happen, in order, after that event

occurs. Both events and actions are represented by graphical stones that can be identified

by their icons, making it possible for children to learn how to use Magic Forest without

needing to know how to read. Magic Forest supports a variety of events, such as mouse

based events, events based on the relative positions of objects, and message passing

events. Actions might change the direction or speed of an object, the appearance of an

object, send a message, play sounds, or update the score. To add a new rule to a sprite, a

child selects an event from a scrolling list of available event stones, clicks on it to pick it

up, and then drops it onto a scroll associated with that sprite. The child can then attach

action tiles to the end of the event. As in Logoblocks, some tiles can have multiple forms;



a single tile can be used to increase the speed, heading, or size of an object. Children can

click on a tile to change which form it takes (increase speed, heading, or size).

r
Figure 10. Magic Forest allows children to control the actions and appearances of 2D characters. This

activity has five characters: a witch, a cat, and three spiders. The witch has two rules controlling her

behavior. The top one (blue tile on a scroll) allows the user to move the witch around the scene. The

second says that when the witch touches another object, she should make a sound (e.g. laugh). The

witch also has an empty scroll to which the user can add new behaviors by selecting events and actions

from the brown window at the top of the screen and placing them together on her scroll.

1.1.1.1.4. Create Programs Using Interface Actions
The systems in this category attempt to make programming more accessible using

physical objects or the simulation of physical objects. User interface actions such as

button presses or motion through space are mapped to commands in a programming

language. Since most of these interfaces rely on the motion of or buttons on physical

objects, the interfaces either tend to be fairly limited in the number and types of

commands possible or require the user to perform interface actions (such as pressing



buttons) in a specific sequence, introducing the possibility for sequences of actions that

do not correspond to valid program instructions.

TORTIS: R. Perlman, MIT Artificial Intelligence Lab, 1976 [Perlman, 1976]

TORTIS provides two different physical interfaces for young children to control a robotic

turtle inspired by the Logo turtle (see section 4.1.2.1); since the robotic turtle is very

slow, a simulated version is also provided for more advanced students. The first interface

is called the Button Box and provides a set of four boxes for controlling the turtle that can

be given to a child gradually. The first box provides buttons that move and turn the turtle,

pick up or put down the pen, turn a light on and off, and sound a horn. The second box

adds numbers such that a child can repeat a command multiple times by pressing a

number followed by a command. The third box adds a program area where children can

get the turtle to "remember" commands and then play back remembered commands. The

fourth and final box creates four procedures (named by colors) that can call each other.

The button box system did not allow students to edit programs after creating them,

making the gradual modification of programs difficult. The second interface, a Slot

Machine with cards that represented commands, attempted to solve this problem.

Children created programs by placing cards in the slot machine and having the turtle

execute the cards in order. The Slot Machine supported the easy modification of

programs since children could simply add cards, remove unwanted cards, or reorder cards

if the program did not do what they wanted.

Roamer: D. Catlin, Valiant Technologies, 1989 [Catlin]

Roamer is a programmable, mobile robot that has capabilities similar to those of the Logo

turtle: the Roamer can move forward and back, turn left and right, wait, and make

sounds. Programs are entered using a set of buttons, icons for the commands and a

number pad to indicate how far to move or turn and what sound to play. Buttons are also

provided for creating procedures and repeating statements. The Roamer can remember up

to 59 instructions in either the main program (the GO program) or numbered procedures

that can be called from the GO program or each other. An expansion set allows users to

add on sensors, two-state outputs, and a stepper motor, allowing a greater variety of

programs.

LegoSheets: Gindling et al, University of Colorado, 1995 [Gindling, 1995]
LegoSheets attempts to provide a gentle introduction to programming for the MIT

Programmable Brick by beginning with manual control of the elements of the brick and



gradually progressing to writing programs. Users are presented with a simulated version

of the Programmable Brick in which the parts can be manipulated; users can change the

speed of a motor connected to the simulated brick by typing in a value or using arrow

buttons to increase or decrease the value. Once users are comfortable with manipulating

the values of motors and observing the values of sensors in response to different types of

actions, they can double click on the representation of a motor or sensor and bring up a

rule editor for that object. The rule editor provides buttons to add conditionals or initial

values to control the behavior of the brick. Conditionals are provided in a template form

where users only have to type the names of objects they want to use and arithmetic

operations. There are also buttons for increasing and decreasing the priority of the current

rule.

Curlybot: P. Frei et al, MIT Media Lab, 2000 [Frei et al, 2000]

Curlybot is an educational toy for children aged four years and older. It consists of a two-

wheeled vehicle with electronics that allow it to record its motions. The Curlybot has a

single button and a single LED. The LED is used to indicate whether it is in record mode

(red) or playback mode (green). When a child wants to record a motion, he or she pushes

the button, demonstrates the motion, and then pushes the button again, which stops

recording and starts replaying the motion. The motion is repeated until the button is

pushed again, turning Curlybot off. While Curlybot cannot provide the complexity of a

full programming language, it does allow children to gain intuition about repeated

motions. The designers describe how sensors could be added to Curlybot to allow

children access to if and while statements, but these additions have not been

implemented.

3.1.1.3 PROVIDE MULTIPLE METHODS FOR CREATING PROGRAMS
Entering programs as text can be much harder than alternatives such as direct

manipulation or form filling but often gives the student more power. In a system that

provides multiple methods for specifying programs and represents the resulting program

in all program formats, students can use an easier method of program specification to

help in learning a more complex, more powerful one. The system in this category

provides multiple methods, including standard text, for specifying programs so that

students can leverage the simpler methods to learn to program in a standard, textual

format.



Leogo: A. Cockburn and A. Bryant, University of Canterbury, 1997 [Cockburn and
Bryant, 1997]

Leogo is a system that produces drawings similar to the Logo turtle (see section 4.1.2.1).

However, rather than concentrating on one method for creating programs, it provides

three: a typed syntax similar to Logo, a direct manipulation interface in which the turtle is

dragged around and his actions are recorded, and an iconic language which contains

templates for defining structures and using common turtle commands. Motions are

expressed in all code styles simultaneously; when the turtle is dragged forward 15 units,

the text window shows forward 15, and the iconic window shows forward 15 in icons so

it is possible to learn some of the iconic and typed languages using direct manipulation.

Figure 11. The Leogo interface showing iconic, direct manipulation, and textual programming.



3.1.2 Structuring Programs

These systems concentrate on the structure of code and how it is organized rather than on

the syntax of short segments of code. This section includes systems that have tried "new"

paradigms for programming. There are two groups here - ones that are changing the

paradigm and ones that are trying to make changed paradigms more understandable

3.1.2.1 NEW PROGRAMMING MODELS

Instead of focusing on the syntax of specifying small sections of programs, these systems

focus on how instructions are combined and organized to form more complex programs.

Pascal: N. Wirth, Institut fur Computersysteme, 1970 [Wirth, 1970]

The first version of Pascal was created in 1970 for use in teaching programming,

particularly systems programming. At the time, the other available languages were

FORTRAN, COBOL, and Algol, none of which supported the Structured Programming

proposed by Dijkstra [Dijkstra, 1969]. Pascal was introduced in beginning programming

classes in 1971 to enable professors to teach Structured Programming to their students in

their first course. Although Pascal was designed with teaching in mind, the improvements

in the language can be seen as general improvements in programming languages. Algol,

one of the primary influences, had ambiguities in the ways nested ifs could be

interpreted; Pascal removed these. In addition, Pascal added new basic types and the

ability to define special purpose types through struct statements.

Smalltalk: A. Kay and A. Goldberg, Xerox PARC, 1971 [Kay, 1971]

The first version of Smalltalk was created in 1971 at Xerox PARC as the language for the

KiddyKomputer, Alan Kay's original name for a portable computer designed for use by a

child. Where BASIC attempted to provide a simpler programming language by reducing

the number of commands and removing unnecessary syntax, the Learning Research

Group (LRG) at PARC concentrated on the model of programming. The group wanted to

create a programming language with a simple model of execution and a method of

programming that could accommodate a wide variety of programming styles. Smalltalk

was based around three ideas: (1) everything is an object, (2) objects have memory in the

form of other objects, (3) and objects can communicate with each other through

messages.

