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Abstract

We present an algorithm that checks behavioral consistency between an ANSI-C pro-
gram and a circuit given in Verilog using Bounded Model Checking. Both the circuit
and the program are unwound and translated into a formula that is satisfiable if and only
if the circuit and the code disagree. The formula is then checked using a SAT solver.
We are able to translate C programs that make use of side effects, pointers, dynamic
memory allocation, and loops with conditions that cannot be evaluated statically. We
describe experimental results on various reactive circuits and programs, including a
small processor given in Verilog and its Instruction Set Architecture given in ANSI-C.



 



1 Introduction
When a new device is designed, a "golden model" is often written in a programming
language like ANSI-C. This model together with any embedded software that will run
on the device is extensively simulated to insure both correct functionality and per-
formance. Later, the device is implemented in a hardware description language like
Verilog. It is essential to determine if the C and Verilog programs are consistent [1].

We show how the consistency test can be automated by using a formal verification
technique called Bounded Model Checking (BMC) [2, 3, 4]. In BMC, the transition
relation for a complex state machine and its specification are jointly unwound to obtain
a Boolean formula, which is then checked for satisfiability by using a SAT procedure
such as GRASP [5] or Chaff [6]. If the formula is satisfiable, a counterexample can
be extracted from the output of the SAT procedure. If the formula is not satisfiable,
the state machine and its specification can be unwound more to determine if a longer
counterexample exists. This process terminates when the length of the potential coun-
terexample exceeds its completeness threshold (i.e., is sufficiently long to ensure that
no counterexample exists [7]) or when the SAT procedure exceeds its time or memory
bounds. BMC has been successfully used to find subtle errors in very large circuits
[8, 9, 10].

The tool that we have developed, called CBMC, takes as input a C program and its
Verilog implementation. The two programs are unwound in tandem and converted to a
Boolean formula that is satisfiable if and only if the circuit and the code disagree. The
formula is checked using a fast SAT procedure. If the two programs are inconsistent, a
counterexample, which demonstrates the inconsistency, is generated or the tool exceeds
its time or memory bounds. Multiple inconsistencies can be eliminated by running the
tool several times.

The tool enables the user to customize the concept of "consistency". It enables
cycle-accurate and non-cycle-accurate functional specifications, as well as more com-
plex specifications that are realized by having the C code reference Verilog variables.

Although converting Verilog code to a Boolean formula is relatively straightfor-
ward, ANSI-C programs are extremely difficult to convert to Boolean formulas for
many reasons including peculiarities of side effects and pointers usage. We give a step-
by-step procedure for this translation which addresses the subtleties of the language.

Related Work In [11], a tool for verifying the combinational equivalence of RTL-
C and an HDL is described. They translate the C code into HDL and use standard
equivalence checkers to establish the equivalence. The C code has to be very close
to a hardware description (RTL level), which implies that the source and target have
to be implemented in a very similar way. There are also variants of C specifically for
this purpose. The System C standard defines a subset of C++ that can be used for
synthesis [12]. Other variants of ANSI-C for specifying hardware are SpecC [13] and
Handel-C[14].

The concept of verifying the equivalence of a software implementation and a syn-
chronous transition system was introduced by Pnueli, Siegel, and Shtrichman [15]. The
C program is required to be in a very specific form, since a mechanical translation is



assumed.
The methodology presented in this report handles a large set of ANSI-C language

features, including arbitrary loop constructs, and allows fully reactive programs and
circuits. We also present optimizations for nested loops and add support for pointer
type casts. We conclude with a number of examples and explain how the tool was used
to verify them.

2 ANSI-C Programs for Hardware Specification

In this section we show how ANSI-C programs are used to specify the correct behavior
of hardware designs. Our tool supports ANSI-C programs, defined according to the
ANSI-C standard [16]. However, since we know that the programs are going to be
used as (synchronous) hardware specifications we have also added a few functions that
especially useful for non-cycle-accurate functional specification. These functions are
implemented efficiently within the tool instead of being implemented by the user. We
stress that the specifying program is written in standard ANSI-C, which means that it
can also be executed. This is particularly useful for checking performance issues.

2.1 Connecting C and Verilog

The signals of the Verilog design exposed to the C program using name matching. A
signal sig is made visible in the C program by declaring it as an external, constant,
unbounded array. The ith element of this array represents the value of sig at clock
cycle i. For now we assume a single clock, but the same ideas apply for multiple clock
systems as well. The extension of the tool to multiple clock domains is currently under
development.

The next step is to specify the values that signals should have. This is done using
the "assert" statement, which is a part of the ANSI-C standard. Each assert statement
translates into a formula to be proven. In Figure 1, the C code asserts that the signal
sig toggles with each clock cycle.

This example shows a common feature of hardware specifying programs, where an
integer variable is used to track the clock cycle being referred to (in our example it is
called c y c l e ) . Such a variable appears in both cycle-accurate and non-cycle-accurate
specifications. This is a normal C variable - it can be incremented or decremented by
any number and can be used on the right hand side of any assignment. We discuss a
few of the many possible specification styles in section 2.2.

The CBMC tool performs Bounded Model Checking, which means that we prove
correctness for all possible test vectors up to a given bound. The bound is provided in
a special variable called CBMC_bound. All the design signals, although declared as
unbounded arrays, are in fact valid only up to cycle CBMC -bound. The example in
Figure 1 shows how this variable is used to bound the loop that checks sig.

We now describe our extensions to the ANSI-C standard. Each of these functions
has an equivalent MACRO definition that can be used when the program should be
executed. However, for verification purposes our internal implementations are more
efficient.



extern unsigned CBMCJoound;
extern const _Bool sigA[];

for (cycle=0; cycle < CBMCJoound; cycle++)
assert (sigA[cycle] = ! sigA[cycle + 1]) ;

Figure 1: A program specifying that s i g toggles with each clock cycle

WAITFOR(cycle,property) (where c y c l e is the name of an integer variable
and p r o p e r t y is an expression that uses the variable c y c l e to refer to clock
cycles). This function returns the next value for c y c l e that makes p r o p e r t y
true. If CBMCJoound is reached before p r o p e r t y holds CBMC_bound+l
is returned. For example, assume that the program uses the variable cc as a
clock cycle index. The line: i = WAITFOR(cc, s i g [ c c ] && ! s i g [ c c
- 1 ] ) assigns to i the next clock cycle in which sig rises (changes from 0 to
1). The function starts with the current value of cc (any number in the range 0 to
CBMC.bound) and checks the property on clock cycles cc, cc + 1, etc. It returns
the first value that makes the property true without changing cc.

POSEDGE ( c y c l e , p r o p e r t y ) This function returns the cycle of the next positive
edge of property. It is similar to WAITFOR, only it waits for the property to be
false for at least one clock cycle before it becomes true.

NEGEDGE ( c y c l e , p r o p e r t y ) This is the dual of POSEDGE, it waits for a negative
edge on p r o p e r t y .

ASSERT .RANGE ( c y c l e , i , j , p r o p e r t y ) This function asserts a given prop-
erty on a range of values for cycle. This is efficient shorthand for a loop that
asserts p r o p e r t y for c y c l e = i through c y c l e = j .

2.2 Specification Styles

We now discuss a few of the different specification styles that are possible using C pro-
grams, demonstrating the versatility of our tool. Throughout this section we use a run-
ning example of an imaginary Client-Server application. In this example there are two
clients that communicate with a single server. The protocol between each client and the
server includes a request for service (c2sjreq#\ a grant from the server (s2c-grant#),
and an indication that the server has completed this request (s2c_done#). Figure 2
gives a block diagram of the example.

