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ABSTRACT OF THE THESIS

KNOWLEDGE REPRESENTATION IN MATHEMATICS
A CASE STUDY IN GRAPH THEORY

by Susan Lynn Epstein

Thesis Director: Professor N. S. Sridharan

In this dissertation we present ocur work on representational languages for
graph theory. We have shown that a knowledge representation can be structured to

provide both expressive and procedural power.

QOur major research contributions are three. Firstt we have defined
representations of infinite sets and recommended that mathematical concepts be
considered as sets of objects with relations among them. Second, we have
demonstrated how‘ a carefully controlled hierarchy of representations is available
through formal languages. Third, we have employed a recursive formulation of
concepts which enables their application to many of the behaviors of a research

mathematician.

Two major families of representations are described edge—set languages
and recursive languages. The edge—set languages have finite expressive power and
an interesting potential for hashing digraphs, characterizing classes of graphs and
detecting differences among them. The recursive languages have extensible
expressive power and impressive procedural power. Recursive languages appear to
be an excellent implementation technique for artificial intelligence programs in

mathematical research.

Our results enable us to compare the complexity of mathematical concepts



(via floors). Concepts represented in our languages can be inverted (to test for the
presence of a property) and merged (to combine properties. Conjectures are
available through simple search, and most theorems easily proved under the

representation.
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CHAPTER 1
ARTIFICIAL INTELLIGENCE AND GRAPH THEORY

.../t the science of number were merely analytical, or could be
analytically derived from a few synthetic intuitions, it seems that a
sufficiently powerful mind could with a single glance perceive all its
truths; nay one might even hope that some day a /anguage would be
invented simple enough for these truths to be made evident to any

person of ordinary intelligence.
--Poincare

1.1. Overview

"G is a line graph,” says Theorem 8.4 in Harary's graph theory textbook, “if and
only if none of the graphs in Figure 1=1 is an induced subgraph of G* We do not
need to understand the terminoclogy of the theorem to have the pictures arouse our
curiosity. What do those graphs have in common with each other? Why precisely
those and no others? Consider too Statement 2.1.5 from Bondy and Murty's text
"Let G be a graph [on v vertices] with v-1 edges. The following statements are
equivalent

(@ G is connected

(b) G is acyclic

©) G is a tree”

What intertwines those properties? Are any others reiated to them? What other
sets of properties are so commingled? Graph theory abounds with such questions.
Tl":e challenge for a mathematician is to identify, discover and describe such
properties and the relations among them. Assume we wish to address some of

these questions with a computer. How would we go about it?
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Figure 1-1: Forbidden 'Subgraphs for a Line Graph

We reflect first on the process of mathematical research. The questioh:
posed above are those a mathematician might pose while doing research
Confronted with a mass of data (axioms, definitions, examples, theorems, algorithms;
the research mathematician focuses selectively on an interesting subset [Pasc<
64, Hardy 40], intuitively conjectures additional data [Poincare 70] and thei
attempts to satisfy the demands of rigor with formal definitions and proofs. Hov
can we even begin to computerize a process so laden with value judgements an<

vagueness?

Consider the diverse role of language in mathematical research. Th<
mathematician carefully formalizes a research result in the language of definition:

and proofs. The promulgation of the result however, is more likely to be in nature



(spoken, non-technicall language with recourse to vernacular and analogy to other
fields. Yet the language (or languages) in which the focusing and conjecturing take
place, we suspect, is quite different from the other two languages. (Recall the
tremendous assistance a diagram offers to the construction of a proof in plane
geometry, or the power functional analysis derives from viewing certain probiems in

the context of series.)

This muitiplicity of representations, and the facility with which a mathematician
moves from one representation to another, is significant If we are interested in
exploring graph theory dn a computer, we require some way of representing graph
theory to the machine. Until now, representation of mathematical knowledge for
computers has been tailored to a single specific purpose. Example generation

utilized one representation, and theorem proving another.

It is our thesis that a sing/e representation can support many of the behaviors
observed in mathematical research. This dissertation explores the thesis in the
domain of graph theory. We consider many representations for graph theory and
evaiuate them. Our evaluation is both theoretical/ (calculating the power of the
representation based only on its definitional structure) and empirical (observing the

portions of the representation actually applicable to and of interest in graph theory).

