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Abstract

This report documents our recent progress in exploring active balance for dynamic legged systems. The

purpose of this research is to establish a foundation of knowledge that can lead both to the construction of

useful legged vehicles and to a better understanding of legged locomotion as it exists in nature. We have

made progress in five areas:

• Balance in 3D can be achieved with a very simple control system. The control system has three
separate parts, one that controls forward running velocity, one that controls body attitude, and one
that controls hopping height. Experiments with a physical 3D machine that hops on just one leg
show that it can hop in place, travel at a specified rate, follow simple paths, and maintain balance
when disturbed. Top recorded running speed was 2.2 m/sec (4.8 mph). The 3D control
algorithms are direct generalizations of those used earlier in 2D, with surprisingly little additional
complication.

• Computer simulations of a simple multi-legged system suggest that many of the concepts that are
useful in understanding locomotion with one leg can be used to understand locomotion with
several legs. A planar model with two legs trots and bounds with the same three part control
decomposition used for the one-legged systems. Our most exciting result was to find a particular
case for which the model bounds with each leg controlled independently, and without the need
for active control of body attitude.

• We have designed a four-legged running machine in order to experiment with balance in systems
with more than one leg. The machine is arranged like a large dog, with narrow hips, and a long
body. While the leg design for this system is more complicated than our previous designs, the
machine is very much like four 3D hopping machines connected by a common frame. Our
intention is to study the trot, the rack, the gallop and the bound, and a number of gaits that are not
normally used by natural quadrupeds.

• We have begun to study gait in terms of coupled oscillations. The question is, "Are gait
transitions the result of explicit changes in control, or are they changes in the modal behavior of
an oscillating mechanical system?" We do not have an answer yet, but we have made progress in
exploring this question with a planar model. We have found that changes in the ratio of leg
stiffness to hip stiffness change the pattern of rocking and swaying motions.

• For legged systems to be maneuverable, they must be able to traverse arbitrary paths in the
horizontal plane. A useful component in accomplishing this goal is the ability for a legged system
to travel a path of arbitrary curvature. We describe simple methods that permit a simulated 3D
one-legged system to travel along paths of varying curvature. They depend on jointly
manipulating the placement of the foot on each step, and the speed of forward motion.

The report closes with a collection of partially formulated ideas that should stimulate more thinking and lead

to further work.



Table of Contents

Abstract Hi

1 Introduction and Summary 1

1.1 3D Experiments 1
1.2 Planar Trotting and Bounding 2
1.3 A Running Machine with Four Legs 3
1.4 Is Gait a Coupled Oscillation? 4
1.5 Path Control 5
1.6 Legged Locomotion Vignettes 6

2 Experiments with a 3D One-Legged Hopping Machine 7
Marc & RaiberU H. Benjamin Brown, Jn, and Michael Chepponis

2.1 Abstract . . . 7
2.2 Introduction . . . . . .... 7
2.2.1 Background 8
2.3 3D Hopping Machine 9
2.4 Control Algorithms 11
2.4.1 Forward Velocity . . . 13
2.4.2 Body Attitude 17
2.4.3 Hopping Height . . . . . 18
2.5 Experimental Results . . . . . . . . . . . " 18
2.6 Discussion . . . . . . . . . . . . 24
2.7 Summary 26
2.8 Appendix A: Physical Parameters of 3D One-Legged Machine. 28
2.9 Appendix B: Kinematics of 3D Machine 29

3 Control of Trotting and Bounding for a Simple Planar Model 33
Karl N. Murphy

3.1 Abstract . ; . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
32 Introduction :. 33
3.3 Model . * . . . . . . . . . . . . . . . . . . 34
3.4 Control . , . . 37
3.4.1 Vertical Control 37
3.4.2 Velocity Control 38
3.43 Attitude Control . . . . . . . . . . 39
3.5 Results 40
3.5.1 Trotting _ . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Bounding . . . . . * . . . . . . , , . , . . 42
3.6 Discussion.. , . . . . . . * . , . . , , , . . . , . . . . . . . . . . 44
3-6.1 Control Strategies . . . . . „ . , . * . . . . , , . . . , 44
3.6.2 Failure of Hip Torque for Attitude Control 45
3.7 Conclusions , . . . . . * . . . . * 45
3.8 Appendix. Simulation Parameters . . . • . „ . . „ . • . . . „ . . . . . . . , • • „ • . . * . . • . „ . . . . . . 47



VI

4 Design and Construction of a Four-Legged Running Machine 49
H. Benjamin Brown, Jr, and Marc H. Raibert

4.1 Introduction • 49
4.2 Design Goals. 49
4.3 Leg Design 52
4.4 Hip Design . . .. 54

5 Is Gait a Coupled Oscillation? 57
Jeffrey Koechling

5.1 Abstract . . . . 57
5.2 Introduction 57
5.3 Background. . 58
5.4 The Model " 58
5.5 Modes of Oscillation 61
551 Vertical Bouncing 62
5.52 Rocking 65
5.5.3 Swaying.. . . 66
5.6 Results 67
5.7 Discussion 68
5.7.1 Other Things to Study . . 70
5.8 Summary . . . . 70
5.9 Appendix A: Equations of Motion for the Model 71
5.10 Appendix B: Simulation Parameters 75

6 Path Control in 3D . . . . 77

Seshashayee S. MuHhy

6.1 Introduction : . . . 77
62 Path Control Using Foot Placement . . . 78
6.3 Trajectories . , . . 83
6.3.1 Circles 83
6.3.2 Spiral trajectories . 84
6.3.3 Square Path . . . . . . . . . . . . . . . . . . . . . 85
6.4 Appendix: Description of 3D Model . . . 86

7 Legged Locomotion Vignettes . . . 87
Marc H. Raibert and Anifmny 1 Sientz

7.1 Introduction . .•.. 87
12 Locomotion Algorithms for N Legs . . . . 87
7.2.1 One Leg at a Tune 89
72.2 Pars of Legs in Unison . . . 91
72 J Pairs of Legs in Sequence 92
72.4 Pairs of Legs Overlapped in Time 93
72.5 Independent Legs 95
7 J Scissor Symmetry . . . : 96
7.4 Why are Human Feet Long? , 100



VII

7.4.1 Circle Feet ; 101
7.4.2 Yaw Control 103
7.5 Foot Placement for Leaping 104
7.6 Behavior During Stance 106
7.7 Running is Like Juggling 110
7.8 Do Locomotion and Manipulation Have a Common ground? 112

Bibliography ; 115



V l l l



1. Introduction and Summary

Humans and animals use their legs to locomote with great mobility, but we do not yet have a full
understanding of how they do so. One sign of our ignorance is the lack of man-made vehicles that use legs to
obtain high mobility. A legged vehicle might someday travel in difficult terrain, where softness or bumpiness
makes wheeled and tracked vehicles ineffective. A component of mobility is the ability to balance. Balance
permits a system to move quickly on a narrow base of support, and with intermittent support. Through the
research reported here we address both the scientific problem of understanding how living systems achieve
balance and control when they run, and the engineering problem of how to build useful legged vehicles.

Our research strategy has been to focus on the problems of balance and dynamic stability, while postponing
until later the study of gait and coupling among many legs. To do this we have modeled, simulated, and built
a number of systems that hop and balance on just one leg. In the one-legged regime balance is of paramount
importance, while coordination and coupling are not important A secondary strategy has been to examine
systems with springy legs, so that we might better understand the role of the resonant bouncing motion that is
characteristic of dynamic legged systems.

Our research during the past year has had two main thrusts. One thrust was to extend the results originally
obtained for a planar one-legged system to the 3D case. This was done with computer simulations and
physical experiments on a 3D one-legged hopping machine. The other thrust was to explore the problem of
locomoting on more than one leg. A simple model that represents the lateral half of a quadruped trots and
bounds in simulation, and we have designed a four-legged running machine for experiments. The remainder
of this report is a collection of six separate papers that describe these projects. They are summarized here:

1.1 3D Experiments

In order to explore the role of balance in legged locomotion, we are studying systems that hop and run on one
springy leg. Previous work showed that relatively simple algorithms can balance a system on one leg when it
is constrained mechanically to operate in a plane (Raibert, 1984; Raibert and Brown, 1984). Here we have
generalized the approach to a 3D one-legged machine that runs and balances on an open floor without
physical support We decomposed control of the machine into three separate parts: one that controls vertical
hopping height, one that controls forward running velocity, and a third that controls attitude of the body.
Experiments showed that this control scheme, while surprisingly simple to implement, is powerful enough to
permit hopping in place, running at a desired rate, and travel along a simple path. These algorithms that
control locomotion in 3D are direct generalizations of those used in 2D, with very little additional
complication.
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Figure 1-1: Photograph of 30 one-legged machine in mid stride* The machine is running from left to
right Top recorded funning speed was about 12 m/sec (4.8 mph).

1.2 Planar Trotting and Bounding

In order to learn about control of locomotion in dynamic systems with more than one leg, we devised a model

that looks very much like one lateral half of a quadruped. The model is planar with two springy legs, one

attached to the body in the front, and the^other attached in the rear. We have found through simulations of

this model that balance during uotiimg and bounding can be accomplished with mechanisms similar to those

used for control of the one-legged s\ stems. One of our oiosi important findings this year is that this model

will run with a siable bounding gait, without active stabilization of the bod} pitch angle.
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Figure 1-2: Planar two-legged model Tunning witti a bounding gait Each leg of the model is controlled
independently to regulate hopping height and forward velocity. The body rocks back and forth in a
passively stabilized oscillation, with very little up and down motion of the center of gravity. When
running is initiated there is a random pattern of rocking, but it soon stabilizes. TOP: The cartoon shows
behavior when running at about 4 m/sec MIDDLE: Attitude of body. BOTTOM: Altitude of body.

During trotting the two legs move in unison and there is very little pitching motion of the body. The control
system that generates trotting:

1. Uses the sum of the leg thrusts during stance to regulate desired hopping height

2. Uses the difference in leg thrusts to control attitude of the body.

3. Uses hip torque during stance to control forward velocity.

4. Uses the position of the feet at touch-down to balance the system.

In a bound the legs act alternately, with each support phase separated by a flight phase. The control system
that generates bounding is very similar to that used for trotting, with one exception: no action is taken
specifically to control the attitude of the body or its pitching motions. The body pitches back and forth in a
passively stabilized motion. While we do not yet fully understand the mechanism responsible for the stability
of this oscillation, it seems to hold for a wide range of model parameters and running speeds.

1.3 A Running Machine with Four Legs

While experimentation with one-legged systems has taught us a great deal about balance and dynamics in
locomotion with a minimum of unnecessary complication, we are eager to extend our experiments to the
multi-legged case. The power of the one-legged results will receive the acid test when we attempt to
generalize them to the control of machines that ran and balance on several legs.
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Figure 1-3: Diagram of machine muter construction for experiments CM balance in multi-legged systems
that nut The machine will be about L0 m kmg, 0.6 m tall to the hip, and will weigh 35 kg. It is roughly
the size acd shape of a

The machine we have designed for these experiments will be very much ike four one-legged machines,

connected by a common frame. We have imitated the design of quadrupeds found in nature by spacing the

hips very close together in the lateral direction, about 0.4 L, and rather far apart in the longitudinal direction,

about L2 L> where L fe the length of the leg. Although the leg retains use of an air spring to recover hopping

enei^y as did our previous legs, it has been substantially redesigned to meet the additional demands of

multi-legged operation, like our previous designs, the four-legged running machine will carry neither its own

power supply nor computing*

1.4 Is Gait a Coy pled Oscillation?

When animals run at different speeds they use different patterns to coordinate the motion of their legs. These

patterns are called gaits. Is gait the fundamental driving pattern for a legged system, or is it merely the

observable behavior of a dynamic system constrained by the task of locomotion? This is the question we want

to answer.

The idea is that the various gaits we observe In animals could be mechanically coupled oscillations that result
when a legged system operates in an efficient manner. The rale of travel stiffness of the hips, load supported
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Figure 1*4: Gait as a coupled oscillation. The planar two-legged model has three modes of oscillation,
bouncing, rocking, and swaying.

by the legs, and contour of the ground are each factors that should influence the manner in which the legs

oscillate, and the timing relationship between their oscillations. At the heart of this idea is the notion that the

gait is dominated by the mechanics of the legged system, rather than by the control Four competing

hypotheses guide our thinking:

• The control system determines the pattern and timing of each limb's motion.

• The control system switches from one mode to another when it is efficient to do so.

• The control system adjusts mechanical parameters when increasing speed, with resulting changes
in the pattern of oscillation.

• The mechanical system switches oscillation modes as speed changes, with fixed mechanical
parameters.

To examine this question we use a planar model that has two-springy legs attached to a rigid body. The model
has three modes of oscillation: bouncing, rocking, and swaying, as shown in Fig. 1-4. Analysis and computer
simulations of the model show that the bouncing and the rocking modes are coupled. The ratio of the
stiffness of the hips to that of the legs determines the pattern of recking and swaying. We have not yet shown
that this coupling represents gait-like behavior.
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1.5 Path Control

The t t i l t f to traverse m aAitary path is the horizontal plane will be an important milestone for dynamfc

legged ty8KRM» if ihcy ait to achieve maneuvenibfiity and to avoid obstacles in their paths. To follow an
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2. Experiments with a 3D One-Legged Hopping

Machine

Marc H. Raibert, H. Benjamin Brown, Jr., and Michael Chepponis

2.1 Abstract

In order to explore the role of balance in legged locomotion, we are studying systems that hop and run on one
springy leg. Previous work has shown that relatively simple algorithms can achieve balance on one leg for the
special case of a system that is constrained mechanically to operate in a plane (Raibert, 1984; Raibert and
Brown, 1984). Here we generalize the approach to a 3D one-legged machine that runs and balances on an
open floor without physical support. We decompose control of the machine into three separate parts: one
part that controls forward running velocity, one part that controls attitude of the body, and a third part that
controls hopping height. Experiments with a physical 3D one-legged hopping machine showed that this
control scheme, while simple to implement, is powerful enough to permit hopping in place, running at a
desired rate, and travel along a simple path. These algorithms that control locomotion in 3D are direct
generalizations of those used in 2D, with surprisingly little additional complication.

2.2 Introduction

The ability to balance actively is a key ingredient in the mobility observed in natural legged systems, and
could be an important factor in man-made legged systems yet to be developed. Actively stabilized legged
systems can move on a narrow base of support, permitting travel where obstacles are closely spaced or where
the support path is narrow. Systems that balance need not be supported all the time, and may therefore use
support points that are widely separated or erratically placed. This ability to place the feet on just those
locations that provide good support increases the types of terrain a legged system can negotiate. Biological
legged systems routinely operate with narrow base and intermittent support to traverse terrain too difficult for
existing wheeled or tracked vehicles.

While the potential advantages of active stability and intennittent support may have been recognized for
some time (Manter, 1938; McGhee and Kuhner, 1969; Frank, 1970; Gubina, 1972; Vukobratovic, 1973)
progress in building legged systems that employ such principles has been retarded by the perceived difficulty
of the task. As a result, much of the previous work on walking machines has taken a quad-static approach,

operating at low velocity with continuous and broad-based support (Frank, 1968; Bessonov and Umnov,

1973; McGhee and Buckett 1977; Hirose and Umetani, 1980; Sutherland, 1983). These devices have four or

six legs, with at least three legs providing support at all times.

Our previous work has shown experimentally that it is possible to control a dynamic legged system that

balances actively as it hops and runs (Raibert and Brown, 1984). However, tie apparatus of those



experiments was a planar device, thai was constrained mechanically to move with just three degrees of
freedom. Useful locomotion takes place in 3 dimensional space, where motion with six degrees of freedom is
possible. In this paper we present algorithms that control a legged system that balances as it hops and runs in
3D, and experimental data that characterize the performance. These experiments show that, in the context of
a hopping machine with a single springy leg, the control problem need not be difficult at all. A very simple
set of algorithms is sufficient to control the machine as it hops in place, as it travels from point to point under
velocity or position control and as it responds to external mechanical disturbances. The control algorithms

arc direct generalizations of those used in 2D.

2.2.1 Background

Previous work on balance began with Cannon's control of inverted pendulums that rode on a small powered
aucl (Higdon and Canaon, 1963). His experiments included balance of a single pendulum, two pendulums
one atop the other, two pendulums side by side, and a long limber pendulum. Their technique was to control
the tipping moments by manipulating the point of support with state feedback. Hemami and his co-workers
(GoUiday md Hcrna®! 1977; Hmami and Goliday, 1977; Hemami and Farasworth, 1977; Ceranowkz,
1979; Hemmi 1980), Vukobratovic and Ms co-workers (Vukobratovic and Stcpaneko, 1973; Vukobratovfc
and OUiotsimskii 1975), and ethers (Frank, 1970; Bessonov and Umnov, 1973; Beletskii and Kirsanova,
1976) have studied fee dynamic chancteristics of a variety of multi-link legged models that walk in

fl* la each ease tic models balance whie maintaining continuous contact with the support surface.
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maintain the body in an erect posture, and one to regulate hopping height. These three parts of the control
system were each synchronized to the ongoing activity of the hopping machine. This decomposition of the
balance problem resulted in a particularly simple control design, and it provided a framework within which,
one can think about more complicated problems in locomotion.

In this paper we extend these results for a 2D system to a system that balances in 3D. The main result is that
very simple algorithms are adequate to control the locomotion of a one-legged machine that hops and runs in
3D. The 3D control algorithms are direct extensions of the 2D algorithms, relying on the same three-part
decomposition. The sections. that follow describe the physical hopping machine that was used for
experiments, they review the 2D control algorithms and describe their generalization to 3D, and they present
experimental data that illustrate the system's ability to balance and run under a variety of conditions.

2.3 3D Hopping Machine

The hopping machine shown in Fig. 2-1 was designed for experiments on balance in three dimensions. The
main parts are a springy leg and a body, connected by a gimbal-type hip. Actuators control the orientation of
the leg with respect to the body, and the axial thrust delivered by the leg. Sensors provide state information
from the hip, leg, and body to a control computer located nearby in the laboratory.

The body consists of a lightweight platform and roll cage, on which are mounted sensors, valves, actuators,
and interface electronics. The ratio of moment of inertia of the body to that of the leg is about 6.5:1. This
relatively high ratio ensures that movement of the leg during flight does not severely disturb the attitude of
the body. The center of mass of the body is located very close to the hip, so the only moments acting on the
body are those generated by the hip actuators. A pair of free gyroscopes mounted on the body provide
measurements of the roll, pitch, and yaw angles of the body with respect to fixed space. The roll cage protects
the hopping machine when it falls over, and also provides convenient handles during experiments.

The leg is a double acting air cylinder. The arrangement of pneumatic cylinder, pressure regulator, and check
valve forms an air spring that absorbs energy when the leg shortens under external load, and supplies energy
when the leg lengthens. It is storage and recovery of energy in this air spring that transfers the kinetic eneigy
from one hop to the next hop, thereby reducing the cost of continuous hopping. The upper chamber of the
pneumatic cylinder that forms the leg actuator, is connected to a pressure regulator that maintains its
minimum pressure. This regulator was set to values between 40 and 75 psi for the present set of experiments.'
A check valve permits the pressure to increase when the leg is compressed, without forcing air back through
the system.

The hopping motion is produced by the flow of compressed air to and from the lower chamber of the leg

actuator. A pair of 2-way solenoid valves permits this chamber to be pressurized to 80 psi or exhausted

When it is pressurized it causes the piston to move upward and the leg to shorten, and when it is exhausted it

causes the piston to move downward and the leg to lengthen. The timing of pressure and exhaust are chosen
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Figure 2-1: Diagram of 3D one-legged machine used for experiments. It has two primary parts: a body
and a leg. The body is made of an aluminum frame, on which are mounted hip actuators, valves,
gyroscopes, and computer interface electronics.- The leg is a pneumatic cylinder with a padded foot at
one end, and a linear potentiometer at the other end Two two-way pneumatic valves control the flow of
compressed air to and from the lower end of the leg actuator. A pressure regulator and check valve
control the pressure in the upper end of the leg actuator. The leg is springy because air trapped in the
kg actuator compresses when the leg shortens. The leg is connected to the body by a gimbal-type hip,
with two degrees of freedom. A pair of low friction hydraulic actuators powered by pressure control
seiro calves acts between the leg and body to determine the hip angles. Sensors measure the length of
the kg, the length and velocity of each hydraulic actuator, contact between the foot and the floor,
pressures in the kg air cylinder, and the pitch, roll and yaw angles of the body. Analog measurements
are digitized on the machine and transmitted to the control computer over a parallel bus. An umbilical
cable connects the machine to hydraulic, pneumatic, and electrical power supplies, and to the control
computer, ill of which are located neaity m the laboratory

to excite the spring-mass oscillator formed by the leg .and body. Peak to peak amplitude of body oscillation

tinder ideal conditioas varied between 0.02 and 0.5 m» with corresponding bouncing frequencies of about 3.0

to 15 per second. Over this range of bouncing frequencies the stance period is nearly constant, varying by

oaly a few percent, as expected for a spring-mass system.
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A rubber cushion is attached to the lower end of the leg actuator rod to form a foot. The area of the foot that
contacts the ground is only about 1 cm2, providing a good approximation to a point support. The coefficient
of friction between the foot and the floor in our laboratory is about 0.6. The foot has a built-in switch that
tells the control computer when there is contact with the ground. The upper end of the actuator rod carries a
wiper that forms the moving element of a linear potentiometer used to measure the length of the leg.

The leg and body are connected by a gimbal joint that forms a hip. A pair of linear hydraulic actuators
controls the angles between the body and the leg. These hip actuators use only low pressure seals, and a leaky
piston to provide very low static friction. Each hip actuator has a pressure control servo valve, a linear
potentiometer, and a linear tachometer. The control computer servos the length of these actuators, and
therefore the angles between leg and body, with a pair of linear servos:

f.(t) = K^(w r w t p + Ky(w.) ' (2.1)

where
f. (t) is the force generated by the rth actuator,
w r wi ctw/ a r e ^ e ^ e n § t ^ ' ^ e des*red length, and velocity of the fth actuator,
Kp, Ky' are position and velocity gains.

Using this servo, a full sweep of the leg takes approximately 70 msec. This arrangement of body, leg, hip, and
actuators provides a means to control the position of the foot and the hip torque needed to balance the system
during locomotion.

Data from the sensors mounted on the hopping machine are digitized and transmitted to the control
computer over a digital bus. These sensors include the gyroscopes, the hip actuator potentiometers and
tachometers, the leg length potentiometer, the foot switch, and the leg pressure sensors. These sensory data
are used not only to control the machine, but also to record and analyze its behavior. The umbilical cable that
carries the digital communication bus also carries hydraulic power for the hip actuators, compressed air that
drives the hopping motion, and DC power for sensors and electronics.

To make the machine balance while traveling from place to place, the control algorithms position the foot
during flight and correct the body attitude during stance. During flight the control computer chooses a
forward position for the foot appropriate to the machine's rate of travel. During stance the control computer
generates torques at the hip to maintain an upright body posture. The resulting control system produces
running at rates of up to 2.2 m/sec (4.8 mph) with strides of up to 0.79 m. General operation of the machine is
shown in Fig. 2-2 by a sequence of photographs taken in one stride.

2.4 Control Algorithms

In this section we describe the algorithms examined for hopping and balance in the 3D machine. Since these
algorithms were formulated by generalizing from the 2D machine, we also review the 2D algorithms.
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Figure 2-2: Sequence of photographs showing one complete stride of the 3D hopping machine running
from left to right. Grid on floor indicates 0.5 m intervals. Running speed is about 1.75 m/sec, with stride
length 0.63 m, and stride period 0.380 sec. Adjacent frames separated by 76 msec.

Conceptually, the 2D and 3D algorithms are very similar. The basic approach is to treat the system like an

inverted pendulum, and to decompose the control into independent parts. As in 2D, the 3D algorithms

decompose easily Into three parts, one part each for control of forward running velocity, attitude of the body,

and hopping height The system controls forward pinning velocity by positioning the foot with respect to the

pnogoction of the center of gravity. This is done during every flight phase* when the foot is not touching the

ground The system controls the attitude of the body by torquing the hip during stance when the foot is held

in place by friction. The system adjusts the hopping height by regulating the amount of thrust delivered by

the leg on each hop. These three parts of the control system arc largely independent, with their

synchronization coming from the ongoing activity of the hopping machine. It is this independence of action

that makes the control system simple.

The remainder of this section reviews each part of the control algorithm used in 2D, and describes the

corresponding extension to 3D.
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2.4.1 Forv/ard Velocity

The position of the foot when it first touches the ground on each step, has a powerful influence on the
accelerations the system will experience during the impending support period. The algorithm that controls
forward velocity must choose a position for the foot that will generate the proper accelerations. The algorithm
studied here uses two factors to find a good position for the foot One factor is the forward velocity of the
system. It is used to find a nominal foot position that would generate zero net acceleration during the support
period. The other factor is the forward velocity error. It is used to calculate a displacement of the foot from
the nominal position that will accelerate the system as required. Accelerations are required to stabilize the
forward velocity against errors, and to generate desired changes in running velocity. The nominal foot
position and displacement of the foot combine to specify where the control system will place the foot

\ /

I *2 IST •

Figure 2-3: When the foot is placed in the center of the CG-print, there is a symmetrical motion,
Running from left to right, the left-most drawing shows the configuration just before the foot touches the
ground, the center drawing shows the configuration when the leg is maximally compressed, and the
right-most drawing shows the configuration just after the foot looses contact with the ground.

The method used to find a nominal foot posiiion that will not accelerate the system depends on producing a
symmetrical pattern of motion during the stance phase. During stance, when the foot is touching the ground,
the one-legged system is like an inverted pendulum. An inverted pendulum may be kept from tipping over
by manipulating the position of the support point with respect to the center of mass in such a way that every
tipping motion to one side is compensated by an equal tipping motion to the other side. For a legged system
to balance, the control system can position the foot so that there are equal amounts of forward and rearward
tipping, and symmetric horizontal forces acting on the ground.

like the inverted pendulum, a legged system tips and accelerates when its point of support is not located

directly below its body. The acceleration magnitude is a function of the horizontal displacement of the

support point from the center of mass. A legged system will undergo no net forward acceleration during

stance, when the trajectory of the foot with respect to the center of mass is symmetrical about a vertical line
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passing through the center of mass. Figure 2-3 shows such a symmetrical motion for a planar one-legged
system. When this symmetry is achieved, the body spends about the same amount of time in front of the foot
as it spends behind the foot, so the tipping moments are balanced. The horizontal components of the leg
thrust, determined by the leg spring and the angle of the leg to the vertical, are balanced in a similar manner.
The forward speed of the system does not change because the horizontal component of the thrust delivered by
the leg to the ground averages to zero throughout the stance phase.

A B C
Figure 2-4: Behavior when foot is displaced from the center of the CG-print A: When foot is placed in
the center of the CG-print the system tips neither forward nor backward, and it does not change its
forward running velocity. B: When foot is placed toward the rear of CG-print, the body tips and
accelerates forward during stance. C: When foot is place toward the front of CG-print, the body tips
backward and decelerates during stance. Horizontal fines indicate the CG-print for each case.