Playground: J. Fenton and K. Beck, Apple Computer, 1989 [Fenton and Beck, 1989]

Playground is an object oriented programming environment designed to allow children to

create their own graphical objects and give them behavior. The programming model was



based on a biological metaphor in which all objects are independent "organisms"; the

model was influenced both by Minsky's Society of Mind [Minsky, 1986] and by classical

ethology (the study and description of animal behavior). Each object has its own sensors,

effectors, and processing elements so it can act independently. Programming in

Playground is rule-based; rules describe both the action and the circumstances under

which it should occur. Students specify rules for each object using a natural-language-

influenced scripting language. One of the suggested projects for the system is a virtual

aquarium with different species offish and plankton that feed on each other. A fish might

have a rule that caused it to eat an algae cell if it saw one and was hungry. A larger fish

might eat a smaller fish.

Kara: R. Reichert, W. Hartmann, J. Nievergelt, M. Braendle, T. Schlatter ETH Zurich,
2001 [Hartmann, 2001]

Kara is a graphical programming language based on Karel the Robot that uses finite state

machines to organize procedures. Kara can move, turn, pick up and place clovers, and

detect tree stumps and clovers; these commands and questions are represented

graphically. In each state, the user can ask questions of Kara's current position and, based

on the answers to these questions, supply a sequential list of instructions and the name of

the next state in the machine. The finite state machine diagram of the program is provided

to show the structure of the program and to allow the user to select a pre-existing state to

edit. The use of the simple finite machine model for programming allows the Kara

environment to be completely graphical; no typing is necessary, which is an advantage

for beginning programmers. In addition, to aid the transition from introductory

programming in Kara to "real programming" the authors have supplied JavaKara, an

environment that provides a transition to Java, MultiKara, an environment that introduces

concurrent programming, and TuringKara, an environment that allows students to

experiment with Turing machines in a two dimensional plane.

Figure 12. A screenshot of Kara showing a finite state machine with
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3.1.2.2 MAKING NEW MODELS ACCESSIBLE

Some programming styles, such as object-oriented programming, can be difficult for

beginners to understand but can be helpful either in organizing larger programs or

representing particular types of behaviors. Rather than requiring novice programmers to

learn multiple styles of programming, the systems in this category attempt to make these

more complex, but ultimately helpful, styles of programming accessible to novice

programmers.

Liveworld: M. Travers, MIT Media Lab, 1994 [Travers, 1994]

Liveworld is an object oriented programming environment built to improve on

Playground (see section 3.1.2.1). In Playground, creating and interacting with graphical

elements is very simple, but interacting with the rules and attributes that govern the

behavior of the objects is much more difficult. Liveworld attempts to create a graphical

interface for the rules and attributes of objects so they are more accessible to novice

programmers. The interface is similar to a hierarchical browser; parts of objects can be

opened, revealing the details of those objects. The user can dive down and change the

Lisp code controlling the behavior of objects or simply use the objects, depending upon

how much detail the user of the system wants to see. This allows novice programmers to

use more complicated objects as black boxes, which would have been difficult in

Playground.

- ^simple vorld
-cast

pos :9j >yp»s: 104[

t> heading: 0 |
• 3SHriang1e-sensor: yes I
>fie1d-vidth: 69 j i

> field-range : 9 0 b l ^ 3 - J

circle-object

if (> (ask self :distance-senser)
(ask self:last-distance))

(ask self: turn-left (arand 0 180))
(ask self: turn-left (arand 0 10)))

Figure 13. (a) A simple world in Live world containing two objects, an oval and a turtle. The turtle is

open so that the user can see its details, (b) An example of Lisp code used in Liveworld to turn a turtle.

Blue Environment: M. Kolling and J. Rosenberg, University of Sydney, 1996 [Kolling,
1996]

There are a number of steps involved in creating an executable program: writing, editing,

compiling, testing, debugging. While there are a variety of Integrated Development

Environments (IDEs) available (e.g. Visual C++, JBuildcr, etc), most of these were

created to support a procedural style of programming. To make it easier for students to



learn object-oriented programming in their first course, environments should be designed

to support object-oriented programming. The Blue environment supports object-oriented

programming by explicitly representing the relationship between the objects in a

graphical tree. Users can click on a particular class to view the code for that class. In

addition, a class-testing bench allows users to create an instance of any class and call its

public methods. This allows users to test individual objects outside of the context of the

running program, better supporting an object-based design. Compiling and debugging are

also supported in the environment, similar to other commercially available IDEs.

Karel++: J. Bergin et al, Pace University, 1997 [Bergin et al, 1997]
Karel J Robot: J Bergin et al, Pace University, 2000 [Bergin et al, 2000]
J. Karel: B. Becker, University of Waterloo, 2001 [Becker, 2001]

Karel J Robot, J.Karel, and Karel++ are versions of Karel the Robot that concentrate on

preparing students for object-oriented programming rather than procedural programming.

Karel J Robot and J Karel use Java-style syntax; Karel-H- uses C++ style syntax. Rather

than creating procedures to teach Karel to turn right, students subclass a basic robot to

create a right-turning robot. These systems all leverage off the success of the original

Karel the Robot to attempt to introduce object-oriented programming early such that

thinking and programming in an object-oriented manner will seem more natural to

students.

3.1.3 Understanding Program Execution
A syntactically correct program may not perform the actions that the student author

intended. For beginning programmers, understanding how programs are executed and

how to find mistakes in their programs can be difficult. The systems in this category try

to help students understand what happens during the execution of programs, either by

placing programming into a concrete setting or by providing a physically based model of

how programs are executed in more general-purpose languages.

3.1.3.1 TRA CKING PROGRAM EXECUTION

Atari 2600 BASIC: W. Robbinett, Atari, 1979 [Robbinett, 1979]

The Atari BASIC Cartridge allowed children to write short programs in a variant of the

BASIC language and watch them as they executed. Atari BASIC divided the screen into

six regions: the Program region, which displayed the child's program; the Stack region,

which displayed expressions as they were evaluated; the Variables region, which

displayed each variable and its current value; the Output region, which displayed all



program output; the Graphics region, a 2D graphical region with sprites; and the Status

region, which displayed the current execution speed of the interpreter and the amount of

remaining memory. Atari BASIC contained simple support for observing what was

happening as the program executed, similar to the supports found in many debuggers. As

a child's program ran, several parts of the display changed to reflect the current state of

the program: a program cursor showed the current line of code being executed; the stack

updated as expressions were added or evaluated; the values of variables changed as

appropriate; sprites might move in the graphics region; and the program might play a

sound.
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Figure 14 A simple program in Atari 2600 BASIC. The areas of the screen update to show the current

position and state of the program.

3.1.3.2 MAKE PROGRAMMING CONCRETE: ACTORS IN MICROWORLDS

Most introductory programs in general-purpose languages are fairly abstract; the

computer performs arithmetic operations on numbers and stores the results in ievisible

registers, making it difficult for students to understand and correct problems in their

programs. The micro-world, inspired by the Logo turtle (see section 4.1.2.1), attempts to

make programming more concrete by introducing students to programming constructs



through controlling the behavior of an actor in a simple, physically based world. The

actors usually perform only a few actions, resulting in small languages that students can

master more quickly than general-purpose languages. Micro-world based systems also

typically include simulators that allow students to watch the progress of their programs.

Using micro-worlds, students can quickly gain familiarity with many of the control

structures like if-statements and loops, allowing them to devote more time and energy to

mastering the syntax and new commands when they move on to general-purpose

languages.

Karel: R. Pattis, Carnegie Mellon University, 1981 [Pattis, 1981]

Karel the Robot is one of the most widely-used mini-languages, originally designed for

use at the beginning of a programming course, before the introduction of a more general-

purpose language. Karel is a robot that inhabits a simple grid world (see Figure 15) with

streets running east-west and avenues running north-south. KareFs world can also contain

immovable walls and beepers. Karel can move, turn, turn himself off, and sense walls

half a block from him and beepers on the same corner as him. A Karel simulator allows

students to watch the progress of their programs step by step. Unlike many of the systems

discussed in this paper, Karel is supported by a short textbook, making it easier for

teachers to incorporate Karel in their classes.
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Figure 15. Left, a simple Karel world with Karel in a room and a beeper outside the door. On the

right, a program that will move Karel to the beeper's location and have him pick up the beeper.



Students can create procedures using DEFINE-NEW-INSTRUCTION (Figure 15), but

variables and data structures are not supported in the language. The syntax was designed

to be similar to Pascal (see section 3.1.2.1) to ease the transition from Karel to Pascal

after the first few weeks of an introductory programming course. There are a number of

other robot-based micro-worlds that are described in a survey of mini-languages

(Brusilovsky et al, 1997).

