
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

KNOWLEDGE REPRESENTATION IN
MATHEMATICS A CASE STUDY IN

GRAPH THEORY

Susan Lynn Epstein

DCS-TR-134

Department of Computer Science
Rutgers University

New Brunswick, New Jersey 08903

Copyright (C) 1983

Susan L Epstein

ALL RIGHTS RESERVED

ABSTRACT OF THE THESIS

KNOWLEDGE REPRESENTATION IN MATHEMATICS
A CASE STUDY IN GRAPH THEORY

by Susan Lynn Epstein

Thesis Director Professor N. S. Sridharan

In this dissertation we present our work on representational languages for

graph theory. We have shown that a knowledge representation can be structured to

provide both expressive and procedural power.

Our major research contributions are three. First we have defined

representations of infinite sets and recommended that mathematical concepts be

considered as sets of objects with relations among them. Second, we have

demonstrated how a carefully controlled hierarchy of representations is available

through formal languages. Third we have employed a recursive formulation of

concepts which enables their application to many of the behaviors of a research

mathematician

Two major families of representations are described edge-set languages

and recursive languages. The edge-set languages have finite expressive power and

an interesting potential for hashing digraphs, characterizing classes of graphs and

detecting differences among them. The recursive languages have extensible

expressive power and impressive procedural power. Recursive languages appear to

be an excellent implementation technique for artificial intelligence programs in

mathematical research.

Our results enable us to compare the complexity of mathematical concepts

(via floors). Concepts represented in our languages can be inverted (to test for the

presence of a property) and merged (to combine properties). Conjectures are

available through simple search, and most theorems easily proved under the

representation.

TABLE OF CONTENTS

, Artificial Intelligence and Graph Theory 1

1.1. Overview 1

1.2. Background 4

1.3. Graph Theory and Its Representation 7

1.4. Languages for Graph Theory 8

1.5. Questions and Answers 10

1.6. Some Fundamental Definitions 11

1.6.1. Basic Graph Terminology 12

1.6.2. Graph Properties, Characteristics and Descriptions 13

1.6.3. Graph Terminology and Graph Grammars 14

L Edge-Set Graph Languages 17

2.1. General Overview 17

21.1. Language L1 Summary 18

21.2. Language L2 Summary 20

21.3. Language L3 Summary 20

21.4. Summary of Languages L1n, L2n and L3n 21

21.5. Language L* Summary 21

22 Language L1 22

22.1. A Grammar for Language L1 22

2 2 2 L1 for Undirected Graphs 26

223. L1 for Directed Graphs 29

224. An L1 Graph Generator 32

225. An L1 Testing Algorithm 34

226. Transition from L1 to L2 35

23. Language L2 35

23.1. A Grammar for Language L2 35

23.2 L2 for Undirected Graphs 36

2.3.3. L- for Directed Graphs 41

2.3.4. Algorithms for Generating and Testing in L2 41

2.3.5. A Comparison of L1 and L- 44

2.4. Language L3 45

2.4.1. A Grammar for Language L3 45

2.4.2 L3 for Undirected Graphs 46

2.4.3. L3 for Directed Graphs 49

2.4.4. Algorithms for Generating and Testing in L3 50

2.4.5. A Comparison of L3 with L2 50

2.5. The Language L* 51

25.1. A Grammar for Language L* 51

25.2 L* for Undirected Graphs 52

25.3. Evaluation of L* 57

26. The Edge-Set Languages: a Review 58

3. Recursive Languages 60

3.1. Graph Construction 60

3.2 Recursive Graph Grammars 64

3.3. The Components of a Recursive Language 66

3.4. The Floor of a Graph Property 72

3.5. Inversion 74

3.6. Automated Inversion 75

3.7. Readily Invertible Graph Properties 81

3.7.1. Acyclic Graphs 82

3.7.2 Trees 85

3.7.3. Loopfree Graphs 88

3-.7A Chains 90

3.7.5. Cycles 94

3.7.6. Stars 96

3.7.7. Wheels 98

3.7.8. Complete Graphs 101

3.7.9. Graphs with an Even Number of Vertices 102

3.7.10. Graphs with an Odd Number of Vertices 105

3.7.11. Graphs with an Even Number of Edges 106

3.7.12. Graphs with an Odd Number of Edges 108

3.7.13. Eulerian Graphs 111

3.7.14. Graphs with K Vertices 114

3.7.15. Graphs with K Edges 115

3.7.16. Graphs of Minimum Degree K 119

3.7.17. Graphs of Maximum Degree K 120

3.7.18. Pinwheels on Hubs of Size h 123

3.7.19. Graphs with K Components 126

3.7.20. Regular Graphs 129

3.7.21. Connected Graphs 138

3.7.22. Biconnected Graphs 139

3.7.23. k-Connected Graphs 142

L Advanced Topics in Recursive Languages 147

4.1. Extended Recursive Languages 147

4.1.1. Calculating the Number of Vertices and Edges in a Graph 148

4.1.2. Calculating the Degree of a Vertex 151

4.2 The Loop as Marker 153

4.21. Caicuiating the Maximum Vertex Degree in a Graph 153

4.a The Loop as Label 156

4.3.1. Bipartite Graphs 156

4.3.2. Complete Bipartite Graphs 158

4.3.3. K-Vertex-Covered Graphs 161

4.3.4. Graphs with K Independent Vertices 164

4.4. Labelling/Coloring Graphs .165

4.4.1. K-Colored Graphs 168

4.4.2- K-Chromatic Graphs 170

4.4.3. Graphs with Vertex Covering Number K 176

4.4.4. Graphs with Independence Number K 182

4.4.5. Graphs with Labelled Edges 184

4.4.6. Graphs with Circumference K 185

4.4.7. Graphs with Edge Covering Number K 189

4.4.8. Graphs with a k-Factor 193

4.4.9. K-Factorable Graphs 196

4.5. Subsumption 201

4.6. Merger 204

4.7. NP-Completeness and R-Properties 213

4.7.1. Subgraph Properties and Two-Stage Algorithms 215

4.7.2 Graph Properties with Elaborate Seed Sets 217

4.7.3. NP-Completeness and the Recursive Formulation 218

5. Conclusions 219

5.1. Languages for Graph Properties 219

5.2. Edge-Set Language Results 222

5.3. R-Language Results 223

5.3.1. Expressive Power 223

5.3.2. The <P,L,E> Formulation 226

5.3.3. Floors 226

5.3.4. Inversion, Subsumption and Merger 230

5.3.5. Complexity and Redundancy 231

5.3.6. Boolean Properties 233

5.4. Applications 238

5.5. Open Questions 242

5.6. Implications of This Work 243

Appendix A. Key to Notation 245

Appendix B. Investigation of the Language L2 for Undirected 247

B.1. The Program L2 247

B.2. L2 Output 250

Appendix C investigation of the Language L2 for Directed 252

C1. The Program L2DI 252

C2. L2DI Output 257

Appendix D. Investigation of the Language L3 for Undirected 259

D.1. The Program L3 259

D.2. L3 Output 262

Appendix EL Investigation of the Language L3 for Directed 265

E1. The Program L3DI 265

E 2 L3DI Output 269

REFERENCES 271

INDEX 275

LIST OF FIGURES

Figure 1-1:

Figure 2-1:

Figure 2-2:

Figure 2*3:

Figure 2*4:

Figure 3-1:

Figure 3-2:

Figure 3-3:

Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:

Figure 3-8:

Figure 3-9:

Figure 3-10:

Figure 3-11:

Figure 3-12:

Figure 3-13:

Figure 3-14:

Figure 3-15:

Figure 3-16:

Figure 3-17:

Figure 3-18:

Figure 3-19:

Figure 3-20:

Figure 3-21:

Figure 3-22:

Figure 3-23:

Forbidden Subgraphs for a Line Graph

A Venn Diagram for Undirected Graphs

A Venn Diagram for Directed Graphs

A Venn Diagram for Undirected Graphs in L*

A Preliminary Venn Diagram for Directed Graphs in L*

An Algorithm to Recursively Construct a Target Graph

An Algorithm to Recursively Generate Graphs

A Sample Run of GENERATE

An Algorithm to Generate Graphs without Edges

A Sample Run of EDGELESS

Orderings for Property Languages

EDGELESS""1 in Operation

GENERATE""1 in Operation.

The Behavior of f and f~1 on the Set of All Graphs

Some Acyclic Graphs

A Sample Run of ACYCLIC

ACYCLIC""1 in Operation

Some Trees

A Sample Run of TREE

TREE~1 in Operation

Some Loopfree Graphs

A Sample Run of LOOPFREE

LOOPFREE*1 in Operation

Some Chains

A Sample Run of CHAIN

CHAIN""1 in Operation

CHAIN"1 in Operation

Some Cycles

2

26

29

53

58

61

61

62

63

63

73

79

80

82

83

84

85

86

86

87

88

89

90

90

91

93

94

94

Figure 3-24:

Figure 3-25:

Figure 3-26:

Figure 3-27:

Figure 3-28:

Figure 3-29:

Figure 3-30:

Figure 3-31:

Figure 3-32:

Figure 3-33:

Figure 3-34:

Figure 3-35:

Figure 3-36:

Figure 3-37:

Figure 3-38:

Figure 3-39:

Figure 3-40:

Figure 3-41:

Figure 3-42:

Figure 3-43:

Figure 3-44:

Figure 3-45:

Figure 3-46:

Figure 3-47:

Figure 3-48:

Figure 3-49:

Figure 3-50:

Figure 3-51:

Figure 3-52:

Figure 3-53:

Figure 3-54:

Figure 3-55:

Figure 3-56:

Figure 3-57:

Figure 3-58:

A Sample Run of CYCLE

CYCLE"1 in Operation

Some Star Graphs

A Sample Run of STAR

STAR"1 in Operation

Some Wheels

A Sample Run of WHEEL

WHEEL"1 in Operation

Some Complete Graphs

A Sample Run of COMPLETE

COMPLETE"1 in Operation

Some Graphs with an Even Number of Vertices

A Sample Run of EVEN-N

EVEN-N"1 in Operation

Some Graphs with an Odd Number of Vertices

A Sample Run of ODO-N

ODD-N"1 in Operation

Some Graphs with an Even Number of Edges

A Sample Run of EVEN-M

EVEN-M"1 in Operation

Some Graphs with an Odd Number of Edges

A Sample Run of ODD-M

ODD-M"1 in Operation

Some Eulerian Graphs

A Sample Run of EULERIAN

EULERIAN"1 in Operation

Some Graphs with 3 Vertices

5-VERTICES in Operation

4-VERT1CES"1 in Operation

. Some Graphs with 3 Edges

5-EDGES in Operation

4-EDGES"1 in Operation

Some Graphs of Minimum Degree 3

MIN-2 in Operation

MIN-4" 1 in Operation

95

96

97

97

98

99

99

100

101

102

103

103

104

105

105

106

107

107

108

109

109

110

110

111

111

113

114

114

115

116

116

118

119

119

121

Figure 3-59:

Figure 3-60:

Figure 3-61:

Figure 3-62:

Figure 3-63:

Figure 3-64:

Figure 3-65:

Figure 3-66:

Figure 3-67:

Figure 3-68:

Figure 3-69:

Figure 3-70:

Figure 3-71:

Figure 3-72:

Figure 3-73:

Figure 3-74:

Figure 3-75:

Figure 3-76:

Figure 3-77:

Figure 3-78:

Figure 3-79:

Figure 3-80:

Figure 3-81:

Figure 4-1:

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 4-7:

Figure 4-8:

Figure 4-9:

Figure 4-10:

Figure 4-11:

Figure 4-12:

Some Graphs of Maximum Degree 3

MAX-5 in Operation

MAX-4 " 1 in Operation

Some Pinwheels

PINWHEEL in Operation

P1NWHEEL"1 in Operation

Some Graphs with Three Components

2-COMPONENTS in Operation

1-COMPONENTS""1 in Operation

Some Regular Graphs

EVEN-REGULAR in Operation for k = 4

EVEN-REGULAR"1 in Operation for k = 2

ODD-REGULAR in Operation for k = 5

ODD-REGULAR"1 in Operation for k = 3

Some Connected Graphs

CONNECTED in Operation

CONNECTED""1 in Operation

Some Biconnected Graphs

B1CONNECTED in Operation

BICONNECTED"1 in Operation

Some 5-Connected Graphs

4-CONNECTED in Operation

3-CONNECTED"1 in Operation

VERTICES in Operation

EDGES in Operation

VERTICES"1 in Operation

EDGES"1 in Operation

DEGREE in Operation

DEGREE"1 in Operation

MAX in Operation

MAX"1 in Operation

Some Bipartite Graphs

BIPARTITE in Operation

BIPARTITE"1 in Operation

Some Complete Bipartite Graphs

121

122

123

124

125

126

127

127

129

130

132

134

135

137

138

139

140

140

141

143

144

144

146

148

149

151

151

152

153

154

155

156

157

158

159

Figure 4-13:

Figure 4-14:

Figure 4-15:

Figure 4-16:

Figure 4-17:

Figure 4-18:

Figure 4-19:

Figure 4-20:

Figure 4-21:

Figure 4-22:

Figure 4-23:

Figure 4-24:

Figure 4-25:

Figure 4-26:

Figure 4-27:

Figure 4-28:

Figure 4-29:

Figure 4-30:

Figure 4-31:

Figure 4-32:

Figure 4-33:

Figure 4-34:

Figure 4-35:

Figure 4-36:

Figure 4-37:

Figure 4-38:

Figure 4-39:

Figure 4-40:

Figure 4-41:

Figure 4-42:

Figure 4-43:

Figure 4-44:

Figure 4-45:

Figure 4-46:

Figure 4-47:

COMPLETE-BIPARTITE in Operation

COMPLETE-BIPARTITE"1 in Operation

Some 5-Vertex-Covered Graphs

4-VERTEX-COVERED in Operation

3-VERTEX-COVERED"1 in Operation

Some Graphs with 3 Independent Vertices

3HNDEPENDENT in Operation

2-INDEPENDENT"1 in Operation

Some 3-Colored Graphs

4-C0L0RED in Operation

2-COLORED"1 in Operation

Some 3-Chromatic Graphs

4-CHROMATIC in Operation

The Generation of W] S

The Grotzsch Graph

Generating the Grotzsch Graph

2-CHROMATIC"1 in Operation

Some Graphs with Vertex Covering Number 5

VERTEX-COVER in Operation

VERTEX-COVER"1 in Operation

Some Graphs with Independence Number 3

INDEPENDENCE-3 in Operation

INDEPENDENCE-4"1 in Operation

Some Graphs with Circumference 5

A Graph and its Blocks

CIRCUMFERENCE-6 in Operation

CIRCUMFERENCE-3"1 in Operation

Some Graphs with Edge Covering Number 4

The Seed Graphs for Edge Cover 4

6-EDGE-COVER in Operation

3-EDGE-COVER"1 in Operation

Some Graphs with 3-Factors

4-FACTOR in Operation

2-FACTOR"1 in Operation

Some 2-Factorable Graphs

159

161

161

162

163

164

164

166

168

169

170

171

172

172

173

173

175

177

178

182

182

183

185

186

186

187

188

189

190

191

192

193

194

197

197

Figure 4*48:

Figure 4-49:

Figure 4*50:

Figure 4-51:

Figure 4-52:

Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

3-FACTORABLE in Operation 199

2-FACTORABLE"1 in Operation 200

Some Hamiltonian Graphs 214

HAMILTONIAN in Operation 214

HAMILTONIAN""1 in Operation 215

Graph Properties with Edge-Set L-Language Grouped by 227

Floors

Graph Properties with Edge-Set L-Language Ranked by 229

P-Language and Z-Language

A Graph with Variable Testing Time 232

Some Graphs and Their Planarity 234

The Construction of a Homeomorph to K 234

A Sample Run of NON-PLANAR 235

A Sample Run of PLANAR 236

LIST OF TABLES

Table 2*1: Equivalence Classes for Undirected Graphs in L1

Table 2-2: Equivalence Classes for Directed Graphs in L1

Table 2*3: Properties of Undirected Graphs in L_

Table 2-4: Unique L2 Characterizations for Undirected Graphs

Table 2-5: Results of Program L2 on Undirected Graphs

Table 2-6: Results of L2DI on Directed Graphs

Table 2-7: Refinement of L1 by L_

Tabie 2-8: Characterizations for Undirected Graphs in I

Table 2-9: Results of Program L3DI on Directed Graphs

Table 2-10: Undirected Graph Signatures in L*

Table 3-1: Primitive Operators for R-Grammars

Table 3-2: Some Composite Operators for R-Grammars

Table 3-1: Edge-Set Language Properties

Table 5-2: Graph Properties Studied under Recursive Generation

28

31

37

38

39

42

45

48

49

55

66

68

222

225

CHAPTER 1

ARTIFICIAL INTELLIGENCE AND GRAPH THEORY

...if the science of number were merely analytical, or could be

analytically derived from a few synthetic intuitions, it seems that a

sufficiently powerful mind could with a single glance perceive all its

truths; nay one might even hope that some day a language would be

invented simple enough for these truths to be made evident to any

person of ordinary intelligence.
—Poincare

1.1. Overview

"G is a line graph," says Theorem 8.4 in Harary's graph theory textbook, "if and

only if none o f the graphs in Figyre 1-1 is an induced subgraph o f G" W e do not

need to understand the terminology of the theorem to have the pictures arouse our

curiosity. What do those graphs have in common with each other? Why precisely

those and no others? Consider too Statement 21 .5 f r om Bondy and Murty's t e x t

"Let G be a graph [on v vert ices] wi th v - 1 edges. The fol lowing statements are

equivalent

(a) G is connected

(b) G is acyclic

(c) G is a tree"

What intertwines those properties? Are any others related to them? What other

sets o f propert ies are so commingled? Graph theory abounds wi th such questions.

The challenge fo r a mathematician is to identify, discover and describe such

propert ies and the relations among them. Assume w e wish to address some o f

these questions wi th a computer. How would we go about it?

€
• - • A

Figure 1-1: Forbidden Subgraphs for a Line Graph

We reflect first on the process of mathematical research. The question:

posed above are those a mathematician might pose while doing research

Confronted with a mass of data (axioms, definitions, examples, theorems, algorithms;

the research mathematician focuses selectively on an interesting subset [Pasc<

64, Hardy 40] , intuitively conjectures additional data [Poincare 70] and thei

attempts to satisfy the demands of rigor with formal definitions and proofs. Hov

can we even begin to computerize a process so laden with value judgements an<

vagueness?

Consider the diverse role of language in mathematical research. Th<

mathematician carefully formalizes a research result in the language of definition:

and proofs. The promulgation of the result however, is more likely to be in nature

(spoken, non-technical) language with recourse to vernacular and analogy to other

fields. Yet the language (or languages) in which the focusing and conjecturing take

place, we suspect, is quite different from the other two languages. (Recall the

tremendous assistance a diagram offers to the construction of a proof in plane

geometry, or the power functional analysis derives from viewing certain problems in

the context of series.)

This multiplicity of representations, and the facility with which a mathematician

moves from one representation to another, is significant If we are interested in

exploring graph theory on a computer, we require some way of representing graph

theory to the machine Until now, representation of mathematical knowledge for

computers has been tailored to a single specific purpose. Example generation

utilized one representation, and theorem proving another.

It is our thesis that a single representation can support many of the behaviors

observed in mathematical research. This dissertation explores the thesis in the

domain of graph theory. We consider many representations for graph theory and

evaluate them. Our evaluation is both theoretical (calculating the power of the

representation based only on its definitional structure) and empirical (observing the

portions of the representation actually applicable to and of interest in graph theory).

In the course of research, a mathematician hopes to deepen her understanding

of objects and relations among them. Understanding a concept means, among other

things, being able to apply it Imagine that a machine is presented with graph

property p as an algorithm for generating the set of graphs with that property.

Now the machine is confronted with an arbitrary graph. Can it determine whether

or not that graph has property p? Such behavior, creating a testing algorithm from

a generating algorithm, we will call "inversion." Inversion is an example of machine

learning and of automatic programming, both of substantial interest in computer

science.

We have sketched a complex and challenging series of problems. Our next

step is to define the segments we will examine. This chapter provides a framework

for our study. First we place the task in its contexts: artificial intelligence,

knowledge representation, mathematics and graph theory. In a subsequent section

we define graph theory and formulate criteria for evaluating its representation. We

then describe our approach to knowledge representation based upon formal

languages. We pose the central questions and indicate, informally, where the

answers lie. The basic terminology required for graph theory and its representation

in formal languages completes the chapter

In Chapter 2 we analyze a family of representations called the edge-set

languages. They are used, in turn, as a foundation for the recursive languages. In

Chapter 3 we present elementary concepts for recursive languages as a graph

representation and begin an empirical examination of these recursive languages.

Chapter 4 explores their power in greater depth. Chapter 5 considers the results.

1.2. Background

In this section we place the dissertation in the context of artificial intelligence,

particularly knowledge representation, and justify our focus on mathematics and

graph theory as objects of study.

Artificial intelligence simulates intelligent behavior on a computer. We may

hypothesize intelligence as movement through a search space. A point in the search

space is the currently known set of objects and relations among them The

operators in the search space define the moves available from one point to the

next The rules for selecting and applying these operators guide the search. The

search is the dynamic, procedural aspect of intelligence. Essential to such search is

the ability to use symbolic representation

The symbolic structures we create and manipulate are for large amounts of

diverse knowledge [Newell 76] . Each time we manipulate knowledge with a

computer, we need a way to represent the objects involved These objects may be

chess pieces, cannibals or viruses. A fundamental problem in the choice of a

representation is its grain or fineness of detail. The omission of some significant

detail about an object may hamper our ability to reason about it A complete

description, however, (including, perhaps, molecular structure and historical

background) would probably be overwhelming, impossible and irrelevant to the task

at hand The number and identity of the details chosen for a representation typically

depend upon the intended task.

Symbolic representations are required for not only the objects, but also the

relations among them, and the operators and rules of the search space. The ability

to extract and apply data about details with heuristic significance is an important

feature of intelligence [Minsky 63, Newell 75]. These difficult problems in

symbolic representation have limited artificial intelligence exploration to toy domains:

mathematical puzzles, games and theoretical tasks far from the real, physical, human

world The objects have been finite in number and the features chosen as salient

have been relatively obvious. Even such simple domains have presented rich and

challenging questions. The search, and a representation for the search space, have

been the major challenges. Research is now meeting these challenges. Many

game-playing programs have begun to surpass their human opponents. Theoretical

results can often predict or bound the complexity of the search in question. New

challenges are required

Between the well-plumbed toy domains and the ill-understood physical world,

lies another rich problem area: mathematics. Thousands of years of human thought

have structured a complex web of objects and relations beyond the scope of any

game designer Yet, because people discovered mathematics and require no

instrument (beyond a well-tuned mind) to study it, mathematics should be a fertile

domain for research in artificial intelligence. Logic and theorem proving were among

the earliest targets of artificial intelligence study and remain as active areas of

exploration Initial efforts in calculus [Slagle 63, Moses 75] were challenges in

formula manipulation. Only recently has the focus for mathematical domains shifted

to the detection of (presumably existent) underlying patterns. Particularly noteworthy

and relevant to this dissertation are the work of Mitchell, Lenat and Michener

Mitchell's LEX [Mitchell 83] formulates heuristics for the application of integration

formulae in calculus, an example of a machine learning "unwritten" rules. Lenafs AM

[Lenat 76] modelled mathematical research in set theory, making observations and

conjectures on its discoveries. Michener [Michener 78] designed a set of three

spaces (examples, results and concepts) to model a mathematician's understanding of

mathematics. Mathematics is not a new domain for artificial intelligence, but an

under-explored one.

To make the task more manageable, in this dissertation we restrict our focus

to a single area of mathematics, graph theory. Graphs are an excellent subject of

study because:

• There are representations for graphs which display much of the

graphs' structure.

• There are representations for graphs which readily display a graph's

relation to other grapha

• Graphs are powerful representational data structures for many

computer science problems, encoding semantic information syntactically.

In contrast, whether or not a group is cyclic is not immediately discernible from its

operation table, nor would homomorphism between two groups be readily apparent

The maximum degree of a vertex in a graph, or whether two graphs share a

particular vertex, is transparent in an adjacency list representation.

Another reason to study graphs, particularly digraphs, is their importance in

artificial intelligence. Any problem search space is traditionally thought of as a

graph [Nilsson 80]. Graphs have been used to represent real-world knowledge

[Fahiman 77, Quillian 67] , meaning in natural language [Sowa 79] , hierarchical

structures and planning [Sridharan 80] , axioms and default rules for default

reasoning [Sridharan 81] , abstraction hierarchies for reasoning by analogy [Winston

80] , psychological models of memory [Anderson 73, Winston 80, Schank 75] , and

concept descriptions [Winston 75]. Graphs have also been used to develop

resolution plans for theorem proving [Chang 79] and signal understanding

[Feigenbaum 77]. In the social, biological and environmental sciences, graphs have

proven constructive for such diverse problems as genetic substructure,

archaeological seriation, trait development in child psychology, traffic flow

management food webs, garbage collection, electrical energy demand, health care

delivery, phosphorus in a pasture ecosystem, and mathematical models of learning

[Roberts 76].

In computer science, graphs are both the classic representation of a search

space [Nilsson 30] and, increasingly, the symbolic structure for objects of study

[Roberts 76]. Computer scientists have explored the explicit representation and

search of graphs. Now we have a vast body of (ill-organized) mathematical

knowledge ("graph theory") and some well-entrenched data structures (matrices, lists)

for representing graphs on a computer. If we are to explore this material on a

computer, a point in the search space will be our knowledge of graph theory at

that instant the rules will focus our attention and the operators will construct

"discoveries." Such a search is open-ended We require a clearer definition of our

goal and some criteria to evaluate our performance.

1.3. Graph Theory and Its Representation

This section defines graph theory and posits criteria for its evaluation.

The evolving body of mathematical knowledge known as graph theory includes

definitions, examples, theorems, algorithms, conjectures and proofs. We adopt the

definition of graph theory as formulated by experts, represented in three general

texts. One [Ore 62] is a classical development in elegant mathematical fashioa

The second [Harary 72] encompasses a broader range of topics, presented as

definitions and theorems. The third [Bondy 76] takes an algorithmic approach.

Together, these texts are our benchmark; their contents are assumed to be graph

theory and their contents "of interest" to graph theorists. We observe from them

that typical theorems in graph theory describe the relations among graph properties.

For example:

• If a graph has property p and property q, then it has property r.

• A graph has property p if and only if it has property q.

• It is not possible for a graph to have both property p and property

Once we delineate graph theory, we need a formal representation for it How

do we evaluate such a representation? We identify two criteria*

• expressive power

• procedural power

A representation's expressive power is measured by its ability to describe correctly

properties and objects of interest in graph theory. "Connected/' "complete" and

"acyclic" are examples of properties. Specific graphs are examples of objects. A

representation with expressive power can be used to emphasize significant features

and deliberately obliterate irrelevant ones. We gauge the expressive power of a

representation against the texts we have chosen as a benchmark. It is somewhat

more difficult to gauge a representation's procedural power. Imagine a

mathematician doing research in graph theory. We have described in 1.1 the

judgmental and intuitive nature of such work. We will therefore not concern

ourselves with reproducing or quantifying the methods of the mathematician, but

only with simulating the behaviors of the mathematician. Examples of such behavior

are formulating a conjecture, testing a graph for a property and proving a theorem.

All these behaviors are intended to add to the body of mathematical knowledge.

We gauge procedural power by the number of such behaviors supported by the

representation and the adequacy of their performanca

1.4. Languages for Graph Theory

This section outlines our general approach to graph theory representation based

upon formal languages.

Consider the following fundamental aspects of graph theory:

• An object in graph theory is a finite graph, whose segments may be

viewed as details in its description. A particular graph can be

significant in graph theory as an example or a counterexample. Thus

an object in graph theory is a set containing a single graph. There are

infinitely many such objects.

• By extension, a graph property is a set of graphs. For many

properties of interest in graph theory, a graph property is an infinite

set

• Theorems in graph theory, as we observed in 1.3, are essentially about

graph properties. Thus important mathematical research behaviors (such

as conjecture and proof) can be expressed with respect to sets of

graphs.

• Mathematicians and scientists build graphs and then manipulate them

with algorithms. Many algorithms are only applicable to graphs with

specific properties To reason about the applicability of an algorithm

we must be able to describe a set of graphs.

The first two arguments address expressive power. The second two are relevant

to procedural power. We conclude, then, that a good knowledge representation for

graph theory will focus upon both finite and infinite sets of finite graphs. The

explicit listing of all graphs with property p, each as a list of vertices and edges,

would be impossible for an infinite set and inefficient in most finite cases. We

require an alternative, a language in which to represent graph theory.

A grammar is an accepted way to represent a language. If we describe a

language formally, we can explore its expressive power and construct from it a

hierarchy of languages of increasing expressive power. In this dissertation, each of

our representations is a grammar whose terminal strings may be interpreted as

graph properties (sets of graphs). Our study proceeds from the simple to the

complex. The edge-set languages of Chapter 2 are highly restricted An edge-set

language property describes graphs in terms of their edge sets and operations

interpreted on those edge sets. These languages can express only finitely many

graph properties. The need to represent infinite sets and expert observation that

pattern recognition is essentially recursive in nature [Poincare 70, Minsky 63], leads

us to substantial exploration (in Chapters 3 and 4) of languages with a recursive

procedural interpretation. These languages are not finite and have greater expressive

power.

We distinguish two kinds of representational languages: declarative and

procedural. A declarative language constructs descriptions in terms of objects, their

existence and their properties. For example, "a graph has property p if there exists

some subgraph.." or "every graph with property p has property q." A declarative

language is oriented to expressive power. A procedural language, on the other

hand, is structured to simplify the specification of algorithms. In this dissertation

we present languages which are simultaneously declarative and procedural. The

languages of Chapter 2 express a well-structured finite set of graph properties

with natural and efficient algorithms for them. The languages of Chapters 3 and

4 embody recursive algorithms within the formulation of each property.

Work in problem transformation has indicated that a relation between the

representational and reasoning aspects of a search space can provide substantial

problem solving power (See, for example, [Amarel 81].) By designing our

languages to facilitate implementation, we should make coding easy and produce

efficient algorithms. We deliberately impose upon our languages this procedural

orientatioa

1.5. Questions and Answers

We have now assembled enough background to state the key questions in this

work, and point to the answers.

• To what extent can expressive and procedural power be incorporated

into a single representation?

The edge-set languages of Chapter 2 have a surprisingly limited (finite)

expressive ability but impressive procedural power. This highlights their

potential for representing infinite sets, for hashing graphs and for

11

discovering commonalities and differences within a set of graphs

Unfortunately, a finite language's idea of an interesting property is

unlikely to appear in a graph theory text The recursively-formulated

languages of Chapters 3 and 4 better meet the benchmark for

expressive power. Much of graph theory seems representable in a

consistent and unified fashion in this recursive formulation. Even

better, the languages readily adapt to extensions (such as labelled

graphs) and are amenable to procedural goals (such as inversion).

• How can we compare the expressive power of two representations?

We base comparisons of expressive power on hierarchies of formal

grammars with identical semantic interpretations.

• How can we evaluate the complexity of a property?

We introduce, in the context of recursive languages, the floor of a

property. Informally, this is the least powerful language in which the

property is expressible.

This dissertation is not about algorithmic complexity, although it effectively

isolates it within each representation. Nor is it about formal languages, although

they support its exploration Rather, this dissertation is about compact and elegant

knowledge representation which draws its power from its descriptive focus and its

dependency upon recursion

1.6. Some Fundamental Definitions

This section formulates the most basic definitions we use in our work. We

begin with the familiar classical definitions from graph theory. Next we construct

our own definitions for a graph property, a graph characteristic and a graph

description Finally we explain how this terminology effects our formal language

formulation Additional, more special definitions will be introduced as needed,

throughout the dissertation

12

1.6.1. Basic Graph Terminology

We begin with the basic definitions for graph theory:

• Let V be a finite set of elements called nodes or vertices.

• Let I be the Cartesian product V X V, I = {(x,y) | x,y e v}.

• If E is any subset of I the ordered pair <V,E> is used as the standard

representation of a graph.

• If (x,y) s E such that x and y are distinct (x,y) is called an edge and is

abbreviated as xy. If x,y e V and xy e E, vertices x and y are said to

be adjacent and x is said to be a neighbor of y.

• A graph G = <V/E> is undirected when xy s E if and only if yx s

E Otherwise the graph is directed.

• If (x,x) e E, (x,x) is called a loop and is abbreviated as xx. Every

element of I is either an edge or a loop and not both. The set of ail

possible loops on V is 1 = {(x,x) | x e V}.

• The cardinality of a set S is the number of distinct elements it

contains and is denoted by |S| . We define |V| = n and |E| = m

• If n = 0 then m « 0 and G = <$,£> is defined to be the empty graph.

• Two graphs G1
 s <V ,Ej> and G2 = <V E > are isomorphic to each

other if there exists a one-to-one mapping tr : V -> V such that xy

« E] if and only if ir<x)ir(y) e E-. The mapping tr is called an

isomorphism.

By now the reader will be grateful to learn that Appendix I is a reference table of

symbols and their definitions. There is also an index (immediately following the

references) citing ail definitions and algorithms in this document Definitions labelled

"thesis specific" are our own terminology. All others are drawn from the

benchmark texts, b Algorithms appear in ail capital letters. The ordered pair <V,E>

is the standard representation of a graph G, all subsequent semantics will be given

in terms of this standard representation.

1.6.2. Graph Properties, Charaoteristtcs and Descriptions

Let U be the set of finite graphs closed under isomorphism. A graph

property p is a function mapping U into some range S of values. A graph property

is said to be boolean if S - {true,false}, (e.g., pianarity, completeness); it is said to

be numeric if S is the set of non-negative integers (e.g., chromatic number,

circumference). Two graph properties p and p2 are equal if and only if p^G) -

P2(Q for all G e U.

Graph theory includes:

• the definition of graph properties

• theorems establishing necessary and sufficient conditions for these

properties to assume particular values

• algorithms to calculate the value of a property on a specific graph

A characteristic of a graph is an ordered pair (p,s) where p is a graph

property with range S and s e S.

A description d is a set of such characteristics.

A description d « {(prs1),(p2,s2)^.,(pk,sk)} is satisfied by a graph G if and only

if p.(G) s s. for i a i,2,~,k. It is possible for a description to be unsatisf table with

respect to U (satisfied by no members of U, eg., "self-complementary and n = 3"),

unique (satisfied by exactly one isomorphism class of members of U, e.g.,

"self-complementary and a cycle"), or general (satisfied by more than one

isomorphism class of members of U, e.g., "cyclic").

Let D be a finite set of descriptions. If for every two descriptions d rcL e D

and graph G ^ U , either G does not satisfy d1 or G does not satisfy d2,. then D is

said to be mutually exclusive. If for every G e u, there exists some d e D such

that G satisfies d, D is said to be collectively exhaustive. A set D of descriptions

which is mutually exclusive and collectively exhaustive partitions U into equivalence

14

classes, (for example, D = {{(cyciic,true)},{(cyclic,false)}}). A major objective in

Chapter 2 is to formulate languages whose semantic interpretations are graph

characteristics from which a D may be created whose partition of U is describable

by a concise syntactic form or signature for each ciass.

1.6.3. Graph Terminology and Graph Grammars

This section explains the interaction between a formal language representation

and graph theory.

In Chapters 2, 3 and 4 we define a set of graph grammars. Each grammar

will generate a language L of L-expressions. (For example, "m = 3" might be a

terminal string in language L) The semantic interpretation of each L-expression will

be a graph characteristic; we call such a characteristic an L-characteristic of a

graph. (Continuing the example, the semantic interpretation of "m = 3" might be "the

number of edges in the graph is 3") Two L-expressions in a language L are

equivalent if and only if their semantic interpretations are the same. (For example,

in language L, "m = 3" and "2 < integer m < 4" might be shown to be equivalent)

Equivalence of semantic interpretation defines a set of equivalence classes on

L-expressions. (Thus "m = 3" and "2 < integer m < 4" will both be in the same

equivalence class of L-expressions.) An equivalence class of L-expressions

designates a subset of U, namely, the set of ail those graphs in U satisfying that

L-characteristic. (Among others, G t = <{ 1,2,3}, {12,13,23} > and G2 -

<{ 1,2,3,4,5},{12,34,25}> satisfy "m = 3" and are in the same subset of U.) The

number of distinct equivalence classes of L-expressions is exactly the number of

distinct L-characteristics. Another aspect of the equivalence of L-expressions is

that there may exist a finite set T of equations on L-expressions such that A and B

are equivalent L-expressions if and only if one is derivable from the other using T

as a replacement system Members of T for edge-set languages are displayed in

Chapter 2, and consideration of a way to demonstrate such equivalence appears in

the discussion of subsumption in Chapter 4.

If a set P of (.-characteristics designates a partition of U such that all the

subsets are non-empty, P is said to be an L-property. By restricting our definition

to non-empty subsets, we require that L-characteristics be satisfied by some graph

in U. (Continuing the example, {the number of edges in the graph is 0, the number

of edges in the graph is 1, the number of edges in the graph is 2, ...} would

partition the set of all finite graphs.) The sets formed by an L-property partition

the set U into equivalence classes The language L allows us to name these

equivalence classes and describe the one containing any given graph in U. (In our

example, the classes could be named 0,1,2,~, and any finite graph would belong to

that class whose name was equal to the number of edges in the graph.) Thus if

there are precisely k distinct l-properties, the L-characterization of a graph G is

the L-deschption of length k which G satisfies; this is as much as L can say about

a given graph. An L-characterization is the most detailed description possible within

L The set of all satisfiabie L-characterizations partitions the set U into equivalence

classes; we call each such class an L-c/ass. Any element in a class can serve as a

representative or signature for its corresponding L-class of graphs.

As we postulate and explore languages for graph theory representation, we will

focus on the preceding definitions In particular

• An L-characterization may or may not be satisfiabie. The number of

satisfiabie L-characterizations is a way to measure the expressive

power of the language.

• An L-characterization may or may not be unique. The number of

unique characterizations is a way to measure the expressive power of

the language. When an L-characterization is general, some graphs will

be indistinguishable from each other.

• There may be finitely many or infinitely many L-classes of relatively

equal or unequal cardinality. The evenness with which U is distributed

among the L-classes is another way to measure the expressive power

of the language.

A representation's procedural power will be measured by its ability to generate

16

examples, to test objects for properties, to construct algorithms, to hypothesize, to

prove theorems, and to perform any other research behaviors observable when a

mathematician thinks about graph theory. Methodology (e.g., focusing, intuition) is not

part of procedural power.

We have now laid the framework for describing classes of graphs and

modelling graph theory in formal languages. We begin with the edge-set languages

17

CHAPTER 2

EDGE-SET GRAPH LANGUAGES

All mathematicians ... would be of nimble discernment if they had

good sight, for they do not argue falsely upon principles familiar to

them; and discerning minds would be mathematical if they could turn

their eye towards the unfamiliar principles of mathematics.

—Pascal

This chapter develops the first of two major, interrelated families of languages

for graph theory. The first section is an overview of the seven edge-set languages

and their salient features. The next four sections describe edge-sat languages in

detail. The last section is an assessment

2.1. General Overview

A family of languages is a collection of languages whose grammars and

semantic interpretations are hierarchical and mutually consistent A family of

languages is always based on a (not necessarily explicitly defined) bounding language.

The bounding language contains the underlying set of symbols, terms and

expressions in the family. A hierarchy is defined by gradually including more

symbols, terms and expressions in each new language, without eliminating those in

the preceding language The evolution of this hierarchy is motivated by a desire to

increase the expressive power of a language.

In extending a language to formulate more expressive languages in the

hierarchy, we postulate the following principles:

• Each language extension should be a refinement of that which precedes

i t preventing loss of expressive capability.

• Additional expressive capability should partition many previously-existing

classes, rather than a few, and particularly the largest

previously-existing classes.

• Finiteness in the number of classes is a property to be preserved as

long as possible.

This section describes, briefly and informally, the seven edge-set languages,

which become a cornerstone of the recursive languages in Chapters 3 and 4. The

terms in the grammars are always edge sets. Traditional set theoretic relations

between edge sets are L-characteristics. These relations are selected so that

properties are frequently boolean. The number and nature of the L-classes formed

under the partition of L-characterizations is always finite for fixed n.

We would expect these edge-set languages to have a broad expressive ability.

The simplest edge-set language \s Ly L2, L3, L1n, L2n and L3n are ail extensions of

L1 and closely interrelated The inability of these six to express certain graph

properties suggests a somewhat different extension of t - r to L*, the seventh

edge-set language. More extensive details are available in the remainder of this

chapter.

2.1.1. Language L1 Summary

In 1.6.3 we said that the expressions in a formal language have semantic

interpretations which are graph characteristics. Language L1 begins with primitive

symbols whose semantic interpretations are edge-sets. The initial edge sets are I,

E, 1, and 0. I is the Cartesian product V X v,

I = {xy j x,y e V}

E is any subset of I, 1 is the set of ail loops on V,

1 = {xx | x e V}

and 0 is the empty set j>. We introduce two unary operators on any edge set S:

reversal of the direction of all edges (denoted by S') and complementation with

respect to I (denoted by S). We define the binary operations of union and

19

intersection on edge sets. Finally we allow an equality relation (denoted as =) or an

inequality relation (denoted as #) between any two edge sets constructed with the

operators from the original four. Some sample L1 -expressions follow:

E n i # $

E u B « E n B

I = E u E u 1

Our interpretation of these expressions will be in terms of the standard

representation of the graph G by <V,E>. Thus the first expression is interpreted as

"the intersection of E and 1 is not the empty set1 or "the elements of E include

some non-loops" or "G includes at least one edge." Similarly, the second is

interpreted as "if an edge is in E so is its reverse," and the third as "every edge or

its reverse is in E" Many L1-expressions, however, are equivalent (via this

interpretation) to others. For example,

E n i-a <p

is equivalent to

(E n ir » w

in its semantic interpretation.

Although the language contains infinitely many L^-expressions, they have only

finitely many distinct interpretations. L r being interpreted as only a finite number,

say p, of distinct L1-properties, can be used to produce a description of length p

for each graph. Because the L1-properties are all boolean and appear in

complementary pairs, an L1-characterization can be efficiently represented as a

binary vector of length p. There are 2P such L1 -characterizations and thus at most

2P Lt -classes for ail finite graphs. L1 identifies the L1-characteristics shared by

two graphs as their matching vector entries. Because there are only finitely many

L -classes, a given description is not likely to describe only a single graph, although

it may be taken as a canonical form for an equivalence class of graphs whose

L1 -properties are interpreted from L1 -expressions. Further details on this language

are provided in 2.2.

2-1.2. Language L2 Summary

Language L2 is an extension of L which permits the relations of cardinal

equality (denoted as ~) and cardinal inequality (denoted as t-) between two edge sets.

Because an interpretation of an L -expression does not use integers

specifically in its property statements, L2 manages to remain finite in the number of

distinct properties which can be interpreted from it although it provides a superset

of the descriptions available in Lr Characteristics which can be interpreted from

L -expressions but not from L1-expressions include:

1 u E h E

Based again on the standard representation G = <V,E>, the first expression is

interpreted as "the reversal of the complement of the edge set has as many edges

as the edge set does"; the second as "there are not the same number of edges in

the complement of the edge set as there are in the edge set and all the loops."

The statements pertaining to descriptions and deterministic algorithms in L] are

equally applicable to L2. Further details on this language are provided in 2.3.

2.1.3. Language L_ Summary

Language L~ is an extension of L2 which permits the relation of lesser

cardinality (denoted as <) instead of cardinal inequality (/*). The interpretation of an

L3-expression does not use integers specifically in its property statements, and L3

also remains finite in the number of distinct properties which can be interpreted

from it L3 provides a superset of the properties available L2. Characteristics

which can be interpreted from L3-expressions but not from L2-expressions include:

(E)' < E

E < 1 u E

Based again on the standard representations G = <V,E>, the first expression is

interpreted as the "the reversal of the complement of the edge set has fewer

edges than the edge set1; the second as "there are fewer edges than the loops in

the graph plus the edges in the complement"

The statements pertaining to descriptions and deterministic algorithms in L2 are

equally applicable to L_. Further details on this language are provided in 2.4.

2.1.4. Summary of Languages L1n, L. and L-

Recall that n denotes the number of vertices in the graph. We will extend

language L, for i = 1,2,3, to language Ljn by permitting as expressions:

n = 1

n = 2

n = 3

Each of the finitely many equivalence classes in L. is thus split into finitely or

infinitely many equivalence classes in Ln. Language L|n provides a superset of the

properties available in language L. Further results on language L. are provided with
in

the details on language L. (See 22, 23 and 24.)

2,1.5. Language L* Summary

Language L* was motivated by the inability of the six earlier edge-set

languages to express most properties commonly appearing in graph theory texts,

and does enhance the expressive power of L1 to a limited extent Language L* is

an extension of L^ which includes the symbol E#, the transitive closure of E E* has

a recursive definition:

xy • E* if xy e E or if xp,py « E*

Thus xy is in E* for G - <V,E> if and only if there is an alternating sequence (a

path) x,xv ,v ,v v ,c..,vk,vky of distinct vertices in V and edges in E beginning with x

and ending with y. We chose to introduce the notion of transitive closure as a

single symbol, rather than a unary operator on a term, in order to control the

combinatorics. Some sample L1-expressions follow:

E* n 1 = 0

I = E u E* u 1

Using the standard representation G = <V,E>, the first expression is interpreted as

"no element of the transitive closure of the graph is a loop." The second is

interpreted as "every edge is in the edge set or represents a path in the edge set"

Any L*-expression not including the symbol E* is an L -expression. Further results

on this language are provided in 2.5.2.

2.2. Language L1

This section describes, in detail the theoretical nature of language L1 and the

empirical results achieved with it

2.2.1. A Grammar for Language L1

The formal grammar for L1 on a graph G s <V,E> is

symbol: E | I | 1 | 0

term: symbol | (term)' | (term) | (term u term) | (term n term)

expression: term = term | term # term

For all' the grammars in this family, we accept the convention of avoiding

parentheses whenever a construction would be unambiguous without them.