In order to achieve symmetry of this sort in the one-legged system, the control algorithm estimates the locus
of points over which the center of gravity will travel during the next stance period. We call this locus the
CG-prini, in analogy to a footprint. The length of the CG-print is the product of the average forward velocity
and the duration of stance. The desired symmetry is obtained when the foot is placed in the center of the
CG-print

The control system produces accelerations by placing the foot a distance away from the center of the CG-
print See Fig, 2-4, Placing the foot forward of the center of the CG-print causes the system to spend more
time during stance with the body behind the point of support than in front of i t This creates a net backward
lipping moment, a net rearward force on the body, and rearward acceleration. Placing the foot behind the
cento* of tbe CG-print causes the body to spend more time in front of the point of support creating a net.
forwmd acceleration. The algorithm implemented'here uses a linear ftinction of velocity errors to calculate •
displacement of the foot It uses foot placement to generate these accelerations when the forward velocity
deflates from its desired value* or when there is a need to change running speed.

The equations that were used to control forward velocity for the 2D case are given in terms of the variables
defined in Fig. 2-5. Calculate a desired foot position as a ftinction of the forward velocity and the velocity
error:
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xT
(2.2)

where

ST

is the desired forward position for the foot,

are the forward and desired forward velocity, and
is the duration of stance.

BODY

Figure 2-5: Diagram of planar one-legged system that shows variables used in calculating placement of
the foot to control forward running velocity.

Once the desired displacement for the foot is known, determine the hip angle that will place the foot there:

Arcsin[ Vd (23)

To generalize these equations for the 3D case, we modify the forward velocity to include an additional
direction of travel. Now the forward velocity has two components, either an x and y component as used here,
or a magnitude and direction. The kinematics that transform desired foot position into hip angles must also
be changed, since body orientation will have three rotations for the 3D case. Since the forward velocity will
now have two components to control, we replace each position and velocity in Eq. (2.2) with a vector:

X T
+ (2.4)

where
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The forward velocity, X, desired forward velocity, Xd, and desired position of the foot with respect to the hip,
Xpd, are expressed in coordinate systems that do not change orientation in space. Therefore, the desired
motion of the system and measurements of its behavior are expressed in terms of non-rotating coordinates. In
practice they are aligned with the walls of our laboratory.

Once the desired position of the foot with respect to fee hip is known from Eq. (2.4), find the actuator lengths

that will correctly position the foot:

Wd = F(X F d ) (2.5)

where
Wd = [w, d, w. d]T, a vector of desired hip actuator lengths.

F is a function that expresses the kinematic relationship between hip actuator lengths and the foot position It
is an implicit function of leg length, wL, and the orientation of the body in space, 0 . F and its inverse, F1 , are
given in Appendix B. Once W, is known, the linear servo of Eq. (2.1) positions the foot

Equations (2.4) and (2.5) can be used to control forward velocity once values for the forward velocity, X,
desired forward velocity, Xd, and the duration of stance, T^, are known. The foot does not move with respect
to the ground during stance, so the forward velocity is the negative of the velocity of the foot with respect to
the hip:

X = -Xp (16)

The position of the foot with respect to the hip is given by:

X^ = F*(W) (2J>

Measurements of W, wT, and 0 are available from the actuator sensors and the gyroscopes. We estimate the
velocity during stance by numerically differentiating Xp as determined from Eq. (2.7). We assume that the
forward velocity does not change appreciably during flight Since the duration of stance, T_f is governed by

ST

the springiness of the leg, it is largely independent of hopping height, and nearly constant for a given leg

stiffness. The control system uses the measured duration of the last stance phase as the expected duration of

the next stance phase. The desired forward velocity, Xd, is obtained from either a two axis joystick that k

manipulated by an operator, or a test program that generates programmable velocity trajectories.

In the current implementation, the center of the CG-print is estimated as XT^j/2. This estimate is not very

good at high velocity or when the duration of stance is very long. Under these circumstances, horizontal

forces generated by the leg decelerate the system substantially during the first half of stance, then accelerate i£

again during the second half of stance. The average forward velocity during stance is less than the forward

velocity when the foot first touches the ground, or when it leaves the ground. Therefore, the length of the

CG-print is substantially shorter than estimated. While we are working on better methods for estimating the

CG-print, (Raibert et alf 1983b), this problem is not too important in practice. The estimation error results m

a velocity dependent, steady state error in forward velocity that increases at high rates of travel.
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2.4.2 Body Attitude

Since angular momentum of legged systems is conserved during flight, a control system can manipulate the
body attitude only during stance, when there is traction between the foot and the ground. Torques generated
between the leg and the body during stance are used to servo the attitude of the body to a desired orientation.
For the planar case the stance servo was:

r(t) = ^ ( ^ - 0 ^ ) 4 - K v ( 0 2 ) (2.8)

where
T is the hip torque/
Kp, Ky are position and velocity gains, and
By. is the desired attitude of the body.

For the 3D system, both the pitch and roll axes must be controlled during stance:

fl = ^

h =
where

fr f2 are the hip actuator forces,

K^ Ky are position and velocity feedback gains, and
6 d,6 . are the desired pitch and roU angles, zero in this paper.

The pitch and roll angles upon which these attitude control servos operate are defined in a coordinate system
that moves and rotates with the body. They are not corrected for rotations of the body about its yaw axis, as
the forward position and velocities are. The gyroscope is aligned so that the signal from one axis can be used
to servo one hip actuator, and the signal from the other axis can be used to servo the other hip actuator. This
simple arrangement requires very little computation and provides very good stability.

In addition to keeping the body erect, the control system is responsible for controlling the facing direction of
the body, the yaw angle. This is a degree of freedom that has no counterpart in 2D. In principle, it is
possible to generate torques about the yaw axis for this purpose, despite the lack of an actuator that twists the
foot about the leg axis. When the control system places the foot to one side of the direction of travel and
torques fore or aft at the hip during stance, a moment is developed about the yaw axis of the system. In order
to stabilize the system during such a maneuver, the foot can be offset in one direction on one hop, and in the
other direction on the next hop.

We have found through experimentation and subsequent analysis that the maximum yaw torque that can be

generated in this manner is substantially smaller than the disturbance torque generated by the umbilical cable

that connects the machine to power supplies and computer. Therefore, the control system was not able to

generate adequate yaw torque to control the facing direction of the 3D hopping machine. Instead, the control

system used measurements of the yaw angle to compensate for the facing direction of the machine, without

trying to control it.
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2.4.3 Hopping Height

For a legged system to locomote each leg must alternate between a support phase, in which the foot touches

the ground and bears weight, and a transfer phase when the foot is elevated to move from one foothold to

another. An alternation of this kind between loaded phases and unloaded phases, underlies the normal

activity of all sorts of legs in all sorts of legged systems. For a system with one leg, this alternation is the

hopping cycle.

Unlike control of forward velocity and body attitude, control of hopping height is no different in 3D than it
was in 2D, Hopping is accomplished by exciting the resonant spring-mass system formed by the leg and
body. In principle, the height of each hop will be determined by the kinetic and potential energies of the
system, and the losses encountered on each bounce. Manipulation of these energies could be used to control
the height to which the system hops (Raibert, 1984). A simpler technique was used in practice.

If the system were left to bounce passively on the springy leg, losses in the sliding friction of the air cylinder
and in accelerating and decelerating the unsprung mass of the leg would soon cause the machine to come to
rest Measurements of the decay in hopping height during passive bouncing showed that such energy losses
amounted to about a 35% loss on each bounce. The leg actuator delivers a vertical thrust on each cycle that
just compensates for these losses-

Hopping height is regulated by providing a fixed thrust on each hop. Equilibrium occurs when the energy
lost in one hopping cycle equals the energy introduced through the leg actuator. Since losses are monotonk
with hopping height, a unique hopping height exists for each value of leg actuator thrust. Details of the
relationship between hopping height and duration of thrust can be determined empirically.

2.5 Experimental Results

The one-legged machine described earlier was used to evaluate and refine the control algorithms, and to
demonstrate balance in a 3D running machine. The height, velocity, and attitude control algorithms of the
last section were implemented in a set of control programs that ran on a control computer. These programs

controlled the machine and recorded its behavior. The experiments tested velocity control position control
the ability to follow a simple path, and the hopping machine's resistance to disturbances.

We examined the system's ability to regulate forward running velocity by having the control computer specify

a ramp in desired velocity. The results are plotted in Fig. 2-6. These data show the machine, first hopping k

place; then running at increasing rates up to about 1.7 m/sec. Throughout the run velocity was controlled to

within about 0.2 m/sec of the desired value. This accuracy is typical. When the desired velocity was set to
zero at t = 53 sec, it look about 0.5 sec for the velocity to change. This was the delay between the change is
xd and the following touchdown.

During running, the leg and body counter-oscillate as shown in the plots of X , $l and 6T The back and fmth
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F^gtre 2-6: Velocity 'Control was examined by varying the desired velocity in the x direction from 0. to
L6 m/sec with an acceleration of I xn/sec , then holding the setpoint" constant for about 2 ^conds, and
then setting the rate setpoini to zero. {Dashed line in second plot) Fating direction of the body, $ ,
was measured but not controlled Also ^i0wn ire TOP: the position of the machine in the room,
MIDDLE: the position of the foot with respect to the hip, BOTTOM 2: and the yaw orientation of the
body. (3D.33S.12)
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motions of the leg were not explicitly programmed, but resulted from' interactions between the velocity
controller that positioned the leg forward during flight, and the attitude controller that operated during
stance. Oscillations of the body were expected, because angular momentum is conserved during flight, and
attitude correction occurs only during stance. The asymmetry in body attitude was also expected, since the
desired body angle, 0 d , was always zero. The relative magnitudes of the pitch and roll oscillations varied as
the facing direction of the machine, its yaw angle, changed.

In another experiment, the desired speed was held constant, but the desired direction was changed abruptly
by 90°. The results are shown in Fig. 2-7. It took two hops for the system to change direction, but speed was
erratic after the turn.

1.0
Integrator
Selspot

1O 15 2O 25 3O
TIME (sec)

Figure 2-8: 3D machine hopping in place under position control. The control system integrated
forward velocity to determine the machine's position in the room. An electro-optical system (Selspot)
mounted on the ceiling provided an independent measurement of the machine's position. Divergence
between Selspot and integrator data indicates drift in the integrator. DOTTED LINE: Experimenter
disturbed the machine by delivering a sharp horizontal jab to the frame with his hand It returned to the
position setpoint within a few seconds. (3D.332.4)

A position control algorithm was used to make the hopping machine hop in one place, and to translate from

place to place. The position control algorithm transforms position errors into desired velocities:
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X'd = K p(X-X d) + K.X . (2.10)

Xd = m i n l X ^ X ^ ^ }

where

Kp) Kp are diagonal position and velocity gain matrices, and
is a limit on the allowable velocity.

The control programs obtained information about the machine's position in the room in two ways. They
could estimate the position of the machine by numerically integrating the forward velocity estimate, X.
Position information was also available from an electro-optical sensor (Selspot) mounted on the ceiling of the
laboratory. Data could be read from this sensor by the control computer one time per hop in order to
calculate a new desired velocity using Eq. (2.10). One may think of the ceiling mounted sensor as serving the
same role as the geosynchronous satellites used for global navigation. Our geosynchronous satellite had a very
low orbit

Figure 2-8 is a plot of the machine's position as it hopped in place, using the integrator position values for
control. The machine stayed within 025 m of the setpoint Deviations of this magnitude were typical for
stationary hopping. In addition to integrator data, data are plotted from the electro-optical measurement
The deviations in these curves shows that the integrator drifts by about 0.005 m/hop. This means that if the
machine were instructed to hop in one spot, it might drift a meter in one minute. Informal experiments with
blindfolded humans hopping on one leg indicate that they drift by similar amounts. In the case of the
hopping machine, the primary sources of drift were gyroscope calibration errors, and unwanted forces exerted
on the machine by the umbilical

Figure 2-8 also shows the response to an external disturbance. After about 7 seconds the experimenter
delivered a sharp horizontal jab to the body as the machine hopped in place. (See dotted vertical line in Fig.
2-8.) The machine maintained its balance and returned to the position setpoint after a few seconds. The
control system tolerated Fairiy strong disturbances of this sort The system also tolerated substantial torsional
disturbances of this sort, as weU as moderate noil and pilch disturbances.

In order to measure performance under position control, the control computer specified desired positions
according to a preplanned sequence. An operator pressed a button every time he wanted the next position
seipoint from the sequence. In this way we programmed a square path, 2 m o o a side. Figure 2-9 plots -dan
obtained while travcrang such a path, and Fig, 2-10 is a photograph of the machine traversing * square path.
The date shown in Fig, 2-9 are pretty goa t with the exception of a ixed position error of about OJ m wta&
yd = 0, This eiror was caused by the umbilical cable, which was just long enough to permit the machine fio
reach y = 0. The system came to equilibrium where the farce exerted by Ihe umbilical cable equalled the
accelerations produced by the control system
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Figure 2-9: Etela reconl«i while 3D bopping machine traversed a square path. The control
integrated forward velocity estimates to determine the position of the machine. TOP: Desired and
measured path of machine plotted in X~Y plane, BOTTOM: Plots of X and Y position as a function of
time. Hie 'data plotted are the recorded integrator values. The desired path is shown bold in the top
plot It extends from (0,0) through <(U). (2,2), (2,0), and (0,0), (3D3325)
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Figure 2-10: Photograph of 3D machine traversing a square path under position control Each time the
operator pressed a sequencing button, the machine advanced from one predefined position setpoint to
the next An electro-optical sensor mounted on the ceiling provided position measurements that were
used by the position control servo. It took about 14 seconds to traverse the path. The white line in the
photograph indicates the path of an LED attached to the top of the body.

2.6 Discussion

One way to view the 3D control system reported In this paper, is that it is very much like two separate 2D

systems that operate at right angles to one another. If one writes Eqs. (2.4) and (2.5) in terms of the

components of X, then one gets two sets of equations that are each like the 2D velocity control equation, Eq.

(2,2).

Another way to view the system is as an implementation of the plane of motion idea, described by Muithy

and Raibert f 1983). They proposed that locomotion in 3D might be best understood by thinking in terms of

a decomposition into a planar part and an extra-planar part Their planar pan of the control was just like the
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system used for a 2D one-legged system. The extra-planar part was responsible for maintaining the planarity
of motion so that the planar part could operate effectively. The control algorithms described in this paper are
perfectly consistent with this plane of motion approach. During each flight period, the control system uses
the instantaneous forward velocity to determine the plane of motion, and chooses a foot position with respect
to this plane. The position of the foot within the plane will determine the forward acceleration, while the
position of the foot perpendicular to the plane of motion will determine the change in orientation of the plane
of motion on the next step.

Both of these conceptualizations are correct and consistent. Both explanations can be summarized as follows.
For every forward velocity there is a position for the foot that will provide no net acceleration during stance
- the forward velocity when the foot leaves the ground will be the same as the forward velocity when the foot
last touched the ground. This position is a velocity fix point. The displacement of the foot from this position
determines the acceleration of the system, and therefore, the change of speed and direction. The position that
generates zero net acceleration is approximated equally well by the pair of perpendicular CG-prints, and by
the single CG-print in the plane of motion. The difference is like the difference between representing a point
in Cartesian coordinates or in polar coordinates.

For the experiments reported in this paper, 0 = # = # = : 0 = 0. As a result, the algorithm that
controlled attitude of the body, Eq. (2.9), produced an asymmetrical oscillation of ff_ and 0 . The body was •

P ,. R

made erect at lift-off, but because angular momentum must be conserved during flight, motion of the leg
caused motion of the body. Furthermore, at the beginning of stance, the body was suddenly made erect It
should be possible to reduce the asymmetry of 0 and 0 oscillations, and to eliminate the sudden erection of

p it

the body at touchdown, by choosing the roll and pitch setpoints to satisfy:

where
JB0DY is the moment of inertia of the body about the hip,
J is the average m o m e n t o f inertia of the leg about the hip
tfp, 6R are the pitch and roll angles of the body, a n d
<pp > <p R are the pitch and roll angles of the leg.

These equations specify that the attitude of the leg and body remain vertical, and that the average angular rate
of the system remain zero. We have not yet tested this approach extensively.

In the last section we reported a failure to control the facing direction of the machine. The sources of yaw
torque available in the machine we built were inadequate to overcome the disturbance torque generated by
the umbilical cable. As a practical problem, this failure did not interfere with the experiments, but was
finessed by doing a little extra competing. Moreover, yaw control is not likely to be a difficult problem for
legged vehicles. Useful legged vehicles will not have umbilical cables, and their legs can be designed to
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generate yaw torques directly if required. For systems with more than one leg, legs can act together to

generate substantial yaw torque.

The decision to explore locomotion in a system with just one leg was motivated by our desire ;to focus on
balance as the primary research issue. A one-legged system must balance in order to remain upright during
locomotion, it must have a ballistic phase, on each step, and it can move with substantial velocity. These
characteristics are not found in most previous walking machines, which are statically stable. It was also our
goal to avoid the difficult problem of coordinating many legs until we had more experience with one.

While the primary purpose of using a one-legged machine for these experiments was to focus on balance, an
additional goal was to develop a model that could explain the behavior of more complicated systems that run.
If we ignore the third dimension, generalizing from the one-legged machine to the two-legged hopping
kangaroo is very easy. A direct comparison can be made between the motions of the hopping machine's one
leg and the motions of the kangaroo's pair of legs. The primary difference is that the kangaroo uses its tail to
help compensate for the large sweeping motions of the legs, so that the body need not react by pitching so
much on each hop. The control system could still regulate hopping height* body attitude, and velocity as
before.

Many characteristics of the running biped are also similar to a system that runs on one leg, including the
alternation between stance and flight, the regular vertical oscillations, and the periods of one-legged support
In the case of the biped, the two legs swing in opposite directions, making pitching motions of the body and a
tail unnecessary. Think of a biped as a hopping machine that substitutes a different leg on each stride. The
same algorithms that were used to control the 3D hopping machine could be used to control a biped without
modification. Extensions of this approach to systems with more legs is underway. See Chapter 3 for
preliminary results.

2.7 Summary

This paper presents a set of algorithms for control of a machine that runs and balances on one leg in 3D, and
it describes experiments that evaluate their performance. The goal was to explore the fundamental problems
of active balance in dynamic legged systems.

We found that the algorithms designed for control of a planar one-legged system generalized to 3D with *

surprising ease* As in 2D, the control problem decomposed into three separate parts that are each

synchronized by the ongoing behavior of the machine. One control part regulates the forward running

velocity of the system and the rate of turn by placing the foot a specific distance in front of, and to the side of

the hip as the hopping machine approaches the ground on each step. The second control part maintains the

body in aa erect posture by servoing the hip during stance. The third control part determines hopping height

by choosing a fixed amount of energy to inject on each hopping cycle- The control algorithms are very simple

because these three functions are treated independently.
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Experiments showed that the 3D hopping machine balanced without external support, while hopping in place
and while traveling about the laboratory. It tracked a velocity ramp and sudden changes in desired direction
with 0.25 m/sec accuracy. At higher speeds the system consistently ran slower than specified due to
inaccuracies in estimating the CG-print. Maximum recorded speed was 2.2 m/sec (4.8 mph). In position
control the system determined the position of the machine in the laboratory by integrating the estimated
running velocity. With a stationary position setpoint, the machine could hop in place with about ±025 m
accuracy. The machine also traversed a square path, but the path accuracy suffered due to interference from
forces generated by the umbilical cable. The system continued to balance while the experimenter delivered a
sudden jab to the machine's body with his hand.

While legged vehicles with just one leg could very well turn out to have utility in rheir own right, the real
purpose of these experiments was to explore the fundamental principles of balance in a simple legged system.
A system with just one leg was a good choice for these experiments because balance is of paramount
importance to its locomotion, and because the problem of coordinating many legs was avoided. The results of
this work may help us to better understand both the overall behavior of legged systems that actively balance,
and the individual behavior of each leg in systems with more than one.
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2.8 Appendix A: Physical Parameters of 3D One-Legged Machine

Parameter Metric Units English Units

43.5 in
30.0 in
23.0 in
381bm
2.0 lbm

18:1

Overall Height
Overall Width
Hip Height
Total Mass (Body & Leg)
Unsprung Leg Mass

Ratio: Body Mass to
Unsprung Leg Mass

LlOm
0.76 m
0.58 m
17 kg
0.91kg

18:1

Body Moment of Inertia
Leg Moment of Inertia

Ratio: Body Moment of Inertia to
Leg Moment of Inertia

Leg Vertical Motion
Stroke
Ideal No-Load Stroke Time
Static Force

Leg Sweep Motion
Sweep Angle
Ideal No-Load Sweep Tune
Static Torque
Theoretical Max. Work per Stroke

0.709 kg-m2

0.111 kg-m2

6.4:1

025 m
0.031 s@620kPa
630N@620kPa

Ratio: Static Force to Weight 3.7:1

Theoretical Max. Work per Stroke 160 N-m

3801bm-in2

6.4:1

10.0 in
0.031 s@90psig

140 lb<

3.7:1

14001b-in

1.00rad/0.71rad 57741°
0.069 s@14mPa 0.069 s @2000 psig
90 N-m/136 N-m @14 mPa 800 Ib-in/1200 lb-in @2000 psig
83 N-m 740Ib-in
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2.9 Appendix B: Kinematics of 3D Machine

We define three coordinate frames {W}, {H}, and {B}. Frame {W} is the base coordinate frame, which is

fixed in the laboratory. The origin of frame {H} moves with the hip, but its orientation remains parallel to

{W}. Think of frame {H} as attached to the innennost gimbal of the gyroscope. For {W} and {H}9 z is

aligned with the gravity vector, and positive upward. Frame {B} is fixed to the body. Its origin also moves

with the hip, but {B} changes orientation -with respect to {W} and {H}. The Euler angles that specify the

orientation of {B} are (#y , 6R, 0p). The hip and leg actuators determine the position of the foot in frame

{B}.

Let the vector *X be a vector [ x, y, z, 1 ]T expressed in coordinate frame {P}. The transformation from

coordinate frame {B} to {H}:

HX = (112)

^-cos^sin^p) 0

) -

Transformation from frame {H} to {B}:

(2.13)
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ROLL PITCH

Figure 2-11: DiagTam that shows kinematics of actuators, hip, and leg. Actuator lengths are represented
by wx and w2, and teg length by wL. ^=0.345 m, 12=0.0508 m, Ij=0.0762 m, a=8.46 deg, fi =2718
deg.

Rdatioiiships between actuator lengths and position of foot with respect to the body in frame {B}. See Fig.

2-11, First the forward solution:

= JT(W) (2.14)

Arccos L —^—^ -̂ J + « j

Arccos L - 2 1 *- J + J8 J

The inverse solution:

W = (115)

W = [wFw2,wLf

w.= 1̂  + t? - 2 L1^ cos [ Arccos L — J - CK J
M -w.
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w2= I2 + lj-211

>1
Arccos [

" W L

wL = - I x2 + y2
+ z2

The overall transformations between actuator variables and foot position in {H}:
HXp = £T JT(W) = F^CW) (2.16)

= F(HXF) (2.17)
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3. Control of Trotting and Bounding for a Simple

Planar Model

Karl W. Murphy

3.1 Abstract

This report describes control algorithms for the running and balance in a multi-legged planar model. The
model has two legs and represents the lateral half of a quadruped. We call the model the planar dog. We
decompose control of the planar dog into three parts. The first part controls vertical motions, the second part
controls forward velocity, and the third part controls body attitude. The three parts of the control act
independently of each other, but are coordinated by a finite state sequencer. By simulating the model we
have shown two variations of the control algorithms that result in two different gaits. The first variation uses
all three parts of the control system, and causes the planar dog to trot The second variation controls vertical
and forward motion but does not use attitude control, and causes the planar dog to bound

3.2 Introduction

Animals, including man, demonstrate feats of great mobility. Their legs allow them to move swiftly over
terrain that is either too rough, too slippery, or too soft for wheeled or tracked vehicles. The advantages of
using legs for locomotion are great, but our understanding of how animals use their legs is limited

Previous work on walking has focused on bipeds. Hemami and his co-workers (Ceranowicz, 1979; Hemami
and Cvetkovic, 1976; Hemami and Farnsworth, 1977), have developed a five link planar biped. The model is
controlled using state feedback. The reference positions and velocities come from a movie of a human
walking. Vukobratovic and his co-workers (Juricic and Vukobratovic, 1972; Vukobratovic and Stepaneko,
1973; Vukobratovic and Okhotsimskii,. 1975) modeled a walking biped that balances by manipulating the
projected center of gravity and the support area provided by the feet. Others use a pre-planned sequence for
quasi-static motion (Kato et al., 1981) and tabular control to maintain balance (Miura and Shimoyama, 1980).
These bipeds are all patterned after the geometry of the human, with a small hip separation. The bipeds also
keep one foot on the ground at all times.

Raibert and his co-workers have studied balance in running. They have modeled and built legged machines

that hop on one springy leg. By using only one leg, they avoided the problem of coordinating many legs. The

control system only worries about the problem of balance.

The controller of these one-legged machines used three separate servo loops to control hopping height, body

attitude, and forward velocity. Hopping height was controlled by delivering a thrust with the leg when the

body readied its lowest vertical position during each hop. This thrusting resupplied the energy lost to friction
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and ground impact Body attitude was controlled by torquing the hip during stance when friction keeps the
foot from moving. A linear servo drove the body level. During flight, the forward velocity controller swung
the foot to a position in front of the hip. The foot position determined the forward acceleration during the
next period of stance. This three part controller successfully controlled 2D and 3D one-legged systems.

The success and simplicity of the control systems used for the one-legged hoppers have encouraged us to
study multi-legged systems. Since the problem of leg coupling and coordination was completely avoided with
the one-legged hoppers, several questions arise. What is needed to coordinate the actions of several legs? Can
we generalize the control of a one-legged machine to control of a multi-legged machine? Is balance of a
multi-legged machine similar to balance of the one-legged hoppers?

In order to answer these questions we have devised a planar model with two legs. The model has a long body
with hips at each end. By definition, the model is a biped since it only has two legs. However, our intention is
to represent the lateral half of a quadruped With only two legs and planar motion, the model is not so
complicated as a quadruped moving in three dimensions, but it still allows us to explore the basic behavior of
a quadruped.

We are exploring how ideas originally formulated in the context of a system with one leg can be generalized to
the multi-legged case. Our purpose is to understand how systems with a long body run, and how to
coordinate the actions of several legs. We expect studying this model to help us learn how to control
four-legged systems

3.3 Model

When considered dynamically, legged systems have two primary components, the body and the legs. The
body usually contains most of the mass and provides a place to connect the legs. The actions of the legs must
control the position and velocity of the body. The legs transmit ground forces and moments to the body.

Legs change length and orientation with respect to the body.

Hie model, shown in Fig. 3-1, has a rigid body of mass M- and moment of inertia L. The legs attach to the
body a distance r3 from the center of gravity of the body. Each articulated leg has two links that are modeled

as uniform rods of length D. The lower links have mass ML and moment of inertia L. The upper links have
mass M2 and moment of inertia I2. The simulation" parameters, which are presented in the Appendix, were
chosen to match those we would obtain if we were to build such a machine.