Josef the Robot: I. Tomek, Acadia University, 1983 [Tomek, 1983]

Like Karel, Josef is intended to introduce programming to beginners using a robot, Josef,

in a simulated world. Josef lives in Wolfville, which is represented by an ASCII map;

users can replace the map of Wolfville with one of their own choosing. He knows how to

turn left and right, and move forward. The user can also set the speed at which Josef

moves. However, unlike Karel, Josef can say and listen for text strings, enabling input -

output programs. Additionally, he can drop text markers (e.g. the string "cat") similar to

Karel's beepers anywhere in his world. Unlike Karel, Josef was intended to be used for a

full semester of programming for non Computer Science majors. To support a full

semester of use, it includes many more programming constructs than Karel, such as

parameters, variables, and recursion.

Turingal: P. Brusilovsky, University of Pittsburgh, 1991 [Brusilovsky, 1991]

Turin gal is micro-world based language in which the actor is a Turing machine and the

world is the infinite tape designed to give students exposure to the standard programming

constructs as well as the classic Turing machine. The instructions in the language allow

the actor to move left and right along the infinite tape as well as read and write symbols

on the tape. Like Karel, the basic instructions are easy to visualize. The Turingal

language supports conditional, loop and case statements and procedures so that students

can gain experience with them in a visual setting. The language uses Pascal syntax (see

section 3.1.2.1) to ease the transition from Turingal to Pascal. In support of a computer

literacy course for Russian high school students, Brusilovsky also created Tortoise, a

micro-world based on Turingal which uses a two-dimensional field of symbols to make it

more attractive to younger students (Brusilovsky et al, 1997),

3.133 MODELS OF PROGRAM EXECUTION
Rather than creating a language that has a simple, physical interpretation, the systems in

this category provide physically based metaphors for explaining actions in a more

general-purpose language. These metaphors can help students both to imagine the



execution of their programs and perhaps more clearly understand why their programs do

not perform as expected.

ToonTalk: K. Kahn, Animated Programs, 1996 [Kahn, 1996]

ToonTalk has a physical metaphor for program execution that is similar to that of

Prototype 2. In ToonTalk, cities and the creatures and objects that exist in cities represent

programs. Most of the computation takes place inside of houses; trainable robots live

inside the houses. Communication between houses is accomplished with birds that carry

objects back to their nests. Unlike Prototype 2, the ToonTalk environment places the user

within the city (program). Using interaction techniques commonly found in videogames,

users can navigate around the space, pick up tools, and use tools to affect other objects.

By entering the thought bubbles of robots and showing them what they should do using

standard ToonTalk tools, users construct programs.
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Prototype 2: D. Gilligan, Victoria University, 1998 [Gilligan, 1998]

Prototype 2 personifies the flow of control in a computer using a clerk following

instructions. The clerk can interact with calculators, I/O devices, worksheet machines,

and his clipboard in executing a program. Calculators represent the computer's math

processor, I/O devices represent communication with the computer user, the clipboard

represents the program stack, and the worksheet machines produce stacks of worksheets

that represent the instructions in user-defined subroutines. Rather than imagining the

internals of a computer, a novice programmer can imagine the clerk walking around a

room interacting with calculators, I/O devices, worksheet machines, and his clipboard,

and executing the instructions specified on his clipboard. This model was used in the

creation of a programming by demonstration-based system in which the user plays the

part of the clerk and demonstrates the actions the clerk should take. The system records

these actions. While Prototype 2 uses an anthropomorphic metaphor, the system does not

include a graphical representation of the clerk and the objects in his world; instead it is a

standard graphical user interface with sections of the interface that represent each of the

objects in the clerk's world (e.g. the calculator, I/O devices, etc.) that the novice

programmer can use to demonstrate how the clerk should behave.

3.2 Social Learning

Some of the most effective learning is done in a social context where more than one

person is working with a problem. Since programming is known to be hard and children

often learn more effectively in groups, perhaps it may help the learning process to

provide a social context in which learning can occur. The systems in this category

investigate different methods for allowing students to work together: co-located and over

a network connection.

3.2.1 Side By Side
Most computer interfaces are designed for single users. Consequently, when groups of

children use a standard mouse, monitor, and keyboard setup in learning, one child tends

to dominate the process. The systems in this category use tangible interfaces to allow

multiple students in informal groups to work together in solving programming problems.

Because of the difficulty of representing the wide variety of programming constructs in a

tangible form, these systems concentrate on small subsets of programming.



AlgoBlock: H. Suzuki and H. Kato, NEC Information Technology Research
Laboratories, 1995 [Suzuki and Kato, 1995]

The authors of AlgoBlock wanted to create an active learning community among children

learning to program in which children can share notes and techniques, and learn from

each other. They created AlgoBlock, a set of blocks, each of which corresponds to a

simple command in Logo (see section 4.1.2.1). The blocks can be connected together to

form programs that control the movements of a submarine in a maze. The blocks are

tangible and large enough that they can be arranged on a desk that several students can

work around. This allows students to work with the blocks in a social context, learn from

each other, and communicate what they are learning. The tangible nature of the blocks

made it easy for children to take turns manipulating the blocks and communicate about

which pieces should be placed where. The AlgoBlock project demonstrates that, in a

suitable environment, children will work together in building programs. However, the

blocks supported a limited set of programming constructs; the children were not able to

explore concepts like procedures, parameters, or control structures.

Tangible Programming Bricks: T. McNerney, MIT Media Lab, 2000 [McNerney,
2000]

Tangible Programming Bricks are Lego blocks that can be stacked together to form

programs. The designer's intent in creating these was to provide a simple interface to

appliances and toys and to create a programming environment that would allow children

to collaboratively explore ideas. While the work concentrated on the hardware

implementation of the Lego blocks, the designer created three prototype environments

using Lego blocks that represent commands. To allow a greater variety of commands,

users could insert a small card (e.g. microchip) into a block. Each block could accept a

single card, allowing users to communicate with other blocks via IR transmission, supply

parameters to commands, sense the environment, or display variables. The three

prototype languages allowed children to teach toy cars to dance, kitchen users to program

microwaves, and toy trains to react to signals along the side of the tracks in unique ways.

By stacking blocks together with accompanying cards, if necessary, users could construct

simple programs.

3.2.2 Networked Interaction
Rather than trying to move away from the common single user, single computer

paradigm, the systems in this category attempt to allow students using different machines

to work together over the network. While the systems designed for students working side-

by-side can assume all children can see the state of the current program and what other



children are doing, programming systems designed for network use need to explicitly

support the exchange of this kind of information.

MOOSE Crossing: A. Bruckman, MIT Media Lab, 1997 [Bruckman, 1997]

MOOSE Crossing is a networked programming environment built for children. It is an

adapted text-based MUD (multi-user dungeon) in which children can use an object-

oriented scripting language to create spaces and characters that inhabit a textual world

(see Figure 17). Children often create spaces and characters similar to those found in text

adventure games such as castles complete with secret passages that other children can

explore. Once their projects are completed, any child in the MOOSE Crossing

environment can interact with them. In addition, the environment allows children to view

the scripts controlling any object or character in the environment and chat with children

that are currently logged onto MOOSE Crossing. In general, children work alone on

projects but one child will often use another child's project as an example. Children may

also ask another user for help or advice. The MOOSE Crossing community has provided

a source of help, role models, and positive feedback for users of the system as they create

their own projects.

on pet this
tell player "You pet Rover."
if player memberof my friends

emote "wags his tail."
end

Figure 17. A MOOSE Crossing script that allows MOOSE users to pet Rover. When a user pets Rover,

they are told "You pet Rover." If they are one of Rover's friends, then Rover wags his tail.

Pet Park: A. DeBonte, MIT Media Lab, 1998 [DeBonte, 1998]

Pet Park is an exploration of the ideas of MOOSE Crossing in a 2D graphical domain

rather than a textual one. Children can choose one of 5 dogs to be their pet. Each dog

comes with a few animations, such as wagtail, jump, walk, laugh as well as basic ones

like wait, tumLeft, say, etc. Users can combine these simple commands to create their

own animations using a textual scripting environment or a set of graphical blocks

representing each command. As in MOOSE Crossing, Pet Park is a networked

programming environment in which children can talk, ask each other for help, and show

off their creations. While in MOOSE Crossing, children create spaces by describing them

with text; in Pet Park, creating a space requires graphical objects. In response, the system



provides a variety of furniture, objects, and rooms. Furniture and rooms can be

programmed to react to simple events such as avatars coming near them.