2.2.1 Property Assertions

We can use C to describe a simple assertion that is an invariant of the design. This is
usually done using a "monitor". The C program monitors the design's progress and
watches out for a specific type of error. An assertion is then used to claim that an error
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Figure 2: A Block Diagram for the Client-Server example

is never encountered. In our example, we may want to ensure that the server never
grants two requests at the same clock cycle. This is checked using a single assertion,
as follows:

for (cycle=0; cycle<=CBMC_bound; cycle++)
assert (! (s2c_grantO [cycle] && s2c_grantl [cycle] ));

A more interesting monitor would be one that asserts that the server will not grant
a second request before it reports the previous request being done:

i n t cc=0;
_Bool busy_flag=O;

while (cc <= CBMC_bound) {
cc = WAITFOR(cc, s2c_grantO || s2c_grantl);
if (cc < CBMC_bound) {
i = WAITFOR(cc, s2c_doneO || s2c_donel);
if (i < CBMC_bound)
ASSERT_RANGE(cc, cc, i,

!s2c_grantO[cc] && !s2c_grantl[cc]);
cc = i;

A more advanced specification is one that tracks temporal properties [17] of the
design. One of the common criticisms of the use of temporal logic for specifications is
that they can be difficult to understand and to write correctly. In the following we give



a few examples of real life temporal properties and how they can be modeled using
C. These examples were taken from the property database of the Accellera formal
verification committee [18].

• In English: "If the "boff" signal is asserted, then if the first request which is
accepted after the assertion of "boff' is not a snoop request, then it is a write
request".

In LTL: G (boff-> X (laccepted W (accepted & (!snoop_req -> write_req))))

C Specification:

for (cc=0; cc<=CBMC_bound ; cc++) {
i f (boff[cc]> {

accept_c = WAITFOR(cc, accep ted[cc ] )
a s se r t ( ! snoop_req[accep t_c ] =>

w r i t e _ r e q [ a c c e p t _ c ] ) ;

The for loop scans all clock cycles within the model checking bound. Whenever
there is a boff signal at clock cycle cc the variable accept _c is assigned the
next clock cycle in which accepted is 1 using a WAITFOR function call. We
then assert on the clock cycle accept .c that /f the snoop.req variable is 0
then the wr i t e . r eq variable must be 1.

• In English:"If a write command starts and size=N (N=l through 8), then N
assertions of signal "gx_start" should occur before the LAST bit goes active".

In LTL:

G ((start && cmd=write && size=l) ->
!last W (gx_start && !last && X (!gx_start W last))) &&

G ((start && cmd=write && size=2) ->
!last W (gx_start && !last &&

X (!last W (gx_start && !last && X (!gx_start W last)))))
... (for size=3 through size=8)

C Specification The C specification uses the same code, no matter what s i z e
is. A counter variable called counter is initialized with N, and decremented
every time g x . s t a r t is active. While count is greater than zero the program
asserts that l a s t is not active. Once it reaches zero, the program asserts that
there will be no more gx . s ta r t ' s before the next l a s t .



cc = 0;
while (cc <= CBMCJoound) {

cc = WAITFOR(cc/ start[cc] && cmd[cc]==write)
if (cc <= CBMCJoound) {

count = size[cc];
// correct number of gx_start before last
for (i=cc+l; i<=CBMC_bound && count>0;

assert ( !last [i]);
if (gx-start [i] ) count--;

}
// no more gx.start before last
for (; i<=CBMCJDOund &&

assert ( ! gx_startp[i]);

In each pass through the while loop we jump to the next time there is s t a r t
with the command being a write (using a WAI TFOR function call). If the result is
greater than CBMC Joound it means we reached the end of the bounded trace that
is checked. Otherwise, we assign the variable c o u n t with the number of times
g x . s t a r t needs to be 1 before we allow the signal l a s t to be asserted. The
first for loop scans the following clock cycles counting down the occurrences of
g x . s t a r t , while asserting that l a s t should be 0. After the correct number of
gx_st a r t ' s , the second for loop makes sure that there are no extra gx_st a r t ' s
before l a s t is asserted.

This example shows a bounded liveness specification. The CTL specification is
a liveness formula and the C specification interprets this as a requirement that
the eventuality will occur within the bound.

In LTL: G (req -> (busy U ack))

C Specification This examples shows a typical use of WAITFOR. The first
WAITFOR brings us to the next time a request is made. The second one finds
the first acknowledge after this request. If the aknowledge is not found within
the bound the program reports an error, using a s s e r t ( f a l s e ) . Otherwise,
the program asserts that between these two clock cycles the signal busy must
be active.

cc = 0;
while (cc<=CBMC_bound) {

cc = WAITFOR(cc, req[cc]);
ack.c = WAITFOR(cc/ ack[cc])



if ( (cc <= CBMCbound) && (ack_c > CBMC_bound) )
assert (false); // Liveness error detected

else
ASSERT.RANGE ( c c , c c , a c k _ c - l , b u s y [ c c ] ) ;

C + +;

In each iteration through the while loop cc is assigned the next clock cycle in
which there is a request, and ack_c is assigned the next clock cycle after that in
which there is an acknowledge. Both of these are done using WAI TFOR, and both
variables will get the value CBMC_bound if no such event occurs. If a request
is found (cc <= CBMC-bound) but an acknowledge does not occur until the
end of the trace (ack_c > CBMC -bound) an error is detected. Otherwise, we
assert that between the request and acknowledge the busy signal must be 1.

2.2.2 Functional Specification

A functional specification is one in which the C program specifies the full functionality
expected from the design, as opposed to having assertions that only track inputs and
specify constraints on the outputs. In functional specification we create a software
implementation of the design. Since we are using ANSI-C, the program can actually
be executed for performance evaluation and other simulation techniques.

One of the advantages of using ANSI-C for specification is that we can exploit the
flow of control to differentiate between different tasks that the design needs to perform,
instead of relying on a "state" variable. An example of this is shown in Figure 3. This
code is a skeleton of a program that is used to give a cycle accurate specification of the
Server in our Client-Server application from figure 2.

Variable names that start with my_ are the local C versions of the output signals of
the design. They are defined as arrays with length CBMC Joound so that each entry
is assigned the proper value at that clock cycle. In a subsequent part of the program,
not seen in the figure, we assert that the values of the local C version and the verilog
version are identical for each clock cycle. This approach is particularly suited when we
have a cycle accurate specification.

If we do not have a cycle accurate specification we can change our program so that
instead of setting a specific cycle in which an event must occur, it will wait for events
to happen in the system and check subsequent behavior.