Torque actuators drive the hip joints. While a foot is in the air, the hip actuator orients the leg with respect to
the body, driviag the leg to a desired angle. While a foot is on the ground, the hip actuator sweeps the leg
backward driving the body forward

A position actuator in series with a spring drives each knee. See Fig. 3-2. The position servos in the knees
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Figure 3-1: The planar dog: the model used for simulation and control. The body and the two links of
both legs have mass and moment of inertia. All four joints are simple hinges. Control torque is
generated at both hips. Each knee is driven by a position actuator in series with a spring, (see Fig. 3-2).
The ground is springy in two dimensions. The model is restricted to motion in a plane. See the
Appendix for the values of the simulation parameters.

excite and maintain vertical oscillations. They can also be used to control the body attitude. For simplicity,
the actuators are assumed to be perfect position servos that can act instantaneously. The spring and actuator
configuration, shown in Fig. 3-2, uses a linear spring and actuator. This produces a torque such that the
thrust is proportional to the amount the leg has contracted plus the length of the position actuator. The static
force required to compress the teg to a given length, L, is called the leg thrust T.

(3.1)

where
Ks is the spring constant
Lo is the free length of the spring
P is the length of the position actuator.

The thrust can be decomposed into Wo parts. The first part, Ks (L^ - L), is determined solely by the length

of the leg and is called passive leg thrust The second part, Ks P» is determined by the length of the position
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Figure 3-2: The knee actuator and spring arrangement A given change in length of the position
actuator always results in a proportional change in the total thrust, T.

actuator, and is called active leg thrust The total thrust is controlled by changing the length of the position

actuator. The active thrust can be positive or negative, but the total thrust can never be negative since no

"glue" holds the foot to the ground.

There is a mechanical stop on the knee which is modeled as a stiff spring and damper. The stop keeps the leg
from extending too far by preventing the knee angle, 0t from becoming too small. The stop influences the
knee only when the knee angle is less than a certain amount, 0 < 0 ^ . The location of the stop, 0 ^ , does
not depend on the position of the knee actuator. Extending the actuator while the knee is against the stop
does not extend the leg but instead compresses the knee spring against the stiff mechanical stop. The leg
spring is at rest when the knee is against the stop and the position actuator is at zero length.

The ground is modeled as a two dimensional spring.and damper. One dimension of the spring acts vertically

while the other acts horizontally. The ground produces forces on a foot only when the foot is on the ground,
yfo0t ^ ®" ^ e Yertica^ component of the ground forces are only positive, acting upward. Each time a foot

touches the ground, the zero position of the horizontal spring is reset to the point of touch-down. The

coefficient of friction is assumed to be large enough to prevent the foot from slipping. The compliance of the

ground incorporates any compliance that would normally be associated with the legs and feet of the system.

We find that the model oscillates in two basic modes that correspond to gaits. The first mode is a vertical

oscillation. The body stays level as it bounces up and down. This is trotting. The other mode is a rocking
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oscillation. The center of gravity moves very little as the system rotates back and forth, bouncing on one foot
and then the other. This is bounding. As long as the legs sweep back and forth correctly, the forward motion
has little effect on either of these two oscillations over a large range of running speeds.

3-4 Control

Control of the planar dog has been decomposed into three separate parts, one for vertical motion, one for
forward motion, and one for angular motion. The three parts act independently but are coordinated by a
finite-state sequencer.

Vertical motion is initiated and maintained by thrusting with both legs. Velocity control requires two separate
actions. When a foot is in the air, the leg swings forward a specific distance. When a foot is on the ground,
hip torques that are proportional to the velocity error sweep the leg backward, driving the body forward.
Attitude control tries to keep the body level by controlling the difference in leg thrust A linear servo is used
to drive the body level.

We have explored two variations of the control system. The first variation uses all three control parts: vertical
height control,.forward velocity control, and attitude control. The result is trotting. The second variation only
uses vertical height control and forward velocity control. It does not explicitly control the attitude of the
body. The result is bounding. These gaits are explained in the results section.

The controllers are coordinated by a finite state sequencer that relies on the state of the feet, hips, and body.
Each foot undergoes a period when in the air, followed by a period on the ground. These periods are known
as flight and stance, respectively, and the transitions between the periods are known as lift-off and touch-down*
The center of gravity of the body rises and reaches a maximum height known as top, falls, reaches a minimum
height known as bottom, and then rises again. There is a top and bottom associated with each of the two hips,
as well as with the center of gravity of the body.

The relative timing of state transitions is not constant, but varies from gait to gait For example, when
bounding, one foot will touch-down and lift-off while the other foot remains in the air. A transition may
occur twice in each cycle. For example, when bounding, the center of gravity of the body peaks and bottoms
twice in each cycle.

We now examine the three parts of the control system in more detaiL

3-4.1 Vertical Control

Control of hopping height is very simple for a one-legged hopping machine. Thrusting with the leg

resupplies the energy lost on each hop due to friction and ground impact The planar dog uses a similar

method. A leg thrusts a constant amount when its hip reaches bottom. Thrusting is accomplished by

lengthening the leg position actuator. The time when the thrust is delivered is determined independently for

each leg.
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3.4.2 Velocity Control

The concept of the CG-print, the locus of points over which the center of gravity passes while the foot is on

the ground, was used in the control of one-legged hopping machines. For a multi-legged system, we also use

the idea of a hip-print. The hip-print is the locus of points over which the hip passes while its foot is on the

ground

When the feet are placed in the center of the hip-prints, the machine spends the first half of the stance period

accelerating backward and the second half accelerating forward. In this case, a system slows down during the

first half of stance and speeds during up the second half. This leaves the velocity at take-off about equal to

the velocity at touch-down. See Fig. 3-3.

X L O " X T D

• h*p-H

Flgire 3-3: Time sequence of the rear hip *ow$ the lop-prim of length L m . While in the air, the foot
strings in front of the Mp a horizontal distance Ax. By placing the foot to the center of the hip-print,
Ax = LfjpfX the dog ^>ends the same amount of time accelerating backward as it does accelerating
forward, JFOTWOTI velocity, x k thus left almost unchmged.

We estimate the length of the hip-print as:

(32)

where
x is the forward velocity

is the duration of stance.

During flight, the foot should be positioned in front of the hip a distance
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Ax = — a . (33)
2

To accomplish this, the angle that the leg should make with the vertical is

<pd = sin^i-ii] (3.4)

where
<pd is the desired leg angle and
LQ is the rest length of the leg..

During flight, the hip torques drive the leg to the desired leg angle, qpd, using a linear servo:

T = Kp (<p - <pd) + K^ <p (3.5)

where
K andKv are position and velocity gains.

This algorithm for placing the foot provides no velocity stability. The planar dog must be able to change and
maintain a desired velocity. Accelerations could be accomplished by placing the foot in front of or behind the
center of the hip print This is what the one-legged hoppers do. However a better method for the planar dog,
one which allows larger accelerations, is to use hip torques while a foot is on the ground. Hip torques drive
the legs backward and the body forward. This torque, r, is set proportional to the error in forward velocity:

r = K6(i-id) (3.6)

where
xH is the desired forward velocity.

3.4.3 Attitude Control

Attitude control attempts to keep the body level at all times by differential thrusting with the legs. This

method relies on the fact that vertical ground forces cause significant moments on the body. When the fast

are positioned an equal horizontal distance from the center of gravity, the sum of the vertical ground forces

affects the vertical acceleration of the body, while the difference in vertical forces affects the angular

acceleration. Increasing the thrust of one leg while decreasing the thrust of the other leg produces a control

moment on the body. If the magnitudes of the increase in thrust and the decrease in thrust are equal, die

vertical oscillations are unaffected.
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The body is driven level using a linear servo. The active thrust of each leg changes to produce a control

moment on the body. The change in length of the position actuators, Ap, is:

13 / 3 (3.7)

where
#3 is the body attitude
63 is the body angular velocity
Kx is the position servo gain and
K2 is the velocity servo gain.

These changes in the length of the position servo are added to the change required by the vertical control.
Differential thrust is applied only when both feet are on the ground, because an increase in thrust in one leg
must be accompanied by a decrease in thrust in the other leg.

3.5 Results

To test these control algorithms and to evaluate their performance, we simulated behavior of the planar dog.
The equations of motion were developed and then integrated numerically.

3.5.1 Trotting

The first variation of control uses all three control parts, vertical, forward velocity and attitude control. The
attitude controller keeps the body level. The result is shown in Fig. 3-4. An initial error in body attitude of 5°
was corrected in one cycle.

With active attitude control, the model can accelerate quickly. In Fig. 3-5, the planar dog started with no
forward velocity. In two cycles, it accelerated to the desired velocity of 2 ni/sec. and maintained this speed
during stable running- The four stick figures at the top of Fig. 3-5 show a complete cycle. The first figure
shows the planar dog when the front foot touched down. The body .angle at this point was the largest of the
entire cycle. By the time the body center of gravity bottomed, shown in the second figure, the body had been
driven kvel using differential thrust The body was kept level during the remaining part of stance until

ift-off, shown in the third figure. After lift-off, the legs were swept forward* causing the body to pitch aose

downward The forth figure shows the planar dog a little after the body center of gravity peaked.

The resulting p i t is similar to the trotting of a four-legged animal Trotting is a gait where the system

bounces alternately oa diagonal pairs of feet The two pairs operate 180° out of phases, Each leg in the

planar deg represents oae of the diagonal pairs of legs on a four-legged animal

The speed at which the planar dog can trot is limited. As the model trots faster, the legs sweep a greater

distance forward, causing the body to pitch more during flight During the following stance period, a large

differential thrust is required. When this becomes too large, the desired total thrust of the front leg becomes
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P1 (rear leg)
?2 (front leg)

i 2
TIME (sec)

Figure 3*4: Hopping with attitude control. Differential leg thrust corrected an error in body attitude. A
constant leg thrust maintained hopping height During the first cycle, the body angle was driven to zero
by the differential thrusting. On the remaining steps, thrusting maintained the vertical amplitude. The
graph of thrust shows the change in the length of the position actuator of each leg which was
proportional to the active thrust

negative, which is impossible to achieve, and the foot is pulled off the ground. However, this in itself does not
cause the planar dog to crash. The.front foot is off the ground for a very small amount of time which has
practically no effect on the behavior of the dog during that stance period. What does matter is that the timer
which records the time of stance, T^, is reset During the following flight phase, the front foot is swung to the
estimated center of the hip-print which is calculated using the wrong T . The front leg swings only half the
distance that it should, and during the following stance period, the planar dog trips and falls.

This problem can be corrected by several methods. Limiting the active part of thrust so that the desired total

thrust does not become negative will keep the foot on the ground. A check can be made before resetting the

timer. The desired body attitude can be varied during stance so that a large correction is not required at

touch-down. We have not yet implemented these methods.

If the model had four legs instead of two, then the pitching of the body while trotting would be significantly

reduced. There are two reasons for this. First, when one pair of legs is in the air, the other pair is on the

ground keeping the body level. Second, the two pairs swing 180° out of phase from each other. When one

pair is swinging forward, the other pair is swinging backward. The legs can pull or push against each other

without affecting the body.
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FigEre3-5: The ck^ trottimg. Hie legs used a constant thnist for Yeitica! ccmtool with differential thrust
fiar attitude control Etaiing fl^ht, each fool swung forward to the estimated center of its hip-print
During s£aneet hip torques corrected the forward velocity. Hie errors in 0~ occurred when the feet left
the ground and the legs were swept forward. Th« caused the bocfy to pitch nest downward.

3.5.2 Bounding

The second variation of control uses only two of the three control parts, vertical aad forward velocity control

Tbk variatioa does not actively control the body attitude. The result is the planar dog bounding.

The behavior of the system and the stability of bounding is shown in Fig. 3-6. The dog was dropped with a

snail initial body attitude. A random pattern of bouncing began. After three seconds the model stabilized in

a rocking oscillation. The feet were striking the ground 180 degrees out of phase from each other. The center

of gravity remained nearly stationary as the body pitched back and forth. We are not sure why the dog

stabilized in this manner. This stable oscillation was observed with a wide range of values of I y the body

moment of inertia.
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3 4 5
TIME (sec)

Figure 5-6: Hopping without active attitude control. Each leg thrusted independently when its hip
reached bottom. A constant thrust was used. The desired velocity was set to zero. At first there was a
random pattern, but it was soon replaced by a stable pattern of bouncing from one foot back onto the
other. The center of gravity remained nearly stationary while the body pitches back and forth.

Control of forward velocity while bounding is shown in Fig. 3-7. With the planar dog bouncing as described,
we slowly increased the desired velocity. The model accelerated up to speeds of 5 m/sec (11 mph). Slow
acceleration did not affect the pattern of bouncing from foot to foot

This pattern of running closely resembles the bounding of four-legged animals. Bounding is a gait where the

front pair of legs move together and the rear pair move together. The two pairs operate 180° out of phase

from each other, one pair touching down and lifting off while the other pair remains in the ain Each leg of

our two-legged model represents a pair of legs of a bounding quadruped.

The planar dog needed to stabilize in the bouncing mode before accelerating. When large accelerations were

attempted, the pattern of bouncing from foot to foot broke down. The front foot stayed on the ground and

could not swing forward. This caused the" planar dog to trip and fall However, when the acceleration was

small, the dog stayed in the bounding pattern and large velocities were achieved
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Figure 3-7: Bounding, The model stabilized in the bounding pattern and accelerated slowly to 5 m/sec
(lOmpti). As tfee s|>eed maease4 boppiug height decreased and fee dog eventaaiy stubbed its toe and
tripped.

There was a limit oa forward velocity. As the model bounded faster, the height of the body crater of gravity
decreased along with the magnitude of the angular oscillations* These two factors reduced the ground
clearance of the foot as if swung forward Eventually, the planar dog stubbed its toe, tripped, and feU This
can be collected by either stiffening the knee springs or by contracting the leg before swinging it forward.

3.6 Discussion *

3-6., 1 Control Strategies

The two lep of the planar dog operate separately while bounding. The control for one leg does sot depend

on the actions nor the slate of the other teg, Each leg can be seen as controlling its own hip. This conjures the

im^ge of a pair of one-legged hoppeB joined together. If this controller were extended to a quadruped, we do

not know whether all four legs could opcraie separately or If the two front legs and the two rear legs must be

coordinated to achieve a bound
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Unlike bounding, the control for trotting does not totally separate the actions of the two legs. The attitude
control requires synchronized action from both legs. Differential thrust is used only when both feet are on
the ground. Although the controllers for the vertical motion and the forward velocity separate the actions of
the legs, they need not. For example, since the body is nearly level at bottom, the body center of gravity
bottoms at about the same time as both hips. Thus the legs could thrust when the body bottoms without a
noticeable effect

This ability to combine the control of the two legs conjures the image of a one-legged hopping machine with a
very big foot The rear leg could be considered the heal of this large foot and the front foot could be
considered the toe. The idea of combining the control of two legs into one might simplify the ideas of
trotting. We would view a four-legged machine as a two-legged machine. The machine would have two big
feet and would run much like a human runs on its two smaller feet

3.6.2 Failure of Hip Torque for Attitude Control

We tried a second type of attitude control. This method used a similar technique to that used by the
one-legged hopping machine. A hip applied torque while the corresponding foot was on the ground in an
attempt to servo the body angle to zero. This method did not work for the dog. We don't know why. We
believe that if the hips were much closer together and that if the moment of inertia were smaller, then attitude
control using hip torque would be effective. This case is equivalent to the one-legged hopping machine.

3.7 Conclusions

The goal of this work is to begin exploring control of multi-legged systems. We developed a planar model
that represents one lateral half of a quadruped. Having only two legs reduces the problem of coordinating
many legs but still allows study of simple gaits. A long body allows the model to imitate the prominent
motions of a four-legged machine.

Control of the planar dog was decomposed into three separate parts, one each for vertical motion, forward

motion, and angular motion. Vertical motion was initiated and maintained by thrusting with both legs.

Velocity control required two separate actions. When a foot was in the air, the leg swung forward a distance

determined by the forward velocity. When a foot was on the ground, hip torques proportional to the error in

forward velocity acted to stabilize velocity. Attitude control actively drove the body level by changing the-
difference in thrust between the two legs. The three parts acted separately and were coordinated by a

sequencer.

Two variations of the control system were explored which resulted in two different gaits, trotting and

bounding. The first gait, trotting, resulted when all three parts of the controller are used, The body stayed

level as it bounced. The second gait, bounding, resulted when active attitude control was not used The

model stabilized in a mode of bouncing from one foot to another. Small accelerations could be accomplished

without disturbing the bounding pattern. The mode! ran at speeds of 5 m/scc. The fact that the dog bounds
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with such a simple control system suiprised'us. We are currently trying to understand why the dog is stable in
this gait
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3.8 Appendix. Simulation Parameters

Symbol

Body:

h
r3

Upper Link of Leg:

D

Lower Link of Leg:

Description

Mass
Moment of Inertia
Distance from Hip to CG

Mass
Moment of Inertia
Length

Mass
Moment of Inertia
Length

Spring and Damper Constants:
Kg Linear Leg Spring Constant
KG Ground Spring Constant
Br Ground Damper Constant •

Control Gains:
Differential Thrust Proportional Gain
Differential Thrust Differential Gain
Velocity Error Hip Torque Gain
Hip Proportional Gain
Hip Differential Gain
Constant Thrust for Vertical Control

Value

30.0 kg
4.0 kg m2

0.5 m

1.0 kg
0.008 kg m2

0.3 m

0.25 kg
0.002 kg m2

0.3 m

8.0 kN/m
50 kN/m
150kNs/m

2.0 m/rad
0.08 m sec/rad
40.0 N s
150 N m/rad
2 N m sec/rad
0.015 m
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4. Design and Construction of a Four-Legged

Running Machine

H. Benjamin Brown, Jr. and Marc H. Raibert

4.1 Introduction

For several years our research on legged locomotion has focused on balance problems, while vigorously
avoiding the coordination problems that are faced by systems with more than one leg. We have begun to
address the problem of coordinating the actions of many legs through analysis and simulations, as described
in Chapters 3, 5, and 7 of this report. It is now time to do some experiments.

For this purpose we have designed a small running machine with four legs. Figure 4-1 is a sketch showing the
general configuration. The machine will be roughly the size and shape of a large dog. Unlike previous
quadruped designs (Mosher, 1968; Frank, 1968; Hirose and Umetani, 1980), we intend for this machine to be
fully dynamic. It will actively balance itself and employ ballistic flight phases, like those observed in animals.

With this experimental apparatus we plan to take ideas originally formulated in the context of systems with
one leg, and to generalize and extend them to systems with several legs. Our intention is to show how gaits
like the trot, the gallop, and the bound, and perhaps entirely new gaits that have not yet been discovered by
natural systems, can be understood in terms of the simple concepts that emerged with the one-legged systems.
Of course, new ideas that were not revealed in the one-legged work are also likely to emerge.

4.2 Design Goals

Five major decisions were made early to guide the design:

• The machine will have four legs.

• The machine will have a preferred direction of travel.

• The machine wiU use hydraulic power with proportional servo valves to power the hip motions
and leg thrust

• The machine will not carry its own power supplies nor its own computing.

• The machine will reuse as much design from the 3D one-legged machine as possible.

The decision to build a system with four legs, rather than two or three is difficult to justify. One reason for

going to four legs is thai the machine will provide a very rich set of behaviors. We believe that biped running

is easily understood in terms of the one-leg results. But a machine with four legs offers the possibility of

studying double, triple, and quadruple support phases, as components of ninaing.
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FRONT/REAR VIEW

Figure 4-1: Diagram of four-legged running madme thai is under construction. like our previous
designs, &e machine will cany neither its power supply nor computing. The legs are 0.6 m long. The
lateral Mp separation is 0.24 m, and the longitudinal separation is 0.8 m. The machine will weigh about
35 Kg, FXDQS and rear view above. Side view oppocite.

related to the number of legs. The weight overhead of the body is shared among the legs. For instance, even
though the foorlegged machine we are building hats fair times as many legs as the 3D one-legged machine,
and each leg is heavier, the four legged machine wil weigh only about twice as muck We believe that most

useful legged vehicles of the future will have at lease four fegsL

A narrow body is a primary attraction of legged systems that balance. In order to have a narrow body, the legs

must be placed near each other. However, in order to mm fast, there must be a clear place for the legs to

swing in the direction of travel, without hitting other legs. These two requirements are satisfied by placing the

legs in pairs at opposite ends of the body. This results in a long body that can move fast in one direction, with

limited travel in the other. Of course, other arrangements of legs are possible. For instance, It is not clear

what would be wrong with putting all the legs in one long row.
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SIDE VIEW

HIP GIMBAL
(2 DEGREES OF FREEDOM)

SPACE FOR HYORAUUC ACCUMULATORS
& OTHER COMPONENTS

7 7 7 7 7 7 7 7 7 7 7 / / / /

For the one-legged systems we have studied, it was possible to permit the bouncing motion of the body on the
leg to proceed naturally, without being too concerned with the fine details of the motion. Since only one foot
touched the ground at a time, the direction of the ground force was not influenced by the detailed pattern of
leg thrust, and the leg thrust did not directly affect the attitude of the body. Therefore, on-off valves and a
pneumatic actuator were adequate for control.

In multi-legged systems, legs will sometimes act jointly to deliver thrust and torque on the body. It will also
be necessary to shorten the leg rapidly during recovery, in order to avoid stubbing the foot In order to.
provide a more controllable thrust we designed a leg that thrusts with a hydraulic servo actuator. It retains a
pneumatic spring for storage of bouncing energy.
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4.3 Leg Design

Most of the work that went into the design of the four-legged machine went into the design of the legs. The
requirements for a leg to be used in a system with more than one leg are different from those to be used in
systems with just one leg. The most important difference is that the leg of a one-legged system need not
retract during flight in order to swing forward for recovery. Since there is only one leg, it is recovered at the
peak of the hop when there is plenty of clearance. In a multi-legged system it will be desirable to recover legs
while other legs provide support. This means that the legs must shorten substantially to recover without
hitting the ground. We also want to do more work on leaping over obstacles. To clear an obstacle it is
desirable to shorten the legs during flight, and then have time to lengthen them again before landing. This
requires rapidly controlled leg length.

POSITION SENSING
ELEMENT

•ACTUATOR ROD

HYDRAULIC SERVO

FOOT »¥ITCM
MCGHAMftM

2: Schematic dtagmm of leg to be used to four^kggeil machine. It consists of a servo
cwiHolM hydnaitic actuator in series with a» air spikg.

The fourlcgged machine will use its legs jointly fa pairs, 'threes aad perhaps all four, to simultaneously push
upward and forward on the body. In order for that to work, the control system must be able to control the
precise force delivered by the extension motion of the legs. The simple air cylinder leg used In our previous
designs would not be adequate for the four»leggcd machine. In particular, it cannot shorten and lengthen
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rapidly, it requires large control valves, it uses compressed air very inefficiently, and it does not provide

precise control of axial thrust. On the other hand, the air spring concept worked well, and we wanted to retain

this feature.

We established a set of specifications to guide design of a new leg:

• The leg would be about 0.6 m long, from foot to hip.

• The leg must be able to change its length by about 0.2 m,

• The leg must lengthen fast enough under load to produce a 0,2 m jump,

• The leg must generate an axial thrust of about 80kg,

• The unsprung mass should be minimized.

We chose a configuration with a linear hydraulic actuator in series with a passive air spring. We put the air
spring near the foot to minimize the unsprung mass.

Figure 4-3: Prototype leg to be used in dynamic quadruped Photographs show leg assembled and
taken apart The prototype was tested in the 3D one-legged machine.

The basic idea of the leg design is to take advantage of the high servo performance of a hydraulic system, and

the compliant nature of a pneumatic system. See Fig. 4-2. The hydraulic actuator serves to determine the free

position of the pneumatic spring. The hydraulic system permits, the leg to change length quickly, and to

deliver substantial force. The pneumatic system will permit the leg to store kinetic bouncing energy with

good efficiency, while the hydraulic system should permit precise positioning during stance to control the

forces delivered by each foot

Details of the leg design are given in Figs. 4-3 and 4-4. The design consists of a set of concentric aluminum
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tubes of various diameters and lengths. A 3/8 inch diameter steel actuator rod at the centerline is driven by a
1/2 inch diameter piston, bonded to the rod, inside a hard-coated aluminum cylinder. The lower end of the
rod attaches to a second piston, 1-1/8 inch diameter, that forms the upper enclosure of the air spring. The
upper end of the rod drives a wiper along a linear position-sensing element

Two concentric tubes outside the cylinder tube provide oil flow to and from the lower end of the piston and
lower case drain. The upper ends of all three cylinders connect to a manifold block, that has passages for
supply and return oil, and for actuation oil from the valve. It also has mounting ports for the servo valve and
pressure transducers. To minimize friction, high-pressure hydraulic seals are formed by the annular
clearances at the piston and rod bushings. A case drain and Oring seal, outboard of each rod bushing,
prevent external leakage.

Outside the hydraulic actuators are two additional tubes. The inner of these, the leg tube, attaches to the foot
and forms the cylinder portion of the air spring. The outer tube mounts to the manifold block, and has guide
buttons that constrain the leg tube to move linearly. The guide tube also carries an alignment block that
prevents leg twisting, and a wiper that slides on a linear position sensing element attached to the outside of the
leg. A rubber cushion on the bottom of the foot softens foot impact, and provides good traction. The foot
contains a switch mechanism to sense ground contact

The hip inner pivot is an integral part of the manifold block. Supply and return oil will be fed to and from
the manifold block through passages in the hip gimbals. This allows the hip joint to be kept quite compact,
and minimizes flexing of hoses. There are provisions for hydraulic pressure transducers to be mounted in the
manifold block, to measure pressures oa both sides of the hydraulic piston. A transducer may also be used to
measure pressure in the air springy These transducers are primarily for data acquisition, although use in
control is possible.

4.4 Hip Design

The second major consideration in the design of the machine was the choice of actuators to drive the hip.
Based OE experience with the 3D hopper, and analyses performed previously during the design of thai
machine, only hydraulic actuation was considered. Rotary hydraulic actuators would have been appropriate
for at least one axis of hip rotation. However we decided to use the linear actuators that we had designed for
the one-legged machine, rather than to delay the project while we designed and tested a new actuator.

We could not find a reasonable alternative to a two-axis gimbal arrangement for the hip. We decided to use

anti-friction ball bearings rather than sleeve bearings, to minimize friction and free play in the joints. We

wanted the leg to swing more than ±}(f in the fore and aft directions.

The machine clearly has a preferred direction of travel, so the X and Y behavior of the leg did not need to be

the same* We decided to keep the machine symmetrical left-io-right, md to have no skew in the fore and aft
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Figure 4-4: Details of kg design.
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leg motion. Therefore, there is no lateral asymmetry of the fore/aft leg motion. We also wanted to keep the
machine as narrow as possible, both overall and at the hip centers, to enhance the forward mobility of the
machine. The arrangement shown in Fig. 4-1 provides attachments for the fore/aft actuators directly to the
leg below the hip joint. The transverse actuators drive the leg through the gimbal. This arrangement permits
the transverse actuators to be overlapped as shown, with no significant deviation from lateral symmetrical
performance. This configuration results in, a minimum overall width of approximately 0.33 m, and an overall
length of about 1.0 m. The hips are spaced closely enough so that the feet can reach either side of the
machine's centerline.