Cleogo: A. Cockburn, University of Canterbury, 1998 [Cockburn, 1998]

Cleogo is a networked version of Leogo (described earlier) that allows children to see and

interact with the same Leogo workspace. Rather than concentrating on building a

community of programmers, Cleogo creates a shared environment, the current program

being edited, and allows multiple children to see and manipulate that environment.

Cleogo does not attempt to provide children with a way to communicate with each other

about their project. Instead, it assumes that they are either in the same room or can talk to

each other using the phone or some equivalent.

3.3 Providing Reasons to Program

Beginning programmers often do not know exactly what they want to build, what is

possible in the programming system they are using, or how difficult certain kinds of

projects will be to complete. The systems in this category provide starting points in

learning to program. By providing specific activities for beginning programmers, these

systems can introduce programming constructs gradually which may help to prevent

beginning students from getting overwhelmed. In addition, these systems often use

themes they believe children will find appealing.

3.3.1 Solve Problems by Positioning Objects

In these systems, students position objects to solve a series of puzzles. As students get

more advanced, the puzzles become more difficult The gradual progression of difficulty

allows the designers of the system to introduce constructs and problems and provides

students with a series of realizable and interesting goals.

Rocky's Boots / Robot Odyssey: W. Robbinett, The Learning Company, 1982
[Robbinett, 1982]

Rocky's Boots was one of the first educational software products for personal computers

to successfully use an interactive graphical simulation as a learning environment. The

game allows children to connect logic gates (AND, OR, NOT and flip-flop) together to

create circuits using a joystick (see Figure 18). When the circuits are active, users can

watch the wires turn from white to orange as the electricity passes through them. The

game provides a series of puzzles in which the player is supposed to separate the shapes

matching a certain criteria from those that do not using logic gates, sensors that can detect

certain kinds of shapes, and a boot that, when activated by a true value, kicks the current



shape out of the line and off to one side. Robot Odyssey follows the same basic pattern;

the player connects gates together to solve problems. However, Robot Odyssey includes a

larger selection of objects like the shape-kicking boot that perform physical actions when

they are activated, creating a wider set of possibilities for the behaviors of circuits.

Figure 18. A puzzle from Rocky1 s Boots in which the player is asked to create a circuit that separates

blue crosses from the other shapes. When the circuit is switched on, shapes move up the right side of

the screen. When they enter the white rectangle, the shape sensors to the right of the rectangle can

detect them. The player is asked to attach a sequence of logic gates to the sensor that will activate the

boot (center) when a blue cross enters the box. The boot, when activated, will kick the shape out of the

rectangle.

The Incredible Machine: Sierra Entertainment, 1993. [Sierra, 1993]

In the Incredible Machine, the player is given a series of Rube Goldberg style challenges

(see Figure 19). For example, the player may be asked to construct a way to get a ball to

fall into a basket. Each challenge includes a short description and all the parts necessary

to create the machine described. Players can select parts and position them in the world

and then start the simulation to test their machine. When the simulation is running, the

parts respond as they would in the physical world. If users ran into trouble, they can ask

for hints. More advanced users can use a free play mode to create their own machines.



Figure 19. An easy challenge in The Incredible Machine: the player needs to help Mel (top left) get

back to his house. The puzzle has been solved by positioning the grey pipe, ramp, and a trampoline so

that Mel will go through the pipe, slide down the ramp, and bounce off the trampoline and over the

barrier to get home.

Widget Workshop: Maxis, 1995 [Maxis, 1995]

Widget Workshop provides a series of puzzles that players attempt to solve by

connecting different components together using graphical wires. Each puzzle poses a

specific question (e.g. what colors of light do you add together to get white) and provides

a context in which to experiment with that question (e.g. red, green, and blue lights

controlled by switches that connect to a "light box" where they are combined). Widget

Workshop also provides a free play mode in which users can create their own widgets by

connecting pre-made parts together.

3.3.2 Solve Problems Using Code
Motivation can be a key element in learning; if students want to leam to do something,

obstacles will not deter them, as much. These systems concentrate on providing a reason

that a novice would want to program by creating an environment in which the novice

programmer gets to do something fun.



AlgoArena: H. Kato and A. Ide, NEC Information Technology Research Laboratories,
1995 [Kato and Ide, 1995]

In AlgoArena, players write programs to control the behavior of sumo wrestlers fighting

tournaments. The programs are written in a language based on Logo (see section 4.1.2.1).

When a player has completed a program, the player can log onto a website and have his

or her wrestler fight against another student's wrestler. Over time, by analyzing the

circumstances in which the player's sumo wrestler loses tournaments, the player is

expected to learn more complex ways to control the wrestler, perhaps querying the

position and posture of their opponent before deciding which moves to execute.

Robocode: M. Nelson, IBM Advanced Technology, 2001 [Nelson, 2001]

Robocode is designed to help novices learn Java through programming a robotic

battletank for a "fight to the finish". The tutorial teaches novices to subclass an existing

battle tank robot and extend the robot's capabilities using standard Java and a set of

classes written for the Robocode environment. Upon completion of a robot, users can

upload their creation to a number of websites or join a robotic battle league. The designer

of the system believes that the ability to program robotic battles will provide enough

motivation to get a novice programmer over the hurdles of beginning to program.

4. EMPOWER PEOPLE

The systems in this category are built with the belief that the important aspect of

programming is that it allows people to build things that are tailored to their own needs.

Consequently, the designers of these systems are not concerned with how well users can

translate knowledge from these systems to a standard programming language. Instead,

they focus on trying to create languages and methods of programming that allow people

to build as much as possible.

4.1 Mechanics of Programming

The systems in this category are designed around the hypothesis that the primary barrier

for people attempting to use programming as a tool is the mechanical difficulties of

creating programs. Systems in this category examine ways of improving programming

languages and alternative ways for creating.

4.1.1 Code is Too Difficult
Many researchers have examined the problem of making languages more understandable

and usable for novices. While progress has been made making programming languages

more understandable, there still are many barriers for novices trying to build their own



programs. These systems examine creating programs either through demonstrating

correct behavior or selecting actions through the interface.

4.1.1.1 DEMONSTRATE ACTIONS IN THE INTERFACE
The systems in this category examine ways that users can program a system by showing

the system what to do through manipulating the interface, without relying on a

programming language.

Pygmalion: D. Smith, Stanford University, 1975 [Smith, 1993]

Pygmalion was the first programming by demonstration system. Unlike many of the

systems that came after it which concentrated on graphical objects, Pygmalion attempted

to get people to write more abstract programs, such as a program to compute the factorial

of a number. However, rather than building factorial by typing statements in a

programming language, Pygmalion relied on editing an artifact. To create a factorial

program, the user creates an icon with two sub-icons, one for the input and one for the

output, and draws a symbol to represent factorial. The user can then enter remember

mode, in which all of the actions made by the user are remembered by the system.

Consequently, the user can program the computer by working out an example of how to

compute factorial. However, the user must anticipate the handling of the value one and

test whether or not the current value, say three, is equal to one, something that novices

may not be well prepared to do. If the user does not demonstrate his or her current actions

as the case for the current value not being equal to one, Pygmalion will not know that one

should be handled differently and, consequently, will not prompt the user to demonstrate

how one should be handled.

Programming by Rehearsal: W. Finzer and L. Gould, Xerox PARC, 1984 [Finzer and
Gould, 1984]

Programming by Rehearsal was built to help non-programmers create educational

software. It is designed around a theater metaphor in which components of the interface

are performers that interact with one another on a stage by sending and responding to

cues. A user of the system would begin creating a piece of software by auditioning

performers to use as building blocks, selecting their cues via a pop-up menu and

observing their responses to those cues. The user would then copy the chosen performers

onto the stage, placing and sizing them appropriately. The rehearsal portion of

development consists of showing the performers what actions they should take in

response to user input or cues sent by other performers. Objects that accept user input,

such as buttons, have cue sheets that allow users to fill in their responses to those user



inputs. Users can press a closed eye icon to tell the system to observe what their actions.

Then, by selecting cues from the menus of other performers, they can show the system

how to react to those cues. By pressing the eye icon again, users indicate they have

finished. The system comes with 18 basic performers users can audition and use in their

own creations. Additionally, the system allows users to create new performers by

combining existing performers and teaching them new cues.

Mondrian: H. Lieberman, MIT, 1992 [Lieberman, 1993]

Mondrian is a programming by demonstration system for drawing and graphical editing

in which commands are shown with "domino" icons that depict the before and after states

for that command. To execute a command, users select the command icon and select the

object or area to which the command should be applied. The user can create new

commands in a storyboarding style by showing how to do each step in the new command.