Although the grammar clearly generates infinitely many L1-expressions (for

example, E = 0, (E)' - 0, ((87 = 0, .J, the semantic interpretations we give these

L1-expressions place them in only finitely many equivalence classes. We interpret E

as the edge set of the graph. We interpret I as the Cartesian product V X V for

the vertex set V of the graph:

I s {xy | x,y e V}

We interpret 1 as the set of all loops on V,

1 = (XX | X 6 V}

and 0 as the empty set ^

We interpret the construction term = term as the binary relation of set

equality defined on edge sets in the customary fashion. For edge sets S1 and S2,

S = S2 if and only if for every xy e S r xy s S and for every xy e S2, xy s

Sy Similarly, the construction term # term is interpreted as set inequality. For

edges sets S1 and S2, S1 # S2 if and only if S} = S2 is false. E n i = 0 is an

expression in L r interpreted as "none of the elements of E is an edge." Such a

graph is G1
 s <{ 1,2,3}, {11} > or G2 = <{1,2},f>. Another example of an

expression in L is E u E # E n B, interpreted as "there is a difference between

the set of edges whose reverses are in E and the set of edges in E and its

reverse" Such a graph is G1 = <{1,2,3},{12}> or G2 = <{ 1,2,3},{12,21,23}>.

We interpret the construction (term)' as the unary operator reversal, which

interchanges the order of the vertices in each element of an edge set i.e., if S is

an edge set

S' - {yx | xy e S}

We interpret the construction (term) as the unary operator complement, which

replaces an edge set by its complement will respect to the universal set I. Thus for

any edge set S

S = {xy | xy 0 S, xy 6 I}

Now we begin to assemble a set T of valid transformations on L -expressions

(A transformation is valid if it preserves the semantic interpretation of an

expression) T includes the following transformations, for any edge set S, by

definition of reversal:

«S)T <=> S

I1 <=> I

r <=> 1

o1 <=> o
where "<=>" means that one expression may be replaced by the other without

altering the semantic interpretation. Any odd number of successive applications of

reversal is equivalent to one reversal and any even number is equivalent to no

T includes the transformation "the complement of the complement of S is S

itself", so any odd number of successive applications of the complement is

equivalent to one complementation, and any even number is equivalent to no

complementation at all. T also includes:

I <=> 0

0 <=> I

(E)' <=> (B)

The validity of the last transformation is due to the fact that both (E)' and (E) are

{xy|yx * E}.

We interpret the constructions (term u term) and (term n term) as the binary

operations of union and intersection, in the traditional set operations. For edge

sets S1 and S2.

S1 u S2 = {xy | xy € S1 or xy e S2)

S1 n S2 = {xy | xy € S1 and xy 6 S2}

T includes the following transformations from set theory:

(A n B) <=> A u B

(A y B) <=> A n B

and

(A n B)' <=> A1 n B'

(A U BV <=> A' U B#

These, along with our earlier observations about reversal and complementation, make

it possible to restrict both those unary operators to symbols rather than terms,

without loss of expressive ability. That is, under this restriction, the same

equivalence classes will be formed Thus the following grammar will have the same

L1-properties, although its expressions are a subset of the first grammar's,

symbol: E | l | 1 | 0 | B | E | B | l

term: symbol | (term u term) j (term n term)

expression: term = term I term # term

25

This is the grammar we will use for Lr

We are now interested in simplifying strings such as

«S1 n S2) u ...) n (...)

From set theory we have, for any edge sets Sy S^ S^.

(S1 u S2) n S3 <=> (S1 n S3) u (S2 n S3)

(S1 n s2) u S3 <=> (S1 u S3) n (S2 u S3)

It remains, then, only to simplify such pairings from among the eight symbols. For

any set S:

I u S <=> I

I n S <=> S

0 u S <=> S

0 n S <=> 0

Thus we need only consider expressions of the form S] u S, and S n S., where

S. and S- are chosen from among E, E, 1, 1, E and E. We also know that T

includes:

S u S <=> I

S n S <=> 0

for any set S. What distinct sets of graphs will L] describe? Fortunately, set

theory provides us with a classical problem transformation: the Venn diagram. For

ail possible unions and intersections of sets S r S 2 _.S k and their complements with

respect to a superset I, the Venn diagram draws k intersecting circles in a rectangle.

Every L1 term corresponds to exactly one of the finitely many regions in the

diagram Thus L1 has only finitely many terms and. therefore, finitely many

expressions. How many such expressions are there? We must consider undirected

and directed graphs separately. Since undirected graphs are combinatorially simpler,

we look at them first

2.2.2. L1 for Undirected Graphs

For an undirected graph, the symbols E and E refer to the same edge set, as

do E and E. A Venn diagram for an undirected graph appears in Figure 2 - 1 .

Figure 2-1: A Venn Diagram for Undirected Graphs

The symbol I is, by definition, the union of the others

I ^ E u i u O u E u i

and the symbol 0. as the empty set requires no explicit description on a Venn

diagram Complements with respect to I have a natural representation in a Venn

diagram. Thus Figure 2 -1 is justified in explicitly labelling only the symbols I, E and

1 Observe that I is partitioned into four subsets, which we call regions . We have

labelled these regions with a shorthand to be used throughout this chapter

a denotes E n i, the non-loop edges not in the graph

c denotes E n i, the non-loop edges in the graph

d denotes E n 1, the loops in the graph

f denotes E n 1, the loops not in the graph

The interpretation of any term in L1 for undirected graphs is either the empty set

or the union of some of these four regions. Any L1-expression is interpreted as a

statement of set equality or inequality between two such terms. There are only 24

= 16 distinct interpretations of L^ -terms. Since these relations are symmetric and

complementary, there are at most 2 (1 |) = 240 L -characteristics. Because these

characteristics represent the truth or falsity of a boolean relation (set equality), there

are at most 240/2 = 120 L] -properties and at most 2 1 2 0 different

L1 -characterizations.

L -properties, however, are far more manageably finite than that We need

only test for set equality, because all the properties are boolean. Since the regions

a.c,d, and f partition the space, the correct interpretation of a statement of equality

between L1-terms is really a list of empty regions, those appearing on only one

side of the equal sign. For example, the L1 -expression 1 = 1 u E is viewed in the

Venn diagram representation as a u c = a u d u f, Because we always have a = a,

the non-trivial portion of this is c - d u f but since c, d and f are disjoint the

equivalent statement is that c,d and f are all empty, which we denote as simply cdf.

(Note that this implies |V| = n - 0 and the only graph with this particular property

will be the empty graph.) Thus there are really only 4 non-trivial distinct

L1 -properties:

• a is empty

• c is empty

• d is empty

• f is empty

The L1 -characterization of a finite undirected graph therefore consists of four

characteristics, one for each boolean property. There are 2 4 = 16 such

L1 -characterizations. We denote each L1 -characterization by the list of regions it

declares to be empty. Four of these L]-characterizations (df, adf, cdf and acdf)

are satisfied only by the empty graph <+,+>, and are consolidated as acdf. The

characterization ac is equivalent to saying jVj = 1. Since there are only two such

graphs, one satisfying description acd and the other satisfying description acf, the

L1 -characterization ac is eliminated. The 12 remaining L1-characterizations partition

the set of all finite graphs and may be regarded as signatures for their respective

classes. In Table 2-1 the 12 11-classes of undirected graphs are listed The

signature of a class is a canonical form given as a list of empty regions. In the

table's interpretations "edge1' continues to denote a non-loop and "some" denotes a

non-empty proper subset Subsequent languages will have signature computations

performed by machine; these were performed by hand

Class Signature Interpretation

1 none some edges and some loops

2 a all possible edges and some loops

3 c no edges and some loops

4 d some edges and no loops

5 f some edges and all possible loops

6 ad all possible edges and no loops

7 af all possible edges and all possible loops

8 cd no edges or loops but at least two vertices

9 cf no edges and all possible loops

10 acd V = {1}, E = *

11 acf V = {1}, E « {11}

12 acdf V = +, E « *

Table 2-1: Equivalence Classes for Undirected Graphs in L1

What appeared to be a rich language is really quite coarse. Three of these

signatures, (acd, acf and acdf) are for unique characterizations. Four more (ad, af,

cd and cf) would describe a unique graph, up to isomorphism, if accompanied in L1n

by a value for n Specifically, all members of class 6 are complete graphs of the

form <V,1>; all members of class 7 are complete graphs with all their loops <V,I>;

all members of class 8 are of the form <V,£>; and all members of class 9 are of

the form <V,1>. A potential of 2 1 2 0 classes has been reduced to 12, of which 5

will hold the majority of the graphs. It is to the credit of L r however, that its

interpretation is able to describe three graphs without explicitly stating the elements

of either V or E L l n is able to characterize the 6 finite undirected graphs uniquely

for n s 2. For each fixed n > 2 and each of the first 9 classes, there is at least

one graph.

2.2.3. L. for Directed Graphs

For a directed graph we return to the original seven symbols in the L

grammar E, I, 1, 0, E\ E, E, 1. Once again E. B, 1, I and 0 have inherent

interpretations in the Venn diagram, leaving us with three sets (E, 1 and B) to

explore in Figure 2-2.

• >

Figure 2-2: A Venn Diagram for Directed Graphs

This time I is partitioned into eight subsets The following calculations, however,

show that the two starred subsets of Figure 2-2 are always empty:

For the * region: If xy • (E n E n 1) then xy m 1 and x = y. If xx e B

then xx « E and xx * E Thus (E n E n i) is empty.

For the *» region: If xy « (E n B n 1) then xy e 1 and x * y. If xx m E

then xx s B and xx * B. Thus (E n B n 1) is empty.

Thus we are left with the six labelled regions in Figure 2-2. The labelling is

interpreted as follows:

• a denotes E n B n 1, the non-loop edges not in the graph whose

reverses are not in the graph either

• b denotes E n B n 1, the non-loop edges in the graph whose reverses

are not in the graph

• c denotes E n E n i, the non-loop edges in the graph whose reverses

are in the graph

• d denotes (E u E) n 1, the loops in the graph

• e denotes E n E n i, the non-loop edges not in the graph whose

reverses are in the graph

• f denotes (E u E) n i, the loops not in the graph

The interpretation of any term in L for a directed graph is the union of some

of these six regions. Any L -expression is interpreted as a statement of set

equality or inequality between two such terms. Although there are potentially 2 6 =

64 interpretations of Lt -terms, at most 2(6* > = 4032 L1-characteristics and at

most 2 2 0 1 6 L1-characterizations, the number of distinct L1-properties can be

reduced using the same reasoning as in the undirected case. The empty graph this

time has signature abcdef, subsuming classes which would have had the signatures

df, adf, cdf, acdf, bdef, abdef and bcdef. The relationship between E and E

requires that b ~ e, so b is empty if and only if e is empty. The signature abce

means n = 1 and is subsumed by abode and abcef. This results in only 5

Lt -properties and 24 equivalence clashes for finite directed "graphs based on

L1-properties. The classes and their signatures are listed in Table 2 -2 with an

interpretation. Note that the undirected case is equivalent to both b and e being

empty, which occurs in exactly 12 instances A "one-way edge" denotes either xy in

E or yx in E and not both. A graph G = <V,E> is said to be weakly-complete if

and only if_.xy e E or yx s E for every distinct pair x,y e V. In the Venn diagram

representation, G is weakly-complete if and only if a is empty. In the table a

"two-way edge" denotes both xy and yx in E The calculations for the table were

performed by hand

Thus L1-properties may be used to partition all finite directed graphs into 24

equivalence classes. Again 3 signatures are for unique characterizations and 4

describe a unique graph, up to isomorphism, if accompanied in L1n by a value for

n. The remaining 17 might be a useful categorization technique for small undirected

Class

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

gnature

none

a

c

d

f

ac

ad

af

cd

cf

be

abe

acd

acf

bee

bde

bef

abde

abef

bede

beef

abede

abcef

abedef

Weakly -

Complete

no

yes

no

no

no

yes

yes

yes

no

no

no

.yes

yes

yes

no

no

no

EM

E a 1

E = 0

E = 1

V a { 1 } , E =

V = { 1 } , E a

V = *. E = i

One-way

Edges

some

some

some

some

some

some

some

some

some

some

none

none

some

some

none

none

none

{11}

Two-way

Edges

some

some

none

some

some

none

some

some

none

none

some

all

nonie

none

none

some

some

Loops

some

some

some

none

all

some

none

all

none

all

some

some

none

all

some

none

all

Table 2-2: Equivalence Classes for Directed Graphs in L

graphs. For n > 2 there is at least one graph in each of the first 21 classes. Fc

n = 2 there are 7 finite non-isomorphic directed graphs, 5 of which have distinct

signatures in L and two of which (<{ 1,2},{12,11}> and <{ 1,2},{12,22}>) are

members of the same class (with signature ac).

2.2.4. An L1 Graph Generator

A graph generator accepts an L-description and produces an arbitrary graph

which satisfies that L-description. Since undirected graphs are a subset of directed

graphs, in L1 we can write a single graph generator for them both. Since there are

only 5 L1-properties for directed graphs, any L1 -description may be given as a

five-place vector specifying whether a region is empty (1), not empty (01 or its

contents are undefined (u), where the second region is b and e taken together. To

use the generator we write a "front-end algorithm" which takes an L1-description

as input (e.g., <1 0 u u u>) and chooses, in a non-deterministic fashion, a more

detailed version of the signature, replacing the us with 0's or 1's, to create and

output an L1 -characterizatioa

FRONT-END

Dimension S (5)

For k - 1 to 5

Read S (k)

I f S(k) - u then S (k) <- 0 or S (k) <- 1

Next k

Print S

Now we can write a generator which accepts an L -characterization from

FRONT-END and creates a graph which satisfies it L1 -GENERATOR labels the

relationship between each unordered pair of vertices by the number of edges they

will share. "Find1' may be interpreted as "check to see that there exists." Only

or-labels (e.g., "1 or 2") or u (undefined) labels may be changed The algorithm

embodies, in its case statement, knowledge of the minimal number of vertices

possible in a graph satisfying each L} -characterization. The options permit all

graphs to be accessible through the generator, the choice of the number of

vertices ("do for a while"), the choice made when labelling, the elimination of

or-labels at the end, and the final edge choice for a vertex pair labelled "1". The

algorithm's worst time complexity is quadratic in the internally generated (not ii

value of n.

L1-GENERATOR

Read l^-characterization S

Case: /^minimal case knowledge*/

abcdef in S: output <<f>,<j>>, hal t

abc in S: V - {1}

ab or ac or be in S: V • {1,2}

else: V - {1,2,3}

Do for a while

add a vertex to V

Create all loops and edges and label them u

If a in S

then label all edge pairs "1 or 2"

else find or label some edge pair "0"

If b in S

then label all edge pairs "0 or 1"

else find or label some edge pair "2"

If ce in S

then label all edge pairs "0 or 2"

else find or label some edge pair "1"

If d in S

then label all loops "F"

else find or label some loop "T"

If f in S

then label all loops "T"

else find or label some loop "F"

For each edge pair labelled u, relabel as "0" or "1" or "2"

For each edge pair labelled "1 or 2", relabel as "1" or "2"

For each edge pair labelled "0 or 1", relabel as "0" or "1"

For each edge pair labelled "0 or 2", relabel as "0" or "2"

For each edge pair xy labelled "1", place only one of xy or yx i

34

For each edge pair xy labelled "2", place xy and yx in E

For each loop labelled u, relabel as MT!l or "F"

For each loop xx labelled "T", place xx in E

Output <V,E>

2.2.5. An L1 Testing Algorithm

A testing algorithm for language L accepts an L-description and a graph, and

returns "true" if the graph satisfies the L-description and "false" if it does not

Since an L1-description may be written as a 5-place vector, the testing algorithm

L1-TESTER is as follows:
L1-TESTER

Read graph G » <V,E>

Read L-descr ipt ion S

Create a l l loops and edges and label them u

Do for each xy 6 E, x and y d is t inct

Relabel edge xy "T"

Do for each xx e E

Relabel loop xx IITU

If (I xy, distinct x and y, labelled u and yx labelled u, a in S)

or (i xy, distinct x and y, labelled u and yx labelled T, be in S)

or (3 xy, distinct x and y, labelled T and yx labelled T, c in S)

or (3 xx labelled u and f in S)

or (3 xx labelled T and d in S)

then print, "false11

else print "true11

This testing algorithm is quadratic in n.

2.2.6. Transition from L1 to L.

We have demonstrated that L1 is a very limited language, contrary to our

expectations. For undirected graphs, L1 is coarse in that it does not distinguish

many disjoint subsets of U. L1 fares somewhat better for directed graphs. The

graph generator and testing algorithms for L1 are quadratic in the number of

vertices. A description composed of values for all the properties partitions the set

of all finite graphs into 12 classes for undirected graphs and 24 classes for

directed graphs. In three of these classes the signature is for a unique

characterization. L1n has 5 properties for undirected graphs, 6 for directed graphs,

and creates infinitely many classes. There are four L1-properties which can become

unique characterizations in L1n.

With the principles of 2.1 in mind, we will proceed to language L2.

2.3. Language L2

This section describes, in detail, the theoretical nature of language L2 and the

empirical results observed for it on the DEC-20.

2.3.1. A Grammar for Language L2

The formal grammar for L2 on a graph G - <V,E> is

symbol: E | I | 1 (0

term: symbol | (term)' | (term) ((term u term) | (term n term)

expression: term = term | term # term | term ~ term | term t* term

We interpret the construction term - term as the binary relation of equal set

cardinality. For edge sets S1 and S2, S t ~ S2 if and only if | S t | = | S 2 | .

Similarly, the construction term fr term is interpreted as inequality of set

cardinality. For edge sets S1 and S2, S t f S2 if and only if S1 ~ S2 is false.

Since the grammar for L2 differs from the grammar for L1 only in its use of

set cardinality, we may reformulate it, as we did the grammar for L , without loss

of expressive capability, to be:

symbol: E | l | 1 | 0 | B | E | B | l

term: symbol | (term u term) | (term n term)

expression: term = term | term # term | term - term | term f term

Once again we will consider undirected and directed graphs separately.

2.3.2. L2 for Undirected Graphs

Every L1-property is an L -property. With L2 we can supplement the Venn

diagram representation by stating that certain regions, or unions of regions, have the

same number of elements. By reasoning similar to that for L r we can show that

there are at most 2(1f) - 240 L -characteristics which are interpretations of

L -expressions involving the relation ~ or h Many of these L -characteristics,

however, are equivalent to L1 -characteristics. For example,

E u 1 ~ (E n 1) u (E n i)

is, in the Venn diagram,

|a u c u d| = | a u d|

or, more briefly,

|acd| = |ad|

Because regions are disjoint this suggests an equation in integer unknowns:

|a| * - | C | + |d | = |a| • |d |

which we will abbreviate as

a + c + d = a + d

This provides no more information about the nature of G than does |c| = 0 , which

is equivalent to the L1 -expression c is empty. As in L r all properties are boolean

and thus we may restrict our attention to only = and ~. Since d + f = n and a + c

- n(n-1)/2, the property d - acf implies d = n(n-1)/2 • n - d Since d is no

larger than n, we have n < 4. Since ac ~ df implies n » 3, and it is not possible

for d ~ acf if n = 1 or n = 2, the property d ~ acf is redundant and is excluded,

as is f - acd in a similar proof. After these eliminations, only 27 ^-properties

remain; they are listed in Table 2-3.

Number Property Number Property

1 a 15 af ~ c

2 c 16 af ~ d

3 d 17 cd ~ a

4

5

6

7

8

9

10

11

12 -

13 ad - c . 2 7 c ~ adf

14 " ad - f

Table 2-3: Properties of Undirected Graphs in L2

The calculations for Table 2 -3 were performed by hand, but here the manual

labor ends. Cardinal set inequality does not readily lend itself to an elegant proof

of the number of distinct characterizations possible in L_. Thus we chose to create

a FORTRAN program (called L2 and on view with its results in Appendix II) to

explore exactly how many of those 2 2 7 possible ^-characterizations ever occur.

"Ever" is a long time in an infinite class, so we ran L2 until we despaired of ever

finding a new signature. L2 examined every graph for which n < 26 and found

only 106 distinct [^-characterizations. The last new one occurred at n = 12.

f

a -

a -

a -

c ~

c -

d ~

ac -

ac -

c

d

f

d

f

f

' d

• f

18

19

20

21

22

23

24

25

26

cd

cf

cf

df

df

ac

ad

af

a -

- f

- a

- d

- a

- c

- df

- cf

- cd

- cdf

available in

Signature

acd

acf

acdf

a, c - d -

c, a ~ d -

ad, c - f

af, c - d

cd. a - f

cf, a - d

f

f

V

{1}

{1}

i

{1.2}

{1.2}

{1.2.3}

{1,2.3}

{1.2.3}

{1,2.3}

Manual computations indicate that among the 106 signatures for these classes,

9 are unique (in the sense defined in 1.6.2) descriptions and are listed in Table 2-4.

All edges are undirected and only listed once. The first three of these were also

E

*

{11}

{12,11}

{11}

{12,13,23}

{12,13,23,11,22,33}

*

£11,22,33}

Table 2-4: Unique L- Characterizations for Undirected Graphs

An L_ graph testing algorithm requires only the number of elements in each of

a, d and n in order to generate the L -characterization for a graph. We call such a

value triple a case. The material in Table 2 -5 is drawn from machine-generated

computations For a fixed number of vertices, the table compares the number of

L -characterizations which actually occurred for a given n to the number of

possible cases. Since d + f - n and a + c = n<n-1)/2, we have (n+1)(1+n(n-1)/2)

possible cases for a graph on n vertices. The signature which satisfies none of the

27 properties is by far the largest class for n > 5. The initially declining value of

the percentage of cases in the largest class is attributable to the relatively few

cases for n < 5. The class with signature "none" is increasingly more populated as

n increases, especially for prime n, where none of the modulo-oriented restrictions

apply.

Two finite graphs which have the same values for a, d and n will be

indistinguishable from each other via their L2-characterizations and will lie in the

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Cases

1

2

6

16

35

66

112

176

261

370

506

672

871

1106

1380

1696

2057

2466

2926

3440

4011

4642

5336

6096

6925

Characterizations

1

2

6

12

33

28

42

29

50

34

36

35

58

30

36

43

50

30

40

35

50

34

36

35

58

Largest

Class Size

1

1

1

2

2

8

24

48

76

196

272

400

512

792

960

1268

1460

1984

2276

2808

3136

3964

4400

5236

5732

Largest

Class Percent

100

50

17

13

6

12

21

27

29

53

54

60

59

72

70

75

71

80

78

82

78

85

82

86

83

25 7826 30 6912 88

Table 2-5: Results of Program L2 on Undirected Graphs

same L -class. For n - 2, however, each a and d value pair defines a unique (up

40

to isomorphism) undirected graph and thus the L--characterization is unique, i.e., no

two non-isomorphic undirected graphs on 2 vertices have the same

L2-characterization. For n = 3 the cases are spread among 12 classes, with never

more than 2 in a class. For n = 4 the cases are spread among 33 classes, with

never more than 2 in a class. For fixed n > 7, a minimum of 30 different

^-characterizations occur, but as n increases the grain of this partition coarsens.

Forty-eight of the signatures turn out to be applicable to only a single value of a

and 16 more restrict n to values modulo some integer. These results are due to

the fact that an L -characterization is interpreted as a system of equations and

inequalities in non-negative integer unknowns (a, c, d and f) which may be solved

for n. The following are always a part of this system:

a + c = n(n - D / 2

d + f = n

0 £ d £ n

0 £ f £ n

0 £ a s n(n-1)/2

0 £ c £ n(n-1)/2

For example, consider the L -description c - f and cf ~ d. This may be rewritten

as:

c = f

c + f = d

or

2f = d

which, by substitution, yields

3f = n

so n is congruent to 0 modulo 3. This example is intended to demonstrate the

strengths and weaknesses of L^

2.3.3. L-2 for Directed Graphs

For directed graphs in L2 the same six-region Venn diagram is applicable.

Using the established reasoning pattern we make initial estimates of 2 = 6 4

interpretations of L2 terms, 4(6*) = 8064 ^-characteristics and at most 2 4 0 3 2

L -characterizations. We have already shown, however, that 2(f) of these result in

only 5 properties using =. The other 2(6f) properties arising from ~ are reducible,

by manual calculations, to 197. The program L2DI (on view with its output in

Appendix III) explored how many of these possible characterizations occur up to n

= 25. (Limiting values for n are based upon space and time limitations.) The

material in Table 2 -6 is drawn from L2DI output 4849 distinct signatures were

found; 2572 of them for more than a single value of rt The last new signature

appeared at n = 25. For n = 1 and n = 2, I . provides no finer a partition than L r

For n > 2 the partition is a substantial improvement over L r of increasing

refinement until n = 9. A minimum of 911 classes appear for n > 7.

2.3.4. Algorithms for Generating and Testing in L>2

The construction of an arbitrary graph satisfying an L -description requires the

solution of a system of linear inequalities in the non-negative integer variables b, c,

d and n. The same six equations from 2.3.2 form the basts for this system. Each

of the 27 boolean properties without a u value in the signature contributes another

equation. For example, af - d is interpreted as a + f = d

The approach of L1-GENERATOR, where we reset u values to 0 or 1 would

be inefficient here, because so many properties are incompatible with each other.

Instead we search for the constraints on the variables first and then set their values

arbitrarily. (There is, therefore, no consideration of a minimum case.) GENERATOR

reads in the dimension of the signature and then the signature itself, constructing

the relevant equations and inequalities. GENERATOR then calls a package (such as

IBM's Mixed Integer Programming) [75] to solve the system of inequalities

established. GENERATOR then selects arbitrary values for a, c, d, f and n consistent

with the solution. The construction of a graph with these values is similar to that

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Cases

1

2

6

24

80

216

504

1056

2025

3610

6072

9744

15028

22400

32430

45792

63257

85698

114114

149640

193536

247192

312156

390144

483025

Characterizations

1

2

6

20

78

141

336

484

956

911

1065

1045

1750

998

1098

1584

1785

968

1438

1104

1651

1255

1107

1081

2104

Largest

Class Size

1

1

1

2

2

8

24

48

76

196

416

1086

2496

5746

9758

16156

23508

40284

55838

77874

101792

150060

189316

250364

305916

Largest

Class Percent

100

50

17

8

3

4

5

5

4

5

7

11

17

26

30

35

37

47

49

52

53

61

61

64

63

25

for L1-C

592826 1108 413362

Table 2-6: Results of L2OI on Directed Graphs

The algorithm follows:

70

GENERATOR

Read k

Dimension S(k)

a + b + c + e < - n(n-1) /2

d + f <- n

0 1 d £ n

0 £ f £ n

0 £ a £ n(n-1)/2

0 £ b £ n(n-1)/2

0 £ c £ n(n-1)/2

0 £ e £ n(n-1)/2

For j • 1 to k

Read S(j)

Write equation (inequality) based on S(j)

Next j

Call Mixed Integer Programmtng to solve system

Choose values for b, c, d and n consistent with the solution

e <- b

a <- n(n-1)/2 - b - c - e

f <- n - d

Call Heap's program to construct graph G

Append d loops to G

Output G

The last steps of GENERATOR call a package (perhaps Heap's program from the

National Physical Laboratory at Middlesex) to construct a graph G with the b, c and

n values specified and then appends d loops before outputting the graph.

Alternatively, the tuple <a,b,c,d,e,f,n> may be output Although this form of the

graph is one to which we are unaccustomed, it is really all L_ is capable of saying

about G

The L_ graph testing algorithm is a simplistic procedure. It reads in the graph

and the ^-signature, and then confirms each of the properties flagged as true

(denoted by 1):
TESTER

Read k

Read graph G • <V,£>

Calculate a, b, c, d, e, f and n

For I • 1 to k

Read S(l)

If S(i) » 1 and i n t e r p r e t a t i o n (S (I)) is f a l s e

then p r i n t FALSE and h a l t

e lse cont inue

Next I

P r i n t TRUE

The testing is quadratic in n.

2.3.5. A Comparison of L1 and L2

Clearly l»2 is an extension of L1 and fits the criteria for extension suggested in

2.1. L -characterizations subdivide each of the 9 non-unique classes of the

partition of ail finite graphs formed by L1-characterizations, as shown in Table 2-7.

L -characterizations offer further information on the values of a and d without

explicitly stating them. There are still a finite number of L2-classes.

L2 appears to extend L1 in the desired fashion, concentrating much of its

precision where L1 was weakest For undirected graphs with n less than 7 or 3,

L2-characterization may be an adequate categorization

L2 is certainly an improvement on Lr It provides substantially more

equivalence classes and refines the largest L1 classes. The graph generator is based

upon a problem transformation into a system of linear inequalities. Both the

exploratory program and the graph tester find the numerical values of a, b, c, d, e,

f and n an adequate description of G A description composed of values for the

L2-properties appears to partition the set of all finite graphs into 106 classes for

undirected graphs and at least 4849 classes for directed graphs. L2n has 28

L1 Signature

none

a

c

d

f

ad

af

cd

cf

Number c

70

4

4

10

10

2

2

2

2

Table 2-7: Refinement of L1 by L2

properties for undirected graphs, no more than 202 properties for directed graphs,

and creates infinitely many classes. In the spirit of 2.1 we will now expand our

edge-set language hierarchy once again.

2.4. Language L-

This section describes, in detail, the theoretical nature of language L3 and the

empirical results achieved with it

2.4.1. A Grammar for Language L3

The formal grammar for L3 on a graph G = <V,E> is

symbol: E | I | 1 | 0

term: symbol | (term)' | (term) | (term u term) | (term n term)

expression term = term | term # term j term ~ term | term f term |
term < term

We interpret the construction term < term as the binary relation of lesser

cardinality between sets. For sets S1 and S2, S1 < S2 if and only if |SJ is less

than |S2 | . Since the grammar for L- differs from the grammar for L2 only in its

introduction of lesser set cardinality (as denoted by <), we may reformulate it (with

the T transformations as we did the grammars for L1 and L-) without loss of

expressive capability, to be:

symbol: E | I | 1 | 0 | E | E | E | 1

term: symbol | (term u term) | (term n term)

expression: term = term | term # term | term ~ term | term f term |

term < term

Language L3 is an extension of L2 which permits the relation of lesser cardinality

between two sets. The interpretation of L- does not specifically use integers, and

L~ also partitions U into finitely many classes. Properties which can be interpreted

from ^-expressions but not from L2-expressions include:

E < E

1 n E < E

The first may be interpreted as "the complement of the edge set has fewer edges

than the reversal of the edge set'; the second as "there are fewer loops in the

graph than there are edges in the complement of the reversal of the edge set"

We will again consider undirected and directed graphs separately.

2.4.2. L3 for Undirected Graphs

L_ includes all L1 -properties and L -properties. In addition to the

L2-expression term f term, L3 uses term < term. There are 2{16
2) = 240

^-characteristics which are interpretations of L3-expressions involving the

asymmetric relation <. The [^-expressions term1 < term2 and term2 < term1 are

refinements on the ^-expression term1 # term2. Some of these, such as ac < a,

would be mathematically impossibia If we restrict term^ < term2 so that term1 is

not a proper subset of term., ̂ we have a potential of only 175 L -characteristics

involving <.

The count of L -characteristics is therefore 54 L -characteristics plus 175

229

characteristics new to Lg, for a total of 229, suggesting a potential of 2

different L -characterizations. We can reduce this estimate substantially by

observing that many such characterizations would be mathematically unacceptable. L3

still has a valid transformation as a system of equations and inequalities, but a set

of L3-expressions such as

a < c

c < d

d < a

would be entirely unacceptable. We observe that the most complete and consistent

set of statements L3 could formulate about a graph would be an ordering of the

distinct non-empty subsets available as unions of the four regions in Figure 2 - 1 .

(This also indicates that the introduction of the relations >, £ and £ would not

increase the number of L-classes and should not be considered.) There are 2 4 - 1

= 15 such subsets and in any such ordering we could force acdf to be the last

There are therefore 14! permutations of the subsets. Between every pair of

subsets in a permutation either = or < must appear, in order to construct an

ordering. Our bound on the number of L -characterizations has now improved to

2 1 3 1 4 ! < 2 5 0

We created a FORTRAN program (called L3 and on view with its results in

Appendix IV) to explore how many of those 21 314! possible L3 -characteristics ever

occur. L3 examined every graph for which n < 26 and found only 259 distinct

^-characterizations. The last new one (as with L2) occurred at n = 12. Of these,

157 were for more than a single value of n. The 102 signatures restricted to a

single value of n occurred only for values of n less than 8.

The material in Table 2 -8 is from L3 output For a fixed value of n, the table

compares the number of L -characterizations which actually occurred for a given n

to the number of possible cases. For fixed a 7 < n < 26, L3n separates graphs

into at least 108 equivalence classes, with no class containing more than 17% of

the cases. For n = 1, 2, 3 and 4, L»3 was able to uniquely characterize every case

Largest Class Largest Class

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Cases

1

2

6

16

35

66

112

176

261

370

506

672

871

1106

1380

1696

2057

2466

2926

3440

4011

4642

5336

6096

6925

7826

Character i zati ons

1

2

6

16

35

52

90

96

129

112

118

120

149

108

122

128

145

108

126

120

145

112

122

120

153

108

Tab la 2-8: Characterizations for Undirecti

Size

1

1

1

1

1

2

4

6

7

16

28

50

70

114

144

203

245

336

392

504

576

730

820

1001

1111

1344

3d GraDhs in L

Percent

100

50

17

6

3

3

4

3

3

4

6

7

8

10

10

12

12

14

13

15

14

16

15

16

16

17

(not graph) submitted to it

49

2.4.3. L. for Directed Graphs

For directed graphs in L- the same six-region Venn diagram remains applicable

This time we have 2567 mathematically acceptable L3-characteristics. There are now

26 - 1 = 63 subsets to permute, and a bound of 26263! < 2 7 2 possible

L3-characterizations. The program L3DI (on view with its output in Appendix V)

explored how many of these possible characterizations occur up to n = 13. (The

limiting value of 13 was based upon space constraints.) The material in Table

2-9 is drawn from L3DI output

Largest Largest

Class Size Class Percent

1 100

1 100

1 50

1 17

n

0

0

1

2

3

4

Cases

1

1

2

6

24

80

Characterizations

1

1

2

6

24

80

4

1

5

6

7

8

9

216

504

1056

2025

3610

200

476

876

1670

2734

2

4

6

9

16

1

1

1

0

0

10

11

12

6072

9744

15028

4080

5848

7809

28

50

73

Table 2-9: Results of Program L3DI on Directed Graphs

0

1

0

20,001 distinct signatures were found; 5191 of them for more than a single value

of n. The last new signature occurred at n = 13. Because the program exhausted

its space constraints and never completed n = 13, it is likely that there are far

more than 20,001 distinct signatures and that fewer than 5191 of them are

restricted to a single value of a For n = 1 and n = 2, L3 provides no finer a

partition than L1 or L For n > 2 the partition is a substantial improvement over

L-, of increasing refinement at least until n = 13. For n > 3, no class contains more

than 1% of the cases.

2.4.4. Algorithms for Generating and Testing in L3

The construction of an arbitrary graph satisfying an L3-description requires the

solution of a system of linear equations and inequalities, just as it did for L2. For

undirected graphs there are five integer variables (a,c,d,f,n), three of which are

independent (a,d,n). For directed graphs there are seven integer variables

(a,b,c,d,e,f,n), of which four (a,b,d,n) are independent Each boolean L-property

contributes an inequality or an equation to the basic system of six. If we set the

dimension of the signature to 258 for undirected graphs, or 2567 for directed

graphs, the algorithm for generating graphs with ^-properties is identical to the

GENERATOR in 2.3.4. The L3 graph testing algorithm is also a reproduction of

TESTER in 2.3.4.

2.4.5. A Comparison of t-3 with L2

L3 is definitely an improvement on L2. The problem transformation into an

ordering of the subsets in the Venn diagram provides a much greater bound on the

number of distinct signatures. For n > 2, the density is substantially reduced for

both directed and undirected graphs. L -characterizations offer further information

on the values of a, b and d without explicitly stating them. There are still a finite

number of L3 -classes.

L3 appears to extend L- in the desired fashion, concentrating much of its

precision where L2 was weak. For undirected graphs with n less than 16 or 17,

L -characterization may be an adequate characterization. For directed graphs with n

less than 13, this is certainly true, and the value of n may even be higher.

L3 provides a remarkable number of equivalence classes. It appears to

partition the set of all finite graphs into 259 classes for undirected graphs and

more than 20,000 for directed graphs. L3n has at most 229 properties for

undirected graphs, at most 2567 for directed graphs and creates infinitely many

classes. In the spirit of 2.1 we will now expand our edge-set language hierarchy

once again.

2.5. The Language L*

This section describes, in detail, the theoretical nature of language L* and

makes some empirical observations on it

2.5.1. A Grammar for Language L*

The formal grammar for L* on a graph G = <V,E> is

symbol: E | E* | I | 1 | 0

term: symbol | (term)' | (term) | (term u term) | (term n term)

expression: term - term | term # term

We interpret the symbol E* as the transitive closure of the edge set

E* » {xy | xy e E or xp,py « E*}

Note that we have not introduced transitive closure (*) as a unary operator on edge

sets, but instead have introduced a new symbol (E*), effectively limiting transitive

closure to E aiona This introduction of a new edge set symbol makes analysis of

the language more manageable Language L* is an extension of L1 which permits

consideration of paths existing in the graph. We may reformulate the grammar for

L* without loss of expressiveness so that the unary operators are restricted to

symbols:

symbol: E | E* | I | 1 | 0 | E | E | E | ! | E#' | §! | §!'

term: symbol I (term u term) I (term n term)

expression: term = term | term # term

Properties which can be interpreted from L* -expressions but not from

L1-expressions include:

E* n i = E

The first may be interpreted as "the complement of the transitive closure of the

edge set is empty"; the second as "all the non-loops in the transitive closure of the

edge set are in the edge set already." For L* we will explore only the undirected

graphs.

2.5.2. L* for Undirected Graphs

If there is a path from x to y in the undirected graph G = <V,E>, then there is

also a path from y to x, La,

<E*r = E *

For undirected graphs we still have S' = S for any edge set and thus a Venn

diagram need only represent the relationships among the seven symbols E, E* I, 1, 0,

1 and E* Using our traditional arguments we arrive at Figure 2-3. In order to

interpret Figure 2 -3 intelligibly, it helps to think about what effect the transitive

.closure of E has on G - <V,E>. E is always a subset of E* In E* every vertex

lying on a cycle will have a loop. Also in E* every connected component of G will

become a complete subgraph. Thus the labelling in Figure 2 -3 is interpreted as

follows:

• a denotes E^n if non-loops not in the transitive closure of the edge

set

• c denotes E n i, edges in the graph

• d denotes E n 1, loops in the graph

• f denotes . Ê n 1, loops neither in the graph nor in the transitive

closure of its edge set

• p denotes E* n E n 1, edges not in the graph but in the transitive

closure of its edge set

Figure 2-3: A Venn Diagram for Undirected Graphs in L1

• q denotes E* n E n 1, loops not in the graph but in the transitive

closure of its edge set

The interpretation of any term in L* for an undirected graph is the union of

some of these six regions. Any L* -expression is interpreted as a statement of set

equality between two such terms. There appear to be 26 = 64 distinct L*-terms.

Using the same analysts we applied to L r we see that an L* -characteristic is a

statement as to whether or not a subset is empty. This suggests the possibility of

as many as 63 L* -signatures. We interpret the first six on G = <V,E> to aid our

analysis:

• a is empty means G is connected or n < 2

• c is empty means G contains no edges

• d is empty means G is loopfree

• f is empty means there are no isolated vertices in G

• p is empty means every connected component in G is complete

• q is empty means every unisoiated vertex in G has a loop in G

Given these interpretations we can now make some observations which

substantially reduce the number of L* -signatures. We abbreviate by omitting "is

empty":

L If aq then f or c.

Explanation: If the graph is connected (a) but no new loops are

derivable (q), then either all loops were already in the graph (f) or no

edges were possible (ac) or n < 2 (acp or acdfpq).

ii. If c then pq.

Explanation: If the graph contained no edges (c), then E* will be the

same as E (pq).

iii. If dfq then acdfpq

Explanation: If no loops are possible (dfq) then we have the empty

graph (acdfpq).

iv. If adq then acdfpq or acdpq.

Explanation: If adq then (by i) adfq or acdq. If adfq then (by iii)

acdfpq. If acdq then (by ii) acdpq and n < 2 (acp).

v. If a then f or cp.

Explanation: If G is connected (a) then every loop is in E or E* (f) or

n < 2 (acp or acdfpq).

vt. If dq then c.

Explanation: If every unisoiated vertex is looped (q) and G is loopfree

(d) then every vertex is isolated (c).

These interpretations leave us with only 22 signatures for undirected graphs in L*,

shown in Table 2-10.

The values for a,c,d,f,p,q, and n are very closely related. In particular, we can

show that

d + f + q = n

a + c + p = n(n-1)/2

Smallest

Class Signature n Value Interpretation

1 d 4 disconnected some edges, loopfree,

some isolated vertices,

not every connected component complete,

not every unisolated vertex has a loop

2 f 4 disconnected some edges, some loops,

no isolated vertices,

not every connected component complete,

not every unisolated vertex has a loop

3 p 3 disconnected some edges, some loops,

some isolated vertices,

every connected component complete,

not every unisolated vertex has a loop

4 q 4 disconnected, some edges, some loops,

some isolated vertices,

not every connected component complete,

every unisolated vertex has a loop

5 af 3 connected, some edges, some loops,

no isolated vertices,

not every connected component complete,

not every unisolated vertex has a loop

6 df 5 disconnected some edges, loopfree,

no isolated vertices,

not every connected component complete,

not every unisolated vertex has a loop

7 dp 3 disconnected some edges, loopfree,

some isolated vertices,

every connected component complete,

not every unisoiated vertex has a loop

Table 2*10: Undirected Graph Signatures in L*

Class

8

Signature

fp

Smallest

n Value

3

Interpretation

disconnected, some edges, some loops,

no isolated vertices,

every connected component complete,

not every unisolated vertex has a loop

9 fq 4 disconnected, some edges, some loops,

no isolated vertices,

not every connected component complete,

every unisoiated vertex has a loop

10 pq 3 disconnected, some edges, some loops,

some isolated vertices,

every connected component complete,

every unisolated vertex has a loop

11 adf 3 connected, some edges, loopfree,

no isolated vertices,

not every connected component complete,

not every unisolated vertex has a loop

12 afp 2 connected, some edges, some loops,

no isolated vertices,

every connected component complete,

not every unisolated vertex has a loop

13 afq 3 connected, some edges, some loops,

no isolated vertices,

not every connected component complete,

every unisolated vertex has a loop

14 cpq 3 disconnected, edgeless, some loops,

some isolated vertices,

every connected component complete,

every unisoiated vertex has a loop

Table 2-10: Undirected Graph Signatures in L*, continued

Class

15

16

17

18

19

20

21

22

Signature

dfp

fpq

adfp

afpq

cfpq

acdpq

acfpq

acdfoa

Smallest

n Value

4

4

2

2

2

1

1

0

Interpretation

disconnected, some edges, loopfree.

no isolated vertices.

every connected component complete.

not every unisolated vertex has a loop

disconnected, some edges, some loops.

no isolated vertices.

every connected component complete.

every unisolated vertex has a loop

1

1

1

<{1}.*>

<{1},{11}>

Table 2-10: Undirected Graph Signatures in Lr continued

if c = 1 then f £ n-2

if k(kTi)/2 < c & k(k+1)/2 then f £ n-k for k » 2,3,4,.~

O S q ^ min(2c,n-d)

0 * p * (n~f)

From these we observe that the values for ad and n are independent variables and

will determine the possible values for the dependent variables a,f,p and q.

2.5.3. Evaluation of L*

L* is a good refinement on L1 for undirected graphs. For directed graphs,

however, we will also have to consider the sets E, E, E*, E£, E*', and Ej£\ These

lead to the unpleasant Venn diagram of Figure 2-4. The interpretations of the

regions in the diagram become challenges to English grammar and resemble few

properties appearing in graph theory texts. This awkwardness, coupled with a

desire to explore recursive formulations, causes us to abandon further exploration

Figure 2-4: A Preliminary Venn Diagram for Directed Graphs in

of L*. The idea, however, of working with transformations (such as transitive edge

closure) producing properties appearing in graph theory texts will not be abandoned

It motivates, as a matter of fact the recursive formulation of graph theory

discussed in Chapters 3 and 4.

2.6. The Edge-Set Languages: a Review

We conclude our exploration of the edge-set languages at this point Each

language refines the partition of the set of all finite graphs. The operations chosen

for the grammars reflect our initial need to find similarities and differences in a set

of graphs. The similarities and differences among graphs are readily available

through their signatures. The fact that only finitely many, and far fewer than

expected properties appear, suggests that a primitive form of hashing based on the

signature of a graph in an edge-set language, may be an acceptable solution for

graphs of reasonable size (say n < 17).

59

There is no difference between the procedure for producing a graph with

several specified edge-set language characteristics and that for only a single

characteristic; both use the same generator Similarly, testing for a set of

characteristics uses the same procedure as testing for one. The edge-set languages

describe very few of the graph properties customarily dealt with in books on graph

theory. The recursive languages will attack this problem in the next two chapters.

60

CHAPTER 3

RECURSIVE LANGUAGES

...to prove even the smallest theorem [we] must use reasoning by

recurrence, for that is the only instrument which enables us to pass

from the finite to the infinite.

—Poincare

This chapter examines the fundamental concepts we use in the recursive

description of graph properties. It begins with an explanation of incremental graph

construction. Recursive graph grammars are defined and their components examined

in detail A minimality notion, the floor of a graph property, is discussed We

define inversion and present a technique for automated inverse constructioa Finally,

twenty three elementary recursive graph properties are described at length.

3.1. Graph Construction

This section introduces construction of graphs by a gradual, iterative process.

The algorithm CONSTRUCT iterates toward a specific graph; the algorithm GENERATE

iterates toward an arbitrary graph. The definition of a graph property (edgelessness)

through a recursive algorithm motivates the remainder of the chapter.

A graph consists of finitely many vertices and finitely many edges. We

therefore envision the creation of any graph as a construction process, in which we

add one element (a vertex or an edge) at a time. Assume first that we have a

specific goal a graph we wish to copy. An algorithm to produce such a copy may

be formulated recursively, and appears in Figure 3*1. CONSTRUCT has a target

graph G- = <VrET> which it is attempting to build from G = <V,E>. Termination is

guaranteed if CONSTRUCT is initially called on (<VrEJ>,K1), beginning with the

CONSTRUCT(<VrEJ>/<V,E>)

Either V < - V u {x} for x • V r x * V

or E < - E u {yz} for y,z 6 V, yz 6 E r yz «£ E

If G = GJ

then halt

else CONSTRUCT(<VrET>,<V,E»

Figure 3-1: An Algorithm to Recursively Construct a Target Graph

smallest possible graph. (The empty graph will be studiously avoided) Each iteration

adds to G either a missing vertex in V or a missing edge in E between vertices

already present in V. CONSTRUCT terminates when G is isomorphic to G^ A trace

of CONSTRUCT could be encoded as a sequencing of the set V? u E r in which

each edge xy is (not necessarily immediately) preceded by both x and y. There are

many such construction sequences for any target graph G r

CONSTRUCT could be modified to produce an arbitrary graph. Rather than

compare the progress of the algorithm against a target we could "randomize" the

process as in Figure 3-2.

