NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

FastCARS: Fast, CorrelationeAware Sampling for
Network Data Mining

Jia-Yu Pan, Srinivasan Seshan, Christos Faloutsos *

December 2002
CMU-CS-O2-1673

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

1This material is based upon work supported by the National Science Foundation under
Grants No. TRI-9817496, 11S-9988876, IIS-0083148, I1S-0113089, 11S-0209107 and by the
Defense Advanced Research Projects Agency under Contract No. N66001-00-1-8936. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation, DARPA, or other funding parties.

Keywords: traffic analysis, network data mining, sampling

Abstract

Measuring traffic on routers is vital for finding patterns, traffic modeling, and
anomaly detection. Unfortunately, technology trends are making it more and
more difficult to observe and record the large amount of data generated by
high speed links. Traffic sampling techniques provide a simple alternative
that reduces the volume of data collected. Real world data is seldom tempo-
rally independent and data observed at one time is likely to have important
correlations with data observed at close-by instants in time. A good sam-
pling method should be able to give measurements that take this correlation
into account. Unfortunately, existing sampling techniques largely hide any
temporal relationship in the recorded data.

Our proposed method, “FastCARS”, naturally captures statistics for packets
that are 1, 2 or more steps away. It has the following properties: (a) provides
accurate measurements of full trace’s statistics, (b) is simple and scalable for
implementation, (c) captures correlations between successive packets, as well
as packets that are further apart, (d) evenly separate sampling efforts over
time, and (e) generalizes previously proposed sampling methods and includes
them as special cases.

We also propose several new tools for network data mining and demonstrate
the good quality of the information provided by FastCARS. These tools in-
clude: (a) The n-step histograms which give correlated statistics at different
levels of temporal correlation, (b) the convolution test which could be used to
examine the dependence level between packet arrivals. (c) the n-step packet-
size/delay graph which provides accurate bandwidth estimation and load
monitoring, and (d) the n-step flow graph which effectively visualizes flow
patterns hidden in a trace.

The experimental results on multiple, real-world datasets (479Mb in total),
show that the proposed FastCARS sampling method and these new data
mining tools are effective. With these tools, we show that the independence
assumption of packet arrival is not correct, and that packet trains may not
be the only cause of dependence among arrivals. The provided tools may be
useful in applications such as monitoring link load and traffic flows.

1 Introduction

The ability to monitor and characterize network traffic has proven to be crit-
ical to the design and operation of today’s networks. However, as links have
gotten faster and faster, it has become more difficult to observe key traffic
characteristics or record packet data in real-time. Already, most network
monitors rely on sampling techniques [4] [5] to provide measurements of high
speed links. The ability of these sampling techniques to preserve data char-
acteristics is necessary for network data mining applications which aim at
revealing patterns and correlations that are crucial to the understanding and
development of today’s and future networks.

Today’s sampling techniques are targeted towards enabling tasks such as
usage-based billing, capacity planning and network research. These tech-
niques can typically answer questions about the traffic such as: What is
the distribution of packet sizes on this link? Which destinations are popular?
or How long are typical connections? However, a significant weakness of
existing schemes is that they do not answer questions about the temporal
correlation of the traffic. For example, some interesting traffic characteristics
include: How is the arrival time of packet n related to that of packet (n+1)
or (n+2)? Is there correlation among arrivals? In the past, analysis of such
packet content characteristics [6] and arrival correlation [7], using full (un-
sampled) packet traces, have led to the discovery of important phenomena
such as “packet trains”, which is defined as a set of sequential packets that
have the same source/destination IP addresses and port numbers, and self-
similar traffic pattern. Clearly, such traffic characteristics are critical to the
design of routers, routing algorithms and caching techniques. It is necessary
that this kind of analysis should be possible on sampled data, rather than
on full trace.

We would like a sampling method that is informative and efficient. It
should provide sufficient information for accurate estimates of both average
and temporally correlated statistics. It should also be simple and require
low computation when implemented on routers. It’s performance should be
predictable, in the sense that the collection of desired statistics is guaranteed
after a certain amount of samples taken.

To achieve these objectives, we propose a new method, Fast, Correlation-
Aware Sampling (FastCARS), to do sampling and data mining on router
traffic. We show that our method can support the traditional uses of net-
work sampling (provide interarrival time distribution), as well as statistics

about packets separated at different steps, which can be used for further data
mining on the sampled traffic. In particular, we use FastCARS to explore the
independence of interarrival time. We show that packet interarrival times are
not independent and packet trains may not be the only cause of dependence
among arrivals. Besides; we propose 2 novel tools for network data mining,
based on the information obtained from FastCARS. We demonstrate the use
of these tools which leads to better insights of the network traffic.

This report is organized as follows. We summarize previous work in
section 2. Section 3 describes our sampling method. Section 4 presents
results from using our sampling technique. Several tools for network data
mining are introduced in section 5. Finally, we conclude in Section 6.

2 Related Work

Network sampling has played an important role in network measurements for
the past decade. In order to describe the desirable properties of a sampling
technique, we begin by defining the term step.

Definition 1 We call the separation between samples, steps. A n-step
histogram is a histogram of measurements obtained from pairs of sampled
packets that are n steps away (separated by (n-1) packets). Histograms of
different steps provide aggregated statistics which reveal short and long term
correlations (i.e. temporal correlation).

Statistics of samples n steps apart are prefixed by the term n-step. For
example, the interarrival time between a pair of back-to-back packets is an
instance of 1-step interarrival time. We will show in the following sections
that n-step histograms give us information about the traffic characteristics,
and reveal temporal correlation between packets. For example, the 1-step
histogram is used to estimate packet interarrival time distribution, and the
2-step histogram is used to explore the independence of interarrival times.
One important property for a sampling technique is that it be correlation-
aware, i.e., it should provide statistics for n-step histograms for arbitrary
n.