The frame was designed to give good torsional stiffness and strength, to provide mounting areas and
protection for on-board components, and to provide convenient places to hold onto the machine during
experiments. The equipment mounted on the frame includes two hydraulic accumulators, hydraulic
distribution manifolds, two gyroscopes, and electronic interface boards. With twelve hydraulic actuators, hose
routing and manifolding must be carefully planned to minimize hydraulic leaks, to make repair possible, and
to look nice. The electronic interface boards will be similar to those used on the 3D hopping machine.

At the time of this writing, construction of the machine is well under way. We expect the machine to be
assembled by February 1984, and to see it running in late Spring,
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5. Is Gait a Coupled Oscillation?

Jeffrey Koechling

5.1 Abstract

We explore the idea that gait is determined by coupled mechanical oscillators. Our model has two springy
legs attached to a rigid body. We analyze three modes of oscillation of the model: bouncing, rocking, and
swaying. Computer simulations of the model show both the bouncing and the rocking modes. By tuning the
model to adjust the relative amplitude and frequency of these modes, we hope to show changes in the motion
of the model that are analogous to gait transitions in animals.

5.2 Introduction

Multi-legged animals use different gaits to move at different speeds. For example, a cat will use a walk below
one mile per hour, switch to a trot around two miles an hour, and gallop at over ten miles an hour (Pearson,
1976). This sequence of gaits is typical for four legged animals.

We want to understand the mechanism that determines what gaits are used and at what speeds gait transitions
occur. Our working hypothesis is that the mechanical system determines the gaits and gait transitions
observed in animals. The legs and bodies of animals are composed of tissue having mass, stiffness and
viscosity. This tissue forms coupled mechanical oscillators with natural modes of oscillation. These natural
modes of oscillation correspond to the gaits that the animal uses.

We have modeled a planar system with two legs connected to a rigid body. We want to "pluck" the system in
different ways and see it exhibit different motions. We would like to show that the mode of oscillation of the
model depend on its initial state. By varying the parameters of the model, we can see how varying the
stiffness of the legs alters the natural modes of the model. The idea is to demonstrate that a system with
characteristics similar to those found in nature can change from one pattern of motion to another, without
being explicitly forced to do so..

We have implemented a simulation of the model and made it run. The stiffness of the l c ^ and the stiffness of
the hips determine the phase and amplitude relationships between the bouncing and rocking modes of

oscillation. By varying these relationships, we can affect the stability of the model and the pattern of motion

of the legs. We have not yet achieved a clear cut gait transition, but we are making progress toward that goaL

In section 5.3 we briefly review some ideas about coupled oscillators in the control of locomotion. In section

5-4 we describe the model, and in section 5.5 we analyze the oscillations of the system. In section 5.6 we

present some data from both stable and unstable simulations, Finally, in Section 5.7 we discuss the meaning

of these preliminary results and some ideas for farther work.
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5.3 Background

We do not know bow gaits are chosen, nor do we know the source of the pattern of motion that characterizes

each gait Here are some of the possibilities:

1. There are neurons in the central nervous system that generate a pattern of nerve impulses. The
limbs are driven in this basic pattern, subject to mechanical limitations. The gait changes when
this neural pattern generator begins producing a different pattern (Wilson, 1966; Wetzel et al.,
1975).

2. There are several control systems that interact to produce the characteristic motions of the gait,
much like the controllers used in our laboratory machines. These controllers can be open loop
systems* like the pattern generator mentioned in 1 above, or closed loop systems with sensors in
the limbs and feedback paths through the central nervous system. A gait change results from a
change in the phase relationships among the controllers. This is a case of neural coupled
oscillators (Pearson, 1976).

3. The animal's bones, muscles and tendons form a mechanical system. This system has certain
characteristic modes and frequencies of oscillation that depend on the mass, stiffness, and
viscosity of the tissue. Each of the natural modes of oscillation corresponds to a different gait, and
is best suited for moving at one speed. When the animal tries to change speed by forcing its legs
and body to oscillate at a different frequency, the system moves less efficiently. When the motion
approaches a frequency that is characteristic of a different natural mode, the pattern of motion
changes to that gait This is a case of mechanical coupled oscillators, as opposed to the neural
coupled oscillators in 1 above (Alexander, 1974; Alexander and Vemon, 1975).

4. The mechanical system has natural modes of oscillation, as in 3 above, but the nervous system
controls the mechanical properties of the muscles. Altering the stiffness and viscosity of the
muscles changes the natural modes of oscillation. Rather than force the system to go faster or
slower until it switches to a different gait, the nervous system adjusts the mechanical system to
oscillate with a gait and frequency that results in the desired speed of locomotion.

The idea that coupled oscillators control gait is not new. Much of the previous work that we are aware of has
been done by neurophysiologists, and concentrates on spinal oscillators, as in 1 above, or on peripheral-spinal
oscillators, as in 2 above. We are investigating the last two possibilities, 3 and 4 above.

5.4 The Model

Hie model is planar, free to translate vertically and horizontally, and to rotate in the plane. Two springy legs

are attached to the body by springy hips. There art five rigid links altogether, each of which has mass and

mxmmt of inertia.

The legs are not articulated Ike biological legs. Instead they have a sliding "knee", like a telescope. This type

of leg has different dynamic properties from an articulated leg. Kincmatically, it performs the same function.

Both types of legs change tie distance and direction of the foot from the hip. We find telescoping legs to be

very effective on physical machines that we cipcrimcnt with In the laboratory*
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7/ /// 7 / / / / /
Figure 5-1: The model has five rigid links and four springy joints. The length of the legs can change, as
can the angle of the legs with respect to the body. The links all have mass and moment of inertia.

Between the lower part and the upper part of each leg there is a spring and a damper. These springs and
dampers apply forces that lengthen or shorten the leg. Between the upper part of each leg and the body, there
is another spring and damper. These apply torques that change the angle between the leg and the body. The
springs and dampers can be thought of as analogs to the groups of muscles that apply forces to biological legs.
A muscle can be modeled as a spring, a damper and an active force generator. Fig. 5-2 shows the springs,
masses and dampers symbolically.

In a physical machine or organism there are kinematic constraints that restrict the range of motion of each
joint. In this model, there are stops that impose a maximum and minimum length on the legs. When the leg
reaches the maximum or minimum length, it hits a stop. The stops are very stiff springs in parallel with
dampers. There are no stops to restrict the angle of the leg with respect to the body.

Legged locomotion requires interaction with the ground. Reaction forces occur whenever the feet are in
contact with the ground. We have used a stiff spring and a damper to represent the combined compliance of
the ground and the foot When a foot touches the ground, the spring and damper in the ground become

active, pushing back on the foot The spring applies forces tending to drive the foot to the point of initial

contact with the ground. If the foot is slightly below the surface and moving toward the surface, this model of

the ground can produce small negative vertical reaction forces. This happens when the damper force away

from the surface exceeds the spring force, toward the surface. The result is a net force that tends to hold the

foot onto the ground. This "sticky ground" is unrealistic, so any negative vertical component of the reaction

force is set to zero.

The principal motion of the model is a cyclic vertical bouncing. When the model is not on the ground. It is

pulled downward by gravity. The feet hit the ground, and the legs compress, slowing the descent and

accelerating the body upward. The model leaves the ground, and its ascent is slowed by gravity. This cycle
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Figure 5-2: This figure shows the model as a collection of springs, masses, and dampers. The springs
and dampers at the hips produce torques that are proportional to the angle and angular velocity of the
Mp.

repeats as long as the legs remain under the body and there is enough total energy for the model to leave the
ground The vertical bouncing cycle is described in detail on section 5.5.

During the vertical bouncing cycle, the model dissipates energy. There are losses in the dampers, and impacts
with the ground, and with the stops- When an impact occurs momentum is conserved and energy is lost In
order to operate in a steady state, we add energy to the model. When a leg reaches its minimum length and
begins to' lengthen, we increase its equilibrium length. The effect is the same as, having an actuator compress
the spring, adding potential energy to the system. We only add energy to a leg when the foot is on the

ground. Once the foot leaves the ground we return the equilibrium length of the leg to the original value.

In Appendii A we develop the equations of motion for the model and outline the way that we solve them.

Appendix B is a list of the parameter values used for the simulations in this report
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5.5 Modes of Oscillation

The model described in Section 5.4 has three modes of oscillation, as shown in Fig. 5-3. Vertical bouncing*
where the legs remain vertical and the body remains horizontal, dominates the motion of the system. When
both feet are on the ground there is a see-saw rocking mode, in which the legs remain vertical, but one is
getting shorter while the other is getting longer. In this mode, the body rocks like a see-saw. Finally there is a
swaying motion where the system resembles an inverted pendulum. In this mode the body remains level
while the legs pivot about the feet

Bouncing

I
Rocking

Swaying

Figure 5-3: These are the modes of oscillation of the model

In this section, we make some simplifications and then analyze each mode. One simplilcatioE is that we look

only at the cases where either both of the feet are on the ground or neither of the feet are on the ground.

When both feet are on the ground, we consider the model to be a linear second order oscillator. We took

most carefully at bouncing, solving the equations of motion for a complete cycle. For the rocking and

swaying modes, we find the natural frequency and the damping ratio.
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5.5.1 Vertical Bouncing .

We need to define some terms to talk about the vertical motion. When the feet are on the ground, the model
is in the stance phase, otherwise it is in the flight phase. The transition from flight to stance is called
touchdown, the transition from stance to flight is called liftoff. The lowest point in the cycle, bottom, occurs
during stance. The highest point in the cycle, top, occurs during flight See Fig. 5-4.

When the body is level and bouncing straight up and down, the model alternates between harmonic motion
during stance and ballistic motion during flight From touchdown though lift-off the motion is that of a
damped spring-mass oscillator. The motion changes slightly when the model reaches bottom and begins to
accelerate upward. This is because we change the equilibrium length of the legs to add energy to the system;
From touchdown to bottom the vertical motion is described by the second order differential equation:

- my - 2by - 2k (y - y^ - mg = 0 (5.1)

where
m is the sprung mass of the model

(Everything except for the lower legs),
b is the damping coefficient of the legs,
k is the spring constant of the legs,
y is the body height,
y0 is the rest length of the legs.

Solving (5.1) gives the following expressions for the height and vertical velocity:

y = y o ~ 4 + e ' K ^ V {Asin[«*d(t- tjl + B«s[«d(t- OH (5.2)

y = C-f «nft

where

A = (-i)f(yM + r^Gfc-yo + T » (5.4)

o - yM (S.7)

t^j is the time when touchdown happens.
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is the height of the body,
is the vertical velocity at touchdown, and

J 2b
"a = J • * r

Xm 2
When the model reaches bottom the velocity is zero. The time to reach bottom, t^ is obtained by setting
(5,3) equal to zero.

= ^ + (-1) atan( . V t d ) (53)

At ^ the rest length of the legs changes from yQ to y*Q. The equations of motion for the remainder of the
stance phase are:

y = yo ~ 75 + e"r"n(l" ^ {E s i n K ( t " V1 + F c o s [ w«i ( t ~

^ e - K ^ - V l G s i n f c o ^ t - g j } • (5.11)

where

E = ^ a ( y b - y ; + i 5) . (5.12)

(5.13)

G = — D (y h -yn + -^> (5-14)

Lift-off and touchdown both occur with the legs at maximum length. When the legs extend to y^ the stops
that establish the maximum leg length hit the lower leg and accelerate it upward. Momentum is conserved
during the impact, and energy is dissipated. The vertical velocity of the body decreases by the ratio between
the sprung mass of the model and the total mass. The sudden reduction in velocity can be seen as a notch on
the phase plot in Fig. 5-4. Setting (5.10) equal to y^ gives a transcendental expression for the time of lift-off,

V {E s h l K (tk> ~ «b» + F C O S K Gb " «b>D <5 J 5>
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where E and F are given by (5.12) and (5.13).

30
-10 L0 2.0

3T) (m/sec)

Figure 5-4: The vertical position of the center of gravity of fee body is plotted along the vertical axis,
and fee vertical velocity along the horizontal axk The upper part of the plot is parabolic, the motion of
a body experiencing the coastal acoekatka of gmvity. The tower pan is harmonic, the motion of a
spriag mm osriUator, Note tie notch caused by ttekipacfctftliertc^tgaiiia the tower legs. This
phase plot is from sfanubuion r319.S aad *ows seven! cycles of vertical bouncing. The model
p tmnt tmar t Media AppeadkBL

OECC lift-ofThas oau i re i the vertical motion is described by;

- M y - M g = 0

where M is the total m^ of the system.

(5.16)

Solving (5.16) gives:
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(5.17)

(5.18)

In Table 5-1 the vertical motions predicted by this analysis are compared with those measured from a
simulation. Most of the values differ by less than 3%. The velocity just after lift-off, y*, differs by 10%. We
attribute the discrepancy to differences in the modeling of the compliance of the ground and the stops. In the
simulation these are modeled as stiff (k = 50000 N/m) springs, while in the analysis they are modeled as rigid
constraints,

Quantity Analysis

10.260 rad/sec
0.0256
10.256 rad/sec

-1.981 m/sec
0.202 sec

0397 sec
0.305 m

0.587 sec
2.01 m/sec
1.901 m/sec

0.976 seconds
0.774 seconds

Simulation

-1.962 m/sec
0.200 sec

0.400 sec
0301m

0.600 sec
2.03 m/sec
1.735 m/sec

0.980 seconds
0.780 seconds

Natural Frequency, *o
Damping Ratio, £
Damped Frequency, o

Velocity at Touchdown, y1

Time at Touchdown, t ^

Time at Bottom, t^
Position at Bottom, yb

td

Time at Lift-off, ^
Velocity before Lift-off, yj
Velocity after Lift-off, y *

Time at Touchdown, t ^
Period

Figure 5-1; This table 'Compares the vertical bouncing motion obtained from the numerical srainlatktt
with that predicted by the analysis in this section. The smtiJ&tkm data arc from simulation rJ19.L Tbe
mode! was dropped from 0.2 meters with the body level "Hie parameters of the model are listed m
Appendix B.

5.5.2 Rocking

When the feet are on the ground, the model forms a tcrsional oscillator. When the body is perturbed from

the horizontal by an angle $t a restoring torque is generated by the hip springs and by the differential forces

in the leg springs. Using the small angle approximation, the equation of motion is;
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O (5.19)

where

T — T 4- up
I _ i b +

per lee

s is the distance from the body center of gravity to the hips,
B is the damping coefficient at the hip, and
K is the spring constant at the hip.

The oscillation will be characterized by:

2B + H 2

— 7 S 5 • - d "«".
5.5.3 Swaying

In this mode of oscillation, the legs remain at a constant length while they pivot about the feet, and the body
remains level. Again we use the small angle approximation, and the equation of motion is:

- 16 - 2M - (2K - 2mjgr - m^)0 = 0 (521)

where

I = 2IL + lmL? 4- IIL L2,

L is the length of the legs,
r is the distance from the foot to the center of gravity of the legs,
TOjj IL are the mass and moment of inertia of the legs, and
m^ is the mass of the body.

The oscillation will be characterized by:

w - &&-**&

2 ^I(2K - 2mLgr - ^) " ^
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5.6 Results

We show some of the state information from a simulation in Fig. 5-5. The model was dropped from a height
of 0.2 m with the body level. This is a stable simulation: the motion is periodic and continues indefinitely.

. l r
s

-.1

-.2

-3

7

.6

JS

A

3

2

0 3 6 9 12 15
Time (Seconds)

Figure 5-5: The plats Show the angle of the body, and the horizontal and vertical displacement of tbe
center of gravity of tfee body. The model was dropped from a height of 0.2 m with the body leveL Note
the two frequencies of oscillation: a high bouncing frequency and a tower rocking frequency that decays
away. The data are from simulatkm r319.IL

Two distinct modes of oscillation are visible. The- "heartbeat1* of die model is the vertical bouncing with a
frequency of L28 Hz. The amplitude of this mode decreases sightly from the initial height to a height where
the energy losses in a hopping cycle match the energy addition in a cycle. The second modt is a 0.15 Hz
rocking which decays as the simulation progresses. Fig. 5-6 shows the length of one leg and the hip angle for
that leg with this frequency outlined.

Not all of our simulations are stable. Fig. 5-7 shows some of the state infomiatioa for a simulation where the
model fell over after a few seconds. We ran two sets of simulations to leam something about the limits of
stability. Tables 5-2 and 5-3 show the results, Beginning with the model that behaved as shown in Fig, 5-5t
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Figure 5-6: These plots show the rocking frequency that is mixed with the vertical bouncing frequency.
The upper plot is leg length, the lower is the hip angle.

we varied the stiffness of the hip springs up and down to find the range of values for which periodic motion
was established. We repeated the procedure for a model with staffer legs.

For each leg stiffness there is a range of hip stiffnesses for which the model remains upright Outside of that
range it tips over. Body angle deviations of less than 0.5 radian can be damped OUL Larger body angle
deviations from level are not recoverable, the model always tips over.

5.7 Discussion

The fact that we see evidence of more than one mode of oscillation in the simulation is encouraging. There
are now two fMnp that we need to do in order to support the hypothesis that a system such as this can
undergp a gait change without being explicitly forced to do so.

• We need to use different initial conditions to stimulate different modes.

• We need to tone the model to different stiffnesses and look for changes in the relationships of the
modes.

It is not surpiiaag that the vertical mode of oscillation dominates the motion of the model. This mode is
excited both by the initial conditions and by the energy sources. "We can excite other modes by choosing
different initial hip angles. At this time we still hope to be able to differentiate gaits without having to add
energy sources to the hips*

The analysis of the rocking and swaying modes relies on both feet remaining on the ground. This does mi
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Figure 5-7: Unlike the graphs in Fig. 5-5, these graphs are from a simulation where periodic motion was
not established. (Simulation r.323.5)

Simulation

r.323.1
r.325.2
rJ26.1
r.320.3
r320.9
r.323.4
r.319.5 •

Trips

1530
1100
910
580
320
250
120

Frequency Ratio

6.941
5.933
5.428
4.417
3.415
3.090
2.372

Result

unstable
unstable
stable
stable
stable
unstable
unstable

Figire 5-2: Results of simulations with k. = 1000 N/m. The Jmqumcf ratio is the ratio of the
natural frequency in rocking to the natU'iETuequexicy in bouncing. The itaterti frequency In rocking
increases as the hips are stiffened, while the natural frequency in bouncing remains constant

happen, either in our model or in nature, because the vertical cycle requires the legs to be off of the ground

part of the time. We need to analyze the effect on an oscillator of being periodically interrupted by another



70

Simulation

r.320.8
r.3233
r.325.1
r.313.4
r.3133
r.312.3
r.313.2

1500
1200
880
632
417
400
234

i Frequency Ratio

4.999
4.523
3.954
3.449
1941
2.897
2.427

Result

unstable
unstable
stable
stable
stable
unstable
unstable

Figure 5-3: Results of simulations with L = 2000 N/m. There is a narrow range of hip stiffnesses
for which the model is suable. Stable means mat periodic motion is established. Unstable means that the
model tips over.

oscillatory process. We believe that it is this interaction that causes the low frequency oscillation seen in the

simulation data.

5.7.1 Other Things to Study

Animals have muscles that act at more than one joint. These two joint muscles tend to couple together the
motions of adjacent joints, and may play an important part in determining the characteristic modes and
frequencies of the mechanical system. Springs and dampers can be added to the model that would be roughly
analogous to these muscles. This will make the model more like biological systems, and give some insight to

what physical parameters are important in determining the gaits/modes of the system.

The ground doesn't have to be horizontal. Instead of adding energy, we can make the model "run down a
MIT. The angle of the shallowest hill that the model would run down would give a measure of "specific

resistance". Specific resistance is a generalized lift-to-drag ratio used to compare the efficiency of different
means of locomotion system. By changing the angle of the hill we might also cause the model to oscillate in
different modes, performing a sort of "gait transition" at a certain angle.

5.8 Summary

Using a simple pknar model* we have begun to explore the idea that gait is determined by the mechanical
system that makes up M animal's body. We have analyzed some of the oscillations that occur in the model.
Simulations of the model have given us a handle on stability criteria.

The simiilatioas reveal a clear mixing of two different modes of oscillatiQa with two different frequencies. We

arc HOW trying to tone the model so that these two modes can be made to combine in distinctly different ways,

corresponding to different gats.
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5.9 Appendix A: Equations of Motion for the Model

The equations of motion for the model were developed using Newtonian mechanics. There are- three
equations for each of the five links: summation of horizontal forces, summation of vertical forces, and
summation of torques about the center of gravity. This gives fifteen equations expressing the acceleration of
each link as a function of the position and velocity of the link, the spring and damper forces, the ground
reaction forces, and the internal reaction forces. The internal reaction forces are eliminated leaving seven
equations.

There are kinematic relationships that express the positions, velocities, and accelerations of the links in terms
of the chosen state variables and their derivatives. These are substituted into the seven equations to obtain
integrable expressions for the derivatives of the fourteen state variables.

The equations are expressed in matrix form:

A(Q)Q + B(Q,Q,R,F) = 0 (523)

where
Q is the vector of the first seven state variables,
Q, Q are time derivatives of Q,
R is a vector of ground reactions, and
F is a vector of spring and damper forces.

Equation (523) is solved for Q:

Q = -A*1B (5.24)

Q and Q form the derivative of the state vector. We numerically integrate this derivative to find the new state

vector. Forces, ground reactions and energies are all functions of the state.

The state variables are:

x, x - The horizontal position and velocity of foot a.

y, y - The vertical position and velocity of foot a.

0 , 6 — The angle and angular velocity of leg a.

#b, 0"b - The angle and angular velocity of the body,

9.8 - The angle and angular velocity of leg c.

1,1 — The length and rate of extension of leg a.

le 1 - The length and rate of extension of leg c
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Ra.

Newton's Law:

\ x + Fa
Ra, y + Fa

Kinematic relations:

' Fl *n<*a> = mal *al

" m a l 8 = m al

: The equations of motion for the lower part of leg a.

Newton's Law:

F2.x
 F 2 , * + F l

Fl ^ V " F

F2, y * F l
( 1

• F a

> = ma2
ma2 g = m

Kinematic relationships:

" sa2 - - ral> cos(*a> K

Ftgnre5-9: The equatkms of motion for the upper parted leg a.
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r2,x

r3.x

Tbc

'ab

2.y

Newton's Law:

• Tbc-Tab + F2,y r ' F 3,y ' F2, x rb

Kinematic relationships:

= ya2 + sa2

*b ~ xa2 + sa2 W ^ * V ^ *bv

Figure 5-10: The equations of motion for the body.

3.y

= lb
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be
Newton's Law:

F3, x + F4 *< V * Fc
F 3 , y • F4 °«< V • F c

= mc2 xc2

* mc2 s = mc2

Kinematic relationships:

yc2 = yb + *b [ c o s ( V *b • • s

= y b
sb s i n ( t fb )" sc2 s i n ( < ?c )

b ̂  V Sb
b *< V *b + s

c2

V ^b^ + sc2

: The Equations of motion for the upper part of leg c.

F 4

Newton's Law:
T2 + F 4 s d + ^

\ x + Fc
Rc;y +

( 1

Kinematic relationships:

= m
d

= y

c2

Re.

: The aimtions of motion for the tower pu t erf" kg c
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5.10 Appendix B: Simulation Parameters

Parameter Value Description
Parameters for the lower part of the legs
saT scl ^"^ meters Distance from the center of gravity to the upper end.
raT rcl k ^ m e t e r s Distance from the foot to the center of gravity.
1^, Icl 0.0004 kg-m2 Moment of Inertia.
m a l ' m d k ^ k g Mass.

Parameters for the upper part of. the legs:
sa2>sc2 k ^ meters Distance from the center of gravity to t h e hip.
*a2> *c2 0.0004 kg-m 2 Moment of Inertia.
ma2'mc2 ^ 5 ^ k g Mass.

Parameters for the body:
s., r, 0.30 meters Distance from each hip to the center of gravity.
£ 0.54 kg-m2 Moment of Inertia
n ^ 18.00 kg Mass.

Parameters of the ground:
k& x» kg, y 50000.00 N / m Stiffness of the ground,
b x, b. 100.00 N-s/m Viscosity of the ground,
g 9.81 m/sec2 The acceleration of gravity.
gc . LOO kg-m/N-s2

Parameters of the springs and dampers:
ka, kc 1000.00 N / m The stiffness of the legs.
kab' kbc 400.00 N-m/rad The stiffness of the hips.
b a , b c 5.00 N-s/m The viscosity of the legs.
^ab* be ^ ' ^ N-m-s/rad The viscosity of the hips.
Vo'^cO ° ' 6 0 m e t e r s Rest length of the legs.
L A «» L A ^ 0.62 meters Modified rest length for the legs*
*ab 0' ^bc o ^'^ t^2^ R e s t angle of the hips.

Parameters of the stops:
1 ,1 . 020 meters Maximum length of the legs.
1 ,1 020 meters Minimum length of the legs.
t, max c, nun

kstops 5OO(».(M3 N/m Stiffens of the s top.
b 100.00 N-s/m Viscosity of the stops.
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6. Path Control in 3D
Seshashayee S. Murthy

6.1 Introduction

The ability to traverse an arbitrary path in the horizontal plane is an important milestone in achieving
maneuverability and avoiding obstacles in the path of the hopper. To follow an arbitrary curve in the
horizontal plane it is necessary to alter the direction of motion of the hopper. We describe here a method that
uses lateral foot placement to alter the direction of motion of the hopper when it is in motion. The ability to
alter the direction of motion while the hopper is not stationary is important for maneuverability and speed. In
the absence of such a scheme, changing the direction of travel requires that the hopper be first brought to a
stop before motion is initiated in a new direction. Fig. 6-1 illustrates this form of path control. The desired
path is a square with 2 m sides. The hopper takes 24 sec for the circuit but the accuracy of the path is quite
good.

Altering the direction of travel of the hopper while it is In motion requires the application of a force
perpendicular to the plane of motion. There are two ways to bring such a force to bear on the hopper.

1. Placement of the foot outside the plane of motion causes a lateral force to act on the hopper. If
the foot is not under the center of gravity, the body accelerates away from the foot because of
forces acting in that direction. Fig. 6-2 describes how these forces act

• At touch-down, an impact force acts on the foot The magnitude and direction of this force
are determined by the forward velocity at touch-down and the distance of the foot from the
plane of motion.

• Also, during stance, because of such asymmetrical placement, gravity causes a torque along
the roll axis, at the foot This causes the hopper to accelerate in a direction perpendicular to
the line of motion.

• Thirdly, during the stance period an upward force is being applied on the body by the leg.
Because the leg is at an angle with respect to the plane of motion the resultant ground
reaction forces have a component perpendicular to the plane of motion. Placement of the
foot outside the plane of motion thus causes lateral forces on the hopper that result in a
lateral acceleration.

