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Abstract

Self-securing storage prevents intruders from undetectably tampering with or permanently deleting stored
data. To accomplish this, self-securing storage devices internally audit all requests and keep all versions of
all data for a window of time, regardless of the commands received from potentially compromised host oper-
ating systems. Within the window, system administrators are guaranteed to have this valuable information
for intrusion diagnosis and recovery. The S4 implementation combines log-structuring with novel metadata
journaling and data replication techniques to minimize the performance costs of comprehensive versioning.
Experiments show that self-securing storage devices can deliver performance that is comparable with conven-
tional storage. Further, analyses indicate that several weeks worth of all versions can reasonably be kept on
state-of-the-art disks, especially when differencing and compression technologies are employed.
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1 Introduction

Despite the best efforts of system designers and implementors, it has proven difficult to

prevent computer security breaches. This fact is of growing importance as organizations

find themselves increasingly dependent on wide-area networking (providing more potential

sources of intrusions) and computer-maintained information (raising the significance of po-

tential damage). A successful intruder can obtain the rights and identity of a legitimate

user or administrator. With these rights, it is possible to disrupt the system by accessing,

modifying, or destroying critical data.

Even after an intrusion has been detected and terminated, system administrators face

two difficult tasks: determining the damage caused by the intrusion and restoring the system

to a safe state. Damage includes compromised secrets, creation of back doors and Trojan

horses, and tainting of stored data. Detecting each of these is made difficult by crafty

intruders who understand how to scrub audit logs and disrupt automated tamper detection

systems. System restoration involves identifying a clean back-up (i.e., one created prior to

the intrusion), reinitializing the system, and restoring information from the back-up. Such

restoration often requires a significant amount of time, reduces the availability of the original

system, and frequently causes loss of data created between the safe back-up and the intrusion.

Self-securing storage offers a partial solution to these problems by preventing intruders

from undetectably tampering with or permanently deleting stored data. Since intruders can

take the identity of real users and even the host OS, any resource controlled by the oper-

ating system is vulnerable, including the raw storage. Rather than acting as slaves to host

operating systems, self-securing storage devices view them, and their users, as questionable

entities for which they work. These self-contained, self-controlling devices internally version

all data and audit all requests for a guaranteed amount of time (e.g., a week), thus providing

system administrators time to detect and recover from intrusions. The critical difference

between self-securing storage and host-controlled versioning (e.g. Elephant [29]) is that in-

truders can no longer bypass the versioning software by compromising a complex OS or its

poorly-protected user accounts. Instead, intruders must compromise single-purpose devices

that export only a simple storage interface, and in some configurations, they may have to



compromise both.

This paper describes self-securing storage and our implementation of a self-securing

storage system, called S4. A number of challenges arise when storage devices distrust their

clients. Most importantly, it may be difficult to keep all versions of all data for an extended

period of time, and it is not acceptable to trust the client to specify what is important to

keep. Fortunately, disk capacities increase faster than most computer characteristics (100%+

per annum in recent years). Analysis of recent workload studies suggests that it is possible

to version all data on modern 30-100GB drives for far longer than a week [29, 35]. Further,

aggressive compression and cross-version differencing techniques extend the intrusion detec-

tion window offered by self-securing storage devices. Other challenges include maintaining

on-disk locality when blocks cannot be overwritten, achieving secure administrative control,

and dealing with denial-of-service attacks.

The S4 system addresses these challenges with a new storage management structure. The

storage management system uses a log-structured object system for data versions, a novel

journal-based structure for metadata versions, and an opportunistic on-disk anti-entropy

cache for restoring sequentiality to version-scrambled objects. In addition to reducing space

utilization, the metadata journaling simplifies background compaction and reorganization for

blocks shared across many versions. Experiments with S4 show that the security and data

survivability benefits of self-securing storage can be realized with reasonable performance.

Specifically, the performance of network-attached S4/NFS is comparable to FreeBSD's NFS

for both microbenchmarks and application benchmarks.

The remainder of this paper is organized as follows. Section 2 discusses intrusion sur-

vival and recovery difficulties in greater detail. Section 3 describes how self-securing storage

addresses these issues, presents some challenges inherent to self-securing storage, and dis-

cusses design solutions for addressing them. Section 4 describes the implementation of S4.

Section 5 evaluates the S4 implementation. Section 6 discusses a number of open issues

related to self-securing storage. Section 7 discusses related work. Section 8 summarizes this

paper's contributions.



2 Intrusion Diagnosis and Recovery

Upon gaining access to a system, an intruder has several avenues of mischief. Most intruders

attempt to destroy evidence of their presence by erasing or modifying system log files. Many

intruders also install back doors in the system, allowing them to gain entry at will in the

future. They may also install other software, read and modify sensitive files, or use the system

as a platform to launch additional attacks. Depending on the skill with which the intruder

hides his presence, there will be some detection latency before the intrusion is discovered

by an automated intrusion detection system (IDS) or by a suspicious user or administrator.

During this time, the intruder can continue his malicious activities while users continue to use

the system, thus entangling legitimate changes with those of the intruder. Once an intrusion

has been detected and discontinued, the system administrator is left with two difficult tasks:

diagnosis and recovery.