We classify past techniques into four categories: event-driven sampling,
random sampling, configured run-length sampling and back-to-back sam-
pling. Each of the existing sampling methods has its merits. However, none

of them successfully satisfies all the favorable requirements. The following
definitions describe these techniques.

Definition 2 The deterministic event-driven sampling method with sam-
pling period p (Event(p)) samples events numbered 0, p, 2p and so on. In
the case of network traffic, events are packet arrivals.

Definition 3 The random sampling method is a variant of the event-
driven sampling method where its sampling interval is a random variable
following a specific distribution.

Definition 4 The configured run-length sampling method (Conf(p,q))
with sampling period p and run length q samples a sequence of q events in
every sampling cycle. If the sampling starts on packet 0, then in the (k+1)-th
sampling cycle (k > 0), Conf(p,q) will sample packets numbered kp, (kp+1),
oo, (kp+q—1).

Definition 5 The back-to-back sampling method (back-to-back(p))
with sampling period p samples packets numbered 0, 1, p, (p+1), 2p, (2p+1)
and so on. Note that back-to-back(p) is equivalent to Conf(p,2). In general,
a back-to-back sampling with sampling period p and step s (back-to-back(p,
s)) samples packets numbered 0, s, p, (p+ s), 2p, (2p + s) and so on.

These different techniques have been evaluated in past work. Claffy et
al. [2] compared several sampling methods by their errors on estimating
packet interarrival times and packet sizes. This study concluded that the
event-driven sampling method performs better than other methods and that
the performance differences between sample selection patterns (deterministic
or random) are small. Today’s routers incorporate sampling techniques sim-
ilar to those described in [2]. Cisco’s NetFlow monitoring system supports
1 out of p packets, i.e., Event(p) [4]. Juniper’s routers provide some addi-
tional flexibility. They allow administrators to apply packet filters before the
sampling is done and to request that a configured run length of packets be
collected with each sampling event [5], i.e., Conf(.,.). The ability to collect
a set of packets with each sample enables the evaluation of temporal cor-
relations between transmissions. However, this ability comes at the cost of
recording significantly more data.

Event-driven sampling methods have great difficulty in measuring traffic
characteristics such as packet interarrival time. The problem is that the

3

Table 1: Comparing the sampling methods

Property Event(p) | Back-to-back | Random | Conf(p,q) | FastCARS
1-step histogram X O O O O
n-step histogram (n>1) X X O O O -
Scalability O O O X O
Predictability O O X O O

sampling only gives information about the interarrival time between samples,
rather than that between back-to-back packet pairs. In (3], interarrival times
of the packets between two adjacent packet samples were assumed to be the
same, and were estimated by dividing the sampled interarrival time by the
number of gaps in between (naive averaging estimation). The estimated
distribution is biased toward the overall mean of the interarrival time and
does not give enough emphasis at the extreme values as we will show later
in Fig. 3.

Back-to-back sampling can provide a good estimate of interarrival times.
However, it only gives us information about packets 1-step away and does not
give information about packets separated by more steps which is important
if sequential packet arrivals are correlated.

Random sampling and configured run-length sampling could provide n-
step histograms. However, their computation overhead can be high, and for
random sampling, the size (number of samples) of the collected histograms
is not predictable.

Table 1 summarizes the comparison of these sampling methods.

3 Proposed Method

Unlike previous work, our main goal is to provide a sampling method that
provides accurate statistical estimation, and is also simple, predictable and
capable of capturing temporal correlation. To achieve these objectives, we
propose a fast, correlation-aware sampling method (FastCARS).

We propose to use a combination of multiple deterministic event-driven
sampling processes with sampling intervals that are relatively prime numbers.
For every sampled packet, its header information, such as time stamp on
arrival, packet size, source/destination addresses, source/destination ports,
and protocol, is stored for subsequent processing.

Definition 6 FastCARS(p,,p2,- .- ,pn) sampling method consists of n event-
driven sampling processes, where py,...,p, are relatively prime numbers.
The i-th process has sampling period p;, which takes one sample every p;
events.

Definition 7 FastCARS(py,po, ... ,pn) starts alln sampling processes at the
same time. We can further generalize FastCARS by specifying the start times
of the n processes. We denoted the generalized FastCARS by GFastCARS
(D1,D2, - -+ s Pny 81,82, - - - »8n), where packet s; is the first packet sampled by
the i-th process.

The next lemma shows that GFastCARS reinforces previous sampling
methods and -includes them as special cases.

Lemma 1 (GFastCARS) GFastCARS(p1,... ,Pn,S1,--- ,Sn) includes other
deterministic sampling methods as special cases:

e Fvent(p) = GFastCARS(p,0)
e back-to-back(p,s) = GFastCARS(p,p,0,s)

e Conf(p,q) = GFastCARS(e,... ,0,0,1,...,(¢g—1)) []
q .

Fig. 1 shows how FastCARS works. As shown, the FastCARS(3,4)
method samples at periods of 3 and 4 packet arrivals. The figure also shows
that the samples collected are either 1-step, 2-steps, or 3-steps away from
each other, allowing the corresponding n-step histograms.

In general, when the sampling periods (py, ... ,p,) are chosen to be rela-
tive primes, pm,-n:iinlim p; and L=lem(py, ... ,pn), FastCARS guarantees us

samples of steps rangiflg from 1 to pn, every L packet arrivals. This creates
a more predictable sampling result, which random sampling can not give us.
FastCARS is also tunable in the sense that the sampling intervals can be
chosen such that samples of particular steps which are of special interests
will occur more often.