GENERATB<V,E»

Either V < - V u {x} for x * V

or E < - E u {yz} for y,z e V, yz * E

Either output <V,E>

or GENERATE<V,E>
Figure 3-2: An Algorithm to Recursively Generate Graphs

The initial call to GENERATE is on K,. GENERATE arbitrarily adds vertices and edges

until it decides to halt There is no guarantee that GENERATE will terminate, but at

the end of each iteration its "current product" is a graph, and its output if any, will

always be a graph. Figure 3 -3 show the iterative steps in "building" a graph during

a sample run of GENERATE

An alternative, recursive definition of graph might be: "A graph is K1 or any

output from GENERATE^)." This definition enumerates the set of ail graphs. The

enumeration is in no particular order and may well be redundant because of the

6

Figure 3-3: A Sample Run of GENERATE

many possible construction sequences. Yet, since every graph is constructabie in

this sense, the definition is equivalent to that given in Chapter 1.

A graph property is, as we have said, a partition of the set of all graphs into

two classes: those graphs (G) which have the property and those which do not

Thus one way to define a graph property is to list all the graphs possessing it For

example "edgeiessness" could be defined as:

or if we let ER = <{1,2,3,~,k},$>, more concisely, as:

GE = {Ek | k an integer, k > 1}

An alternative listing could be in the form of an algorithm which generated precisely

that set "Edgeiessness is K1 or any output from The algorithm

EDGELESS appears in Figure 3-4. Figure 3-5 shows the iterative steps in a sample

run of EDGELESS.

Let 0 denote the set of all possible graphs output by EDGELESS. Since

63

EDGELESS«V,E>)

V < - V U {x} for x * V

Either output <V,E>

or EDGELESS(<V,E>)
Figure 3-4: An Algorithm to Generate Graphs without Edges

Figure 3-5: A Sample Run of EDGELESS

EDGELESS never changes E, E will remain empty, and every element of 0 e d e |ess will

be of the form <V,$>, La, edgeiess. Thus the algorithm produces only edgeless

graphs and 0 e d e|ass £ G£. Since any (<1,2,3,.«,k>,$> in GE may be constructed by

inserting 1, then 2, and so on, up to k, EDGELESS produces all edgeless graphs, i.e.,

GE £ 0 e d e|ess. Therefore GE = 0 e d aJess and we have demonstrated the equivalence

of the two definitions for edgelessness. EDGELESS is an example of a graph

property definition in a recursive language.

3.2. Recursive Graph Grammars

Now that we have clarified iterative graph construction as a definition

technique, this section defines recursive graph grammars to implement it

GENERATE and EDGELESS are reformulated in this context

A recursive grammar for graph properties has concise terminal expressions

whose semantic interpretations are algorithms similar to GENERATE and EDGELESS.

There are three key components in such a grammar

• the primitive operations permitted on the graph (such as adding an

edge)

• the seed graphs on which the algorithm may be called initially (such as

• the selector conditions under which choices are made during execution

(such as "for x * V").

More formally, \et a recursive graph grammar R be an ordered triple R = <P,L,Z>

where P is the language for primitive operators permitted on the graph, L is a seed

language used to specify the seed set (graphs on which the algorithm may be called

initially), and E is a selector language in which the selector conditions are formulated.

A terminal R-expression will be of the form p = <f,S,a>, where f is a terminal

P-expression, S is a terminal L-expression and a is a terminal S expressioa The

semantic interpretation of this R-expression is an algorithm which iterates an

unspecified number of times. On each iteration the selector a chooses one or more

vertices and/or edges with respect to the current graph G, and then f modifies G,

using those choices, to produce a new G Initially G is a seed graph selected from

the set of graphs which is the semantic interpretation of the expression S. More

formally, an R-property is the following semantic interpretation of the triple <f,S,a>

as a recursive algorithm called on any graph described by S:

f(G) = G if enough

- f(G') where G' = f(G) using elements from G or new to it

selected by o in order to apply f

Any G for which S is true has the R-property, and any output from the algorithm

on such a G has the R-property. in the event that no vertices or edges satisfy a,

or the algorithm "decides" to halt, "enough" is true. If G is any seed graph, the

triple may be written grammatically as (fa)*(G), i.e., "zero or more successive

applications of f to G, each subject to selection criterion or." Thus an R-property p

is a graph generator which may be stopped after any iteration, yielding a graph.

The set of such possible outputs defines the graph property p. For example, if G is

a seed graph, G, f(G), f5(G) and f17(G) under a may all be said to "have" the

property p = <f,S,o>. Thus a variety of graphs having property p may be produced

by varying G within the set described by S or varying the number of times f is

applied Even if those are kept constant, the selector a makes arbitrary choices, so

that several executions of fk(G) for fixed k and G will not necessarily produce the

same graph, although all outputs will have property p.

A generator is said to be correct if every graph output by the generator must

have property p. A generator is said to be complete if every graph with property p

has an imaginable construction under some execution of the generator which makes

appropriate selections on each iteration. (No attempt has been made, however to

prevent redundancy. A given generator may produce isomorphtc graphs Th different

application sequences.) The triple <f,S,a> is a valid syntactic representation of some

graph property p if and only if the generator interpreted from the triple is correct

and complete with respect the set of all graphs having property p.

Let us reexamine GENERATE and EDGELESS now within these definitions.

Clearly the only seed graph for GENERATE is K and the primitive operations we

wish to allow are "add a vertex x", which we shall denote as A^, and "add an edge

yz", which we shall denote as A . Then GENERATE is merely

(A + A)*(KJ where x * V, y,z e V, yz S E

The "+" sign denotes the option of choosing either A or A on each iteration.
x yz

We observe the addition of an element already in a set to that set can effect no

change, and therefore revise GENERATE (and our recursive definition of a graph) to

be:

(A + A)*(KJ where y,z e V
x yz 1 f

Here f is A + A , S is { K j and a is "y,z s V".
x yz 1 T

3.3. The Components of a Recursive Language

Although we have now established the nature of the terminal expression, it

remains to identify the language R in which it lies. Thus we explore in this section

the nature of the R-components P, L and E.

For the primitive language P we postulate some primitive operators, listed in

Table 3 -1 . Each primitive operator is intended to modify a graph and return that

modificatioa

Primitive Effect Representation

N No change N<V,E> = <V,E>

Add vertex x A <V,E> a <Vu{x},E>

xy
Add edge xy

x

<V,E> « <V,EU{xy}>

Delete vertex x D <v,E> a <V-{x},E>

xy
Delete edge xy D <V,E> = <V,E-{xy}>

xy

Identify vertices I <V,E> = <V-{v.},E| >
XV,...V, I *V .<-X

X y v 1 ~ V k
Fragment vertex x

into vertices x and y

F <V,E> a <VU{y},E| >xyv-.-.v, r lxv.->yv.
Ik i t

Loop on all vertices L<V,E> a <v,E u

L Unloop on all vertices L<V/E> = <V,E n 1>

Table 3-1: Primitive Operators for R-Grammars

A primitive operator makes no assumptions about its ability to perform its operation

meaningfully; x and/or y may or may not be present in V and xy may or may not

be present in E Operators are provided for addition and deletion of a vertex (A ,

D) or an edge (A , D), for the merger of k+1 vertices (I), for the splitting
x ^ xy xy 9 xvr'#vic

of one vertex into two (F), and for the introduction (U and removal (L) of
xyvr-vk

loops on all the vertices.

Now we postulate some possible Ps for the R-grammar <P,L,I>. Each P has a

set n = {irrjr2,.-,jrk} of terminal symbols and the following grammatical rules:

I -> I + I | I I

This P grammar permits both primitive operators (members of II) and composite

operators constructed from them. With this grammar understood, it is sufficient to

define a P language by its terminal symbols. In particular we define:

p

p

p

p

p

1

2 =

3 =

s
4

S

{A

P 1

P 2

P 2

P 3

x'

U

u

u

u

A ,
xy

<Dx

{U

{'xv

{'xv

N}

' °xy
L}

•V
<Fxv }

Note that P1 will be adequate for GENERATE

Composite operators are introduced for conceptual and notational convenience.

Each is expressible as a combination of primitive operators. For operators f and g,

the composite fg means "first apply g and then apply f." For operators f and g,

the composite f + g means "apply exactly one of f or g." The function for a graph

property could involve both kinds of composition, evolving forms such as ff + gg1

or (f + f')(g + g;). We have found some composite operators to be so useful in

developing graph properties that we have assigned them their own symbols. These

appear in Table 3-2.

We stress again that no operator, primitive or composite, is assumed to be

applicable to an arbitrary graph. The selection conditions in a (such as "distinct

Composite Effect

xvy
Subdivide edge xy

by vertex v

Equivalence

D A A A
xy xv vy v

B
xy

Branch from x to y A A
xy y

Fully connect vertex x A A ...A A
v . x v_x v x x

i Z n

to A

Y Add cycle u,
1 k

Delete cycle

A A ...A A A A ...A
U1U2 U2U3 Uk-1uk V i U1 U2 uk

D' D* ...D* D D ...D D
U1 U2 uk U1U2 U2U3 uk-1uk V i

where D\ = D. if degree of i is 0

= N else

Table 3-2: Some Composite Operators for R-Grammars

u r u r - ,u k " to guarantee that a cycle is simple) place restrictions on the bindings of

the variables referred to by the operator. The complexity of any algorithm is

dependent both on the matching required by a and the resources needed to update

the graph.

For L in the R-grammar <P,L,E>, we can use any graph property language In

particular, the languages Ly L2, L3, L1n, L2n and L3n of Chapter 2 are excellent

candidates. It is also permissible for L itself to be a recursive graph property

language. (We shall have more to say about this later.) We will also reluctantly

permit LQ, the language which precisely lists the vertices and edges of a graph.

The Z in the R-grammar <P,L,2> will affect the complexity of the algorithm.

Any constructive algorithm to produce a specific graph will be at least O(max(m,n))

as long as m+n is increasing from one iteration to the next and the selector is not

of greater order. (We employ the traditional definitions for the order of an

algorithm throughout) Thus we focus wherever possible on simple selector

languages (preferably of 0(1) or 0(n)), leaving the data structure implicit In £

vertices are v r v ... and edges are ordered pairs of vertices. We offer the

following selector languages with their generating grammars. Many others are, of

course, possible:

A formal grammar for % is

I -> M | vertex sign V | edge sign E

vertex -> v | v | v | ...

edge -> (vertex,vertex)

sign -> e | d

Selector expressions such as

x e V

or

y z * E

are possible in £ r Note that we could produce the selector for GENERATE in 2 1

as follows:

I -> U

- > vertex sign V, vertex sign V

-> y « V. z s V

A formal grammar for Z2
 ls

I -> M | vertex sign V | edge sign E | vertex # vertex |

edge # edge

vertex * > V1 I V2 I V3 I "*

edge -> (vertex,vertex)

sign -> e | 0

D2 contains ail the terminal expressions of Z r In addition, selector expressions

such as

are possible in £2, but not in Zr The expression # will be interpreted semantically

as "is distinct from." The expression x * y would therefore mean x and y are

distinct vertices. The expression "yz * vw" for undirected graphs means that neither

"y = v and z = w" nor "y = w and z = v" is true. The expression "yz # vw" for

directed graphs means "y # v and z # w."

A formal grammar for £ is

I -> 1,1 | vertex sign V | edge sign E | vertex # vertex |

edge # edge | d(vertex) rel number

vertex - > ^ I *2 I v
3 I -

edge -> (vertex,vertex)

sign -> « | *

rel -> = | > | * | < | £

number -> 0 | 1 | 2 | ...

E3 contains all the terminal expressions of Z1 and Z2- In addition, selector

expressions such as

x e V, d(x) > 1

are possible in 5L, but not in Z1 or £ We define N(x), the neighborhood of a

vertex, to be the set of vertices adjacent to x, other than x itself, i.e.,

N(x) - {xy I y 6 V, xy 6 E, x # y}

We then define the degree of a vertex x to be the cardinality of Nix) with the

stipulation that the degree is non-zero (say, one half) when the neighborhood is

empty but there is a loop on x, i.e., xx e E This emphasis on loops is intentional

and wilt be clarified in Chapter 4. The expression d(x) will be interpreted

semantically as the degree of vertex x.

A formal grammar for £ is

I -> l,i | vertex sign V | edge sign E | vertex * vertex |

edge # edge | d(vertex) rel number

vertex ""> V1 I V2 I V3 I '"

edge - > (vertex,vertex)

sign -> e | *

rel -> a | > | i | < | <s

number -> max I n I 0 I 1 I 2 I ...

E4 contains ail the terminal expressions of Zr Z2 and Z2- In addition, selector

expressions such as

x € V, d(x) = max

are possible in £ but not in E , 3L or £3- "^e expression max will be interpreted

semanticaliy as the maximum degree of a vertex in G The expression n will be

interpreted semanticaliy as the cardinality of V.

A formal grammar for £ is

I - > HI) | 1,1 | vertex sign V | edge sign E |

vertex # vertex | edge # edge |

d(vertex) rei number |d(vertex) rel variable sum number |

| {vertexset} n V | rel number |

| {edgeset} n E | rel number | variable rel number |

| {vertexset} | * |V|

vertex - > v t | v2 | v3 | ...

edge - > (vertex,vertex)

sign - > s | gf

rel - > - | > | * | < | s

number - > n | 0 | 1 | 2 | ...

vertexset - > vertex | vertex,vertexset j {vertex 11}

edgeset - > edge | edge,edgeset | {edge 11}

variable - > i | j | k | ...

sum - > + | -

The expression HI) is interpreted semanticaliy as "not I/' providing the negation of

any expression. The expression |A n B| is interpreted semanticaliy as the

cardinality of the intersection of the sets A and B. An expression of the form

variable k > n is intended to refer to the index numbers on the vertices. (See the

property EULERIAN for an example) Z5 contains all the terminal expressions of Zv

22, and Zy but not £4 , because Z5 lacks max.. Selector expressions such as

k Z 5

or

|{x,y,z} n V| # 2

are possible in £ but not in £ E~, E- or E .
5 i 2 3 *̂

A formal grammar for J is the E5 grammar with one additional production:
5

I - > statement
"Statement' is any English language sentence. E6 is a deliberate catchall, to be used.

6

like LQ, when all else fails.

In the event that the selector makes no restrictions at all E is designated as 0.

We have now assembled the raw material from which to construct

RHanguages. We have arbitrarily mentioned five primitive languages P, eight seed

languages L, and six selector languages £. (The reader is invited to define additional

appropriate languages.)

3.4. Tha Floor of a Graph Property

Part of the challenge in writing a graph property recursively is choosing an

appropriate recursive language. This section explores a minimality condition for

R-properties. GENERATE and EDGELESS are again used as examples.

We return now to GENERATE, which we had identified as

(Ax + A i)*(K1) where y,z e V

Clearly f = Ax + A could lie in any of the Ps, S = K in any of the Us and y,z e

V in any of the E's. Since the power of the languages we define is a primary

concern/ it seems reasonable to seek a minimal R-language for each property.

Implicit in their definitions were partial or full orderings for the P's, the L's and the

E's. Diagrams of these orderings are pictured in Figure 3-6. Arrows point from

less powerful languages to the more powerful ones which contain them.

We define a floor of a graph property p = <f,S,a> to be an R-grammar

<P,L%> such that for every other R-grammar <PM'/E
I> in which p is a terminal

expression, either F > P or L > L or Ef > E Note that because of the partial

T

1n

Figure 3*6: Ordenngs for Property Languages

order, a graph property may have more than one floor. Intuitively, we are

identifying the weakest possible grammar(s) enabling the property. For GENERATE

we have indicated that P and Z1 are adequate. Since the expressions § n 1 = 0

and E - 0 in L1 are simultaneously satisfied only by graphs isomorphic to K r L1 is

also adequate for GENERATE Thus the floor for GENERATE is <P l X r Z 1 >.

Similarly, EDGELESS may be written compactly as:

Here the floor is <PyLy+> because no selector at ail is required As more

complex graph properties are introduced, other floors will be required It is

interesting to note that EDGELESS has a lower floor than GENERATE Although the

property of being an edgeless graph is a special case of being a graph, the minimal

R-grammar required to achieve it is (counterintuitively) /ess complex.

3.5. Inversion

Now that we understand the nature of a recursively-defined graph property,this

section defines the inverse of a graph property and the implications of its automatic

construction.

If a graph may be constructed one edge or vertex at a time, it may also be

dismembered in the same fashion. Given algorithm p = <f,S,a> which generates

precisely those graphs with property p, under certain circumstances it is possible to

calculate an inverse, call it p"1. This new algorithm methodically attempts to

dismember an input graph until it is again a seed for p. Each testing algorithm may

be stopped after any iteration, yielding a graph with the same truth value for the

property being tested as each of the preceding graphs. For example, if p is the

property of being Eulerian and the graph G is not Eulerian, then the graphs f~1(G)

and f~4(G), if they exist will also be non-Eulerian. More formally, a terminal

R-expression p~1 » <f~1,S,a~1> is said to be the inverse of another terminal

R-expression p - <f,S,a> if and only if the testing semantic interpretation of p~1

returns 'TRUE* on ail outputs of the generator which is the R-property defined by

p, and "FALSE" on ail other graphs. The testing semantic interpretation of p~1 =

<f"1,S,a"1> is the following recursive algorithm:

f~1(G) = TRUE if G is described by S

= f~1(G') where <5 = f~1(G) using elements from

G selected by a""1 in order to apply f""1

3 FALSE if G is not described by .S and a"1 is

not applicable

Note that every selection suiting the requirements in o guarantees the correct

results, not simply some selectioa If G was a product of p, its dismemberment

sequence and seed graph need not mirror its construction sequence and seed graph,

since there are likely to be many such correct choices. If G has property p, and

only if it does, repeated applications of f~1 will return it, in some fashion, to some

seed graph of p. A concise grammatical representation of p~1 is (f~1a~1)*(G). The

seed set S is implicit in this representation. Thus (f~1a~1)*(G) is interpreted as

"apply f~1 until an answer is reached, La, G is described by S or f"1 cannot be

applied because a"1 fails." The number of iterations required for testing may vary

with a"1 and is not in general predictable.

Certain graph properties have inverses which may be computed automatically

from p. It is those properties which we examine in this chapter. It may be argued

that a computer which is taught to generate objects with a given property, and can

then calculate a procedure to test input objects for that property, has understood

the nature of the property and has learned it Thus we argue that this computation

of a testing algorithm from a generator algorithm is both automated deduction and

machine learning.

3.6. Automated Inversion

Having explained the significance of an inverse, in this section we present a

mechanism for its constructioa Not every R-property will be invertible via this

mechanism. In particular, consider an R-property whose formulation includes I , the
xy

primitive operator which identifies or merges vertex x with vertex y, leaving only

the revised vertex x in the graph and assigning ail the adjacencies of y to x. After

such a merger occurs there is no indication of which vertex is the revised one, let

alone which edges incident with x were attributable to x, to y, or to both of them.

Thus a property whose formulation includes I will not always be susceptible to

inversion. Similarly, an R-property which employs the primitive operators L or L,

looping or unlooping ail the vertices, will obscure the prior loop status. For

properties which exploit loops, such inversion also presents a problem. This loss

of information frequently causes difficulties for inversion, some of which are dealt

with in Chapter 4. Properties whose floor requires P- or higher are rarely

considered in this chapter and a formulation of a given property with the lowest

floor is always preferred

Here is the technique for the automatic construction of p""1 from p. We

emphasize that this technique is guaranteed only for R-properties whose floor

includes P1 or P2 and that under certain circumstances, it may not be applicable

even to those.

Each of the five primitive operators under consideration should have a fairly

obvious inverse, for example, we expect A - 1 = D. Recall however that the

formulation of EDGELESS was originally

A*(K) where x * V

and was modified to

If we were to undo each step in the construction of some edgeless graph G, we

might find an instance of inverting the "addition" of some vertex that was in the

graph prior to the "addition." Since the second addition made no change to the

graph, the inverse of that addition should also make no change. Thus we have

X

A"1

xy

= D

« N

= D

if x *
X
else

if x «
xy

V

i E

before

before

A
X

A
xy

and

= N else

Rather than engage in existential debates, we prefer to invert the less elegant more

constricted algorithm formulation which avoids ineffectual iterations. Thus, although

GENERATE is more concise as

(Ax + A^ffl^) where y,z e V

it is easier to invert as

(Ax + A ^(K^ where x * V, y,z e V, yz * E

A may be applied to a graph G - <V,E> whether or not x is in V. Inverting a

particular application of A is an uncertain procedure because we have no way of

knowing if A was effective, i.e., changed V. Similarly, A may be meaningfully

applied as long as x and y are in V, whether or not xy is in E Again we have no

way of knowing whether A was effective. With the deletion operators D and

D , any meaningful application (x e V or x,y s V, xy s E) must also be effective
xy

Hence we do not have the same tentativeness associated with D~1and D~1. We also
x xy

note that the inverse of the null operator N is itself. We now list five rules for

the automatic construction of an inverse p~1 - <f~1,S,a~1> from an R-property p

= <f,S,a>. The initial rules are designed to construct f~1 from f.

RULE 1

Every primitive operator in P has an inverse. The inverses are
A"1» D

X X

A""1 « D
xy xy

D~1= A
x x

D~ = D
xy xy

i\f1 = N

The inversion of the other primitive operators usually entails loss of information and

is not discussed here

RULE 2

The inverse of a sequential composite is the inverse of its elements, in the

reverse order, i.e.,

tfgf1 = g~1f~1

For example,

(A A) ' 1 » A~1A~1 = D D ,
xy y y xy y xy

RULE 3

The inverse of an additive composite is the sum of the inverses of its

elements, in the same order, i.e.,

(f + g f 1 = T 1 + g~1

For example,

(A + A f 1 s A~1+ A~1= D + D
x yz x yz x yz

RULE 4

The inverse of an uncertain addition is a tentative deletion, i.e., if it is not

known whether d(x) = 0 when f~1 arrives at D use

A"1= D' = D if d(x) = 0
X X X

= N else

The construction of a" 1 from a is a bit more complex. It is here that the

inversion technique may fail. The major inversion heuristic is that the vertices and

edges involved in the f iteration just completed are either immediately identifiable, so

that f(G) may be returned to G, or belong to a set of possible choices, any of

which will move f(G) back correctly toward some seed graph of p or FALSE

without necessarily returning to G at all. We define the profile of a variable to be

a (not necessarily exhaustive) list of its distinguishing features in a selection

language, for example "x e V, d(x) = 1 . " A pre-profile is a profile immediately

before the application of an operator. Although a initially constitutes a profile, we

expand a to a . This new pre-profiie excludes ineffectual (equivalent to N)

operations a also includes the properties of the seed preserved under f. A
pre

post-profiIe is a profile immediately after the application of an operator. For most

cases, the construction of a~1 from a is embodied in

RULE 5

Let a be a pre-profile of those variables involved Expand a to a .

Compute the changes to a r e caused by f The new description, o~\ is in J4# a""1

is now a post-profile of the variables after f. (If the selector language for p is E_

or Z~ the new description must also be constructed in JL in Efi.)
O D O

In other words, p singles out a variable x by its relationship to G and then

applies f to i t changing in some fashion the nature of x with respect to G This

new description of x enables us to select it for inversion. What aspects of x (or

xy) are significant? Most of the graph properties in this chapter find membership

with respect to V and E, distinctness, degree of a vertex and maximum degree of

any vertex in the graph to be an adequate perspective, hence the choice of Z4- It

is important to recognize that the floor may shift during inversion, i.a, the inverse

may be stated in a more or less complex R-language.

Throughout this document inverses whose floors are based on Zr E2, E3 or

2 4 are computed automatically . As simple examples, we compute the inverses of

EDGELESS and GENERATE (More complex examples are available in subsequent

sections.) For EDGELESS we have

r1 = A-1= D
X X

In this example the initial pre-profiie a is empty. We expand a to a r e = x * V to

exclude the ineffectual operation of adding an already present vertex. Immediately

after A we know that x e V and d(x) = 0. Thus we set <J~1 to x s v, d(x) = 0.
X

Since the maximum degree of a vertex in G could not be altered by the addition of

a vertex of degree zero, the max is not mentioned in cT1. Therefore, the following

algorithm tests to see if an arbitrary graph is edgeiess:

r 1 (G) = TRUE if G is K1-r1

= FALSE if G is not K

= f <Dx(G)) where x e V, d(x) = 0

1

and there does not exist x s V such that d(x) = 0

This edgeiessness tester deletes vertices of degree zero until it arrives at the empty

graph (success and the input graph was edgeiess) or all vertices are of degree

greater than zero (failure and the input graph was not edgeiess). In Figure 3-7 we

show the algorithm operating on a graph G « G and a graph G * G .

TRUE

A* A
Figure 3-7: EDGELESS"1 in Operation

FALSE

For GENERATE we have

r 1 = (A + A f 1 = A~1+ A~1 = D + D
x yz x yz x yz

The pre-profiie a is yz e E, which we expand to x 0 V, y,z e V, yz £ E The

post-profile a~1 is x,y,z e vy yz s E, d(x) = 0. Since the maximum degree of a

vertex in G could not be altered by A and is unpredictable under A , the max is
1 x ^ yz

not mentioned in a"1. This yields the following algorithm for testing to see if an

input ordered pair of sets (V,E) is a graph:

f~1(G) = TRUE if G is K1

= f"1((D + D KG)) where x,y,z s V, yz e E, d(x) = 0
x yz

= FALSE if G is not Kt

and there does not exist x • V such that d(x) = 0

and there do not exist y,z e V such that yz s E

Note that the selector variables are grouped for convenience of notation, but that

they need not all be successfully bound in order for a*1 to succeed, i.e.. we need

to find x or yz but not both, as distinguished by separate lines in the FALSE

selector a"1. In Figure 3-8 we show the algorithm operating on a graph G s G

and a graph G * Gp.

•

TRUB

6

<{1,2},{12.13}> <{1,2},{13}> <{1},{13}> FALSE

1 2 3 4

Figure 3-8: GENERATE"1 in Operation

From now on we will describe inverses merely by stating f~1, a and a"1.

We observe that in both of these examples the floor shifts for the inverse

For GENERATE the floor was <PyLyZ^> and for GENERATE" it is <P r L r Z 3 >. For

EDGELESS the floor was < P r L r * > and for EDGELESS~1 it is < P 1 X r Z 3 >. Because

the post-profile is constructed with respect to E4 whenever possible, we expect

the floor for p~ to involve E , regardless of the I used in p. To the extent that

features of Z4 are not applicable, lower E's will appear for p~1. Thus a shift in the

floor suggests that perhaps the "true" context of a property resides in the more

powerful of the two RHanguages. We will pursue this further in Chapter 5.

3.7. Readily Invertible Graph Properties

All the fundamental concepts in our recursive formulation of graph theory are

now established Each of the segments in this section deals with a specific graph

property. Each segment begins with the necessary definitions) from graph theory.

The R-property is formulated, proved correct inverted and proved complete. Many

graph properties have more than one formulation within a given R-grammar. In

some instances, more than one valid formulation is provided, with relevant

explanations.

In order to prove that an R-property is complete, we need only show that its

inverse is correct The situation is pictured in Figure 3-9. For p = <f,S,a>, f maps

G • ' S into G and f maps G into G , where G is the set of all graphs with

property p. For the inverse p~1 » <f~1,S,a~1>, f~1 maps G • G into G , and

eventually back into S. Assume that f~1 only maps G * G into f~1(Q « G , i.e., f~1

is correct Let G • G . Since f~1 is defined on G and f~1 is correct, there exists
P

some sequence of applications f~1#(G) which is a "trail" back to some seed graph H

• S. We need only automatically invert these applications into f*(H) to create a "trail"

from H to G Thus G is "reachable" via f and p is complete.. Our completeness

proofs will therefore consist in showing that the "automatic" inverse is correct

Frequently there are several possible formulations for a graph property.

Occasionally we will show more than one. In constructing the properties in this

Figure 3-9: The Behavior of f and f~1 on the Set of All Graphs

chapter and the next we strive to work in the simplest floor possible. Because our

selection languages Z are reasonably limited (eg., there is no notion of a path

before EJ, such construction may require considerable ingenuity.

3.7.1. Acyclic Graphs

A walk of a graph G is an alternating sequence of vertices and edges,

vrv iv2'v2'v2v3'v3'"" 'vk-rvk-ivk'vk '3e9 innin9 a n d ending with vertices, in which each

edge is incident with the two vertices immediately preceding and following it (We

will use the abbreviated form VjV-^v..) A w a"c is c^osec^ if v = v otherwise it is

open. A cycle is a closed walk on k vertices, all distinct, with k > 3. We will

describe such a cycle as C . A n arbitrary cycle on k vertices is written as

simply C . A graph is acyclic if it contains no cycles, i.e., every walk is open.

Several examples of acyclic graphs appear in Figure 3-10.

The R-property ACYCLIC is

© + A)*(<V,#>) where x e V, y * V

kr t Hi
Figure 3-10: Some Acyclic Graphs

The seed set is intended not to include <+,$>. Figure 3-11 shows the iterative

steps in a sample run of ACYCLIC

Since precisely all graphs of the form <V,£> other than <^>> are identified in

L] by E = 0, and since B = A A , we have a floor for acyclic graphs of

<PrLr21>.

Clearly ACYCLIC is correct the only edges it adds are loops (which do not

occur as part of cycles or qualify as cycles) or edges from a vertex in the set V

to one previously outside and of degree zero which has just been created Thus no

edge can, by its addition, complete a cycle. (We observe that for the last edge in

the construction of a cycle, the vertices involved must already both be of degree at

least one.) Loops may be added at any time. A loopfree version is

Bx *(<V,*>) where x e V, y * V

The inverse of ACYCLIC is computed from:

pre

Figure 3-11: A Sample Run of ACYCLIC

(B + A f 1
xy zz

= B
xy zz

(A... A..)"1 + AA
xy y

A
y xy

zz

22

D D +D
y xy 22

x 6 V, y * V

2 6 V, 22 * E

x,y e V, xy 6 E, d(y) = 1

2 6 V, 22 6 E

There is a shift in the floor to < p
1 X r S 3 >. In Figure 3-12 we show

ACYCLIC"1 operating on a graph G • G and a graph G * G . In order to show

that an inverse is correct we must demonstrate that it behaves properly both on G

e G and on G * G . If G e G , p~1 will detach and delete only vertices of degree

one. Thus any walk will be decimated from its endpoints inward* and any acyclic

graph will be reduced ultimately to a set of isolated vertices <V,^>, with one

TRUE

6

FAL

3

Figure 3-12: ACYCLIC*1 in Operation

element remaining in V for each mutually accessible set of vertices originally in V. If

G * Gp, p - 1 will decimate any acyclic protrusions. What remains will be a graph in

which every vertex has degree at least two. Such a graph must contain a cycle,

and a~1 will not be applicable on it Thus p~1 is correct and p is complete.

3.7.2. Trees

A graph is connected if every pair of vertices are joined by a path. A tree is

a connected acyclic graph. Several examples of trees appear in Figure 3-13. The

R-property TREE is

IBx + A^fflC,) where x s V, y * V, z e V

Figure 3-14 shows the iterative steps in a sample run of TREE

Since the only graph matching the L1 characterization E u 1 = 0 is K r the

floor for trees is <P1X rZ l>.

Figure 3-13: Some Trees

V/T

6

Figure 3-14: A Sample Run of TREE

8

Clearly, TREE is correct the only edges it adds are loops or edges which

cannot complete a cycle and are part of a single connected component

The inverse for TREE has the same f"1 and a""1 as ACYCLIC, namely

f~1 = D D + D
y xy 22

s~1 = x,y 6 V, xy e E, d(y) = 1

2 6 V, Z2 6 E

Again there is a shift in the floor to <P rL rE3>. This kinship is not accidental and

will be discussed at length in Chapter 4. Figure 3-15 shows TREE""1 operating on

a graph G € G and a graph G * Gp.

4U V
1 • 2 #

•kkk
TRUI

6

A FALSE

Figure 3-15: TREE"1 in Operation

TREE"1 reduces any tree to, ultimately, a single, isolated vertex isomorphic to

Kr TREE""1 on a graph which is not a tree will remove all tree-like protuberances^

and then a"1 will fail leaving a graph composed of disconnected and/or cyclic

graphs, which is not isomorphic to K . Thus TREE"1 is correct and TREE is

complete.

u
•

TBU

6

• 8
4 5

FALSE

6

Figure 3-18: LOOPFREE"1 in Operation

3.7.4. Chains

A chain is a graph consisting of a single open path on at least two vertices.

The length of a chain is one less than the number of its vertices, i.e., n - 1.

Several examples of chains appear in Figure 3-19.

Figure 3*19: Some Chains

The R-property CHAIN is

S*vy(K2) where x,y e V, v i V, xy 6 E

93

TRUE

4

. *&

PALSE
5

pre
- 1

Figure 3-21: CHAIN""1 in Operation

y xy

a X € V, y 0 V, d(X> a 1

« x,y e V, xy e E, d(y) = 1, d(x) = 2

The floors remain constant Figure 3-22 shows CHAIN*1 operating on a graph

G e G and a graph G * G .
P P

CHAIN*1 removes terminal edges (to a vertex of degree one) in a chain until the

chain is of length one. On a non-chain, CHAIN"1 retains simple cycles and vertices

of degree greater than two. Thus CHAIN^1is correct and CHAIN2 is complete. We

have shown two formulations for the property of being a chain, one with a lower

floor than the other.

THUS

• • M.
• •

2 \ ^

FALSE

Figure 3-22: CHAIN'1 in Operation

3.7.5. Cycles

Several examples of cycles appear in Figure 3-23.

A
Figure 3*23: Some Cycles

The R-property CYCLE is

S*v (K3) where x,y e V, v I V, xy e E

Figure 3-24 shows the iterative steps in a sample run of CYCLE

95

Figure 3-24: A Sample Run of CYCLE

In L1 the characterization of K3 is the same as K2> In L2. however, {K3} is

uniquely defined by:

E n 1 = 0

E n 1 = o

|E n i | = |E n 1|

It is also possible to reach K3 in L1n as E n j = 0, E n 1 = 0 and n = 3. Thus the

floors of CYCLE are <P2X rE1> and <P2,L]nZ,>.

CYCLE is correct; on each iteration it replaces one edge in a cycle with a chain

of length two. The inverse for CYCLE has the same f"1 and a"*1 as CHAIN, namely

f"1 = D D D A
v vy xv xy

a"1 = x,y,v 6 V, xv, yv 6 E, xy * E, d(v) = 2

Again, this is not accidental. There is a shift in the floors to < P
2 'L2'^3> a n d

^ihyt^^ Rgure 3-25 shows CYCLE"1 operating on a graph G e G and a

graph G * G
p.

CYCLE""1 will contract any simple cycle until it is isomorphic to «3. Any

non-cycle will have its chain-like portions contracted by CYCLE"1 to length one and

its simple cycles to C3, leaving the remaining graph untouched Thus CYCLE"1 is

correct and CYCLE is complete.

TBUI

4

FAI.SI

3

Figure 3-25: CYCLE"1 in Operation

3.7.6. Stars

A bipartite graph G is a graph whose vertex set V can be partitioned into sets

V and V such that every edge of G is between a vertex in V1 and a vertex in

V2. If E = Vj X V2 then G is a complete bipartite graph. If |V11 = a, |V2 | = b,

the complete bipartite graph on V = V1 u \jy where V1 n V2 = +, is denoted K f̂a.

A star is a complete bipartite graph K1 n for n > 3. Several examples of stars

appear in Figure 3-26. The R-property STAR is
Bx (K1 3* w h e r e x e V, y 0 V, d(x) = max

Figure 3-27 shows the iterative steps in a sample run of STAR.

In L-, K is characterized by E n i = 0, but so are all loopfree graphs. In
L2' K1 3 is c h a r a c t e r i 2 e d by E n 1 = 0 and |E| = |E|, but so is any graph with half

its possible edges and no loops. In L_, K - has the same signature as a chain of

length three. Here is our first example of a seed graph which defies definition in

any of our preferred languages. The floor for star graphs is <P1'LQ,E4
>. It is

Figure 3-26: Some Star Graphs

\

Figure 3-27: A Sample Run of STAR

possible to define star so that K] 2 or K1 is considered a star. This would

require some a statement about the maximum degree vertex being unique or about

all vertices other than the one of maximum degree being of degree one, neither of

which is available in any E postulated thus far. This is an example of the potential

tradeoff between L and L

We call the vertex of maximum degree in a star its center STAR adds one

spoke (degree one vertex and edge from the center to it) at a time STAR is

correct The inverse is computed from:

f 1 = B~1

a" 1

= DD
y

= x «

= x,y

xy

v, y

w

« V,

d(x) =

d(x) =

• max.

max

d(y) =

The floor shifts to <P
2

/LQ'^4>- p i 9 u r e 3 -28 shows STAR""1 operating on a

6 8
FALSI

9

"'1Figure 3-28: STAR"'1 in Operation

graph G s Gp and a graph G * Gp.

On a star graph, STAR""1 will delete the spokes one at a time until arriving at

K1 3. On a non-star graph, STAR"1 will repeatedly delete spoke-like constructs. A

" 1 " 1chain will contract to K_ under STAR"1 and thereby fail. Thus STAR"1 is correct

and STAR is complete.

3.7.7. Wheels

A wheel W 1 is a graph in which n t 3 and

V « {v,v v ,-.,v }
i 4. n

E = {v.v I i » 1,2_,n-1} u {v.v } u {w. I i = 1,2,_.n}
i i-r 1 • i n t *

A wheel is composed of a rim (C) and an additional vertex (the hub v) which
V2~Vn

is adjacent to all the other vertices. Several examples of wheels appear in Figure

3-29. The R-property WHEEL is

Figure 3-29: Some Wheels

(AzvSxv]*{KA)
 w h e r e distinct x,y,z s V, v* V, xy € E, d(z) = max

Note that K4 is merely another notation for W<j Figure 3-30 shows the iterative

steps in a sample run of WHEEL

Figure 3-30: A Sample Run of WHEEL

We use "distinct x,y,z" here as an abbreviation for the JL notation "x # y, x # z, y

z." In Ly K4 has the same characterization as any other loopfree complete graph.

This is also true in L2 and L- In L1n, however, {K4} is precisely specified by:

100

E n i = 0

E n 1 = 0

n = 4

Thus the floor for wheels is <p
2 '1 ' in /^4>*

WHEEL is correct; it replaces any rim edge with a chain of two edges,

connecting the new vertex to the hub. Because K4 contains no loops, x # y is

unnecessary.

The inverse is computed by:

f

a = a
pre
- 1

(A S f
zv xvy

SA
xvy zv

= D D D A D
v vy xv xy zv

= distinct x,y,z s V,v ^ V, xy e E, d(z) = max

= distinct v,x,y,z 6 V, xv, vy 6 E, xy * E, d(z) = max,

d<v) = 3
The floor remains constant Figure 3 -31 shows WHEEL"1 operating on a graph G

e Gp and a graph G * Gp.

TRU

4

PALS

3

Figure 3-31: WHEEL"1 in Operation

WHEEL""1 contracts the rim of a wheel until the graph is isomorphic to K On

a non-wheel, any vertices of degree other than 3 or n - 1 will remain untouched,

with the wheel-like

WHEEL is complete.

with the wheel-like portions collapsing into K Thus WHEEL*1 is correct and

3.7.3. Complete Graphs

A graph is complete if and only if E - {xy | x,y e V, x # y}. The complete

graph on k vertices is denoted K . Several examples of complete graphs appear in

Figure 3-32

Figure 3-32: Some Complete Graphs

The R-property COMPLETE is

FJK,) where x * V, distinct v r v 2 W v n * V, | { v r v r , v n l | « |V|

Figure 3-33 shows the iterative steps in a sample run of COMPLETE Since F =

Axv Axv
1 * 2

Ax' t h e f l o o r f o r c o m P ' e t e graphs is <P rL rZ5>.
n

COMPLETE is correct it connects a new vertex to every vertex currently in

the graph.

The inverse is computed by:

r1 = F"1

x

Figure 3-33: A Sample Run- of COMPLETE

(A A ...A A f 1

XV XV XV X

" 1

A ...A A
XV, XV- XV X

1 z n

V A ...A
X XV XV 4 XV .

n n-1 1
...A

1

= D D D ...D
X XV XV . XV .

n n-1 1
a = a = x * V, distinct v ^ v ^ ^ v 6 V, I { v ^ v , v } I = |V |

pre i z n ' i z n • • •
a" 1 = distinct x ^ v ^ v ^ v 6 V, I {x^v^v^^v } I = |VL d(x) = n

i z n * l z n • ' •

The floor shifts to <P2X rE5>. Figure 3 -34 shows COMPLETE"1 operating on a

graph G e G and a graph G * G .

COMPLETE"1 deletes only fully connected vertices from a graph. If G initially

has n vertices. COMPLETE"1 must delete E^J,1 i = n<n-1)/2 = (£) distinct edges to be

successful; thus G must have been complete. COMPLETE"1 is correct and

COMPLETE is complete.

3.7.9. Graphs with an Even Number of Vertices

Several examples of graphs with an even number of vertices appear in Figure

3-35. The R-property EVEN-N is

(A + A A)*(EJ where x,y e V,
XV W 2 2 7

W,Z * V, W # Z

Figure 3-36 shows the iterative steps in a sample run of EVEN-M In L^ the graph

E2 has the characterization of most edgeless graphs, E = 0. In L2 the

characterization remains the same. In L-, however, the characterization is E = 0 and

E n i < E n 1. These properties imply n(n - 1)/2 < n which requires n < 3. Since

6

THUI

7

FALSE
5

Figure 3-34: COMPLETE"1 in Operation

#-#-#

Figure 3*35: Some Graphs with an Even Number of Vertices

ail the other graphs for which n < 3 have characterizations different from E2's, L3

describes {E2} uniquely. Alternatively, in L1n, E2 is characterized by E « o and n =

2. The floors for graphs with an even number of vertices are therefore < p
r L 3 ' I 2

>

and <PrL1n,S2>.

EVEN-N is correct; it adds arbitrary legal edges singly and vertices two at a

time.

Figure 3-36: A Sample Run of EVEN-N

The inverse is computed by:

f"1 = (A + A A f
xy w z

s A~1 + (A A f
xy w z

A A Axy z w

= D + D D
xy 2 w

a = x,y s V, xy 0 V

W,Z * V, W # Z.

a~ = x,y 6 V, xy 6 E

w,z € V, w # z, d(w) = 0, d(z) = 0

There is a shift in the floors to < P
2 'L3'^3> a n d ^i^^0^' R 9 u r e

3-37 shows EVEN-N^1 operating on a graph G « G and a graph G * G .

EVEN-INT1 deletes the edges of a graph with an even number of vertices and

removes the isolated vertices two at a time until the graph is isomorphic to E_. A

graph with an odd number of vertices will go from E3 to E and then fail. Thus

EVEN-N""1 is correct and EVEN-N is complete.

TRUE

6

L

8

"1 iFigura 3-37: EVBM-N"1 in Operation

3.7.10. Graphs with an Odd Number of Vertices

Several, examples of graphs with an odd number of vertices appear in Figure

3-38.

Figure 3*38: Some Graphs with an Odd Number of Vertices

The R-property ODD-N is

(A + A A)*(K J where x,y s V,
xy w 2 1 • r

w,z « V, w # z

Figure 3-39: A Sample Run of ODD-N

Figure 3-39 shows the iterative steps in a sample run of ODD-N. The floor for

graphs with an odd number of vertices is <P rL r£2>, lower than that for graphs

with an even number of vertices because of the simpler seed graph.

ODD-N is correct; it adds single arbitrary legal edges and vertices two at a

time The inverse for ODD-N has exactly the same f~1 and a~1 as those for

EVEN-N, namely,

r1 so +DD
xy z w

a"1 = x,y 6 V, xy e E

w,z e V, w # z, d(w) = 0, d(z) = 0

The floor shifts to <P2X r23>. Figure 3-40 shows ODD-N""1 operating on a

graph G • G and a graph G * G . ODD-N"1 is correct; it deletes the edges of a

graph with an odd number of vertices and removes the isolated vertices two at a

time until the graph is isomorphic to K r A graph with an even number of vertices

will go from E2 to <$,+> and then fail. Thus ODD-N is complete.

3.7.11. Graphs with an Even Number of Edges

Several examples of graphs with an even number of edges appear in Figure

3-41. The R-property EVEN-M is

(A + A A)*(K) where v,w,y,z s V, yz,vw * E, yz # vw
x • yz vw I

Figure 3-42 shows the iterative steps in a sample run of EVEN-M. The floor for

graphs with an even number of edges is <PyLyZ2>-

TRUE

4 5

FALSE
8 9

Pigura 3-40: ODD-N*"1 in Operation

A *
Figure 3-41: Some Graphs with an Even Number of Edges

EVEN-M is correct; it adds vertices singly and legal edges two at a time. The

inverse is computed by:

f" 3 (A + A A f
x yz vw

= A~1+ (A .A f
x yz vw

A AA
x vw yz

= D + D D
x vw yz

• • • A

A* * A* W
Ve

Figure

= X 8 V

v,w,y,z

= x s V,

v,w,y,z

3-42:

s V,

dfx)

« V,

A Sample Run

yz,vw 8 E, yz *•

= 0

yz,vw e V, yz #

of EVEN-M

vw

vw

The floor shifts to ^ j ^ r ^ * * R 9 u r e 3 -43 shows EVEN-M""1 operating on a

graph G « G and a graph G ^ G . EVEN-M"1 deletes singly the isolated vertices

of a graph with an even number of edges and removes the edges two at a time

until the graph is isomorphic to K r A graph with an odd number of edges will

reduce to K2 and fail. Thus EVEN-M"1 is correct and EVEN-M is complete.

3.7.12. Graphs with an Odd Number of Edges

Several examples of graphs with an odd number of edges appear in Figure

3-44. The R-property ODD-M is

(A -i- A A)*(KJ where v,w,y,z s V, yz,vw * E, yz # vw
x yz vw 2 * 7 r

Figure 3-45 shows the iterative steps in a sample run of ODD-M. The floors for

graphs with an odd number of edges are < p
r

l - 1 n ,£ 2 > and <PrL3,£2>.