In the course of research, a mathematician hopes to deepen her understanding
of objects' and relations among them. Understanding a concept means, among other
things, being able to apply it Imagine that a machine is presented with graph
property p as an algorithm for generating the set of graphs with that property.
Now the machine is confronted with an arbitrary graph. Can it determine whether
or not that graph has property p? Such behavior, creating a testing algorithm from
a generating algerithm, we will call "inversion.” Inversion is an example of machine
learning and of automatic programming, both of substantial interest in computer

science.



We have sketched a complex and challenging series of problems. Our next
step is to define the segments we will examine. This chapter provides a framework
for our study. First we place the task in its contexts: artificial intelligence,
knowledge representation, mathematics and graph theory. In a subsequent section
we define graph thebry and formulate criteria for evaluating its representation. We
then describe our approach to knowledge representation based upon formal
languages. We pose the central questions and indicate, informally, where the
answers lie. The basic terminology required for graph theory and its representation

in formal languages completes the chapter

In Chapter 2 we analyze a family of representations called the edge-set
languages. They are used, in turn, as a foundation for the recursive languages. In
Chapter 3 we present elementary concepts for recursive languages as a graph
representation and begin an empirical examination of these recursive languages.

Chapter 4 explores their power in greater depth. Chapter 5 considers the results.

1.2. Background

In this section we place the dissertation in the context of artificial intelligence,
particularly knowledge representation, and justify our focus on mathematics and

graph theory as objects of study.

Artificial intelligence simulates intelligent behavior on a computer. We may
hypothesize. intelligence as movement through a search space. A point in the search
space is the curren‘tly known set of objects and relations among them  The
operators in the search space define the moves available from one point to the
next The rules for selecting and applying these operators guide the search. The
search is the dynamic, procedural aspect of intelligence. Essential to such search is

the ability to use symbolic representation

The symbolic structures we create and manipulate are for large amounts of

diverse knowledge [Newell 76]. Each time we manipulate knowledge with a



computer, we need a way to represent the objects involved. These objects may be
chess pieces, cannibals or viruses. A fundamental problem in the choice of a
representation is its grain or fineness of detail. The omission of some significant
detail about an object may hamper our ability to reason about it A complete
description, however, (including, perhaps, molecular structure and historical
background) would probably be overwheiming, impossible and irrelevant to the task
at hand The number and identity of the details chosen for a representation typically

depend upon the intended task.

Symbolic representations are required for not only the objects, but aiso the
relations among them, and the operators and rules of the search space. The ability
to extract and apply data about details with heuristic significance is an important
feature of inteligence [Minsky 63, Newell 75]. These difficuit problems in
symbolic representation have limited artificial intelligence exploration to toy domains:
mathematical puzzles, games and theoretical tasks far from the real, physical, human
world The objects have been finite in number and the features chosen as salient
have been relatively obvious. Even such simple domains have presented rich and
challenging questions. The search, and a representation for the search space, have
been the major challenges. Research is now meeting these challenges. Many
game-—playing programs have begun to surpass their human opponents. Theoretical
results can often predict or bound the complexity of the search in question. New

challenges are required.

Between the well-plumbed toy domains and the ill~understood physical world,
lies another rich problem area mathematics. Thousands of years of human thought
have structured a complex web of objects and relations beyond the scope of any
game designer. Yet, because people discovered mathematics and require no
instrument (Beyond a well~tuned mind) to study it, mathematics should be a fertile
domain for research in artificial intelligence. Logic and theorem proving were among
the earliest targets of artificial intelligence study and remain as active areas of
exploration. Initial efforts in calculus [Slagle 63, Moses 75] were challenges in

formula manipulation. Only recently has the focus for mathematical domains shifted



to ;he detection of (presumably existent) underiying patterns. Particularly noteworthy
and relevant té this dissertation are the work of Mitchell, Lenat and Michener.
Mitchell's LEX [Mitchell 83] formulates heuristics for the application of integration
formulae in calculus, an example of a machine learning "unwritten” rules. Lenats AM
[Lenat 76] modelled mathematical research in set theory, making observations and
conjectures on its discoveries. Michener [Michener 78] designed a set of three
spaces (examples, results and concepts) to model a mathematician's understanding of
mathematics. Mathematics is not a new domain for artificial intelligence, but an

under—expliored one.