These steps are displayed at the bottom of the screen in comic book format with a short

caption describing each step. Drawing a rectangle on the screen would show a box with

the new screen state captioned by "rectangle". If the user then moves the rectangle, a

"move" domino would appear beside the "rectangle" domino in the definition of the new

command. New commands created by the user are displayed in the same domino style as

the commands built into the system. In addition, the system provides speech synthesis

capabilities to give an English description of what a command does.

4.1.L2 DEMONSTRATE CONDITIONS AND ACTIONS

Like the previous category, the systems in this category try to avoid forcing users to

express their intentions in code. However, instead of demonstrating programs by

performing actions in the user interface, as the systems in the previous category did, the

systems in this category allow users to depict the conditions in which they want the

program to perform an action and the results of that action.

AgentSheets: A. Repenning, University of Colorado, 1991 [Repenning, 1993]
AgentSheets is an environment for building simulations consisting of graphical agents

(represented by icons) in a grid-based wrorld. In early versions of the system users

specified the behaviors of their simulations by graphical rewrite rules in which the user

selected conditions (configurations of icons in the world or relative to each other) and

showed the system what should happen under these conditions by moving the agents to

their new positions in the world. However, graphical rewrite rules on their own are

insufficient for creating more realistic simulations and complex games. To support a



broader range of simulations, AgentSheets now uses Tactile Programming in which users

still specify a list of conditions and a list of actions to take if all of those conditions are

true. Conditions can check information such as the appearance of agents, read data from

other agents or web pages. Actions might change the appearance of agents, destroy

agents, create new agents, or open web pages.
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Figure 20. A screenshot of a traffic light simulation in AgentSheets containing two rules. The first rule

runs continuously: every three seconds it triggers the second rule. The second rule looks at the current

color of the traffic light and changes it to the next one in the sequence green, yellow, red.

ChemTrains: B. Bell and C. Lewis, US West Advanced Technologies, University of
Colorado, 1993 [Bell and Lewis, 1993]

ChemTrains is a pictorial rule-based language that attempts to make it easy for people to

create a wide variety of "behaving pictures". ChemTrains is similar to Stagecast (see

below) in that users show both the conditions and results of a rule through pictures. In

ChemTrains the pictures used to specify conditions and results are interpreted as patterns

of connections rather than collections of pixels. For example, in simulating an AND gate,

if there is any box with a zero connected to the AND gate (from any direction and any

distance away), the output of that gate should become zero. A similar statement in

Stagecast would only work if the zero connected to the AND gate was always in the same



relative position to the AND gate. As in Stagecast, the order of the ChemTrains rules

dictates how they are applied; only the first matched rule is applied in each time slot.

Additionally, the ChemTrains pattern matcher can use variables; in ChemTrains,

variables are specially marked pictorial elements that can match any element of the

simulation display. The addition of variables allows users to create a wider range of

simulations.

Stagecast: D. Smith, A. Cypher, and J. Spohrer, Apple Computer, 1995 [Smith, 1997]

Stagecast, a commercial version of KLidSim (see below), is an environment for creating

simulations. Children are presented with a grid-based world in which they can create their

own actors. Users define rules for the simulation by selecting a before condition from the

grid world and then demonstrating how that condition should change (see Figure 21).

When the simulation is started, when a section of the grid matches a condition of one of

the rules, the rule is applied. Stagecast applies only the first rule (in top to bottom order)

that matches a section of the grid.

I

_
Figure 21. This drawing shows an example of how users create rules in Stagecast. On the left side are

the conditions in which each rule should be applied. On the right, the results of each rule are shown. In

this drawing, if there is a raindrop with an empty space between below it, the raindrop should move

down. Likewise, if there is a raindrop with an empty space on its right, it should move right.

4. LI.3 SPECIFY ACTIONS
In these systems, the user creates programs by using the interface to specify the desired

behavior. The user does not see any code, but unlike in programming by demonstration

systems, the user does not show the computer what to do, he or she selects the program's

actions.



Pinball Construction Set: B. Budge, Exidy Software, 1983 [Budge, 1983]

The Pinball Construction Set was written in 1983 to allow users to design and build their

own pinball machine simulations (see Figure 22). It provided a construction space, a set

of pinball parts, and bitmap editing capabilities to allow users to build themed pinball

machine simulations. Physical laws and behaviors were written into each part; each part

provided could be seen as acting on balls that collide with it in defined ways. In this

system, users can program by placing pinball parts in well-defined relationships; this

method of programming is similar that employed by The Incredible Machine (see section

3.3.1). For example, users may want to specify that when a ball hits a certain target, it is

diverted onto a ramp, and its path affected by a magnet.
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Figure 22. A screenshot of the Pinball Construction Set. On the right is an empty pinball game; on the

left are a variety of parts that users can put into their pinbal! games.

Alternate Reality Kit: R. Smith, Xerox PARC, 1987 [Smith, 1987]

The Aitemate Reality Kit (ARK) is an environment in which users can build interactive

simulations. Users interact with objects built on a physical-world metaphor; each object

has an image, position, velocity, and can be influenced by forces. Users can pick up

objects, move them, drop them, or throw them using mouse gestures, Users can query or

change the state of objects by sending messages, represented by buttons, to those objects.



To connect a button with a particular object, the user drops the button onto that object. If

the object understands the message the button represents, the button "sticks" to the

object, otherwise it falls through. Buttons that require a parameter have a little "plug"

where users can hook up a value for the parameter.

Klik N Play: F. Lionet and Y. Lamoureux, Europress, 1994 [Lionet and Lamoureux,
1994]

Klik N Play is designed to allow the user to create simple level-based games. The

application has three modes: a storyboard editor, which allows the user to see all levels as

thumbnails, a level editor, and an event editor. The level editor allows the user to select

the background, add predefined objects to the level, and provides users with the ability to

create their own objects and animations for those objects. Users create animations frame

by frame with a bitmap editor and use controls to set the speed and motion of objects.

The event editor uses a table format and allows the user to specify actions for a variety of

predefined events (see Figure 23). Klik N Play's events are based on collisions between

objects, mouse and keyboard input, time, the state of players, and the states of variables

and objects in the level.
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Figure 23. A view of the event editor in ICIik N Play while the user builds a graphical piano program.

The user is currently specifying that when the "User clicks with left button on white piano key," the

game should play "sample piano 1." The events are organized in table form based on their effects: all

sound events are in the first column, events on the user's objects, piano keys in this scrcenshot, begin

at column 5.



4.1.2 Improve Programming with Languages

The designers of many of the teaching languages are concerned with how well students

can transfer the knowledge they gain in the teaching language to more general-purpose

languages. Consequently, the designers of teaching languages have been hesitant to

deviate very far from these general-purpose languages. However, the systems in this

category endeavor to empower their users to create interesting programs; whether the

users of these systems can transfer their programming knowledge to more general

purpose languages is not important. Consequently, the designers of these systems can

make changes to standard programming languages that the authors of teaching languages

might hesitate to make.

4.1.2.1 MAKE THE LANGUAGE MORE UNDERSTANDABLE
These systems include languages that were developed with a focus on the language and

words novices use to describe situations. Most previous languages have been developed

with a focus on consistency between languages or on mathematical simplicity. These

languages instead focus on choosing words that the users of the system understand and

can use effectively without having to translate their words in their everyday vocabularies

into the words that the computer language uses for the same concept.

COBOL: C. Phillips et al, Department of Defense, 1960 [Sammet, 1981]

COBOL is the COmmon Business Oriented Language, designed to support the creation

of business applications. It was intended to be usable by novice programmers and

readable by management; spoken English influenced many of the programming

constructs (see Figure 24). The designers also added "noise" words to increase the

readability of the language: ADD X TO Y rather than ADDXt Y.

IF GREATER <...>
OTHERWISE <...>

Figure 24. A conditional statement in COBOL. Conditionals can use implied subjects and objects as

seem in the second and third Hoes of the conditional statement.

Logo: Seymour Papert, MIT, 1967 [Papert, 1980]

The Logo programming language is a dialect of Lisp with much of the punctuation

removed to make the syntax accessible to children. It was intended to allow children to

explore a wide variety of topics, from mathematics and science to language and music.