FastCARS is a simple generalization of the event-driven sampling which
can be efficiently implemented. Event-driven sampling of sampling interval
p can be implemented using a counter to keep track of how many packets to
be skipped before taking the next sample. FastCARS could be implemented
similarly with one counter per sampling process.

5

Sampling Process 1 (Period p1=3)

—t—F——t+—F+—K—F+—+—k—F+—F+—k—F+—F+—K—
0 3 6 9 12 15
Sampling Process 2 (Period p2=4) _
KK ————k————k———+—%
0 4 8 12 16
Steps Among Samples

~ N =

Figure 1: How FastCARS works FastCARS(3,4) has two processes with sam-
pling intervals 3 and 4. The top two lines indicate the packet numbers sam-
pled by the two processes. The bottom line shows the steps among samples.
In this case, we collect interarrival times of 1, 2, and 3 steps, each of them
twice, in every 12 packet arrivals.

Fig. 2 compares FastCARS with other sampling methods, namely, event-
driven, back-to-back, and configured run-length sampling. Configured
run-length sampling (Conf(p,q)) and random sampling also give us n-step
histograms. However, FastCARS has important advantages over these tech-
niques. FastCARS is computationally simpler than random sampling. In
addition, random sampling does not provide guarantees about the sampling
rate for different n-step histograms. FastCARS includes Conf(p,q) as a spe-
cial case. The major problem of Conf(p,q) is that it requires bursts of record-
ing activity (no action for (p-q) events, frenetic action for the next ¢ events).
FastCARS spreads the recording activity evenly (Fig. 2). To collect an n-
step histogram, Conf(p,q) must be configured to collect g=(n+1) packets at
a time, which implies if histograms of large n(>p-1) are needed, Conf(p,q)
must collect every packet. : :

Thanks to the flexibility of FastCARS, we can tailor its parameters to the
application. For example, if samples of n consecutive packets are needed, we
can run FastCARS with n sampling processes. The sampling rate of each
process could be tuned to meet the data storage limitation (the maximum
rate the samples can be collected, or the minimum rate the original data has
to be reduced) using the following lemma, of data reduction rate.

Lemma 2 (Data Reduction Rate) FastCARS(p,,. .. ,pn), where ged(p;, p;)

FastCARS

.

Event—Driven

Back-to—Back Sampling

®
Configured Run-Length Sampling

000 000 000

Ol NGO

N

$s° "
i’bi@

Figure 2: Comparison of Different Sampling Methods Each bin contains n
packets (not shown). Sampling methods compared are FastCARS(n, n— 1),
event-driven, back-to-back, and the configured run-length (with run-length
3) sampling. Each ball shown (either filled or empty) indicates a sample '
taken. For FastCARS , filled balls are samples of the sampling process of
sampling interval n, and empty balls are those of interval (n — 1).

=1 for 1<i # j<n, takes samples at an average rate of Z—l—r [
i=1,...,n

Py

4 Experimental Results

We present experimental results showing that information collected by Fast-
CARS can be used for typical measurement applications as well as novel data
mining applications. In this section, we show that FastCARS gives accurate
estimation of interarrival time distribution and provides n-step histograms
for inspecting temporal correlation at multiple aggregation levels. Besides,
the information provided by FastCARS make possible data mining tasks on
network traffic, which will be discussed in the next section.

Our experiments are done on the packet header traces obtained from the
National Laboratory for Applied Network Research (NLANR!). Traces are
90-secs long. A previous study [8] suggests that the network is relatively
stable within time spans shorter than 15 minutes. We, therefore, assume
the measured packet arrivals form a stationary process. Experiments are
done mainly on three traces, which we name AIX, COS and IND. Table

Thttp://moat.nlanr.net/Traces/Traces/

Table 2: Summary of Traces

Trace | Location Collected Time (GMT)| Link Speed

AIX | AIX/MAE-West Sunday June 10 2001 | OC12c PoS
Interconnection 15:55:50

COS | Colorado State Monday August 20 0C-3
University 2001 00:47:57

IND | QuestPOP at Tuesday August 21 | OC12c ATM
IUPUI 2001 22:47:04
(Indianapolis)

2 summarizes the details of these traces. The trace collectors are located at
aggregation points within HPC networks, the vBNS and Internet2 Abilene.
Therefore, the network traffic considered in this paper is traffic in which
many independently originated flows are multiplexed.

In the following, we present experiments to answer the -following ques-
tions: How accurate is the information FastCARS provides? Do the samples
preserve the main characteristics of full trace? How can we use the n-step
histograms to explore the correlation among packet arrivals?

4.1 Accuracy of FastCARS: Interarrival Time Distri-
bution

In this section, we show that FastCARS can give an accurate estimation of
the interarrival time distribution.

Fig. 3 compares our estimation with the actual interarrival time distribu-
tion collected from the full trace (AIX), and also with the results from the
event-driven sampling method.

We use the 1-step histogram collected by FastCARS to estimate the in-
terarrival time distribution. As mentioned in Section 3, relatively prime .
sampling intervals guarantee collections of 1-step histograms. We investigate
the effects of different numbers of processes and different sampling intervals
on FastCARS, and choose sampling intervals (10,11) and (100,101,111) as ex-
amples to demonstrate how FastCARS works. The estimation of interarrival
time using samples from event-driven sampling is done by the naive averaging
estimation (Section 2). Our comparison of the quality of the estimation from
different sampling methods is fair, allowing for a similar number of samples

105 ival Time Distributi o ival Time Distributi

45 | — Actual Data 45) — Actual Data
-- - FastCARS(10,11) i - - - FastCARS(100,101,111)
o Events) 4 e Event(30)

35 [5 30 35

10 15 20 25
Interarrival time (usec)’

10 15 20 25
Interarrival time (usec)

(a) FastCARS(10,11) - Event(5) (b) FastCARS(100,101,111) - Event(30)

Figure 3: Estimating Interarrival Time Distribution (Trace AIX) Fast-
CARS gives better estimation that event-driven sampling does. (a)
FastCARS(10,11) VS Event(5) sampling, (b)FastCARS(100,101,111) VS

Event(30) sampling.