ODD-M is correct; it adds vertices singly and legal edges two at a time. The

inverse for ODD-M has exactly the same f~1 and a"1 as those for EVEN-M,

t f
TR U

6

Y # •

t £ ^ PALSB

3 4 5

Figure 3-43: EVEN-M"1 in Operation

Figure 3-44: Some Graphs with an Odd Number of Edges

namely

f" » D + D D
x vw yz

- 1
= x s V, d(x) = 0

v,w,y,z « V, y2,vw s V, yz # vw

The floors shift to ^ 2 ^ 1 A * a n d <P2'L3'^3>- F i 9 u r e 3 " 4 6 shows ODD-M"1

operating on a graph G a G and a graph G * G . ODD-M"1 deletes singly the

isolated vertices of a graph with an odd number of edges and removes the edges

two at a time until the graph is isomorphic to K2. A graph with an even number of

edges will reduce to a graph isomorphic to

correct and ODD-M is complete.

and then fail. Thus ODD-IN/T1 is

110

Figure 3-45: A Sample Run of ODD-M

• 1 • W 2 w 3

6

FALS

9 1 O

T1 iFigure 3-46: ODDHN/T1 in Operation

3.7.13. Euiertan Graphs

A walk is a trail if all its edges are distinct and a path if all its vertices are

distinct A closed walk which traverses each edge of a graph exactly once and

passes through every vertex at least once is called an Eulerian walk. An Eulerian

graph is one for which an Eulerian walk exists. Several examples of Eulerian

graphs appear in Figure 3-47.

Figure 3-47: Some Eulerian Graphs

The R-property EULERIAN is

(S + Y
wvz V

*(KJ where w,z • V, v * V, wz • E,
3

v ^ k * E, v.v.+ 1 * E, i = 1,2 k— 1, distinct v., i = 1,2,«.X k £ 3

Figure 3-48 shows the iterative steps in a sample run of EULERIAN.

Figure 3-48: A Sample Run of EULERIAN

The algorithm either subdivides an existing edge or appends a cycle C
v i y r v k

. This

cycle must have at least one vertex and no edges in common with the current

graph. Since Y = A A ...A A A A ...A and K- is describable
V1V2'"\ V1V2 V3 V i \ Vk V1 V2 vk 3

in L1n or L2, the floors for Eulerian graphs are < p
2 'L in'^5> a n d <P2'L2'^5>'

Given a graph G which is Eulerian, there is an Euierian walk for it Where the

edge wz occurred in that walk, we substitute wv,v,vz and the walk will remain

Eulerian. In any one location where v. s V occurred in the Eulerian walk, we

substitute the cycle

and the walk will remain Eulerian. Thus cycle additions are closed path "detours"

appended to the original Eulerian walk. We have shown that EULERIAN is correct

The inverse is computed by:

r1 a is + Y r1

wvz V i v r t

* S~1 + Y"1

WVZ V1V2*"Vk

= S"1 + Y
wvz " ^ ^ " ^ i c

= D D D A + Y
v vy xv xy ~"v iv2#~v ic

a = a = w,z 6 V, wz e E
pre

i {v iVvk } n vl - 1- Vk * E-
v.vi-hl 0 E , i= 1,2,-.,k-1, distinct v., i « 1,2,.~,k,

k > 3

a*1 = distinct v,w,z € V, wv,vz s E, wz * E, d(v) = 2

distinct v1#v2^tvk e V,

v.vj-M s E , i = 1,2,w,k-1, v tvk s E, k > 3,

not all v
rv2,....vk of degree s 2

The floors shift to the less powerful <P^X, ,Z^> and <Pn,L~.Z~>- Figure
*L i n o 2 2 3

3-49 shows EULERIAN^1 operating on a graph G s G and a graph G * G . Note

our first application of tentative deletion (Rule 4) in f~1 via Y . It is not clear

whether all (or even any) of the vertices v
rv2,...,vk were present before the cycle

was added After the edges of the cycle are deleted however, those vertices of

TRU

5

Figure 3-49: EULERIAN"1 in Operation

degree zero will cieariy be the ones introduced by the cycle and deleted afterwards.

If all of v
r
v

2"*"Vk w e r e introduced to the graph by the cycle addition, they would

all be of degree two on its completion, hence the "not air statement

" 1On an Eulerian graph EULERIAN"1 detaches closed path "detours" from the

underlying Euierian walk without ever deleting the entire graph when it is a cycle,

thanks to "not all v
r
v

2 '— v
k
 of degree £ 2." Once the Eulerian graph being tested

has no further closed path "detours11, it is a simple cycle, to be contracted by S- 1
wvz

. -1until it is isomorphic to K3. On a non-Euierian graph, EULERIAN also behaves

correctly. There is a well known theorem in graph theory: "A graph is Eulerian if

and only if each vertex is of even degree." A non-Eulerian graph will contain at

least one vertex v of odd degree. Since the deletion of a cycle reduces the

degree of each vertex by two, and the contraction of a subdivision deletes a

degree two vertex, leaving all other degrees unchanged, v will remain of odd degree

and a non-Eulerian graph will never become isomorphic to K. under repeated

application of EULERIAN"1. Thus EULERIAN"1 is correct and EULERIAN is complete.

3.7.14. Graphs with K Vertices

Several examples of graphs with k = 3 vertices appear in Figure 3-50.

A V *• • • •
Figure 3-50: Some Graphs with 3 Vertices

The R-property K-VERTICES is:

A* (E) where x,y s V
xy k 7

Figure 3-51 shows the iterative steps in a sample run of K-VERTICES for k = 5.

Figure 3-51: 5-VERTICES in Operation

L r L2 and L3 would characterize ER and any other edgeiess graph as E = 0. A

precise description of E. is first available in L, as E : 0 and n » Ic The floor for
K in

graphs with k vertices is <P1X1n,E1
>.

K-VERTICES is correct; it only adds edges and cannot change n on any

iteration. This algorithm is capable of running indefinitely, although eventually its

additions are likely to be repetitive, since a graph on k vertices has at most k2

edges.

The inverse

f"1

Ve

is computed

= A ' 1

xy

= D
xy

= x,y e

= x,y e

V,

V,

by:

xy

xy

* E

s E

The floor shifts to < p
2 ' l - i n ' ^ i > < F i S u r e 3 -52 shows K-VERT1CES~1 operating on a

graph G ^ G and a graph G * G for k = 4.

• • — • 9 0 • •

¥ • m t % * % • •
• * 3 4

FALSE

4

Figure 3-52: 4-VERTlCES~1 in Operation

K-VERT1CES"1 is correct; it deletes all edges and then tests for isomorphism

between two sets of isolated vertices. Thus K-VERT1CES is complete.

3.7.15. Graphs wi th K Edges

Several examples of graphs with a fixed number of edges k = 3 appear in

Figure 3-53. We define Mk = < ^ v r v 2 ' - ' v 2k^ ' ^ v i v 2 ' v 3 V 4 / ^ ' v 2k - i v 2^ > t o b e t h e

matching graph on 2k vertices. M consists of 2k vertices and k edges such that

each vertex is "matched" via an edge with exactly one other vertex. The

R-property K-EDGES is:

Figure 3-53: Some Graphs with 3 Edges

(Ax + I / (M k) where distinct y,z e V, yz * E, d(y) > 0, d(z) > 0,

~ [w 6 V, yw,zw e E]

Figure 3-54 shows the iterative steps in a sample run of K-EDGES for k = 5. F<

k > 2, {Mk> will not be uniquely describable in any language but L j . Thus the flo<

for graphs with k edges is <p
4<1-8'25

:>.

Figure 3-54: 5-EDGES in Operation

K-EDGES is correct; it adds isolated vertices and merges unisolated ones. An

edge could be lost during such a merger only if the vertices being merged had a

common neighbor; "there does not exist w s v such that yw,zw s E" prevents this.

We prevent the transformation of an edge into a loop by "yz * E"

Although we have never required it explicitly, a seed graph has been employed

until now as a minimal case of a property p. Thus far this minimality has been

directed to the values m and n. In K-EDGES, however, an intuitive incremental

approach such as:

(A + A D)*(S)
x yz vw

for some S with minimal n will not be readily invertible, because it will be possible

for the inverse

(D + A D)
x vw yz

to churn in place, exchanging edges, indefinitely. In the formulation of an

R-property we must strive for a monotonic function on the graph sequence to

insure termination of the inverse. In the case of K-EDGES, this function is

decreasing in the number of connected components, a topic to be defined and

discussed later in this chapter.

The inverse is computed by:

~ x yz

= D + F

0 a X * V
pre

distinct y,z e V, d(y) > 0, d(z) > 0, yz * E,

~[w € V, yw,zw e E]

<T1 = x e V, d(x) = 0

y e V, z * V, yw. e E, i * 1,2_Jc; 2 £ d(y), d(y) > k

The floor remains constant The use of the fragmentation technique F

requires some explanatioa An arbitrary vertex y is subdivided into two vertices, y

and z, which between them share all edges previously belonging to y without

118

duplication. (In particular z gets the adjacencies to v ,_,v..) Normally, merger and

fragmentation are inadequate inverses for each other because of the loss of

information discussed in 3.4. In this instance previously merged vertices are

identifiable by their degree, and merger is invertibie. Figure 3-55 shows

K-EDGES~1 operating on a graph G « G and a graph G £ G for k = 4.

""1Figure 3-55: 4-EDGES""1 in Operation

" 1On a graph with k edges, K-EDGES deletes isolated vertices and detaches the

On a graph with m # k edges.edges from one another until reaching M

will create M and then fail. Tf
m

is complete.

K-EDGES"1 will create M and then fail. Thus K-EDGES~1 is correct and K-EDGES
m

119

3.7.16. Graphs of Minimum Degree K

The minimum degree of a graph is the smallest degree of any of its vertices.

Several examples of graphs with minimum degree k = 3 appear in Figure 3-56.

Figure 3-56: Some Graphs of Minimum Degree 3

The R-property MIN-K is:

(A + A A ^A A)*(K. . J where distinct x,y,w € V, d(w) = k
xy vx,. VXA L.

distinct xrx2,_,xk « V, v * V

The purpose, of vertex w is to reserve at least one vertex which is always exactly

of degree k. Figure 3-57 shows the iterative steps in a sample run of MIN-K for k

- 2. Although (Kk + 1) is uniquely describable for k = 1, k » 2, and k » 3 in L r

L3 and L2, respectively, for k > 3 (Kk + 1) is precisely describable only in L1p|. Thus

the floor for graphs with minimum degree k is ^ ^ L ^ . S g ^

Figure 3-57: MIN-2 in Operation

MIN-K is correct; it adds only superfluous (degree-increasing) edges or new

vertices of degree k to a graph. Vertex w prevents at least one vertex of degree

k from a degree increase by a new edge.

The inverse is computed by:

f~1 = (A + A A ..A A f 1

xy vx v x - vx v

= A"1 + (A A ...A A f 1

xy vx vx_ vx v

= A-1 + A - 1 A- 1 A- 1 ...A"1
xy v vx, vx, vx

= D + D D D ...D
xy v vx, vx vx

a = distinct x,y,w e V, xy * E, d(w) = k

distinct w,x ,x x e V, v * V

or""1 = distinct x,y,w 6 V, xy 6 E, d(x) > k, d(y) > k, d(w) = k

distinct v,x rx2 , . . . ,x k e V, xv r xv2 , .- ,xvk € E, d(v) = k

The f l oo r shi f ts to < p
2 ' L i n ' ^ 3 > > R 9 u r e 3 ~ 5 8 shows MIN-K~ 1 operating on a

graph G « G and a graph G * G f o r k = 4.

On a graph wi th minimum degree k, M I N - K " 1 deletes vert ices of exactly

degree k preserving a single degree k vertex and reduces the degree of vert ices of

degree larger than k, until only KR + 1 remains, if a graph has a ver tex z of degree

less than k, M I N - K * 1 cannot delete z nor increase its degree, and the graph wi l l

never be isomorphic to K . If a graph has all vert ices of degree greater than k,

M I N - K * 1 can delete neither a vertex nor an edge, because no co r rec t v or w s v

can be f o u n d Thus M I N - K * 1 is cor rec t and MIN-K is complete.

3.7.17. Graphs of Maximum Degree K

The maximum degree of a graph is the largest degree of any of its vert ices.

Several examples of graphs w i th maximum degree k = 3 appear in Figure 3 - 5 9 .

The R-property MAX-K is

(Ax + Az)*(K1 k) where distinct x,y e V, d(x) < k, d(y) < k

121

FALSE
4

Figure 3-58: MIN-4"1 in Operation

Figure 3-59: Some Graphs of Maximum Degree 3

Note that the seed graph is a star. Figure 3-60 shows the iterative steps in a

sample run of MAX-K for k = 5. The floor for graphs with maximum degree k is

MAX-K is correct; it adds only isolated vertices z and edges xy which will not

increase the degree of vertex x or y beyond k.

Figure 3-60: MAX-5 in Operation

The inverse is computed by:

pre

= <\
v-1

y

" 1= A ' + A
xy 2

= D + D
xy 2

= distinct w,x,y e V, xy M E,

d(x) < k, d(y) < k, 2 * V, d(w) = k

2 * V

<j~1 = distinct w,x,y e V, xy e E, d(x> ^ k, d(y) £ k> d(w) = k

2 « V, d(2) = 0

The floor shifts to < P 2 ^ 0 ^ 3 > 4 N o t e t h a t a re i n c o r P o r a t e s Properties of K 1 k

preserved under f to deduces that some vertex of degree k will always be present

Figure 3 - 6 1 shows M A X - K * 1 operating on a graph G « G and a graph G * G for

k = 4.

On a graph with maximum degree k, MAX-K deletes isolated vertices and

reduces the degree of vertices only of degree no larger than k, preserving a single

*-+
PALSB

5
- 1 .Figure 3-61: MAX-4 in Operation

degree k vertex until only K1 k remains. If a graph has a vertex z of degree

greater than k, MAX-K"1 cannot delete z or even reduce its degree, and the graph

will never be isomorphic to K1R. If a graph has all vertices of degree less than k,

no vertex degree will ever increase under MAX-K"1 and isomorphism to K will

never occur Thus MAX-K"1 is correct and MAX-K is complete.

3.7.18. Pinwheels on Hubs of Size h

A pinwheei Wh r is a graph in which, for r £ 3
h r

V s

E = {v.v. | i * j , i,j * 1,2,.~,h} u {w.w j+1 | i = 1,2,~,r-1} u

{ w ^ } u {v.w. | i « i ,2wh; j - 1,2,^,r}

that is, a pinwheei is composed of a rim (C) and a complete graph (the
w 1 w 2~ W r

hub) on v ,v2_,v . Each vertex on the rim is adjacent to every hub vertex. A

wheel is a special case of a pinwheei, where h = 1. A cycle may be thought of as

a special case of a pinwheei where h = 0. Several examples of pinwheels appear

P = 5

Figure 3-62: Some Pinwheels

in Figure 3-62 The R-property PINWHEEL is
(Aw Aw A v Sxvy)#(Wk,3) W h e r e d i s t i n C t x 'Y ' v rV- ' V k 6 V, v * V, xy € E,

d(x) * k + 2, d(y» = k + 2, d(v.) i max, i = 1,2,_k

The seed graph is the smallest possible pinwheel on a hub of size k, one with a

triangular rim Figure 3-63 shows the iterative steps in a sample run of PINWHEEL

for k = 4. Pinwheels are generated by gradually increasing the rim The floor for

pinwheeis on hubs of size k is <P2 ,LQ,I5>, because (W k 3) is not precisely

describabie in any of our lower languages.

PINWHEEL is correct; it replaces any rim edge with a chain of two edges,

connecting the new vertex v to each vertex in the hub. The inverse is computed

by:

f"1 . = (A A ...A S
W 1

xvy

= DD

2

W k
D

v vy xv

W k

Wk-f
A D

xy vv

xvy

.A"1

W 1

D
k V v k - 1 vv

125

pre

Figure 3-63: PINWHER. in Operation

distinct x,y,v r v 2 ^ v k « V, v * V, xy s E,

d(x) = k + 2. d(y) = k + 2, cKv.) = max, i = 1,2,.«,k

a~1 « distinct x,y,v,vrv2,...,vk 6 V, xy 0 E, xv,vy e E,

d(x) = k + 2, d(y) = k + 2, cKv) « k + 2,

cKv.) s max, i « 1,2,̂ .,k

The floor remains constant Figure 3 -64 shows PINWHEEL""1 operating on a graph

G • Gp and a graph G * G for k = 3.

On a pinwheel of k hubs, PINWHEEL*1 contracts the rim until the graph is

isomorphic to Wk3« On a graph which is not a pinwheel on k hubs, any vertices of

degree other than k + 2 or max will remain untouched, with the pinwheeMike

portions collapsing into W k 2 . An inadequate (incomplete) hub will remain so and

never become isomorphic to W k 3 . Thus PINWHEEL""1 is correct and PINWHEEL is

complete.

- 1 .Figure 3-64: PINWHEEL ' in Operation

3.7.19, Graphs with K Components

If for every pair of vertices x,y s v there exists a path in E between them,

the graph G = <V,E> is connected. A graph G' = <V',E> is a subgraph of the graph

G = <V,E> if and only if V S V and E S E A maximal connected subgraph of G is

a connected component of G (or merely a component). Any graph G may be

partitioned into its connected components < v
r

s
1

> ' < v
2 ' S 2 > ' w ' < V k ' S k > s u c h t h a t

G s <uk
 # V , uk

 4 S>

where the V.'s partition V and the S.'s partition E We then say that there are k

components in G Several examples of graphs with k = 3 components appear in

Figure 3-65. The R-property K-COMPONENTS is

(B + (A + A A ...A + A A
wz xy xv xv- xv xy xv ...A)F)*(£)

^ xv xyv ...v k...v

where w e V, z * V

distinct x,vrv2,_,vt 6 V, y si V, d(x) > 0f xv. e E. i== 1.2, t

Recall that Ek is the edgeless graph on k vertices. There are two options. The

first is a simple branch from vertex w. The second option begins when assigning x's

i <£./

Figure 3-65: Some Graphs with Three Components

adjacency to v ,v2,...,v to y instead K-COMPONENTS fragments vertex x into

vertices x and y. Then K-COMPONENTS either connects x and y or permits them to

both be adjacent to v r v vt/ or both. Figure 3 -66 shows the iterative steps in a

sample run of K-COMPONENTS for k « 2.

5 6
Figure 3-66: • 2-C0MP0NENTS in Operation

The floor for graphs with k components is <p
4<L

ln<E3>.

We now demonstrate that K-COMPONENTS is correct Let G be a connected

graph and apply one iteration of K-COMPONENTS to i t fragmenting vertex x into

vertex x and vertex y. Let v be another vertex other than x and y, in G We must

show that there exists an xv path and a yv path. Prior to fragmentation there was

an xv path xw...v. After fragmentation either xw or yw is in E, say yw. It remains

to construct an xw path. If A were part of the iteration, then xyw...v will be a

valid xv path, else there is some v. which is adjacent to both x and y, so that

xvyw...v is a valid xv path. In either case, G is connected and K-COMPONENTS is

correct

The inverse is computed by:

f~1 = (B + (A + A A ..A + A A A ...A)
wz xy xv xv_ xv xy xv xv« xv

F f1

xyvr~vt

- B"1 + F'1 (A + A A ...A + A A A ...
wz xyv ...v xy xv xv_ xv xy xv xv_

A f 1
xv t

= B"1 + F"1 (A"1 + (A A ...A f 1 + (A A A ...
wz xyv ._v xy x v . xv_ xv xy xv xv_

= B-1
 + F"1 (A-1-A"1 A" LA- 1 + A - V L

wz xyv ...v xy xv xv xv xv x v
t - 1

A-1A"1)
xv 1 xy

= D D + I (D + D D ...D + D D
z wz xy xy xv x v

t _ x v x v
t
 x v .

D D)
xv xy

a sa = w e V, z * V
distinct x,v1#v2^,vt s V, y 0 V, d(x) > 0,

xv. e E, i=1,2,~,t
i

a"1 « distinct w,z e V, wz s E d(z) = 1

distinct x , y , v r v r v t e V, d(x) > 0, d(y) > 0,

xy e E or xv.,yv. e E , i = l,2,...ft

The floor remains constant (Although "or" is not in 2y an equivalent more complex

notation in Z3 can convey the same list of possible bindings.) Figure 3-67 shows

K-COMPONENTS"1 operating on a graph G e G and a graph G * G for k = 1.

On any graph, K-COMPONENTS"1 merges vertices which are adjacent or have a

common neighbor, until each component is contracted into a single isolated vertex.

FALSE
6

Figure 3-67: 1-COMPONENTS"1 in Operation

Thus K-COMPONENTS"1 is correct and K-COMPONENTS is complete.

A graph is connected if it consists of a single connected component Thus

connectedness is an R-property, a special case of K-COMPONENTS, for k = 1:

((A + A A _A + A A A ...A)F)*(KJ

where distinct x,v rv2 ,_,v t e V, y * V, d(x) > 0, xv. « E, i= 1.2 t

We will see another formulation for connectedness later in this chapter

3,7.20. Regular Graphs

If every vertex of a graph is of the same fixed degree k, the graph is said to

be k-regular or simply regular. Several examples of regular graphs appear in

Figure 3-68 for varying k values. This property must deal with k even and k odd

in separate algorithms. To simplify the notation we introduce some new composite

operators, EM , OM1 , OM2

OM , CM and PR
VV , ^ «

1 k+1

k=3

k=4

Figure 3-68: Some Regular Graphs

EM introduces an even degree vertex x while maintaining the degree of

every vertex to which it is adjacent EM^

vertices, and adds k new edges to x, i.e.,

deletes k/2 edges among k distinct
1""vk

EM = A ...A D .-D
X V1 xvk V 2 V i \ x

OM introduces two odd degree vertices v and w while
ww 1 . . . v k + l w r .w k . 1

maintaining the degree of every vertex to which they become adjacent There are

two ways this can be dona OM1 deletes (k-1)/2 edges among
w " v i - V i w i - w n - i

k-1 distinct vertices for each of v and w and adds k-1 edges to each of v and w

plus the edge vw. OM2 deletes (k+1)/2 edges for v among k+1
vwv r . .v k + 1 w 1 ™w k _ 1

vertices, permitting exactly one vertex (v) to repeat, deletes (k-1)/2 edges among

k-1 distinct vertices for w, and "gives" the adjacency of v k + 1 to w also. Thus we

have:
OM1 A ...A D ...D A ...A

VV1 Vvk-1 V1V2 V 2 V 1 " " w i w 2
A A A

v w v) A
w k - 2 w k - 1 v w

OM2 = A ...A D ...D A
v w v v w r . . w k _ 1 vv, w k V l v 2 v k v k + 1 w w ,

D A A A
k-2 k-1 k+1

OM = OM1 + OM 2

^ V ^ V """Vi"!^-! v w v r " \+ i w i - w k - i

CM adds an entire copy of IC . on v v. J_. to the graph, i.e.,
V ...V, . rT k+1 1 k+1 9 —r

CM = A A ...A A ...A ~A A ...A
VVi V1V2 V1V3 V1vk V2V3 V j V k + 1 V1 vk+1

CM adds k vertices of degree k and ik+Dk/2 edges to the graph, without
v 1 m V k

changing the degrees of any previously existing vertices.

FR "fractures" the degree k vertex v1 into a set of k vertices, v ...,v
T" k

which form among themselves a complete K subgraph. Each vertex assumes one

of the adjacencies previously assigned to v r i.e.. if the neighbors of v1 were

x1—xfe, then

FR = A D A D .-A D CM
V v k V 2 - V1X2 V 3 V1X3 V k V k V1~vk

Also for notational convenience we define the inverses:

EM"1 = D A -A D .-D
xv,-:vk x v k_ 1v k V i v 2 xvk xv,

(OM1 f 1 = D D D A ...A D
^rVrrVi w v ™ w k - 2 w k - i W1W2 " " V i

DA ^A D ...D
^ 1 \-2vk-1 V1V2 V i W1

(OM2 f ' » D D D A _.A D
VWV.^V. t , W . _ W . , W V WV. . . W, _W. , W,W_ WW, ,1 k+1 1 k-1 k+1 k-2 k-1 1 2 k-1

DA ™A D ...D
' """1 V k + i V 2 wk v v i

OM" 1 * (OM1)"1) +

" " V r V
(OM2

v

CM" 1 = D .-D D ...D
V" vk+1 vk+1 V1 V k + 1 V1V2,

F R " 1 = C M " 1 A D A D -AD
V v k V1~vk V1xk V k V1xk-1 v k-1 x k-1 V1X2 V2X2

Now the R-property for EVEN-REGULAR is

(EM + A A D CM D + FR)*(Q^.) where
x v r v k y2q y i P ,^2 y ^ y ^ , pq z ^ k+1

distinct vyv2 vk m V, x

distinct p,q e V, distinct

V, • E, i=1,2 k/2

V, pq e E

distinct e V, distinct z2,z3,...,zk 0 V, z ^ . s E, i

The seed set Qk+1 requires some explanation. Let K J + 1 , Kjf+1'™'K£

copies of a complete graph on k+1 vertices. Take

1,2 k

1 be t distinct

in other words, each element of Qk+1 is a t component graph, composed of t

disjoint copies of K
fc+r

Clearly Kk+1 e Q R + r As EVEN-REGULAR iterates on G,

the number of connected components may or may not reduce, depending upon

whether or not the v.'s lie in the same component Figure 3-69 shows the iterative

steps in a sample run of EVEN-REGULAR for k = 4.

Figure 3-69: EVEN-REGULAR in Operation for k = 4

The edges to be used for the next iteration appear dotted in the figure. The floor

for k-regular graphs with k even is <P
2'LO'^2>* E V E N ~ R E G U L A R h a s three options.

The first adds vertex x, replacing k/2 edges with k edges. Each affected vertex v.

loses one edge and gains another, leaving d(v.) unchanged The new vertex x is

constructed to have d(x) = k. The second option deletes an edge between two old

vertices (p and q), adds a copy of Kk+1. deletes an edge from the copy (y ^) and

connects the copy to the original graph with two edges (y ^ and y_q), restoring the

degree of all four vertices to k. In total, k+1 new vertices and (k+1)k/2 new edges

are added to the graph. The third option fragments a vertex (z,) while maintaining

the degrees of its neighbors. The vertices in the fragmentation each have degree k

(k-1 edges among each other and one "external" edge to a previous neighbor of

z^. There are k-1 new vertices created, each of degree k. Thus EVEN-REGULAR is

correct

The inverse is computed by:

f"1 = (EM + A A D CM D +
xv r..vk y2q y l P y ^ y ^ y ^ pq

FR f 1

• EM" 1 + (A A D CM D f 1

xvi~vk y2q V V 2 y y pq

= EM"1 + A CM A D D +
X V ~ \ pq y y y y y P y q

" 1

A CM A D D
X V 1 ~ \ p q y1" yk-H y1y2 y 1 P y 2 q

FR
*i~*k

apre S d i s t i n c t vrV2'~'Vk S V / X * V / V2i-1V2i S E '

i=1,2._.,k/2, d(v.) » k, j • 1,2,.-.k

distinct p,q s V, distinct y r y 2 , ~ . y k + 1 « V, pq e E.

d(p> = k, d(q) = k

distinct x r x 2 ,_ ,x k < z 1 « V, distinct z2,z3,...,zk * V,

a" 1 = distinct x,vrv2>.»,vk a V, xv. • E, i= 1.2. k.

V2i - i v2i * E ' i = 1 ' 2 -~ ' k / 2 - d (x) = k ' d(vi> * k> i=1^2 k

distinct p . q . y r y r . . y J l + 1 • V, pq * V. y.y. s E, d«y.) = k,

i = 1.2^.,k+l. j = 1,2,™.k+1 except y^2
:

y,p, y 2q s E

distinct x.,z. • V, x.z. « E. d(x.) « k, d(z.) = k, i = 1,2wk;

x , z . « E, j = 2,3,™,k; z rs s E, r,s = 1,2,...,k

G and a graph G G for k = 2. The edges to be used for the next

The floor shifts to <P
2 'LQ'23>. Rgure 3-70 shows EVEN-REGULAR"1 operating on

a graph G

iteration appear dotted in the figure. Any vertex of degree other than k will be

unmodifiable and isomorphism will eventually fail in a graph containing such a vertex.

Under the first option, EVEN-REGULAR"1 removes a degree k vertex x and inserts

k/2 edges maintaining the regularity of the v.'s, until Kk+1 is reached in each

connected component Under the second option, a copy of K -xy (the complete

graph on k+1 vertices missing a single edge) attached to two non-adjacent vertices

(p and q) is deleted, removing k+1 vertices of degree k without changing the degree

of any other vertex in the graph. Under the third option a copy of Kfc, each of

whose vertices has one different neighbor not in Kk, is replaced with a single

vertex (z^ of degree k vyithout changing the degree of any other vertex in the

graph. EVEN-REGULAR"1 is clearly correct for k = 2 (the last two options are

instances of edge subdivisions) and we believe it to be correct for k > 2, although

a formal proof will be offered elsewhere. At this writing no G

shown inaccessible and its behavior on G

G has been

6 is correct so we will postulate

' 1EVEN-REGULAR to be correct and thus EVEN-REGULAR to be complete.

fx
• » •

FALSB
4 - 1Figure 3-70: EVEN-REGULAR ' in Operation for k = 2

The R-property for ODD-REGULAR is

(OM
y 2 q

CM FR

(Qk+1) where distinct v,w « V, distinct vrv2,...,vk s v.

distinct w , w , _ w . V ' V2i-iV2i' W2j-1W2jI 4. IV— I £.1— I C\ £.}— I ^.J

i=1,2.....(k+1)/2; j = 1,2,....(k-1)/2

distinct p,q s V, distinct y ry2 '~'Vk+1
 g V, pq s E

distinct x r x 2 xk«z1 • V, distinct z2,Zy~,zk « V, z ^ . • £ i = 1,2,_.,k

ODD-REGULAR appends two vertices at a time to G because an odd regular graph

must have n evea Figure 3-71 shows the iterative steps in a sample run of

ODD-REGULAR for k = 5.

Figure 3-71: ODD-REGULAR in Operation for k = 5

The edges to be used for the next iteration appear dotted in the figure and are

labelled v or w indicating their relationship to the new vertices. The floor for

k-regular graphs with k odd is also <P
2'LQ'^2>* ODD-REGULAR has three options.

The first maintains the degree of every vertex in G while appending two vertices of

odd degree. The new vertices v and w are constructed to have d(v) = d(w) =

k. The second and third options are identical to those for EVEN-REGULAR and

maintain the degree of all previously-existing vertices while adding k+1 or k-1

vertices, respectively. Thus ODD-REGULAR is correct

The inverse is computed by:

f"1 = (OM

A A D CM D + FR f
yq yP yy y y PQ * *

= OM"1

y,y2

(A A D CM D)"1 + FR"1

V y P y y y v Pq *
A D CM D)

V y 1 P y1y2 y1-vk+1 Pq

OM"1

v

A CM A D D + FR"1

p q y r . . y k + 1 y , y 2 y ,P y 2 q v * k

a = d is t inc t v , w « V, d i s t i n c t v , ,v_ , . . . ,v . _,. s v,
pre 1 2 k+1

distinct x rx r»,xk_>1 s V, d(v.) * d(x.) =k,

i = 1,2.-..k; distinct V j . , ^ ^ , w 2 ._ 1w 2 j s

distinct p,q e v, distinct y ry2»-'yk + 1 * V, pq s

d(p) = k, d(q) = k

distinct x r x r _,x k < 2 1 s V, distinct z2,z2,.^zk * V,

2 ^ . e E, i = 1,2^k, dJz^ = k

a"1 = distinct v.v^v^...^ s V, distinct w,w rw2 ,«,wk_1 s v

vw,w,ww. « E, i=1.2,~,k+1; j ~ 1,2,™,k-1

V2i-1V2i'W2i-1W2j * E' i=1.2_(k+1)/2;

j = 1,2_,(k-1)/2. dM = k, d(w) =k, d(v.) = k,

i= 1,2 k-t-1. d<w.) » k, i= T ,2, k-1

distinct p,q,yry2,~,yk+1 e V, pq S V, y.y. 6 E. d(y.) = k,

i = 1,2._,k+1, j = 1,2.._,k+1 except y ^ ;

y i p , y2q s E

distinct x.,z. « V, x.z. •• E, d(x.) = k, d(z.) = k, i = 1,2,...,k;

x , ! i E j = 2.3,...,k; zrs s E, r,s = 1,2,...,k

The floor shifts to < P
2 ' L Q ' E 3 > - Pigure 3 -72 shows ODD-REGULAR"1 operating on

a graph G s G and a graph G « G for k = 3. The edges to be used in the next

137

AU AK

FALSE
4

Figure 3-72: ODD-REGULAR"1 in Operation for k = 3

iteration appear dotted Any vertex of degree other than k will be unmodifiable and

isomorphism will eventually fail in a graph containing such a vertex Under the first

option, ODD-REGULAR""1 removes pairs of degree k vertices v and w and replaces

2k-1 edges with k-1 edges, maintaining the regularity of the v's and the w.'s, until

K,k+ l is reached in each connected component The second and third options

behave as they did in EVEN-REGULAR"1, maintaining the degree of all other vertices

while deleting k+1 or k-1 vertices, respectively. ODD-REGULAR""1 is clearly

correct for G * G and has been confirmed correct for k « 3 against [Statman

82] . We believe it to be correct for k > 3 although a formal proof will be

offered elsewhere. At this writing no G « G has been shown inaccessible, and we

will postulate ODD-REGULAR"1 to be correct and thus ODD-REGULAR to be

complete.

3.7.21. Connected Graphs

A graph G = <V,E> is connected if for every pair of vertices in V there is a

path constructabie between them using only edges in E Several examples of

connected graphs appear in Figure 3-73.

Figure 3*73: Some Connected Graphs

There are many ways to write an R-property for connectivity. One reasonably

obvious form is

B* (KJ where x e V
Xy I

We prefer a more complex statement which will relate connectivity to other

properties. Our formulation for the R-property CONNECTED is

«N + A U N + A)A F)*(KJ
xv xv xy xyv ...v 1

where distinct x,v. e V, y 0 V, xv. e E, 0 £ r £ d(x)

Figure 3-74 shows the iterative steps in a sample run of CONNECTED. The floor

is <P4,Lr25>.

An iteration of CONNECTED begins by fragmenting vertex x into vertices x and

y and forces y adjacent to x. The iteration requires y to assume r (2 0) of x's

adjacencies to the v.'s and permits x to retain any or all of those adjacencies as

* •

^p_ ^p ^p qp

Figure 3-74: CONNECTED in Operation

well. Because x retains all its previous adjacencies through E or through the edge

xy, and because each newly-introduced vertex y has access to the remainder of the

graph via the edge xy to its originating vertex x, CONNECTED is correct

The inverse CONNECTED""1 is computed by:

f"1 = ((N + Ax U N + A)A F)"1

1 r 1"" r

* F~1 A~1(N + A f \..(N + A f 1
xyv«...v xy xv xv.

1 r r 1
= I D (N + D UN + D)xy xy xv xv

a = a = distinct x,v. « V, y tf V, xv. « E. 0 3 r £ d(x)

a - 1 = x,y,v. s V, xy,yv,/w,yv e E, 0 £ r£ d(x)

The floor remains constant Figure 3-75 shows CONNECTED""1 operating on a

graph G « G and a graph G * G . CONNECTED"1 collapses each connected

component of a graph into a single vertex. If G is connected, the result will be K

and success; if G is not connected the result will be a set of at least two isolated

vertices, which will fail. Thus CONNECTED*1 is correct and CONNECTED is

complete

3.7.22. Biconnected Graphs

A graph G s <V,E> is biconnected if there is no vertex in V whose deletion

(with all its associated edges) disconnects the graph. Several examples of

biconnected graphs appear in Figure 3-76. There are several ways to write an

R-property for biconnectivity. We choose one closely related to the formulation

for connectivity. The R-property BICONNECTED is

- 1 .Figure 3-75: CONNECTED" in Operation

Figure 3-76: Some Biconnected Graphs

«N + A UN + A)A F + (N + A # UN + A J A , A
xv4 xv xy xyv4...v wt« wt wt wz

1 r 1 r 1 s s+1

where distinct x,v. e V, y M V, xv. e E, 1 < r ^ d(x)-1

distinct w,t e V, z i V, wt. € E, s = d(w)-1

141

Figure 3-77: BICONNECTED in Operation

Figure 3-77 shows the iterative steps in a sample run of BICONNECTED. The

floors are <P4X2,E5> and <P4J- ln,E5>.

An iteration of BICONNECTED behaves exactly like an iteration of CONNECTED,

except that the new vertex must receive at least one of the old vertex's neighbors

in the fragmentation, and the old vertex must retain at least one of its neighbors.

(This is indicated by BICONNECTED's two options; the first leaves some neighbor of

x untouched while the second shares a neighbor t s + 1 between w and z.) A graph

with n > 2 is biconnected if and only if every pair of vertices lie on a common

cycle After an iteration of BICONNECTED, if edge xv. is not present xyv. may be

substituted to produce ail the previously existing cycles. Thus the graph will still be

biconnected and BICONNECTED is correct

" 1 iThe inverse BICONNECTED"1 is computed similarly to that for CONNECTED:

pre

«N + A U N + A)A F
XV

(N + A „)A A F
wt wt wz

xv xy xyv. .«v

. - 1

+ (N + A
wt.

((N + A U N + A)A F f 1 + <(N + A)..
xv xv xy xyv ...v wt

(N + A >A . A F
wt wt wz

- 1

= I D (N + D U N + D) + I D D (N + D ^)...xy xy xv xv wz wz wt wt

= distinct x,v. « V, y * V, xv. 6 E, 1 ^ r ^ d(x) - 1,

d(x) > 1, cHv.) > 1, i=1,2,_r

distinct w,t. e V, z f& V, w t e E, s = d(w)-1, d(w) > 1,

a""1 = distinct x,y,v. e V, xy,yv1 yvr « E, 1 S r,

d(x) > 1, d(y) > 1, d(v.) > 1,

j {pv. | p e V, pv. 6 E, p # x, p * y} | > 0,

i=l,2 r

distinct w,z,t s V, wz,zt,,.~,zt ^ , w t . . e E, d(w) > 1,
I 1 S+ 1 S+ 1

d(z) > 1, d(t) > 1, s = d(w> - 1,
i

| {pt. | p « V, pt. « E, p # x, p # y} | > 0, is1,2ws+1

The floor remains constant The inversion procedure has noted that the degree of

each v. (t.) which y (z) acquires will be at least two. and each v. (t.) will be adjacent

to some vertex other than x and y (w and z). Figure 3-78 shows BICONNECTED^1

operating on a graph G « G and a graph G ^ G . BICONNECTED*1 collapses each

block of a graph into K~ A disconnected graph will continue to reduce to a set of

disjoint chains, a connected but not biconnected graph to a chain of length two, and

a biconnected graph to K^. Thus BICONNECTED""1 is correct and BICONNECTED is

completa

3.7.23. k-Connected Graphs

A graph G = <V,E> is /(-connected if there is no set of k-1 vertices in V

whose deletion (with all their associated edges) disconnects the graph. Two

examples of 5-connected graphs appear in Figure 3-79. Note that 1-connected is

equivalent to connected and that 2-connected is equivalent to biconnected The

somewhat awkward constructions of the two previous sections are now seen to be

special cases of the R-property K-CONNECTED:

((N + A U N + A)A F + (N + A , U N + A ^)A #
X V 1 x v r x y x y v 1~ v r w t 1 " W i wts-k+2

where distinct x,v. e V, y I V, xv.e E, k-1 £ r < d(x) - k+1

distinct w,t e V, 2 * V, wt.e E, s = d(w) - k+1

Figure 3-80 shows the iterative steps in a sample run of K-CONNECTED for k = 4.

The floor for K-CONNECTED is <P4J-1n.Z5>.

""1 iFigure 3-78: BICONNECTED""1 in Operation

An iteration of K-CONNECTED behaves exactly like an iteration of

BICONNECTED, except that the new vertex must receive at least k-1 of the old

vertex's neighbors in the fragmentation, and the old vertex must retain at least k-1

of its neighbors. The removal of k-1 vertices from Kk+1 leaves K2. Thus the seed

1 4 4

Figure 3-79: Some 5-Connected Graphs

Figure 3-80: 4-CONNECTED in Operation

is k-connected Suppose that G is a k-connected graph but a single iteration of

K-CONNECTED on G results in G which is not k-connected Then G' must contain

k-1 vertices w r_,w k_ (| / whose deletion will disconnect G'. Certainly the new vertex

is among them or the same vertices would have disconnected G Thus there are

vertices t and u in G' which have no path between them once the new vertex is

removed The deletion of the old vertex in G should have had the same effect,

however. Thus our supposition is incorrect G is k-connected and K-CONNECTED

is correct

f = «N + A

r1

UN +
1

The inverse K-CONNECTED""1 is computed similarly to that for BICONNECTED:
- 1

<)A F
xv xy xyv. ...v

r 1 r
+ (N + A

w t
N + A)A

W t
...A

s-k+3 W t "s+1

wz wzt«...t . „

((N + A LIN + A)A F
xv xv xy xyv ...v

+ «N + A t UN + A f)A
"n w t w ts-k+3

wz

I D (N + D)...(N + D) +
xy xy xv xv

I D D ...D (N + D
wz wz wt wt

a r e - distinct x,v. e V, y * V, xv.e E,

k-1 £ r £ d(x) - k+1# cHx) > k -1 , d(v.) > k-1

distinct w,t 6 V, z 9k V, wt.s E, s = d(w> - k+1,

ettw) > k -1 . d(t.) > k-1

a""1 = distinct x,y,v. 6 V, xy, y v ^ y v « E,

k-1 ^ r < d(x) - k + 1 , d(x) > k -1 , d(y) > k -1 ,

d(v.) > k -1 ,

| {pv. | p • £ pv. • E p # x, p # y} | > k-2.

distinct w,z,t e V, wz, z t ^ z t ,wt . - w w t . . • E,

s = d(w> - k + 1 , d(w) > k -1 . cKz) > k - 1 .

| {pt | p • £ pt • £ p # w, p # z} | > k - Z

cKt) > k - 1 , i= 1,2 s

The floor remains constant Now the inversion procedure has noted that the degree

of each v. (t.) is at least k, and that each v (t.) will be adjacent to at least k-1

vertices other than x and y (w and z). Figure 3-81 shows K-CONNECTED~1

operating on a graph G « G and a graph G * G for k = 3. A graph is

k-connected if and only if there exist at least k edge-disjoint paths between any

two vertices. K-CONNECTED~1 collapses adjacent vertices x and y of degree at

least k -1 ; any path available through x or y will now be available through the

resulting merged x. In particular at most one xq-path (for any q e V) used the edge

xy and that path after the merger will be available directly from x. Thus

K-CONNECTED~1 performs properly on G • G and will eventually reduce it to

If G * G , there are k-1 points which disconnect it This ability to

TRU

4

•£—•
4^W

FALSE

5

Figure 3-81: 3-CONNECTED""1 in Operation

disconnect the graph is retained under contraction (possibly resulting in even fewer

vertices capable of disconnecting the graph), and must ultimately cause failure

because contraction creates no more edge-disjoint paths than previously existed

Thus K-CONNECTED""1 is correct and K-CONNECTED is complete.

147

CHAPTER 4

ADVANCED TOPICS IN RECURSIVE LANGUAGES

The essential characteristic of reasoning by recurrence is that it

contains, condensed, so to speak, in a single formula, an infinite

number of syllogisms.

—Poincare

This chapter considers an assortment of advanced topics in recursive graph

property languages. The first section extends R-properties by access to a register

and contrasts Z- w i t h I3 - T^s second section explores loop marking and contrasts

£3 with ZA- The third section discusses loop labelling and demonstrates properties

available with it Subsequent sections are devoted to graphs with more elaborate

labels, subsumption, merger and NP-completeness.

4.1* Extended Recursive Languages

By enlarging the input and slightly modifying the interpretation, this section

extends R-properties to R+-properties, motivated by the calculation of n and m. An

application to the selector languages Z2
 a n d £3 is givea

Imagine an algorithm, similar to the ones we used for R-properties, with a

register which tallies the number of algorithmic iterations and outputs both the

register value and the graph. Such algorithms will be for properties associated with

an integer value More formally, we define an R*-property as the following

semantic interpretation of the triple p = <f,S,a> as a recursive algorithm, called on

(G,0) for any graph G described by S:

p(G,k) = (G,k) if enough
s p(G\k+1) where G' = f(g) using elements from G selected

.148

by a in order to apply f

At the end of each iteration, the graph G has the R+-property with value k. Note

that k is incidental to p. The definition of an R+-property is independent of the

value of k.

4.1.1. Calculating the Number of Vertices and Edges in a Graph

As a first example of an R+-property, we offer VERTICES to construct graphs

with a known number of vertices. In section 3.7.14 we had K-VERTICES which

operated for fixed k. Now we define VERTICES as:

(A* A)*(<*,d>,0) where distinct x,y e V, z £ V
xy z T r 7

Figure 4 - 1 shows the iterative steps in a sample run of VERTICES.

k - n k=1 k=2 k = 3 k=4

•

Figure 4-1: VERTICES in Operation

Note that on each iteration any number of edges (including zeroi may be added and

exactly one vertex must be added. The floor for VERTICES is <P1.L1.Z1>.

Similarly we can define the R+-property EDGES to construct graphs with a

known number of edges. In section 3.7.15 we had K-EDGES which operated for

fixed k. Now we define EDGES as:

(A A*)*flCrO) where distinct y,z s V, yz « E

Figure 4 - 2 shows the iterative steps in a sample run of. EDGES. Note that on each

iteration any number of vertices may be added and exactly one edge must be added

The floor for EDGES is <P 1X rZ 1> also.

149

k = 2

Figure 4-2: EDGES in Operation

Now we require an inverse for an R*-property. This inverse should be a

tester which, given an input graph G and register value k. attempts to restore G to

a seed graph in S and k to zero, counting its iterations in the register. More

formally, a terminal R+-expression p = <f~1,S,a~1> is said to be the inverse of

another R*-expression p = <f,S,a> if and only if the testing semantic interpretation

returns (TRUEO) on all outputs of the generator which is the R* -property defined

by p, and (FALSE,k) on all other graphs. The testing semantic interpretation of p"1

= <f~1,S,a~1> is the following recursive algorithm:

p~1(G,k) » (TRUE,O) if k = 0 and G is described by S

« r 1 (G\k-1) where G = f"1(G) using

elements from G selected by a""1 in order to apply f~1

= (FALSEk) if G is not described by S and

a ' 1 is not applicable

= (FALSEk) if G is not described by S and

k = 0

= (FALSER) if G is described by S and k # 0

First p~1 checks to see if G has returned to S and k is zero, in which case the

algorithm terminates, returning (TRUE,0). Otherwise, p~1 attempts to iterate by

finding suitable vertices and edges for £~1. If successful termination and iteration

are both impossible, p~1 terminates, returning (FALSEk). Failure is caused by G in S

with a non-zero k, by G not in S with a zero k, or by G not in S with an

unmatchable a"1.