In the example above we used arrays to store the value for each output at each clock
cycle. This turns out to be rather wasteful. Instead, we could use a single boolean
variable for each boolean output of the design, assign it the correct values, and then
compare the values whenever the cycle variable is incremented. For this scheme we
use the following function:

i n t i n c _ a n d _ a s s e r t ( c y c l e , / * s i g n a l s t o c o m p a r e / * ) {
a s s e r t (my_s ig == s i g [ c y c l e ] ) ;



while (cycle <= CBMC_bound) {

// Look for the next request
cycle = WAITFOR(cycle,c2s_reqO[cycle]||c2s_reql[cycle]);

// Choose a client if both of them request at the same time
granted_client = arbitration_policy(c2s_reqO[cycle],c2s reql[cycle]),

// set the proper value to the ''granted'' outputs
if (granted_client=O) {

my_s2c_grantO[cycle] = 1;
service_type = c2s_reqTypeO[cycle];
cycle++;
my_s2c_grantO[cycle] = 0; // grant is a pulse

} else {

my_s2c_grantl[cycle] = 1;
service_type = c2s_reqTypel[cycle];
cycle++;
my_s2c_grantl[cycle] = 0; // grant is a pulse

// Proceed according to the type of service requested,
switch (service_type) {
case READ : // implementation of READ command that

// may span many clock cycles

break;

case WRITE : // implementation of WRITE command

break;

// Terminate the service using the x'done'' output
if (granted_client=O) {

my_s2c_doneO[cycle] = 1;
cycle++;
my_s2c_doneO[cycle] = 0; // done is a pulse

} else {

my_s2c_donel[cycle] = 1;
cycle++;
my_s2c_donel[cycle] = 0; // done is a pulse

Figure 3: Skeleton of a cycle-accurate specification of the Server from Figure 2



// do this for each signal
return(cycle+1);

2.3 Assumptions and Assume-Guarantee Reasoning

By default, all inputs to the design are assumed to have non-deterministic values, and
the tool checks the assertions for all possible combinations of input values. An a s -
sume statement constrains the values of the inputs, enabling the user to create an en-
vironment for the design using ANSI-C. The "assume" statement limits the state space
to only those computations that adhere to the given constraint. For example, to assume
that s i g is a pulse, i.e., it cannot be 1 for two consecutive clock cycles, we use the
following line within a loop that increments c y c l e :

assume(sig[cycle-1] => !sig[cycle]);

Assume statements can also be used to abstract away parts of the design and thus
support an assume-guarantee style reasoning [19]. When the implementation of a mod-
ule within the design is removed, its outputs are considered inputs to the design and
are thus non-deterministic. A small C program can be written to create assumptions
that constrain these signals to provide properties on the rest of the design. Later, the
"assume" and "assert" statements are interchanged to check the assumptions on the
module that was abstracted away. This is most useful when the full design is too large
to be checked, or when parts of the design are missing.

3 Transforming ANSI-C into a Bit Vector Equation

This section describes how we formalize the semantics of the ANSI-C language and
reduce the Model Checking Problem to determining the validity of a bit vector equa-
tion.

We model the behavior of ANSI-C programs according to the ANSI/ISO C 99
standard [16]. We assume that the ANSI-C program is already preprocessed, i.e., all
#def i n e directives are expanded. We then perform a series of transformations on
the program so that in the end we have a single assignment program that uses only
branching and assignment statements. These transformations are inter-dependent, one
transformation may result in the need to use the other, so we perform them iteratively
until no more transformations are needed. Sections 3.1 through 3.5 describe all of
our transformations. Finally, we use the resulting program to create a set of bit-vector
equations. This process is described in Section 3.6.

One of the most challenging features we need to deal with is the use of pointers and
dynamic memory allocation. Because of the complexity of handling these features we
ignore them in this section and devote the whole of Section 4 to them.



3.1 Preparing the Translation

We first perform a series of transformations that remove several ANSI-C commands by
transforming them into equivalent if, goto, and while commands.

1. The instructions b r e a k and c o n t i n u e are replaced by semantically equivalent
goto instructions as described in the ANSI-C standard [16]. The s w i t c h and
c a s e instructions are replaced by semantically equivalent code using i f and
g o t o instructions.

2. The f o r instructions are replaced by wh i 1 e instructions as follows (/ is a single
statement or a block):

f o r (e i ;e 2 ; e 3 ) / —> elf- w h i l e ( e 2 ) { I; e3; }

3. The do w h i l e instructions are replaced by w h i l e instructions as follows:

do / ; w h i l e (e) —> I; w h i l e (e) I;

3.2 Unwinding the Program

After the preparation phase, loop constructs are unwound. Loop constructs can be
expressed using w h i l e statements, (recursive) function calls, and g o t o statements.
These three cases are handled as follows:

1. The whi l e loops are unwound using the following transformation n times:

w h i l e (e) / ; —> i f (e) { I; w h i l e (e) / ; }

The i f statement is added for premature termination of the execution of the
loop body, since the actual number of iterations can depend on the inputs. The
remaining w h i l e loop is replaced by an assertion that assures that the program
never does more iterations. This assertion is called an unwinding assertion.

w h i l e (e) / ; —> a s s e r t ( ! e ) ;

These unwinding assertions are a crucial part of our approach in order to assert
that the unwinding bound is actually great enough. We formally verify that the
assertion holds. If the assertion fails for any possible execution, then we increase
the number of iterations for the particular loop until the bound is big enough.

2. Function calls are expanded. Recursive function calls are handled in a manner
similar to while loops: the recursion is unwound up to a certain bound. It is then
asserted that the recursion never goes deeper. The r e t u r n statement is replaced
by an assignment (if the function returns a value) and a g o t o statement to the
end of the function. Further details about function call expansion are given in
Section 3.4.

3. Backward g o t o statements are unwound in a manner similar to w h i l e loops.

10
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Figure 4: Example: Renaming program variables in order to remove duplicate assign-
ments. The result is a program in SSA form.

3.3 Variable Renaming

The program resulting from the preceding steps only consists of (nested) i f instruc-
tions, assignments, assertions, labels, and g o t o instructions with branch targets that
are defined after the g o t o instruction (forward jumps). To make the program a single
assignment program we use variable renaming. During this process, the variables are
renamed.

Let the program refer to variable v at a given program location. Let a denote the
number of assignments made to variable v prior to the location. The variable v is then
renamed to va. Within assignments to variable v, the expression on the right hand side
is considered to be before the assignment. The variable that is assigned into on left the
hand side is considered to be after the assignment. Let e denote an expression. Then
p(e) denotes the expression after renaming. Figure 4 shows an example of variable
renaming. The result is similar to a Static Single Assignment (SSA) program [20]
without ^-functions.

3.4 Side effects

Side effects, i.e., pre- and post-increment operators, the assignment operators, and
function calls, are removed by introducing new temporary variables (Section 4 de-
scribes how pointer dereferences are handled). This is done recursively, starting with
the inner most side effects. Let e denote a side effect expression, e.g., x++. By a(e)
we denote the expression after the removal of the side effect. Furthermore, all side
effects require additional code that is to be inserted before the statement that contains
the side effect. We denote this additional code by E(e). Note that £(e) might again
contain side effects. Thus, it might be necessary to perform the side effect removal
multiple times. Also, the created code may require further renaming, as described in
Section 3.3.

The functions a(e) and £(e) are defined by a case split on the type of the side effect

in e.

Let the side effect be a pre-increment or pre-decrement operator, i.e.,

e = op e

11



where op is one of ++ or - - , and e' is a (side effect free) expression. In this case,
the expression op e' is simply replaced by e'.

a(op e') :— e'

The side effect is performed using E:

X(ope'):={ e' = (ef op1 1 ) ; }

where op' is + in case of op = ++, and — otherwise.

For example,

x=5+

is transformed to

x = 5 + i ; .

Let the side effect be a post-increment or post-decrement operator, i.e.,

e = e' op

where op is one of ++ or - - , and e' is a (side effect free) expression. In this case,
the expression ef op is replaced by a new variable of the same type. Let t denote
this variable.

a{e! op) := t

The code inserted before the statement with the expression, as defined by E,
initializes the variable t with the value of the expression and then performs the
side effect:

E(e' op) := { t = e; ef = (e' op1 1) ; }

where op1 is + in case of op — ++, and — otherwise.