— Actual Data 4 ~—— Actual Data
== Fi 10,11 =~ FastCi 10,11

0 100 50 100
Interarrival time (in usec) interarrival time (in usec)

(a) Trace COS (b) Trace IND

Figure 4: Estimating Interarrival Time Distribution (Traces COS and IND) Fast-
CARS(10,11) also gives accurate estimations on these traces.

for all methods. For example, FastCARS(10,11) takes 713,435 samples on
trace AIX, and it is compared with Event(5), which takes 747,407 samples.
Even with slightly more samples, Event(5) still performs badly. Estimates
from FastCARS samples are very close to the actual distribution, while, those
from event-driven sampling are biased towards the distribution mean.
Figure 4 shows that FastCARS also gives accurate estimation of interar-

rival time distribution on traces COS and IND. The actual interarrival time
distribution is compared with the estimation obtained by using the 1-step
histogram of FastCARS(10,11).

4.2 Testing the Independence Hypothesis of Packet
Arrivals

The hypothesis that packet arrivals are independent facilitates tasks such
as traffic analysis and modelling. However, is this assumption realistic? A
connection usually sends a flow of packets and the transmission times and
contents of these packets are not independent. Do these packets make the
independence hypothesis false? Are there other dependences among packets?
In this section, we show how the histograms gathered from FastCARS can
answer these questions.

We use the 1-step and 2-step histograms collected by FastCARS to check
‘the independence hypothesis of packet arrivals. The idea is as follows. The
distribution (histogram) of the 2-step interarrival time will be similar to the
convolution of the 1-step interarrival time distribution (histogram), if the (1-
step) packet interarrival time is independent. In the remainder of this paper,
we refer to this test of independence as convolution test.

More formally, let f;(.) be the probability mass function of the i-step
interarrival time distribution (time is discretized into micro-seconds). For 3
consecutive packet arrivals (z1, T3, 3), let T} (T3) be the random variable of
the interarrival time between z; and z, (z; and z3). 77 and T follows f;(.).
Let D be the random variable of the 2-step interarrival time between z; and
z3, and D follows fa(.).

Definition 8 (Convolution Test) If the packets’ (1-step) interarrival times
are independent and identical distributed, then the probability distribution of

2-step interarrival time (f3) is the convolution of the 1-step interarrival time

distribution (f1). This is due to

d
f = Pr(D=d)=Pr(Ti+Ty=d)=)» Pr(li=tTo=d—t)
t=0
d
= > Pr(li=t)Pr(ly=d—t) = fi® fi,

t=0

where Pr(E) denotes the probability of an event E, and ® is the convolution.

10

Fig. 5 compares the 2-step histogram and the convolution of the 1-step
histogram, both obtained from FastCARS(10,11), with the actual 2-step his-
togram collected from full trace AIX. Results on traces COS and IND are
similar and not shown here. The histograms are normalized before doing
convolution and comparison. We use the quantile-quantile plot (QQ-plot) [1]
of the two histograms as a visualization of the similarity between two his-
tograms, which is actually related to the Kolmogorov-Smirnov test of simi-
larity of two distributions [9]. The fit of the QQ-plot to the 45-degree line
demonstrates the goodness of fit between two histograms.

The QQ-plot in Fig. 5(a.2) goes along the 45° line indicates that Fast-
CARS gives accurate 2-step interarrival time distributions. The big deviation
from the 45° line shown in Fig. 5(b.2) indicates that the actual 2-step his-
togram is different from the convolution of the 1-step histogram. Therefore,
by the convolution test, successive interarrival times are not independent.

As the number of steps increases, packet arrivals should be less dependent
on each other. For example, packets 3 steps away are expected to be more
independent of one another and, as a result, the sum of two 3-step interarrival
times should be a good estimation of a 6-step interarrival time. This suggests
that the convolution of 3-step histogram should be similar to the 6-step
histogram.

Fig. 6 shows the results on comparing the actual 6-step histogram from
full trace (AIX) to (a) the sampled 6-step histogram and (b) the convolution
of the sampled 3-step histogram. The 6-step interarrival time histogram
from FastCARS is still a good estimation for the actual 6-step interarrival
time distribution (Fig. 6(a)). In Fig. 6(b.2), the actual 6-step histogram
fits well with the convolution of the 3-step histogram and is better than
the fit in Fig. 5(b.2). That is, the correlation coefficient of the QQ-plot in
this case, 0.99949, is much closer to 1 than the case of Fig. 5(b.2), which is
0.99368. This shows that, as expected, the dependence of packet arrival time
diminishes as the separation between packets increases.