Diagnosis is challenging because intruders can usually compromise the "superuser" ac-

count on most operating systems, giving them full control over all resources. In particular,

this gives them the ability to manipulate everything stored on the system's disks, includ-

ing audit logs, file modification times, and tamper detection utilities. Recovery is difficult

both because diagnosis is difficult and because user-convenience is an important issue. This

section discusses intrusion diagnosis and recovery in greater detail, and the next section

describes how self-securing storage addresses these issues.

2.1 Diagnosis

Intrusion diagnosis consists of three phases: detecting the intrusion, discovering the weak-

nesses that were exploited (for future prevention), and determining what the intruder has

done. All are difficult when the intruder has free reign over storage and the OS.

Without the ability to protect storage from compromised operating systems, intrusion

detection may be limited to attentive users and system administrators noticing odd behavior.

Examining the system logs is the most common approach to intrusion detection [6], but

when intruders can manipulate the log files, such an approach is not useful. Some intrusion

detection systems also look for changes to important system files [17]. These systems are



vulnerable to intruders who can change what the IDS thinks is a "safe" copy.

Determining how the intruder compromised the system is often impossible in conven-

tional systems, because he will scrub the system logs. In addition, any tools that may have

been stored on the target machine for use in multi-stage intrusions may have been deleted.

The common "solutions" are to try to catch the intruder in the act or to hope that he forgot

to delete his exploit tools.

The last step of diagnosing an intrusion is to discover what was accessed and modified

by the intruder. This is extremely difficult, because file access and modification times can

be changed, and system log files can be doctored. In addition, checksum databases are of

limited use, since they are effective only for static files, thus providing no protection for user

data.

2.2 Recovery

Because it is usually not possible to diagnose an intruder's activities, full system recovery

generally requires that the compromised machine be wiped clean and reinstalled from scratch.

Prior to erasing the entire state of the system, users may insist that critical data be saved.

Critical data is any data that has changed since the last backup and requires significant

effort to recreate. The more effort that went into creating the changes, the more motivation

there is to keep this data. Unfortunately, as the size and complexity of the data grows, the

likelihood that tampering will go unnoticed increases. Foolproof assessment of the data is

very difficult, and overlooked modifications may hide tainted information or a back door

inserted by the intruder.

Upon restoring the OS and any applications on the system, the administrator must

identify a backup that was made prior to the intrusion; the most recent backup may not

be usable. After restoring data from a verified backup, the critical data can be restored to

the system, and users may resume using the system. This process often takes a considerable

amount of time—time during which users are denied service.



3 Self-Securing Storage

Self-securing storage ensures information survival and auditing of all accesses by establishing

a security perimeter around the storage device. Conventional storage devices are slaves to the

host operating system, relying on it for protection of the users' data. A self-securing storage

device operates as an independent entity, tasked with the responsibility to not only store

data, but to protect it as well. This shift of storage security functionality into the storage

device's firmware allows data and audit information to be safeguarded in the presence of file

server and client system intrusions. Even if the OSes of these systems are compromised and

an intruder is able to issue commands directly to the self-securing storage device, the new

security perimeter remains intact.

Behind the security perimeter, the storage device ensures data survival by keeping all

versions of data. This history pool of old data versions, combined with the audit log of

accesses, can be used to diagnose and recover from intrusions. This section discusses the

benefits of self-securing storage and several core design issues that arise in realizing it.

3.1 Enabling intrusion survival

Self-securing storage assists in intrusion recovery by allowing the administrator to view audit

information and quickly restore modified or deleted files. The audit logs of data accesses

help to diagnose intrusions and detect the propagation of any maliciously modified data.

Self-securing storage maintains old versions of data objects. This simplifies diagnosis

of an intrusion since system logs and programs cannot be imperceptibly altered. Because

of this, self securing storage makes conventional tamper detection systems obsolete. In

addition, since the drive maintains these old versions, they can quickly be restored to their

pre-intrusion state.

Since the administrator has the complete picture of the system's state, from intrusion

until discovery, it is considerably easier to establish the method used to gain entry. For

instance, the system logs would have normally been erased, but by examining the versioned

copies of the logs, the administrator can see any messages that were generated during the

intrusion and later removed. In addition, any exploit tools temporarily stored on the system



may be recovered.

Previous versions of system files, from before the intrusion, can be quickly and easily

restored by resurrecting them from the history pool. This prevents the need for a complete

re-installation of the operating system, and it does not rely on having a recent, off-line

backup or up-to-date checksums (for tamper detection) of system files. Additionally, by

utilizing the storage device's audit log, it is possible to assess which data might have been

directly affected by the intruder. Further, there is no need to pre-back-up "critical files"

before the restore, since files can be selectively pulled forward by the user and/or backed up

after restoration.

The data protection provided by self-securing storage allows easy detection of modifica-

tions, selective recovery of tampered files, prevention of data loss due to out-of-date backups,

and speedy recovery, since data need not be loaded from an off-line archive.