The automated calculation of an inverse for the sample R+-properties we have

shown is complicated by their (f g) format In our attempt to return to S, we may

not iterate f enough, masking what should be successful results. Thus we will

define an extreme superscript e, in order to force the most iterations of f~1

possible, i.e., (f) will be interpreted as "do f as many times as a will permit"

This will avoid under-iterating f"1. We therefore add a new rule to those already

existing for R-property inversion:

RULE 6

The inverse of a function occurring an unknown number of times is as many

iterations as possible of its inverse. (f*)~1 = (f~1)e

We construct inverses now for VERTICES and EDGES. For VERTICES"1 we

have:

f"V =<A* A) " 1

xy z

z xy

= A-1(A"V
z xy

z xy

a » distinct x,y s V, z M V, xy * E

a"1 = distinct x,y,z m V, xy € E, cMx) = 0

The floor shifts to < p
2 ' !-r^3 : > ' Figure 4 - 3 shows VERTICES"1 operating on two

graphs, one with a correct k value and one with an incorrect k value.

For EDGES"

" p r .

1 we have:

- (AyzAx>~ 1

= « A # x r 1 A ; 1

= (A"1)« A"1

x yz

= DeD
x yz

= distinct y,z V, x * V. yz « E

a~' = distinct x,y,z s V, yz • E. d(x) = 0

Again the floor shifts to <P_,Lrr3>. Figure 4 - 4 shows EDGES" operating on two

graphs, one with a correct k value and one with an incorrect k value.

K = 4

K = 1

TPUE.O

A. . . PALSS.1

2 3 4
:-3 K=2

 K =

-i .
Figure 4-3: VERTICES in Operation

K=4 K = 3 K = 2 K=1

Figure 4-4: EDGES'1 in Operation

4.1.2. Calculating the Degree of a Vertex

K=0

TRUE.O
6

FALSE, 1

The R+-property "has vertex v of degree k" is the concept used to extend

to E3< This property, DEGREE, may be stated as:

(A (A + A)T(<{v},$>,0) where distinct v,w,y,z s V, x « V, vw B E
vw x yj

Figure 4 - 5 shows the iterative steps in a sample run of DEGREE Note that on

each iteration any number of vertices and edges may be added and exactly one

K = J

Figure 4-5: DEGREE in Operation

edge must involve vertex v. The floor for DEGREE is < P r L r Z 2
> - Th® inverse.

DEGREE"1, is computed by:

f~1 = (A (A + A)*f1

vw x yz

8 ((A + A)*f 1A~1
x yz vw

s ((A + A f V A " 1

X- yz vw

x yz vw

» (D + D)eD
x yz vw

0 = 0 as distinct v,w,y,z € V, x * V, yz,vw 2 E

a~1 as distinct x,v,w,y,z 6 V, yz,vw e E, d(x) = 0

The floor shifts to <P<5,L1,E^>. Figure 4 - 6 shows DEGREE^1 operating on two

graphs, one with a correct k value and one with an incorrect k value

Clearly any o e V - V references the degree of a vertex v. Such a

procedure may be thought of as calling DEGREE^1 on (G,n) and interpreting the

output (FALSER) to mean that v had degree n-k. Of course such calls could be

inefficient; it might be more economical to use 0(n) (one register for each vertex)

storage and calculate the degree of all vertices in 0(n + m) iterations. As an

R-property in <PX,Z3
> iterates, it could update the degrees of the vertices at 0(i)

cost where i is "the number of iterations. In the worst case, 0(m) = 0(n2) and 0(m

+ n) as 0(n2); in the best case, m = 0 and 0(m + n) = 0(n). Thus an R-property

whose floor requires £3 rather than £2 represents an additional complexity of

between O(ni) and O(n2i) for a graph on n vertices requiring i iterations for

m.K
PALSE,1

4

Figure 4-6: DEGREE""1 in Operation

generation or testing. The value of i is property-dependent

4.2. The Loop as Marker

R*-properties were one way of extending our recursive formulation. In this

section we explore a different extension, a marking technique using loops, motivated

by the calculation of max. A comparison of Z3 and E4 is made.

4.2.1. Calculating the Maximum Vertex Degree in a Graph

All work in this segment is for directed graphs only. In order to apply this

algorithm to an undirected graph G, transform every undirected edge between x and

y into two directed edges, xy and yx. Any a m £4 - £3 references max, the

maximum vertex degree in the graph. In 3.7.17 we had MAX-K which operated for

fixed k. Now we define the R* -property MAX as:

<A*(D A)nL)*(E 0) where distinct y,z e V, yy e E, yz * E
** yy y* P

On each iteration, MAX places a loop (L) on every vertex, marking those which have

not yet had their out degrees increased Then, n times, MAX selects a vertex y

with a loop on it, adds an edge from y to some other vertex z, and removes y s

loop. (The selector operates after the application of L) Finally, MAX adds zero or

more vertices to the graph and increments k, completing a single iteration. Figure

K=0

154

K=1 K=2

Figure 4-7: MAX in Operation

4 -7 shows the iterative steps in a sample run of MAX with p = 5. After i

iterations, each of the p vertices initially in the graph will have out-degree k. Those

vertices added on the first iteration will be of out-degree k -1 , those added on the

second of out-degree k-2, and so on. The floor is <P2'^)'^2>' "*"his is o u r o n l y

algorithm in which f is dependent on the size of the graph. An alternative

formulation without loops would be more difficult to follow. We therefore permit

this construction, albeit with reservations.

We have already noted that the loops are used as uniform markers. "L" may

be interpreted as "we are going to do this to every vertex." At any intermediate

point say after (D A)l where i<n, those vertices with loops have not yet acquired

a new out-edge. Thus the loop marks the vertex in a context known to the

algorithm. Under inversion we expect loop markers to continue as adequate. The

inverse MAX"1 is computed by:

= UD A)nDa

- yz yy x

a = distinct y,z s V, x ft V, yy s E, yz 8 E

a"1 = distinct x.y.z s V, yy ft E. yz s E. d(x) = 0

By d(x) = 0, we mean both the in degree and the out-degree of x are zero. The

floor shifts to <P-,L-,£,,>. Figure 4 - 8 shows MAX"1 operating on two graphs, one

with a correct k value and one with an incorrect k value.
K=2 K=1 K=0

• < »

1

K- 3 Figure 4-8: MAX"1 in Operation

In MAX"1 the loops mark those vertices which have already had an out-edge

deleted until all (n) vertices have loops, at which time all loops are removed (L).

Thus the contextual significance of a loop has changed (from "needs a new

out-edge" in MAX to "has lost an out-edge" in MAX"1). What remains constant is

the loop (or absence of a loop) as a partitioning of the vertices into "already

processed" and "to be processed". Any application of loops to the vertices of G

creates a partition on V. Such a partition may be exploited in various ways. When

ail vertices are looped, and then gradually unlooped in a single iteration, we will say

that we are loop marking.

An algorithm using a e E4 - E3 clearly references max. Such a procedure

may be thought of as calling MAX"1 on (G,n) and interpreting the output (FALSE,k)

to mean that max - n-k+1. Of course such calls could be inefficient; it might be

more economical to use 0(n) storage to maintain the number of vertices of each

degree. For an initial set-up cost of 0(m) time, the value of max will be available

as long as the algorithm executes. Z4 therefore represents an additional complexity

of 0(m + n) over Z3-

4.3. The Loop as Label

Loops can be used as other than markers. This section demonstrates another

extension to our recursive formulation, the use of loops as labels. Motivation is

provided from bipartite graphs, and examples of other loop-labelled properties are

provided

4.3.1. Bipartite Graphs

Several examples of bipartite graphs appear in Figure 4-9.

Figure 4*9: Some Bipartite Graphs

The R-property BIPARTITE is:

(A + A A + A)*(<{1,2},{11}>) where y,z e V, x * V,
x xx x y* r

|{yy,zz} n E| « 1

Figure 4 -10 shows the iterative steps in a sample run of BIPARTITE In L ,

<{1,2} , {11}> is characterized by E n i = o and E n 1 # 0, but so is any edgeless

graph with some loops. In L2 the seed is uniquely characterized as:

E n 1 = 0

E n i ~ E n 1

E n 1 ~ E n 1

In L the seed is uniquely characterized as E n i = 0, E n i # 0 and n = Z Thus

the floors for bipartite graphs are < p
r

I - 1 n ' 2 5 > a n d <P rL2 ,Z5>- The seed graph

makes the partition of the vertices explicit those vertices with loops are in one

t , 8

Figure 4-10: BIPARTITE in Operation

class, those vertices without loops in the other. New vertices have their class

specified (by the presence or absence of a loop) when they are added to V (Ax or

A A). An edge may only be added between a vertex with a loop and vertex

without a loop. The final output is a bipartite graph whose partition is clearly

labelled by its loops. This loop labelling is different from the loop marking

technique of the previous section. Loop marking is temporary, for uniform

processing within an iteration. Loop labelling is retained from one iteration to the

next

The inverse BIPARTITE""1 is computed by:

f~1 a (A + A A + A f 1

x xx x yz
a A~1+ (A A f 1 + A""1

x xx x yz

a A~1+ A~1A~1 + A"1

x x xx yz

= D + D D + Dx x xx yz

*„« = y,z « V, x « V, yz « E, | {yy,zz} n El = 1
pro

a"1 • x.y,z s V, yz a E, | {yy,zz} n E| * 1, d(x) < 1,

|{p|p • V, d(p)=0}| > 1,

{p|p a V, pp s E, d(p) < 1} | > 1

2 ' L
1 n ' 2 5

> and <P2.L2.E5The floors shift to < p
2 ' L

1 n ' 2 5
> and <P2.L2.E5>. Figure 4-11 shows BIPARTITE"1

operating on a graph G s G and a graph G < G . Notice that BIPARTITE'1 will not

accept just any graph when testing to see if it is bipartite. Each graph in the G

produced by BIPARTITE is loop labelled, and the only input on which BIPARTITE"1

will return 'TRUE" is a correctly loop-labelled bipartite graph. On a non-bipartite

§

Figure 4-11: BIPARTITE^1 in Operation

graph or an unlabelled bipartite graph or an incorrectly labelled bipartite graph, the

tester will return "FALSE" If we imagine all possible non-trivial loop labellings of a

graph (there are 2n^1 - 1 such labellings) the tester could perform in parallel on all

possible labellings of an unlabelled input graph in 0(m + n) time, but sequentially in

0(2n) tima We will see this potential for parallelism throughout the labelling

properties in this chapter. If labelling is required to construct a graph, then labelling

will be required to test it We suspect that properties of unlabelled graphs which

can only be implemented by labelling are intrinsically different from those which do

not require labelling. Each segment in the remainder of this section describes a

specific graph property which appears to require loop labelling.

4.3.2. Complete Bipartite Graphs

A complete bipartite graph K is a bipartite graph G = <V,E> where V is
n r n 2

partitioned into V1 and V2, JVJ » n r |V 2 | = n2 and ail possible edges are

present i.a,

E » { xy | x • V r y • V2}

Several examples of complete bipartite graphs appear in Figure 4 - 1 2 K is not
n r n 2

"complete" irr the full sense of COMPLETE because of the bipartite restriction. The

R-property COMPLETE-BIPARTITE is:

Figure 4-12: Some Complete Bipartite Graphs

(A ...A A + A ...A A A)*(<{ 1,2}.{11.12}>) where
vx . vx v wy. wy ww w

i P 1 q

distinct x. e V, v * V, x x e Ef i=1,2,...,p; \{z | x e V, xx e E} | = p

distinct y. e V, w * V, y.y. * E, i=1,2 q; | {2 | y e V, yy 0 E} | = q

Figure 4 - 1 3 shows the iterative steps in a sample run of COMPLETE-BIPARTITE

Figure 4-13: COMPLETE-BIPARTITE in Operation

The seed is described in L1 as E n 1 = 0 and E n 1 # 0, as are ail other

graphs which contain some loops and ail their non-loop edges. In L1n the seed is

described uniquely as E n 1 = 0, E n

described uniquely as

0 and n = 1, and in L2 the seed is

E n i ~ E n i ~ E f M

Thus the floors for complete bipartite graphs are < p
r

L
1 n ' 2 5

> a n d < P 1

COMPLETE-BIPARTITE uses the same loop labelling as BIPARTITE to denote the

160

partition on V. It adds all the appropriate edges to G when it adds a vertex. Thus

CO!

by:

COMPLETE-BIPARTITE is correct The inverse COMPLETE BIPARTITE"1 is computed

f~1 = (A ...A A + A ...A A A f 1

vx, vx v wy, wy ww w
1 p 1 q

= (A ..A A f 1 + (A ...A A A f 1
vx . vx v wy 4 wy ww w

I P i q

= D D ..D + D D D ^D
v vx vx, w ww wy wy,

P 1 q i
a = a = distinct x. s V, v fiS V, x.x. s E,

pre i ii

| {2 | x 6 V, xx 6 E} | = p

distinct y. s V, w * V, y.y. £ E,

| {2 | y e V, yy * E} | = q

a~ = distinct v,x. s V, xx.,vx.
! I I

s E, i=1.2 p;
| {2 | 2 6 V, 22 6 E} | = p,

|{z I z « V. zz * E} I > 1. d(v) = p

distinct w,y e V, wy. 6 E,

y.y. * E, i=1,2.~.q,

| {z | 2 e V, 22 0 E} | = q,

|{z | z • V, zz • E} | > 1, d(w) = q

Again the floors shift to <P2'Lin'^5> a n d <P2'L2'^5>* Fi9^r© 4 " 1 4 shows2'L2'^5>

COMPLETE-BIPARTITE*1 operating on a graph G ^ G and a graph G * G . On a

complete, loop-labelled bipartite graph, COMPLETE-BIPARTITE"1 will delete one

vertex at a time (preserving one looped and one unlooped vertex) until G is the

seed On a graph which is incorrectly loop-labelled, some edge will be unremovable

and the graph will eventually fail. On a graph which is correctly labelled as bipartite

but is not a complete bipartite graph, the absence of some edge necessary for

"completeness" will prevent the deletion of both vertices associated with it, and the

graph will ultimately fail. Thus COMPLETE-BIPARTITE"1 is correct and

COMPLETE-BIPARTITE is complete.

4 TRUE

PAL1

5

""1 iFigure 4-14: COMPLETE-BIPARTITE""1 in Operation

4.3.3. K-Vertex-Covered Graphs

A vertex x covers an edge yz if x is y or i Given a graph G = <V,E>, a set

of vertices A £ V is a vertex cover if for every edge yz in E either y is in A or z

is in A or both. If A is a vertex cover for G and |A| = k. G is said to be

k-vertex-cover able. If a graph G is k-vertex-coverabie, A is its vertex cover and

A is labelled, G is said to be k-vertex-covered. Several examples of

5-vertex-covered graphs appear in Figure 4-15.

^

^ ^

Figure 4-15: Some 5-Vertex-Covered Graphs

The R-property K-VERTEX-COVERED is

(A + A)*(LE) where y,z s v, y # 2, I {yy,zz} n El # 0
x yz t\

Figure 4 -16 shows the iterative steps in a sample run of K-VERTEX-COVERED

for k = 4.

• • • • » §

• . . *

Figure 4-16: 4-VERTEX-COVERED in Operation

The seed is a graph on k vertices with no edges and all possible loops, which we

have abbreviated as LER:

The set of ail LE.'s is described in l ^ as

E n i = o

and

E n 1 = o

but in order to distinguish a particular LE we require l_1n. Thus the floor for

K-VERTEX-COVERED is <P rL1n ,£5>. The loops label the vertex cover throughout

the execution of the algorithm. No loops may be added and every edge is covered

by at least one looped vertex. Thus K-VERTEX-COVERED is correct There is no

guarantee that the looped vertices fo>m a minimal cover, merely a cover

The inverse K-VERTEX-COVERED*1 is computed from:

r1 = (A + A r1

x yz

= A"1
+ A"1

x yz

= D + D
x yz

o = x « V
pre

y,z i V. y # z, yz « E | {yy.zz} n E | # 0

a"1 = x s V, xx « E. cKx) = 0

y,z e V, y # z. yz • E, | {yy,zz} n E | # 0

The floor shifts to < p
2 ' L

1 n ' 2 5
> - Figure 4-17 shows K-VERTEX-C

operating on a graph G e G and a graph G « G for k = 3.

• § • i

Aft/
THUS

8

Figure 4-17: 3-VERTEX-C0VERED~1 in Operation

Just as for BIPARTITE"1, K-VERTEX-COVERED"1 checks to see if a particular

vertex labelling is in fact a vertex cover for the graph. On a correctly indicated

cover, all edges will eventually be removed, as will all unlooped vertices, returning

the graph to LEk. On an incorrectly indicated cover some edges will remain or the

final edgeless graph will contain the wrong number of looped vertices Thus

K-VERTEX-COVERED"1 is correct and K-VERTEX-COVERED is complete.

4.3.4. Graphs with K Independent Vertices

Given a graph G = <V,E>, a set of vertices A £ V is independent if for any

x,y s A, xy £ E, i.e., no two are adjacent Several examples of graphs with 3

independent vertices appear in Figure 4-18.

Figure 4-18: Some Graphs with 3 Independent Vertices

The R-property KHNDEPENDENT is

(Ax + Ayz)*(LEk) where distinct y,z e V, | {yy,zz} n E| s 1

Figure 4 -19 shows the iterative steps in a sample run of KHNDEPENDENT for k

3.

8

I i i i s i
Figure 4-19: 3-INDEPENDENT in Operation

The seed is" again a graph on k vertices, with all possible loops and no edges. The

loops label the independent set throughout the algorithm. New, unlooped vertices

may be added Any edge may be added, as long as it is not between two looped

(independent) vertices. There is no guarantee that the looped vertices form a

maximal independent set merely an independent set

The floor for KHNDEPENDENT is < p
r L l n , E 5 > . Because no edges are ever

added between the labelled vertices, KHNDEPENDENT is correct

The inverse KHNDEPENDENT""1 is computed from:

r1 = (A + A r1

x yz
= A-V A"1

x yz

= D + D
x yz

a = x * V

a~1 = x 6 V, d(x) = 0

distinct y,z e V, yz ^ E, j {yy,zz} n E

x e V, d(x) = 0

distinct y,z s v, yz e E, | {yy,zz} n E

The floor shifts to ^ j ^ i A * R 9 u r e 4 ~ 2 0 s h o w s 2HNDEPENDENT~1 for k
2 2 operating on a graph G « G and a graph G « G . On a graph from G ail

edges and unlooped vertices will be deleted. On a graph G * G , either there are

the wrong number of loops or loops on the wrong vertices If there are

incorrectly-placed loops, some edge will have two looped endpoints and will never

be removed If there are too few or too many loops, since loops are unremovable,

the graph will never be isomorphic to LER. Thus KHNDEPENDENT""1 is correct and

KHNDEPENDENT is complete

4.4. Labeiling/Coioring Graphs

Abandoning loops for now, this section describes a substantial extension to our

recursive formulation, labelling graphs. Properties which require labels by definition

(such as coloring properties) and properties which are achievable via labels are

considered

Let G s <V,E> be a graph and let c be a function defined on V, i.e.. c(v) is

defined and unique for each v • V. Then we say that c is a labelling of G, that

i • i • 8

8

i
TRU

7

§—• t—•§

8 • • 8
PAL

6

Figure 4-20: 2-INDEPENDENT"1 in Operation

the range of c, A = {c(v) | v s V}, is the set of labels for G, and that G =

<V,E,c.A> is a labelled graph. It is important to distinguish the name of the vertex

(v) from its label (c<v». We use lower case Greek letters for labels. Vertex names

are distinct vertex labels need not be. As a matter of fact,

1 £ |A| S |V |

A primitive form of labelling is the loop, where |A| = 2, i.a, the labels are "has a

loop" or "has no loop.1' One helpful way to think about labels is to imagine them as

colors in which the vertices may be painted, one color to a vertex. There are many

graph properties which are described in terms of colors.

A labelling of G such that no two adjacent vertices have the same label is

called a coloring of G If c:V->A is a coloring and |A| = k, c is a k-coloring, and

partitions V in to k classes. A graph G is k-colorable if there exist a k-coloring

for G. A graph G is k-colored if it is k-colorable and c is a k-coloring defined on

it i.e., it is appropriately labelled

In order to represent coloring or labelling, we must extend the definition of an

R-property. Recall that an R-property p = <f,S,a> had its origin in the ordered

triple <P.LE>. We must provide first an operator to assign a label or color to a

vertex This coloring operator Z will take two arguments, a vertex v and a color a.

Zxa(G) will set c(x) to a, leaving the remainder of the graph unchanged More

formally, we define the primitive operator sets:

and call any P. a P -language. When a vertex is added to a graph, it must always

be labelled separately.

We must also provide L - languages in which labelled graphs may be specified

These languages have a "most-powerful" equivalent to LQ which we call L-. L. is

the language which precisely lists the vertices, edges and labels of a labelled graph.

We offer the following possible amendments to the L-grammars of 3.3:

• I -> labels are unique | labels are not unique

• | -> labels range from 1 to k

The first, appended to the languages L and Ljn will yield the L -languages L and

hnuc * o r ' s 1'2'~'6- Ths second appended to the languages L and Ln, will yield

the L -languages L and L. for i « 1,2,~.,6.
c ic inc

Finally, 2 must be augmented to test colors, as well as vertices and edges.

We augment the original 2 grammars with the following:

I -> c(vertex) * c(vertex) | c(vertex) # ctvertex) |

-> 1 £ color £ k | color even j color odd

color -> a | p | 7 | _

The expression # will be interpreted semantically as "is different from" and the

expression - as "is identical to." By appending these forms to the languages E1

through Z6 we produce the E -languages E1c through E6c, respectively. We now

can formally define an Rc-property as the semantic interpretation of the triple

<f,S,a>, where f is a terminal P -expression, S is a terminal L -expression and a is
c c

a terminal Z -expression.

Each of the segments in the remainder of this section deals with a specific

Rc-property. Either the property is for a labelled graph or its recursive formulation

appears to require a labelled graph to be correct and complete.

4.4.1. K-Colored Graphs

Our first example of an Rc-property is k-colored. Several examples of

3-colored graphs appear in Figure 4 - 2 1 .

Figure 4-21: Some 3-Coiored Graphs

The R-property K-COLORED is

(Axy + ZzflCAz)*(Uk) where x,y 6 V, c(x) # c(y)

z * V, 1 £ <x £ k

The seed is Uk, the uniquely colored edgeless graph on k different-colored vertices:

k v 1 v -2 v k k

Note that our "colors" are really integers between 1 and k, inclusive. Uk is in L1 .

Figure 4 -22 shows the iterative steps in a sample run of K-COLORED for k = 4.

The floor for K-COLORED is <P l cJ- l n u c ,E l c>.

Clearly K-COLORED is correct the only edges it adds are between

4

1 2 3 4

Figure 4 -22: 4-C0L0RED in Operation

different-colored vertices, and each vertex is assigned a color when it is added to

the graph.

The automatic inversion of an Rc-property raises an interesting question with

respect to the operator Z x . Other than keeping a list of all previous values for

c(x) (a computationally appalling prospect), we have no way of knowing what x's

label was prior to Z . Thus inversion will be severely limited unless we can

assume that the label was X, denoting irrelevant and/or unknown. W e will therefore

utilize

Zxoc = ZxX

with the understanding that some properties may not be automatically invertib/e.

The inverse K-COLORED~1 is computed frorrr.

r 1 = (A + Z A) " 1

xy za z
* A~1 + (Z A f 1

xy za z

= A-1 + A - 1 Z " 1
xy z za

s o + D Zxy z zk

ap f e = x,y « V, xy 9k E, c(x) # c(y>

z 0 V, 1 £ a $ k

cT1 = x,y e V, xy e E, c(x) # c(y)

distinct v,z e V, d(z) = 0, c(v) s c(z)

Note the post-profile statement that z's color is not unique. The floor shifts to

F i g u r e 4 - 2 3 s h o w s K - C O L O R E D ~ 1 o p e r a t i n g o n a g r a p h G « G a n d a g r a p h G

J 2

1 ~ 2
1 2 1

6

2 1

TRU

8

FAL

4

Figure 4-23: 2-COLORED"1 in Operation

* G for k = 2. On a correctly-labelled k-colored graph, the edges will be

removed one at at time and any degree zero, vertex of non-unique color deleted

until Uk is reached If any vertex in G is improperly colored, some edge will not be

removable. If G * G is colored with the wrong number of colors, there will be no

isomorphism with U . Note that as for loop labelling, a correct graph incorrectly

labelled will fail. For example, a six-colored graph is also seven-colorable if n > 7,

but if it is submitted to 7-COLORED"1 in six colors it will fail. K-COLORED"1 is

correct and K-COLORED is complete

4.4.2. K-Chromatic Graphs

A graph is said to be k-chromatic if it is k-colorable but not colorable in

fewer than k colors. (This is equivalent to saying that it is k-colorabie but not k-1

colorable.) If a graph is k-chromatic,. k is the smallest number of colors with which

it can be colored Several examples of labelled k-chromatic graphs appear in Figure

4-24 for k = 3. For clarity of presentation we define two new composite

Figure 4-24: Some 3-Chromatic Graphs

operators. S and X S is a double-subdivide operator; it replaces
^ xvwy v s - ...v s xvwy ^ ^

the edge between x and y with a chain of length three, i.e..

S s D A A A
xvwy xy xv vw wy

S is distinguishable from the regular subdivide operator S by the arity of its

subscript X^ is an exchange operator which introduces similarly-labelled
V 1 S 1 "*VrSr

surrogate vertices- s r s 2 sr for the vertices v r v 2 vr, respectively. X
V 4 S , . . . V S

1 1 r r

replaces each edge between a v. and a v. with three edges, one between s. and s.,

another between s. and v, and a third between v and s.. X also appends

correctly-labelled vertices s,,s2 sr to G

X = D A A A Z , ,Z , V..Z , ,A A ...A
V i ~ V r V j V j V] SiSj S1C(V1) S2C(V2} SrC(V S1 S2 Sr

where D A A A occurs for each v.v. e E
V.V. S.V. V.S. S.S. I J

» J » J » J » J

The Rc-property K-CHROMATIC] is

(Z A + A + A A ...A A A ...A Z . Z . ,
xa x yz tw tw^ t w i c - 3 u w i U W 2 U W k - 3 Pc^w^ ^ c ^

+ X)*(TJ
V1S1-Vr k

where x * V, 1 £ a £ k,

y,z « V, c(y) # c(z)

distinct tu,w. e V, p,q * V, tu « E, distinct c(t),c(u),c(w.)

distinct v. e V, distinct s. * V, r ^ k-1

Figure 4-25 shows the iterative steps in a sample run of K-CHROMATIC for k = 4.

The seed is T , the complete graph on k vertices with each vertex a different color.

Clearly T is k-chromatic, for each pair of vertices is adjacent and must be a

different color. The floor for K-CHROMATIC is <P- X, ,2- >. There are four

property-preserving choices for an iteration of K-CHROMATIC The first two,

Figure 4-25: 4-CHROMATIC in Operation

2x<xAx and A add a properly-labelled vertex and a legal edge, respectively. If we

had stopped here, with seed Tk we would know that we had forced k colors.

Consider however, the wheel W . To color C. alone requires three colors.

Since the hub is adjacent to every vertex on the rim, a fourth color is required, and

thus W1 has chromatic number four. How would we reach W1 from T4? The

third choice, a double subdivision of any edge with appropriate linkage is the

answer. This not-so-obvious construction is displayed in Figure 4-26.

Figure 4-26: The Generation of W j 5

Unfortunately, this does not solve all our problems. Graph theorists have shown

that for any k > 0, there exist k-chromatic graphs containing no triangle (cycle of

length three). A famous example of such a graph for k = 4 is the Grotzsch graph,

shown in Figure 4-27. Certainly T is filled with triangles and we * must provide

ways to obliterate them. The fourth choice is a surrogate procedure which enables

us to construct triangle-free graphs. The exchange selects a set of vertices {v.}

already in the graph and appends a set of similarly-labelled vertices {s.}. Since {v.}

Figure 4-27: The Grotzsch Graph

is not necessarily all of V, it is possible to obliterate many, or even all, triangles. In

particular, the Grotzsch graph is constructabie from W by this technique, taking

the {v.} to be the rim vertices. (See Figure 4-28.)

Figure 4-28: Generating the Grotzsch Graph

Having explained the motivation for K-CHROMATIC, we now demonstrate that it

is correct If any k-1 coloring were possible for ZxflCA G or A G, it would have

been possible for G and thus the first two choices are correct The third choice

creates a chain of length three which alternates colors c(t) and c(u) on its four

vertices. Since c(t) and c(u) are distinct from c(w.), the new graph will still be

k-colorabla If a k-1 coloring is possible after the third choice, it would have to

color t and u the same since tu is the only edge removed from G by this option,

but then we would need two additional colors for p and q, and k - 3 more colors

for the w's, for a total of k colors. Therefore G will be k-chromatic after the

third choice. Finally we examine the fourth choice. Since c(s.) = civ.) all the added

edges are legal. If there were a k-1 coloring after the fourth choice, it would

have to color some v1 and v2 the same, for a previously existing v ^ 2 « E Note,

however, that c(s) and cteJ must still be distinct because s ^ 2 is now in E and no

reduction in the number of colors needed is possible. Since there are r > k-1

distinct surrogate colors, this will not be possible. We have, at length, shown

K-CHROMATIC to be correct

The inverse K-CHROMATIC ~1 is computed from:

r1 = (Z A + A +
xcx x yz

A A ...A
t w 1 t w 2 t wk-3

- (Z A) * 1 + A " 1 H
xa x yz

z ' z s >"
pdw) qdt) tpqu

A A
, u w . uw,
! 1

- (A A
1

V 1 S 1

...A Z .
2 u w k-3 p

..A A
V2 % - 3 uv

"Vr

A
V . UW

r)s +

...A
2 u w k-3

D Z , + D + D D D A D D Z > v Z >
x XA yz qu pq tp tu q p qA pA

D D ...D D D^ ...D, +

D D JD Z AZ V~Z >D D D A
s s . s - s A s .A s .A s.s. v.s. s.v. v.v.

r r - 1 1 r r— 1 1 ij ij *j tj

y,2 e V, yz * E, c(y) # c<z)

distinct tu,w. s v, p,q « V, tu e E, distinct c(t),c(u),c(w.)

distinct v. 6 V, distinct s. * V, r i k-1

a""1 = distinct x,x' 6 V, d(x> = 0, 1 £ a 1 k, c(x') = c(x)

'̂ z1 e V, yz,y'z; e E, c(y) # c<z), c<y') = c<yh

c<z)

distinct p,q,tu,w. e V, distinct c(t),c(u),c(w.);

c(w) * c(p), c(q) « c(t), d(p) = k -1 , d(q) « k -1 ;

tp,pq,qu e E, tu * E

distinct v.,s. s V, c(v.) = c(s.h s.s.,s.v.,v.s. s E, v.v. * E,
ii i i i j \ j i j » j

c(v.) # civ.)

The floor shifts to <P. ,L, ,E, >• Figure 4 -29 shows K-CHROMATIC'

operating on a graph G s G and a graph G * G for k = 2.

• — • • — •

2 1
T R U E

•

Figure 4-29: 2-CHR0MATlC~1 in Operation

if G * G because some edge has endpoints of the same color or because G has

the wrong number of colors, K-CHROMATIC"1 will not change those conditions and

the graph will fail. If G * G because a k-1 coloring is possible, G cannot reduce

to Tk under K-CHROMAT1C~1 and G will fail. It remains only to show that G • G

will reduce to T . Such a proof requires some background first

An elementary edge contraction is defined to be I Dx for x,y e V, xy e E A

graph G is contract/b/e to a graph H if there exists a sequence of elementary

contractions transforming G into H. Hadwiger's Conjecture states that every

connected k-chromatic graph is contractibie to K .' Hadwiger's Conjecture has been

shown true for n £ 4 and equivalent to the Four Color Theorem for n = 5, which

this author accepts as proven. Since the inverse of a double subdivision may be

seen as a sequence of two elementary edge contractions (I D and I D) and

since the inverse of the surrogate exchange process X is a sequence of r

elementary edge contractions (t O), we assert that the completeness of
i i i i

K-CHROMATIC is equivalent to the truth of Hadwiger's conjecture which, thus far,

has held up since 1943. Thus K-CHROMATIC appears "reasonably complete/' i.e.,

within our current knowledge of graph theory.

It is interesting to observe that an attempt to formulate k-CHROMATIC based

only on Hadwiger's Conjecture is doomed to failure, i.e., not any sequence of

elementary edge subdivisions (the opposite of contractions) will maintain the

chromatic number. Notably, Sxv C4 = Cg, but C4 has chromatic number two and Cg

has chromatic number three

4.4.3. Graphs with Vertex Covering Number K

A graph G = <V,E> has vertex covering number k if there is a k-vertex cover

for it and no vertex cover of smaller cardinality exists. (This is equivalent to saying

that no vertex cover of cardinality k-1 exists for it) A graph with vertex covering

number k is k-vertex-coverabie, but not necessarily vice versa Several examples

of graphs with vertex covering number five appear in Figure 4-30- For a graph G

= <V,E>, G' - <V',E> is a subgraph of G if V £ V and E £ E A subgraph G' of a

graph G is a block of G if every pair of edges in G' lies on a common cycle and

there is no larger subgraph of G containing G' which is also a block. (In other

words, G' is a maximal subgraph of G for which every pair of edges lie on a

common cycle.) The blocks of G do not necessarily partition V; two blocks share

at most one vertex. The blocks of G do partition E, however, and the partition is

finer than that imposed by connected components. Two blocks have at most one

vertex in common; such a shared vertex is called a cutpoint. Outpoints between

•

•HI
• - *

• - •
• - *
•-»

•
Figure 4-30: Some Graphs with Vertex Covering Number 5

blocks of more than one edge can always be covering vertices in a minimal vertex

cover. Every block, except K , is biconnected The vertex covering number of a

graph is the sum of the vertex covering numbers of its connected components.

That is, if G has r components with vertex covering numbers crc2,...,cr, the vertex

covering number of G is E[as1 c..

Our approach will be to construct a graph each of whose connected

components is a different color. Within a given component every vertex will be

the same color. Within each component is a skeleton subgraph, consisting of the

largest cycle in each block. (If the block is a single edge, that edge lies in the

skeleton.) The skeleton determines the size k of the minimal vertex cover. Thus

there are two kinds of operations within the Rc* -property we will describe:

operations g which enlarge k by expanding the skeleton, and operations h which

leave the value of k unchanged Because each iteration of an R*-property is

supposed to increment k by one, the Rc*-property VERTEX-COVER is of the form

(h g) :

(CZvc(x)Sxvy + Zzc(w)Bwz

+ 2gc<f>Zhc<f,Ag3
AhfB

gh
Bfg + Zjc(i,AiJBii + \ ^ \ ^ V 0)

where x,y • V, v 2 V, xy,xx,yy s E, c<x) = c(y)

w 6 V, 2 * V, ww e E

p,q s V, | {pp,qq} n E | > 1, c(p) = c(q>

r] s V, distinct s r t 1 * V, r^ s E

r2 e V, distinct s2,t2 * V, r2r2 * E

distinct a,e e V, distinct b,d £ V, ae,aa,ee e E

f 6 V, distinct g,h * V, ff • E

i e V, j * V, |V | = 1, |E| = 0

distinct u r i i 2 ,u 3 • V , u ^ u ^ u ^ 6 E , |V | = 3 , |E| =2

The seed is the uniquely colored complete graph T . The floor for VERTEX-COVER

is <P2c/Licu/^5c>* F i 9 u r e 4 -31 shows the iterative steps in a sample run of

VERTEX-COVER (All of the labels are identical and omitted)

•̂ f •

Figure 4-31: VERTEX-COVER in Operation

VERTEX-COVER is of the form (h*g)#, where h has three options and g has seven.

The looped vertices are the covering vertices throughout the execution of the

algorithm. The uniform coloring of each component is maintained Each of the

three h options for iteration safely expands the graph, adding a covered edge and

not adding vertices which could permit a smaller cover by their participation. The

subdivision of an edge (xy) between two covering vertices will result in two new.

covered edges (xv and vy), and a new vertex which, to reduce the covering number,

would have to replace x and y, an impossibility. A branch from a covering vertex

(w) results in a covered edge and a new vertex (2) which cannot possibly reduce the

vertex covering number. An edge addition (A) with at least one covering endpoint

is covered and cannot change the vertex covering number. Those options do not

increment k and any number of them may appear in a single iteration of

VERTEX-COVER. These' are followed by the seven options which will increment

k. The first two options add chains of length two to a looped vertex (r). The first

(st) or second (t^ added vertex becomes a covering vertex. The third option adds

a chain of length two to a non-looped vertex (r2). The first added vertex (s2)

becomes a covering vertex. The fourth option double subdivides an edge between

two looped vertices (a and e). The first added vertex (b) becomes a covering

vertex. The next option adds a triangle with one new looped vertex (g), appending

it to a looped vertex (f). The last two options are applicable only once. One of

them produces an appropriately looped and labelled «2 ; the other moves from a

correctly looped and labelled chain on three vertices to a correctly looped and

labelled cycle on three vertices. Every edge introduced by (h#g)* is covered No

vertex introduced by h could make a vertex cover smaller by its inclusion, and the

increment to k is carefully controlled by g. Thus VERTEX-COVER is correct

The inverse VERTEX -COVER"1 is computed by:

r l S < ^ S x v y + 2zdw)Bwz + % q]

7 7 A ^ 4» A A A A R R
S d i) dcW bb° abde gdf) hctf) gg hfDghDfg

ZJdi>\Bii + V A ^ " 1

°7 7 A ^ + A A A A R R +

SdaTdcU) bfc> abde gdf) hdf) gg hf gh°fg

jdi) jj ij u.u u i u g vc<x) xvy zdw) wz

•180

= [Z. _,. ,Z. „,„ JA. . + A)B. B. . +

Zu , Zu , A . S , . + A ,_A y<e,A AW,B J3r +beta) dc(a) bb abde gc(f) hc(f) gg hf gh fg

Z. ...A..B.. + A A]~1([Z , .S + Z , .B +
JCll) JJ tj U 1 U 1 U 1 U < 5 VC(x) XVy 2C\W) W2

[D D D D (D + D ,)Z
s i r i s i *i ^ S s i s i V i

D D D D D Z >Zs rs t st ss sX t2X

D d D b D de D bd D
a b A a e

D bb Z dX Z bX +

D D, D..D ..D^D Z^Z, + D.D..D..Z.> +g fg h gh hf gg hX gX j <j JJ jX

D D] [A D D D Z , + D D Z ,
u u_ u u xy vy xv x vA z wz zA

+ D] *pq

a = x,y s V, v * V, xy,xx,yy s E, c(x) = c(y)

w s V, z * V, ww s E

distinct p,q,r « V, pq.rr « E, | {pp.qq} n E | ^ 1,

dp) = c(q). notCpp.pr « E. qq.qr « E]

rt a V, distinct s r t , * V, r y , a E

r2 a V, distinct s2,t2 0 V, r2r2 « E

distinct a,e a V, distinct b.d a V, ae,aa,ee a E

f a V, distinct g,h « V. f f • E

i • V. j « V. |V| * 1. |E| = 0

distinct u ru2 ,u3 a V, u1u2,u2u2.u2u3 a E, |V| = 3 ,

|E| = 2

a"1 = distinct t,u'x,v,y a v, t'x,u'y,xx,yy,xv,vy a E,

w,tf ,u'u',xy * E, d(v) = 2,

c(x) = c<y) » c<v) = c(f) = c(u')

distinct s',w,z a V, s'w,ww,wz a E, s's^zz a E.

d(z) » 1. c(w) = dz) = c<s')

distinct a',b',p,q a V, a'p,b'q,pq a E.

a'a'.b'b' a E, | {pp.qq} n E| ^ 1,

dp) = c(q) = c(a') = c<b").

there exists a cycle containing pq

distinct r ,s rt a v, r1r l,r1s1.s1srs1t1 a E, t1t1 « E,

1O I

cKs

distinct

d(s

distinct

i>

r i

i»

2

—

,S

s

2, d(

2. d(

7 , t_ <

V =

s V,

t,)»

5 V,

r

1

t

1.

2 t

drt) =

r risrs-
dr^ = c

2'r2r2 *

c(s

,tr1

E,

) = '

s s .

dtt)

s E- s i s i

dt,)

r s r s t 3

E.

d<s2) = 2. d(t2) = 1, c(r2) = ds2) = dX2)

distinct a,b,d.e • V, aa,bb,ee.ab,bd,de s E, dd.ae * E,

d(b) = 2. d(d) = 2, da) = c(b) = c<d) = de>

distinct f,g,h s v, ff,gg,fg,gh,fh s E, hh ss E. d(g) = 2,

d<h) = 2, c(f) = dg) = dh)

distinct i,j s V, ij.jj s E, ii * E. d(j) = 1, | V | = 2 ,

|E | = 1, di) = dj)

distinct u r u 2 . u 3 e V, u t r
u

2 2 ' U i 2 ' U 13 ' U 23 S E' U33 * E'

| V | * 3. |E | = 3, du,) = du2) = c(u3)

The floor shifts to <P_ X. JL >• Figure 4 - 3 2 shows VERTEX-COVER"1

Zc leu oc

operating on a graph G « G and a graph G * G . VERTEX-COVER"1 deletes as

many edges as possible which do not destroy the underlying skeletal graph. It

accomplishes this by testing for other "justifying" (primed) adjacencies which would

argue for retaining the covering status of a vertex and the connectedness of a

block. Then VERTEX -COVER ~1 will contract the underlying skeletal graph. On G e

G VERTEX-COVER"1 will return G to Kr decrementing k as it goes. If the cover

to be tested is not of size k, k will not be zero on termination and G will fail. If

the cover of the input graph is not minimal some looped vertices will not be

deleted and G will fail. If the cover of the input graph is incorrectly indicated,

some edge will lie between two unlooped vertices and never be deleted causing

failure Thus VERTEX-COVER""1 is correct and VERTEX-COVER is complete.

This algorithm is an interesting construction The skeleton could have served as

a seed set for an R-property K-VERTEX-COVER instead Such an elaborate seed

set would require L^ and has interesting connotations, to be discussed in 4.7.

• • • • •

§1

FALSE

Figure 4-32: VERTEX-COVER"1 in Operation

4.4.4, Graphs with Independence Number K

The cardinality of the largest independent vertex set in a graph is its

independence number. Several examples of graphs with independence number 3

appear in Figure 4-33.

•*• o
Figure 4-33: Some Graphs with Independence Number 3

The Rc-property INDEPENDENCE-K is:

(2 ™Z M 2 A* A ...A A)*(LEJv 4 a , v a xa xy. X24 xz x k
1 1 n n I 1 p

where x 0 V, y.,z. e V, 2. is in the ith independent set

p = number of label-indicated sets, <x,a. are correctly constructed

labels

Figure 4 -34 shows the iterative steps in a sample run of INDEPENDENCE-K for k =

§ § • § m w w 9
Figure 4-34: INDEPENDENCE-3 in Operation

The floor for graphs with independence number k is <P ,L1n ,Z6 >. The elaborate

labels are the key to the success of this algorithm. Initially, we have a maximal

independent looped set of k vertices. On the first iteration we add a vertex x,

creating the potential for k new sets of k independent vertices and one set of k+1

independent vertices. To prevent the formation of k+1 independent vertices we

deliberately attach x to one of the looped vertices y. Now there are two

independent sets of size k, V - {y} and V - {x}. We label x and relabel each v.

in V to reflect the "names" of these two sets and the v.'s

membership/non-membership in each of these two sets. (Such a label is probably a

numerical encoding and need not be elaborated upon here. We may "interpret1 the

loop numerically to make it consistent with the notation for subsequent iterations.)

On any subsequent iteration the number and names of each extant set of k

independent vertices may be deciphered from the label of any vertex We carefully

attach the new vertex x to one vertex (z.) in every such set and then to as many

more vertices (y.) as we choose. The loops refer to the original (but not

necessarily the only) set of k-independent vertices. There may be up to ^ " ^ new

independent sets of k vertices formed by this iteration; x and ail of V must be

relabelled accordingly, INDEPENDENCE-K is correct

The inverse INDEPENDENCE-K"1 is computed by:

f~1 = (Z ...2 Z A* A ...A A f
v , a 4 v a xa xy. xz, xz x

1 1 n n i 1 p

184

x xz '" xz« xy. xy. vcc v a v , a ,
p 1 I I n n 1 1

= D D ...D Ae Z XZ X...Z >
x xz x z , xy. v v v .A

p 1 i n 1

a = x fc V, y.,z. e V, z. is in the ith independent set,
pre r i i i ^

p = number of label-indicated sets, <x,<x are correctly

constructed labels

a" 1 s x,y.,z. e V, xx 85 E, z. is in the ith independent set,

p = number of label-indicated sets, <x,<x. correctly

constructed labels, c(x) indicates y. is not independent

of x

The floor shifts to <P- X , ,Ee > Here is an example of an automated inverse

computation on which we must improve. In particular, the labels for V must be

recalculated to reflect the remaining independent sets of size k, so that
f 1 = D D ...D Ae Z n .JZ nx x z x z , x y . v p v « P «

This is permissible, we argue, because the next correct label is computable from the

encoding.' Figure 4 -35 shows INDEPENDENCE-^1 operating on a graph G e G

and a graph G * G for k = 4. On G « G , the label maintenance and the fact that

xx may not be in E insures a return to the original seed On G * G , there must be

k loops, or G will fail. Given G * G with k loops, either some set of vertices

labelled independent is not (making some edge unremovable) or some set of more

than k vertices is independent (making some vertex unremovable because the

appropriate z.'s cannot be found). In either case G will fail. Thus

!NDEPENDENC£-K~1 is correct and INDEPENDENCE-K is complete

4.4.5. Graphs with Labelled Edges

In the development of Rc-properties, we specified that the labels or colors be

applied to the vertices. If we apply labels to the edges instead (using the operator

Z to color edge xy with a), we will call the properties Re-properties. We
xytt

immediately extend all the definitions and terminology of vertex labelling to edge

labelling, producing the languages P. , L. , L , L , L. and £. , corresponding to
16 19 in© IU9 IHUfi IQ

P. , L , L , L. , L and S. • respectively. The only difference between vertexic ic me IUC muc ic ^ 7 r

i I 8 i i
s i THUS

I HI FALSE

Figure 4*35: INDEPENDENCE-^""1 in Operation

coloring and edge coloring is that no equivalent of loop labelling vertices is available

for edges. Edge labelling facilitates the construction of graphs with properties thus

far inaccessible.