4.3 Dependence Assumption and “Packet Train” Phe-
nomenon

A sequence of packets with same source, destination IP addresses and port
numbers form a “packet train”. It is known that the packet train phenomenon
exists in network traffic [6]. Packets within a packet train are not expected

11

Dependence of Interarrival Time

Depandence of Packet Arrivals

0.04 ~— Full Trace 2-step Histogram € o
- - - FasiCARS 2-step Histogram &
0,035, 500
B
0.03) i }/
0.025 %:m :
g 0.02| §
¢ 0.015] tﬁm
0.01 k E
€100
0.005] 3
() 100 150 200 100 200 300 400 500 600
Interarrival Time (usec) Quantiles of Full Trace 2-Step Histogram
(a.1) Interarrival Time Histogram (a.2) QQ-plot
(a) Actual 2-Step & FastCARS Sampled 2-Step Histograms
Dependence of Interarrival Time S Dependence of Packet Arrivals
g
° T Convolitonof PastOARS st Histogram :
§500
4
2400
g
]
%200
E-E 100
(] 150 200 g 600

100 100 200 300 400 500
Interarrival Time (usec) Quantiles of Full Trace 2-Step Histogram

(b.1) Interarrival Time Histogram (b.2) QQ-plot
(b) Actual 2-Step & Convoluted Sampled 1-Step Histograms

Figure 5: Dependence of Interarrival Time (Trace AlX) Histograms are collected
by FastCARS(10,11). Compares actual 2-step interarrival time histogram to
(a) the sampled 2-step interarrival time histogram, and (b) the convoluted
1-step interarrival time histogram. Correlation coefficients of the QQ-plots:
(a.2) 0.99994, (b.2) 0.99368.

to act independently, and may affect traffic characteristics. It may cause the
independence hypothesis of packet arrivals to be incorrect.

Is it true that packet trains are the main reason that the independence
assumption of packet arrivals is false? We test this hypothesis by removing
consecutive packets in the same flow (packet trains) from the full trace, and
then check whether (1-step) interarrival time histogram of the resulting trace
set has the independence property. The independence check is done using
our convolution test.

12

-3 Dependence of Interarrival Time

x10 Dependence of Packst Arrivals
— Full Trace 6-step Histogram 900, N
- - - FastCARS 6-step Histogl
6| Seoo
&0 .
I £l
oo ‘
S
3
Q 400
2
%aoo
S0
§
& 100]
] 10 200 300 400 500 0 100 200 300 400 500 600 700 800 900
Interarrival Time (usec) Quantiles of Full Trace 6-Step Histogram
(a.1) Interarrival Time Histogram (a.2) QQ-plot

(a) Actual 6-Step & FastCARS Sampled 6-Step Histograms

x10° Dopends?ee of In:rarrival Time : 5 ence of Packet Arrivals
«w_ Full Trace 6—step Histogram 290
N ~ -+ Convolution of FastCARS B
3-step Histog Tooo
imor d
2 600
<
Gsoo}
a0
S0
g
Sa
k]
%)100
o 100 200 300 400 500 g"o 100 200 300 400 500 600 700 800 900
Interarrival Time (usec) Quantiles of Full Trace 6-Step Histogram
(b.1) Interarrival Time Histogram (b.2) QQ-plot

(b) Actual 6-Step & Convoluted Sampled 3-Step Histograms

Figure 6: Dependence of Interarrival Time (Trace AIX) Histograms are collected
by FastCARS(10,11). Compares the actual 6-step interarrival time histogram
to (a) the sampled 6-step interarrival time histogram, and (b) the convoluted
3-step interarrival time histogram. Correlation coefficient of the QQ-plot in
(b.2): 0.99949.

Fig. 7 shows the result of the convolution test on trace AIX, after packet
trains are removed. Since the discrepancy in the QQ-plot in Fig. 7 remains
significant (compared to Fig. 5(b.2)), the removal of packet trains does not
make packet arrivals independent. This suggests that packet trains might
not be the sole cause of the failure of the independence hypothesis of packet

arrival.

13

Dependence of Interamival Time Dependence of Packet Arrivals

0.04 — Full Trace 2-step Histogram
= == Convolution of FastCARS 1-step Histogram

g

g

]

g

g

8

p—
Quantiles of Convolution of FastCARS 1-Step Histogram

G

200 600

50 100 150 100 200 300 400 500
. Interarrival Time (usec) Quantiles of Full Trace 2-Step Histogram

(a) Interarrival Time Histogram (b) QQ-plot
Actual 2-Step & Convoluted Sampled 1-Step Histograms

Figure 7: Packet Train and Dependence of Interarrival Time (Trace AlX, with
packet trains removed) Histograms are collected by FastCARS(10,11). The
number of packets removed is 155863, out of the total 3737038 packets. Cor-
relation coefficient of the QQ-plot in (b.2): 0.99683.

5 Putting FastCARS to Work

Beside providing accurate information for the n-step interarrival time distri- .
bution, FastCARS makes possible data mining tasks of finding correlations
among the packet attributes (header fields). In particular, we propose two
novel tools for network data mining based on the information given by Fast-
CARS, namely, the “n-step packet-size/delay graph” and the “n-step flow
graph”. We found that the n-step packet-size/delay graph shows how packet
size is distributed and how traffic burstiness effects the queueing of packets.
The n-step flow graph highlights interesting traffic flow patterns such as
“big flows” and “packet trains”.

5.1 Observing load patterns of a link: n-step packet-
size/delay graph

We are interested in the correlation between the size of a packet and the
time delay between this packet and the one that arrives next. Observations
of this interaction give insights into questions such as “Are longer delays
caused by router overload? How bursty are traffic patterns? What is the
impact of packet size on interarrival time? What is the distribution of packet

14

sizes? What percentage of packets of a particular size are queued in the router
before being forwarded?” These insights are also useful in traffic monitoring
and capacity planning.

We introduce the n-step packet-size/delay graph to see the interaction
of packet size and router’s forwarding delay. We begin by defining the word,
“delay”.

Definition 9 (Delay) The difference between the timestamps on packets
n steps away s called the n-step delay. Hence, the 1-step delay is the
difference on arrival time of the two back-to-back packets.

Definition 10 (n-step packet-size/delay graph) Given a set of packet
“pairs, each has packets n steps apart. A n-step packet-size/delay graph
s a 3-dimensional graph, where z-axis is the size of first packet in a packet
pair, y-azxis is the n-step delay of packets in a pair, and z-azxis is the count of
a particular (z,y) tuple occurs in the given set of packet pairs. We denoted
the n-step packet-size/delay graph as a function SD,(z,y, 2).