For example,

x=5+

is transformed to

t i = i 0 ;

xi=5+ti;

where t is a new variable of the same type as i .

• In case of function calls, a new variable is introduced that has the same type as the
return type of the function. Let t denote this variable. Let / denote the function
expression, and a\,..., an denote the arguments. Both / and the arguments are
side effect free (all side effects within / have already been removed).

. . , a n ) ) :=t

12



£ ( / ( a i , . . . , an)) is defined to be the function body of / where appropriate vari-
able renaming is applied in order to preserve locality. Furthermore, every return
statement is replaced by an assignment to t and a g o t o to the end of the func-
tion. Note that the function body itself might contain further side effects, includ-
ing recursive calls to the same function. The recursion depth is limited using
unwinding assertions, as done for w h i l e loops.

Side effect operators that were not mentioned above are the assignment operators
+= , -= , *= , These are actually shorthands for an increment and assign-
ment and they are opened according to the ANSI-C standard. For example, a += 1
is transformed into a = a + 1.

The code S, which is inserted before the statement with the side effect expression,
must be guarded in case the expression makes use of the operators ?:,&&, or | | . For
example,

x = 5 + c ? ( + + i ) : 0 ;

is transformed into

i f ( c ) i = i
x = 5 + c ? i : 0 ;

The algorithm presented above is used in conjunction with the renaming process
described in Section 3.3. The side effect removal algorithm and the renaming algorithm
are used iteratively until there is no more to be done. To see why this is needed, consider
a similar example to the one above, in which ++i is changed to ++c:

x = 5 + c ? ( + + c ) : 0 ;

A naive transformation results in:

i f ( c ) c = c + l ;
x = 5 + c ? c : 0 ;

which obviously is incorrect. The renaming process will ensure that the two uses of c
are transformed using different variables:

c\ - co?co + 1 : c0 A

# i = 5 + co?ci : 0

This is justified as follows: the evaluation of c in the condition is done before the side
effect, and thus is renamed to c0. The value of ++c is the value after the assignment,
and thus, is renamed to c\.

Note that the ANSI-C standard allows multiple evaluation orderings for side effects.
Thus, all allowed orderings have to be verified. This is done by generating a version of
the program for all possible orderings. We then compare the generated equations for
equivalence. The number of orderings is potentially exponential.

13



if(a0) {
if(b0)
goto label;

bi=zo;

yi=zo;
label:;

if(ao) {
if (b0) ;

if(! (a0 && b0) )

bi=z0;

if ( ! (ao && bo)

yi=zo;

label:;

Figure 5: Example: Transforming g o t o to i f

3.5 Eliminating Goto Commands

After renaming, forward g o t o statements are changed into equivalent i f statements.
Let x denote the part of the program p before the label and y denote the part of p after
the label /, i.e., p — xI : y. An i f statement is added as guard to all statements in
x. The condition of the i f statement is the conjunction of the conditions guarding the
g o t o statement. Figure 5 shows an example of this transformation. Note that this does
not allow g o t o statements with a target inside a guarded block.

3.6 Creating Bit Vector Equations

At this point we have a program that is in single assignment form and consists of only
assignment statements and conditionals. We create a a bit-vector equation C that forms
the set of constraints and a bit-vector equation V that represents the set of properties,
i.e., the assertions.

The final transformation is done using the functions C(p, g) and V(p, g). Both take
a program p and a guard g as argument and map this to an equation. The first function
C computes the constraints (assumptions), and the second function V computes the
properties (assertions). Both functions are defined by induction on the syntax of the
statement p.
Skip. If p is empty or skip, both the constraint and property are true.

C("skip",#) := true P(Mskip",#) := true

Conditional. Let p be an i f statement with condition c, and code blocks / and V. The
functions are used recursively for both code blocks. For 7, p(c) is added to the guard,
and for / ' , -«p(c) is added to the guard. The two constraints and claims provided by T
are conjoined.

C ( " i f ( c ) / e l s e / ' " , # ) := C(I,g A p(c)) A C(I',g A -ip(c))

P("if(c) / else r",g):=V(I,gAp(c))AV(I',gA^p(c))

Sequential Composition. Let p be a composition of / and / ' . As above, the functions
are used recursively for both code blocks, but for this case with the guard g.

C("I;r",g):=C(I,g)AC(r,g)
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V("I;r",g):=P(I,g)AV(r,g)

The two sub-programs I and I' are processed with the same guard because they both
run under the same conditions, i.e., / will be executed iff I' is executed (since there are
no more g o t o statements in the program). Consider for example the short program
from Figure 4 (after renaming, page 11). Let P be the i f statement in this program
(without the last assignment into c). Processing the i f statement gives us:

C(P,true) = C("ai = a0 + 1; bi = b 0 - 1", a0 < 0)

The program is a single assignment program, so the body of the "if" statement cannot
influence the value of variables that appear in the guard (a0 in this case). Also, the first
assignment and second assignment are always run under the same conditions - either
they are both run, or they are both not run. This is why we process them using the same
guard:

C("ai = a0 + 1; bi = b 0 - l M , a o < 0 ) =
C("ai = a0 + l " , a o < 0 ) A C("bi = b o - l f l , a o < 0 ) =

ai = (a0 < 0?a0 + 1 : a0) A bx = (a0 < 0?b0 - 1 : 60)

The last assignment ci = ai + bi generates the following additional constraint:

c\ = d\ + b\

Assertion. Let p be an as assertion with argument a. The argument is renamed, guarded
by g, and then returned as a property.

^ ( " a s s e r t (a) ",#) := g => p(a)

C of an assertion is true.
Assignment v — e. The assignment is returned as an equality constraint. Note that
the variables in the constraint are renamed as described above. Let the value of the
variable after the assignment be va. The value before the assignment is then va-\. If v
is a simple variable, i.e., not of an array or struct type, we add the following constraint:
The new value of the variable va has to be equal to the renamed right hand side if the
guard holds, and equal to the old value of v otherwise.

C("v = e",g):=(va = (g?p(e):va-1))

Note that the case split on g cannot be evaluated at translation time but is instead added
as part of the constraint.

If v is of an array type, let a be the array index address, i.e., the assignment is
v[a] = e. We add a constraint as follows: The new value of the array va at index i has
to be equal to the renamed right hand side if the guard holds and if i is equal to a, and
equal to the old value of v[i] otherwise. We model arrays as functions and use lambda
notation.

C ( " v = e",g):=va = \i:((gAi = p{a))?{p(e)):{vQ
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x=x+y;
i f (x =1) {

x=2;
i f ( z ) x++;

assert(x<=3)/

—>•

xi=xo+yo;
i f ( x i ! = l ) {

x 2 =2;
i f ( z o ) X3=X2+1;

a s s e r t (X3<=3) ;

C := xi = x0 + y0 /\
x2 = (fa ? 1)?2 : Xl) A
x3 = ((an # 1 A zQ)lx2 + 1 : x2)

V := z 3 < 3

Figure 6: Example: Renaming and transformation. The first box on the left contains
the unwound program with assertions. Each variable is a bit vector. The first step is to
rename the variables. Then the program is transformed into a into bit vector equation
as described in section 3.6.