3.2 Device security perimeter

The device's security model is what makes the ability to keep old versions more than just

a user convenience. The security perimeter consists of self-contained software that supports

only a simple storage interface to the outside world and verifies each command's integrity

before processing it. In contrast, most file servers and client machines run a multitude of

services that are susceptible to attack. Since the self-securing storage device is a single-

function embedded device, the task of making it secure is much easier; compromising its

firmware is analogous to breaking into an IDE or SCSI disk.

For network-attached devices (as compared to devices attached directly to a single host

system), the internally managed audit log becomes more useful if the device can verify each

request as coming from both a valid user and a valid client. This can allow the device to

enforce access control decisions and partially track propagation of tainted data. If clients

must be authenticated, requests can be tracked to a single client machine, and the device's

audit log can yield the scope of direct damage from the intrusion of a given machine. By

making sure any given request is bound to a {client, user} pair, a self-securing storage device

can assure the following:



• For an uncompromised client, requests are bound to the correct user's credentials and

not those of another user on that machine. Any client not exhibiting this behavior

would be considered compromised.

• For a compromised client, accesses are bound to the correct machine's credentials, but

user information may or may not be correct.

Network-attached storage must also deal with privacy and authenticity of network traf-

fic [7, 9]. One solution would be the use of a network-level mechanism like IPSec [16], for

which hardware support is expected to minimize the performance consequences.

3.3 History pool management

The old versions of objects kept on the drive comprise the history pool. Every time an object

is modified or deleted, the version that existed just prior to the modification becomes part

of the history pool. Eventually the previous version will age and have its space reclaimed

by the drive. Because clients cannot be trusted to demarcate versions consisting of multiple

modifications, a separate version must be kept for every modification. This is in contrast to

versioning file systems that generally create new versions only when a file is closed.

A self-securing storage device guarantees a lower bound on the amount of time that a

deprecated object remains in the history pool before it is reclaimed. During this window

of time, the old version of the object can be completely restored by requesting that the

drive copy forward the old version, thus making a new version. The window of time during

which an object can be restored is called the detection window. When determining the size

of this window, the administrator must examine the tradeoff between the detection latency

provided by a large window and the extra disk space that is consumed by the proportionally

larger history pool.

While the capacity of disk drives is growing at an incredible rate, it is still finite, which

presents two problems:

1. Providing a reasonable detection window in exceptionally busy systems.

2. Dealing with malicious users that attempt to fill the history pool. (Note that space



exhaustion attacks are not unique to self-securing storage. However, device-managed

versioning makes per-user quotas ineffective for limiting them.)

In a busy system, the amount of data written could make providing a reasonable de-

tection window difficult. Fortunately, the analysis in section 5.2 suggests that multi-week

detection windows can be provided in many environments at a reasonable cost. Further,

aggressive compression and differencing of old versions can significantly extend the detection

window.

Deliberate attempts to overflow the history pool cannot be prevented by simply in-

creasing the space available, and as with most denial of service attacks, there is no perfect

solution. There are three flawed approaches to addressing this type of abuse. The first is to

have the device reclaim the space held by the oldest objects when the history pool is full.

Unfortunately, this would allow an intruder to destroy information by causing its previous

instances to be reclaimed from the overflowing history pool. The second flawed approach

is to stop versioning objects when the history pool fills; while this will allow recovery of

the old data, system administrators would no longer be able to diagnose the actions of an

intruder or differentiate them from subsequent legitimate changes. The third approach is

for the drive to deny any action that would require additional versions once the history pool

fills; this would result in denial of service to all users (legitimate or not).

Our hybrid approach to this problem is to try to prevent the history pool from being

filled by detecting probable abuses and throttling the source machine's accesses. When

successful, this allows human intervention before the system is forced to choose from the

above poor alternatives. Selectively increasing latency and/or decreasing bandwidth allows

well-behaved users to continue to utilize the system even while it is under attack. Experience

will show how well this works in practice.

Since the history pool will be used for intrusion diagnosis and recovery, not just recov-

ering from accidental destruction of data, it is difficult to construct an algorithm that would

save space in the history pool by pruning versions within the detection window. Almost any

algorithm that could be constructed to selectively remove versions has the potential to be

abused by an intruder to cover his tracks and to successfully destroy/modify information

during a break-in.
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3.4 Interface to history information

The history pool contains a wealth of information about the system's recent activity. This

makes accessing the history pool a sensitive operation, since it allows the resurrection of

deleted and overwritten objects. This is a standard problem posed by versioning file systems,

and it is exacerbated by the inability to selectively delete versions.

There are two basic approaches that can be taken toward access control for the history

pool. The first is to allow only a single administrative entity to have the power to view and

restore items from the history pool. This could be useful in situations where the old data

is considered to be highly sensitive. Having a single tightly-controlled key for accessing his-

torical data decreases the likelihood of an intruder gaining access to it. While this improves

security, it prevents users from being able to recover from their own mistakes, thus consum-

ing the administrator's time to restore users' files. The second approach is to allow users to

recover their own old objects (in addition to the administrator). This provides the conve-

nience of a user being able to recover their deleted data easily, but also allows an intruder,

who obtains valid credentials for a given user, to recover that user's old file versions. It is

important to note that permitting full deletion of objects would be perilous to the integrity

of the data, since such a mechanism could be used by intruders to destroy information.