Fig. 8(a) shows the I-step packet-size/delay graph of all the packet
pairs in the full AIX trace (without sampling). The graph shows interesting
features such as spikes at particular packet sizes and the widely spreaded
delay values. Compare to Fig. 8(b), where only the 1-step samples collected
by FastCARS(10,11) are used, we found that the main features of the graph
remain even when we are only using samples. This shows that FastCARS
samples retain the desirable information of the full trace. We can therefore
work on the FastCARS samples instead of the full trace whose huge amount
of data often causes problems in processing and visualization.

Fig. 8(c), (d) are the graphs after we remove points (z,y,z) with small
z values in Fig. 8(a), (b), respectively. Specifically, this is done by keeping
only points with z that is greater than some thresholds (z > 500 to get (c)
form (a), z > 10 to get (d) from (b)). The thresholded graphs (Fig. 8(c),(d))
show the significant features in the original graphs (Fig. 8(a),(b)), which are

e most packet pairs have the minimal delay (spikes are at locates of
minimal delay), and

e the minimum delay within a packet pair increases linearly as the size
of first packet in the pair increases.

15

Z: Count
- »

B Z: Count N
6. 8 8 B8 B 8 8

"
. o o .
Y: Delay (usec) X: Packet size (byte) Y: Delay (usec) X: Packet size (byte)

(a)Full Trace (b)FastCARS(10,11) 1-Step Histogram

Z: Count

§ 88888 ¢

go

Y: Delay (usec) o X: Packet size (byte) Y: Delay (usec) e X: Packet size (byte)

(c)Cleanup of (a) (d)Cleanup of (b)

Figure 8: Correlation of Packet Size and Delay: 1-step packet-size/delay graph
(AIX trace) (a) data is from every 1l-step packet pair in the full trace; (b)
data is from the 1-step samples of FastCARS(10,11). (c),(d) is obtained
from (a),(b) by dropping points that have count (frequency) less than 500,
10, respectively; The dark solid lines in the graphs are the (approzimated)
link capacity lines, defined by two points (x,y,z)=(40,1,0) and (1500,20,0).

The 1-step packet-size/delay graph reveals how packet size is distributed.
In Fig. 8 we found that the big spikes (counts) are at packet sizes 40, 576,
and 1500 bytes. This set of popular packet sizes coincides with the well-
known popular packet sizes in the Internet traffic: 40 bytes (TCP/IP header
size), 576 bytes (maximum segment size of TCP/IP packet) and 1500 bytes
(maximum Ethernet packet size).

The delay between back-to-back packets could be due to the time the

16

second packet sitting in the queue waiting the first packet to complete its
transmissiorr. The bigger the size of the first packet is, the longer delay
before the second packet can arrive is. On the other hand, the delay could
also simply because that the second packet arrives late.

Definition 11 Let Tyeiqy(p1, p2) be the delay between two back-to-back pack-
ets p1 and py of sizes k1 and xo bytes, respect_ively. Then

Taetay(P1, P2) = Tiransmit(21) + Tige (1, P2), (1)

where Tiransmit(Z1) 15 the time to transmit the entire packet p; (z, bytes) in
the link, and Tiq(p1, p2) is the time that the link is idle, i.e., the time interval
from the time p; completes its transmission until py arrives.

If the link is busy, the packets arrivals are not sparse and T;ge(p1,p2) is
small or zero. The delay between back-to-back packets are bounded from
below by Tiransmit(p1). In a I-step packet-size/delay graph, we define the
line connecting the points of smallest delay (Tiransmit) at each packet size be
the “link capacity line”. Often, we can model T;,4nsmit(21) as

71transmit(ml) = %a (2)
where B is the (fixed) bandwidth of the link. As suggested by the model,
we expect the link capacity line to be linear. However, because of the mea-
surement noise, the measured link capacity line is not a straight line. We
approximate the measured link capacity line by a straight line as follows:

Definition 12 ((Approzimated) Link capacity line) If the network
trace is collected from a busy link, we approximate the link capacity line
as the line connecting the two points, each corresponds to the most frequent
(packet size, delay) pairs at packet size 40 and 1500, respectively. Specifically,
the two points defining the approzimated link capacity line are (40, t1, 0) and
(1500, t3, 0), where t; = argminSD,(40,t) and t; = argminSD,(1500,1).

t t

In Fig. 8, the dark solid lines in the graphs are the approximated link
capacity line of the AIX trace. The two points which define the approximated
link capacity line are (x,y,z)=(40,1,0) and (1500,20,0). In the following, we
will use “link capacity line” to refer to the “approximated link capacity line”.

17

We can estimate the link capacity (bandwidth) by (the inverse of) the
slope of the link capacity line (Equation 2). For the AIX trace, the estimated
link bandwidth is (1(520(?__30) x 8 = 614.737TMbps. Comparing to the actual
bandwidth (622.080Mbps, bandwidth of a OC12c link), we found that the
link capacity line gives a reasonable estimate of the link speed.

The 1-step packet-size/delay graph also shows the packets queue up at
the router upstream to the measured link. This is shown by the fact that
big spikes (counts) are located at the link capacity line, which by definition
indicates the Ty, = 0, i.e., the link is not idle. The zero link idle time
suggests that the packets queue up in the upstream router and keep the
link busy. We conclude this as an evidence that the traffic is bursty that
packets arrive closely in time, and are queued up at the upstream router.
However, although most of the packets are transmitted at full speed (inside
the traffic bursts), there are packets which have longer delays (T;g > 0,
points not on the link capacity line). These information shown by the -step
packet-size/delay graph is useful for applications such as capacity planning.