The most well known part of Lego is the Logo turtle, which began as a robotic turtle that

could draw oe the ground. It was later replaced by a simulated actor in a two dimensional



graphical world that can move, turn, and leave trails. The turtle's directions are object-

centric; if a child tells the turtle to "forward 10'*, the turtle will move in his own forward

direction rather than a direction defined by the screen. Many children have been

introduced to programming through making the turtle draw simple pictures. However, the

Logo language includes a wider variety of possibilities. Classes of children have written

music programs, programs that translate English to French, and many others. The Logo

language is an interpreted language with descriptive error messages. For example, if a

student typed "foward 10" instead of "forward 10" the system would respond with "I

don't know how to foward."

Alice98: M. Conway etal, Carnegie Mellon University, 1997 [Conway, 1997]

Alice98 is a programmable 3D authoring tool, designed to make authoring interactive 3D

graphical worlds accessible to college-level, non-science majors. The authoring tool

consists of a scene layout editor in which the user can create their opening scene, and a

script tab in which the user can specify the behavior of the world. The programming

language in Alice is Python, with a few changes suggested by user testing: it is not case

sensitive and lA evaluates to 0.5 rather than 0. However, Alice provides domain-specific

commands for manipulation of objects in 3D. The structure and naming of these domain-

specific commands were influenced greatly by user testing. As in Logo, commands

utilize object-centric notation: forward, backward, up, down, left and right are used to

describe direction. This description is equivalent to XYZ notation, but is much easier for

novices to understand. Similarly, the names of commands are drawn from the language

that users would choose to describe those actions; for example, translate became move,

scale became resize, and rate became speed. Alice commands can also be accessed with

varying degrees of detail. At the simplest, bunny.move only needs a direction. The user

can also specify how far bunny should move, how long the animation should take, what

speed he should move at, whether he should move in someone else's coordinate system,

and different interpolation styles. This allows novices to begin by learning a very simple

command for moving the bunny and, as they gain more experience, learn to express

greater control over how the bunny moves through additional options. AIice98 also

animates all commands so that the user can understand what has happened. Because

A3ice98 animates all changes to the state of the program, the user can more easily

understand the behavior of their programs.



HANDS: J. Pane, Carnegie Mellon University, 2001 [Pane, 2001]

The HANDS system was designed to allow children in 5th grade and older to create

games and simulations similar to the ones with which they play. The design of the system

was informed by studies of the language that children with no programming experience

use in expressing solutions to programming problems. The environment provides a

concrete model of computation, represented by an agent, HANDY the dog, who

manipulates a deck of cards. All information used in a program is stored on two-sided

cards. The front of each card contains object-related data; the back displays a picture of

the object. The user can place cards on the surface of the table, which represents the end-

users' view of the program. The HANDS language was designed based on the ways that

non-programmers describe solutions to programming problems. It includes queries and

aggregate operations that reduce the need for data structures and iteration through lists of

items. Children using the HANDS system perform better than children using a version of

the HANDS system that does not include queries and aggregate operations.

The bee with tta e most nectar is: Stripes
He has this much nectar: 8
All the bees have collected: 45

Figure 25. All data in HANDS is stored in cards, which the user can draw from a pile shown cm the top

right of the screen. Two cards are shown, face down, on the lower left. One card on the right has been

flipped to face up so that the user can see and edit it's properties, When cards axe on the board (in the

center of the screen), only the image on their backs are visible. Users of HANDS can add code into

Handy's thought bubble by clicking on his picture in the upper left comer.



4.1.2.2 IMPROVE INTERACTION WITH THE LANGUAGE

In addition to changing the language and the words used to describe programming

commands and constructs, another area for improvement is in the ways that people

interact with language. This includes the interaction involved in entering programs and

the process involved in running programs users have written.

1.1.1.1.5. Manipulation of Language

Traditionally, users program systems by typing program statements into a text editor. For

novice programmers, typing programs and the strict syntax of most programming

languages can be particularly difficult and frustrating. The systems in this category

examine different methods for creating programs in ways that are easier for novice

programmers to understand and less prone to errors. The systems use a variety of

techniques from dataflow metaphors, to menu selection, to physical proximity to allow

users to express their intentions without having to type traditional programming

statements.

Body Electric: J. Lanier, VPL [Blanchard et al, 1990]

Body Electric was designed as an authoring tool for a two-person virtual reality system.

Programs in Body Electric are data driven; raw data from sensors (such as positional

sensors on people) can be passed to the representation of the virtual world through

modules that are capable of transforming the data or generating events. These modules

are represented in the authoring environment as boxes connected by arrows in a flow

diagram. Users can create programs that modify and react to sensor data by sending the

sensor data through a sequence of modules. Programs are always live, allowing the

author to immediately see the results of changes. This allows worlds to be quickly

prototyped, tested, and modified.

Fabrik: Ingalls et al, Apple Computer, 1988 [Ingalls et al, 1988]

Fabrik is a computational construction kit in which pieces of functionality (procedures)

appear as boxes with connectors. These boxes can be wired together to create a variety of

programs (see Figure 26). The user is supplied with a parts bin that includes simple

computational elements, such as string and integer manipulation, as well as interface

elements such as buttons, images, and lists. By dragging boxes into a working area and

connecting them together, the user can create programs. These prDgrams are always live

so they can be tested as they are being built. During development, user interface elements

and computational elements share screen space. However, once a program is finished, the



user can choose to view only the interface elements. In addition, finished programs can

be used as elements in subsequent programs, so the user can extend the capabilities of the

construction kit.
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Figure 26. A Fabrik program to create a simple text file editor. In the top left text field, the user can

enter a search string for file names. The user's string is passed to a file name pattern matcher and then

to a GUI list element. The user can then select the file they want to edit. When a file is selected, the

name of the file is passed to a module to retrieve its contents and the contents are passed into a text

field for the user to edit.

Tangible Programming with Trains: F. Martin et al, MIT Media Lab, 1996 [Martin et
al, 1996]

Tangible Programming with Trains is a train set and collection of active train toys that

influence the behavior of the train. The Tangible Programming with Trains system was

designed to allow children to explore "pre-programming concepts - causality, interaction,

logic, and emergence" (Martin et al). For example, a stop sign that causes the train to stop

or a sign that asks the train to turn on its lights. The active train toys and the train can

communicate via IR signals such that when the train is close to one of these toys, the train



will change its behavior appropriately. Children can place these objects around the path

of the train such that it will stop at a station or turn its lights on when it goes through a

tunnel.

Squeak Etoys: A. Kay et al, Disney, 1997 [Kay]

Squeak Etoys are designed to allow children to learn ideas by "building and playing

around with them" (Kay) either through interacting with simulations others have built or

creating their own simulations (see Figure 27). The Etoys environment provides students

with a variety of pre-made objects, from simple shapes to trashcans, and a simple

drawing tool with which students can create their own objects. All objects have viewers

that contain object-specific information as well as tiles that the student can drag out of the

viewer to build programs that control the behavior of the object. Programs can change the

position, orientation, size, and appearance of objects as well as play sounds. Users can

create simple if-statements in their program, but no other standard control structures are

included in the Etoys system. Users can trigger object behaviors based on a variety of

mouse events, or the behaviors can be started, stepped and stopped with a set of pre-made

buttons users can add to their simulations.

1 o
Test

Test

™ U.
Ha

BO

ft criw . « » •

ft cfer mu

111
©otof

IX

Figure 27. An Etoys simulation that makes the LadyBug follow the track. The u êr has dragged

statements from the Lady Bug "s \ie\*er (right) into a script (left) so that the Lady Bug continually

moves forward, turning right when she is over red and left when she is o\CT >ellow. Tbc script is

currently paused, but if the user pressed the "go*" button, the LadyBug would Mart following the track.



Alice99: Carnegie Mellon University, 1999 [www.alice.org]

The developers of Alice98 (see section 4.1.2.1) noticed that typing was difficult for many

users. This system is a follow-on system to Alice98 that focuses on exploring ways to

reduce the amount of text users have to type. In Alice98, users create both animations and

events by typing statements in a programming language. In Alice99, users create basic

animation using drag and drop: the user selects the character of interest from the tree of

characters on the left of the screen and drags that character into the animations window.

When the user drops the character in the animations window, a series of menus appears

showing the actions the character can take, such as move, turn, resize, etc, and the options

for each of those choices; a character can move forward, backward, left, right, etc. The

drag and drop system in Alice99 does not provide support for many of the traditional

programming constructs present in the Alice98 system; to create more complex

programs, users must still type. The animation editor can create only fully specified,

linear animations. The scripting system was left in place to allow advanced users to build

complex worlds. Alice99 also introduced an event editor that allowed users to specify

events in a table form in which they selected the event and the animation they wanted to

trigger in response to that event.