To make the task more manageabie, in this dissertation we restrict our focus
to a single area of mathematics, graph theory. Graphs are an excellent subject of
study because: » A

e There are representations for graphs which display much of the

graphs’ structure.

e There are répresentations for graphs which readily display a graph's

relation to other graphs.

e Graphs are pov;/erful representational data ‘structures for many

computer science probiems, encoding semantic information syntactically.
In contrast, whether or not a group is cyclic is not immediately discernible from its
operation table, nor would homomorphism between two groups be readily apparent
The maximum degree of a vertex in a graph, or whether two graphs share a

particular vertex, is transparent in an adjacency list representation.

Another reason to study graphs, particularly digraphs, is their importance in
artificial intelligence. Any problem search space is traditionally thought of as a
graph [Nilsson 80]. Graphs have been used to represent real-world knowiedge

[Fahiman 77, Quillian 67], meaning in natural language [Sowa 78], hierarchical
structures and planning [Sridharan 80], axioms and default rules for defauit
reasoning [Sridharan 81], abstraction hierarchies for reasoning by analogy [Winston
80], psychological modeis of memory [Anderson 73, Winston 80, Schank 75], and

concept descriptions [Winston 75]. Graphs have also been used to develop



resolution plans for theorem proving [Chang 79] and signal understanding

[Feigenbaum 77]. In the social, biological and environmental sciences, graphs have
proven constructive for such diverse problems as genetic substructure,
archaeological seriation, trait development in child psychology, traffic flow
management, food webs, garbage collection, electrical energy demand, health care
delivery, phosphorus in a pasture ecosystem, and mathematical models of learning
[Roberts 76].

In computer science, graphs are both the classic representation of a search
space [Nilsson 80] and, increasingly, the symbolic structure for objects of study
[Roberts 76]. Computer scientists have explored the explicit representation and
search of graphs. Now we have a vast body of (ill-organized) mathematical
knowledge ('graph theory”) and some well—-entrenched data structures (matrices, lists)
for representing graphs on a computer. |If we are to explore this material on a
computer, a point in the search space will be our knowiedge of graph theory at
that instant, the rules will focus our attention and the operators wiil construct‘
"discoveries.” Such a search is open—ended. We require a clearer definition of our

goal and some criteria to evaluate our performance.

1.3. Graph Theory and Its Representation

This section defines graph theory and posits criteria for its evaluation.

The evolving body of mathematical knowledge known as graph theory includes
definitions, examples, theorems, aigorithms, conjectures and proofs. We adopt the
definition of graph theory as formulated by experts, represented in three general
texts. One [Ore 62] is a classical development in elegant mathematical fashion.
The second [Harary 72] encompasses a broader range of topics, presented as
definitions and theorems. The third [Bondy 76] takes an algorithmic approach.
Together, these texts are our benchmark; their contents are assumed to be graph
theory and their contents "of interest’ to graph theorists. We cbserve from them

that typical theorems in graph theory describe the relations among graph properties.



For example:
e |f a graph has property p and property q, fhen it has property r.
e A graph has property p if and only if it has property q
e [t is not possible for a graph to have both property p and property

a

Once we delineate graph theory, we need a formal representation for it How
do we evaluate such a representation? We identify two criteria

e expressive power

e procedural power
A representation's expressive power is measured by its ability to describe correctly
properties. and objects of interest in graph theory. “Connected,” "complete’ and
"acyclic’ are examples of properties. Specific graphs are examples of objects. A
representation with expressive power can be used to emphasize significant features
and deliberately obliterate irrelevant ones. We gauge the expressive power of a
representation against the texts we have chosen as a benchmark. It is somewhat
more difficuit to gauge a representation's procedural power. Imagine a
mathematician doing research in graph theory. We have described in 1.1 the
judgmental and intuitive nature of such work. We will therefore not concern
ourselves with reproducing or quantifying the methods of the mathematician, but
only with simulating the behaviors of the mathematician. Examples of such behavior
are formulating a conjecture, testing a graph for a property and proving a theorem.
All these behaviors are intended to add to the body of mathematical knowledge.
We gauge procedural power by the number of such behaviors supported by the

representation and the adequacy of their performance.