Our compromise is to allow users to selectively decide, on a file by file basis. By choice, a

user could thus delete an object, version, or all versions from visibility by anyone other than

the administrator. Complete removal should not be permitted, since permanent deletion of

data via any other method than aging would be unsafe. This would allow users to enjoy the

benefits of versioning for presentations and source code, while preventing access to visible

versions of embarrassing images or unsent e-mail drafts.

3.5 Version-administration tools

Since self-securing storage devices store versions of raw data, users and administrators will

need assistance in parsing the history pool. Tools for traversing the history must assist by

bridging the gap between standard file interfaces and the raw object versions that are stored

on the device. By being aware of both the versioning system and formats of the data objects,

9



utilities can present interfaces similar to that of Elephant [29], with "time-enhanced" versions

of standard utilities such as Is and cp.

In addition to allowing a simple view of data objects in isolation, intrusion diagnosis

tools can utilize the audit log to provide an estimate of damage. For instance, it is possible

to see all files and directories that a client modified during the period of time that it was

compromised. Further estimates of the propagation of data written by compromised clients

are also possible, though imperfect. For example, diagnosis tools may be able to establish

a link between objects based on the fact that one was read just before another is written.

Such a link between a *. c source file and its corresponding *. o would be useful if a user

determines that a source file had been tampered with; in this situation, the object file should

also be restored or removed. Exploration of such tools will be an important area of future

work.

4 Implementation of the S4 device

S4 is a self-securing storage device, which maintains an efficient object-versioning system

transparently for its clients. It aims to perform comparably with current systems, while

providing the benefits of self-securing storage and minimizing the corresponding space ex-

plosion.

4,1 Object store

Considerable research has gone into providing a useful abstraction above the standard block-

level interface to mass storage devices. This work resulted in several proposals and prototypes

for object-based disks [8, 25]. It has also shown that the object abstraction simplifies access

control by treating an arbitrary collection of bytes as a management unit, as compared to a

standard block device. Since the S4 drive is responsible for enforcing and managing its own

access control decisions, we have chosen an object-based interface.

In S4, objects exist in a flat namespace managed by the drive. When objects are created,

they are given a unique identifier (ObjectID) by the drive which is used by the client for all

future references to that object. Each object has an access control structure to determine

10
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Figure 1: S4 Drive Overview.

which entities (users and client machines) have permission to access the object. Objects

also have metadata, file data, and an opaque attribute storage space (for use by client file

systems) associated with them.

The S4 object system is layered above two separate subsystems: the infrastructure and

the front end (see Figure 1). The infrastructure contains the drive's RPC and disk interface,

and exports all of the drive's interfaces to clients through a set of RPCs (see Table 1) layered

over the network [24, 33]. The front end acts as a communication layer between the RPC

and the object store, and enforces security.

To support persistent mount points, an S4 drive uses "named objects." The object

names are associations of arbitrary ASCII strings with particular Object IDs. The table of

named objects is implemented as a special S4 object accessed through dedicated partition

manipulation RPC calls. Since this table is implemented as an object, it is versioned in the

same manner as all objects on the S4 drive.
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RPC Type

Create

Delete

Sync

SyncO

Flush

FlushO

Truncate

Read

Write

Append

GetAttr

SetAttr

GetACLByUser

GetACLBylndex

SetACL

PCreate

PDelete

PList

PMount

Description

Create an object
Delete an object
Sync entire cache to disk
Sync object to disk
Removes all versions of all objects before a specified
time
Removes all versions of an object before a specified
time
Truncate an object
Read data from an object
Write data to an object
Append data to end of an object
Get attributes of an object
Set attributes of an object
Gets an ACL associated with a UID for an object
Gets an ACL by its index in the ACL table
Set the ACL of an object
Create a partition
Delete a partition
List partitions
Mount a partition

Table 1: S4 Remote Procedure Call List. Note that all modifications create new versions without
effecting the previous version.

4.2 On-disk data organization

The main goals for the S4 object system are to avoid performance overhead and to minimize

wasted space, while keeping all versions of all objects for a given period of time. Achieving

these goals required a combination of known and novel techniques for organizing on-disk

data.

Since data within the history pool cannot be overwritten, the object system uses a log

structure similar to LFS [28]. This structure allows multiple data and metadata updates

to be clustered into fewer, larger writes and obviates any need to move previous versions

before writing. With additional metadata, the old versions can be retrieved. To do this

efficiently, we use a variation of journaling to track object changes. Marking changes with

12



journal entries saves space and simplifies the process of recreating old object versions. A

segment cleaner, similar to LFS's cleaner, removes expired versions from the history pool.

Several studies have examined log-structured file systems' performance problems and

ways to alleviate them [21, 30]. One of the bigger problems is the loss of data locality for

frequently changing files. We have created a new data structure called an anti-entropy cache

to help solve this problem. An anti-entropy cache opportunistically keeps an additional

read-optimized copy of the object on the disk. If the drive is low on space, this copy can be

reclaimed to allow for further log growth.