AutoHAN: A. Blackwell and R. Hague, University of Cambridge, 2001 [Blackwell and
Hague, 2001]

The AutoHAN project grew out of the desire to provide a single programming interface

for the many home appliances that are being shipped with customization or programming

features. The goal of the project is to provide a language and interface that home users

can use to program their appliances to do simple tasks such as recording a particular TV

show, switching on an outside light when the doorbell rings, or starting the coffee pot

when the alarm goes off in the morning. This language must be usable by people who can

operate remote controls. The AutoHAN project elected to create a variety of physical

"media" cubes for this purpose. At their simplest, they operate as single button remote

controls that can be associated with a wide variety of appliances. For example, a play

cube can be associated with a CD player by holding it close to the CD player. Once the

association has been created, the user can press the cube's button to play a CD. The user

can later associate that same play cube with a VCR and use it to play a movie.

Additionally, the cubes can be composed together to form programs, such as starting the

coffee pot when the alarm goes off. These programs can be stored by the AutoHAN

system for later use. The designers proposed two languages for the media cubes: one

based on ontological abstraction, the other based on linguistic abstraction. The



ontological language includes event cubes which reference changes of state in the home,

channel cubes which grant access to different channels of information, and aggregate

cubes which allow cubes to be grouped together to form a set (a set of events to react to,

for example). The linguistic language includes cubes that are linked to particular words in

English, for example, stop, go, and play. Cubes that support more abstract data roles such

as variables and lists are also included.

Physical Programming: J. Montemayor, University of Maryland, 2001 [Montemayor,
2002]

The Physical Programming work describes a method for children ages 4-6 to build

interactive story spaces using StoryRoom Kits that provide sensors and actuators that can

be used to augment everyday objects, such as chairs or teddy bears. The StoryRoom kits

allow children to create stories in which objects in the real world represent characters or

elements in the story the children are telling. Seeking stories in which one character is

asking a series of other characters where to find an object, character, or piece of

information work very well in this context. The Physical Programming method was

prototyped using Wizard of Oz techniques and the following tools: a foam hand to

indicate touch, a light for lighting up objects to draw attention to them, a sound box

which had a different sound associated with each side of the box, and a magic wand for

users to indicate when they were programming and when they wanted to tell a story using

their augmented story room. To create a program, a child associates sensors, actuators,

and props using the magic wand For example, to have the teddy bear say something

when it is touched, the child would tap the hand and the teddy bear to indicate that the

bear should respond when touched, and one side of the sound box to indicate which

sound should be played when the teddy bear is touched. When the wand is put away, the

StoryRoom goes into "story" mode and the rules the child created are active.

Flogo: C. Hancock, MIT Media Lab, 2001 [Hancock, 2001]

Flogo is a visual dataflow language designed to enable children to build more complex

robotic behaviors with their lego robotics kits. The designers of the system believe that

visualizing the temporal structure of a program is helpful in understanding how it works

(or why it does not work). The visual dataflow model is well suited to showing the

temporal structure of a program. Consequently, Flogo programs use a visual dataflow

model. Sensor outputs can be connected in the box and wires style to arithmetic

operations. Boolean tests, and motor controls. Flogo programs are always live; a change

in the inputs to the sensors will be immediately reflected in the representation of the



program, making Flogo a tinkering-friendly language even when the program a child is

working on is incomplete.

1.1.1.1.6. Integration with Environment

To write a program in most general-purpose languages, a user must type their program

into a text editor, compile the program, fix any syntax errors, build the program, and then

run it. For a novice programmer, this is a lot of steps and the time and effort involved in

making changes to a program can discourage experimentation. The systems in this

category integrate the environment in which users write programs with the environment

in which users run programs. Many of these systems also allow users to test the effects of

individual program statements so that they can experiment while building programs.

Boxer: A. diSessa and H. Abelson, University of California at Berkeley, 1986 [diSessa
andAbelson, 1986]

Like HyperCard, Boxer is one of the first environments designed to allow non-expert

programmers to program. It presents a hierarchical world composed of boxes that can

contain other boxes (see Figure 28). Rather than separating the act of programming,

programming is integrated into an environment that a typical person might use, primarily

for text editing and graphical layout. Boxer programs contain three types of boxes:

standard boxes which can contain text or program code, data boxes which contain string

literals for use in programs, and graphics boxes which contain graphical displays. The

composition of the boxes has meaning; it indicates that sub-procedures are parts of

procedures and records are part of databases. In general, sub-boxes are only accessible

from inside a box. The boxes provide the novice programmer with a simple mechanism

for abstracting program and data elements. Boxes also allow the novice to view program

elements as black boxes that they can use in their programs without fully understanding.

As users gain experience, they can return to these black boxes and open them to discover

how they work.
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Figure 28. A phone number look up program written in Boxer. If a user enters a name in the "name"

box and presses the Function-1 key, Boxer will search through the entries in "list", another box shown

at the top of the screen, and display the phone number associated with that name.

HyperCard: Bill Atkinson, Apple Computer, 1987 [Goodman, 1987]

HyperCard is described by its creator Bill Atkinson as uan authoring tool and a sort of

cassette player for information." The application itself allows users to create stacks of

cards, somewhat like a Rolodex program, that contain images, text, and buttons. At their

simplest, buttons can trigger visual changes, make sounds, or show a new card. A

scripting language called Hypertalk is provided to allow users to build more functionality

into the stacks they author. Spoken English heavily influenced the Hypertalk language

itself; the language provides constructs such as the first card and the last card, descriptors

that are easily understandable to most users. In designing the system, Atkinson

concentrated on the user's first experience with the tool. He focused on supporting the

user's immediate success using HyperCard and tried to reveal features gradually. A

beginning user could learn to create cards and used text-editing tools before moving on to

graphics editing. The user could leara about using the message box as a calculator before

moving onto placing values in fields. By the time the user was ready to write a full script,

he or she would already be familiar with how to access information in different parts of

the interface.



cT: B. Sherwood and J. Sherwood, Carnegie Mellon, 1988 [Sherwood and Sherwood,
1988]

This system attempts to simplify the process of creating graphics-oriented programs by

providing higher-level primitives. Programs are created in an integrated environment

where users can see the results of their programs immediately. The cT environment also

provides a method for users to specify shapes using mouse clicks on the screen. Finished

programs can be executed as separate programs.

Chart N Art: C. Digiano, University of Colorado, 1996 [Digiano, 1996]

Chart N Art is a graphical editor similar to MacDraw that reveals a programming

language. As designers manipulate the interface to create drawings and charts, the

equivalent programming statements are printed in a scrolling history area at the bottom.

These statements can be copied from the history area into an interaction pane, edited, and

executed. The interface provides operations on sets of objects as well as single objects,

allowing designers to learn how to specify sets of objects to manipulate using the

scripting language. The goal of the interface is to allow designers to automate the

creation of custom designed charts, giving them more control than graphing and charting

packages, but removing the necessity to draw every aspect of the chart by hand.

4.2 Activities Enhanced by Programming

The systems in this group look at programming as a way to enhance activities, either by

allowing greater control or creating opportunities to explore particular domains. Rather

than trying to create full general-purpose programming environments, the designers of

these systems have tailored the functionality in the programming languages to specific

domains.

4.2.1 Entertainment
These systems use programming to support entertaining activities. These systems use

programming models inspired by earlier systems to make programming more realizable

to novices and provide activities that the designers believe users will find enjoyable.

Bongo: A. Begel, MIT Media Lab, 1997 [Begel, 1997]

Bongo enables children to create their own video games and share them with others

through the web. Bongo builds upon Starlogo (see section 4.2.2), and adds primitives for

playing sounds, changing shapes, and detecting collisions between characters on the

screen; it customizes Starlogo for use in the domain of games programming. High-level

movement of objects in the system can be done using drag and drop, but procedures are



created with text-based programming. Bongo supplies a command center that allows

users to test out code and observe its results.

Mindrover: Cognitoy, 2001 [Cognitoy, 2001]

Mindrover is a commercial game in which the user is a researcher on Europa, one of the

moons of Jupiter. In the researcher's free time, he or she programs robotic rovers to race

around hallways and battle other rovers. The game allows users to program their rovers

using a drag and drop programming system, inspired by a data-flow visual programming

model and The Incredible Machine (see section 3.3.1). Users select pre-built components

(such as thrusters and steering wheels) and sensors, place them in a limited number of

slots on their rovers, and wire the components and sensors together to give their vehicles

certain behaviors. The programming model is similar to the box and wires approach seen

in Fabrik, Flogo, and Body Electric. Wires contain information about when signals are

sent from sensors to components and the actions triggered by those signals. Boolean gates

are provided to allow users to create more complex behaviors.