2. Hip torques during stance
During the stance phase the foot is constrained not to move due to friction. Therefore, torques
applied at the hip cause reaction forces at the ground. Hip torques along the roll axis cause
reaction forces, perpendicular to the Ene of motion- These reaction forces can be used to alter the
velocity of the hopper..
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1: Path control The 3D model was made to foOow a square path. It started at (-1,-1), lower
left, and progressed anti-ciocfcwise ttirougli (1,-1), (1,1), and (-1,1), finally leturaing to the starting point
Total time around the square was 24 sec

6.2 Path Control Using Foot Placement

The change in the momentum of the hopper, AM, during the stance phase can be expressed as a function of
the placement of the foot in the horizontal plane, the forward and vertical velocities at touch-down and the
torques applied during 'the stance phase.
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F Horizontal Horizontal FHorizontal

Figure 6-2: Lateral forces acting on the foot Left) The effect of hip torques on the hopper. A roll
torque at the hip causes a reaction force in the lateral direction at the foot Center) The effect of force
applied at the linear actuator at the hip. Because the force F acts at an angle 0 , it has a component F
sin# in the lateral direction. This causes an equal reaction force at the ground. Right) The effect of
gravity an the hopper. Because the sum of moments at the foot has to be zero, there is a ground reaction
force acting the foot

where

. t
is the lateral distance of the foot from the plane of motion at touch-down.

(6.1)

^ is the longitudinal distance of the foot from the center of gravity along
the direction of motion at touch-down.

V- is the velocity of the hopper in the horizontal plane at touch-down.

Vyer is the vertical velocity of the hopper.

TW are the torques applied on the body at the hip.

To achieve path control in the plane, we need to find, prior to touch-down, the correct control actions that

would result in the desired AM. These could be placement of the foot or application of hip torques during

stance. We have not found an analytical method to predict AM. 'One alternative would be to simulate the

hopper, an open loop linkage with 6 joints, for the duration of the stance phase. To achieve effective real-time

control it is necessary to complete these computations in about 50 msso that the rest of the flight phase can be

used to orient the leg correctly. This is a tremendous computational burden. It would be preferable to find a

less computation intensive control scheme.

The approach I am presently investigating is an extension of the controller used for straight line running. It
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Figure 6-5: Spiral Trajectories. The lateral acceleration dining the stance phase increases with the
lateral displacement of the foot If the displacement is increased each successive hop, then the hopper
follows a spiral trajectory. Here the forward speed was fixed at 0.6 m/sec. -DT^ was increased from 0.0
to 0.035 m.

two different forward velocities. Hip torques are at their nominal values. The circles mark the position at
touch-down of the foot with respect to the center of gravity The forward velocity at touch-down is along the x
axis. The hopper resembles an inverted pendulum that is felling towards the ground. In Fig. 6-3 (top) the
hopper has no forward velocity. After the foot touches the ground the hopper falls away from the point of
touch-down towards the center of gravity. The graph is therefore radially symmetric about the origin. The
forward velocity imparted during the stance phase increases with the distance from the origin. In. Fig,
6-3 (bottom) the forward velocity at touch-down is 1.0 m/sec in the x direction. Here the x marks the point of
zero acceleration. The acceleration vectors point in this general direction. The lateral acceleration and the
ton^tudinal acceleration are almost independent of each other when the lateral displacement is small
compared to tie longitudinal displacement of the foot

IMag a systematic series of such summations, I have, built a table to predict the acceleration of the hopper as a

fuoctioa of the foot placement and fee velocity at touch-down. The forward and the vertical velocities at
touch-down can be calculated at the previous lift-off. The desired longitudinal and lateral accelerations, arc
calculated from the desired trajectory. These four quantities can then be used as indices into a table, to fine
tie foot placement that results in the deared accelerations during stance. By using this method it is therefor
possible to cause the hopper to follow a desired pafii.
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Figure 6-6: Spiral Trajectories. Keeping Dy^. constant while continuously increasing the forward
velocity results in a continuous increase in the radius of curvature. The hopper therefore traverses a
spiral in the outward direction. Here, the forward velocity was increased from 0.2 m/sec to L0 m/sec
while D j ^ remains fixed at 0.04 nx

6.3 Trajectories

We have used asymmetrical placement of the foot to cause the hopper to follow various trajectories. These
trajectories show that hopper can be made to follow an arbitrary path with a varying radius of curvature.

6.3.1 Circles

A constant lateral acceleration is necessary to cause the hopper to follow a circular trajectory. From the
discussion in the previous section and Fig. 6-3 we can infer that if the speed of the hopper and the distance
D ^ are maintained constant, then the change in velocity during each stance phase is the same. The hopper
experiences a constant centripetal acceleration during the stance phase. During the flight phase the trajectory
of the center of gravity is a straight line because no external forces act on fee hopper.- The hopper can thus be
caused to follow a path that closely resembles a circle. Fig. 6-4 is a plot of the path of the center of gravity of"
the hopper. The horizontal speed of the hopper was maintained constant at 0.6 m/sec and the 'distance D ^
was maintained constant at 0.04 m. The resultant trajectory closely approximates a circle.

We can infer from Fig. 6-3 that if D« is decreased while the hoppef s speed is maintained constant* then the

lateral acceleration decreases. The change in direction is therefore less pronounced and the hopper traverses a

circle of a larger radius. In Fig. 6-4 the hopper traverses the outer circle at the same speed f 0.6 m/sec as the

middle circle but D ^ is maintained constant at 0.02 m.
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A square path: The contmuwis dark fiae represents the path fallowed by the hopper while
attempting to traverse t square path "with a t e 3 m ia feflglk The dotted line represents the desired
trajectory. 11iex8simft fee points at whkfa the foot ^mspte»d during stance. The hopper starts off at
tbe top fcH-haad side conw mid twrtxsts the path in an aati-dodcwlse fashion at a constant forward
vetocAi of 0,7 m/stc At each of fee con»s tlk1 k^por has to 0M ,̂e a Aarp turn. To achieve this the
foot k j t e » i aiwad aid t& fee ligSt of the point of » ra a^ccleatksn. The forward velocity changes

The quick nims reduce the tune around the circuit to 19 sec.

If 0 ^ is samtaiijed oonstasit while the speed of Ac hopper is decreased then the change in direction is more

praiottaceci aid the hopper twerses a circle with a smaller radius- In Fig. 6-4 the hopper traverses the inaer
clitic at §.4 so/sec white D ^ h maintained con^ant at OwCM HL

6.3*2 Spiral trajectories

Fig. 6-3 iiDustiatcs feat the lateral arcelcratieE during the stance phase increases with the lateral displacement
of the foot* in the vicinity of the point of zero acceleration. If the distance D ^ is increased during each
successive hep while the speed of the hopper is maintained constant then the lateral velocity imparted to the
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hopper during each stance phase also increases. The radius of curvature of the hopper's trajectory is therefore
constantly decreasing. The hopper therefore follows a trajectory that is close to a spiral. Fig. 6-5 shows the
path followed by the hopper during such a maneuver.

Also if DLat is maintained constant while the speed of the hopper is constantly increased, the hopper would go
outwards along a spiral trajectory. Fig. 6-6 shows the path followed by the hopper during such a maneuver.

6.3.3 Square Path

It is possible using asymmetrical foot placement to substantially alter the velocity of the hopper. This can be
used to cause the hopper to follow a square path like the one in Fig. 6-1. While turning a corner the
longitudinal velocity of the hopper has to be brought to zero and a lateral velocity has to be imparted. This is
achieved by placing the foot forward and to the side of the point of zero acceleration. The exact foot
placement that is required to execute this maneuver is found by looking up a table as explained in section 62.
Fig. 6-7 shows the path followed by the hopper while traversing a square with sides 3 m long. The path
control strategy followed by the hopper causes it to turn after it has passed the comer. The turn is
accomplished in a single hop without bringing the hopper to a stop in the horizontal direction. Deviations
from the desired path are then corrected for by changing the direction of the hopper. Because the forward
velocity is maintained constant at 0.7 m/sec the step length is also fixed. Hence at the corners the hopper
overshoots the desired path. The maximum overshoot is less than the step length of the hopper.

The entire path is traversed in 19 sec. This is a 47% decrease in traversal time compared to the method that

stops and restarts motion at each comer.
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6.4 Appendix: Description of 3D Model

Dimensions of 3D one-legged model:

Link leg cylinder ring
Description Cylinder Cylinder Ring
Mass .8626 0.5902. 0.1
Length 0.8 0.15 0.01
Radius 0.01 0.02 0.03
Moments of Inertia:
J 0.0474 • 0.00674 .0.00009
JK 0.0474 0.0004 0.000046
f 0.0001 0.00674 0.000046

C 0 . 0 0
r o o o
J^ 0 0 0

Denavit-Hartenberg description of the model:

body
Ring
14.755

0.3

1.152
0.807
0.115
0
0
0

Units

Kg
Meters
Meters

Kg-m2

Kg-m2

Kg-m2

Kg-m2

Kg-m2

Kg-m2

tant# 6
1
2
3
4
5
6
7
8
9

v/2
v/2
v/2

v/2

0
0

o7

0

a
0
0
0
0
0
0
0
0
0

a

v/2
v/2
v/2
v/2
0
v/2
v/2

Description
External degree of freedom. X displacement of foot
External degree of freedom. Y displacement of foot
External degree of freedom. Z displacement of foot
External degree of freedom. Orientation of leg.
External degree of freedom. Orientation of leg.
External degree of freedom. Orientation of leg.
Length of leg.
Orientation of leg with respect to hip.
Orientation of leg with respect to hip.
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7. Legged Locomotion Vignettes

Marc H. Raibert and Anthony J. Stentz

7.1 Introduction

In this chapter we collect together and discuss ideas about legged locomotion that have developed from our
work over the past few years. Some of these ideas are preliminary to future work in our laboratory, while
others may turn out to be half-baked or just plain wrong. All of the concepts discussed are characterized by a
lack of experimental data or formal development The purpose of collecting these discussions here is to
provide an open repository for our developing thoughts where they can get some air and criticism, and
perhaps lead to new ideas.

/ / / A
Figure 7-1; The purpose of legs in a legged system is to provide, support for the body and to prqpel it
fbrward.

7.2 Locomotion Algorithms for N Legs

It is now time to think about systems with several legs. We have argued that actively balanced legged systems
with just one leg are easier to study and understand than those with many legs, and that the lessons learned
from study of one-legged systems will generalize to multi-legged systems. How far can we generalize the Ideas
we already have for one-legged systems?

The discussion that follows is a first attempt to make such generalizations. The approach is to decompose the

behavior commonly observed in biped and quadruped locomotion, into components that we know about

from our work with one leg. We do not address the problem of gait selection, focussing instead on methods of

maintaining balance and forward speed once a gait is chosen, if indeed it is correct to assume that gaits ait

chosen at all.

One way to generalize understanding of systems with one leg to systems with many legs, is to avoid fccussing
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Figwe7-2: A kgged system may ran on 1 kg, 2te&>... N legs. Weseek locomotion algorithms that
are not tied closely to the number of legs.

on the legs themselves, apd to concentrate, instead, on the influence the legs have upon motion of the body.
The legs must provide support and they must propel the system forward, (See Fig. 7-1.) If we can
understand what the body needs in terms of forces and torques to obtain support and propulsion, and if we

can Ind ways to make the legs work together to provide support and propulsion, then we should be able to
formulate effective control algorithms. Presumably, a 'Control algorithm of this kind might apply to the

locomotion of a system with one leg, two legs. . . N legs* A theory that could explain dynamic behavior in all *
softs of legged creatures, and that could guide the design of man-made vehicles is a primary goal of air
research.
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7.2.1 One Leg at a Time

For the purpose of this discussion, let us take it for granted that our work on 2D and 3D systems with one leg
provides effective algorithms for controlling devices that have a leg, a body, and a suitable collection of
actuators and sensors. These algorithms involve providing leg thrust to maintain vertical hopping, placing the
leg during flight to control the forward running velocity, and torquing the body during stance to control
attitude. With this starting point, it is not hard to propose a mechanism that would work for humans and
other bipeds running on two legs.

Despite a number of real differences , running on one and two legs is remarkably similar. Rather than use
one leg over and over again as a system with only one leg must, a biped alternates in the use of two separate
legs. See Fig. 7-3. The thrust each leg delivers, the placement of the legs, and the torque generated between
the hip and leg during stance can be identical to the corresponding values generated for systems with one leg.
While one-legged systems use the same leg over and over to achieve these functions, the human biped
performs these functions alternately, with the two legs. The basic characteristics as seen from the body are not
much different in the two cases — alternation of springy support and ballistic flight

We characterize running by one- and two-legged systems in the following terms:

• Only one leg provides support at a time.

• Support phases and flight phases proceed in strict alternation.

We call this class of running gait the one-foot All the legs are kept off the ground, except for the one whose
turn it is to provide support The human biped runs in this manner, as do the one-legged machines we have
built I know of no example of a natural quadruped that employs a one-foot gate.

In principle, the control algorithm used for the one-legged system will permit a systems with any number of
legs to run using a one-foot gait A quadruped performing the one-foot gait would cycle through use of the

-There are three primary differences between the behavior of systems with ooe and two legs:

• Two legs permit running without pitching motions of the body. A one-legged system must move its kg forward and
backward at different times. When a one-legged system swings its leg forward during flight the body must pitch forward so
that angular momentum is conserved In a biped it is possible to overlap in time the backward motion of the supporting leg
with the forward motion of the other leg. If the legs move forward and backward in this complementary fashion. Iben
conservation of angular momentum during flight can occur without pitching motions of the body, and without a taSL

• Since forward and backward motions of the legs can occur simultaneously in the biped, the time available for the recovery
motion of the swing leg fe not uniquely determined by the duration of flight Therefore, if the recovery motion of one k% m
overlapped with the stance motioa of the other leg, thea i biped will ran faster than a one-legged system if both can move a
teg back and forth at the same rate.

• It is desiiabie for a biped to recover one teg to a forward position while the other kg supports weight The recovery leg must
be substantially shorter than the support fega if it is to clear the ground without stubbing. la the oee-Segged systems we have
exploted. fee leg was alwtys at maximum length during recovery, but the forward recovery motion occurred when the body
achieved peak, height during flight A biped should have a mechanism that will permit the swing leg to &artaa substantially
during memtxy* md to lengthen qgiln in time for tending.
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legs in some regular order. Each would deliver a vertical thrust to maintain hopping and correct body attitude

during stance when providing support, while the next leg moved to a forward position appropriate for

landing. It would be like a Gatling gun with legs in place of barrels,

A practical problem with this sort of running is"the difficulty of locating the legs close enough to the center of
the body to permit the feet to reach the points that would provide balance. The foot must be placed so that
the average point of support during stance is under the center of mass. It is not hard to attach one or two legs
near the center of mass, but the design problem becomes more difficult with more legs. It is also hard to keep
many legs from interfering with .each other in their motions, when they are mounted close together.

To summarize, the one-foot is a class of running gaits in which only one leg provides support at a time and a
flight phase occurs between each support phase. Control of each leg in a system executing a one-foot could
be like that used in our one-legged systems,

7.2.2 Pairs of Legs in Unison

The next step in generalizing from one leg to many legs is to consider pairs of legs that act together.
Quadruped gaits that might be understood and produced in this way are the trot, the pace or rack, and the
bound. In each of these gaits, two legs strike the ground in unison, and they leave the ground in unison.
While one pair of legs is providing support, the other pair swings forward for the next step.

Suppose for the moment that when a pair of legs provides support, both members of the pair are controlled to
act like an equivalent single leg. This is Sutherland's idea of a virtual leg (Sutherland, 1984). One might
suppose that the effective point of support is determined by the position of each foot and fee force each
delivers to the ground. The sum of torques delivered by the pair of hip actuators would contribute to the hip
torque, but the difference in thrust of the legs would also influence the effective torque. The height of a hop
would be determined by the sum of thrusts. Chapter 3 of this report explores the problem of controlling pairs
of legs to make than act together in these ways.

Thinking in terms of pairs of legs, the trot, the pace and the bound are very much like a biped one-foot in
which each biped leg is replaced with a pair of legs* Given that pairs of legs can be controlled to act Eke single
virtual legs* then these gaits reduce to that of the running biped, which we have already discussed and reduced

further. The kangaroo ricochet reduces to a one-legged system directly.

An important difficulty in realizing the one-foot running gait with a quadruped is the difficulty of locating the

legs close enough to the system*s center of mass. When pairs of legs act together during support, the effective

point of support can be located near the center of mass, even though the physical legs are located a substantial

distance from the center of the body. When two legs provide support simultaneously, the effective point of

support Bes somewhere on the line that connects the two feet In a trot, the gait involving diagonal support

pairs, the lines containing the effective points of support for both leg pairs p a s under the center of the body.

In the pace, the gait involving lateral support pairs* the Kaes connecting the feet may pass under the center of
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Figure 7-4: Sequence in which body and leg are shown at each touch-down and lift-off, for pairs of
steps that are symmetrical. If the foot is positioned behind the center of the CG-print on one step, and in
front of the center on the next step, then there can be a symmetrical pattern that produces zero net
acceleration over the pair of steps. The strides will be of different sizes because the speed during the
flight phase of each step is different The dashed lines indicate symmetry.

mass if the legs are angled inward during stance, or they may pass quite close to the center of the body if the

body is narrow.

The bound is another gait that employs pairs of legs acting in unison, but the analysis does not acrount for
stability in that case* For quadrapeds with long bodies, the lines connecting supporting feet do not pass near
the center of mass. Some other mechanmn must be at work to provide stability. See Chapter 3,

7.2.3 Pairs of Legs in Sequence

A basic tenant of dynamic stability is that the legs need not provide a base of support continuously, but only
over time. The stability we have described so far in this discussion relies on finding a foot placement that will
result in symmetrical behavior during each support interval, for each leg or pair of legs. If the motion of the
body is symmetrical about the effective point of support provided by the feet, then there is no net acceleration
of the system. We now consider the case where each support interval causes the system to accelerate, but
successive pars of support intervals are matched to generate equal and opposite accelerations. See Fig. 7-4,
Such aati-symmeuic pairs of steps generate no net acceleration.

Suppose we modify the control algorithm for the one-legged system, so that on every even hop the algorithm

that calculates desired foot placement adds in an extra factor, Ax* aad on every odd hop it adds an extra

factor, -Ax, For some suitably anal range of Ax, the system would hop side to side, with no net horizontal

acceleration. Figure 7-5 plots data from just such an experiment, performed with the 3D one-legged hopping

machine.

The system continues to balance provided that the accelerations caused by the offset of the foot do not cause

the system to tip over entirely before the next step, On the next step there will be an opportunity to accelerate
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Figure 7-5: Position of center of mass of physical 3D hopping machine using pairs of balanced steps.
The control algorithms were those described in Chapter 2, but an offset, Ax, was added to the foot
position on even hops^ and subtracted on odd hops. The magnitude of Ax is set to two different values.
The body moved back and forth on alternate hops. The system was not stable during a single hop, hut
only over a pair of hops. This experiment is relevant to running gaits that do not place the effective point
of support under the body, such as the pace and bound. The displacements of the foot, ±x, correspond
to the displacement of the hip from the center of the body. The trot and kangaroo hop do not involve
such offsets.

the system in the other direction, with no net acceleration over the pair. This analysis becomes relevant when

we think of Ax as representing the distance from the hip to the center of the body. For the pace, Ax may be

small For the bound Ax is about half the length of the quadruped.

7.2.4 Pairs of Legs Overlapped in Time

The most complicated quadruped running gaits, the canter, the gallop and the half bound, do not yet fit into

this framework. These gaits are characterized by partially overlapping periods of support between pairs of

legs and larger numbers of legs. For instance, in the gallop the following sequence for the front feet is typical:

place front right, place front left lift front right, lift front left. See Fig. 7-6. Similar overlapping support

periods occur for other pairs of legs.
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FigEre7-7: Symmetry that exists about the center of the stance phase in a gallop, for a pair of legs. The
bars underneath the figure indicate the CG-prints for each leg.

So far we only have a vague idea of how to decompose and understand these sorts of gaits. To simplify the
analysis, consider a biped running with overlapping support periods for each leg. Humans can gallop in this
way. See Fig. 7-6. Assume that both legs have equal support periods, and therefore, the CG-print associated
with both legs are of equal length. We see that in steady state running, the biped with overlapped support still
has a symmetrical support pattern. The single support phases at the beginning and end of the stance interval
have symmetry about the center of the stance interval. The configuration of the body and legs during the
double support phase is also symmetrical,

7.2.5 Independent Legs

So far we have concentrated on representing the behavior of entire multi-legged systems in terms of the

equivalent behavior of one-legged systems. Another way to generalize the results from the one-legged case to

the multi-legged case, is to think in terms of the'behavior of several one-legged systems that are loosely

constrained to operate together. The idea is that each leg of a multi-legged system, along with p a t of the

body behaves like the one-legged systems we have described Perhaps during a gallop, the vertical bouncing

motion of the front half of a horse might be controlled separately from the vertical bouncing motion of the

back half. This approach is explored more fully in Chapters 3 and 5 of this report

A primary motivation for our work on systems with one leg was to provide simple ideas about legged

locomotion that we could generalize to more complicated configurations with more legs. Actually, we would

Ike to find concepts that are not tied to particular locomotion systems, but that apply to whole classes of
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legged systems. We would like to transform the question of how many legs a legged system has, from a
central determinant of behavior to a mere implementation detail.

To summarize briefly the main points of this section:

• Existing algorithms are effective in controlling systems with a body and one springy leg. They
decompose control into a hopping part, a forward velocity part, and a body attitude part

• Bipedal running is very much like running on one leg, except that two legs are used in alternation.
The same control algorithms apply.

• There is a special class of gaits we call the one-foot, for which only one leg touches the ground at a
time. The same control algorithm applies to all one-foot gaits, independent of the number of legs.

• When pairs of legs acting in unison are controlled to behave like single virtual legs (Sutherland,
1984), then the trot and pace of a quadruped are like the biped run.

• The quadruped bound is also like a biped run, but with an alternating offset in the point of
support

• We do not yet understand the canter, gallop, or half bound, though there is symmetry in the
pattern of stepping for these multi-legged gaits.

7.3 Scissor Symmetry

When a human runs, the two legs form symmetric angles with respect to the vertical axis. The angle formed
between the hip and foot of the forward leg and the vertical axis, is equal and opposite to the corresponding
angle for the rearward leg. See Fig. 7-8. This symmetry is largely independent of the speed, bounce, sUide,
and other parameters of the gait The behavior reminds one of the way the blades of a scissors orient
themselves with respect to the paper they cut

The reader can observe this scissor-like motion by doing an informal experiment Run forward at an even,
moderate pace. During one stride take a laiger step than normal, reaching out with the swing leg. As the
swing leg thrusts forward, the stance leg will stretch backward, maintaining the symmetry of the legs about the
vaticaU axis and keeping the body in an upright posture. Most normal walking and running activities
preserve this approximate symmetry of leg motion.

A consequence of the scissor symme&y is that during flight the angle of the leg to be placed is about equal to

the angle of the leg that was just Kited Fig, 7-8. Can we use this symmetry to formulate an algorithm that can

correctly place the foot? It seems that the nominal motion produced by a scissor algorithm can be very dmlff

to fhe motion produced by the CG-print algorithm that we used for the one-legged systems (Raibert, 1984;

Raibeit and Brown, 1984). However, there is a stability problem that we have not yet solved

The scissor algorithm we have in mind specifies that during flight the next leg be positioned to the negative of

the angle the previous leg had when it left the ground:
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Figare 7-8: Diagram that $iow$ how normal action of the legs cm successive steps may behave ike a
pair of stissore. The further back one leg is when it leaves the ground, the foither forward the next teg
should be when it is touches the groutsd. Bars at bottom indicate CG-piints for each kg. •
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ed = - e w

where
dd desired angle of leg with respect to the vertical, and
0W angle of leg when foot last left the ground

This could be used for any number of legs. What happens when the scissor algorithm is used for a series of
steps? For a biped with legs A and B, #A(t) = -0B(t), for all t Let us assume for the moment that the
duration of stance is constant, and that the body moves forward during stance at a roughly uniform rate. If
leg A is placed forward of the center of the CG-print with angle 8 , then the lift-off angle of that leg,

will be less than it was at touch-down, |̂ AJ[jOl < I ^ T J - Leg B is then placed according to the scissor
symmetry: 0 = -8 . This results in placement of leg B's foot behind the center of the CG-print
However, when leg B leaves the ground its angle will be larger than it was at touch-down, I#BXOI > I^^J-
Moreover, the angle wiH have returned to the original touch-down angle of leg A, 8 = "0 . The result
is that the system repeats its behavior after every pair of steps. Fig. 7-4. This pair of steps has a symmetry
that can maintain balance in the system.

This same mechanism will work properly during forward accelerations. Suppose that during stance an
external disturbance accelerates the system forward. The result is that the stance leg sweeps further back and
the lift-off angle of the stance leg is larger than it would have been without the disturbance. The other leg is
placed correspondingly further forward, compensating for the increased velocity. A decelerating disturbance
works in a corresponding manner. The acceleration need not be due to an external disturbance, but could be
caused by actions of the hip actuator, intended to stabilize the body attitude or to regulate forward speed.
They might even be caused by the actions of other legs in a more complicated system.

One way to look at the scissor algorithm is that it provides an alternate method for estimating the length of the
CG-print. The lift-off angle of the stance leg serves to indicate the system's forward velocity and ground time.
The faster the body moves forward relative to the ground, the further backward moves the foot during stance.
The foot also moves backward further when the system spends more time on the ground Therefore, the
angle of the leg at lift-off is determined by the product of the average forward velocity and the duration of
stance.

(7.2)

The angle of the leg at lift-off is also influenced by the angle of the leg at touch-down. The product of average
velocity and ground time provides only the change of leg angle, so the starting angle of the leg at touch-down
will deteratine where It ends up.

When the leg is positioned in the center of the CG-print at touch-down, and when there is constant average

forward velocity, then touch-down md lift-off leg angles for a single stance period arc equal and opposite.
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Under these circumstances, all steps are identical. When the foot is placed *a distance Ax away from the center
of the CG-print and there is a constant average forward velocity, then every other pair of steps is the same,
but steps that are adjacent in time are mirror images of one another. The positions of the foot with respect to
the hip at touch-down and lift-off-are skewed forward or backward by Ax on alternate steps. Fig. 7-4. Such a
pattern of paired anti-symmetric steps will provide balance despite the foot offset, provided the degree of
asymmetry is relatively small and the step rate is large.

There are two problems with the scissor algorithm as presented here. First, while in principle the algorithm is
able to generate a sequence of uniform symmetrical steps, in practice there is no mechanism to keep the
algorithm from drifting from a symmetrical stepping pattern to anti-symmetrical pairs of skewed steps. For
example, during simple hopping in place successive hops might carry the leg into pairs of more and more
skewed anti-symmetrical pairs. This problem might be overcome by somehow damping the foot placement
excursions, or perhaps by using information from previous steps to filter the two-step oscillations. Another
alternative might be to take both the touch-down and lift-off angles into account:

(73)

where
0d desired angle of leg with respect to the vertical,
9 angle of leg when foot left the ground last time, and
9 angle of leg when foot touched the ground last time.