In summary, samples given by FastCARS retain information of the full
trace, therefore, data mining tools can be built on top the information pro-
vided by FastCARS without losing important features of the traffic. One
advantage of building tools on top of the samples is that it is “lighter” and is
easier to manipulate than the full trace. Particularly, the network data min-
ing tool 1-step packet-size/delay graph , built on top of the 1-step samples
of FastCARS, supports the following observations:

Observation 1 The most popular packet sizes in the traffic are 40 bytes
(TCP/IP header size), 576 bytes (mazimum segment size of TCP/IP packet)
and 1500 bytes (mazimum Ethernet packet size).

Observation 2 The (approzimated) link capacity line determined by the 1-
step packet-size/delay graph gives good estimate of the unknown link band-
width.

Observation 3 The network traffic is bursty. In the 1-step packet-size/delay
graph , there are big spikes at the link capacity line which indicates many
packets are transmitted at link speed. Bursty traffic is an explanation for this
observation that, within traffic bursts, most packets queue up in the upstream
router and are transmitted at the link speed.

18

5.2 Observing Traffic Flow Patterns: n-step flow graph

For traffic engineering applications, understanding the traffic patterns be-
tween communicating end points are important. This understanding could
be obtained via observing traffic properties such as “which end point pair has
intensive traffic?”, “which pair consumes a lot of bandwidth?”, “are there hot
spots (end points) in the network?”, and “do packet trains exist in the traf-
fic?”. A tool which reveals these kinds of information is useful for capacity
planning and anomaly detection.

In this section, we propose a new tool, n-step flow graph, for network
data mining, which highlights big flows and the existence of packet trains.
Built on top of the reliable information provided by FastCARS sampling, an
n-step flow graph reveals interesting traffic flow patterns which are hidden
in the overwhelmingly large amount of trace data and can not be seen if no
sampling is done.

We start by defining a couple of terms that will facilitate our following
discussions.

Definition 13 (Flow) A flow in the traffic is formed by the packets having
the same source and destination IP addresses and port numbers. In other
words, a flow f is identified by a tuple (sa, sp, da, dp), where sa (sp) is the
source address (port number) and da (dp) is the destmatzon address (port
number) of the constituent packets of f.

Definition 14 (Flow identifier) The flow identifier of a flow f is defined
as

ID(f) = nsa(sa) * 10 + Nsp(SP) * 1010 + nda(da) * 10° + ndp(dp), (3)

where N (.) s a serialization function which map a source address (sa) to
an integer (nsy(.), naa(.) and ngy(.) are similar, but for source port number
(sp) and destination address and port number (da, dp), respectively).

Definition 15 (n-step flow graph) Let (p1, p2) be a pair of packets which
are n steps away (p1 comes before p;). Let f and f be the flows to which p
and py belong, respectively. The n-step flow graph is a scatter plot of ID(f2)
(y-azis) versus ID(f1) (z-azis), for all pairs of sample packets (p., p2) which
are n-step apart.

19

In our implementation, each of the functions ng(.), nsp(.), Maa(.), and
nap(.) is implemented as a lookup table. Take ny(.) as an example and let
T, be the lookup table corresponds to ns,(.). We start with an empty 73 and
add items into 7T} as we continuously examine newly arrived packets (with
or without sampling). Specifically, if source address sa of the new packet
p is not in T yet, it is append to T}, and n(sa) is assigned to point to
this newly appended item in 7;. Note that in our implementation, the flow
identifier roughly captures the popularity and the temporal order among the
flows. Because of this first-in-first-assign property, the most popular value of,
say source address sa, which will be sampled earlier than other less popular
source addresses, will be assigned small values (n4(.)). Flows appears early
in time are also likely to have small flow identifiers.

o
o fe T '

(a) 1-step (b) 2-step (c) 3-step

Figure 9: n-step flow graph (AIX trace, 5-sec long, no sampling) Here we
shown the n-step flow graphs at (a) n=1, (b) n=2, and (c) n=3. Only a 5-
second long portion of the full trace is used, due to the difficulty of handling
longer trace without sampling. The horizontal and vertical patterns in (b)
are due to big flows. The diagonal patterns at the three graphs suggests the
existence of packet trains in the trace.

Fig. 9 shows the 1-step, 2-step and &-step flow graph using information
from a 5-second period of the full AIX trace (without sampling, about 211K
packets). We note that, without sampling, it is difficult to examine a long
period of a full trace from a busy link. Because of the large amount of flows
a trace contains, computation resources are strained and data visualization
becomes difficult before we can go far in time.

In Fig. 9, we observe that there are (1) activities concentrated toward
bottom-left of the graphs, which correspond to traffic of from/to the hot
spots, (2) pairs of the horizontal and vertical lines (symmetric along the 45°

20

line), which capture the existence of big flow, and (3) the diagonal pattern
along the 45° line, which suggests the existence of packet trains.

Observation 4 (Hot spots) The activities in the n-step flow graph tend
to be concentrated at the bottom-left part. The is due to the way we assign
the flow identifiers, where flows sending out from popular source addresses
have small flow identifiers. These source addresses are the hot spots in the
network, i.e., they contribute more traffic than other end points.

Observation 5 (Big flows) A pair of horizontal and vertical lines, sym-
metric along the 45° line, in the n-step flow graph indicates a big flow. The
vertical line is formed by packet pairs with the first packet belonging to the big
flow, while the second one belongs to any of the other flows. Reverse situa-
tion for the two packets in a pair causes the horizontal line. As shown, most
of these pairs of lines are closed to the z-azis and y-axis and are associated
with the hot spots. Big flows might also show up late in the trace, as shown
in Fig. 9(b) (flow identifier around 4 x 10'9).