4.2.2 Education

These systems use programming to allow users to explore different domains of

knowledge and how they are affected by different factors. They are intended to allow

users to explore and experiment with specific domains of knowledge; the programming

languages are tailored for these specific domains.

SOLO: M. Eisenstadt, The Open University, 1983 [Eisenstadt, 1983]

SOLO is a Logo-inspired (see section 4.1.2.1), interpreted textual programming language

designed for cognitive psychology modeling. The typical psychology student has little

computer experience, no programming experience, occasional access to a computer, and

often works on projects in groups. The SOLO language provides psychology students

with a simple way to model cognitive processes through accessing and manipulating a

simple database of triples. Each triple represents a relationship: for example, "Fido isa

dog". The language provides 10 commands that allow students to store triples, remove

triples, test for relationships via pattern matching, define procedures, iterate through

triples, and view and edit procedures. Students are able to quickly create simple models

of human memory and reasoning, similar to those discussed in introductory psychology

classes, and use these programs to reason about how cognition works.



Gravitas: R. Sellman, The Open University, 1992 [Sellman, 1992]

Gravitas is an object-oriented discovery learning environment that allows students to

experiment with Newtonian Gravitation. The environment includes both a graphical

interface controlled by the mouse and a textual Logo-based (see section 4.1.2.1)

programming interface. Students can control the x and y position, x and y velocity, x and

y accelerations, and the mass of the spherical objects in the world. Students typically start

with the graphical interface to Gravitas, and, as they gain more experience progress to

typing Logo commands.

Starlogo: M. Resnick, MIT Media Lab, 1996 [Resnick, 1996]

Starlogo is a programmable modeling environment designed to allow students to explore

decentralized systems, such as ant colonies and traffic patterns. Users can write simple

rules that control thousands of objects and observe the patterns that arise as a result of

these rules. The Starlogo programming language is based on Logo (see section 4.1.2.1).

However, instead of controlling a single turtle, users control thousands of turtles. The

Starlogo turtles have improved senses: they can detect each other, nearby turtles, and

scents in the world. Each pixel in the world has additional capabilities. Rather than

containing a single piece of information (color), each pixel is modeled as a turtle that

cannot move; it can contain an arbitrary amount of information. Pixels in the world can

affect the state of other pixels, causing growth or dispersal of scent, for example.

Hank: Mulholland and Watt, The Open University, 1998 [Mulholland and Watt, 1998]
Hank is a visual programming language designed for cognitive psychology students to

use in the construction of cognitive models of human behavior. The typical psychology

student has little computer experience, no programming experience, occasional access to

a computer, and often works on projects in groups. Consequently, the Hank language was

designed with five goals in mind: support the creation of cognitive models; consider the

requirements of the non-programmer; support group work; clearly show the execution

path; and support paper-based use of the language. Based on findings that spreadsheets

tend to allow a number of interested people to understand how the spreadsheet is being

developed, Hank is a spreadsheet-based language. The architecture of Hank is similar to

the information processing architectures taught to psychology students. There are three

components: a database where information can be stored and represented (i.e. long term

memory), a workspace where information can be worked upon (i.e. short term memory),

and an executive component that carries out processing, input, and output. Data is

represented with fact cards that typically represent relationships between entries, similar



to a typical spreadsheet. Programs are expressed on instruction cards using queries for

entries on cards and arrows to indicate what to do when entries are found or not. The

execution model is explained using a dog named Fido who performs programs according

to a few simple rules. The authors designed Fido to be similar to the Logo turtle (see

section 4.1.2.1), in the sense that he gives students a physical being to imagine executing

their programs, increasing the likelihood that they will be able to accurately simulate their

programs on paper. In addition, the environment provides a comic strip representation of

the execution of each program; by double clicking on a cell in the comic strip, at student

can view the related part of the program.

5. ADDITIONAL SYSTEM INFORMATION

We placed systems in our taxonomy based on the primary problem that particular system

was trying to address. However, many of the systems described in this paper have

incorporated ideas drawn from earlier systems. In this section, we try to pinpoint some of

the most influential systems, identify which approaches to making programming more

accessible each system has incorporated, and provide information about which

programming constructs are included.

5.1 System Influences

Figure 29 attempts to provide some insight into which systems have most influenced the

design of later programming systems for novice programmers using the number of

citations. The system with the most citations (from papers referenced by this survey)

appears first. Underneath the system name is the list of all references to it.

5.2 System Attributes

The systems presented in this paper vary in a number of dimensions. Figure 30 is

intended to allow readers to quickly compare some aspects of the systems discussed in

this survey: programming style, supported programming constructs, how programs are

constructed and represented, and some of the ways in which the designers of these

systems have tried to make programming more accessible to novice programmers. Each

system appears in the taxonomy once but many have built on the lessons of systems that

have come before. This table attempts to show the major design influences, including

those that were not the primary contribution of the system.
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6. SUMMARY AND FUTURE DIRECTIONS

The systems presented in this paper have tried to make programming accessible in three

main ways: simplifying the mechanics of programming, providing support for learners,

and providing students with motivation to learn to program. The majority of the systems

have focused on the mechanics of programming. Clearly, beginners need to feel that they

can make progress in learning to program. However, pure difficulty is not the only reason

that people hesitate to learn to program. There are a variety of sociological factors

(including students not seeing the relevance of programming or perceiving computer

science as being a socially isolating career path) that can prevent people from learning to

program. Creating environments that address some of these sociological barriers to

programming by supporting learners or providing interesting reasons to program have the

potential to attract a more diverse group of people to computer science. If the population

of people creating software is more closely matched to the population using software, the

software designed and released will probably better match users' needs.

6.1 Mechanical Barriers to Programming

Most of the programming systems built for children and novice adults have focused on

making the mechanics of programming more manageable. Systems have removed

unnecessary syntax, designed languages that are closer to spoken English, introduced

programming in visible contexts (such as the Logo turtle) in which students can see the

immediate results of their commands, and explored alternatives to typing programs.

Using these ideas, it is possible to create a system that will allow a wider audience of

people to begin programming. While these systems do not take all of the challenges out

of programming, they can allow students to focus on the logic and structures involved in

programming rather than worrying as much about the mechanics of writing programs.

However, even with these improvements to a beginner's first programming experience,

there are a number of questions that remain.

Many of the teaching languages have been heavily influenced by the prevalent general-

purpose languages of their time- Designers of these systems chose to make the

programming constructs and syntax very' similar to those of the general-purpose

languages to ease the transition from teaching languages to general-purpose languages.

While it seems obvious that students need to understand the parallels between the

programming constructs in teaching and general-purpose languages, it is not clear k m

closely and in what vuys teaching languages must resemble general -purpose languages.



We can now more easily introduce beginners to programming; perhaps it is time to begin

studying the intermediate programmer, someone who has been introduced to

programming through a system designed for beginners and wants to apply that experience

to learning a general language. What are the hardest aspects of that transition and how are

those aspects affected by the teaching system? What are the trade-offs between

presenting issues of syntax and program expression earlier or later in the process?

6.2 Sociological Barriers to Programming

In some ways, sociological barriers can be harder to address than mechanical ones

because they are harder to identify and some cannot be addressed through programming

systems. However, by studying particular groups of people who choose not to learn to

program, identifying the reasons behind their decisions, and trying to address those

reasons in our programming systems and textbooks, we may be able to attract a broader

audience of people to programming and Computer Science. The systems in the taxonomy

have identified and are beginning to address two kinds of sociological barriers to

programming: the lack of a social context for programming and the lack of compelling

contexts in which to learn programming.

6.2.1 Social Support

It can be easier and more fun to learn with a group of people. MOOSE Crossing and,

later, Pet Park added support for social interaction so that students using these systems

can share projects, provide examples for each other, and chat. Future communities might

provide support for students helping each other learn the interface and programming

constructs, support students working on projects together, or try to capture and strengthen

the positive feedback that members of the community give to each other through looking

at and using each other's work.

6.2.2 Reasons to Program

Several systems have tried to provide motivating contexts such as building robots,

fighting battles, and constructing machines in which to leam programming. While these

systems have been very effective for a segment of the population, they do not have broad

appeal WThat programming activities can we provide that will interest girls or artistic or

musical students? Future systems might provide contexts for programming that are

relevant to under-represented groups in computer science.
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