A second problem with the scissor algorithm is that it may not be responsive to sudden changes in the forward
velocity of the body. The algorithm is based on the idea that the lift-off angle of the leg gives information
about the forward velocity of the system. Actually, the information provided is about the forward velocity
averaged over the entire previous stance interval. In some cases the effective latency of this measurement
could result in sluggish corrective actions, and instability.

How do the motions produced by the scissor algorithm compare to those produced by the CG-prmt
algorithm? Consider the case where the foot is placed in the center of the CG-print, and the length of (he
CG-print equals the duration of stance times the average forward velocity. For a multi-legged system, there is
a CG-print associated with each foot We assume a constant ground time and constant forward velocity.

Under these circumstances, the displacement of the hip during stance is such that the angle of the stance leg at

lift-off is the same as it was at touch-down. Each step is identical, with equal touch-down and lift-off leg

angles. Therefore, for constant speed locomotion with no disturbances, and an, appropriate starting

configuration, the scissor algorithm aid the CG-print algorithm produce the same motion. Since it is hard to

estimate the length of the CG-print accurately, the scissor algorithm is attractive. It avoids the need to

measure the forward velocity of the system and the duration of stance.

To summarize briefly:
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• For any forward angle of the touch-down leg, a scissor algorithm will generate a pair symmetric
steps,

• If the forward leg angle chosen by the scissor algorithm happens to put the foot in the center of
CG-print, then each step of the pair will be the same length.

• The scissor algorithm is really just a simpler and more direct way to measure the forward velocity
and the duration of stance.

7.4 Why are Human Feet Long?

The one-legged systems we have built used locomotion algorithms that control forward velocity through
placement of the foot In particular, the control algorithm first calculates a forward position for the leg based
exclusively on the expected CG-print, the locus of points over which the system's center of gravity is expected
to travel during the next stance phase. Then the control algorithm modifies the leg position according to the
error in forward velocity. The equation for determining the desired foot position is (Raibert and Brown,
1984):

Ax = f-En+KCx-i^ • (7.4)

where
Ax is the forward displacement of the foot with respect to the projection

of the center of gravity,
x is the forward velocity,
xd is the desired forward velocity,

T^ is the duration of a support period, and

K is a feedback gain.

This method of velocity control is based on the idea that the system will undergo a net forward acceleration
during a single period of support, if the center of mass spends more time in front of the point of support than
behind it When the controller wants to accelerate the system forward, the foot is displaced backward, to

increase the time the body spends in front of the foot Backward acceleration is produced by moving the foot
forward. TMs method derives from oer understanding of the inverted pendulum, and the symmetry of forces
aad moments ifaat develops during stance (Raibert, 1984). For a given forward velocity, placement of the foot

will determine the net forward acceleration of the system during stance.

Must fee control system actively calculate Ktfx-i^) to correct for errors in forward velocity, or could a long

foot* one extended in the direction of running, correct velocity errors by purely passive means? We have

concluded that an extended foot might perform the desired correction, but only if the length of the foot is
comparable to the length of the CG-print
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7.4.1 Circle Feet

CG-print

Point of
Support t t t

Figure 7-9: The instantaneous point of support provided by an extended foot that forms an arc of a
circle, is determined by the angle of the leg with respect to the vertical and the radius of curvature of the
foot As the body moves forward, so does the point of support Does the point of support move in a way
that provides velocity stability when there are velocity errors? See discussion in text

The starting point for these thoughts can be understood in terms of Fig. 7-9. Assume that on each step the
system spends a fixed time with the foot touching the ground, T , and that during the time the foot is on the
ground the body moves forward with a roughly uniform velocity. When the forward velocity corresponds to
the actual velocity, then placing the foot in the center of the CG-print causes the leg to sweep through a
pattern that hasleft-right symmetry during stance. The angle of the leg to the vertical at touch-down equals
the angle of the leg at lift-off, and the pattern of intervening leg angles is also symmetric.

The average point of support provided by a curved foot under these circumstances would fall on the center of
the CG-print If the system were going faster or slower than expected, then the pattern of leg angles during
seance would be skewed to one side or the other, moving the average point of support away from the center of
the CG-print. Slower body travel would move the average point of support back ward and faster travel would
move it forward. A circular foot would provide displacements of the point of support with the same sign, as
those generated by Eq. (7.4). However, the magnitude of the corrections would be inadequate to provide
stability, for practical ske feet

First consider a wheel and axle that support a toad Figure 7JML When the axle passes through the center of

the wheel, the wheel has no preferred orientation on the ground. When the axle passes through a point other

than the center, then the wheel will seek equilibrium at the point GO the rim closest to the axle. Them are two

factors that describe changes in the stability of the system for variations of the point at which the axle passes

through the wtieeL As this point moves on a straight ine from a point on the rim,, hv through fee center of

the wheel, to an opposite point on the rim (see Fig. 7-10:

• The preferred point of support on the rim changes abruptly from one side to the other as die axle
location moves through 'the center.
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A B C
Figure 7-10: Wheels. LEFT: A normal wheel has no preferred point of support MIDDLE: If the axle
does not go through the center of the wheel, then the point on the rim closest to the axle is the preferred
support point RIGHT: As the location of the axle moves from point A to point B, the degree of stability
goes through a minimum, and the location of the preferred point changes abruptly from A to B.

• The degree to which the system is stable with point A touching the ground changes monotonically
with the ratio: (distance between the axle axis and A)/(radius of wheel).

If we use a section of a wheel for a foot, then the radius of curvature of the foot and the length of the leg will

determine to what extent the foot improves stability. See Fig. 7-11. The'gravitational tipping moment on an

inverted pendulum is related to the horizontal separation between the center of mass and the point of support

For a leg of length wL, a circular foot with a radius of curvature r, and an angle between the leg and the

vertical, 0y the horizontal separation between the center of mass and the point of support is:

Ax = (wL-r)sIn(0) (7.5)

The system is least stable when the foot is a point, r=0, neutrally stable when r=wT, and maximally stable

when the foot is flat, r= infinite.

The difficulty with this result is that the effective radius of curvature of the foot is limited by the arc length of
the foot, /. When flic leg angle is greater than the foot angle, a in Fig. 7-11, then the point of support no

longer changes with increasing leg angle, so the effective radius of curvature of the foot zero. Therefore, a

circular foot with a large radius of curvature is equivalent to a foot with smaller radius of curvature, when the
support phase includes leg angles greater than ¥t.

To summarize:

• A point foot provides no stability*

• A foot with a smaller radius than the leg length is still unstable, but the destabilizing forces are

smaller, for the same deviation from unstable equilibrium.

• A foot with a larger radius than the leg length wffl provide stability.

• The effective radius of curvature of a foot is limited by the length of the foot It decreases when
the leg aagle is greater than the ratio of foot length to leg length, 0>l/r.
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11: The foot can be an arc of a circle of radius, r. The angle subtended by the foot is a.

Another way to build a foot that has some of the characteristics of the circle foot, is to use a hinged member
with a centering spring that torques the foot toward a neutral position. The nature.of the spring will
determine the exact characteristics of the stability function. However, the upper limit of the stability provided
by such a device is still governed by the length of the foot As the spring becomes stiffer and stiffer, this
arrangement approaches the equivalent circular foot with an infinite radius of curvature. It cannot provide
greater stability.

The limitations of these passive schemes do not argue against the possibility of providing stability with an

actively driven ankle.

7.4.2 Yaw Control

The discussion of a long foot has focused so far on the potential use of feet as a means of providing balance

and of controlling forward velocity in a simple way. Another reason for a long foot might be to provide

traction about the yaw axis. Quadrupeds and the hopping bipeds usually have more than one foot on the

ground at a time, so generating torques that stabilize motion about the yaw axis is not a big problem* Pairs of

horizontal forces can be used to generate yaw torque. But human running only entails single support

Therefore each foot must have sufficient torsiona! traction to stabilize yaw orientation,
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7.5 Foot Placement for Leaping

The algorithms that we have studied in the context of one-legged systems do a reasonably good job of
controlling the forward running velocity, but they do not provide a direct means for controlling precisely
where the foot is placed on a particular step. Precise foot placement is important if a legged system is to travel
in rough terrain. It is important where much of the terrain will not provide adequate support or where there
are obstacles. In these cases, the ability to place the foot precisely will permit the legged system to choose a
good foothold among many possible places to put the foot, or to approach an obstacle in a way that allows the
system to leap over it See Fig. 7-12.

There are two classes of foot placement task. In one case, there is a single desired point on which to place the
foot, and several steps are available in which to make the necessary adjustments. Humans encounter this sort
of task when they jump a fence or ditch. The other case requires the foot to be placed in particular locations
on a number of consecutive steps. Using stepping stones to cross a stream is an example of this sort of task.

Of course, there is nothing stopping a control system from altering the leg angle during flight so that the foot
lands on any desired spot The trick is to do this in a way that does not cause the system to tip over. In the
context of the control algorithms that we have already explored for one-legged systems, four strategies come
to mind for controlling foot placement while maintaining balance:

• Adjust hopping height: With forward velocity held constant, hopping height determines the
distance traveled during flight The magnitude of thrust delivered by the leg could be adjusted on
each step to determine the location of the next foothold. The forward velocity control algorithm
could operate unchanged.

• Adfust Jgg stiffness: The distance the body travels during stance, the length of the CG-print> is the
product of the average forward velocity and the duration of stance. The duration of stance is
determined by the mass of the body and the stiffness of the leg. The control system can control
the length of the CG-print, and thereby influence where the foot will be placed on the next step,
by modulating the stiffness of the leg. This manipulation need not affect the forward velocity.

• Adjust forward velocity: For a pvea stance duration and hopping height, the forward velocity
determines fee stride length. The control system can manipulate forward velocity to place the
foot

•• Direct placement: For a given leg stiffness and forward velocity, there is a particular location on
which the foot should be placed to keep the system balanced The foot may be moved from this
location if corrective action is taken oa subsequent steps. If the foot is displaced a distance Ax
from nominal oa one step, then it can be displaced a distance -Ax on the next step. Ax must be
small enough so that the system does not tip Ofcr entirely before the next step can occur.

The direct placement method only produces a temporary change in the pattern of footholds. After the two

modified steps, subsequent footholds arc located as they would have been had no maneuver been made. T h e

velocity method has the disadvantage that It require forward velocity 'to change before placement changes* It

is our experience that several steps arc required to change the forward velocity appreciably. This same

problem also exists for the height method in a system that cannot modify hopping height in one bounce. We
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Figure 7-12: Planar one-legged system leaping, Is order to successfully leap over an obstacle, a legged
system must place its foot in the correct location with reject to the obstacle, The correct foot placement
in the top photograph was a matter of ^ood luck In the middle photograph Hie fool *ns loo close to the
^acK of blocks *hcn the leap began, and the foci did net clear Die bottom photograph depicts s leap m
which the takeoff point was too far from the cb-iaclc In all prx-x;^mpk^ action & from nght 10 left, wilh
lines indicating paths of foot and hip,
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believe that the height and stiffness methods are the most promising for the task of adjusting foot placement
for leaping.

7.6 Behavior During Stance

Figure 7-13: Path of the body during stance for different touchdown angles, ^,» ranging from -10 to 50
degrees. Simulation parameters: vertical velocity, z = 1 m/sec; forward velocity, i = 1 m/sec; body
mass, m = 16.3 kg; spring constant, k = 1000 N/xn

Figure 7-13 shows paths of the hopper's body during stance for various touchdown angles. The task of
predicting these paths and their corresponding lift-off velocities is difficult; instead, we restrict our attention

to the paths which are symmetrical about the vertical axis. These paths result from correct placement of the

foot in the center of the CG-print

The current algorithm to control horizontal velocity hinges on the ability to locate the center of the CG print

The length of the print is estimated by multiplying the forward velocity by the duration of stance. The

duration of stance is obtained by measuring the previous stance phase, under the assumption that it docs not

change appreciably from step to step. In order to maintain the forward velocity of the system, the foot i$

placed in the center of the CG-print at touchdown.

This method of estimating the length of the CG-print is not entirely correct, since the forward velocity of the

system does not remain constant throughout stance. Since the foot is placed in front of the body at

touchdown, the horizontal component of the force acting on die body by the leg spring serves to decelerate

the body. Once the center of gravity of the body has passed over the foot, this force serves to accelerate the
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body. Consequently, the average forward velocity of the hopper during stance is somewhat less than the

touchdown velocity. This means that the estimate of the CG-print is more than the actual print, causing the

leg to be placed too far forward.
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Figure 7-14: Path of the body during stance for different forward velocities. In each case the foot was
placed in the center of the CG-print Simulation parameters: vertical velocity, z = L4 m/sec; body
mass, m = 16.3 kg; spring constant, k = 1000 N/m

The estimate of the length of the CG-print can be improved. An approximate value for the average forward
velocity during stance can be competed using simple observations about the path of the body during stance.
Figure 7-14 shows simulation data for a planar system. The figure plots the path of the body during stance
when the foot is placed in the center of the CG-print for various forward velocities. The body is modeled as a
point mass (163 kg) affixed to a massless springy leg, with a spring constant of 1000 N/m. The extended leg
exerts a force on the body equal to the body's weight

Note that each half of the trajectory followed by the body is nearly linear. Thus, the path followed by the
hopper's body can be approximated by two line segments. The average decelerating force exerted on the
hopper for the first half of the stance phase is approximately equal to the horizontal component exerted on

die body while at die middle of the segment At this point; the leg is retracted to roughly one half of its total

retraction. Furthermore, the angle of the leg with respect to the vertical is roughly one half of the touchdown

angle (see Figure 7-15),

When the foot is placed in the center of the CG print at touchdown, the leg is maximally retracted halfway

through stance, when the leg is vertical At this point the vertical component of the body velocity is aero.

Therefore, at full retraction the leg must store the kinetic energy of the hopper due to its vertical ¥elocity at
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Figure 7-15: Diagram that shows straight-line approximation to the path of the body during stance.
Also shown is the point at which the backward force exerted by the leg on the body is approximately
equal to the average backward force for the first half of stance.

touchdown and the change in potential energy. Actually, the leg is retracted even further to store some of the

kinetic energy due 10 forward velocity at touchdown. This additional retraction is difficult to calculate;

therefore, its effect is ignored.

By setting the kinetic energy due to the vertical velocity at touchdown equal to the potential energy of the leg

spring, we have:

m? _ k(wo-w)2

~ 2

= w 0 -

(7.6)

0.7)

where

w

m
k

are the vertical position and velocity of the body,
is the length of the kg,
is the rest length of the kg,
is the mass of the body, and
is the leg spring constant

The point of half-retraction B given by:

_ ( z im
" w ° " l i t (7.8)
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The force exerted by the leg spring is:

f = k(wo-z) . (7.9)

If B is the leg angle at touchdown, then 0 / 2 is approximately the angle that locates the body in the center of
the line segment. The average force exerted along the horizontal during the first half of the stance phase is:

fx = k(wo-z)sin(A) (7.10)

The distance the body moves during the first half of stance is:

(7.11)

Therefore, the foot must be placed at the angle specified below:

Ax = wQsin(0) (7.12)

Assuming that sin(2 0) = 2 sin(0) and eliminating all intermediate quantities, we have:

(7.13)
6 = Arcsin _ 2

_2w o + (^lcmy + 2 m g ) ( - — s r _ ) _
8 m

Rgure 7-16 shows the leg angles required to maintain forward velocity, plotted as a ftinction of the forward
velocity. Three Mnes are shown. The first line was generated from a simulation, and represents the ideal leg
angles. The second line was generated using the new method, Eq. (7.13). The third line was produced using
the CG-print method. The data show that the angles computed by the new method are substantially closer to
the ideal values than those computed by the old method.

The validity of the new method was checked usiag data generated with a physical 2D hopping machine
(Raibert and Brown, 1984). This machine has a leg length, w^ of 0,5 m, a mass, in, of 8,6 kg* and am effective
spring constant, k» of 1887 N/m. Data for three hops are given in Table 7-1.

Note that the predicted lengths of the CG prints based on the new method do indeed fall between the actual
prints and the old estimates. The success of this method hinges on the ability to obtain a good estimate for the
force exerted on the body by the leg. In order to comply with the derivations given above, a linear force law
was used to calculate the values in the table. Measuring the force and fitting the resultant data to a function
would provide a more accurate estimate of the length of the CG print
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Figure 7-I& Data showing errors with old and new methods for estimating the length oftheCG-print
Note that the angles computed by the new method are more accurate than those computed by the old
method.

Parameters
T
X

z
CG Print (actual)

CG Print (old method)
CG Print (mew method)

H o o # l
0 JO sec
0.68 m/sec

L30 m/sec

0.119 m

0.136 m

0.129 m

HOP #2
0.17 sec

028 m/sec

1.69 m/sec
0.042 m

0.048 m
0.045 m

HOP#3

0.18 sec

028 m/sec

L53 m/sec
0.032 m

0.050 m
0.048 m

Fipre 74; Data from, physical 2B hopping HWMBC that demonstrate accuracy of CG-print estimates.
The COpffflt e^fiuies geseitteil by the new metkxl more accurately approximate the actual prints
*>an Lhose ger.er^ted by ihe eld method

7.7 Running is Like Juggling

Oatide Shannon visited us this past July, and presented some of Ms thoughts on juggling:

Tke Shannon Common Juggle: The time an object spends in contact with a hand is the same
for all objects and all hands. The flight times are equal for all objects thrown from all hands.
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• For a Shannon Common Juggle, the following equation is satisfied:

(7.14)
H D + V

where:
N is the number of objects,
H is the number of hands,
D is the dwell time, the time each object spends in contact with each hand,
F is the flight time, the time each object spends in the air, and
V is the vacant time, the time a hand contains no object

• In his pursuit of devising machines that juggle, Shannon has formulated a theory of juggling that
relies on transformations of planar ellipses to represent the motions of each hand. The phase,
location, plane, and aspect ratio of the ellipses determine the type and shape of juggle.

These ideas about juggling make me think that juggling and dynamic legged locomotion have much in

common:

• Both are cyclic repetitive activities, for which the dynamics of the systems determine the rhythms.

• The terms dwell time, vacant time and flight time for juggling could correspond to stance time*
swing time, and flight time for legged locomotion. Note that for a one-legged machine, swing time
equals flight time, while for a one ball/one hand juggle, vacant time equals flight time.

• In both juggling and running there are intermittent periods of support. In locomotion each foot
touches the ground for a fraction of the leg's step cycle. In juggling, each juggled object touches a
hand for only a fraction of the object's trip cycle.

• In both there are bodies that move in a ballistic motion part of the time. Since it is not possible to
change the trajectory of a body's motion during the ballistic phase, precise control just before
launch is important

• Shannon has a description of juggling that uses transformations of ellipses that are connected by
parabolic arcs. We in locomotion have a theory of balance that decomposes the problem into a
planar part and an extra-planar part If both of these ideas were sound it would mean that 3D
juggling and 3D balance in locomotion might both be understood in terms of planar ideas.

Let us close this section thinking about the game of volleyball, and its relationship to locomotion. Imagine

two people wanning up for a game of volleyball. The two players stand across the net from each other and hit

the ball back and forth. Since they are just warming up, they agree to hit the ball to the each other; rather

than to a location where it is hard to get Each time the ball is in flight, it travels a planar, parabolic path.

Each time the ball is handled, its direction is reversed so that it will land in the hands of the other player.

This arrangement of players and ball is very similar to the arrangement of legs and body found in a

locomotion system with two legs. The rocking motion of the body that characterizes biped walking and
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running are modeled here by the back and forth motion of the ball. Player contact with the ball is like leg

contact with the ground The primary difference between the two cases is that in volleyball the legs do not

travel with the ball, but remain fixed to the ground.

This model also works for a quadruped doing the one-foot. Suppose four players stand at the comers of a

rectangle, and hit the ball to each other. Each player hits the ball in a fixed sequence. Each time the ball is in

flight, it travels a planar, parabolic path. Each time the ball is handled, the ball is redirected so that it will

land in the hands of the next player. The point is that in both the volleyball warmup and in quadruped

locomotion, the mass of the system must travel back and forth over the support points in order to sustain the

activity.

While what we have described so far corresponds to running in place, it is not hard to image the volleyball
players all progressing in the same direction at the same rate while they hit the ball back and forth. In this
case the forward motion is superimposed upon the up-and-down bouncing motion, and upon the rocking that

permits spacing of the players.

7.8 Do Locomotion and Manipulation Have a Common ground?

From time to time I worry about what those working on robot manipulation might learn from results in
legged locomotion, and what those of us studying locomotion might learn from the manipulation folks.

My first observation is that in one respect, locomotion is a much harder problem than manipulator control. In
particular, the most important state variables in a locomotion system can not be measured directly using
simple means. Of course, the internal variables* such as length of a leg, or orientation of the leg with respect
to the body, can be measured easily, but the position of the locomotion system in the room and its orientation
in space can only be determined using indirect methods. In contrast, there is usually not much trouble
determining where the hand of a manipulator is in space, or what its orientation is. One merely starts at the
fixed base and proceeds from link to link, imng the joint angle sensors and simple kinematic transfonnatkffis.
Furthermore, while the manipulator control system can use a separate motor to directly govern fee action of

each manipulator joint, the translation and orientation of a locomotion system, at least a dynamic one, can
only be controlled indirectly, by making the system bounce, tip, and fall in the desired direction.

My second observation is that in one respect* manipulator control is a much harder problem than locomotion.
Our work on locomotion described in this and previous reports, relies on a simple, restricted set of leg awl

body motions The hopping motion is just the bouncing that results when springy legs and body are excited

to a simple way. We cannot control precisely when the foot will next touch the ground, nor when it will leave

the ground During flight the leg is positioned only with regard to its final end-point, no trajectory control is

used De^jitc these Imitations, we are very happy with the systems* performance.

In contrast a manipulator control technique that only applied to a restricted subclass of possible motions* car
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one that only worked correctly in a portion of a manipulator's working volume, would be received by other
workers in manipulation with nothing short of hostility. Techniques for kinematics, dynamics, trajectory
control, and the use of sensors are expected to be general solutions that work everywhere in the work space
for the full range of possible joint motions. ;

My third observation is that one can reconcile these differences between locomotion and manipulation if one
recognizes that locomotion is a task, and that manipulator control is a tool. Locomotion is the task of
transporting the legged system and its contents from one point to another. Typically, the detailed leg motions
required to accomplish the locomotion task are only of indirect interest, perhaps as they affect the time or
efficiency of transportation. The motions of the legs are used to accomplish the locomotion goal. Likewise,
the task of manipulation is to cause parts to be stacked, placed, inserted, assembled, painted, etc. We
shouldn't care what motions the manipulator makes, provided that they accomplish the task.

When one thinks of manipulation in this way, in terms of the task the manipulator and its motions are to
accomplish, then the problems of indirect sensing and control are precisely the same for manipulation and
locomotion. The manipulation system has the same problem determining the relative positioning of hand and
workpiece, as the locomotion system has in figuring out where the payload is with respect to the destination.
The manipulation system has the same problem controlling the motions of the parts as the locomotion system
has controlling motions of the body.

In the same vein, once one thinks of manipulation in terms of the task to be accomplished, then one is free to
use specialized control methods that produce stereotyped motions that are only subsets of the motions the
manipulator can make.

Juggling is an example of such a task. Juggling is a form manipulation for which specialized motions have
been chosen by the human. The juggler seems to use planar elliptical motions of each hand for a wide range
of juggling operations, and the hand motions are very regular, indeed.



114



115

Bibliography

Agarwal,G.C, Berman,B.M., Stark,L., Lohnberg,P., Gottleib,GX. "Studies in postural control systems: Parts
I, II, and III." IEEE L on Systems Science and Cybernetics ssc-6, 2 (1970), 116-132.

Aleshinsky, Zatsiorsky. "Human locomotion in space analyzed biomechanically through a multi-link chain
model." 1 Biomechanics 11 (1978), 101-108.

Alexander,R. McN. "The mechanics of jumping by a dog." /. Zoology, Lond 173 (1974), 549-573.

Alexander, R.McN., Langman, V.A.,Jayes, A.S. "Fast locomotion of some African ungulates." Journal of
Zoology, London, 183 (1977), 291-300.

Alexander,R. McN. Mechanics of bipedal locomotion. In Perspectives in Experimental Biology, Spencer-
Davies, P., Ed.,Pergamon, Oxford,, pp. 493-504.

Alexander,R. McN., Goldspink,G.. Mechanics and energetics of animal locomotion. Chapman and Hall,
London, 1977.

Alexander, R. McN., Jayes, A.S. "Vertical movements in walking and running." 1 ZooL, Land 185 (1978),
27-40.

Alexander,R. McN., Jayes, A.S. "Fourier analysis of forces exerted in walking & running/1 /. Biomechanics
13 (1980), 383-390.

Alexander,R. McN., Vernon,A. ftThe mechanics of hopping by kangaroos (Macropodidas)." 1 ZooL, Lond
177 (1975), 265-303.

Alexander, R.Mc, Maloiy, G.M.O., Ker, R.F., Jayes, A.S., Warui, C.N. "The role of tendon elasticity in the
locomotion of the camel (Camelus dromedarius)." /. ZooL, London 198 (1982), 293-313.

Anderson,F.. Registration of the pressure power (the force) of the body on the floor during movements,
especially vertical jumps., 1st Int Seminar, Surich, 1967.

Andriacchi, Ogle, Galante. "Walking speed as a basis for normal & abnormal gait measurements." J.
Biomechanics 10 (1977), 195-203.

Arsavskii Y.L, Kots, Y.M., Oriovskii G.R, Rodionov, LM., Shik, M.L, "Biophysics of complex systems and
mathematical models-Investigation of the biomeehanics of running by the dog." Biofaika 10,4 (1965),
665-672.

Arutyunyan,G.A.» Gurfinkel,VJ5., MirskiiMJL "Organization of movements on execution by man of an
exact postural task." Biofaika 14,6 (1969), 1103-1107.

Asatryan, D.G., Feldman, A.G. "Functional tuning of nervous system with control of movement or
maintenance of a steady posture..." Biofaika 10, 5 (1965), 837-846.

Badler, N X, Smoliar, S-W. The representation of human movements using a digital computer. Tech. Rept
Movement Proj. Report No.9, MS-CIS-78-4,1977.



116

Bair,LR~ Patent No. 2918738. Volume : Amphibious walking vehicle., 1959.

Barclay, O.R. "Some aspects of the mechanics of mammalian locomotion." /. of Experimental Biology 30
(1953), 116-120.

BassmajiauJ.V., Tuttle,R. Engineering of locomotion in gorilla and man. In Control of Posture and
Locomotion, R.B. Stein, K.G. Pearson, R.S. Smith, J.B. Redford, Eds., Plenum Press, New York, N.Y.,
1973, pp. 500-609.

Bavarian, B, Wyman, B.F, Hemami, H. "Control of the constrained planar simple inverted pendulum." Int
I Control 37,4 (1983), 741-753. .

Beckett,R., Chang,K. "An evaluation of the kinematics of gait by minimum energy." L Biomecfi 1 (1968),
147-159.