Observation 6 (Packet trains) The diagonal pattern along the 45° line
in the n-step flow graph suggests the existence of packet trains. The points
on the 45° line correspond to pairs of packets belonging to the same flow
" (same flow identifier). In Fig. 9, we observe that the 45° pattern remains in
the graph even when step n is increased from 1 to 3. We conclude with the
following observations:

e The pattern spans the full range along the 45° line, suggesting that the
packet trains are quite common among pairs of end points.

e The pattern does not fade away as step n increases from 1 to 3, which
suggests the packet trains are longer than 3.

Because of the difficulty of processing the full trace, we need a sampling
technique that can provide the same accuracy as we get to analyzing full
trace. Information from sampling should still be able to expose hidden,
interesting patterns. Fortunately, our FastCARS has this desirable property.
Therefore, instead of working on full trace data, we can obtain the same
results by working on data sampled by FastCARS.

Fig. 10 shows the n-step flow graph constructed using the information
provided by FastCARS(10,11) on three different traces (AIX, COS and IND).

21

Figure 10: n-step flow graph (Trace AIX, COS and IND) Flow information is
provided by FastCARS(10,11). Columns are graphs of different steps (1-, 2-,
3-step). Rows are results on different traces. Note the interesting pattern
revealed by FastCARS, which is shown at the top-left corner of (b).

With FastCARS, we now can inspect a bigger portion (30 seconds long)
of the trace. The resulting graphs are similar to those obtained using full
trace information, where important features such as hot spots, big flows, and
packet trains are preserved.

In addition, being able to examine longer trace gives more chances on
discovering interesting patterns that are originally hidden in the full trace.
An example of this is the linear pattern shown at the top-left corner of Fig.

22

10(b). This pattern suggests a correlation between certain consecutive flows,
whose source addresses are the same or similar, and the destination addresses
increases from a flow to another. This leads to one potential explanation of
this pattern as a port scanning activity. However, the real causes of this
pattern are not clear and need further inspection.

Observation 7 (FastCARS preserves flow information) The infor-
mation provided by FastCARS preserves the characteristics of traffic flows.
With sampling, a longer trace can be examined to get a more global view of
the patterns of traffic flows. Especially, previously hidden patterns may now
be discovered.

6 Conclusions

In this paper, we present FastCARS, a fast, correlation-aware sampling method
for network data mining, which is (1) accurate in providing traffic statis-
tics, (2) simple and scalable for implementation, (3) correlation-aware
in the sense that it easily captures information about n-step histograms and,
therefore, reveals short and long term correlations among packet arrivals, (4)
non-bursty since it evenly spreads the sampling efforts over time, and (5)
general since it includes other deterministic sampling methods as special
cases.

Using the information obtained from FastCARS, we also provide several
new tools for network data mining, namely, the n-step histograms (Section
2, definition 1), the convolution test (Section 4.2, definition 8), the n-step
packet-size/delay graph (Section 5.1, definition 10), and the n-step flow
graph (Section 5.2, definition 15).

In addition, FastCARS and our tools enable the following observations
on real-world traffic traces:

1. The n-step histogram preserves traffic characteristics and accurately
estimates the interarrival time distribution (Section 4.1).

2. Convolution test shows the assumption of independent arrivals is not
correct (Section 4.2).

3. Packet trains exist in real-world traffic (Section 5.2) and may contribute
to the correlation among packet arrivals.

23

4. Packet trains are not the sole cause of the failure of the independence
hypothesis of packet arrival (Section 4.3).

5. The n-step packet-size/delay graph outlines how packet sizes are dis-
tributed and how the burstiness of the traffic affects the link load, which
leads to a good estimation of the link bandwidth.

6. The n-step flow graph enables a high-level view of network traffic and
highlights hot spots, big flows and the packet trains.

FastCARS can also be used in other areas that demand accurate, efficient,

and correlation-aware sampling techniques. For example, FastCARS could
be used to compare synthetic traces from traffic generators to real-world
data. This would ensure that the traffic generators create traces that have
the appropriate temporal correlations as well as the normally tested long-
term aggregate distributions.

References

1]

2]

[5]

John M. Chambers, W. S. Cleveland, B. Kleiner, and P. Tukey. Graphical
Methods for Data Analysis. Wadsworth and Brooks/Cole, 1983.

Kimberly C. Clafty, George C. Polyzos, and Hans-Werner Braun. Ap-
plication of sampling methodologies to network traffic characterization.
Proceedings of SIGCOMM 93, pages 194-203, 1993.

Kedar Dhandhere, Hyang-Ah Kim, and Jia-Yu Pan. The application
and effect of sampling methods on collecting network traffic statistics.
http://www.cs.cmu.edu/~jypan/writing/network_sampling.ps.gz, unpublished, May 2001.

Cisco Systems Inc. Netflow services solutions guide.
http://www.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/netflsol /nfwhite.htm, August

2001.

Juniper Networks Inc. Junos 5.0 internet software config-
uration guide: Configure traffic sampling and forwarding.
http://www.juniper.net/techpubs/software/junos50 /swconfig50-interfaces/html/sampling-
config.ntml, August 2001.

24

[6] R. Jain and S. Routhier. Packet trains - measurements and a new model
for computer network traffic. IEEE Journal of Selected Areas in Com-
munications, SAC-4(6):986-995, September 1986.

[7] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the
self-similar nature of ethernet traffic. JEEE/ACM Transactions on Net-
working, 2(1):1-15, February 1995.

[8] Vern Paxson. Measurements and Analysis of End-to-End Internet Dy-
namics. PhD thesis, UC Berkeley, April 1997.

[9) W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-
merical Recipes in C, Second Edition. Cambridge University Press, 1992.

25