4.4.6. Graphs with Circumference K

The circumference of a graph is the length of any longest cycle it contains.

Several examples of graphs with circumference k = 5 appear in Figure 4-36.

Although labels are not required for the definition of circumference, they do

facilitate the construction of graphs with circumference k. We will denote the block

partitioning of E by coloring the edges uniformly within a block.

Figure 4-37 shows a graph with four blocks. Any cycle in a graph is totally

contained within a single block. We will construct graphs with circumference k

using the Re-property CIRCUMFERENCE-K:

xyp xy 2 pqa pq v i v 2 a : " v - i v a v v a v ...v k

where x,y,x',y' s V, xx',yy' « E, c(xx') = c(yy') = p

Figure 4-36: Some Graphs with Circumference 5

Figure 4*37: A Graph and its Blocks

p s V, q ^ V, a is a new color

v1 s V, v2,...,vr * V, <x is a new color, r £ k

The expression "a is a new color1' is an abbreviation for "ctt^ # a, c(t2) # a,...,c(tn) *

<*>, { t r t 2 ^ r t n } = V." The seed C^ is the cycle Ck with all its" edges colored one.

Figure 4 -38 shows the iterative steps in a sample run of CIRCUMFERENCE-K for k

= 6. The floor for CIRCUMFERENCE-K is <P 1 ^ L Q ^ Z J ^ -

We will prove the correctness of CIRCUMFERENCE-K as we explain its

Figure 4-38: C1RCUMFERENCE-6 in Operation

workings. There are four options for growth. First an edge (xy) may be drawn

between any two vertices in the same block and colored the color of their common

block. Such an edge can introduce smaller cycles than those already present in the

block, but not larger ones. The second option is to begin a new connected

component by the addition of an isolated vertex to the graph. (Note that no color

is associated with such a vertex at this time.) The next option is to branch from

any vertex (p) in the graph to a new vertex (q), beginning a new block and coloring

the new edge unlike any currently in the graph. The final option is to add a small

enough cycle (r £ k) to the graph, attaching it at v1 and coloring it unlike any other

block currently in the graph. Since each of these options maintains the

circumference at k, we have shown CIRCUMFERENCE-K to be correct

The inverse CIRCUMFERENCE-K""1 is computed by:
-1

f (ZxyP \y

...2 2 Y)

r - 1 r r 1 1 r

xy' z N pqa pq;

(Z ...z

pre

- 1

r -1 r r 2 1 r
Y Z ,Z V..Z
—v ...v vv A v vA v

D Z 1 D + D D
xy xyA z q pq

= x,y,x',y' 6 V, xx',yy' 6 £ xy 0 E, c(xx') = c(yy') =

p e V, q fc V, a is a new color

v1 e V, v2,.-,vr * V, a is a new color, r £ k

= x,y,x',y' e V, xy,xx',yy' e E, c(xx') = c(yy') = c(xy), x' * y,

y' # x, there exist two edge-disjoint paths from x to

y without edge xy,

2 6 V, d(2) = 0

p,q e V, pq e E, d(q) = 1, c(pq) = a, a is a unique color

V 6 V V V V V V V S E
i ' 1 2— r-1 r' r 1

| {rs|r,s s V, rs s E, c(rs) = clv^)} | = r,

there exists another cycle of at least size r

The floor shifts to < p
2 e 'Lo e '2 6 e

> - R 9" r e 4 " 3 9 shows CIRCUMFERENCE-K"1

operating on a graph G • G and a graph G * G for k = 3.

TRU
4

PALS

5
Figure 4-39: CIRCUMFERENCE-3"1 in Operation

The input for the inverse may be edge colored according block in time O(n). Then

CIRCUMFERENCE-K deletes isolated vertices (z), small enough cycles attached only

at one vertex (v), and blocks containing a single edge (pq). It removes edges (xy)

internal to a cycle. Thus a graph from G will be returned to C* where the color <x

is not relevant to the isomorphism testing. A graph G * G with overly-small

cycles will be reduced to <+4> and fail, while a graph with an overly-large cycle

will retain it

is complete

will retain it and fail. Thus C1RCUMFERENCEH<~1 is correct and CIRCUMFERENCE-K

4.4.7. Graphs wi th Edge Covering Number K

For a graph G = <V,E> an edge subset E S E is an edge cover if every vertex

in V lies on at least one edge in E. If E is an edge cover for G, \E\ = k and

there is no edge cover for G of smaller cardinality, then G is said to have edge

covering number k. Several examples of graphs with edge covering number k = 4

appear in Figure 4-40.

Figure 4*40: Some Graphs with Edge Covering Number 4

Interestingly, the edge covering number of G is bounded by the nature of the

minimal spanning tree for G It is this fact which motivates our approach. If G were

connected the maximum value of n for edge covering number k would be n - 2k,

where G would be a chain on 2k vertices, and the minimum value would be n =

k+1, as in the star W l f c . Since the edge covering number of a graph is the sum

of the edge covering numbers of its connected components, for fixed k the seed

graphs must represent distinct, additive, non-zero sums of k. For example, if k = 3,

we can write k = 3, k = 1 + 2, or k = r + 1 + 1. The seeds will be based on

the sum, substituting disjoint chains or stars for the integers. We color each seed

edge to denote both its connected component and whether it is covering or

non-covering. A color is restricted to a single component Within the pth

component two colors appear even (2p) for covering edges, and odd (2p - 1) for

non-covering edges. All edges in a star seed are labelled covering. Edges in a

chain seed are -alternately labelled covering and noncovering, beginning and ending

with the covering color. The set of such appropriately colored seed graphs we will

denote as Sk. Figure 4-41 shows the four labelled seed graphs in S3.

Figure 4-41: The Seed Graphs for Edge Cover 4

Now we can state the Ra-property K-EDGE-COVER as:

(Z , rt ,A F + Z . rt ,A)*(S.) where
xyc(xt)— 1 xy xyu vwc(vt)-1 vw k

distinct x,t,u « V, y i V, xtxu e E, c(xt) = c(xu) is even

v,w,t,u 6 V, vtwu e E, c(vt) = c(wu) even,

not [r e V, rv, rw, € E, c(rv) = c(rw) even]

Figure 4 -42 shows the iterative steps in a sample run of K-EDGE-COVER for k =

6. The floor for K-EDGE-COVER is <P4 ,Ljs ,IL >. The first option for

K-EDGE-COVER fragments a vertex x (on at least two covering edges xt and xu)

into two adjacent vertices x and y. The new edge xy is not covering. This

operation will be applicable k times to a star on k+1 vertices. The operation

Figure 4-42: 6-EDGE-COVER in Operation

ultimately expands a star on k+1 vertices into a tree on 2k+1 vertices, with

alternatingiy labelled edges containing at least one vertex of degree three Such a

tree will have covering number k. The second option adds an edge between any two

vertices of a component which is as treelike as it can get, i.e., there are no more

fragmentable vertices under the first option. No edge will be able to reduce the

edge covering number at that point Thus K-EDGE-COVER is correct

The inverse K-EDGE-COVER~1 is computed by:

- 1

xyc(xt)-1 xy xyu vwc(vt)—1 vw

xyc(xt)-1 xy xyu vwc(vt)— 1 vw

= I D Z , + D Z >xy xy xyA vw VWA

s distinct x,t,u • V, y 0 V, xt,xu e E, c(xt) = c(xu) is even

v,w,tu 6 V, vt,wu s £ vw 0 E, c(vt) = c(wu) even,

not [r e V, rv,rw e E, c(rv) = c(rw) even]

« distinct x,y,t,u e V, xy,xt,yu e E, c<xy) odd,

c(xt) = c(yu) even, c(xt) = c(xy) + 1, c(xt) = C(yu),

I {rs|rs e E, c(sz) = c(xy)} | < j {rs|rs « E,

c(rs) = c(xy) + 1} |, |V| = |E| + 1

v,w 6 V, vw 6 E, c(vw> odd,

| {rs | rs e E, c(rs) = c(vw)} | > | {rs | rs e E.

c<rs) = c(vw) + 1} |,

not[r e V, rv,rw 6 E, c(rv) = c(rw) even]

The floor remains constant Figure 4 -43 shows K-E

graph G « G and a graph G * GQ for k = 3.

operating on a

FALSE

2 3 4
Figure 4-43: 3-EDGE-COVER""1 in Operation

The generation process for K-EDGE-COVER really has two stages: the construction

of a spanning tree and the addition of extraneous edges. During the construction

of a spanning tree from a star, there will always be more even (covering) edges

than odd edges. The inverse exploits this two stage process. For G e G , any edge

cover spans (touches all) the vertices of G If the edge cover is connected, such a

spanning tree will be contractible into the star or the chain on rn/2T vertices. If

the edge cover is disconnected, it will be contractibie into one of the k sum images.

For G * G , either the number of covering edges is incorrect (and the graph will

ultimately fail) or the indicated edges do not cover the graph. If there is a smaller

covering, some uncovered edge will form a cycle and be unremovable. If the

covering is inadequate, there will be some chain ending in an uncovered vertex

which will not be removed In either case the graph will fail. Thus

K-EDGE-COVER~1 is correct and K-EDGE-COVER is complete.

4.4.8. Graphs with a k-Factor

A k-factor of a graph G = <V,E> is a regular subgraph of degree k (>0) which

spans V and is not totally disconnected Several examples of graphs and their

3-factors appear in Figure 4-44.

Figure 4-44: Some Graphs with 3-Factors

The factor edges appear darkened in the figure. The Re-property K-FACTOR has

separate options for k even and k odd using the composite operators EM
xvr*\

OM , CM and FR defined in 3.7.20 for appending even

and odd degree vertices without changing the degree of any previously-existing

vertex. The Re-property K-FACTOR is

(Z A + EM + OM + CM
xy« xy ss r.sk ^ V w V U

A A D CM D + FR
y2q v i P y i y 2 y r y k + 1 pq z

where x,y « V, xy s? E

distinct s rs 2_,s k s V . s ^ V , s
2 j - i s 2 j 6 E ' c<s

2 j-1
S2 j} # *'

j = 1,2,...,k/2; k even

distinct v^v.^v, s V, distinct w ,w ,...,w s V, distinct v,w £ V,

V2i-1V2i 'W2j-1W2i ' C (W 2 j - 1 W 2 j) # *'

i = 1,2,...,(k+1)/2; j = 1,2 (k-1)/2; k odd

distinct u ,U-,.-,u & V

distinct p,q e V, distinct y ry 2 ' - 'V k + 1 * V, pq e E. c(pq) # a

distinct x ^ x ^ x ^ Z j s V, distinct z2,z3,...,zk * V, ZjX. e E, i = 1,2,~,k;

c(z. x.) # a

Figure 4-45 shows the iterative steps in a sample run of K-FACTOR for k = 4.

Figure 4-45: 4-FACTOR in Operation

Throughout its execution, K-FACTOR distinguishes the edges in the factor (unlabelled)

from the edges not in the factor (labelled a.) The floor for graphs with a k-factor

is <PmJ 5L >.

K-FACTOR has six options. The first adds a non-factor edge (xy). The

second applicable only for even k, alters the k-factor correctly, appending a single

new vertex (s) without changing the previously-existing degrees of any of the

vertices. All the new edges are uniabelled and appear in the factor. The third,

applicable only for odd k, alters the k-factor correctly by appending two new

vertices (w and v) without changing the previously-existing degrees of any of the

vertices. Again, ail the new edges appear in the factor. The fourth option adds a

set of k+1 vertices (ur~,uk) simultaneously to the k-factor, with a complete

subgraph on them. The fifth option adds k+1 vertices to the k-factor, replacing a

previously-existing edge with 1 + (k+1)k/2 edges. The sixth option adds k-1

vertices to the k-factor, replacing a previously-existing vertex with a copy of Kk,

each of whose vertices maintains one of the old vertex's previous adjacencies.

Clearly K-FACTOR is correct

The inverse K-FACTOR"1 is computed by:

f"1 = <Z A + EM + OM + CM
xy« xy SSi...sk « « V " V u

+ A A D CM D + FR f
V V y1y2 yT"yk+1 pq X 1 ~ \

= (Z A)~1 + EM"1 + OM"1

xya xy SSy..sy

CM"1 + A A D CM D + FR"1

ur..uk y2q y iP Y ly2 V1-y|t+1 Pq i , - ^

» 0 Z , + EM"1 + OM"1 + CM"1

xy xyX «,-!,, w w v w w u

+ A CM"1 A D D + FR"1

pq y r . y k + 1 y , y 2 y ,P y , q * r

a = x,y « V, xy * E

distinct srs2,_.sk e V. s « V, s2 j_1s2 j s E.

dSj.^Sj j) # <x. j = 1,2_.(k+1)/2; j = 1,2 0c-1>/2:

k odd d(s.) • k, i - 1,2._,k

distinct v
r v 2 ,~ ,v k + 1 « V, distinct w r w r - . w k _ 1 « V,

distinct v,w « V, v
2 i - i v 2 i ' w 2 j - i w 2 j 8 E '

i • 1,Z-,0c+1)/Z- j = 1.Z-.flc-1)/Z* k odd; d(v.) = k,

i = 1,2....k+1; d(w.) = k, i = 1,2 k-1

distinct uru2,~,uk « V

distinct p,q « V, distinct y1#y2^.,yk+1 « V, pq a E,

d(p> • k, d<q) = k

distinct xrx2,«.,xk,21 e V, distinct z2,z3,~.,zk « V,

z ^ . e E, i = 1,2wk, dte,) = k

x,y 6 V, xy e E, c(xy) = a

196

distinct s,srs2,..,sk * V, s ^ ^ * E, c t a ^ ^ .) *

j = 1,2_,k/2; k even, d(s) = k

distinct v,v ,v-,...,v € V ' distinct w , w r w w
k_-|

VW,VV.,WW 6 E, V2'- iV2-'W2'-1W2" * ^ '

d(w> s k, d(v.) = k, d(w.) = k, i = 1,2wflc+1)/2;

distinct uru2,...,uk e V,

| {pu. | p e V} | = | {u.u.J u.u. € E} | = k(k-1)/2

distinct p.q,y ry2 Wyk + 1 s V, pq * V, y.y. s £ d(y.) = k,

i = 1,2,_.,k+1, j = 1,2 k+1 except y1y2'

y ^ , y2q e E

distinct x.,z. e V, x.z. 6 E, d(x.) = k, d(z.) = k, i = 1,2 k;
ii it i i

z
it

x,z. * E, j = 2,3,.~,k; z s E, r,s = 1,2,~.,k
1 j * rsj

The floor shifts to <P- ,Lt ,2L >. Figure 4 -46 shows K-FACTOR~1 operating on a

graph G « G and a graph G * G for k - Z In the figure the uniabelled factor

edges are darkened On a graph with a correctly (un)labeiled k-factor, K-FACTOR"1

will remove the irrelevant edges, contract connected components to Kk+1 (assuming

the completeness of EVEN-REGULAR and ODD-REGULAR), and remove all but one

of the Kk+1's, until G succeeds. On a graph G * G , K-FACTOR"1 will remove the

irrelevant edges and then discover that some vertex of degree not equal to k is

irremovable, warranting failure. Thus K-FACTOR"1 is correct and K-FACTOR is

complete.

4.4.9. K-Factorable Graphs

Let G1 - <V rE 1> and G2 =
 < V 2 ' E 2 > b e t w o 9raPhs- T h e union of G1 2

is a new graph G = <V,E> where V = V1 u V2 and E = E] u E2< If a graph G is

the union of a finite set of k-factors, we say that G is k-factorable. Several

examples of 2-factorable graphs appear in Figure 4-47. Note that the degree of

every vertex in a k-factorable graph is a multiple of k.

Figure 4-46: 2-FACTOR in Operation

Figure 4-47: Some 2-Factorabie Graphs

(Z _..z _ A ...A an' . f ror .g)]
1 2P nk/2-1 nk/2P 1 2 nk/2-1 nk/2

where x. e V, I {x.} I = n, every x s V appears exactly k times in {x .} ,

X2j-1X2j C ' j I ' Z '

f is applied according to EVEN-REGULAR, k even, same vertices

restriction

g is applied according to ODD-REGULAR, k odd, same vertices

restriction

Throughout its execution, K-FACTORABLE distinguishes each factor by a unique edge

label. Figure 4 -48 shows the iterative steps in a sample run of K-FACTORABLE for

k = 3. In the figure the edges of one factor appear darkened The floor for

k-factorable graphs is <P- ,L1 ,E2
 >m ln arv a t t e m P t t o nriake this algorithm readable,

we have abbreviated it somewhat The first operator adds an entire new k-factor

to the graph and appears exactly once on each iteration. Recall that p is the

register value representing the number of k-factors composing G The second

operator, f1, denotes an application of EVEN-REGULAR in which the ith factor is

expanded to cover (1 or k+1 or k-1) more vertices and the new edges are

appropriately labelled for their factor. The selector is intended to indicate that the

same vertices must be added to each factor under nj^f1 by each application of

f. The third operator, g1, denotes an application of ODD-REGULAR in which the ith

factor is expanded to cover (2 or k+1 or k-1) more vertices and the new edges

are appropriately labelled for their factor. The selector is intended to indicate that

the same vertices must be added to each factor under nPs1g
(by each application of

g. Within any iteration each of these last two operators may be applied any number

of times without changing the number (p) of k factors. K-FACTOR is correct

The inverse K-FACTORABLE"1 is computed by:

f~1 « (2 ^...Z ^ A ...A
X 1 X 2 P + 1 Xnk/2-1Xnk/2P + 1 X1X2 Xnk/2-1Xnk/2

...A)
xnk/2-1xnk/2

a s a
pre

Figure 4-48: 3-FACTORABLE in Operation

= OT.1 (g^OL 1 ' (f " 1) 8) ^ x - D x x
'"* f * p xnk/2-1Xnk/2 X1X2

xnk/2-1Xnk/2V" X 1 X 2 X

= x. € V, | {x.} | » a every x s V appears exactly k

times in {x.}, x 2 j - 1 x 2 j * E, j = 1,2_,nk/4

f is applied according to EVEN-REGULAR, k even,

same vertices restriction

g is applied according to ODD-REGULAR, k odd,

same vertices restriction
- 1 = x. e V, | {x.} n, every x « V

200

appears exactly k times in {x.}, * 2 _1 X 2 e E,

c(x,. -xn.) = p, i = 1,2,~,nk/4

f~1 is applied according to EVEN-REGULAR"1, k even,

same vertices restriction

g " 1 is applied according to ODD-REGULAR"1, k odd,

same vertices restriction

We are presuming that f~1 and g~1 are relabelling the restored edges correctly.

The floor shifts to < p
2 e 'L ine /^5e> ' R 9 u r e 4 ~ 4 9 s h o w $ K-FACTORABLE"1 operating

on a graph G s G and a graph G 2 G for k = 2.

TBU!

4

FALSE

Figure 4-49: 2-F ACTOR ABLE"1 in Operation

On each iteration K-FACTORABLE^1 removes an entire, correctly labelled k-factor

and deletes as many correctly attached vertices as possible from the graph

(assuming the completeness of EVEN-REGULAR and ODD-REGULAR). If no k-factor

can be found, G * G and will fail. K-FACTORABLE"1 is correct and
P

K-FACTORABLE is complete

4.5. Subsumption

Having demonstrated our ability to describe most graph properties in some

extension of our original recursive format we discuss in this section one merit of

such a representation: subsumption.

Given two recursively-formulated properties (in the same RHanguage,

R+-language, RcHanguage or R8Hanguage) p1 = <fySya}> and p2 = <f2,S2,a2>, w e

say that property p1 subsumes property p2 if every graph with property p also

has property p r If p1 subsumes p2, p2 is a special case of p r In addition, if

property p1 subsumes property p2 and property p2 subsumes property p r then p1

and p. are equivalent properties. The recursive formulation makes a test for

subsumption quite simple. p1 subsumes p2 if and only if:

• f 2 is subsumed by f 1

• p~1(S) is TRUE for every S « S2

• a2 is subsumed by o]

Thus we need only specify how operators and selectors subsume each other. We

first define selector subsumption. Let o and cr- be selectors which select vertex

sets V1 and V2 with respect to a graph G We say that selector a1 subsumes

selector a2 if and only if there exists a mapping 0:V2->V1 such that

• £ is a function (i.e., #v) is unique for each v « V2)

• ^ is one-to-one (i.a, #v) - 0<v') if and only if v = v1)

• <f> preserves the following relationships:

• e V

• * V

• vertex color

• edge color

• a vertex v selected by o2 will always be accepted as <t>M by a1

We can be certain that a1 will accept v as 0(v) if and only if the description

of 0<v) in a is consistent with and no more restrictive than the description of v in

oz The following is a list of such relationships, where "expr" denotes the degree

20;

of a vertex or the cardinality of a set

• "description 1 on v" is less restrictive than "description 1 and

description 2 on v." For example, "v e V" is less restrictive than "v s

V, vw e E" The first permits v to be isolated, the second does not

• "expr < k " is less restrictive than "expr < k " if k > k_

• "expr £ k^' is less restrictive than "expr < k " if k > k-.

• "expr > k.j" is less restrictive than "expr > k2" if k 1 < k2.

• "expr £ k^' is less restrictive than "expr > k " if k < k-.

• "expr ^ k" is less restrictive than "expr < k".

• "expr < k" is less restrictive than "expr = k".

• "expr £ k" is less restrictive than "expr > k".

• "expr £ k" is less restrictive than "expr = k".

• "d(v) = max" is consistent with "d(v) rel k" only if rel is = and k is max

or rel is £, >, :£, < when k £ max, k < max, k £ max, k > max,

respectively

• "d(v> < max" is consistent with "d(v) = k" only if k < max.

• 'd(v) < max" is consistent with 'd(v) > k" only if there exists an integer

i such that k < i < max

• "d(v) < max" is consistent with "d(v> £ k" only if k £ max.

We offer the following example of selector subsumption:

oj x,y 6 V, xy * E, d<x) £ 2

a2: x,y s V, xy * E, d(y) > 2# d(x) = 1

o] subsumes o- under the mapping <£(x) = y and <t>(y) = x

We postulate the following conditions for operator subsumption:

Condition 1

f subsumes f.

Condition 2

f + g subsumes f. Clearly f is a special case of "f or g."

203

Condition 3

f* subsumes fk. We may choose to iterate k times, and fk is a special case

of f*

Condition 4

f* subsumes N. We may also choose to iterate f no times, and the null

primitive N is a special case of f*

These operator subsumption conditions may be combined in fairly lengthy

reasoning procedures. For example, if f - (f + g*)(f + g) we can rewrite f as

f, - f3 + fg + g**2 + g#g

Then we can show that f subsumes, among others, each of the following.

g5f2

(f + g V

g

fg + g

We are now ready to demonstrate the hierarchical concepts inherent in our

representation of graph theory. We offer a simple example. "Every chain is a tree"

We "prove" this by examining the R-properties p1 (TREE):

B* (K) where x s V# y « V
xy i

and p2 (CHAIN):

B* (Kl) where x « V, y « V, d(x) = 1
xy «>

B subsumes itself. p -1(K.) returns TRUE Define 0(x) « x, 0<y) = y. Thus our
xy ^ 2 T J

R-language "knows" the relationship between trees and chains. The RHanguage

representations are inherently capable of reasoning out hierarchical relationships.

4.6. Merger

Subsumption is one merit of our recursive formulation. This section describes

another, a rigorous way to combine graph properties. Several sample mergers are

offered

Given a graph property p and a graph property p2, we define their merger to

be a graph property p = p1
 A p2 (read "p1 and p2") which is the set of ail graphs

with both properties. La, G ^ = G n G . In the context of our recursive
P1 P2 P1 P2

representation, p1 = <fySya]>, p2 = <f2,S2,a2>, a n d t h e m e r 9 e r i s a n e w algorithm

p = <f,S,a> generating exactly the set

(G | p~1(G) = TRUE, p~1(G) - TRUE}

One of the strengths of our recursive representation is that merger appears to

be reasonably amenable to automatic computation. Given p1 and p2, we will develop

a series of principles for constructing p. We do not claim that every merger can be

computed from these principles. We do claim that any merger constructed from

these principles is correct The principles are assembled gradually, each one

motivated by an example.

Let p1 be TREE and p2 be CHAIN. Their merger p is clearly CHAIN, since p1

subsumes p2.

PRINCIPLE 1

If p1 subsumes p2, the merger of p1 and p2 is simply p2.

Many attempts at merger, upon examination, become simple cases of

subsumption. Examples of this include:

• ACYCLIC and STAR = STAR

• CYCLE and EULERIAN = CYCLE

• WHEEL and PINWHEEL = WHEEL

• BICONNECTED and CONNECTED = BICONNECTED

• K-COLORABLE and K-CHROMATIC = K-CHROMATIC

We recall that p1 = <fySyat{> subsumes p 2 = <^2'^2'<J2> o n l y i f f i s u f a s u m e s

f-, o subsumes a-, and p~1(S) = TRUE for every S e S-. We will now examine

variants where subsumption is not possible because one of these conditions fail.

Whenever possible, we will state p and p2 with variable names which suggest the

direction the merger should pursue. An automated version would, of course, need

to search for such pairings. Consider the following example:

p - (B + A)*(K,,K ,KJ
r 1 xy w i 3 4 5

where x s V, y u V, d(x) > 2

w,z « V

p.: B* <KJ where x « V, y « V, d<x) even
** xy «3

Property p1 generates K3 and graphs with a "center" subgraph of K4 or Kg.

Property p generates only four graphs, K3 with a branch possible on any vertex.

Although f 1 subsumes f2 and P^1(K3) is TRUE, neither a subsumes the other and it

is their combination we desire, i.e.,
p: B# (KJ where x m V, y 0 V, d(x) > 2. d<x) even

xy o . -

This is particularly interesting because p cannot iterate; the merger consists only of

K3. We have arrived at

PRINCIPLE 2

If f 1 subsumes f2 and p^(S) = TRUE for every S • S2, then the merger p is

<f2 ,S2 , j>. The variables are mapped so as to demonstrate the subsumption of f2

by f1 and so that a eliminates any references to variables not in a^ If a2

subsumes ay a will be simply ay

Consider next the example:

PV (Bxy + Aw/<K3'K4J

where x « V, y « V

w,z e V

p2: B* (K3.K5) where x « V , y « V , d(x) even

The p1 graphs have "center" subgraphs of K3 or K4; p 2 graphs are tree-like and

have "center" subgraphs of < 3 or Kg. Their merger demands a common seed:

p: B* (KJ where x « V, y « V, d(x) even
xy o

We can now postulate:

PRINCIPLE 3

If f1 subsumes f2, a1 subsumes o2 and S1 n S2 # +. then the merger p is

<f /S1 n S2, o2>. Again we assume a proper mapping of the variables.

The most difficult variant is when f does not subsume f~ Consider next the

example:

where distinct x,y,z £ V

distinct p,q s V

p : (A A + A)*(KJ
r2 x y pq 1

where distinct x,y fc V

distinct p,q a V

Property p t adds vertices three at a time, p2 two at a time, to Ky The

merger must deal with the fact that p 1 graphs have n̂ a 1 (mod 3) and p2 graphs

have n 3 1 (mod 2). The most complete solution is n 2 i (mod 6), where

p: (A A .M.A + A)*(K) where
X1 X 2 X 6 p q

distinct x. 0 V, i = 1,2,...,6

distinct p,q 6 V

We observe at this time that incremental graph algorithms "grow" graphs in iterative

steps. We denote the change in n after a single iteration of p. as An., and the

change in m as Am.. We define An and Am correspondingly for property p.

PRINCIPLE 4

If p is the merger of p1 and p2, An is the least common multiple of An1 and

An2, and Am of Am 1 and Am2.

Clearly principle 4 is only guidance for dealing with uncooperative f's. Thus

far, most of our examples have been on "toy" graph properties, that, is, ones

artificially constructed to make a point When we attempt to apply these principles

to "real" properties, our experience suggests some techniques for f construction.

First composite operators may obscure the nature of f and f • rewrite them in

terms of the primitive operators. Second, look for possible subsumption

relationships. Third, attempt to create a hybrid f which is a specialization of both

f1 and fz This f is formed by specializing f1 and f2 until they are equivalent or

one subsumes the other. This series of transforms is guided by the An.'s and Am.'s.

We offer here a limited list of such specializations. The reader may feel free to

augment it

PRINCIPLE 5

Each of the following is a valid specialization:

f*f* - * (f u f u ...f u)*
a.b,~ a1#b1#«. a-,b,,,«. a,.b,,.«

1 1 2 2 k k

This restricts the number of times f is applied within an iteration to

some multiple of k. Subscripts are presumed distinct

This fixes the number of times f is applied within an iteration to

exactly k.

a,b._ a.b,_

This denotes "at least one iteration is required"

• f* - * N

This means f is not iterated at all.

• (f + g)* - • f*g#

<f + g)* — g*f*

These require that the applications of f and g appear in a specific

order.

• (f + g)* - • (f + fg)*

(f + g)* - * (f + gf)#

(f + g)* - • (g + fg)#

(f + g)* ^ (g + gf)*

These insist that some alternatives may not occur alone.

• (f + g) — f

(f + g)* - » g*

These eliminate an option.

- fa.b....

This represents a consistent substitution of variable a for a, b for p,...,

within the constraints of a. For example, if a does not say x # y,

then A may be specialized to A or A .
xy r r xx yy

The astute reader should have noticed that these "specializations' are merely

subsumption tests applied in reverse, i.e., if f1 subsumes f_, then f2 is a

specialization of f . We recognize that as we transform f and f-, a and o- must

be modified accordingly to keep track of the restrictions on newly-introduced

variables

Now we try an interesting "real" merger, to create trees (p) with an odd

number of vertices (p2):

pt: B* (Kt) where x e V, y * V

Pr 1Axw + A y A / ! K t '
where x,w eV

distinct y,z * V

In keeping with the techniques discussed above, we first rewrite f :

f'. (A A)
1 xy y

The seeds are identical but no other subsumption relationships are visibla We

calculate A^ - 1, Am1 = 1. For p , however there are choices: either An2 = 0

and Arru = 1, or An2 = 2 and Arru = 0. We must specialize both f and f2 so

that merger is possible. The motivation for the particular specializations given is an

attempt to match An with An2, and Am ̂ with ATTU. First we push f toward An =

2:
f* = (A A)* - * (f ?)* = (A A A A)*

1 xy y 1 xy y wz z

a r x 6 V, y Jif V » * x,w s V, distinct y,z * V

Note that it is quite legitimate for x and w to be the same, but y and z must be

distinct because y is added after z and is not in V at the time. Now we push f

toward An = 2 and Am = 2:

f#2 - <9 + hh># • (\ w + V / - <99hh># = < \ w A p q \ A /

209

a = x,w 6 V, distinct y,z £ V =-> x,w,p,q e V, distinct y,z 2 V

We will continue our example in a moment After specialization we will frequently

need to verify that f and f- are equivalent or one subsumes the other. Thus we

offer some verification rules in:

PRINCIPLE 6

Each of the following pairs of expressions may be verified equivalent

Note that

graph.

fN a f

Nf a f

the subscripts

The null operator may be

f4b r j
f - ' f'.'

s N

a N

are identical hence the lack of impact on the

ignored

a,b..

An operator and its inverse cancel each other out as long as they are

applied to the same vertices/edges.

• f*f* s f*

This is a notations! equivalent

• (f + g)# 3 f *(f + g)*

(f + g)# • (f + g) V

These are simplifications.

• (f + g) 3 (g + f)

This is the inherent commutativity in the iteration choice.

• f i g where g is the defined primary equivalent of the composite f, a

verification we assumed informally above.

• Axfa b a f b Ax if a prevents x from being a,b,.~.

This is a very limited form of commutativity.

• f\ f*b a f* Q if a permits a = a, p = b,.~

Cb....fa,p.... m C j U if ° permitS a = 3' P = b -
These are principles of absorptioa

• ff 2 ^ u Ma can be changed to select variables

appropriately.

Now continuing with our example, we can rewrite f2 (and a^j in an attempt to

match f . In f we uniformly replace w with y, p with w, and q with z to get

(A A A A)* where x,y,w,z e V, distinct y,z s V
xy wz y 2 7 7

Because y and z are added during the iteration, y,z e V is irrelevant and we now

have a specialization of f. and <?2 that is
(A A A A)* where x,w e V, distinct y,z 0 V

xy wz y z 7

When we contrast this with the specialization of f and o^

(A A A A)* where x,w e V, distinct y,z 6 V
xy y wx z

we see that applying the limited commutativity rule to permute A and A will

demonstrate the equivalence of these two algorithms. With their common seed

then, we create the merger, an algorithm (TREE-AND-ODD-N) which generates all

trees with an odd number of vertices:

p: (Ax A A ^ A)*fc) where x,w s V, distinct y,z * V

As our next real example, we offer the merger for complete (p^ Eulerian (p2)

graphs:

p : F *^) where x 0 V, distinct v. e V, | {v.} | = n

where w,z s V, wz s Ef

|{v.} n V| J 1, distinct v. s V, v.v rvfcv1 * E, i = 1.2wk

We rewrite f 1 and f2 as:

f - A ...A A
1 XV . XV X

1 n
f ; D A A A + A ...A A A ..A

2 wz wv vz z V i v 2 v k _ i V k v k V l V 1 vk

We observe that An1 = 1, Am1 = n and either An2 = 1# Am2 = 1 or An2 < k, 2

= k. Using f2's second option on K3 it will not be possible to iterate and restrict

An to 1, since all the cycle edges must be new to the graph. Thus we specialize
f 1 (and a,) to f*:

f • F F distinct x,y 0 V, distinct v € V, 1 {v.} I = n
1 x y f i « i »

Now An1 = 2, Am1 = 2n + 1. A specialization of f2 is

Y ...Y
V2XV W VixV

This set of cycle additions is equivalent to the specialized fy and therefore

subsumed by it We need a seed, however. p~1(K) is FALSE In this particular

case, we select the "first" graph G generated by p1 for which p~1(G) is TRUE K2

fails, but K3 is acceptable. Thus the merger, the algorithm COMPLETE-EULERIAN for

complete euierian graphs, is

p: (F^F)*(K3) where distinct x,y * V, distinct v. e V, | {v.} | = n

This "discovery" of the seed in this example is more good fortune than technique

An extended discussion of the appropriate seed for a merger appears in Chapter 5.

Our next example is the merger for connected (p^ bipartite (p2) graphs:

pr B (K^ where x s v

where x * V

y,z * V, |{yy.zz}| n E| » -1 .

f 1 may be rewritten as A^ A .̂ Noting that An1 = 0 or 1 (depending on whether y

is or is not already in V), Anr̂ = 1, we have the following alternatives from f :

&n2 - 1 Am2 * 0

An2 s 1 Am^ s 0

An2 * 0 Am2 = 1

Note that we choose not to count loops in any Am. The first two alternatives

require specialization to match f , so we specialize f2 (and aj to:

f . : A A + A A A + A2 xv x xw xx x yz

where x * V , v € V , w « E

x ̂ V, w s v, ww 0 E

y,z s V, |{yy,zz} n E| « 1

Examining f , we see that B is equivalent to the first alternative (for v e V),

BwBxv to the second (for v * V), and B (for y,z e V) to the third Thus f 1 is

equivalent to the specialized f^ The seed for the merger is the minimal bipartite

connected graph <{1,2} /{1 U 2 } > . (Again, we refer the reader to Chapter 5 for a

discussion of seed choice.) The final merger, to generate connected, bipartite graphs

212

is

p: (A A + A A A + A)*(<{1,2},{1 1,12}>)
^ xv x xw xx x yz

where x ^ V, v s V, vv s E

x £ V, w 6 V, ww * E

y,z s v, |{yy,zz} n E| = 1

This example demonstrates that selective iteration (such as A A }, where the
^ XV X

variables are more restricted, can be the key to the creation of f. It also indicates

that loop labels may participate in a merger for a single property. If both

properties utilized loops, the meaning of the label would likely be obscured and

coloring might be more appropriate.

Another application of merger is to test for the existence of a graph with

certain characteristics. For example, do there exist odd regular graphs on an odd

number of vertices? We consider the merger of odd-regular (p j graphs with an

odd number of vertices (p^:

p :̂ (Ax + A A l V ,) where x,y s V, distinct w,z * V

p • (OM + A A D ' CM D + F R)*
^2 ^ r v k + 1 w f w k - 1 y2q y,p y ^ y ^ y ^ pq zy..zy

(Qk+1) where distinct v,w * V, distinct v r v 2 '~ ' \ 6 v*

distinct w r w 2 _w f c . 1 € V/v 2 | - 1 v 2 r w 2 M w 2 j e a

distinct p,q « V, distinct y r y 2 ^ y k + 1 * V, pq 6 E

distinct x rx2 , - ,xk ,z t e V, distinct z2,z2^zk • V, z ^ . « E, i = 1,2wk

Either An1 = 0 , Amt = 1 or An1 = 2. Amt = 0, and either An2 « 2, Am2 « kf or

An2 = k+1, Am2 = (k+1)k/2, or An2 » k - 1 , Am2 = k(k-1)/2. The seeds indicate that

n1 will always be 1,3,5_, and n will always be k+1, . k+3,~, where k is odd

Clearly no merger is possible since no common seed will ever be found This fact

is well-known in graph theory. Characterizations of n and m may be based on the

generating algorithms, producing not hypotheses, but proved theorems about the

nature of graphs with multiple properties.

4.7. NP-Completeness and R-Properties

Another, unanticipated strength of our representation is the peculiar formulation

NP-complete problems seem to assume. (We adopt the definitions of [Garey 79]

and use it as a source for our examples in this section.) A seed set is simple if it

is finite or definable in an edge-set language other than LQ, otherwise it is complex.

Most of the R-properties presented thus far have had simple seed sets. When one

attempts to write an R-property, and cannot find a formulation with a simple seed,

this is not a proof that such a formulation does not exist It is interesting,

however, that those properties which we have not been able to formulate with a

simple seed are also known to be those for which a testing algorithm is

NP-compiete. In this section we discuss some properties with complex seed sets.

By an NP-complete property, we mean a property whose testing algorithm is

NP-complete.

A cycle which visits every vertex of a graph is called a Ham//ton/an cycle. A

graph with a Hamiltonian cycle is a Hamiltonian graph. Several examples of

Hamiltonian graphs appear in Figure 4-50, with one Hamiltonian cycle appearing as

darkened edges.

The R-property HAMILTONIAN is

A* (C) where x,y « v

Figure 4 -51 shows the iterative steps in a sample run of HAMILTONIAN using C. as

a seed Tfie seed set C is the set of all cycles, La,

C = {Ck | k « 1,2....}.

The floors for Hamiltonian graphs are <P r<P2X2 , I1>,21> and <Pr<P2X1n,21>,21>.

Note that the language in which the seed is described is itself an R-languaga

HAMILTONIAN begins with a cycle (the Hamiltonian cycle) and adds only edges,

thereby insuring that the graph remains Hamiltonian. Clearly HAMILTONIAN is correct

The inverse HAMILTONIAN"1 is computed by:

r1
 =A"1

xy

Figure 4-50: Some Hamiltonian Graphs

pre
- 1

Figure 4-51: HAMILTONIAN in Operation

= D
xy

= x,y e V, xy * E, d(x) £ 2, d(y) £ 2

= x,y e V, xy 6 E,

there exists some largest cycle not including xy

The floors shift to <P r<P2^2,Z1>,E6> and < P 2 ' < P 2 ' L m ^ i > ^ 8 > * R g u r e 4 - 5 2 s h o w s

HAMILTONIAN""1 operating on a graph G € G and a graph G * G . If xy does not

Figure 4-52: HAMILTONIAN"1 in Operation

destroy some largest cycle in G, HAMILTONIAN"1 will preserve a Hamiltonian cycle

and HAMILTONIAN"1 will return TRUE for G s G . On G * G , G will reduce to its
P P

largest cycle and some set of isolated vertices, and ultimately fail. HAMILTONIAN"1

cannot create any new edges, so HAMILTONIAN"1 is correct and HAMILTONIAN is

complete.

4.7.1. Subgraph Properties and Two-Stage Algorithms

. One interesting way to see HAMILTONIAN is as a two-stage algorithm of the

form f*(g*(S)) subject to a, i.e.

A* (S* (KJ)
xy wv2 3

where x,y e V

w,z e V, v i V, wz s E

There are many graph problems which are known to be NP-complete [Garey 79]

and can be formulated as "test to see if G has an induced subgraph with property

p." If G = <V,E> is a graph and A £ v, the graph GA = <A,{xy|x,y s A, xy e E}>

is the subgraph of G induced by the vertex set A, and GA is an induced subgraph

of G.) Our recursive formulation readily produces all such graphs, for if p = <f,S,a>

then ail graph with a subgraph in G are generated by:

(A + A)*{f(S»x yz

where f is subject to a

y,z e v

The p properties which have been shown to make such a formulation NP-complete

include bipartite, acyclic and 3-regular [Garey 79]. Our representation seems to

model such NP-compieteness by the use of a complex seed set Once again, our

inability to model a property in another way is not a proof, merely a suggestion of

some underlying pattern.

Of course, not ail properties of the form "G contains an induced subgraph with

property p" require such a two-stage formulation, and those which do not will not

be NP-complete. For example, if p were edgeiessness, every graph G = <V,E> has

an edgeiess subgraph G = <V,^>. In addition, the nature of G may be so restricted

by the problem formulation that the problem becomes linear. For example, "G

contains an independent set of at least k vertices" is a restricted form of

edgeiessness and is NP-complete, but if G is also bipartite, a formulation with a

simple seed set is possible.

Another problem, shown NP-complete, is whether or not a graph G = <V,E>

has a degree-constrained (d(x) £ k for all x * V) spanning tree. This too may be

viewed as a two-stage algorithm:

(A + A)*(B* (KJ)x yz vw 1

where y,z s V

v e V, w « V, d(v) < k

Essentially, "having an induced subgraph with property p" has a two-stage

formulation f*(g*(S)) because the kind of operations permitted in g* may no longer

217

be permissible after one or more iterations of f. There is the danger of a loss of

information. Once f begins, the I-language for g becomes inadequate. The only

known prevention, within our formulation, is to construct a two-stage procedure.

4.7.2. Graph Properties with Elaborate Seed Sets

Whether or not a graph has a k-vertex cover is an NP-complete problem

The reader may recall that the one-stage algorithm VERTEX-COVER required an

underlying skeletal graph, almost as though there were an elaborate seed set being

built upon. Looking back, we find such an awkward construction noteworthy,

because it is associated with an NP-complete problem.

Our immediate impulse now is to leaf back through Chapters 3 and 4, looking

for properties whose L-language is LQ. In some instances, although the L-language

is LQ, the seed set consists of one or two graphs and we are confident from

results in graph theory that such a property can be tested in linear time (STAR,

K-EDGES, MAX-K, PINWHEEL). Only EVEN-REGULAR and ODD-REGULAR have seed

sets in LQ which are infinite and can be tested for in linear time. Upon reflection

we see that, rather than beginning with Q k + r a set of finitely many disjoint copies

of K , we might have written the regular formulations utilizing CM to

permit the addition of a complete graph on k+1 vertices at any time. These

"improved" algorithms, and the ease with which they are developed suggest that

"linear" properties have simple seed sets and that NP-complete properties do not

The only exceptions to this neat little package are the labelling properties,

those which implicitly or explicitly use labels. Such NP-complete properties (e.g.,

"has independence number k" or "is k-colorable") have simple seed sets. Thus in the

transition to Rc- or Re-languages we seem to lose the language's ability to predict

NP-completeness. This may well be due to the fact that labelling will distinguish

among previously-isomorphic graphs.

4.7.3. NP-Completeness and the Recursive Formulation

The cleverness of the automated inversion technique was the pre-profiie

construction a and the preservation after f of the information a contained If
pre ^ pre

we cannot construct a adequately or if f destroys that information, then search is

required. For example, in HAM1LT0NIAN, if we begin with a cycle and add some

edges to construct G, which edges can we delete in our search to return to the

seed? Only those which would not have been in the seed to begin with, i.e., those

which some largest cycle does not contain. The embedding languages (both L and E)

state what data is explicitly represented and representabie. If, for example, a graph

were characterized in L by describing its cycles and E referred to its cycles,

HAMILTONIAN would have an implementation which was not NP-complete. This

suggests that if one knows the properties of interest in a set of graphs, a language

L could be designed to characterize graphs based on only those properties as

L-characteristics, speeding the implementation of properties previously regarded as

NP-completa

219

CHAPTER 5

CONCLUSIONS

A mathematician, like a painter or a poet, is a maker of patterns.

If his patterns are more permanent than theirs, it is because they are

made with ideas.

—Hardy

The purpose of this chapter is to draw together the various themes in this

work. Rather than a synopsis, this chapter is an evaluation, a critique and a plan for

future work. Our work has not consisted of theorems, or even conjectures. We

postulated a representational framework and then explored its adequacy from an

experimental sample It is therefore appropriate that this chapter consists of

observations, comments and intuitions. We evaluate first the formal language

framework, and then the two families of languages. We detail a hypothetical

implementation, and conclude with some open questions and implications of this

work.

5.1. Languages for Graph Properties

This section evaluates the formal language framework for knowledge

representation in graph theory. It provides an overview of the more detailed

material in the subsequent section

This work chose two complementary approaches to the problem of

representation in graph theory. The first approach (in Chapter 2) tried to describe

an edge sets behavior under simple manipulations on a fixed number of vertices.

We explored the edge-set languages Lr L1n/ L2, L2n, L3, L3n and L*. The

properties available turned out to be

• finite

• hierarchical

• far fewer than the theoretical upper bound

• perfectly capable of inversion

• perfectly capable of merger

• rarely mentioned in graph theory texts

Experimental results suggest that such edge-set languages may provide an adequate

hashing technique for graphs up to a certain size. Edge-set languages offer

valuable classification schemes for similarities and differences within sets of graphs

Further details appear in 5.2.

The second approach (in Chapters 3 and 4) uses the edge-set languages to

represent a given graph property in a recursive formulation. The graph property is

an algorithm, which incrementally constructs precisely the set of ail graphs which

have the property. The R-languages were shown to have substantial expressive and

procedural power. The strengths of this representation are its

• clarity and conciseness

• ability to express a wide range of "common" graph properties

• hierarchical transparency (See subsumption in 4.5.) The representation

provides efficient testing of such hierarchical statements as "every tree

is acyclic" or "every biconnected graph is connected" These are

trivially deducible from the R-language representations for those

properties.

• amenability to inversion (See 3.5.) An algorithm in this representation

can be manipulated to construct a new algorithm which tests an

arbitrary graph for a property defined by a graph generator without

reference to any other graphs.