Bekker,M.G.. The evolution of locomotion: A conjecture into the future of vehicles., 1961.

Bekker,MG. "Is the wheel the last word in land locomotion?" New Scientist 17,248 (1961), 406-410.

Bekker,M.G.. Theory of land locomotion University of Michigan Press, 1962.

Bekker,M.G.. Introduction to terrain-vehicle systems. University of Michigan Press, Ann Arbor, 1969.

BeletskiiV.V. "Biped locomotion dynamics I." Izv. AN SSSR. Mekhanika Tverdogo Tela 10,3 (1975), 3-14.

Beletskii,V.V. "Dynamics of two-legged walking, ILft Izv. AN SSSR. Mekhanika Tverdogo Tela 10,4 (1975),
3-1X

BeletskiiV.V. "Walking Control and Dynamics of a System with Two Legs." 0» 1-U-

itV.V^ ChudinovJP.S. "Parametric optimization in the problem of biped locomotion." Izv. AN
SSSR. Mekhanika Tverdogo Tela 12,1 (1977), 25-35.

Beletskii, V.V., Ctiudinov, P.S. ^Control of motion of a bipedal walking robot" Izv. AN SSSR. Mekhanika
Tverdoga Tela £5,3 (1980), 30-38. UDC 531.8

BeletskiiV.V^ Kiisanova,T.S. "Plane linear models of biped fccomotion." Izv. AN SSSR. Mekhanika
Tverdogo Tela 114 (1976), 51-61

Bcnaet-Qark, H.C TTic energesics of the jump of the locust sdiistocerca gregaria." lExp.BioL 63 (1975),
53-83.

Bessonov A.P-. Umnov»N,V., The analysis of gaits in sbc-legg^ed vehicles according to their static stability. Proc.
Symposium on Theory aad Practice of Robots and Manipulators, Udioe, Italy, 1973.

Bishop, JJE. Why Do Kangaroos Say to Their Frieeds* 'Let's Go to the Hop7 1980 Wall Street JoumaL

Bramble, DJvi, 'C^nicr, D.R. -Running and breathing in mammals.1* Science 219 (1983), 251-256.

Brester, B.» Frankei JJP. fThe forces and moments in the leg during level walking." t. Amen Sac Meek
Engx 27(1950).



117

Brown,L.S.. The right way to walk four-legged , .

BuckettJ. Design of an on-board electronic joint control system for a six-legged vehicle. Ph.D. Th., The Ohio
State University, Columbus, Ohio, 1977.

Burnett,C.N., Johnson,RW. "Development of gait in childhood, Parts I and II." Developmental Medicine in
Child Neurology 13,2 (1971), 196-215.

Bums,M.D.. The control of walking in Orthoptera, I -leg movements in normal walking. J. Exp. BioL, 1973.

CamanaJP.C. A study of physiologically motivated mathematical models for human postural control. Ph.D. Th.,
The Ohio State University, Columbus, Ohio, 1977..

Camana,P.C, Hemami,H., Stockwell,C.W. "Determination of feedback for human posture control without
physical intervention." 7. of Cybernetics 7 (1977).

Cannon,R.H.,Jr. "Some basic response relations for reaction-wheel attitude control.11 ARS Journal (1962),
61-74.

Cappozzo, Maini, Marchetti, Pedotti. Analysis of hybrid computer of ground reaction in walking. Proc. IV Int
Seminar on Biomechanics, Philadelphia, Pa., 1973.

Cappozzo, Aurelio, et al. "A General computing method for the analysis of human locomotion." / .
Biomechanics 8 (1975), 307-320.

Cappozzo, et al. "Interplay of muscular & external forces in human ambulation." /. Biomechanics 9 (1976),
35-43.

Cavagna, G.A. "Elastic bounce of the body." 1 Applied Physiology 29 (1970), 279-282.

Cavagna, G.A. "Force platforms as ergometers." /. Applied Physiology 39 (1915\ 174-179.

Cavagna, G.A., Margaria, R. "Mechanics of walking." J. Applied Physiology 21 (1966), 271-278.

Cavagna, G.A., Saibene, F.P., Maigaria, R. "Mechanical work in running-" /. of Applied Physiology 19,2
(1964), 249-256.

Cavagna, G.A., Komarek, L., Mazzoleni, S. fThe mechanics of sprint running.tf / . Physiology 217 (1971),
709-721.

Cavagna, G.A., Thys, H., Zamboni, A. 'The sources of external work in level walking and running." 1
Physiology 262 (1976), 639-657.

Cavagna, G A., Heglund, N.C, Taylor, C.R. "Mechanical work in terrestrial locomotion: two basic
mechanisms for minimizing energy expenditure." American 1 Physiology 2JJ, 5 (1977), R243-R26L

CavanaghjP.R. V / . Biomechanics 13'(1979), 397-406.

Ceranowicz, A.Z. Decoupling and finite state 'Control of a five link planar biped model standing on one leg.
Master Th., The Ohio State University, Columbus, Ohio, 1977.



118

Ceranowicz,A.Z. Planar biped dynamics arid control Ph.D. Th., Department of Electrical Engineering, The
Ohio State University, Columbus, Ohio, 1979.

Ceranowicz,A.Z., Syman,B-R, Hemami,H. "Control of constrained systems of controllability index two."
IEEE t on Automatic Control AC-25 (1980).

ChengJ.S. Computer-television analysis of biped locomotion. Ph.D. Th., The Ohio State University,
Columbus, Ohio, 1974.

Chow,C.K., Jacobson,D.H. "Studies of human locomotion via optimal programming." Mathematical
Biosciences 10 (1971), 239-306.

Chow,ClC, Jacobson,D.H. "Further studies of Human Locomotion: Postural stability and Control."
Mathematical Biosciences 15 (1972), 93-108.

Cook,T., Cozzens,B. The initiation of gait In Neural control of locomotion, R.N. Herman, S.Grillner, P.S.
Stein, D.G. Stuart, Eds., Plenum Press, New York, 1976.

Corliss, Wit., Johnson,EG.. Teleoperatorcontrols. NASA SP-5G70,1968.

Corson,P.R. Walking tractor. ,1958.

Cotes, IE., Meade, R "The energy expenditure and mechanical energy demand in walking." Ergonomics
(1960).

Cox,W.. Big muskie. New in Engineering, The Ohio State University, Columbus, Ohio, 1970.

GruseJHL A new model describing the coordination pattern of the legs of a walking stick insect Bid.

Cybernetics, 1979.

Dawson,TJ. "Energetic cost of locomotion in Australian hopping mice**1 Nature 259 (Jan 1976), 305-307.

Dawson/TJ. "Kangaroos." Scientific American 237,2 (1977X78-89.

DawsoB, TJ^ Taylor, CR. '"Energetic cost of tocomotiaii fa kangaroos/1 Nature 246 (1973), 313-314.

Etougau,S. "Hie angle of gait" AmericanJ. Physiological Anthropology 7'(1924), 275-279.

DriHisJR*, OontinUR. Body Segment Parameters. Tedt Repi Techalcal Report No. 1166.03, New York
University, New York, 1966*.

Dnysens, X, Loeb, GJE. "Modulation of ipsi- and contialateral reflex responses in unrestrained walking cats.**
I qfNeumphysiohsy 44,5 (1980X 10244037.

Ehriid^A.. FcaemNa. 1691233, Volume: Vehicle propelled by Steppm. f 1928.

Ekerot, CJFH Lafwa, B., C^:ars»ii» O* Information carried by the splsarercbeilar paths, la Reflex Control of
Posture and Movement Grande Rn Pompeiaiio, O^ Eds ,̂ EIsevier/Noith-Holland Biomeciical, New York*
1979. pp* 79-90.

ElftmaB,H8
 n A cinematic study of the dls&ibotiofl of pressure in the human fmln Anal Rec* 59 (1934),

481-490L



119

Elftman, H. "Forces and energy changes in the leg during walking." Amen J. Physiol 125 (1939), 339-356.

Elftman,H. "The basic pattern of human locomotion." Ann. New York Acad. ofSci. Rec. 51 (1951),
1207-1212.

Elftman,H. "Basic function of the lowerlimbs." Biomedical Engineering (1967), 342-345.

Engin,A.E. Experimental determination of the patello femoral joint forces. , 29th ACEMB, Boston, Mass.,
1976.

Ewald,B A., Lucas,D.B., Ralston,HJ.. Effect of immobilization of the hip on energy expenditure during level
walking., UCSF Berkeley, 196L

Farnsworth,R. Gait stability and control of a five link model of biped locomotion. Master Th., The Ohio
State University, Columbus, Ohio, 1975.

Fedak, M.A., Pinshow, B., Schmidt-Nielsen, K. "Energy cost of bipedal running." Amen J. of Physiol 227, 5
(1977), 1038-1044.

Fenn, W.O. "Work against gravity and work due to velocity changes in running." Amen 1 Physiol 93 (1930).

Fitch, J.M., TemplerJ., Corcoran^. "The dimensions of stairs." Scientific American 23 U 42 (1974).

Foley, et aL "Kinematics of normal child locomotion." /. Biomechanics 12 (1979), 1-6.

Fomin,S.V., Shtilkind,T.L "The concept of equilibrium of systems having legs." Biofizika 17,1 (1972),
131-134.

Fomin,S.V., GurfinkeL V.S., Feldman, A.G., Shtilkkid,T.L "Movements of the joints of human legs during
walking." Biophysics 21 (1976), 572-577.

Frank,A.A. Automatic control systems for legged locomotion machines. Ph.D. Th., Univ. of Southern
California, Los Angeles, California, 1968.

Frank,A.A. "An approach to the dynamic analysis and synthesis of biped locomotion machines." Medical &
Biological Engineering 8 (1970), 465-476.

Frank, A A . "On the stability of an algorithmic biped locomotion machine." /. ofTerramechanics 891 (1971),
41-50.

Frank^AA. "A method of coordinating the legs of the General Electric walking truck." , ECE-73-3 (1973).

Frank, A A., McGhee,R.B. "Some considerations relating to the design of autopilots for legged vehicles."
Journal ofTerramechanics 6,1 (1969), 23-25.

Frank, A A., Vukobratovic»M. On the synthesis of biped locomotion machines. In 8 th International
Conference on Medical and Biological Engineering,, Evanston, Illinois, 1969-

Frankliii, R^ Bell, W J., Jander, R. "Rotational locomotion by the cockroach blatteila germanica." / . Insect
Physiol 27,4 (1981), 249-255.



120

Friedman, M.B, "Visual control of head movements during avian locomotion." Nature 255, 5503 (1975),
67-69.

Gage,H. " Accelerographic analysis of human gait." ASME Winter Annual Meeting WA/HU, 64 (1964),
137-152.

Galiana,H JL, Milsum J.H.. A mathematical model for the walking human leg. 21'st ACEMB, Houston, Texas,
1968.

Gannett,W.R.. Theperipod , U.S. Army Weapons Command, Rock Island, Illinois, 1967.

Garg,DJP. "Vertical mode human body vibration transmissibility." IEEE L Systems SMC-6,2 (1976),

Giralt,G.. Multi-level planning & navigation system for a mobile robot, August 1979.

Goddard,R.R, Jr., Hemami,H., Weimer,F.C. "Biped Side Step in the Frontal Plane." ASME Winter Annual
Meeting (1981), 147-155.

Goddard Jr. R.E., Hemami, H., Weimer, F.C. "Biped side step in the frontal plane." IEEE Transactions on
Automatic Control AC-28,2 (1983), 179-187.

Golliday ,CL., Jr. Toward development of biped locomotion control: planar motion of the kneeless biped
standing and walking gaits, Fh.D. Th., The Ohio State University, Columbus, Ohio, 1975.

Golliday,C.L^Jr., Hemam^H. "Postural stability of the two degree-of-freedom biped by general linear
feedback." IEEE L on Automatic Control AC-2U1 (1976), 74-79.

Golliday,CL. Jr., Hematni,H. wAn approach to analyzing biped locomotion dynamics and designing robot
locomotion controls;* IEEE l Automatic Control AC-22,6 (1977), 963-971

GrahamjD. "Effects of diaun-oesopfaageal lesion on the behavior of the stick insect Carausius morosus,
I. Cyclic behaviour patterns** Bid Cybernetics 32 (1979), 139-145.

GrahamjD. "Effects of tiroim-oesopfaageal lesion on the behavior of the stick insect Carausius morosus; II.
Changes in walking co-ordinatioii.w BioL Cybernetics 32 (1979), 147452.

Greeae, PJHL Problems of or^iization "of motor systems. Quarterly report 29, U. of Chicago Inst for Comp.
197L

Greene, PJL, McMahoa, TA. nKuanloig in circles." He Physiologist 22,6 (1979), S-35 & S-36.

GreeoeJP JLn McMMioa, T J L wRcftex ^iffeea of man's anti-gravity muscles during kneebends while
carrying extra weights,** I Biommhamks 12(WJ9\ 881-891.

GriIlacrtS'.. 'The role of muscle stiffness in meeting the changing postural and locomotor requirements of
farce development by the ankle extensors/* ActaphysioL scand 86 (1972), 92-108.

GrillacrfS» ^Locomotion is vertebrates; central metbaalsms and reflex interaction.** Physiol Rev. 55(1975),

GriIlnertS. Some asp«ls on the descending control of the spinal circuits generating locomotor movements.
In Neural control of locomotion. Plenum Press, New York, 1976.



121

Grillner,S., Zangger, P. "On the central generation of locomotion in the low spinal cat" Experimental Brain
Research 34 (1979), 241-261.

GrimesJDJL An active multi-mode above knee prosthetic controller. Ph.D. Th., Massachusetts Institute of
Technology, 1979.

Grundman,JL Seire&A. "Computer control of a multitask exoskeleton for paraplegics." On Theory mid
Practice of Robots and Manipulators- Second CISM-IFToMM Symposium, Warsaw (1976), 241-248.

Gubina,R. Stability and dynamic control of certain types of biped locomotion. IV Symp. on External Control
of Human Extremities, Dubrov, 1972.

Gubina,R, Hemami,H., McGhee,R.B. "On the dynamic stability of biped locomotion." IEEE t on
Biomedical Engineering BME-21, 2 (1974), 102-108.

Gupta,S. Estimation of lower limb joint forces and moments using on-line measurements and computations.
Master Th., Ohio State University, Columbus, Ohio, 1975.

Gurfinkel,E. V.. Physical foundation of the stabilography. Symposium International de Posturographic
Smolenile, 1973.

Gurfinkel, V.S.. Shik, M.L. The control of posture and locomotion. In Motor Control Gydikou, A A.,
Tankou, NX, Kosarov, D.S., EdJ>lenum, New York, 1973, pp. 217-234.

Harris,R.L, Beath,T. "Hypermobile flat-foot with short tendo achillis." 1 Bone and Joint Surg. 30-a (1948),
116-140.

Hartrum,T.C. Biped locomotion models. Tech. RepL Technical Report 272, The Ohio State University,
Columbus, Ohio, 1971.

HartramXC. Computer implementation of a parametric model for biped locomotion kinematics. Ph.D. TtL,
The Ohio State University, Columbus, Ohio, 1973.

Hatze,PL MA complete set of control equations for the human musculo-skeletal system/* 1 Biornechanics 10
(1977), 799-805.

HavillJ.R., Ratcliff,J.W. A twin-gyro attitude control system for space vehicles. NASA Technical Note TN
D-2419,1964.

Heglund, N.C., Taylor, C.R., McMahon, T.A. "Scaling stride frequency and gait to animal size: Mice to
horses." Science 186 (1974), 1112-1113.

Hemami,H.. Pole assignment by mode feedback. Proa 9th Annual Allerton Conference on Circuit and System
Theory, Evanston, I1L, 1971.

Hemami,H.. Reduced order models for biped locomotion. Proa of 7th Pittsburgh Conf. on Modelling and
Simulation, Pittsburgh, Pa., 1976.

Hemami,H. "A feedback on-off model of biped dynamics." IEEE I on Systems, Man, and Cybernetics
SMC-JO, 7 (1980), 376-383.



122

Hemami,HU Camana>P.C. "Nonlinear feedback in simple locomotion systems.11 IEEE L on Automatic
Control 27,6(1976),

Hemami,H., Cvetkovic,V.S« Postural stability of two biped models via Lyapunov second method. Proc. of 1976
JACC, West Lafayette, Indiana, 1976.

Hemami,HL, Famsworth,Rl. "Postural and gait stability of a planar five link biped by simulation." IEEE
L on Automatic Control AC-22y 3 (1977),.'452-458.

Hemaini,H., GolHday,C.L.Jr. "The inverted pendulum and biped stability." Mathematical Biosciences 34
(1977X95-110.

Hemami,H., Jaswa,V.C. "On a three-link model of the dynamics of standing up and sitting down." IEEE
L Systems, Man, and Cybernetics SMC-8,2 (1978), 115-120.

Hemami, H., Katbab, A. "Constrained inverted pendulum model for evaluating upright postural stability."
I of Dynamic Systems, Measurement, and Control 104 (1982), 343-349.

HemamiJHL, WeknerJF.C. Further considerations of the inverted pendulum. , Proc. of the Fourth Iranian
Conference on Electrical Engineering, Pahlavi University, Shiraz, Iran, 1974, pp. 697-708.

Hemami, R, Weimer, F.C. "Modeling of nonholonomic dynamic systems with applications." /. of Applied
Mechanics, Paper #81 - APM -12 ASME(1981), 1-6.

HemamUL, Wymar^Bi7. "Modeling and control of constrained dynamic systems with application to biped
locomotion in the frontal plane." IEEE L on Automatic Control AC-24,4 (1979), 526-535.

HemamiKU Wyman,B.F. "Indirect control of the forces of constraint in dynamic systems." Journal of
Dynamic Systems, Measurement, and Control 101 (1979), 355-360.

Hemami Hn Yuan-Fang, Z. Initiation of walk and tiptoe of a planar nine-link biped. In , , 1982, Chap.
Mathematical Biosciences, pp. 163-189.

Heroami BL» Zheng, Y. "Initiation of walk aed tiptoe of a planar nine-link biped." Mathematical Biosciences
61, (1982), 163489.

Mf WeimersF,C, KoozekaaaxiiS-HL ffSome aspects of the inverted pendulum problem for
modeling of locomotion systems*** IEEE I on Automatic Control AC-189 6 (1973), 658-661.

i , WefaieaJP.G, RobinsomC^ StockweS.C.W^ C?elkovicfV.S. wBiped Stability Considerations
with Vestibular Models." IEEE Tmrk an Automatic Coniml AC-23,6 (1973), 1074-1079.

Hema&iiJHL, ToniO¥icfR.f Cemiowfcz.A.Z. "Fimte ^at€ control of planar bipeds with application to walking
and sitting;1 1 Bloengiueering 2 (1979), 477-494.

Hemamifi, Wal^CJIi BlackJ\Q. ^Single inverted pendulum biped experiments.1" 1 of Interdisciplinary
Modeling and Simulation 2(3) {W% 211-227.

iH^ Robinson^D JM CeraiiowtezAZ. "Stability of planar biped models by simultaneous pole
assignment and decoupling.** Im X Systems Science / / , 1 (1980), 65*75.



123

Hemami, H., Hines, M.L, Goddard, R.E., Friedman, B. "Biped sway in the frontal plane with locked knees."
IEEE Transactions on Systems, Man* and Cybernetics SMC-12,4 (1982), 577-582.

Hemami,H., Robinson,DJ., Ceranowicz,A.Z. "On stability, pole assignment and decoupling of some biped
models." Submitted to IEEE L vn Automatic Control 0-

Hemami,H., WeimerJF.G, Robinson,C.S., Stockwell,C.W., Cvetkovic,V.S. "Analysis of some derived models
of otoliths and semicircular canals." 1977 JACC 0-

Herman,B., Cook,T., Cozzens,B., Freeman,W. Control of postural reaction in man: the initiation of gait In
Control of Posture and Locomotion, R.B. Stein, K.G. Pearson, R.S. Smith, J.B. Redford, Eds., Plenum
Press, New York, N.Y., 1973, pp. 353-388.

Hicks, J.H. The three weight bearing mechanisms of the foot In in: Biomechanical Studies of the Musculo-
Skeleton System, F.G. Evans, C.C. Thomas, Eds.,, Springfield, 111., 1961.

Higdon,D.T., Cannon,R.H., Jr. On the control of unstable multiple-output mechanical systems. Proc. of
Winter Annual Meeting, ASME Winter Annual Meeting, 1963.

Hildebrand, "Motion of the running cheetah and horse." J. Mammalogy 40,4 (1959), 481-495.

Hildebrand,M. "How animals run." Scientific American (1960), 148-157.

Hildebrand, "Symmetrical gaits of horses." Science 150 (1965), 701-708.

Hildebrand,M. "Analysis of the symmetrical Gaits of Tetrapods." Folia Biotheoretica 4 (1966), 9-22.

HillJ.C. A model of the human postural control system. , 8 th IEEE Symp. Adaptive Processes: Decision and
Control, 1969.

Hirose,S., Umetani, Y.. The basic motion regulation system for a quadruped walking vehicle. ASME
Conference on Mechanisms, Los Angeles, 1980.

Hoffer, J.A., O'Donovan, M.J., Pratt, C.A., Loeb, GiL "Discharge patterns of hindlimb motoneurons during
normal cat locomotion." Science 213 (1981), 466-468.

Horn,B.K.P. The fundamental EEL equations. Working Paper 116, MIT, AI:, 1975.

Howell,R.. Speed in animals. Univ. of Chicago Press, Chicago, 1944.

Hristic,D., Vukobratovic,M.. A new approach to the rehabilitation of paraplegic persons., 197L

Hughes,G.M. "The coordination of insect movements." 1 Exp. Biol 29 (1952), 267-285.

Jain,A.K. Measurement of gait in children. Tech. Rept Tech. Note No.l, The Ohio State University, 1972.
Communication and Control Systems Lab, Dept of Electrical Engineering

Jain,A.K. A Study of regularly realizable gait matrices. Master Th., The Ohio State University, Columbus,
Ohio,.

Jaswa,V.C. Dynamic stability and control of a three link model of a human being. Master Th., Ohio State
University, Columbus, Ohio, 1975.



124

Jaswa, V.C An experimental study of real-time computer control of a hexapod vehicle. Ph.D. Th., Ohio State
University, Columbus, Ohio, 1978.

Jayes, A.S., Alexander, RJMcN. 'The gaits of chelonians: walking techniques for very low speeds." J.Zool
Lond 191 (1980), 353-378.

Johnston,R.C, Smidt,G.L. "Measurement of hip-joint motion during walking/1 /. Bone & Joint Surg. 51- A
(1969), 1083-1094.

Jones,R.L. 'The human foot - An experimental study of its mechanics and the role of its muscle and
ligaments in the support of the arch." Am. 1 Anal 68 (1941), 1-39.

Jones,F.W.. Structure and Junction as seen in the foot, Edition 2. Bailliere, Tindall and Cox, London, 1949.

Jones,G.M. "Observations on the Control of Stepping & Hopping Movements in Man." 1 Physiol 219
(1971), 709-727.

JurieieJD*, Vukobratovic,M. "Mathematical modelling of bipedal walking system/" ASME Publication 72-
WABHF-13 (1972).

Kainon, E *TEiectmmyographIe kinesiology of jumping." Archives of Physical Medicine & Rehab. 52 (1971),
152-157,

Kanayama, Yutaka, lijima, Junlchi, Ochiai, Hajime, Watarai, HirosM, Ohkaw, Kohichi. A self-contained
robot Tamabiko\ , 3rd US A-Japan Computer Conference, 1978.

Kane,T.R., Levinson,D.A. "Fonnulation of equations of motion for complex spacecraft." /. of Guidance and
Control 5,2(1980), 99-11Z

Katbab, A. Three-dimensional torso model with muscle actuators, OSUf EE Dept DI-83-HH-093

KatoJ., TsuiM,H. The hydraulkaly powered biped walking machine with a high carying capacity. In IV
Symp. on External Control of Human Extremities,, Dubravnik, Yugoslavia, 1972.

KatoJU Matsusbita,SM Kato,K. A model of human posture control system. In Advances in External Control
of Human Extremities, MM. Gavrilovic, A.B. Wilson Jr^ Eds.,, Belgrade, 1969, pp. 443-464.

Kate, Tn Takanirfii A., Ji^iikawa^ H.t Kato, L The realization of the quasi-dynamic walking by the biped
walking machine. 4th Symposium on Theory and Practice of Robots aad Manipulators, IFTMoM, 1981.

Keith,A. 'The history of Ac human foot and its bearing on orthopedic practiced / Bone and Joint Surg, H
(1929X10-3X

Kenny JD, Investigation for a walking device for high efScieacy lunar locomotion. Proceedings of American
Rocket Society Anneal Meeting, Philadelphia, 1965.

KettelkainpyD.B^ Johnston&C SmidtCL, Ch»,EY.S., Walker,M. tsAe electrogoalometric study of knee
motion to normal gaitft I Bone A Joint Surg, 51-A (ifJOl 775-7U.

Frank^A A On the dynamics of an elastically coupled multi-body biped locomotion
ft"«:ecdings of Joint Automatic Control Conference, Austin, Texas, 1974



125

Khosravi-Sichani, B. A preliminary study of a two segment artificial foot" Master Th., The Ohio State
University, Columbus, Ohio, 1979.

Kinch,E.A.. Patent No. 1669906. Volume : Vehicle propelling device., 1928.

Klein,C.A., Briggs,RX. "Use of active compliance in the control of legged vehicles." IEEE t on Systems,
Man, and Cybernetics SMC-10y 7 (1980), 393-400.

Klien, C Limb motion for a 3 legged walking machine., 1980.

Kljajic,M., Trnkoczy,A. MA study of adaptive control principle orthoses for lower extremities." IEEE L On
Systems, Mans, and Cybernetics SMC-8,4 (1978), 313-321.

Koozekanani,S.K, McGhee,R.B. "Occupancy problems with pairwise exclusion constraints - an aspect of
gait enumeration." Journal of Cybernetics 2, 4 (1973), 14-26.

Koozekanani,S.H., Stockwell,C.W., McGhee,R.B., Firoozmand,F. "On the role of dynamic models in
quantitative posturography." IEEE t Biomedical Engineering (1980).

Kuee, B. "Movement of two legged system of pendulum type." Mekhanika Tverdogo Tela 2 (1975), 58-61. In
Russian

,Kugushev,E.L, Jaroshevskij,V.S.. Problems of selecting a gait for an integrated locomotion robot Institute of
Applied Mathematics, USSR Academy of Sciences, Moscow,.

LarinJ.B. "Stabilization of biped walking apparatus." Izv. ANSSSR. Mekhanika Tverdogo Tela 11,5
(1976), 4-13.

Larin, V.B. "Control of a jumping robot, I. Choice of programmed trajectory." 14, 6 (1979), 27-32.

Leimanis,E.. The general problem of the motion of coupled rigid bodies about a fixed point springer-Verlag,
1965.

Liberson, W.T. "Biomechanics of gait: a method of study." Arch. Phys* Med. Rehabilitation (1965).

Lindholm,L.E., Oberg,K.E.T.. An optoelectronic instrument for remote on-line movement monitoring.
Chalmers University of Technology, Goteborg, Sweden, 1979.