4.2.1 Object structure

An S4 disk object consists of two basic parts, an onode and an ACL table. The onode holds

standard inode metadata along with an opaque space for file system specific attributes. S4-

specific metadata includes the size, create and modification times, and the direct and indirect

block pointers. The additional attribute space makes it possible to implement a variety of

file systems on top of S4's object interface. An onode has 30 direct block pointers and one

single, one double, and one triple indirect block pointer which provides a maximum object

size of just over 32GB.

The ACL table holds the access control list for the object. The table contains 64 {user,

access rights} pairs, which can be expanded to a special ACL object if the table grows beyond

this limit. Pairing the onode and ACL table together on the disk allows for efficient ACL

access in the average case, without eliminating the possibility of large access control lists.

4.2.2 Overall disk layout

The S4 Object system divides the disk into fixed size log segments. LFS used a segment size

of 1MB, but based on recent research results [21], we chose a segment size of 64KB. We group

these segments into 4GB allocation groups, which contain a summary segment marking each

4GB boundary (see Figure 2). This summary segment contains a copy of the superblock,

the free segment bitmap for that allocation group, and indirect blocks used for an object

map, similar to LFS's inode map. S4 uses the object map to track the location of the most

current copy of an object's metadata within the log, and potentially, its anti-entropy cache.
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Figure 2: Disk layout overview. Shows the allocation group summary segment and the object map.

This flexible structure gives us the ability to have a large number of objects in the system

without having to pre-allocate space for them.

S4 does all of its log writes to data segments (see Figure 3). Each data segment has

one block for summary information and 31 blocks available for journal entries and data.

The summary block keeps track of the layout and allocation of space within the segment.

Specifically, it has a free count and bitmap to track available space, and a mapping of objects

to their metadata within the segment.

4.2.3 Journal-based metadata versioning

S4 stores the history of metadata changes in a journal. Because clients are not trusted

to notify S4 when objects are closed, every update requires a new version and thus a new

onode. Further, when data pointed to by indirect blocks are modified, the indirect blocks

14



must be versioned as well. For triple-indirect blocks, a single-block update could require 4

new blocks and a new onode. Early experiments with such a conventional versioning system

showed that writing a large file could cause up to a 4x growth in disk usage. Conventional

versioning file systems avoid this performance problem by only creating new versions when

a file is closed.

S4's journal-based approach significantly reduces these problems. By persistently keep-

ing journal entries of all metadata changes, metadata writes can be safely delayed, since

onodes and indirect blocks can be recreated in the event of a failure. To avoid rebuilding an

object's current state from the journal during normal operation, an object's onode and ACL

table are committed to the log before the object is evicted from the cache. For the same

reasons, indirect block writes can also be delayed until this time, since the journal entries

contain sufficient data to recreate them.

S4 uses six kinds of journal entries: a t t r i bu t e , ACL, delete, t runcate, write, and

checkpoint. Each of these entries represent a specific metadata change with the exception

of checkpoint. Checkpointing denotes writing a consistent copy of the onode, ACL table,

and indirect blocks of an object into the log. Also, all entries can serve to either undo or redo

the specified operation. The undo operation is necessary to allow in-time access of objects,

while the redo is helpful for the cleaner, allowing it to efficiently roll changes forward as it

deletes expired versions.

Storing an object's changes within the log is done using journal sectors. Each journal

sector contains the packed journal entries that refer to a single object's changes made within

that data segment (see Figure 4). The sectors are tracked within a data segment using the

metadata mapping found in the summary information. Journal sectors are chained together

backward in time to allow for version reconstruction.

Journal entries also allow efficient differencing between versions. Since the exact changes

between writes are noted within the entry, it is easy to find the blocks that should be

compared. Once the differencing is complete, the old blocks can be discarded, and the

difference left in its place. For subsequent reads of old versions, the data for each block must

be recreated as the entries are traversed. Still, cross-version differencing of old data will

often be effective in reducing the amount of space used by old versions [2].
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4.2.4 Anti-entropy cache

The anti-entropy cache keeps a sequential copy of an object's direct blocks (up to 60KB)

along with the object's onode and ACL table in a special segment. When a read request

is made, the entire anti-entropy cache can be read, retrieving the object's metadata along

with the stored data in one, quick operation. Because of their limited size, they currently

have little effect on large files, but smaller, rapidly changing files can have improved read

performance over other log-structured file systems.

The anti-entropy caches are organized into anti-entropy segments. As shown in Figure 5,

an anti-entropy segment can contain multiple anti-entropy caches. When a cache grows

beyond the available space within its segment it must be moved into a new segment. Since

anti-entropy caches are simply a read optimization, they can be freed easily if disk space

is immediately needed. Also, since they are created in the background, they have little

performance penalty for other operations.
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Figure 4: Journal sector. Contains packed journal entries.

Figure 5: Anti-entropy segment. Holds the anti-entropy caches for various objects.

4.2.5 Cleaning

Like any log-structured file system, the S4 object system must use a cleaner to recover disk

space. Unlike others, S4 can only reclaim sufficiently old versions. The cleaner runs during

idle time, when specifically requested by an administrator, or when the system becomes low

on disk space.