• amenability to merger (See 4.6.) The representation can usually be used

to construct a new algorithm which computes from two algorithms the

set of graphs with both properties.

Further details appear in 5.3.

221

How do these representations compare with others for mathematics? Lenafs

AM could only construct examples and make conjectures based on its observations.

It had no facility for proof. We also believe that the poverty of and restrictions on

its concept representation (a frame language) substantially hampered its ability to

hypothesize. An R-language representation, if automated, could provide the facility

to hypothesize and prove theorems from their representational structure, i.e.,

perform mathematical research in graph theory. It would be able to observe

theorems, i.&, postulate statements which are suggested by the structure of the

representation and immediately test their validity. Recall our observations on the

format of graph theory theorems in 1.3. We observe that a theorem of the form

"if a graph has property p and property q then it has property r" is a statement

first of merger and then of subsumption. A theorem of the form "a graph has

property p if and only if it has property q" is merely a double subsumption

(equivalence) test A theorem of the form "it is not possible for a graph to have

both property p and property q" is a report of merger failure. An implementation

which searched out and attempted merger and subsumption relationships would be

performing the conjecture and proof research behaviors of a mathematician.

Mathematicians perform other tasks as well. They organize knowledge, as

Michener has suggested and are able to detect significance and relations among

concepts. Her frame representation evolves into a set of vague but rigid hierarchical

structures, requiring value judgements (is a result basic? key? culminating?) to

pigeonhole the knowledge Our languages have systematized her spaces to achieve

procedural power In return we have had to sacrifice notions of cognitive power

and interestingness (such as "key results"). We could also generate arbitrary terminal

strings in an R language, merely by following its grammatical property rules. The

semantic interpretations of such random strings would be graph properties.

Whether or not such properties would be mathematically interesting is open to

question. An AM-type guidance system for property development would be

necessary.

222

5.2. Edge-Set Language Results

This section summarizes the results of empirical exploration on the DEC-20

using the edge-set languages L r L1n, L y L2n, L3 and L3n.

The major result in this area is that the languages L r L. and L3 are, in fact

finite, i.e., that each grammar, whose set of terminal strings is infinite, has only a

finite number of interpretations for those strings. The theoretically-calculated

number of these interpretations and the number empirically observed under machine

computation for the stated n values is summarized in Table 5-1 for L1n, L-n and

L3n, both directed and undirected cases.

Characterizations

12

106

259

Characterizations

24

4849

>20,000

Table 5-1: Edge-Set Language Properties

Listings of the programs used to achieve these results appear in Appendices II

through V.

The edge-set languages have substantial procedural power. They make merger

and subsumptioa as well as generation and testing, virtually trivial. In addition they

have an interesting potential for the kind of graphs which arise [Roberts 76] in

many application areas: an ability to find similarities and differences.among a set of

graphs from their edge-set language characterizations. The languages' ability to

categorize graphs into exactly one of finitely many possible classes (for fixed or

variable n) suggests that their graph signatures have significant potential as a hashing

functioa

Undirected Language

L l n , n = 1,2....

L2n, n S 25

L3n, n S 25

Directed Language

L ln, n = 1,2.-.

L2n, n £ 25

L3n' " * 1 3

Properties

4

27

229

Properties

6

202

2567

The operations defined on the edge sets, however, were deliberately limited to

control the expressive hierarchy. These limitations also severely restrict the

expressive power of the edge-set languages. Even L- can be reduced to

describing an ordering of the cardinalities of the partitioning sets in a Venn diagram.

Graph properties commonly appearing in graph theory texts (with the exception of

something like edgelessness or loopfree) are generally not available in the edge-set

languages.

5.3. R-Language Results

Having evaluated the edge-set languages, we turn in this section to the

following facets of our R-language representations:

• expressive capability

• the <P,LE> formulation (See 3.3.)

• floors (See 3.4.)

• inversion (See 3.5.)

• subsumption (See 4.5.)

• merger (See 4.6.)

• complexity

• redundancy

5.3.1. Expressive Power

We have no certain way to determine whether or not a given property is

within the expressive range of a given R-language One writes an R-property, as

cleverly as possible, and then determines its floor. How do we judge whether the

R-language representation as a whole is valid/adequate for all of graph theory? Our

work has explored this question empirically. We originally began with <P i J J >

and several respected texts on graph theory. From the indices of the books we

selected many properties. The early choices (in Chapter 3) were simple properties

and met with immediate success. The later, more complex choices (in Chapter 4)

suggested natural extensions (a register, labels) to R-languages, but were realizable

within the basic <P,L,I> formulation. The properties discussed in this document

represent a broad selection from contemporary graph theory.

It would be remarkable to report that all the experimental results (pick a

property, express it in an RHanguage, show correctness and completeness) were

positive. (See 3.2.) We did have a limited number of failures, instances where either

• we could not find any <f,S,a> description for a property

or where

• we could find an <f,S,a> description whose correctness was apparent

but we could not prove completeness

We suspect that the properties in the first category are merely awaiting a new

extension to RHanguages, just the way k-factorability needed edge labels. The only

property we can cite in the first category is having diameter k. (The diameter of a

graph is the maximal length of the shortest path between any pair of its vertices.)

This property may require edge labels of an elaborate nature. As for the second

category, the ingenuity brought to bear in constructing an RHanguage representation

frequently reflects knowledge of theorems in graph theory about equivalent

definitions or characterizations. We are hampered both by our own modest

knowledge of graph theory and the current development of the subject, particularly

with respect to complexity. We are also now aware of the two-stage formulation

which NP-complete problems seem to require. (See 4.7.) We attribute our inability

to prove completeness to these two factors for the following properties:

self-complementary, uniquely k-colorable, k-edge-colorable. Table 5 -2 summarizes

the 43 properties correctly and completely expressed in this document Many

others, for example "line graph/' with well-known characterizations are clearly

expressible as well.

Graph theory, however, is not only properties but also relations among them.

R-languages have impressive procedural power. We recall our examples of

mathematical research behavior at the end of 1.6-3. A system using an R-language

for representation will certainly be able to generate examples of any property

known to it As long as the inverse of a property is computable, the system will

also be able to test objects for the property. What about proving theorems?

graph

edgeiess graph

acyclic graph

tree

loopfree graph

chain

cycle

star

wheel

complete graph

graph on even number of vertices

graph on odd number of vertices

graph with even number of edges

graph with odd number of edges

Eulerian graph

graph with n vertices

graph with m edges

graph of minimum degree k

graph of maximum degree k

pinwheel

graph with k components

even-regular graph

connected graph

biconnected graph

k-connected graph

graph on counted vertices

graph with counted edges

graph with calculated maximum degree

bipartite graph

complete bipartite graph

k-vertex-covered graph

^independent graph

k-colored graph

k-chromatic graph

graph with vertex covering number k

graph with circumference k

graph with edge covering number k

graph with a k-factor

k-factorable graph

graph with independence number k

Hamiltonian graph

planar graph

non-planar graph

odd-regular graph
Table 5-2: Graph Properties Studied under Recursive Generation

Looking back at 1.3 we recognize that relations among properties are usually

verifiable with an R-language representation, and thus most theorems are provable.

In particular

• "If a graph has property p and property q, then it has property r" can

be proved by demonstrating that the merger of p and q is subsumed

b y r

• "A graph has property p if and only if it has property q" can be

proved by demonstrating that p subsumes q and q subsumes p.

• "It is not possible for a graph to have both property p and property

226

q" can be proved by attempting a merger on p and q and

demonstrating that the merger is impossible. Inconsistent n and m

values are one such proof, and there may be others.

More generally, an RHanguage representation offers the material for many types of

classical mathematical conjectures. The concept of subsumption reflects perfectly

the inclusion of one property by another. The merger technique enables us to

consider graphs with any finite number of properties Property equivalence is an

expression of alternative characterization. Thus the RHanguage formulation appears

to express not only graph theory properties but also the relations among them. We

consider RHanguages a potentially powerful representation for all of graph theory.

(A detailed treatment of this potential appears in 5.4.)

5,3-2, The <P,L,E> Formulation

In effect we developed a hierarchy of RHanguages. Each language is based

on a triple <P,L,E>, and the hierarchy for RHanguages stands upon the hierarchies

for PHanguages, LHanguages, and ^-languages diagrammed in Pigure 3-6. Thus the

RHanguage < p
1 ' L - r 2 2

> is ' e s s complex than <P2''"3^3>' ^ut n o t c o m P a r a b ' e w r t h

<P ̂ 1-2*2^- Th© PHanguages, although limited appear adequate to provide the

expressive power of the benchmark texts. The LHanguages also appear adequate,

although we would have preferred more edge-set languages and less need for Lg.

This reliance on LQ may be an intrinsic limitation of the edge-set languages as we

define them. The E-languages are adequate, although ZQ is merely a catchail

("everything you always wanted in an inverse but were afraid to ask for.11)

5.3,3, Floors

The floor of a graph property is useful in categorizing the difficulty involved in

the calculation of a property. Figure 5-1 summarizes these results for RHanguages

and R* -languages.

We observe that if p1 subsumes p2, the floor for p1 may be more complex

than the floor for p. (GENERATE/EDGELESS), less complex (TREE/CHAIN) or the

227

K-EDGES BICONNECTED BICONNECTED

K-CONNECTED

< P 2' L iA >

K-INDEPENDENT

EULERIAN

PINWHEEL EVEN-REGULAR

ODD-REGULAR

K-COMPONENTS

CONNECTED

<P2'L2'V
EULERIAN

< P 2 ' L 1 n ' V
WHEEL CYCLE CYCLE MAX

CHAIN CHAIN

<PrL2,I5>

BIPARTITE

COMPLETE-

BIPARTITE

BIPARTITE

COMPLETE-

BIPARTITE

K-VERTEX-COVERED

STAR MAX-K MIN-K

CHAIN,

<P r L r Z 5 >

COMPLETE*

<prL3.r3>

ODD-M

CHAIN,

<PrL3.I2>

EVEN-N

ODD-M

EVEN-N

ODD-N

ODD-M

<PrLr22>

ODD-N

LOOPFREE

EVEN-M

DEGREE
Figure 5-1: Graph Properties with Edge-Set L-Language Grouped by Floors

228

<prLmV ^ r V ^ r ^
K-VERT1CES GENERATE EDGELESS

ACYCLIC

TREE

VERTICES

EDGES
Figure 5-1: Graph Properties with Edge-Set L-Language

Grouped by Floors, continued

same (ACYCLIC/TREE). In general the only way we can distinguish usefully among

properties with an L-language is to categorize them as "requiring an edge-set

language" or "requiring an R-language". A hierarchy of those R-properties and

R+-properties using edge-set LHanguages appears in Figure 5-2. This hierarchy is

based only on P-languages and ^-languages. The figure does not split properties

between classifications (as Figure 5-1 did) and shifts the floor to include the

inverse as well. It also makes explicit some of the following points:

• No property required P. for generation.

• Z- might be replaced with two E-languages to improve the

differentiation between £ and E5-

• The L-languages describe the minimal case(s) of the property but do

little to clarify the hierarchy.

Floor shifting (see 3.6) occurs when the generation language is inadequate for

the statement of the inverse. By definition of p~1 (in 3.5), the L-language cannot

change from p to p"1. If p utilizes Py the P-language must change to P2 for p~1,

since the inverses of the P1 primitives are in P and not in P . Indeed every

P1 -based property has a P2-based inverse None of the other P-languages have

this problem The virtue of separating P1 from P2 lies in the ability to distinguish

purely incremental procedures from those which may decrease the size of the

graph. In our opinion this merits the separation and we are willing to have

automatic shifts from P1 -based properties to P2-based inverses.

A change in E from p to p"1 is somewhat more difficult to deal with. With

229

CP4.Z53 <

BICONNECTED

K-CONNECTED

t
K-COMPOINENTS

CONNECTED

[P3.Z3]
MAX

CHAIN

CYCLE

EVEN-N

ODD-N

EVEN-M

ODD-M

MIN-K

MAX-K

EVEN-REGULAR

ODD-REGULAR

VERTICES

EDGES

DEGREE
Figure* 5-2:

COMPLETE

EULERIAN

PINWHEEL

BIPARTITE

COMPLETE-BIPARTITE

K-VERTEX-COVERED

K-INDEPENDENT

GENERATE

ACYCLIC

TREE

LOOPFREE

CHAIN,

K-VERTICES

Graph Properties with Edge-Set L-Language Ranked by P-Language
and I-Language

the exception of K-VERTICES (which never deletes a vertex) every inverse requires

a ^-language of at least Z3- With the exception of EULERIAN, no inverse has a

simpler J-language than its generator. With the exception of CIRCUMFERENCE-K, a

^-language no more complex than £ for the generator is adequate for the inverse.

As we have mentioned before, there may be many adequate (correct and

complete) formulations for a given property. The fact that, from our work, a

property appears to have a particular floor is not a proof that no simpler

RHanguage would suffice For example, the formulation for connectedness which

was originally mentioned in 3.7.21, has floor <PyLyZ^>. whereas we used a

formulation with floor <P 4 X r S s
> % The first formulation, although correct, has an

inverse which must reside in < p
2 ' l T ^ 6 > a n c l s e l e c t s ®d9©s "which will not

disconnect the graph," at best an awkward construction. In much the same fashion,

we suspect that CIRCUMFERENCE-K has a "better" formulation.

5.3.4. Inversion, Subsumption and Merger

The automated inversion technique is remarkably successful for generators with

^-languages no more complex than £4. An RHanguage using £5 could probably be

automated by skillful programming. The few properties with inverses in 2 ,

however, are simply not amenable to automation as we have conceived it and should

be reformulated if at all possible We have found that inversion even works

correctly on the output of a merger, although there is really no need to calculate an

inverse there1

Subsumption is an important relation in graph theory. The clarity of its

definition for RHanguages and the comparative ease with which it may be tested

contribute substantially to the strength of our representatioa

1The theory of computability offers support for our inability to make certain
absolute statements, such as "an R-property is always invertible if...." We allude to
these similarities in footnotes in this chapter, and expect to pursue them at a later
time For inversion, we recall that a set is recursive if and only if both it and its
complement are recursively enumerable. Thus the ability to generate a property as a
set does not guarantee the ability to test for that property on a given input graph.

The merger technique is surprisingly adequate. We believe that the ability to

assert the impossibility of merger (as in ODD-N and ODD-REGULAR) is as important

as the ability to generate a merger, because it demonstrates a relation between the

unmerged properties. There are probably more merger principles awaiting discovery.

The most interesting open question is, "given a merged f and a merged a, how do

we find a common seed set when S1 n S2 = £ ?" The cases we tried were

"lucky" in that the new seed set quickly appeared within a few iterations, but we

have no guarantee that this will always occur. We suspect this to be quite a

difficult problem.

5.3.5. Complexity and Redundancy

There has been very little consideration of the complexity of the algorithms

which are semantic interpretations of the R-properties. We did note that the

complexity of any algorithm is determined both by its internal representation and the

matching requirements made by its selector Thus generation under Zv Z2> £3 or £ 4

can certainly be achieved in linear time with properly constructed (not necessarily

linear) storage Because Z5 and EQ encompass a much broader range of choices, no

such guarantee can be provided for them, and the complexity of algorithms based

on them is an open question. The testing algorithms use, in the worst case, storage

of 0(n) vertices and 0(n2) edges, making the selectors dependent on the size of the

input graph. Again, cleverness in storage organization should be able to overcome

this for Zr Z2< 2 3 an<* I 4 * but probably not for many instances of £ 5 and Z#

Redundancy is an interesting issua The algorithms are non-deterministic; their

selectors read "choose any.J' Such selection could be randomized A tester would

always return the same output, a generator might not This non-determinism would

not affect the results of a testing algorithm, although its efficiency will be

dependent, for certain properties, upon the value of the output and the efficacy of

its choices. For example, testing completeness requires deleting one vertex of

degree n-1 on each of n-1 iterations. On a complete graph, selection should be in

constant time and TRUE arrived at after 0(n2) edge deletions. On a graph which

would be complete but for a single edge, selection will be in constant time and

FALSE arrived at after 0(n2) edge deletions. On a graph without any vertex of

degree n - 1 , however, FALSE will be arrived at in O(n) time. Thus incomplete graphs

may be faster to test As another example, consider the graph in Figure 5-3.

Figure 5-3: A Graph with Variable Testing Time

If we test that graph to see if it is Eulerian, the speed with which we arrive at a

result depends upon the cycles we choose to delete. Deleting the largest cycle

first will require only two iterations; the smaller cycles can cause greater delay.

When we generate a set of graphs with a specific property, even if we force

distinct selections from one execution to the next we do not guarantee distinct

(non-isomorphic) graphs2. For example, we could generate the same tree on n

vertices in many different sequences, growing the tree out from its center, and yet

the output would be indistinguishable. Irredundant programs have been developed

for, among others, the enumeration of all graphs on n vertices, ail trees on n

vertices and all spanning trees of a graph. This redundancy would be a problem if

generation were our only objective. Fortunately, generation is merely our

description of a set of graphs, and we have no intention of executing the same

2This ambiguity is due both to the ambiguity of the formal language and to the
range of bindings permitted for the variables during execution of the algorithm.

algorithm repeatedly for distinct results. The same redundancy that may well

produce isomorphic graphs also appears related to correct behavior on inversion, a

worthwhile tradeoff.

5.3.6. Boolean Properties

Some properties, as we noted in Chapter 1, are boolean. Cyclic, connected

and 3-chromatic are all examples of boolean properties. If we have an algorithmic

formulation of property p, how will the algorithm for property not-p relate to it?

Although the relaxation of a selector condition a would permit a graph with the

opposite boolean value to appear in the generated set it will certainly not guarantee

that precisely the complement of the first graph set will be generated For

example, although

B* (KJ where x s V, y * V
xy 1 7

generates all trees, the expression

B* (KJ where x s V
xy 1

does not generate all non-trees, merely all connected graphs (with the possibility of

some loops). Let us consider this a bit more.

The reader with some knowledge of graph theory will have noticed an

important gap in the properties of Chapters 3 and 4; there is no mention of

planarity. A graph is planar if it can be drawn on the plane so that no two edges

intersect Several examples of planar and non-planar graphs appear in Figure 5*4.

Kuratowski's theorem provides what appears to be the ideal RHanguage

characterization for planarity: a graph is planar if and only if it has no subgraph

homeomorphic to Ks or K33. (A graph is homeomorphic to Kg or K3 3 if it can be

obtained from one of them by a series of edge subdivisions of the form S .)
7 * xvy

Figure 5-5 shows the derivation of a non-planar graph from Kg. Every graph in

the figure is, by Kuratowski's theorem, non-planar.

It should, therefore, be quite simple to describe non-planarity in an R-language.

PLANAR

IMON-PLAIMAR

Figure 5-4: Some Graphs and Their Planarity

Figure 5-5: The Construction of a Homeomorph to K

The algorithm NON-PLANAR is

(A + A + S)*(KB,K- Jx yz pvq 5' 3,3

where y,z e v

p.q e V, v * V, pq e E

Figure 5-6 shows the iterative steps in a sample run of NON-PLANAR. The floor

for non-planar graphs is <P2 '42'^i> '

Figure 5-6: A Sample Run of NON-PLANAR

Note that we permit subdivisions to occur interspersed with vertex/edge additions.

Although Kuratowski's theorem is suggestive of a two-stage algorithm (first build

the homeomorph, then embed it as a subgraph), every subdivision of an edge not in

the homeomorph can also be achieved by the addition, in sequence, of a vertex and

two edges. Thus the one-stage algorithm is, by Kuratowski's theorem, both correct

and complete. Unfortunately, the "automatically" computed inverse is an extremely

unpleasant Ee~based formulation:
o

f

a"

= (D + D + D D D A)
x yz v vq pv pq

= x 6 V, d(x) » 0

y,z e V, yz « E, yz is not in every subgraph of G

homeomorphic to K5 or K 3 3

p,v,q e V, pv,vq e E, pq * E, d(v) = 2

Of course, Kuratowski spares us any need for NON-PLANAR ~1 in a

completeness proof, but the awkwardness remains. Quite a different alternative is

suggested by Tarjan's algorithm for planarity testing. Essentially Tarjan showed that

every planar graph could be embedded on the plane with respect to a central chain.

A representation which embodies this notion generates all planar graphs via PLANAR.

The formulation requires extensive details on Tarjan's algorithm, beyond the scope

of this work. Essentially PLANAR- constructs the graph from a central (labelled)

chaia (If c(xy) = 1 the edge is on the chain, else c(xy) = 0.) Every vertex has

three labels associated with it which may be concatenated into a single label and

deciphered as necessary. The labels indicate upper and lower boundary pointers of

the arc on which the vertex lies, and whether the vertex lies to the left of, to the

right of, or on the central chain. Thus the R-language requires both edge labels and

vertex labels. The generator begins with a chain on two vertices and can extend

the chain, with appropriate labelling, at any time. In addition it provides for the

construction of arcs and tree-like structures on either side of the chain, properly

embedded and labelled Figure 5 -7 shows the iterative steps in a sample run of

PLANAR

-, 2 3 4 5 6 7

Figure 5-7: A Sample Run of PLANAR

The notation for the algorithm is not given here. Suffice it to say that Tarjan has

provided theory to prove such an algorithm is both correct and complete. The

general format is a one-stage algorithm based on A 's, S 's and B 's, with a
xy xvy xy

tester dependent, as usual on correct labelling.

We would have liked there to be a clearer relationship between PLANAR and

NON-PLANAR. This is not the only instance of this difficulty. The reader may

confirm that the following algorithm CYCLIC with floors < p
2 ' L i n ' ^ i > a n d < P 2 ' L 2 '^1 >

is complete and correct

where y,z s v

p.q s V, v 0 V, pq s E

it too bears a disappointingly unclear relationship to its opposite, the algorithm

ACYCLIC with floor <P1.LrE1> of 3.7.1:

B* (<V,*>) where x m V, y * E
xy

We would in retrospect have preferred a more transparent relationship

between such pairs of algorithms. In the edge-set languages, the opposite of a

boolean property was always equally expressible. In the R-languages, with their

procedural orientation, the value of a boolean property.may have a different floor

dependent on the boolean value, not to mention a different testing efficiency.3 The

fact that the merger of two algorithms is impossible does not mean that they are

opposite values of the same property. (Witness ODD-REGULAR and ODD-N.)

3ln the theory of computability, there are properties (i.e., subsets of the
integers) which can be generated by a Turing machine, but whose complements
cannot (Such sets are called recursively enumerable non-recursive sets.) In the
theory of NP-completeness, membership of a problem in NP does not imply
membership of its complement in NP. (Problems with complements in NP are
classified as co-NP and the relationship between NP and co-NP is unknown.) The
parallels suggest that a theory for boolean properties in R-language contains difficult
questions.

5.4. Applications

This section hypothesizes an implementation of our results to show their

significance to artificial intelligence. Lenats AM is used as a framework.

AM [Lenat 76] is intended to model scientific theory formation AM is a

program which makes mathematical discoveries. AM begins only with a hierarchy of

115 set theory concepts and a collection of 242 heuristics.

An AM concept is either an object (eg., set list) or an activity (e.g., set-union,

first-element). Each concept is represented as a frame, a list of slots. A slot is a

(name, value) pair. For concept C and input X, slot names include generalization (i.e.,

names of concepts more general than C), definitions (ways to test if X is a C),

examples (sample X's satisfying C's definition), and worth (a point value assigned to

C). The names and number of slots for ail concepts are predetermined, uniformly

fixed, and limited to a maximum of 25.

An AM heuristic is a rule in the form "if P then Q." P is the list of conditions

the heuristie must satisfy to be applicable. Q is the list of actions which will occur

if the heuristic is "fired" Heuristics focus AM's attention; they are predetermined

and not subject to examination

The only goal of AM is to fill in slots. AM is intended to perform

mathematical research, i.e., increase its knowledge (as represented by its concepts)

by acquiring new information and storing it appropriately. "Filling in the slots" is

therefore an appropriate, if admittedly limited, translation of "research."

The control structure for the program is a list of tasks, called an agenda Each

task has a priority rating assigned to it When AM is ready to perform a task, it

selects the one with the highest priority and allots it machine resources (time and

space) based upon its priority rating. A task ends either with success or by

exhausting its resources. Algorithmically AM reads:

i. Select the top task T on the agenda

ii. Assign resources r(T).

iii. While within rfO, execute T.

iv. Update the agenda

v. Go to i.

Tasks can only:

• add a new task to the agenda

• define a new concept

• add an entry to some slot in some concept

After an hour of CPU time, and without any initial notion of proof, formal

reasoning, numbers or arithmetic, AM includes among its discoveries prime numbers

and the fundamental theorem of arithmetic (unique factorization of an integer into

primes). AM's failures are as interesting as its successes. It never "notices1

negative numbers, closure or trichotomy, nor does it ever find any interesting

properties of exponentiatioa Lenat held AM's heuristics accountable for these

lapses. Although the heuristics were initially effective, they lose power as the

domain of exploration moves from set theory to number theory. (Lenat is currently

working on EURISKO [Lenat 82] , an extension to AM. EURISKO attempts to

improve AM's research prowess by evolving new heuristics.)

We believe that our work in knowledge representation can make substantial

contributions to AMHike activity. We postulate an automated Graph Theorist (GT) as

an extension of AM and EURISKO. GTs domain is, of course, graph theory. GT,

like AM, is capable of multiple definitions of a property (concept). A GT property

definition is a generator in a recursive language, labelled according to its floor.

Every definition has a corresponding testing algorithm, also labelled by floor.

Examples in GT are readily constructed by executing the definition. (In AM, example

generation is much more difficult and less general. Examples are generated by one

task and tested by another. AM definitions are what we have described as testing

algorithms.) Extremal examples in GT (of great importance to AM heuristics) are

elements of the seed set and therefore readily disclosed. Non-examples in GT must

240

be constructed via generate-and-test i.e., by running GENERATE and selecting those

which fail the property test Thus a major activity, example construction, is

guaranteed correct and complete in GT, although not in AM.

Why is example generation so significant? AM "discovers" primarily by

"randomly look [ing] at empirical data for regularities." [Lenat 82] (In a sample run,

at least 198 of the 256 tasks were example construction. [Lenat 76]) In set theory,

and also on a limited test in plane geometry [Lenat 79] , this is a reasonably

effective technique, without the breadth GTs generators can offer. With GTs

representation, the data available for synthesis improve in quality and accessibility.

This leads us to the nature of a "discovery." An AM conjecture is a slot entry,

a relationship observed among examples of concepts. With GTs "better" examples,

its discoveries will be correct more oftea GT also has an alternative set of

heuristics for conjecturing. In addition to examining examples for similarities or

differences, it can examine definitions as well. Because the GT definition is a

correct and complete representation of a property in a uniform, highly-structured

format incorrect conjectures are less likely. Even better, many conjectures will be

immediately provable using the subsumption techniques outlined in 4.5. Thus GT

offers a more fertile representation for conjecture than AM, and a proof facility

which AM lacks completely. In GT, a proved statement (theorem) increases the

worth of its associated components. Thus temporarily fertile research areas are

highlighted with greater efficiency.

AM creates generalizations and specializations of concepts by syntactic tinkering

in the LISP concept definitions. GT can use subsumption and merger, thereby

preserving the properties of its schema which support completeness and

correctness. The GT schema (i.a, the p = <f,S,a> formulation) is admittedly more

restrictive than a LISP expression Our empirical observation, however, has indicated

that it has substantial expressive power and is more conducive to reasoning (by

person or machine) than the typical X-expression.

241

We come, finally, to the crucial issue of representation once again. Lenat

acknowledges [Lenat 76, Lenat 32] that a representational shift is a powerful

heuristic. AM's idea of a representational shift is to create a new concept thereby

enlarging its vocabulary. In reality AM has a single representational language, LISP,

within which it discovers concepts. GT, however, permits, even encourages, multiple

representation Each representation is a language, as detailed in this dissertation.

The following behaviors are accessible to GT:

• A GT concept can have different definitions in different languages.

(Consider for example, the three definitions of connectedness

appearing on pages 129, 138 and 138.)

• GT can be programmed with heuristics appropriate to a specific

representation.

• GT can find a common language for a set of concepts, using the

partial order of the language hierarchy.

• GT can estimate task difficulty and allocate resources based on the

complexity of its chosen representation Because much of the

computational effort will be on matching to bind the selector variables,

this estimation should be fairly accurate.

• When a task fails in a given representation, GT can consider shifting to

a more complex (and possibly slower) language. GT can be

programmed to work in the simplest language possible.

• GT can explore the heuristic "if two properties have the same floor,

they may be related.1'

• Best of ail as the domain of exploration changes we can guide GT to

select and focus upon the most productive representations. Thus, if

GT is studying cyclic properties, it may select a a-language which

accelerates its algorithms.

As demonstrated through GT, our recursive representational techniques are

powerful tools.

242

5.5. Open Questions

The strengths of the representations have been discussed above. In this

section we raise some questions for future work.

• The edge-set languages have been shown both to benefit and to

suffer from the severely limited restrictions on their edge set

operations. What other operations might "gently" expand their

expressive ability, particularly toward properties commonly appearing in

graph theory texts?

• Computer exploration of the graph equivalence classes for the

edge-set languages is limited by machine space and time Are there

more efficient theoretical approaches which can bound these numbers?

• How might we extend edge-set languages to include graphs with

labels? with weights? with minimality and maximality properties?

• The R-languages might be capable of non-redundant generation What

controls would we have to impose and what would they cost us?

• How should edge weights be implemented, either in an edge-set

language or an R-language? Do they differ from edge labels in a

meaningful way?

• Are R-languages capable of enumeration problems, e.g., finding all the

spanning trees of a given graph, or ail the distinct k-factors?

• Can R-languages be extended to deal with properties involving

minimal/maximal conditions, e.g., the travelling salesman problem or the

Chinese postman problem?

• Is there any theoretical proof that no one-stage algorithm based on Zr

Z2, Z3 or 2 4 is NP-complete? Can any other relationships between

NP-complete problems and R-properties be derived?

• What insights can the theory of computation give us into the

properties of R-languages?

5.6. Implications of This Work

We will continue this artificial intelligence experiment in knowledge

representation, and we hope that others will be interested in our approach. A major

goal is to extend this kind of structure and organization of graph theory presented

here to other areas of mathematical knowledge, such as number theory. In the

meantime, we believe that the work already accomplished has implications in many

areas.

R-languages are a way to categorize the simplicity or complexity of a graph

property. They make explicit (or readily discoverable) many relationships implicit in

the vast body of work mathematicians have already produced An implemented

version could provide graph theory with (in order of anticipated difficulty):

• generation of arbitrarily many, arbitrarily large graphs with specified

properties, for use in algorithm testing

» theoretical exploration of the equivalence of two characterizations

» explication of implicit hierarchical structure

• suggestions for new, interesting graph properties

In the artificial intelligence community, knowledge representation has been

characterized as an ill-defined problem. Consequently, work in knowledge

representation has usually concentrated on small, well-defined, but toy, domains.

Mathematics as a whole is a very large, well-defined domain. We chose an entire

area of mathematics for our work in knowledge representation. Our results suggest

that others in artificial intelligence might consider mathematics as a domain.

Mathematical theory offers both the certainty and precision of measurement (notably

lacking in most real domains) and the challenge of complex relations (notably lacking

in most toy domains). In addition, we have suggested here an approach to modelling

which combines the factual with the procedural. Our approach in the edge-set

languages is important we believe, because it is a model of controlled exploration

with absolute certainty of the resultant impressive procedural power and modest

expressive power. Our work in the R-languages is significant, we believe, because

244

it uses related algorithms to describe properties as well as procedures, resulting in

an impressive multifunctional representation.

Finally, the work described here should be significant in several other areas of

computer science. The transparency of the relationships among properties

(algorithms/procedures/programs) is due to the structure we have imposed upon

them. The ease with which certain inversions occur may suggest new approaches in

code generation. Perhaps such techniques are more generally applicable in automatic

programming. The ability to discern hierarchies may be relevant in data base work.

The ability to hypothesize and prove graph theory theorems is certainly relevant to

automated deduction. Last but not least a machine which is told the definition of a

property, and can then apply it (by subsumption, by merger, by inversion) must

surely be said to learn, to understand, and, perhaps, to think.

APPENDIX A

KEY TO NOTATION

245

Symbol
A

xy
B

xy

xy

F

FR
X V V 1 V 2~ V k

'xvr-vk

L
L
L

I

m

n
N
0
P

xvy

xvwy
T

\
U

V

Interpretation Page
Add vertex x to the graph 66

Add edge xy to the graph 66

Branch from vertex x to vertex y 68

Cycie on k vertices 82

Delete vertex x from the graph 66

Delete edge xy from the graph 66

Edge set of the graph 12

Empty graph on k vertices 62

Fully connect vertex x to the graph 68

Fragment vertex x into vertices x and y 66
Fracture vertex v1 into KR maintaining previous adjacencies 131

"Graph 12
Identify vertices x,vr...,vk 66

Complete graph on k vertices • 101

Loop on ail vertices 66
Unloop on all vertices 66
Language i for graph properties 14

Number of edges in the graph 12
Matching graph 115
Number of vertices in the graph 12
Null operator 66
Order complexity 69
Primitive language 64
Quantity of disjoint complete graphs 132

Subdivide edge xy by vertex v 63

Subdivide edge xy by vertices v and w 171

Replacement system for testing equivalence of L-expressions 14
Complete graph on k different-colored vertices 171
Set of ail finite graphs closed under isomorphism 13
Edgeless graph on k different-colored vertices 168
Vertex set of the nranh 1O

u

246

W, Pinwheel on h hubs and r rims 123

X Surrogate operator 171
1 1"* r r

Add cycle u1u2».uku1 to the graph 68

Y Delete cycle u ur..u u from the graph 68
U1'"uk

Z Label vertex x with <x 167

Label edge xy with a 184

a Selector, element of I 64
I Selection language 64

247

APPENDIX B

INVESTIGATION OF THE LANGUAGE L2 FOR UNDIRECTED

GRAPHS

B.I. Th« Program L2

The following is a listing of the program L2.
C PROGRAM NAME: L2
C AUTHOR: SUSAN EPSTEIN
C THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L2 FOR
C UNDIRECTED GRAPHS OF UP TO N - 25 VERTICES

C GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
C A - THE NUMBER OF EDGES NOT IN THE GRAPH
C C - THE NUMBER OF EDGES IN THE GRAPH
C 0 - THE NUMBER OF LOOPS IN THE GRAPH
C F - THE NUMBER OF LOOPS NOT IN THE GRAPH
C I - THE NUMBER OF VERTICES IN THE GRAPH

C THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR
C S AND THEN PACKED, TO SAVE SPACE, INTO THE VECTOR FAKE.
C A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES IS STORED
C IN THE VECTOR G.
C THE NUMBER OF SIGNATURES AT ANY TIME IS CT.
C MAT CONTAINS DATA ABOUT THE SIGNATURES.
C THE MOST RECENT VALUE OF I AT WHICH A NEW SIGNATURE IS
C FOUND IS LAST.
C THISC TALLIES WHICH CASES OCCUR FOR FIXED I GREATER THAN 0.
C I SUM AND I MAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
C FREQUENTLY OCCUR ING CASE.

INTEGER N,A,C,D,F,I,LAST
INTEGER S(27) ,FAKE,G(107) ,CT,MAT(107) ,THISC(107)
INTEGER I SUM (25),I MAX(25)

C DUMMY VARIABLES
INTEGER T,K,F2,F3,HUND,IDUM,IDUM2.FF,ZERO *

DATA N,A,C,D,F,I,FAKE,CT,LAST/9*O/
DATA HUND,ZERO/100,0/
DATA (S(J),J-1,27)/27*O/
DATA (G(J) ,J-1,107)/107*0/
DATA (MAT(J) ,J»1,107)/107*0/

248

DATA (THISC(J) ,J-1,107)/107*0/
DATA (ISUM(J) ,J«1,25)/25*O/
DATA (IMAX(J) ,J-1,25)/25*0/

INITIALIZE CASE FOR GRAPH ON NO VERTICES
CT - 1
FAKE-0
00 1 K-1,27
FAKE-FAKE*2+1 •
CONTINUE
G(1)»FAKE

GENERATE HEADER AND FIRST DATA LINE
TYPE 2
FORMATC VERTICES CASES CLASSES LARGEST DENSITY1)
TYPE 1*50, ZERO ,CT,CT,CT,HUNO

MAJOR LOOP ON I » # VERTICES
DO 500 I«1,N
00 5 K - 1,107

THISC(K) - 0
CONTINUE

LOOPS ON A ANO 0 TO CREATE CASES
DO 400 A-O.T
DO 300 0-0,1
VALUES FOR C ANO F CACULATEO FROM A,D AND I

C-T-A
F-l-D

ZERO OUT SIGNATURE
DO 10 K-1,27

S (K) -0
10 CONTINUE

SIGNATURE CALCULATION
IF (A+C.EQ.D+F) S(1)»1
IF (A.EQ.O) S(2)-1
IF (C.EQ.O) S(3)-1
IF (D.EQ.O) S(i»)-1
IF (F.EQ.O) S(5)-1
IF (A.EQ.C) S(6)-1
IF (A.EQ.O) S(7)-1
IF (A.EQ.F) S(8)-1
IF (C.EQ.O) S (9) -1
IF (C.EQ.F) S(10)-1
IF (D.EQ.F) S (11) -1
IF (A+D.EQ.F) S(12)«1
IF (A+F.EQ.C) S (13) -1
IF (A+F.EQ.D) S(U)-1
IF (A+O.EQ.C) S (15)-1
IF (C+D.EQ.A) S(16)-1
IF (C+O.EQ.F) S(17)-1

24S

IF (C+F.EQ.A) S (18) -1
IF (C+F.EQ.D) S(19)-1
IF (D+F.EQ.A) S(20)»1
IF (D+F.EQ.C) S(21)-1
IF (A+C.EQ.F) S(22)«1
IF (A+O.EQ.C+F) S(23)-1
IF (A+F.EQ.C+O) S(24)-1
IF (A.EQ.C+O+F) S(25)-1
IF (C.EQ.A+O+F) S(26)-1
IF (A+C.EQ.O) S(27)-1

C PACKING SIGNATURE S INTO FAKE TO SAVE SPACE, 1 GROUP OF 30
FAKE-0
DO kk L1-1.27
FAKE-FAKE*2+S(L1)

kk CONTINUE

C TEST FOR SIGNATURE ALREADY OCCURRING
DO 50 F2-1.CT
IF (G(F2) .NE.FAKE) GO TO 50

C MAT(FOO) STORES FIRST VALUE OF I FOR SIGNATURE FOO AS -I.
C ONCE SIGNATURE RECURS, MAT (FOO) IS NUMBER OF DIFFERENT I
C VALUES FOR WHICH SIGNATURE OCCURS.

IF (MAT(F2) .GT.O) MAT (F2) -MAT (F2)+1
F3 - -I
IF ((MAT(F2) .LT.O) .ANO. (MAT(F2) .NE.F3)) MAT(F2)»2
THISC(F2) - THISC(F2)+1
GO TO 300

50 CONTINUE
C INSTALLATION OF NEW SIGNATURE

CT-CT+1
G(CT)»FAKE
MAT (CT) — I
THISC(CT)»1
LAST-I

300 CONTINUE
1*00 CONTINUE

C CASE BY CASE OUTPUT ROUTINE.
C I MAX IS THE LARGEST CLASS SIZE FOR FIXED I.
C I SUM IS THE NUMBER OF CASES OCCURRING FOR FIXED I.
C CALCULATING I MAX AND I SUM FROM THISC.

DO kkS FF-1.CT
IF (THISC (FF) .GT.O) ISUM(I)-I SUM(I)+1
IF (THISC(FF) .GT.IMAX(I)) I MAX (I)-THISC (FF)

Mt5 CONTINUE

C COMPUTE ANO PRINT OUTPUT LINE FOR I

IDUM2-100.0*I MAX (I)/1DUM+.5
TYPE 450,I,IDUM,I SUM (I),I MAX(I),IDUM2

450 FORMAT (5MO)
500 CONTINUE

C SUMMARY STATISTICS
TYPE 520,CT

520 FORMAT (' NUMBER OF SIGNATURES IS M 5)
F2»0

C THE SIGNATURE FOR l»0 IS UNIQUE TO THAT I VALUE.
DO 525 K-2.CT
IF (MAT(K) .GT.O) F2-F2+1

525 CONTINUE
TYPE 530,F2

530 FORMAT(' NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS1,15)
F2-CT-F2
TYPE 540,F2

540 FORMAT (' NUMBER OF SIGNATURES FOR SINGLE I VALUE IS ',15)
TYPE 550,LAST

550 FORMAT (' LAST NEW SIGNATURE OCCURS AT I - ',15)
END

B.2. L2 Output

The following is an output listing from program 12.

[PHOTO: Recording in i t i a ted Tue 28-Dec-82 10:34AM]

LINK FROM EPSTEIN, TTY 114

TOPS-20 Command processor 5(134712)
End of COMANO.
2@EXE L2.F0R
LINK: Loading

CM0.2

[LNKXCT L2 execution]
VERTICES CASES

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

CLASSES
1
2
6
16
35
66
112
176
261
370
506
672
871
1106
1380
1696
2057
2466
2926
3440
4011
4642

1
2
6
12
33
28
42
29
50
34
36
35
58
30
36
43
50
30
40
35
50
34

LARGEST
1
1
1
2
2
8
24
48
76
196
272
400
512
792
960
1268
1460
1984
2276
2808
3136
3964

DENSITY
100
50
17
13
6
12
21
27
29
53
54
60
59
72
70
75
71
80
78
82
78
85

251

22
23
24
25

NUMBER OF
NUMBER OF
NUMBER OF
LAST NEW
CPU time
2@POP

S
S
S

SI
18

5336
6096
6925
7826

IGNATURES IS
IGNATURES FOR
IGNATURES FOR
GNATURE OCCURS
.47 Elapsed

36
35
58
30
106

MULTIPLE
SINGLE I
AT I »
time 1:22

4400
5236
5732
6912

I VALUES
VALUE IS

12
.29

82
86
83
88

IS
48

58

[PHOTO: Recording terminated Tue 28-0ec-82 10:36AM]

252

APPENDIX C

INVESTIGATION OF THE LANGUAGE L2 FOR DIRECTED

GRAPHS

C.1. The Program L2OI

The following is a listing of the program L2DI.
C PROGRAM NAME: L2DI
C AUTHOR: SUSAN EPSTEIN
C THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L2 FOR
C DIRECTED GRAPHS OF UP TO N - 25 VERTICES

C GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
C A - THE NUMBER OF EDGES NOT IN THE GRAPH
C B - THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS NOT IN
C THE GRAPH
C C - THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS IN THE
C GRAPH
C D - THE NUMBER OF LOOPS IN THE GRAPH
C E - THE NUMBER OF EOGES NOT IN THE GRAPH WITH REVERSALS IN
C THE GRAPH
C F » THE NUMBER OF LOOPS NOT IN THE GRAPH
C I - THE NUMBER OF VERTICES IN THE GRAPH

C THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR
C S ANO THEN PACKED, TO SAVE SPACE, INTO THE VECTOR FAKE.
C A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES IS STORED
C IN THE MATRIX G.
C THE NUMBER OF SIGNATURES AT ANY TIME IS CT.
C MAT CONTAINS DATA ABOUT THE SIGNATURES.
C THE MOST RECENT VALUE OF I AT WHICH A NEW SIGNATURE IS
C FOUND IS LAST.
C THISC TALLIES WHICH CASES OCCUR FOR FIXED I GREATER THAN 0.
C I SUM AND I MAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
C FREQUENTLY OCCUR ING CASE.