Lisin, V.V., Frankstein, S.I., Rechtmann, M.B. "The influence of locomotion on flexor reflex of the hind limb
in cat and man." Experimental Neurology 38 (1973), 180-183.

Liston,R.A.. Walking machine. Annual Meeting of the American Society of Agricultural Engineers,
University of Georgia, 1965.

Liston,R.A., Mosher,R.S. A versatile walking truck. Proc. Transportation Engineering Conference, ASME,
Washington, D.C., 1968.

Loeb, G. E. "Somatosensory unit input to the spinal cord during normal walking." Canadian 1 of Physiology
and Pharmacology 59,7 (1981), 627-635.

Lucas, E "La machine a marcher." Recreations Mathematiques(Huitieme Recreation) 4 (1894). In Freoefa



126

Mackerle,J. "Walking riders." T-6812 (1968), 776-777.

ManterJ. "Dynamics of quadrupedal walking." /. of Experimental Biology 15,4 (1938), 522-539.

Margaria, R. Biomechanics and energetics of muscular exercise. In, Oxford Univ. Press, Walton St., Oxford,
1976.

Matsuoka, K. "Study on robot legs." Bulletin ofMEDept 11 (1976), 65-69. In Japanese

Matsuoka,K. A model of repetitive hopping movements in man. Proc. of Fifth World Congress on Theory of
Machines and Mechanisms, IFIP, 1979.

Matsuoka,K. "A mechanical model of repetitive hopping movements." Biomechanisms 5 (1980), 251-258. In
Japanese

McGhee,R.B.. Finite stale control of quadruped locomotion Proc. of the Int Symp. on External Control of
Human Extremities, Dubrovnik, Yugoslavia, 1967.

McGhee,R.B. "Finite state control of quadruped locomotion." Simulation (1967).

McGhee,R.B. "Some finite state aspects of legged locomotion." Math Biosciences. 2 (1968), 67-84.

McGhee,R.B.. A mathematical theory for legged locomotion systems. Proc. 1970 Midwest Symposium on
Circuit Theory, 1970.

McGhee,R.B. Robot locomotion with active terrain accommodation. t Proc. NSF Robotics Research
Workshop, Univ. Rhode Island, 1980.

McGhee, RJB. Vehicular legged locomotion. To appear in Advances in Automation and Robotics

McGheeJLBn BuckettJJL "Hexapod." Interface Age (1977).

McGfaee,R.B., Frani^A.A. "On the stability properties of quadruped creeping gaits." Math Biosciences* 3
(1968X331-35L

McGhee&B., FraoJ^AA. "Some consideradoos relating to the design of autopilots for legged vehicles/1 X
ofTejramecfiank$691 (1969).

McGheeJUL, Iswandhi.GX "Adaptive Iwomotion of a multile^ed robot over rough terrain." IEEE l on
System Man, ami Cybernetics SMC-9,4 (1979), 176-182.

McGheeJRJB* 2d®Jk«¥L w&>me properties of regularly realizable gait matricies/" Mathematical Biosciences
15,31/2(1972X179-193.

KuhnervM.B. On the dynamic stability of legged locomotion systems. Advances in External
Control of Humai Extremities, Belgrade, 1969, pp, 431-442.

McGhee&B., Oria,,D*E.* An interactive computer-control system Jbr a quadruped robot Proc. Symposium on
Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.

McGheeJR,.BM PaiA»L "An approa:h to computer control for legged vehicles." X Terramechanics 11 (1972)t

9-27,



127

McGhee,R.B., Sun,S.S.. On the problem of selecting a gait for a legged vehicle. Proc. of VI IFAC Symposium
on Automatic Control in Space, Tsakhkadzor, Armenian SSR, U.S.S.R., 1974.

McGhee,R.B., Koozekanani,S.H., WeimerJF.C, RahmaniJS. Dynamic modelling of human locomotion.
Proceedings of Joint Automatic Control Conference, 1979.

McKenneyJ.D. Investigation for a walking device for high efficiency lunar locomotion. Tech. Rept Paper
2016-61, American Rocket Society Space Flight Report to the Nation, New York, 1961.

McMahon, T.A. "Using body size to understand the structural design of animals: quadrupedal locomotion."
Journal of Applied Physiology 39 ", 4 (1975), 619-627.

McMahon, T.A. Allometry. In 7977 Yearbook of Science and Technology, McGraw-Hill, 1976, pp. 49:57.

McMahon, T.A. "Gravitational scale effects." The Physiologist 22,6 (1979), S-5 & S-6.

McMahon, T.A. "Scaling Physiological Time." American Mathematical Society 13 (1980), 131-163.

McMahon,T.A., Greene,RR. "Fast running tracks." Scientific American 239, 6 (1978), 148-163.

McMahon, T.A., Greene, P.R. "The influence of track compliance on running." /. Biomechanics 12 (1979),
893-904.

Melvill- Jones, G. and Watt, D.OX). "Observations on the control of stepping and hopping movements in
man." I Physiol 219 (1971a), 709-727.

Melvill-Jones, G. and Watt, D.O.D. "Muscular control of landing from unexpected falls in man." /. PhysioL
219 (1971b), 729-737.

Mihajlov,D., Chang,C.W., Bekey.G.A., Perry, J. "Computer graphics in the study of normal and pathological
human gait" Medinfo 77 (1977), 561-564.

Miller,D.L, Nelson,R.C Biomechanics of sport Lea & Febiger, Philadelphia, Pennsylvania, 1973.

Miller, S., VanderBurg, J., VanderMeche, F.GA. Locomotion in the cat: basic programmes of movement
In Brain Research, Elsevier Scientific Pub. Co., 1975, pp. 239-253.

Miller, S., VanderBurg, J., VanderMeche, F.G.A. Coordination of movements of the handlimbs and
forelimbs in different forms of locomotion in normal and decerebrate cats. In Brain Research Elsevier
Scientific Pub. Co., Amsterdam, 1975, pp. 217-237.

Milner,M. et aL "Angle diagram in the assessment of locomotor function." S.A Medical Journal 47 (1973),
951-957.

Milner,M., BrennanJP.K., Wilberforce,C.B.A. "Stroboscopic polaroid photography in clinical studies of
human locomotion." S.A. Medical Journal 47 (1973), 948-950.

Miura, H., Shimoyama, I. "Computer control of an unstable mechanism." J. Fac Eng., 17 (1980), 12-13. la
Japanese

Miura, HL, Shimoyama, I. Dynamical Walk of Biped Locomotion. First International Symposium of
Robotics Research, MIT Press, 1983.



128

Miyazaki, Fumio. "A Control Theoretic Study and Dynamic Linked Locomotion." ? ? (1980).

Mocci,U., Petternella,M,, Salinari,S. Experiments with six-legged walking machines with fixed gait. Tech.
Rept Report 2-12, Institute of Automation, University of Rome, 1972.

Mochon, S. "A mathematical model of human walking." Lectures on Math, in the Life Sciences 14 (1981),
193-213.

Mochon, S., McMahon, TA. "Ballistic Walking: An improved model." Mathematical Biosciences 52 (1980),
241-260.

Morrison,R.A. Iron mule train.", Proc. Off-Road Mobility Research Symposium, Washington, D.C., 1968,
pp. 381-400.

Momson,J.B. "The mechanics of the knee joint in relation to normal walking." /. Biomechanics 3 (1970),
51-61.

MorrisonJ.B. 'The mechanics of muscle function in locomotion." /. Biomechanics 3 (1970), 431-461.

MortonJDJ.. The human foot. Columbia University Press, New York, 1935.

Morton,D J.. Human Locomotion and Body Form , University of Columbia, Baltimore, 1952.

Mosher,R.S. Design and fabrication of a fiill-scale, limited motion pedipulator. General Electric report,
1965.

Mosher,R.S. Test and evaluation of a versatile walking truck. Proc. Off-Road Mobility Research
Symposium, International Society for Terrain Vehicle Systems, 1968, pp. 359-379.

Murphy, K.? Raibert, M.H. Trotting and Bounding in a Planar Two-Legged Model Conference on Theory
and Practice of Robots and Manipulaiors, IFTMoM, 1984.

Murray9MP. tfGait as a total pattern of movement" Am I Phys. MaL 4691 (1967), 290-333.

Muixay,M.P., DrougfatA.B,, Kovry,R.C. 'Walking patterns of normal men/* / Bone & Joint Surg, 46- A, 2
(1964), 335-360.

Murray 9MP., Seiri&A., ScholzyR,C. "Center of gravity, center of pressure and supportive forc.^ during
human activities.*'1 I of Applied Pysiology 23,6 (1967), 831-838* •

Muithy, SS*, Raibert, M.H. 3D Balance ia Legged Lcxomotio-n: Modeling and Simulation for the One-
Legged Case. Inter-Disciplinaiy Workshop on Motion: R'q>re^nlatioE and Peiteptioo, ACM, 1983.

MuybridgesE-, The human figure in motion Dover Publications, New York, 1955- First published in 1901,
Chapman aad Hall, Ltd., London.,

lVfuybfidgeffL Animals in moiion Dover Publications, New York* 1957, First Published in 1899, Chapman
and HaH Ltd*, Londoa

Naplerj. "The antiquity of human walking/* Scientific American 216,4 (1967), 56-66.



129

Narinyani,A.S., Pyatkin,V.P., Kim,RA., Dementyev,V.N. "Walking robot: a non-deterministic model of
control." 0*

Narinyani, A.S., Patkin,V.P., Kim,P.A. Walking robot: a non-deterministic model of control. , Siberian
Brnch, Novosibirs,.

Nashner, L.M. "A model describing vestibular detection of body sway motion." Ada Otolaryng. 72 (1971),
429-436.

Nashner, L.M. Vestibular and reflex control of normal standing. In Control of Posture and Locomotion, R.B.
Stein, K.G. Pearson, R.S. Smith, J.B. Redford, Eds., Plenum Press, New York, N.Y., 1973, pp. 291-308.

Nashner, L.M. "Adapting reflexes controlling the human posture/' Experimental Brain Research 26(1976),
59-72.

Nashner, L.M. "Fixed patterns of rapid postural responses among leg muscles during stance." Experimental
Brain Research 30 (1977), 13-24.

Nashner, L.M. "Visual contribution to rapid motor responses during postural control" Brain Research 150
(1978), 403-407.

Nashner, L.M. "Balance adjustments of humans perturbed while walking." /. Neurophysiology 44,4 (1980),
650-664.

Nashner, L.M.r Woollacott, M., Tuma, G. "Organization of rapid responses to postural and locomotor-like
perturbations of standing man." Experimental Brain Research 36 (1979), 463-476.

NilsonJFA.. Supporting and Propelling Mechanism for Motor Vehicles., 1926.

Okhotsimskii,D.E., Platonov,A.K.. Control algorithm of the walker climbing over obstacles. Proc. IJCAI,
Stanford, California, 1973.

Okhotsimskii,D.R, Platonov, A.K., et aL Control algorithms of legged vehicle capable of mastering obstacles.
Proc. of 5th IFAC Symp. on Automatic Control in Space, Geneva, 1973.

Okhotsimskii,D.E., Gurfinkel,V.S., Devyanin,E.A., Platonov,A.K. Integrated walking robot development
Conference on Cybernetic Models of the Human Neuromuscular System, 1977.

O'Leary, D.P., Ravasio, M J . Simulation of vestibular semicircular canal afferent responses during righting
movements of a freely falling cat

Orin,D.E. A simulation study of a computer-assisted manual control system for legged vehicles. Master TTu
The Ohio State University, Columbus, Ohio, 1972.'

Orin,D.E. Interactive control of a six-legged vehicle with optimization of both stability and energy. Ph.D. Tli^
The Ohio State University, Columbus, Ohio, 1976.

Orin,D.E. "A three degree-of-freedom leg for a hexapod locomotion vehicle/' (1980).

Orin,D.E "CARM: General-purpose subroutine package for robot linkage systems simulation." (1980).



130

Orin, D.E. Supervisory control of a multilegged robot. Tech. Rept Tech Note #23, EE, Ohio State Univ.,
Nov, 1981.

Orin,D.E., Oh,S.Y. "Determination of joint positions from limb segment constraints in robotic systems."
Proc of Fifth World Congress on Theory of Machines and Mechanisms (1979), 860-863.

Orin,D.E., McGhee,R.B., Vukobratovie,M. "Kinematic and kinetic analysis of open-chain linkages utilizing
Newton-Euler methods/' Mathematical Biosciences 43 (1979), 107-130.

Pai,AX. Stability and control of legged locomotion systems. Ph.D. Th., The Ohio State University, Columbus,
Ohio, 1971.

Pearson,K. "The control of walking." Scientific American (1976), 72-86.

Pedley, T J.. Scale effects in animal locomotion. Academic Press, London, 1977.

Pedotti,A. "A study of motor coordination and neuromuscular activities in human locomotion." Biological
Cybernetics 26 (1977), 53-61

Pedotti,A., et al. "Optimization of muscle-force sequencing in human locomotion." Math Bioscience 28
(1978),57-76.

Pennycuick, CJ, "On the running of the gnu (Connochaetes Taurinus) and other animals." /. Exp. Biol 63
(1975X775-799.

Perry J. Foot floor contact guide. Rancho Los Amigos Hospital Kinesiology Service.

Pettemella,M, SaUnariS. Six legged walking vehicles. Tech. RepL Report No.74-31, University of Rome,
1974. Istituto di Automatica, Rome Italy

Piagenhoef, S.. Patterns of Human Locomotion: A Cinematographic Analysis. Prentice Hall, Englewood

Cliffs, New Jersey, 1971.

Pringle, J.W.S. The reflex medianism of the insect leg. In, 11939, pp. 8-17.

Bugh, L.G.CE. "The Influence of wind resistance in running and walking and the mechanical efficiency of
work against horizontal or vertical forces." /. Physiology 213 (1971), 255-276.

Raibert, M.H. Dynamic stability and resonance in a one legged hopping machine. Conference on Theory
and Practice of Robots and Maaipulatoi^ IFTMoM, 1981.

Raibert, M.H., Brawn, HJBU Jrn Murihy* S3. 3D Bakace using 2D Algorithms? ProceecMngs of Advanced
Study Institute on Robotics and Artificial Intelligence, NATO, 1983.

Raibert, MM. "Hopping in legged systems - Modelling and simulation for the 2D one-legged case.Tt IEEE
Trmt Systems, Man, and Cybernetics, 3 (1984), In Press.

Raibert, MM., Brown, H 3 . Jr. ''Experiments in balance with a 2D one-legged iioppkg machine." ASME
1 Dynamic Systems, Measurement and Control, In Press (1984),

Raibert, M.HL Sutherland, LE "Machines That Walk." Scientific American 248,1 (1983), 44-53.



131

Raibert, M.H., Wimberly, F.C. "Tabular control of balance in a dynamic legged system." IEEE Traru
Systems, Man, and Cybernetics, In Press (1984).

Raibert, M.H., Brown, H.B.Jr., Chepponis, M., Hastings, E., Shreve, S.T., Wimberly, F.C. Dynamically
Stable Legged Locomotion. Tech. RepL CMU-RI-81-9, Robotics Institute, Carnegie-Mellon University,
1981.

Raibert, M.H., Brown, H.B.Jr., Chepponis, M., Hastings, E., Murthy, S.S., Wimberly, F.C Dynamically
Stable Legged Locomotion - Second Report to DARPA. Tech. RepL CMU-RI-TR-83-1, Robotics
Institute, Carnegie-Mellon University, 1983.

Raibert, M.H., Brown, H.B.Jr., Chepponis, M., Hastings, E, Koechling, J., Murphy, K., Murthy, S.S., Stentz,
A. Dynamically Stable Legged Locomotion -- Third Annual Report. Tech. RepL CMU-RI-TR-83,
Robotics Institute, Carnegie-Mellon University, 1983.

Raibert, M.H., Brown, H.B., Jr., Murthy, S.S. 3D Balance using 2D Algorithms? First International
Symposium of Robotics Research, MIT Press, 1983.

Raibert, M.H., Brown, H.B.Jr., Chepponis, M. "Experiments in balance with a 3D one-legged hopping
machine." International Journal of Robotics Research 3,2 (1984).

Ralston,HJ. "Energy-speed relation and optimal speed during level walking." Int Z Angew. Physical
Einsck Arbeits Physiol Bd 17(19581277-283.

Ralston,H.J. Energetics of human walking. In In Neural Control of Locomotion, R.N. Herman, S.Grillner,
P.S. Stein, D.G. Stuart, Eds., Plenum Press, New York, 1975, pp. 77-98.

Ramey, M.R. "Force relationship of the running long jump." Medicine and Science in Sports 2, 3 (Fall 1970),
146-151.

Roberts,W.M., Levine,W.S., Zajac,F.E.,IIL "Propelling a torque controlled baton to a maximum height"
IEEE L Automatic Control AC-24t 5 (1979), 779-782.

Robinson,DJ., Stockwell,C.W., Koozekanani,S.. A method for evaluation of vestibular postural control in
humans., Boston, Mass., 1976. 29th ACEMB

Russell,M., Jr. "Odex I: The First Functionoid." Robotics Age 5,5 (1983), 12-18.

Rygg,L.A.. Mechanical horse., 1893.

Saltzman,R "Levels of sensorimotor representation." 7. Mathematical Psychology 20,2 (1979).

Saund, E 'The physics of one-legged mobile robots - Part I - A general discussion." Robotics Age (Sep/Oct
1982), 38-45.

Saund, E "The physics of one-legged mobile robots - Part II - The mathematical description/* Robotics Age
(Nov/Dec 1982), 35-37,53.

SaundersJ.B., ImmaXT., Eberhait,H.D. "The major determinants in nonnal and pathological gatlrt The
Journal of Bone & Joint Surg. 35-A, 3 (1953), 543-558.



132

Schneider,A. YIL, Gurfinkel,E,V., Kanaev,E.M., Ostapchuk,V.G. A system for controlling the extremities of
an artificial walking apparatus. In Russian Report No.5, Physio-Technical Institute, 1974. General and
Molecular Physics Series, Moscow, USSR

Schwarts,RJP., Heath,A.L., Morgan,D.W., Towns,R.C "A quantitative analysis of recorded variables in the
walking patterns of normal adults." J. Boned Joint Surg. 46-A (1964), 324-334.

Seifeit,H.S. "The lunar pogo &icL" /. Spacecraft and Rockets 4,7 (1967).

SeifertJHLS. Small scale lunar surface personnel transporter employing the hopping mode. Tech. Rept
Report No.397, Stanford University DepL Aeronautics and Astronautics, 1968,1970.

Seireg,A., ArvikarjtJ. lfA mathematical model for the evaluation of forces in lower extremities of the
musailo-skeletal system." 1 ofBiomechanics 6 (1973), 313-326.

Severin,F.V., Orlovskii,G.N., Shik,M.L. "Work of the muscle receptors during controlled locomotion."
Biophysics 12,3 (1967), 575-586.

ShigleyJR. Mechanics of walking vehicles. Tech. Rept Report No. 7, OTAC, Detroit, Michigan, 1957. Land
Locomotion Laboratory

Shik,M.L., Orlovskii,G.N. Coordination of the limbs during running of the dog. Institute of Biological
Physics, 1965, Academy of Sciences, Moscow, U.S.S.R.

Shik, MX., Orlovsky, G.N., Severin, F.V. "Locomotion of the mesencephalic cat elicited by stimulation of
the pyramids." Biofizika 13 (1968), 127435.

Simons, 1* Van Bnissel, HL, De Sdiutter, I s Verhaert, J. "A self-learning automaton with variable resolution

for high precision assembly by industrial robots." IEEE L Automatic Control AC-27,5 (1982), 1109-1112.

SindallJJN. "The wave mode of walking locomotion," Journal ofTerramechanics 1,4 (1964), 54-73.

Smoliar, Stephen W.. A lexical analysis ofhhanotation. University of Pittsburgh Tech. Report, July 1978.

SneUJE.. Reciprocating Load'Carrier. ,1947.

Speckert, G. M A computerized took at cat locomotion or one way to scan a cat" , A J. Memo 374 (1976).

Stein-dler, A« Mechanics ofmrmal and pathological locomotion. Charles C Thomas* Springield, IL, 1935.

ScepaaekofY. Dynamics of complex mechtnisms. Mathematical Institute,. Belgrade
StuaitJD.G., Withey.TP., WeoeiM.C^ Goslow.G.EJr, Tune constraints for mter-limb coordination in the

cat during unrestrained locomotion. la control of posture and locomotion, New York, 1973, pp. 537-560.

Sua,SJS. A theoretical study of 'gaits for• legged locomotion systems. PhJD. Th., „ 1974

Sutherianci IJL A Walking Robot Tht Maxrian 'Chroaicltt, Inc^ P.O. Box 10209, Pittsburgh, PA. 15232,
1983.

Suthcriand, I E rtFootpriiits In the Aspaliw International Journal of Robotics Research 5,2 (1984).



133

Taylor, C.R., Rowntree, VJ. "Running on two or four legs: Which consumes more energy?" Science 179
(1973), 179487.

Taylor, C.R., Shkolnik, A., Dmpel, R., Baharav, D., Borut, A. "Running in cheetahs, gazelles, and goats:
energy cost and limb configuration." Amer. J. of Physiology 221\ 4 (1974), 848-850.

Taylor, C.R., Heglund N.C., McMahon, T.A., Looney, T.R. "Energetic cost of generating muscular force
during running." lExp.BioL 86 (1980), 9-18.

Terhune Jr., C.H., Fowler, D.R. Proposal for development of unmanned remotely-controlled vehicles to
assist in mine rescue and recovery operations. Document 5020-84, US Bureau of Mines, Dept of Int, Jun,
1978. JPL Proposal 70-959

Tomovic,R. "On the synthesis of self-moving automata." Automation and Remote Control 26 (19-5).

Tomovic,R. "A general theoretical model of creeping displacement" Cybernetics /F(1961), 98-107. English
translation

Tomovic,R., Bellman. "Systems approach to muscle control." Math BioscL 8 (1970).

Tomovic,R., Karplus,W.R.. Land locomotion - simulation and control, Opatija, Yogoslavia, 1961. Proc.
Third International Analogue Computation Meeting

Tomovic,R., McGhee,R.B. "A finite state approach to the synthesis of bioengineering control systems."
IEEE L on Human Factors in Electronics 7, 2 (1966), 65-69.

Townsend,M., Seireg,A. "Optimal trajectories and control for systems of coupled rigid bodies." ASME
Journal of Engineering for Industry (1972).

Trnkoczy,A., Bajd,T., Malezic,M. "A dynamic model of the ankle joint under functional electrical stimulation
in free movement and isometric conditions." J. of Biomechanics 9 (1976), 509-519.

Urschel,W.R. Walking Tractor. ,1949,

vanLeeuwen, XL., Jayes, A.S., Alexander, R. McN. "Estimates of mechanical stresses in tortoise leg muscles
during walking." I ZooL, Lond 195 (1981), 53-69.

Vukobratovic,M. "Contributions to the study of anthropomorphic systems." Kibemetika 2 (1972).

VukobratovicM. Dynamics and control of anthropomorphic active mechanisms. First Symposium on
Theory and Practice of Robots and Manipulator Systems, IFTMoM, tMne, Italy, 1973, pp. 313-332.

VukobratovicM.. Legged locomotion robots and anthropomorphic systems. Research monograph, Institute
Mihialo Pupin, Belgrade, Yugoslavia, 1975.

VukobratovicM. Legged locomotion robots: mathematical models, control algorithms and realizations. »
1975. Unpublished report

Vukobratovic,M.s Frank,A.A. Legged locomotion studies. In Advances in External Control of Human
Extremities, M.M. Gavrilovic, A.B. Wilson Jr., Belgrade, Eds.,, 1969, pp. 4G7-43G.



134

Vukobratovic,M., Juricic\D. "Contribution to the synthesis of biped gait.1* IEEE t on Biomedical
Engineering BME-16(1969).

VukobratovicM., Okhotsimskii,D.E "Control of legged locomotion robots.11 Proc. International Federation
of Automatic Control Planary Session (1975).

Vukobratovic,M., Stepaneko,Y. "On the stability of anthropomorphic systems.11 Mathematical Biosciences
/¥ (1972), 1-38.

Vukobratovic,M., Stepaneko,Y. "Mathematical models of general anthropomorphic systems." Mathematical
Biosciences 17 (1973), 191-242.

Vukobratovic,M., Frank,A.A., Juricic',D. "On the stability of biped locomotion." IEEE L on Biomedical
Engineering BME-17 (WO).

Vukobratovic,M., Juricic\D., Frank,A.A. "On tlie control and stability of one class of biped locomotion
systems." L AS ME Journal of Basic Engineering (1970), 328-332.

Vukobratovic,M^ Ciric,V., Hristic,D.. StepanenkoJ. Contribution to the study of anthropomorphic robots. ,
Paper 18.1, Proc. IFAC V World Congress, Paris, 1972.

Vukobratovic,M., et aL "Development of active exoskeletons." Medical and Biological Engineering (1973).

Vukobratovic,M., Hristic,D., Stojoljkovic,Z "Development of active anthropomorphic exoskeletons."
Medical and Biological Engineering (1974), 66-80. . .

VukobratovicM., Hristic,D., StokkfJX Gluhajic*,N. "New method of artificial motion synthesis and
application to locomotion robots and manipulators." 0-

Wetzel, M.G, Stuart, D.G. "Ensemble characteristics of cat locomotion and its neural control." Progress in
Neurobiology 7 (1976), 1-98.

Wetzd^M.G, Atwater,A.E, Stuart,D.G. Movements of the hindlimb during locomotion of the cat. In Neural
control of locomotion, R.N. Herman, S.Grillaer, P.S. Stein, D.G. Stuart, Eds., Plenum Press, New York,

1975.

Wiillamsjvf.»Iissn€f;H.R~ Biomechanks of human motion. W.B. Saunders Company, Philadelphia, 1962.

Wilsan,D.M. "Insect walking," t Annual Review of Entomology 11 (1966), 103421.

WilsoouD.M. "Stepping patterns in tarantula spiders." 1 Exp. BioL ¥7(1967), 133-151.
WinterJXA., Robertson, D.G.E. "Joint torque and energy pacterns in Hormal gaiL1* Biological Cybernetics 29

(1978).

Winter,DJU GrecBlaw,R.K., Hobson,DaA, fTelevisioB-c0iiipiJier analysis of kinematics of human gait**
Computer and Biomedical Research 5 (1972),

Wirta,fLW*, HcrmaafR.. Some observations of relations among gait variables*, 1975, K Risen Center for
Research and Engiiiceriiig Temple University, Moss Rehabilitation Hospital Philadelphia



135

Witt,D.C. A feasibility study on automatically-controlled powered lower-limb prosthesis. University of
Oxford,. Department of Engineering Science Report

Wittenburg,!. Dynamics of systems of rigid bodies. B. G. Teubner, 1977.

Yang,P. A study of electronically controlled orthotic knee joint systems. Ph.D. Th., The Ohio State University,
Columbus, Ohio, 1976.

Zheng, Y. The study of a nine link biped model with two feet. Ph.D. Th., OSU, 1980. Report #TH-80-
HH-058