Note that we use the lambda notation in a very restricted way. The variable used has
always a simple type (the index type), and is never instantiated using another function.

If bounds checking is desired, we assert (by defining V accordingly) that p(a) is
greater than or equal zero and that it is smaller than the number of elements of a.
Assignment to variables with s t r u c t types are handled in a similar manner.

After the computation of C and V using the algorithm above, we verify that C =>
V is valid. This proves that no unwinding assertions have been violated and that all
array bounds are obeyed. Figure 6 shows a simple example of the transformation pro-
cess.

4 Pointers

4.1 Dereferencing Pointers

Pointers are commonly used in ANSI-C programs. This even applies to ANSI-C pro-
grams that are a representation of a circuit. In particular, pointers are required for call
by reference and for arrays.

During the unwinding phase, but before the variable renaming, all pointer derefer-
ences are removed recursively as follows: The first step is to simplify expressions of
the form & *p to p. Note that this allows ANSI-C constructs such as p=& *NULL (this
is guaranteed not to cause an exception).

In the second step, the remaining dereferencing operators are removed. Let e de-
note the sub-expression that is to be dereferenced. We remove dereferencing operators
bottom-up, i.e., all sub-expressions of e are already free of dereferencing operators
or other side effects. Let g denote the guard as described above, and o the offset. The
dereferencing is done by a recursive function that is denoted by 0(e, g, 6). The function
maps a pointer expression to the dereferenced expression.
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ANSI-C offers two dereferencing operators: The star operator and the array index
operator. Both are replaced by the expression provided by </>. The star operator uses
offset zero.

*e —> 0(e,#,O)

e[o\ —> 0(e,p,o)

The pointer (or array) e has a type T*. This type T can be determined syntactically.
The function (j) is defined by a case split on e:

1. Let e be a symbol of pointer type. Let p be that pointer. The equation generated
so far or the guard g must contain an equality of the form p(p) = e' where e' is
an arbitrary expression. The pointer p is then dereferenced by dereferencing e'.
Otherwise, proceed as in case 8.

2. Let e be a symbol of array type. Let a be that array, i.e., e — a. We treat this
case as syntactic sugar for e = &a[0].

3. Let e be an "address of symbol" expression, i.e., e = &s where s is a symbol. In
this case, 0(e, g, o) is just s and we assert that the offset is zero. The variable is
then renamed according to the rules above.

£,O) := s

In addition to that, we check type consistency: the type of s has to match the
type T (this can be determined syntactically). If T is a s t r u c t type and a
prefix of the type of s, this is considered a match. In any other case, we generate
an assertion that g is false. The same is done if s has exceeded its lifetime.

4. If e is an "address of array element" expression, i.e., e = &a[i], we add the offset
to the index:

<j)(&a[i],g,o) := a[i + o]

The array access is then done according to the rules above. As above, we check
type consistency: the type of the array elements of the array a has to match the
typeT.

5. Let e be a conditional expression. The function <j) is applied recursively for both
cases. The condition c is added to the guard. The condition is free of side effects
and pointer dereferences.

<f)(c?ef :e",g,o) := c? 0(e',p A c, o) : <t>(e", g A -.c, o)
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6. Let e be a pointer arithmetic expression. A pointer arithmetic expression is a sum
of a pointer and an integer. Let e1 denote the pointer part, i denote the integer
part. The function <\> is applied recursively to the pointer part of the expression,
the integer part is added to the offset.

<j>(e'+ i,g,o) := </>(e', g, o + i)

In order to prevent exposure of architecture properties, such as endianess, we
assert that T* matches the type of e'. This also prevents arithmetic on (vo id
*) or incomplete type pointers.

7. Let e be a pointer typecast expression, i.e., e = (Q *)e\ where Q is an arbitrary
type. The recursion proceeds with e'.

8. In any other case, the ANSI-C standard does not define semantics. As example,
e might be the NULL pointer or a pointer variable that is uninitialized. We use an
error value in this case and we assert that this dereferencing is never done by the
program. This is implemented by adding an assertion that p(g) does not hold.
Let _L be the error value.

</>(e,g,o) := J_

The algorithms for the difference of two pointers p — q or the relation between two
pointers, e.g., p£=q, are similar. We assert that p and q point to the same object, as
required by the ANSI-C standard, and then use the difference between the offsets.

Example 1: Consider the code fragment

i n t a, b , *p;

i f (x) p=&a; e l s e p=&b;

*P=1;

The first statement is transformed into:

Pi = (a?o ? &a : Po) A p2 = (x0 ?pi : &6)

The variable p in the assignment statement is renamed to P2- The star operator in the
assignment statement is removed as follows:

*p = 0(p,true,O)
= (f)(xo?pi : &&, true, 0) because of p(p) = p2 (case 1)
= xo?(f>(pi,xo,0) : 0(&6,->£(),0) (case5)
= xo ?0(#o?&a : po,xo,0) : b because of p\ = (x0 ?&a : po)
= x0? (xo?(/)(&(!, xo,0) : (t>(po,xo A ->xo,0)) : b (case 5)
= xo ? (xo?a : (f)(po,xo A -ia;o, 0)) : b (case 3)

This simplifies to x?a : b. After renaming, this is #o?ao : &o- This simplification is
done by the program.
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Example 2: It is common practice to use the fixed evaluation ordering of the Boolean
operators to guard pointer dereferences. Consider the code fragment

i n t a, *p ;

p=&a;

i f ( x ) p=NULL;
if(p!=NULL && * p = = l ) ;

The first two statements are transformed into the following bit-vector equations:

pi = ka A p2 = (̂ o?NULL : Pl)

The star operator in the i f statement is removed as follows:

= </>(#o?Pi : NULL,p / NULL, 0) because of p(p) = p2 (case 1)
= xo?0(pi,p^NULLAxo,O) : 0(NULL,p ^ NULL A ̂ aro,0) (case 5)
= xo?(p{&,a,p ^ NULL A x o , O ) : l (case 1, case 7)
= xo?a : -L ( c a s e 3)

It is asserted that p2 ^ NULL A ->#o does not hold.

Example 3: Consider the code fragment

i n t a [ n ] , *p;

P=&a[5] ;

p [ l ] = l ;

The first assignment statement is transformed into p\ = &a[5]. The index operator in
the second assignment statement is removed as follows:

p[l] - 0(p,true,l)
= 0(&o[5],true,l) because of p(p) = pi
= a[5 + 1] (case 4)

This is then transformed into a A constraint as described above.

4.2 Dynamic Memory Allocation

We allow programs that make use of dynamic memory allocation, e.g., for dynamically
sized arrays or data structures such as lists or graphs. This is realized by replacing every
call to m a l l o c or c a l l o c by the address of a new variable of the desired type and
size. For this, we assume that the type of the new variable is given by either an explicit
or implicit type cast to a pointer that points to a variable of type t. In case of ma l loc ,
let a: be a new variable of an array type with elements of type t and size s divided by
s i z e o f (t). We assert that s is an integer multiple o f s i z e o f ( t ) ; thus the result of
the division is always an integer.

(t *) m a l l o c (s) —> &x
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while (Bi) {
Si
while (B2)

if
Si
Full
S3

if (I
Si

) {

unwinding of

3l) {

Full unwinding

s3

inner loop

of inner loop

Figure 7: A double nested loop and its unwinding. Si, S2, and S3 are arbitrary loop
free sub-programs.