INTEGER N,A,C,D,F,I,LAST
INTEGER S(90) , FAKE (3) ,G (5000,3) ,CT, MAT (5000) ,TH ISC (5000)
INTEGER I SUM(25),I MAX(25)

C DUMMY VARIABLES
INTEGER T,K,F2,F3,HUN0,IDUM,IDUM2,FF,ZERO,02

DATA N,A,C,D,F,I,CT,LAST/8*0/
DATA HUND,2ER0/100,0/
DATA (S(J) ,J«1,9O)/9O*O/
DATA (FAKE(J) ,J»1,3)/3*O/
DATA ((G(J,K) ,J-1,5000) ,K-1 ,3) /15000*0/
DATA (MAT(J),J-1,5000) /5000*0/
DATA (THISC (J),J-1,5000)/5000*0/
DATA (ISUM(J) ,J»1,25)/25*O/
DATA (I MAX (J),J-1,25)/25*0/
N-25

INITIALIZE CASE FOR GRAPH ON NO VERTICES
CT - 1
F2-0
00 1 K-1,30
F2-F2*2+1

1 CONTINUE
DO 2 J-1,3
G(1,J)-F2

2 CONTINUE

GENERATE HEADER ANO FIRST OATA LINE
TYPE 3

3 FORMAT (' VERTICES CASES CLASSES LARGEST DENSITY1)
TYPE i»50,ZERO,CT.CT.CT,HUND

MAJOR LOOP ON I - # VERTICES
00 500 I-1.N
DO 5 K - 1,5000

THISC(K) - 0
5 CONTINUE

10

LOOPS ON A
00 400 A-0
00 300 0-0

D2
00 200 B-0
VALUES FOR

,B ANO 0
,T
,l
- (T-A) /2
,D2
C ANO F

C-T-A-2*B
F-

ZERO OUT S
00 10 K-1,

I-O
IGNATURE
90

S (K) -0
CONTINUE

SIGNATURE
IF
IF
IF
IF
IF
IF

TO CREATE CASES

CACULATEO

CALCULATION
(A+C.EQ.
(A.EQ.O)
(C.EQ.O)
(D.EQ.O)
(F.EQ.O)
(A.EQ.C)

D+F)
S
S
S
S
S

(2)
(3)
W
(5)
(6)

S(1)-1
-1
-1
-1
-1
-1

IF (A.EQ.D) S(7)-1

IF (A.EQ.F) S(8)»1
IF (C.EQ.D) S(9)-1
IF (C.EQ.F) S (10) -1
IF (D.EQ.F) S (11)—1
IF (A+O.EQ.F) S(12)»1
IF (A+F.EQ.C) S (13) -1
IF (A+F.EQ.O) S(14)»1
IF (A+O.EQ.C) S(15)-1
IF (C+O.EQ.A) S(16)-1
IF (C+O.EQ.F) S(17)»1
IF (C+F.EQ.A) S(18)-1
IF (C+F.EQ.D) S (19) -1
IF (O+F.EQ.A) S(20)»1
IF (O+F.EQ.C) S(21)-1
IF (A+C.EQ.F) S(22)-1
IF (A+D.EQ.C+F) S(23)»1
IF (A+F.EQ.C+O) S (2*0-1
IF (A.EQ.C+O+F) S(25)-1
IF (C.EQ.A+O+F) S (26)-1
IF (A+C.EQ.D) S(27)«1
IF (B.EQ.O) S(28)-1
IF (A.EQ.B) S(29)-1
IF (B.EQ.C) S(30)»1
IF (B.EQ.D) S(3D-1
IF (B.EQ.F) S(32)-1
IF (A.EQ.B+C) S (33) -1
IF (A»EQ.B+D) S (3*0-1
IF (A.EQ.B+F) S(35)-1
IF (B.EQ.A+C) S(36)-1
IF (B.EQ.A+O) S(37)-1
IF (B.EQ.A+F) S(38)-1
IF (B.EQ.C+O) S(39)»1
IF (B.EQ.C+F) S(MJ)-1
IF (B.EQ.O+F) S(i»1)-1
IF (C.EQ.A+B) S(l»2)-1
IF (C.EQ.B+O) S(43)-1
IF (C.EQ.B+F) S(U)»1
IF (O.EQ.A+B) S(45)»1
IF (D.EQ.B+C) S(46)-1
IF (D.EQ.B+F) S(47)-1
IF (A+B.EQ.C+O) S (48) -1
IF (A+B.EQ.C+F) S(i»9)»1
IF (A+B.EQ.D+F) S (50) -1
IF (A+C.EQ.B+O) S(5D-1
IF (A+C.EQ.B+F) S(52)-1
IF (A+D.EQ.B+C) S (53) -1
IF (A+O.EQ.B+F) S(54)-1
IF (A+F.EQ.B+C) S(55)»1
IF (A+F.EQ.B+D) S (56) -1
IF (B+C.EQ.O+F) S (57)-1
IF (B+O.EQ.C+F) S(58)-1
IF (B+F.EQ.C+O) S (59)-1
IF (A+B+C.EQ.O) S(60)»1IF (A+B+C.EQ.F) S(61)»1

IF (A+B+D.EQ.C) S(62)»1
IF (A+B+O.EQ.F) S(63)»1
IF (A+B+F.EQ.C) S(64)-1
IF (A+B+F.EQ.D) S (65) -1
IF (A+C+O.EQ.B) S (66)-1
IF (A+C+O.EQ.F) S (67) -1
IF (A+C+F.EQ.B) S (68)-1
IF (A+C+F.EQ.D) S (69) -1
IF (A+O+F.EQ.B) S(7O)-1
IF (A+O+F.EQ.C) S(7O-1
IF (B+C+O.EQ.A) S(72)-1
IF (B+C+O.EQ.F) S (73)-1
IF (B+C+F.EQ.A) S(7M-1
IF (B+C+F.EQ.O) S(75)-1
IF (B+O+F.EQ.A) S (76) -1
IF (B+D+F.EQ.C) S(77)-1
IF (C+O+F.EQ.A) S (78)-1
IF (C+D+F.EQ.B) S (79) -1
IF (A+B+C.EQ.D+F) S (80)-1
IF (A+B+O.EQ.C+F) S(81)-1
IF (A+B+F.EQ.C+O) S (82)-1
IF (A+C+O.EQ.B+F) S(83)-1
IF (A+C+F.EQ.B+O) S(84)-1
IF (A+O+F.EQ.B+C) S (85)-1
IF (B+C+D.EQ.A+F) S (86)-1
IF (B+C+F.EQ.A+O) S(87)-1
IF (B+D+F.EQ.A+C) S (88)-1
IF (C+D+F.EQ.A+B) S(89)-1
S (90) -0

C - PACKING SIGNATURE S INTO FAKE TO SAVE SPACE, 3 GROUPS OF 30
DO kk L1«1,3
FAKE(L1)-S((L1-1)*30+1)
DO 43 L2-(L1-1)*30+2,L1*30
FAKE (L1) -FAKE (L1) *2+S (12)

43 CONTINUE
kk CONTINUE

C TEST FOR SIGNATURE ALREADY OCCURRING
DO 50 F2-1.CT
DO kS FF-1,3
IF (G(F2,FF) .NE.FAKE(FF)) GO TO 50

kS CONTINUE
C MAT (FOO) STORES FIRST VALUE OF I FOR SIGNATURE FOO AS -1.
C ONCE SIGNATURE RECURS, MAT (FOO) IS NUMBER OF DIFFERENT I
C VALUES FOR WHICH SIGNATURE OCCURS.

IF (MAT(F2) .GT.O) MAT (F2)-MAT (F2)+1
n - -i
IF ((MAT(F2).LT.0).AND.(MAT(F2) .NE.F3)) MAT(F2)-2
THISC(F2) - THISC(F2)+1
GO TO 200

50 CONTINUE
C INSTALLATION OF NEW SIGNATURE

CT-CT+1

256

60

200
300

DO 60
G(CT,
CONTI

FF-1,3
FF)-FAKE(FF)
NUE

MAT (CT) — 1
THISC
LAST-
CONTI
CONTI
CONTI

(CT)-1
I
NUE
NUE
NUE

C CASE BY CASE OUTPUT ROUTINE.
C I MAX IS THE LARGEST CLASS SIZE FOR FIXED I.
C I SUM IS THE NUMBER OF CASES OCCURRING FOR FIXED I.
C CALCULATING I MAX AND I SUM FROM THISC.

DO kk5 FF-1.CT
IF (THISC(FF) .GT.O) I SUM (I) »ISUM(I)+1
IF (THISC(FF) .GT.IMAX(I)) IMAX (I) »THI SC (FF)
CONTINUE

C COMPUTE AND PRINT OUTPUT LINE FOR I
F2«T/2*2
IF (F2.EQ.T) IOUM-(T**2A+T+1)*(I+1)
IF (F2.NE.T) IOUM-((T+1)**2/4+(T+1)/2)*(l+1)
I0UM2-100.0*I MAX (I)/1DUM+.5
TYPE J»5O,I,IDUM, I SUM (I) , IMAX (I) , I DUM2

450 FORMAT (5110)
500 CONTINUE

C SUMMARY STATISTICS
TYPE 520,CT

520 FORMAT (' NUMBER OF SIGNATURES IS M 5)
F2-0

C THE SIGNATURE FOR I-O IS UNIQUE TO THAT I VALUE.
DO 525 K-2.CT
IF (MAT(K) .GT.O) F2-F2+1

525 CONTINUE
TYPE 530,F2

530 FORMAT(' NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS1,15)
F2-CT-F2
TYPE 5^0,F2

540 FORMAT (' NUMBER OF SIGNATURES FOR SINGLE I VALUE IS ',15)
TYPE 550,LAST

550 FORMAT (' LAST NEW SIGNATURE OCCURS AT I - ',15)
END

C.2. L20I Output

The following is the output listing from program L2DI.

28-Dec-82 10:38:20

BATCON Version 104(6133) GLXLIB Version 1(527)

Job FILE Req #40 for EPSTEIN in Stream 2

OUTPUT: No log
UNIQUE: Yes
RESTART: Yes

Input from »> PS:<EPSTEIN>FILE.CTL-3
Output to »> PS:<EPSTEIN>FILE.LOG

TIME-LIMIT: 10:00:00
BATCH-LOG: Append
ASSISTANCE: Yes
SEQUENCE: 2101

10;
10:
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

38:
38:
38:
38:
38:
38:
38:
38:
38:
38:
:38:
:38:
:38:
:38:
:38:

21
21
21
21
21
21
21
26
26
26
26
26
26
26
26

38:30
38:5*
38:58
39:08
39:
39:
39:
39:
39:
39:
39:
39:
39:
39:
40:
:42:
;44J

09
09
09
09
09
09
10
13
23
49
31
09
27

10:48:01

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

Rutgers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)

The system is somewhat unstable. Save your work often!
Frequent test times 5:30-6:00 pm and after midnight.

TIME-LIMIT 36000
@LOGIN EPSTEIN CS-SRIOHARAN
[Job 15 also logged into PS:<EPSTEIN>]
Job 12 on TTY254 28-0ec-82 10:38:25
Last login on 28-Dec-82 at 09:07:50
End of COMAND.CMD.2

10:38:26 MONTR [PS Mounted]

[CONNECTED TO PS:<EPSTEIN>]
EXE L20I.FOR
FORTRAN: L2DI
MAIN.
LINK: Loading
[LNKXCT L2DI execution]
VERTICESs0

1
2
3
4
5
6
7
8
9
10
11
12

CASES
1
2
6
24
80
216
504
1056
2025
3610
6072
9744
15028

CLASSES
1
2
6
20
78
141
336
484
956
911
1065
1045
1750

LARGEST
1
1
1
2
2
8
24
48
76
196
416

1086
2496

DENSITY
100
50
17
8
3
4
5
5
4
5
7
11
17

10:53:16 USER 13 22400 998
11:00:28 USER 14 32430 1098
11:10:16 USER 15 ^5792 1584
11:22:45 USER 16 63257 1785
11:43:31 USER 17 85698 968
12:26:02 USER 18 114114 1438
12:59:39 USER 19 149640 1104
14:25:18 USER 20 193536 1651
15:38:47 USER 21 247192 1255
17:33:05 USER 22 312156 1107
18:42:17 USER 23 390144 1081
20:17:25 USER 24 483025 2104
22:36:03 USER 25 592826 1108
22:36:03 USER NUMBER OF SIGNATURES IS 4849
22:36:03 USER NUMBER OF SIGNATURES FOR MULTIPLE
22:36:03 USER NUMBER OF SIGNATURES FOR SINGLE I
22:36:03 USER LAST NEW SIGNATURE OCCURS AT I » 25
22:36:04 USER CPU time 6:06:56.65 Elapsed time 11:56:54.81
22:36:04 MONTR 22:36:05 MONTR Killed by OPERATOR, TTY 246
22:36:05 MONTR Killed Job 12,User EPSTEIN,Account CS-SRIDHARAN.TTY
22:36:05 MONTR at 28-0ec-82 22:36:04, Used 6:07:09 in 11:57:39

57^6
9758
16156
23508
40284
55838
77871*

101792
150060
189316
250364
305916
413362

I VALUES
VALUE IS

26
30
35
37
47
49
52
53
61
61
64
63
70

is 2572
2277

2«

259

APPENDIX D

INVESTIGATION OF THE LANGUAGE L3 FOR UNDIRECTED

GRAPHS

0.1. The Program L3

The following is a listing of the program L3.
C PROGRAM NAME: L3
C AUTHOR: SUSAN EPSTEIN
C THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L3 FOR
C UNDIRECTED GRAPHS OF UP TO N - 25 VERTICES

C GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
C A - THE NUMBER OF EDGES NOT IN THE GRAPH
C C » THE NUMBER OF EDGES IN THE GRAPH
C D » THE NUMBER OF LOOPS IN THE GRAPH
C F » THE NUMBER OF LOOPS NOT IN THE GRAPH
C I » THE NUMBER OF VERTICES IN THE GRAPH

C THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR
C S AND THEN SORTED, TO SAVE SPACE, USING THE VECTOR S1 INTO
C THE VECTOR S2. THE VECTOR Q BECOMES THE SIGNATURE,
C REPRESENTING THE CARDINALITY OF THE REGIONS ANO THEIR
C ORDERING. THE SIGNATURE FOR EACH GRAPH IS THEN PACKEO, TO
C SAVE SPACE, INTO THE VECTOR FAKE.
C A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES IS STORED
C IN THE VECTOR G.
C THE NUMBER OF SIGNATURES AT ANY TIME IS CT.
C MAT CONTAINS DATA ABOUT THE SIGNATURES.
C THE MOST RECENT VALUE OF I AT WHICH A NEW SIGNATURE IS
C FOUND IS LAST.
C THISC TALLIES WHICH CASES OCCUR FOR FIXED I GREATER THAN 0,
C I SUM AND I MAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
C FREQUENTLY OCCUR ING CASE.

INTEGER N,A,C,D,F,I,LAST
INTEGER S(14),S1(14),S2(14) ,Q(27),G(3OO) ,CT,MAT(300)
INTEGER THI SC (300) , FAKE, I SUM (25) , I MAX (25)

C DUMMY VARIABLES
INTEGER T,K,F2,F3,HUN0,IDUM,IDUM2,FF,ZERO,TEMP,Y,Ml,Z.L1

DATA N,A,C,D,F,I,FAKE,CT,LAST/9*0/

260

1

2

3

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
N-25

IN IT!
CT -
DO 1
Q(J)-
CONTI
DO 2

CONTI
DO 3

HUND,ZERO/100,0/
(S(J),J»1,14)/14*O/
(S1 (J) ,J«1,14)/14*O/
(S2(J),J«1,14)/14*O/
(Q(J),J-1,27)/27*O/
(G(J) ,J»1,3OO)/3OO*O/
(MAT (J) , J-1,300) /300*0/
(THISC (J) , J»1,300) /300*0/
(ISUM(J),J-1,25)/25*O/
(IMAX(J),J-1,25)/25*0/

ALIZE CASE FOR GRAPH ON NO VERTICES
1
J-1,14
'J
NUE
J-15,27

NUE
J-1,27

FAKE-FAKE*2+Q(J)
CONTI
G(U-

NUE
•FAKE

GENERATE HEADER AND FIRST DATA LINE
TYPE 4
FORMAT(' VERTICES CASES CLASSES LARGEST DENSITY1)
TYPE 1*50, ZERO, CT,CT,CT, HUND

MAJOR LOOP ON I - # VERTICES
DO 500 I-1.N
00 5 K - 1,300

THISC(K) - 0
CONTINUE

LOOPS ON A AND 0 TO CREATE CASES
DO 400 A-0,T
DO 300 D-O.l
VALUES FOR C ANO F CACULATED FROM A,0 AND I

C-T-A
F-l-0

ZERO OUT SIGNATURE
DO 10 K-1,27

Q (K) -0
10 CONTINUE

S VALUES ARE ASSEMBLEED
S(1)-A
S(2)-C
S(3)-0
SW-F
S (5) -A+C

S (6) -A+0
S (7) -A+F
S (8) -C+D
S (9) »C+F
S (10) -0+F
S(11)-A+C+D
S(12)-A+C+F
S(13)-A+D+F
S(14)-C+D+F

C S VALUES MUST BE SORTED INTO S2 TO CREATE SIGNATURE
DO 20 Y»1,14
SKY)-S(Y)
S2(Y)»Y

20 CONTINUE
DO 30 Y-1,13
Ml-Y
DO 25 Z-Y+1.U
IF (S1 (Ml) .LE.S1 (Z)) GO TO 25
Ml-Z

25 CONTINUE
TEMP-S2 (Y)
S2(Y)-S2(MI)
S2(Ml)-TEMP
TEMP-S1 (Y)
S1 (Y)-S1 (Ml)
S1 (Ml)-TEMP

30 CONTINUE
Q(14)»S2(U)
DO 40 J-1,13
Q(J+14)-O
Q (J) -S2 (J)
IF (S(S2(J)) .EQ.S(S2(J+1))) Q(J+14)»1

40 CONTINUE

C PACKING SIGNATURE Q INTO FAKE TO SAVE SPACE, 1 GROUP OF 30
FAKE-0
DO 44 L1-1.27
FAKE«FAKE*2+Q(L1)

44 CONTINUE

C TEST FOR SIGNATURE ALREADY OCCURRING
DO 50 F2-1.CT
IF (G(F2) .NE.FAKE) GO TO 50

C MAT(FOO) STORES FIRST VALUE OF I FOR SIGNATURE FOO AS -I.
'C ONCE SIGNATURE RECURS, MAT (FOO) IS NUMBER OF DIFFERENT I
C VALUES FOR WHICH SIGNATURE OCCURS.

IF (MAT(F2) .GT.O) MAT (F2)-MAT (F2)+1
F3 - -I
IF ((MAT(F2).LT.O) .AND. (MAT (F2) .NE.F3)) MAT(F2)-2
THISC(F2) - THISC(F2)+1
GO TO 300

50 CONTINUE
C INSTALLATION OF NEW SIGNATURE

CT-CT+1
G(CT)»FAKE
MAT(CT)=-I
THISC(CT)»1
LAST-I

300 CONTINUE
400 CONTINUE

C CASE BY CASE OUTPUT ROUTINE.
C I MAX IS THE LARGEST CLASS SIZE FOR FIXED I.
C I SUM IS THE NUMBER OF CASES OCCURRING FOR FIXED I.
C CALCULATING I MAX AND I SUM FROM THISC.

DO 445 FF-1.CT
IF (THISC(FF) .GT.O) I SUM (I)-I SUM(I)+1
IF (THISC(FF) .GT.IMAX(I)) IMAX (I) »THI SC (FF)

445 CONTINUE

C COMPUTE AND PRINT OUTPUT LINE FOR I

IDUM2-100.0*I MAX(I)/IDUM+.5
TYPE 450, I ,IDUM, I SUM (I) , IMAX (I) ,IDUM2

450 FORMAT (5110)
500 CONTINUE

C SUMMARY STATISTICS
TYPE 520,CT

520 FORMAT (' NUMBER OF SIGNATURES IS M 5)
F2-0

C THE SIGNATURE FOR I-O IS UNIQUE TO THAT I VALUE.
DO 525 K-2.CT
IF (MAT (K) .GT.O) F2-F2+1

525 CONTINUE
TYPE 530,F2

530 FORMAT (' NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS',15)
F2-CT-F2
TYPE 540,F2

540 FORMAT (' NUMBER OF SIGNATURES FOR SINGLE I VALUE IS M 5)
TYPE 550,LAST

550 FORMAT (' LAST NEW SIGNATURE OCCURS AT I » M 5)
END

D.2. L3 Output

The following is the output listing from program L3.

28-Dec-82 22:51:01

BATCON Version 104(6133) GLXLIB Version 1(527)

Job FILE3 Req #41 for EPSTEIN in Stream 2

OUTPUT: Nolog TIME-LIMIT: 2:00:00
UNIQUE: Yes BATCH-LOG: Append

RESTART: Yes ASSISTANCE: Yes
SEQUENCE: 2102

Input from »> PS:<EPSTEIN>FILE3.CTL.1
Output to »> PS:<EPSTEIN>FILE3.LOG

:02
:02
:02
:02
:06
:07
:07
:07
:07
:07
rO7
:09

22:51:01
22:51:01
22:51:01
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51
22:51:12
22:51:13
22:51:15
22:51:16
22:51:16
22:51:16
22:51*16
22:51:16
22:51:16
22:51:16
22:51:16
22:51:17
22:51:17
22:51:17
22:51:18
22:51:19
22:51:20
22:51:22
22:51:24
22:51
22:51
22:51
22:51
22:51
22:51:52
22:52:01
22:52:10
22:52:20
22:52:30
22:52:41
22:52:41

:27
= 30
'34
:39
:44

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER

Rutgers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)

The system is somewhat unstable. Save your work often!
Frequent test times 5:30-6:00 pm and after midnight.

TIME-LIMIT 7200
©LOGIN EPSTEIN CS-SRIOHARAN
Job 12 on TTY254 28-0ec-82 22:51:06
Last login on 28-0ec-82 at 13:07:41
End of C0MAN0.CMD.2

22:51:07 MONTR [PS Mounted]

[CONNECTED TO PS:<EPSTEIN>]
EXE L3.F0R
FORTRAN: L3
MAIN.
LINK: Loading
[LNKXCT L3 execution]
VERTICES

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

NUMBER OF

CASES
1
2
6
16
35
66
112
176
261
370
506
672
871
1106
1380
1696
2057
2466
2926
3440
4011
4642
5336
6096
6925
7826

CLASSES
1
2
6
16
35
52
90
96
129
112
118
120
149
108
122
128
145
108
126
120
145
112
122
120
153
108

LARGEST
1
1
1
1
1
2
4
6
7

16
28
50
70
114
144
203
245
336
392
504
576
730
820
1001
1111
1344

DENSITY
100
50
17
6
3
3
4
3
3
4
6
7
8
10
10
12
12
14
13
15
14
16
15
16
16
17

SIGNATURES IS 259

26-

22:52:41 USER NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS 157
22:52:41 USER NUMBER OF SIGNATURES FOR SINGLE I VALUE IS 102
22:52:41 USER LAST NEW SIGNATURE OCCURS AT I - 12
22:52:41 USER CPU time 1:03.09 Elapsed time 1:25-58
22:52:41 MONTR 22:52:41 MONTR Killed by OPERATOR, TTY 246
22:52:41 MONTR Killed Job 12,User EPSTEIN,Account CS-SRIDHARAN.TTY
22:52:41 MONTR at 28-0ec-82 22:52:41, Used 0:01:06 in 0:01:35

254

APPENDIX E

INVESTIGATION OF THE LANGUAGE L3 FOR DIRECTED

GRAPHS

E.1. The Program L3DI

The following is a listing of the program L3DI.
C PROGRAM NAME: L3DI
C AUTHOR: SUSAN EPSTEIN
C THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L3 FOR
C DIRECTED GRAPHS OF UP TO N • 25 VERTICES

C GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
C A - THE NUMBER OF EDGES NOT IN THE GRAPH
C B - THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS NOT IN
C THE GRAPH
C C - THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS IN THE
C GRAPH
C D - THE NUMBER OF LOOPS IN THE GRAPH
C E - THE NUMBER OF EDGES NOT IN THE GRAPH WITH REVERSALS IN
C THE GRAPH
C F » THE NUMBER OF LOOPS NOT IN THE GRAPH
C I - THE NUMBER OF VERTICES IN THE GRAPH

C THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR
C S AND THEN SORTED, TO SAVE SPACE, USING THE VECTOR S1 INTO
C THE VECTOR S2. THE VECTOR Q BECOMES THE SIGNATURRE,
C REPRESENTING THE CARDINALITY OF THE REGIONS ANO THEIR
C ORDERING. THE SIGNATURE FOR EACH GRAPH IS THEN PACKED, TO
C SAVE SPACE, INTO THE VECTOR FAKE.
C A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES IS STORED
C IN THE MATRIX G.
C THE NUMBER OF SIGNATURES AT ANY TIME IS CT.
C MAT CONTAINS DATA ABOUT THE SIGNATURES.
C THE MOST RECENT VALUE OF I AT WHICH A NEW SIGNATURE IS
C FOUND IS LAST.
C THISC TALLIES WHICH CASES OCCUR FOR FIXED I GREATER THAN 0.
C I SUM AND I MAX PRESERVE THE TOTAL NUMBER OF CASES ANO MOST
C FREQUENTLY OCCUR ING CASE.

INTEGER N,A,C,D,F,I,LAST
INTEGER S(30) ,S1 (30) ,S2(3O) ,Q(60) .FAKE (7) ,G (20000,7) ,CT

INTEGER MAT (20000),THISC (20000)
INTEGER I SUM (25) , I MAX (25)

C DUMMY VARIABLES
INTEGER T,K,F2,F3,HUND,IDUM,IDUM2,FF,ZERO,TEMP,Y,Ml,Z.L1

DATA N,A,C,D,F,I,CT,LAST/8*0/
DATA HUND,ZERO/100,0/
DATA (S(J) ,J-1,3O)/3O*O/
DATA (S1 (J) ,J-1,3O)/3O*O/
DATA (S2(J),J-1,3O)/3O*O/
DATA (FAKE(J) ,J-1,7)/7*O/
DATA ((G (J, K) , J-1,20000) , K-1,.?) /140000*0/
DATA (MAT(J) ,J-1,20000)/20000*0/
DATA (THISC (J),J-1,20000)/20000*0/
DATA (ISUM(J) ,J-1,25)/25*O/
DATA (I MAX(J),J-1,25) /25*0/
N-25

C INITIALIZE CASE FOR GRAPH ON NO VERTICES WHERE Q(K)-K FOR
C K<31 ANO Q(K)»1 FOR K>30

CT - 1
DO 2 J-1,6
FAKE (J)- (J-1)*5+1

DO 1 K-(J-1)*5+2.J*5
FAKE (J)-FAKE (J)*100+K

1 CONTINUE
2 CONTINUE

FAKE2-0
00 3 J-31.59
FAKE2-FAKE2*2+1

3 CONTINUE
FAKE(7)-FAKE2
DO k J-1,7
G(1,J)-FAKE(J)

k CONTINUE

C GENERATE HEADER AND FIRST DATA LINE
TYPE 5

5 FORMAT (' VERTICES CASES CLASSES LARGEST DENSITY1

TYPE 450,ZERO,CT.CT.CT,HUND

C MAJOR LOOP ON I - # VERTICES
DO 500 I«1,N
DO 6 K - 1,20000

THISC(K) - 0
6 CONTINUE

LOOPS ON A,B AND D TO CREATE CASES
DO 400 A-O.T
DO 300 0-0,I

D2- (T-A) /2
DO 200 B-0.D2
VALUES FOR C AND F CACULATED

267

C«T-A-2*B
F-l-0

ZERO OUT SIGNATURE
DO 10 K-1,60

Q (K) »0
10 CONTINUE

SIGNATURE CALCULATION
S(1)-A
S (2) -C
S(3)-0
S (k) «F
S (5) -A+C
S (6) »A+0
S (7) -A+F
S (8) »C+0
S (9) -C+F
S(1O)-O+F
S(11)-A+C+D
S (12) -A+C+F
S (13) -A+D+F

S(15)«B
S(16)-A+B
S(17)-B+C
S(18)»B+O
S (19) -B+F
S (20) -A+B+C
S(21)»A+B+0
S (22) -A+B+F
S (23) -B+C+O
S {2k) -B+C+F
S (25) -B+D+F
S (26) -A+B+C+O
S (27) "A+B+C+F
S (28) -A+B+O+F
S (29) -A+C+O+F
S(30)-B+C+O+F

SORTING S VALUES TO CONSTRUCT SIGNATURE
DO 20 Y-1,30
SKY)-S(Y)
S2 (Y) -Y

20 CONTINUE
DO 30 Y-1,29
Ml-Y
DO 25 Z-Y+1,30
IF (S1 (Ml) .LE.SKZ)) GO TO 25
Ml-Z

25 CONTINUE
TEMP-S2 (Y)
S2(Y)»S2(«I)
S2(Ml)-TEMP
TEMP-S1 (Y)

268

S1 (Y)-S1 (Ml)
S1(Ml)-TEMP

30 CONTINUE
Q(3O)-S2(3O)

C COMPARING Q VALUES BY BITS
DO kO J-1,29
Q (J+3O) -0
Q(J)-S2(J)
IF (S(S2(J)) .EQ.S(S2(J+1))) Q(J+30)-1

kO CONTINUE
C PACKING SIGNATURE Q INTO FAKE TO SAVE SPACE, 6 GROUPS OF 5
C AND 1 GROUP OF 29

00 kk 11-1,6
FAKE(L1)»Q((L1-1)*5+D
DO U3 L2-(L1-1)*5+2,L1*5
FAKE (11)-FAKE(L1)*100+Q(L2)

43 CONTINUE
kk CONTINUE

FAKE2-0
DO kS L1-31.59
FAKE2-FAKE2*2+Q(L1)

k$ CONTINUE
FAKE(7)-FAKE2

C TEST FOR SIGNATURE ALREADY OCCURRING
DO 50 F2-1.CT
DO 46 FF-1,7
IF (G(F2,FF).NE.FAKE(FF)) GO TO 50

46 CONTINUE
C MAT(FOO) STORES FIRST VALUE OF I FOR SIGNATURE FOO AS -I.
C ONCE SIGNATURE RECURS, MAT(FOO) IS NUMBER OF DIFFERENT I
C VALUES FOR WHICH SIGNATURE OCCURS.

1 F (MAT (F 2) . GT. 0) MAT (F 2) -MAT (F 2) +1
. F3 - -I

IF ((MAT(F2) .LT.O) .AND. (MAT(F2) .NE.F3)) MAT(F2)-2
THISC(F2) - THISC(F2)+1
GO TO 200

50 CONTINUE
C INSTALLATION OF NEW SIGNATURE

CT-CT+1
DO 60 FF-1,7
G(CT,FF)-FAKE(FF)

60 CONTINUE
MAT (CT) — I
THI SC (CT) -1
LAST-I
IF (CT.EQ.20000) GO TO 519

200 CONTINUE
300 CONTINUE
400 CONTINUE

C CASE BY CASE OUTPUT ROUTINE.
C I MAX IS THE LARGEST CLASS SIZE FOR FIXED I.
C I SUM IS THE NUMBER OF CASES OCCURRING FOR FIXED I.

C CALCULATING I MAX AND I SUM FROM THISC.
DO 445 FF-1.CT
IF (THISC (FF) .GT.O) I SUM (I) -I SUM (I)+1
IF (THISC(FF) .GT. IMAX(I)) I MAX (I) -THISC (FF)

445 CONTINUE

C . COMPUTE AND PRINT OUTPUT LINE FOR I
F2-T/2*2
IF (F2.EQ.T) IOUM»(T**2/4+T+i)ft(|+i)
IF (F2.NE.T) IDUM-((T+1)**2/4+(T+1)/2)*(l+1)
10UM2-100.0*I MAX(I)/10UM+.5
TYPE 450,I,IDUM,I SUM (I),I MAX(I),IDUM2

450 FORMAT (5110)
500 CONTINUE

GO TO 521

C SUMMARY STATISTICS
519 TYPE 520
520 FORMAT (' 20000 SIGNATURES DISCOVERED, MATRIX FULL1)
521 TYPE 522,CT
522 FORMAT (' NUMBER OF SIGNATURES IS ',15)

F2-0
C THE SIGNATURE FOR I-O IS UNIQUE TO THAT I VALUE.

00 525 K-2.CT
IF (MAT (K) .GT.O) F2-F2+1

525 CONTINUE
TYPE 530,F2

530 FORMAT (' NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS',15)
F2-CT-F2
TYPE 540,F2

540 FORMAT (' NUMBER OF SIGNATURES FOR SINGLE I VALUE IS ' , 1 5)
TYPE 550,LAST

550 FORMAT (' LAST NEW SIGNATURE OCCURS AT I - \ I 5)
END

E.2. L3DI Output

The following is the output listing from program L30I.

1-Jan-83 9:06:45

BATCON Version 104(6133) GLXLIB Version 1(527)

Job FILE3D Req #88 for EPSTEIN in Stream 2

OUTPUT: Nolog TIME-LIMIT: 1:00:00
UNIQUE: Yes BATCH-LOG: Append
RESTART: No ASSISTANCE: Yes

SEQUENCE: 3037

Input from -> PS:<EPSTEIN>FILE3D.CTL.1
Output to »> PS:<EPSTEIN>FILE3D.LOG

270

06:
:06:
06:
06:
:06:
06:
06:
:06:
:06:
06:
:06:
:06:
:06:
:06:
:06:
:06:
:07:
:07:

9:08

08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
09:
11:

9:16:
9:26:
9:46:

10:07:
10:07:
10:07:
10:07:
10:07:
10:07:
10:07:
10:07;
10:07:

46
46
46
46
46
47
47
50
50
50
50
50
50
50
50
52
54
55
20

i

26
34
34
34
35
35
35
36
39
50
27
15
06
33
33
45
45
46
46
46
46
46
46
46

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER

Rutgers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)

The system is somewhat unstable. Save your work often!
Frequent test times 5:30-6:00 pm and after midnight.

TIME-LIMIT 3600
©LOGIN EPSTEIN CS-SRIDHARAN
[Job 10 also logged into PS:<EPSTEIN>]
Job 24 on TTY254 1-Jan-83 09:06:50
Last login on 1-Jan-83 at 08:55:45
End of COMAND.CMD.2
9:06:50 MONTR [PS Mounted]

[CONNECTED TO PS:<EPSTEIN>]
EXE L3DI-FOR
FORTRAN: L3DI
MAIN.
LINK: Loading
[LNKPCX Program too complex to load and execute, will

run from file DSK:024LNK.EXE]
USER [LNKXCT L3DI execution]
USER VERTICES CASES CLASSES LARGEST DENSITY
USER 0 1 1 1 100
USER 1 2 2 1 50
USER 2 6 6 1 17
USER 3 24 24 1 4
USER 4 80 80 1 1
USER 5 216 200 2 1
USER 6 504 476 4 1
USER 7 1056 876 6 1
USER 8 2025 1670 9 0
USER 9 3610 2734 16 0
USER 10 6072 4080 28 0
USER 11 9744 5848 50 1
USER 12 15028 7809 73 0
USER 20000 SIGNATURES DISCOVERED, MATRIX FULL
USER NUMBER OF SIGNATURES IS 20000
USER NUMBER OF SIGNATURES FOR MULTIPLE I VALUES IS 5191
USER NUMBER OF SIGNATURES FOR SINGLE I VALUE IS 14809
USER LAST NEW SIGNATURE OCCURS AT I - 13
USER CPU time 53:36.85 Elapsed time 59:11*72
MONTR 10:07:46 MONTR Killed by OPERATOR, TTY 246
MONTR Killed Job 24,User EPSTEIN,Account CS-SRIDHARAN,TTY
MONTR at 1-Jan-83 10:07:46, Used 0:54:53 in 1:00:56

254,

REFERENCES

C 75]

[Amarei 81]

[Anderson 73]

[Angiuin 79]

[Bondy 76]

[Chang 79]

[Corneil 70]

[Fahiman 77]

[Feigenbaum 77]

'[Garey 79]

An Intreduction to Model/ing Using Mixed integer
Programming
third edition, IBM, Amsterdam, 1975.

Amarei, S.
'Problems of Representation in Heuristic Problem Solving;

Related Issues in the Development of Expert Systems.
Technical Report CBM-TR-118, Rutgers University, 1981.

Anderson, J. and Bower, G
Human Associative Memory.
Winston, Washington, D.C, 1973.

Angiuin, D.
Reversible Regular Languages and Inductive Inference.
Yale unpublished.
Used for general reference only. Not cited

Bondy, J. and Murty, U.
Graph Theory with Applications.
North Holland New York, 1976.

Chang, C
Resolution Plans in Theorem Proving.
Technical Report RJ2469(32420), IBM Research Laboratory,

February, 1979.

Corneil, D. and Gotlieb, C
An Efficient Algorithm for Graph Isomorphism.
JACM 17(1*51-64, January, 1970.
Used for general reference only. Not cited

Fahiman, &
A System for Representing and Using Real World Knowledge.
PhD thesis, MIT, December, 1977.

Feigenbaum, E
The Art of Artificial Intelligence: Themes and Case Studies of

Knowledge Engineering.
In IJCAI-5. MIT, Cambridge, Mass., 1977.

Garey, Michael R. and Johnson, David S.
Computers and Intractability.
W.H. Freeman and Company, San Francisco, 1979.

272

[Hadamard 45]

[Harary 72]

[Hardy 40]

[Hopcroft 79]

[Knuth 73]

[Lawler 76]

[Lenat 76]

[Lenat 77]

[Lenat 79]

[Lenat 82]

[Michener 78]

Hadamard, Jacques.
The Psychology of Invention in the Mathematical Field.
Dover Publications, Inc., New York, 1945.
Used for general reference only. Not cited

Harary, F.
Graph Theory.
Addison-Wesiey, Reading, Mass., 1972.

Hardy, GH.
A Mathematician's Apology.
Cambridge University Press, 1940.

Hopcroft John E and Ullman, Jeffrey D.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesiey, Reading, Massachusetts, 1979.
Used for general reference only. Not cited

Knuth, D.
The Art of Computer Programming. Volume 1: Fundamental

Algorithms.
Addison-Wesiey, Reading, Mass,, 1973.
Used for general reference only. Not cited

Lawler, E
Combinatorial Optimization: Networks and Matroids.
Holt, Rinehart and Winston, New York, 1976.
Used for general reference only. Not cited

Lenat, Douglas B.
AM: An Artificial Intelligence Approach to Discovery in

Mathematics as Heuristic Search.
PhD thesis, Stanford, July, 1976.

Lenat, D.
The Ubiquity of Discovery.
In IJCAI-5. IJCAI-5, MIT, Cambridge, Mass., 1977.
1977 Computers and Thought Lecture, Used for general

reference only. Not cited

Lenat, D. B.
Machine Intelligence 9.
Ellis Horwood Limited, Chichester, England 1979, pages

251-283chapter On Automated Scientific Theory Formation:
A Case Study Using the AM Program.

Lenat, D.
The Nature of Heuristics.
Artificial Intelligence 19(2): 189-249, October, 1982.

Michener, E
Understanding Understanding Mathematics.
Technical Report Al MEMO-488, MIT, August, 1978.
LOGO MEMO-50.

[Minsky 63]

[Mitchell 83]

[Moses 75]

[Newell 75]

[Newell 76]

[Nilsson 80] •

[Ore 62]

[Pascal 64]

[Poincare 52]

[Poincare 70]

[Quillian 67]

[Roberts 76]

Minsky, M.
Computers and Thought.
McGraw Hill, New York, 1963, pages 406-450chapter Steps

toward Artificial Intelligence.
Originally in the Proceedings of the IRE, volume 49, January,

1961.

Mitchell T., Utgoff, P. and Banerji, R.
Learning by Experimentation: Acquiring and Modifying

Problem-Solving Heuristics.
In Michalski, R, Carbonell, J. and Mitchell, T. (editors). Machine

Learning, . Tioga Press, 1983.

Moses, J.
A MACSYMA Primer.
Technical Report Mathlab Memo No. 2, MIT Computer Science

Lab, October, 1975.

Newell, A. and Simon, H.
Computer Science as Empirical Inquiry: Symbols and Search.
CACM 19(3), March, 1975.
1975 ACM Turing Lecture.

Newell, A.
CMU Proposal to ARPA.
unpublished

Niisson, N.
Principles of Artificial Intelligence.
Tioga, 1980.

Ore, 0.
American Mathematical Society Colloquium Publications.

Volume 38: Theory of Graphs.
American Mathematical Society, Providence, Rhode Island 1962.

Pascal, Rena
Pensees de Pascal.
Editions Gamier Freres, Paris, France, 1964, pages 73-84.

Poincare, Henri.
Science and Hypothesis.
Dover Publications Inc., New York, 1952.

Poincare, Henri
La Valeur de la Science.
Flammarion, France. 1970, pages 27-40chapter L'lntuition et la

Logique en Mathematiques.

Quillian, J.
Word Concepts: A Theory and Simulation of Some Basic

Semantic Capabilities.
Behavioral Science 12, 1967.

Roberts, F.
Discrete Mathematical Models.
Prentice-Hall, Englewood Cliffs, N.J., 1976.

274

[Schank 75]

[Slagie 63]

[Sowa 79]

[Sridharan 80]

[Sridharan 81]

[Statman 82]

[Winston 75]

[Winston 80]

Schank, R.
The Structure of Episodes in Memory.
In Bobrow, D. and Collins, A. (editor), Representation and

Understanding, pages 2 3 7 - 2 7 2 Academic Press, New
York, 1975.

Slagie, J.
A Heuristic Program That Solves Symbolic Integration Problems

in Freshman Calculus.
In Feigenbaum, E and Feidman, J. (editors), Computers and

Thought, pages 191-203. McGraw Hill, New York, 1963.

Sowa, J.
Semantics of Conceptual Graphs.
Technical Report, IBM SYstems Research Institute, 1979.

Sridharan, N.
Representational Facilities of AIMDS: A Sampling.
Technical Report CBM-TR-119, Rutgers University, May, 1980.

Sridharan, I\L, Schmidt, C. and Goodson, J.
Reasoning by Default
Technical Report CBM-TR-119, Rutgers University, April, 1981.

Statman, Richard
Topologicai Subgraphs of Cubic Graphs and a Theorem of Dirac
Journal of Graph Theory 6:419-427, 1982.
Used for general reference only. Not cited

Winston, P.
Learning Structural Descriptions from Examples.
In Winston, P. (editors). The Psychology of Computer Vision, .

McGraw Hill, New York, 1975.

Winston, P.
Learning and Reasoning by Analogy.
CACM 23(12):689-703, December, 1980.

275

INDEX

D -language (thesis specific) 167

Acyclic 82
ACYCLIC (algorithm) 82
Adjacent 12

Biconnected 139
BICONNECTED (algorithm) 139
Bipartite 96
BIPARTITE (algorithm) 156
Block 176
Boolean property (thesis specific) 13

Cardinality 12
Case (thesis specific) 38
Center of a star (thesis specific) 97
Chain 90
CHAIN (algorithm) 90
Characteristic (thesis specific) 13
Circumference 185
CIRCUMFERENCE-K (algorithm) 185
Closed walk 82
Collectively exhaustive description set (thesis specific) 13
Coloring 166
Complement 23
Complete 101
COMPLETE (algorithm) 101
Complete (thesis specific) 65
Complete bipartite 96, 158
COMPLETE-BIPARTITE (algorithm) 158
Complex seed set 213
Component 126
Connected 85, 126, 129, 138
CONNECTED (algorithm) 138
Connected component 126
CONSTRUCT (algorithm) 60
Contractible 175
Correct (thesis specific) 65
Covering an edge 161
Cutpoint 176
Cycle 82
CYCLE (algorithm) 94

Degree 70
DEGREE (algorithm) 151
Description (thesis specific) 13
Diameter 224
Directed 12

Edge 12
Edge cover 189
Edge covering number 189
EDGELESS (algorithm) 62
EDGES (algorithm) 148
Elementary edge contraction 175
Empty graph 12
Enumerate (thesis specific) 61
Equal properties (thesis specific) 13
Equal set cardinality 35
Equivalent l-expressions (thesis specific) 14
Equivalent R-properties (thesis specific) 201
EULERIAN (algorithm) 111
Euierian graph 111
Eulerian walk 111
EVEN-M (algorithm) 106
EVENHM (algorithm) 102
EVEN-REGULAR (algorithm) 131
Expressive power (thesis specific) 8

Floor (thesis specific) 72
FRONT-END 32

General description (thesis specific) 13
GENERATE (algorithm) 61
Generator algorithm (thesis specific) 74
Graph 12
Graph generator 32
Graph property (thesis specific) 13
Graph theory (thesis specific) 7

HAMILTONIAN (algorithm) 213
Hamiltonian cycle 213
Hamiltonian graph 213
Hub of a pinwheel (thesis specific) 123
Hub of a wheel (thesis specific) 98

Independence number 182
INDEPENDENCE-K (algorithm) 182
Independent vertex set 164
Inverse of a property (thesis specific) 74
Isomorphic 12
Isomorphism 12

K-chromatic 170
K-CHR0MAT1C (algorithm) 171
K-colorable 166

K-COLORED (algorithm) 168
K-colored (thesis specific) 166
K-coioring 166
K-COMPONENTS (algorithm) 126
K-connected 142
K-CONNECTED (algorithm) 142
K-EDGE-COVER (algorithm) 190
K-EDGES (algorithm) 115
K-f actor 193
K-FACTOR (algorithm) 193
K-factorabie 196
K-FACTORABLE (algorithm) 197
K-INDEPENDENT (algorithm) 164
K-reguiar 129
K-vertex-coverable 161
K-VERTEX-COVERED (algorithm) 161
K-vertex-covered (thesis specific) 161
K-VERTICES (algorithm) 114

L-characterization (thesis specific) 14. 15
L-class 15
L-expression (thesis specific) 14
L-property (thesis specific) 15
L1 -GENERATOR 33
L1-TESTER 34
L.Hanguages 167

Label (thesis specific) 166
Labelled graph 166
Labelling (thesis specific) 165
Loop 12
Loop labelling (thesis specific) 157
Loop marking (thesis specific) 155
Loopfree 88
LOOPFREE (algorithm) 88

MAX (algorithm) 153
MAX-K (algorithm) 120
Maximum degree 120
Merger of graph properties (thesis specific) 204
MIN-K (algorithm) 119
Minimum degree 119
Mutually exclusive description set (thesis specific) 13

Neighbor 12
Neighborhood 70
Node 12
NON-PLANAR (algorithm) 234
Numeric (thesis specific) 13

ODD-M (algorithm) 108
ODD-N (algorithm) 105
ODD-REGULAR (algorithm) 135
Open walk 82

P -language (thesis specific) 167

Partitioning description set (thesis specific) 13
Path 21, 111
PINWHEEL (algorithm) 124
Pinwheel (thesis specific) 123
Planar 233
PLANAR (algorithm) 236
Post-profile (thesis specific) 78
Pre-profiie (thesis specific) 78
Procedural power (thesis specific) 8
Profile (thesis specific) 78

R-property (thesis specific) 64

R+-property (thesis specific) 147

Rc-property (thesis specific) 167

Re-property (thesis specific) 184
Recursive graph grammar (thesis specific) 64
Region 26
Regular 129
Reversal 23
Reverse 23
Rim of a pinwheel (thesis specific) 123
Rim of a wheel (thesis specific) 98

Satisfied description (thesis specific) 13
Seed graph (thesis specific) 64
Seed set (thesis specific) 64
Selector (thesis specific) 64
Set equality 23
Set inequality 23
Signature 15
Signature (thesis specific) ' 14
Simple seed set (thesis specific) 213
Spoke (thesis specific) 97
Star 96
STAR (algorithm) 96
Subgraph 126, 176
Subsumption 201

Testing algorithm 34, 74
Trail 111
Transitive closure (thesis specific) 51
Tree 85
TREE (algorithm) 85

Undirected graph 12
Unequal set cardinality 35
Union of graphs (thesis specific) 196
Unique description (thesis specific) 13
Unsatisfiable description (thesis specific) 13

279

Vertex 12
Vertex cover 161
Vertex covering number 176
VERTEX-COVER (algorithm) 177
VERTICES (algorithm) 148

Walk 82
Weakly-complete (thesis specific) 30
Wheel 98
WHEEL (algorithm) 98

280

Susan Lynn Epstein

1944
1961

1961-64
1963
1964
1964
1964-65

1965-67
1965-68

1967-68

1968
1969-70

1971-75
1974-79
1978-1983

1981

1981-83
1983

1983

Born April 8, 1944 in New York, New York
Graduated New Rochelle High School New Rocheile, New York,
summa cum laude
Attended Smith College, Northampton, Massachusetts
Phi Beta Kappa
Sigma Xi
B.A. in Mathematics, magna cum laude, Smith College
Faculty, Amity Regional Senior High School, Woodbridge,
Connecticut
Faculty, The Lenox School, New York, New York
Attended Mathematics Department of Courant Institute, New
York University, New York, New York
Operations Research Analyst, Chase Manhattan Bank, New York,
New York
M.S. in Mathematics, New York University
Senior Consultant, Advanced Computer Techniques, New York,
New York
Independent computer consultant. New York/New Jersey area
Instructor Montciair State College, Montciair, New Jersey
Attended Department of Computer Science, Rutgers University,
New Brunswick, New Jersey
Contributor, The Handbook of Artificial Intelligence, edited by
Avron Barr and Edward A. Feigenbaum, William Kaufman, Inc.,
Los Altos, California
Graduate Fellowship, Rutgers University
Article entitled "Challenges" published in SIGART newsletter,
number 83, January, 1983
PftD. in Computer Science, Rutgers University

097 6020