To reclaim disk space, the cleaner searches through the object map, looking for objects

with an oldest time greater than the detection window. Once it finds an object, the cleaner

searches back through the object's journal entries for resources to free. When it finds a part of
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the object that is no longer within the history pool's window, it frees that space permanently.

Then it takes note of other objects with data in that segment. Since all data in that segment

was written within a small time period, the potential for possible cleaning is much higher

on those objects. Concentrating the cleaner's efforts on specific groups of objects helps to

increase the locality of the space freed and the likelihood of fully cleaning a segment. This is

very important in a system such as S4, since old data cannot be moved without updating all

of the associated metadata. Also, like LFS's cleaner, S4 suffers significant cleaning overhead

when the drive gets too full.

4.3 S4 client module

Since the focus of self-securing storage is to provide an enhanced level of convenience and

security on existing systems, we want to minimize changes to client systems. In keeping with

this philosophy, the S4 drive is network-attached and an S4 client application serves as a

user-level file system translator to avoid changes to the OS of client machines. The client

translates requests from a file system on the target OS to S4 specific requests for objects.

By running as a user-level process, without operating system modifications, the S4 client

should port to different systems more easily.

The S4 client module currently has the capability to translate NFS version 2 requests to

S4 requests. The S4 client appears to the local workstation as a NFS server. This simulated

NFS server is mounted via the loopback interface to allow only that workstation access to

the S4 client. The client receives the NFS requests and translates them into operations on

S4 objects.

The implementation of the NFS file system on top of the S4 object store uses two types

of objects: directory and file. Directory objects contain a list of ASCII filenames and their

associated NFS file handles. File objects contain raw file data (or a symlink path). The NFS

attributes structure is maintained within the opaque attribute space of each object.

When the S4 client receives an NFS request, the NFS file handle is directly hashed into

the Object ID of the directory or file. The S4 client can then make requests directly to the

drive for the desired data.

In order to support the NFSv2 semantics, at the end of each NFS operation that modifies
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the state of one or more objects, the client sends an additional RPC to the drive to flush

buffered writes to the disk. Since this RPC does not return until the synchronization is

complete, NFSv2 semantics are supported even though the drive normally buffers writes.

Because the client must overlay a file system on top of the flat object namespace, some

operations require several drive operations (and hence several RPC calls) to implement a

single NFS operation. These multiple operations are analogous to the multiple operations

file systems must perform on block-based devices. To minimize the number of RPC calls

necessary, the client aggressively maintains an attribute and a directory cache. The drive also

supports combining the SetAttr, GetAttr, and SyncO operations with the Create, Read,

Write, and Append operations.

5 Evaluation

This section evaluates the feasibility of self-securing storage, finding that it is possible for

storage devices to assist with intrusion survival. Experiments with S4 indicate that device-

controlled versioning can be done without significant performance reduction. Also, estimates

of capacity growth based on reported workload characterizations indicate that history win-

dows of a week or more can easily be supported in several real environments. It is important

to note that although the prototype has been implemented on a Linux system, the drive

should be viewed as a single-purpose embedded device.

5.1 Performance

Our main performance goal for S4 is to be comparable to other networked file systems. To

explore this, we ran a number of micro and macro-benchmarks against a S4 drive mounted

through the client NFS module. We compared these results to the FreeBSD 4.0 NFSv2

server. (Since the S4 drive runs on Linux, we would have preferred to to compare S4 against

the Linux NFS server. However, Linux NFS does not comply with the NFSv2 semantics of

committing data to stable storage before operation completion.)
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Figure 6: S4 Client-Drive Configuration.

5.1.1 Experimental setup

All experiments were run on three configurations: (1) a S4 drive running on RedHat 6.2

Linux communicating to a Linux client over S4 RPC through the S4 client module mounted

via loopback (see Figure 6), (2) a BSD server communicating with a Linux client over UDP

NFS, and (3) a BSD server communicating with a BSD client over TCP NFS (the BSD

client is used because performance is much worse for a Linux client). In all cases, NFS

was configured to use 4KB read/write transfer sizes, which is the only option supported

by Linux. Read-ahead was disabled for TCP NFS and is not currently supported by the

S4 client. Both BSD NFS configurations export a BSD FFS file system. All experiments

were run a minimum of 5 times and have a standard deviation of less than 3% of the mean

(unless reported otherwise). The S4 drives were configured with a 128MB buffer cache and

an object cache capable of storing 8192 objects. These numbers were chosen given that the

NFS servers' caches could grow to fill local memory (512MB). S4 was also configured with

the anti-entropy cache and cleaner disabled.

In all experiments, the client system has a 550 MHz Pentium III, 128MB RAM, and

a 3Com 3C905B 100Mb network adapter. The servers (or S4 drives) have of a 600 MHz

Pentium III, 512MB RAM, a 9GB 10,000 RPM Ultra2 SCSI Seagate Cheetah drive, an

Adaptec AIC-7896/7 Ultra2 SCSI controller, and an Intel Etherexpress ProlOO 100Mb net-
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work adapter. The client and server are on the same subnet and are connected by a 100Mb

network switch. All versions of Linux used an unmodified 2.2.14 kernel, and all BSD systems

used a stock FreeBSD 4.0 installation.