In case of c a l l oc, let n denote the number of elements to be allocated and s
denote the size of each element. We add the assertion that s = s i z e o f (t) holds. Let
x be a new variable of an array type with elements of type t and size n.

(t *) c a l l o c ( n , s) —> &x

In order to prohibit access to a dynamically allocated object after deallocation, a
single bit variable is added for each m a l l o c statement. The m a l l o c statement sets
this variable to true, while the f r e e statement sets it to false. The f r e e statement
determines the object pointed to by the pointer using the dereferencing algorithm de-
scribed above. The bit is used to check whether the object created by m a l l o c has
exceeded its lifetime. This also allows verifying the absence of memory holes by as-
serting that all these variables are false at the end of the program.

5 Nested Loops

Nested loops within the ANSI-C code can result in extremely large CNF formulas. This
is because of the unwinding process, where for every unwinding of an outer loop we
unwind the inner loop in full. Figure 7 shows the resulting program after unwinding
two nested loops. If we had three nested loops, which is not that common but can
occur, matters would be even worse.

We attempt to alleviate this problem by taking advantage of the fact that our pro-
grams are hardware specifications and that we are performing bounded model check-
ing. We notice that many C programs that specify synchronous hardware designs con-
tain a " c y c l e " variable that is used to refer to the clock cycle in which an event occurs.
This variable is typically incremented within each while loop, to signify the passing of
one or more clock cycles. Since our tool performs bounded model checking, the user
has access to a variable called "CBMC Joound" that holds the bound used for a partic-
ular run. The C program is not allowed to access the value of a design signal at a clock
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while ((vpc
if (vpc ==
Si
vpc = 2

} else if
if (B2) {

s2} else {
vpc = 3

} else if

vpc = 1

!= 1) II
1) {

(vpc ==

(vpc ==

Bi) {

2) {

3) {

Figure 8: The double nested loop from Figure 7 after transformation

cycle that is greater than this bound. Therefore, we expect the programmer to insert
a condition on the cycle variable of always being less than or equal to CBMC Joound.
These two observations lead us to expect that in many cases there will be a constant
bound on the number of iterations each loop can be executed, and that this bound would
be in the order of the bounded model checking constant CBMCbound.

We use a program transformation that transforms a nested loop construct into a
single loop. We do this by partitioning the body of the outermost while loop into
subprograms, labelling the sub-programs, and then adding a virtual program counter
variable that keeps track of which sub-program should be executed next. This process
is demonstrated in Figure 8 for the program from Figure 7. The program variable vpc
is added to indicate which part of the original program should be executed next. If
vpc==l then the first part of the outer loop is executed (Si), if vpc==2 the nested
loop is executed, and if vpc==3 the third part of the outer loop is executed (S3). This
transformation can easily be extended to a nested loop construct with more than two
loops.

As mentioned above, this transformation will only be useful in specific cases. We
apply it only if there exists an integer variable in the program that is incremented in
every loop body and is checked to be less than or equal to some bound within every
loop condition. In the following we give an analysis that shows how the transformation
can significantly improve performance.

Let n be the bound of the bounded model checking algorithm, i.e., our tool is
requested to compare the specifying program, with the unwinding of n clock cycles of
the Verilog design. To analyze the complexity of a program, we compare the size of
the unwound program with the model checking bound. The reason is that we expect
the program to be able to assume/assert on every clock cycle within the bound, thus
the most efficient program would be one in which the process of unwinding loops will
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replicate each statement O(n) times.
Figure 7 gives a general structure for two nested loops. We evaluate the length of

the unwound program by counting the number of times Si and S2 are replicated (the
number for S3 is identical as for Si). As mentioned in Section 3, our tool will unwind
each loop at least the maximum number of times that it might be iterated. If we choose
a number that is too low the assertion associated with this loop will fail, and the loop
will be further unwound. Let k be the maximal number of times that the outer loop can
be executed, and let U (i = 1 , . . . , k) be the maximal number of times the inner loop
can be executed in the ith iteration through the outer loop. The unwinding algorithm
is guaranteed to unwind the outer loop at least k times, and unwind the zth copy of
the inner loop at least U times. In this unwinding Si is replicated k times, and S2 is
replicated Xw=i'« times. Now, assuming that the c y c l e variable is incremented (by
at least 1) in both Si (or S3) and S2, we get that It <n — i, so Si is replicated O(n)
times and S2 is replicated O(n2/2) times.

In the transformed program we have a single loop. The body of this loop is larger
than the body of the original outer loop by some constant number of statements. How-
ever, under the same assumption that both Si (or S3) and S2 increment c y c l e we
get that the whole loop needs only to be unwound O(n) times, so each sub-program is
replicated O(n) times. This reduction from n2 to n can significantly effect the perfor-
mance of the tool. However, it also entails a larger multiplicative constant, so it is not
recommended for extremely small programs. Applying the transformation to a triplly
nested loop construct will achieve an even greater performance boost, although these
cases are more rare.

Obviously, the question arises of whether the conditions we impose on nested loops
are too strict. We suggest that C programs that are written for specifying hardware
designs will naturally use a c y c l e variable, since without it, it is very difficult to assert
properties on the design. If such programs are to be used in a bounded model checking
setting, it is natural to assume that the user will insert a check on the bound to each loop
condition, or otherwise an error may be generated during model checking. Finally, we
note that in all the examples in which we wrote the C specification ourselves all of our
loops satisfied the conditions for making the transformations, including specifications
that were not cycle-accurate.

6 Transforming Verilog

6.1 Single Clock Designs

We only consider a restricted subset of the Verilog language [21]. Delay or event
specifiers are ignored and only register data transfers are converted. Such a language is
called synchronous register transfer language (RTL). The abstract data types real and
time are not allowed. The process of translating the Verilog design closely resembles
the process of synthesis of behavioral Verilog into a netlist.

The first step of the translation is to determine the variables that form the state of the
circuit, i.e., the latches. It is a common design practice to specify registers in Verilog
that are not intended to become part of the state. This allows us to define combinatorial
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behavior using assignment statements. The tool uses the following heuristic to distin-
guish a latch from a register that is only used for syntactic reasons: It is required that
all assignments are guarded using an event guard. A Verilog register is translated into
a latch if this event guard contains a clock event (posedge or negedge). Otherwise,
the logic is treated like combinatorial logic. This allows defining the state of the circuit.

Example Consider the following Verilog example:

module main(elk);

input elk;

reg [31:0] latch;
reg [31:0] pseudo_latch;

always @(posedge elk)
latch=latch+l;

always @ (latch)
if (latch & 1)
pseudo_latch=0;

else
pseudo_latch=latch >> 1;

endmodule

This example contains two register declarations: l a t c h and p s e u d o . l a t c h .
However, only l a t c h will actually be part of the state. The register p s e u d o . l a t c h
will be considered combinatorial logic.

Let s and s' denote states of the circuit. The Verilog design is then translated into
an initial state predicate and a transition relation. Synthesis tools usually do not convert
initial state predicates. The initial state predicate X(s) holds if s is a valid initial state.
The transition relation H(s, sr) is a bit vector equation that holds if a transition from
state s to state sf is allowed. Let e denote an expression. The value of an expression e
using variable values in a given state s is denoted by s(e).

The second step of the translation is to unwind all repetition statements. These
are fo r , w h i l e , and r e p e a t . In contrast to the unwinding done for ANSI-C, we
assume that the truth value of the loop condition (and thus the number of iterations)
can be determined statically. Any c a s e statements are translated into equivalent i f
statements. Module instantiations are expanded using variable renaming to maintain
locality.

The third step is to translate the remaining program into a set of constraints. This
transformation is done by a graph traversal on the parse tree. The top level of the
program only consists of a lways and i n i t i a l blocks (i.e., behavioral constructs)
and continuous assignments. The algorithm maintains a substitution map g that maps a
variable name to an expression that represents the current value of the variable. By e[g]
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we denote the expression e with all substitutions applied that the mapping function g
specifies. Initially, we start with g(v) = v for all variables v.

Let / denote the current assignment during the parse tree traversal. The algorithm
proceeds by induction on the structure of the program / .

Continuous Assignment Let / be a continuous assignment. Let v be the variable on
the left hand side, let e be the expression on the right hand side. We add the assignment
as an equality constraint to the transition relation and the initial state predicate.

n'(s, s') := U(s, s') A s(v) = s(e) A s'(v) = s'(e)

Behavioral constructs Let / be an a lways or i n i t i a l block. Let / be the cur-
rent assignment in the block, and let g be the guard of / (i.e., the conjunction of the
conditions in the i f statements).

• Let / be a blocking a lways assignment to a latch v. The variable on the left
hand side of the assignment is a variable of the next state s''. The variables on the
right hand side are replaced using the current value function. The current value
of v is changed to the right hand side.

n'(8,8') := n(8,s')A(8(g)=>8'(v)=s(e[Q]))

ux) . = / e[g] : x = v
v J \ Q(X) : otherwise

• Let / be a non-blocking a lways assignment to a latch v. The variable on the
left hand side of the assignment is a variable of the next state sf, the variables
on the right hand side need to be adjusted using the current value function g,
as above. In contrast to blocking assignments, non-blocking assignments do not
adjust the current value mapping function g.

n'(8,8') ~ n(s,s')A(s(g)=>s'(v)=s(e[g]))

• Let / be a blocking or non-blocking i n i t i a l assignment to a latch. The vari-
ables on the left hand side of the assignment are variables of the initial state. On
the right hand side, we expect a constant expression.

X'(s) := I(8)A(8(g)=*s'(v) = e)

For Bounded Model Checking, the transition relation 1Z obtained from the Verilog
file is then unwound. In contrast to the unwinding done for ANSI-C, the number of
times the unwinding must be specified manually. Let n be this number. Let SQ, ..., sn

denote the states such that

I(so)A f\ U{si,si+1)
i=O,...,n-l

holds.
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6.2 Multiple Clock Designs

The translation described above assumes that the design is governed by a single clock.
Verilog provides extensive support to model designs that utilize multiple clocks. The
translation described above would merge these clocks and therefore hide possible be-
havior. CBMC supports a safe abstraction that adds behavior in the case of multiple
clocks rather than hiding it. The clock that is used for a latch is assumed to be given as
an event guard. Consider the following Verilog module:

module main(clkl, clk2);

input clkl, clk2;

reg [31:0] latchl;
reg [31:0] Iatch2;

initial latchl=0;
initial latch2=0;

always @(posedge clkl) latchl=latchl+l;
always @(posedge clk2) Iatch2=latch2+1;

endmodule

It takes two clock signals as input. Upon a positive edge of c l k l , l a t c h l is
incremented, and upon a positive edge of c l k 2 , I a t c h 2 is incremented. Assuming
no further knowledge on the clock signals, the Verilog standard allows all interleavings.
However, the translation above would synchronize the two processes; the incrementing
would always be done synchronously. Since the latches are both initialized with zero,
they will always have the same value. This is hiding possible behavior.

This problem is mended by adding the event guards to the guard of the assign-
ments. Since the clocks are free and unconstrained inputs, this will allow all possible
interleavings. For the example above, the transition relation is:

U(s, s') : <=> s{clkl) => s'(latchl) = s(latchl) + 1 A
s(clk2) = » s'(latch2) = s(latch2) + 1 A
/s(clkl) => s'(latchl) = s(latchl) A
/s(clk2) = » s'(latch2) = s(latch2)

This approach also allows clock signals that are derived from external clocks (i.e.,
inputs).

7 Translation to SAT Instance

Both the ANSI-C program and the Verilog circuit are unwound. This results in a bit
vector equation for both the circuit and the program. In order to compare them, we
translate them into a SAT instance.
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As preparation for the translation, A expressions are simplified. Consider the fol-
lowing code fragment:

i n t a [n] , x, y, z ;

a [ x ] = l ;

z = a [ y ] ;

This is translated into:

ax - M : i = x0 ? 1 : ao[i] A z\ = ai[y0]

A simplistic translation of this equation into CNF allocates literals for the whole
lambda expression and then selects the bits that correspond to the element y0. In order
to reduce the size of the CNF, we simplify this equation using the following rule:

(Ai : e)[x] —> e[substitute i/x]

The example expression is simplified to:

The translation of the bit vector equation for the basic Boolean operators is done
by adding new variables rather than using the law of distribution. The other bit vector
operators are translated as follows:

• Bit vector addition, subtraction, and the relational operators < , > , < , > are
transformed into a Boolean equation using a carry chain adder.

• Bit vector multiplication is translated into a cost optimized multiplication circuit.

• The shifting expressions are translated using shifting circuits.

• All remaining lambda expressions (for arrays) are expanded.

• The array index operator for a variable index is replaced by a vector of new
literals. Let v denote this vector. Let a denote the bit vector for the array, and x
denote the index expression. Let s denote the number of elements in the array.
We add constraints as follows:

A (x =o

Since we are interested in validity rather than satisfiability, the equation is negated as
last step.

8 Experiments
We have run our tool on several examples. It should be noted that no optimization
techniques, such as Bounded Cone of Influence, have been applied. We describe our
examples in different levels of detail, and give performance information.
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8.1 DES Encryption Standard

This example includes a software and hardware implementation of the DES encryp-
tion standard. The software implementation is taken from l i b d e s , which is used in
most Unix systems and in popular security software such as s sh. It is written in ordi-
nary ANSI-C and is hand-optimized for performance. It therefore makes extensive use
of macros, bit vector arithmetic, table lookups, pointers, and data structures that mix
structures and arrays. It is 930 lines long.

On a 1.5 GHZ AMD Athlon machine the translation of the ANSI-C program into a
SAT instance takes 1 minute and 49 seconds, 321 assertions are generated, 256 remain
in the SAT instance after simplification. The exact number of iterations of all loops is
determined statically by the tool. The full SAT instance including all bounds checks
consists of 300,000 variables and 1,4 million clauses. The SAT checker Chaff [6]
detects it to be unsatisfiable within 26 seconds. This proves validity of the original
equation.

The hardware implementation is written in synchronous Verilog. There is a se-
quential (cost optimized) and a pipelined (speed optimized) version of the circuit. Cur-
rently, we only verify the sequential version. It is 1900 lines long. In order to unwind
the hardware implementation, the number of steps has to be specified manually. For
this example, 16 unwinding steps are required. The variable names have to be mapped
manually to the corresponding variables in the C program.

8.2 Instruction Fetch Unit

This example is the Instruction Fetch Module for the Torch Microprocessor, taken
from []. The specification implements the instruction fetch state machine and speci-
fies a few invariants that hold in certain states.