5.1.2 Micro-benchmark results

To measure the performance of read, write, create, delete we ran benchmarks similar to

those used by Rosenblum and Ousterhout to evaluate LFS [28]. In addition to creates,

deletes, reads, and writes, these benchmarks also heavily test attribute and access control

list operations, because NFS relies upon them heavily. The first benchmark measures small

file performance; it consists of three phases: creation of 10,000 1KB files (split across 10

directories), reads of the newly created files in creation order, and deletion of the files in

creation order. The second benchmark measures large file performance; it consists of four

phases: sequential write, sequential read, random write, and random read. This benchmark

either reads or writes a 100MB file in 4KB blocks. For each of these benchmarks, the cache

was flushed between each phase.

Figure 7 shows the results of the small file benchmark. Overall, S4/NFS performance is

similar to BSD/NFS. S4 performs slightly better on creates and deletes, due to a decreased

number of disk I/Os. Since S4 is log-structured, only one disk write is needed to create

the file and add the directory entry; FFS needs at least two. (Recall that delayed writes

cannot be used without NVRAM, because NFS semantics require immediate persistence.)

Reads are slower than the BSD UDP and TCP configurations, due to an artifact of S4 client

directory management.

Figure 8 shows the results of the large file benchmark. Again, S4/NFS performance is

similar to BSD/NFS. S4 performs somewhat better in all cases except for the read sequential

case. Random and sequential writes are better due to the log structure of the drive. Random

reads are significantly better due to S4 reading in entire segments at a time (64KB), and due

to the fact that the entire file can fit in the cache (as it can in the case of NFS). (Sequential

writes in BSD/UDP NFS had a standard deviation of 10%.)

21



1000

900

800

700

S4-NFS
BSD-NFS UDP
BSD-NFS TCP

Creates Reads
10,000 1KB File Accesses

Deletes

Figure 7: Small-file performance.

5.1.3 Macro-benchmark results

To evaluate performance for more realistic workloads, we present results from two macro-

benchmarks: the Postmark benchmark [14] and the SSH-build benchmark [37]. These bench-

marks crudely represent Internet server and software development workloads.

Postmark was designed to measure the performance of a file system used for electronic

mail, netnews, and web based services. It does this by creating a large number of small

randomly-sized files (between 512B and 9KB for our tests), on which a specified number

of transactions are performed. Each transaction consists of two sub-transact ions, with one

being a create or delete and the other being a read or append. The transaction types

are chosen randomly with consideration given to user definable weights. Our configuration

consists of 20,000 transactions on 5,000 files, with a file size of between 512B and 9KB. The

biases for transaction type are set equal.
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The results of the postmark benchmark are shown in Figure 9. Each bar shows the total

running time in seconds split between initial file creation time (creating initial 5000 files)

and the time to complete all transactions. S4/NFS outperforms the other configurations

because of its superior performance for non-sequential small file operations.

The SSH-build benchmark was constructed as a replacement for the Andrew file system

benchmark [12]. It consists of 3 phases: The unpack phase, which unpacks the compressed

tar archive of SSH vl.2.27. (SSH is approximately 1MB in size before decompression) This

phase stresses metadata operations on files of varying sizes. The configure phase consists of

the automatic generation of header files and Makefiles, which involves building various small

programs that check the existing system configuration. The build phase compiles, links, and

removes temporary files. This last phase is the most CPU intensive, but it also generates a

large number of object files and a few executables.

The times of SSH-build ;s three phases are shown in Figure 10. Performance is similar

across the 3 configurations. S4 outperforms the BSD configurations in all phases due to the

relative performance advantages of creates, deletes, and writes.
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Year

1996
1999
1999

Environment

Carnegie Mellon
Cornell
HP Research labs

Ref

[32]
[35]
[29]

System

AFS
Windows NT
HP-UX

Data rate

143MB per day
1GB per day
108MB per day

Detection
window

71 days
10 days
94 days

Table 2: Space usage survey. This table shows the expected detection window that could be provided by
utilizing 10GB of a modern disk drive, assuming no differencing or compression. This conservative history
pool would consume only 20% of a 50GB disk's total capacity.

5.2 Capacity requirements

To evaluate the capacity required to maintain a week-long history pool, we examine data

from three recent workload studies (see Table 2). The AFS trace study [32] reports 143MB

per day of write traffic. Even if we pessimistically increase this number to 1GB per day, as

was observed in Vogels' Windows NT file usage study [35], it is not unreasonable to believe

that seven days worth of data could be kept on a modern 50GB disk. The Elephant paper [29]
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Figure 10: SSH - Unpack, configure, and build.

presents a data rate of 110MB written per day, again over a week of changes could easily be

kept on a modern disk.

Much work has been done in evaluating the efficiency of differencing and compression [2,

3, 4]. To briefly explore the potential benefits for S4, we retrieved the code base for S4 from

the CVS repository at a single point each day for a week. After compiling the code, both

differencing and combined differencing + compression were applied between each tree and its

direct neighbor in time using xdelta [19, 20]. The total sizes of all seven trees, the object files

of all the trees, and the source files of all the trees were then compared to their respective

differenced sizes. For all versions of all files, 250MB of storage is needed. This number drops

to 80MB with differencing and 50MB with differencing + compression.
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6 Discussion

This section discusses several important implications of self-securing storage.