8.3 PS/2 Interface

The PS/2 interface was introduced by IBM as an interface standard in order to connect
the keyboard and mouse to an IBM PS/2 PC. It is still found in allmost all IBM com-
patible PCs. The PS/2 interface is a serial bus. The communication is bidirectional.
The bus uses a single data signal and a clock signal. The PS/2 Verilog implementation
provides an interface to this bus. Besides the basic protocol, the modules also decode
the packets that are received. For example, the keyboard controller keeps track of the
state of the shift keys and computes an ASCII equivalent of the key pressed. If a key
is pressed, generates an event and waits for an acknowledgement. The mouse interface
keeps track of the position of the mouse and the mouse buttons.

The keyboard controller has 67 latches and is about 700 lines of Verilog. The
ANSI-C code we wrote for it does not try to reproduce the behavior of the Verilog in a
cycle-accurate way. Instead, the ANSI-C code communicates with the Verilog using the
module interface. The ANSI-C non-deterministically picks a key and code generates
an appropriate PS/2 clock and data signal, which is fed to the Verilog module. Thus, it
plays the role of the keyboard, while the Verilog module is the computer. After sending
the packet, it waits for the circuit to decode the packet using WAITFOR. The decoded
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key is then compared to the key that was sent. Due to the length of the packets and
the fact that the Verilog module is oversampling the data on the PS/2 bus, a successfull
run requires a bound of at least 48. The overall runtime, including unwinding and
generation of the CNF, is 51 seconds.

8.4 DLX

The DLX Implementations
The DLX architecture [22, 23] is a load/store architecture with a RISC instruction

set that is similar to the MIPS instruction set. The general purpose (GPR) register file of
the DLX architecture consists of 32 integer registers (R0,...,R31), each of which is 32
bits wide. The register RO is defined to be always zero. The general purpose registers
are used for all integer operations and memory addressing purposes.

We compare a hardware and a software implementation of the DLX. The hardware
implementation is a sequential implementation. The control has five states fetch, de-
cide, execute, memory, and writeback, following the implementation suggested in [22].
The implementation is given in synthesizeable Verilog and consists of the register file,
the ALU, and the main control. Thus, it does not contain a model of the main mem-
ory but rather a memory bus interface. Including the register file, the implementation
contains a total of 1219 latches.

The ANSI-C software implementation is derived from a DLX simulator d lx s im .
It implements the ISA only and is not a cycle-accurate simulation. In particular, it does
not make use of a state machine but rather uses ANSI-C flow control to distinguish
between individual instructions. In order to verify equivalence between the hardware
and software implementation the data read from memory by both machines must be the
same. This is achieved by changing the software implementation. Instead of reading
the memory contents from an array, the software implementation watches the hardware
implementation and copies the data the hardware implementation reads from the mem-
ory bus. In order to do so, the software implementation needs to know the cycle the
data word is on the bus, i.e., the read accesses must be synchronized. The synchroniza-
tion between the two machines is done using the WAITFOR construct. The software
implementation waits until the software implementation is in the appropriate state and
the memory bus becomes active. This is detected by watching the MEM.BUSY signal.
This signal is active if the memory data is unavailable for any reason.

There are two different types of memory accesses: the instruction fetch and the
load/store instructions. The hardware implementation stores its state in a register called
s t a t e . In order to get the instruction word, the software implementation waits until
the hardware implementation is in the instruction fetch state (state 0) and the memory
bus is not busy:

cycle=WAITFOR(cycle,!MEM_BUSY[cycle] && state[cycle]==0);

Once the hardware implementation is in the instruction fetch state, and the memory
data is available, the data word on the bus (as given by the MEM.IN s i g n a l ) is read
into the i r variable:
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if(cycle<=bound) ir=MEM_IN[cycle];

In case of a load instruction, the software implementation waits until the hardware
implementation is in the instruction memory state (state 3), and the memory data is
available. The data word is then read from MEM_IN:

cycle=WAITFOR(cycle,state[cycle]==3 &&
if (cycle<=bound) result=MEM_IN[cycle];

!MEM BUSY[cycle])

The equivalence of the two implementations is specified using an assertion that
establishes the equality of the value written into the respective register files. In the
software implementation, this value is denoted by r e s u l t . In the hardware imple-
mentation, the result is stored in the register C.

a s s e r t (C[cyc le ]==resu l t ) ;

Results

Instances with Bugs As described above, the software implementation is derived
from a DLX simulator dlxsim. This implementation contains a bug in the code that
decodes the instruction word. The DLX architecture provides control instructions (con-
ditional branch and jump), ALU instructions such as add and compare, and the memory
instructions load and store. The instruction that is to be executed is encoded in a 32-bit
instruction word.

I-type

R-type

J-type

6

Opcode

6

Opcode

6

Opcode

5

RSI

5

RSI

5

RD

16

Immediate

5 5

RS2 RD

26

5 6

SA Function

PC Offset

Figure 9: Integer instruction formats of the DLX

There are three instruction formats for integer instructions (figure 9): the I-type
format provides a 16-bit immediate constant and two register addresses, the R-type
format provides three register addresses, a 5-bit immediate constant and an additional
6-bit function code. The J-type format provides a 26-bit immediate constant, which is
used as PC offset for jump instructions.

Using the original instruction word decoding code from dlxs im and an unwinding
bound of 5 cycles, CBMCgenerates a counterexample within 1 minute and 37 seconds.
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The time includes the time for unwinding the ANSI-C code, synthesizing and unwind-
ing the Verilog code, generating the CNF, and running Chaff on the generated CNF.
The counterexample provides the instruction word of the instruction that is executed:
the instruction is a j a l (jump and link) instruction, which is a J-type instruction. Fur-
thermore, the counterexample shows how both implementation process this instruction.
The machines disagree on the new value of the PC (program counter). The hardware
implementation computes the correct new value, as defined by the specification. How-
ever, the software implementation only extracts 25 bits of the PC offset rather than 26.
This is indicated by the fact that the top bit of the offset of the immediate constant in
the instruction word given in the counterexample is set.

In contrast to the bug described above, the bug described in the following is in-
serted artificially to test the tool. It is not part of the original code. In order to obtain a
counterexample that requires more than one instruction, we change the write back en-
able signal in the hardware implementation such that it is no longer active in case of an
ALUi instruction. Thus, the result of the ALUi instruction is no longer written into the
register file. The instructions following the ALUi instruction therefore potentially read
the wrong value from the register file. As expected, with an unwinding bound of 10
cycles CBMCgenerates a counterexample within 34 minutes and 51 seconds. The first
instruction in the trace is an ALUi instruction. The second instruction is a j r instruc-
tion that reads the result of the first instruction. Since this is wrong, the j r instruction
computes a wrong value for the new PC.

Runtime without Bugs The unsatisfiable, i.e., correct instance contains 196697 vari-
ables and 731851 clauses with an unwinding bound of 10 cycles. Chaff detects it to be
unsatisfiable within 154 minutes. The instance consists of a total of 80 claims, which
includes the automatically generated array bounds checks.

9 Conclusion and Future Work

We have described the translation of ANSI-C programs and Verilog designs into a SAT
instance using Bounded Model Checking. We have performed multiple experiments,
including a small processor given in Verilog and its ISA given in ANSI-C.

We are currently developing an extension of this technique to handle multiple clock
domains. This continuation work will enable the specification of relationships between
clock frequencies, and the verification of a multiple clock design under these assump-
tions.

We plan to add support for concurrent C programs, such as allowed by the SpecC
language [13]. Furthermore, we plan to optimize the generation of the SAT instance
using specialized bit vector decision procedures and abstraction techniques.
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