Selective versioning: There are data that users would prefer not to have backed up

at all. The common approach to this is to store them in directories known to be skipped

by the backup system. Since one of the goals of S4 is to allow recovery of exploit tools, it

does not support designating objects as non-versioned. A system may be configured with

non-S4 partitions to support selective versioning. While this would provide a way to prevent

versioning of temporary files and other non-critical data, it would also create a location

where an intruder could store exploit tools without fear that they will be recovered.

Versioning file systems vs. self-securing storage: Versioning file systems excel at

providing users with a safety net for recovery from accidents. They can maintain old file

versions long after they would be reclaimed by the S4 system, but provide little additional

system security. This is because they rely on the host's OS for security and aggressively prune

apparently insignificant versions. By combining self-securing storage with a versioning file

system, recovery from users' accidents could be well-supported while also maintaining the

benefits of intrusion survival.

Client-side cache effects: In order to improve efficiency, most client systems use caches

minimize storage latencies. This is at odds with the desire to to have the device audit users'

accesses and capture exploit tools. Client-side read caches hide data dependency information

that would otherwise be available to the drive in the form of reads followed quickly by writes.

However, this information could be provided by client systems as (questionable) hints during

writes. Write caches cause a more serious problem when files are created then quickly deleted,

thus never being sent to the drive. This could cause difficulties capturing exploit tools since

they may never be written to the drive. While the client cache effects may obscure some

of the activity in the system, users' data that is stored on the device is still completely

protected.

Object-based vs. block-based storage: Attempting to implement a self-securing

storage device with a block device presents several problems. Since objects are designed

to contain one data item (file or directory), enforcing access control at this level is more
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manageable than attempting to properly assign permissions on a per-block basis. In addi-

tion, maintaining versions of objects as a whole, rather than having to collect and correlate

individual blocks, simplifies recovery tools and internal reorganization mechanisms, like the

anti-entropy cache. Still, although some of S4's benefits would be lost, we see no roadblock

to self-securing block-based storage.

Multi-device coordination: Multi-device coordination is necessary for operations

such as striping data or implementing RAID on multiple disks. In addition to the normal

coordination that is necessary to make sure that the multiple copies of data are synchronized,

recovery operations must also coordinate old versions to make sure that the objects are

consistent when they are recovered from the history pool. On the other hand, clusters of

self-securing storage devices could maintain a single history pool and balance the load of

versioning objects.

7 Related Work

Self-securing storage and S4 build on many ideas from previous work. Perhaps the clearest

example is versioning: many versioned file systems have helped their users to recover from

mistakes [22, 10]. Santry, et. al, provides a good discussion of techniques for traversing

versions and deciding what to retain [29]. S4's history pool corresponds to Elephant's "keep

all" policy (during its time window), and it uses Elephant's time-based access. The largest

advantage of S4 over previous versioning systems is that it has been partitioned from the

operating system. While this creates another level of indirection, it adds to the survivability

of the storage.

S4's device-embedded storage management is another instance of many recent "smart

disk" systems [1, 7, 15, 27, 36]. All of these exploit the increasing computation power of

such devices. Some also put these devices on networks and exploit an object-based interface.

There is now an ANSI X3T10 (SCSI) working group looking to create a new standard for

object-based storage devices. The S4 interface is similar to these.

The standard method of intrustion recovery is to keep a periodic backup of files on

trusted storage. Several file systems simplify and extend this process by allowing a snapshot
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to be taken of a file system [11, 12, 18]. This snapshot can then be accessed through the

standard file system tools for file retrieval. Spiralog [13] uses a log-structured file system to

allow for backups to be made during system operation by simply recording the entire log to

tertiary storage. While these systems are effective in preventing the loss of existing critical

data, the window of time in which data can be destroyed or tampered with is much larger

than S4, often up to 24 hours, and is reliant upon a system administrator for operation.

Also, intrusion diagnosis is extremely difficult in such systems. Permanent file storage [26]

provides an unlimited set of intruder-proof backups over time. These systems are unlikely

to become the first line of storage because of lengthy access times.

S4 borrows on-disk data structures from several systems. Unlike Elephant's FFS-like

layout [23], the disk layout of S4 more closely resembles that of a log structured file sys-

tem [28]. Log-structuring is designed to optimize write performance at a potential cost to

read performance. S4's anti-entropy cache is reminiscent of several proposals for background

reorganization for improving read performance [21, 30]. Many file systems use journaling

to improve performance while maintaining disk consistency [5, 31, 34], deleting the journal

information once checkpoints ensure that the corresponding blocks are all on disk. S4 uses

journaling to persistently maintain metadata versions in a space-efficient manner.

8 Conclusions

Self-securing storage ensures data and audit log survival in the presence of successful in-

trusions and even compromised host operating systems. Experiments with the S4 proto-

type show that self-securing storage devices can achieve performance that is comparable to

standard storage appliances. In addition, analysis of recent workload studies suggest that

complete version histories can be kept for several weeks on state-of-the-art disk drives.
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