1.4. Languages for Graph Theory

This section outlines our general approach to graph theory representation based

upon formal languages.

Consider the following fundamental aspects of graph theory:



* An object in graph theory is a finite graph, whose segments may be
viewed as details in its description. A particular graph can be
significant in graph theory as an example or a counterexample. Thus
an object in graph theory is a set containing a single graph. There are
infinitely many such objects.

* By extension, a graph property is a set of graphs. For many
properties of interest in graph theory, a graph property is an infinite
set

* Theorems in graph theory, as we observed in 1.3, are essentially about
graph properties. Thus important mathematical research behaviors (such
as conjecture and proof) can be expressed with respect to sets of
graphs.

e Mathematicians and scientists build graphs and then manipulate them
with algorithms. Many algorithms are only applicable to graphs with
specific properties To reason about the applicability of an algorithm

- we must be able to describe a set of graphs.

The first two arguments address expressive power. The second two are relevant
to procedural power. We conclude, then, that a good knowledge representation for
graph theory will focus upon both finite and infinite sets of finite graphs. The
explicit listing of all graphs with property p, each as a list of vertices and edges,
would be impossible for an infinite set and inefficient in most finite cases. We

require an alternative, a language in which to represent graph theory.

A grammar is an accepted way to represent a language. If we describe a
language formally, we can explore its expressive power and construct from it a
hierarchy of languages of increasing expressive power. In this dissertation, each of
our representations is a graqpmar whose terminal strings may be interpreted as
graph properties (sets of graphs). Our study proceeds from the simple to the
complex. The edge-set languages of Chapter 2 are highly restricted An edge-set
language property describes graphs in terms of their edge. sets and operations
interpreted on those edge sets. These languages can express only finitely many

graph properties. The need to represent infinite sets and expert observation that



pattern recognition is essentially recursive in nature [Poincare 70, Minsky 63], leads
us to substantial exploration (in Chapters 3 and 4) of languages with a recursive
procedural interpretation. These languages are not finite and have greater expressive

power.

We distinguish two kinds of representational languages: declarative and
procedural. A declarative language constructs descriptions in terms of objects, their
existence and their properties. For example, "a graph has property p if there exists
some subgraph.." or "every graph with property p has property gq." A declarative
language is oriented to expressive power. A procedural language, on the other
hand, is structured to simplify the specification of algorithms. In this dissertation
we present languages which are simultaneously declarative and procedural. The
languages of Chapter 2 express a well-structured finite set of graph properties
with natural and efficient algorithms for them. The languages of Chapters 3 and

4 embody recursive algorithms within the formulation of each property.

Work in problem transformation has indicated that a relation between the
representational and reasoning aspects of a search space can provide substantial
problem solving power (See, for example, [Amarel 81].) By designing our
languages to facilitate implementation, we should make coding easy and produce
efficient algorithms. We deliberately impose upon our languages this procedural

orientatioa

15. Questions and Answers

We have now assembled enough background to state the key questions in this
work, and point to the answers.
* To what extent can expressive and procedural power be incorporated
into a single representation?
The edge-set languages of Chapter 2 have a surprisingly limited (finite)
expressive ability but impressive procedural power. This highlights their

potential for representing infinite sets, for hashing graphs and for
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discovering commonalities and differences within a set of graphs.
Unfortunately, a finite language's idea of an interesting property is
uniikely to appear in a graph theory text The recursively—formulated
languages of Chapters 3 and 4 better meet the benchmark for
expressive power. Much of graph theory seems representabie in a
consistent and unified fashion in this recursive formulation. Even
better, the languages readily adapt to extensions (such as labelled
graphs) and are amenabie to procedural goals (such as inversion).

e How can we compare the expressive power of two representations?
We base comparisons of expressive power on hierarchies of formal
grammars with identical semantic interpretations.

e How can we evaluate the complexity of a property?

We introduce, in the context of recursive languages, the floor of a
property. Informally, this is the least powerful language in which the

property is expressible.

This dissertation is not about algorithmic compiexity, although it effectively
isolates it within each representation. Nor is it about formal languages, aithough
they support its exploration. Rather, this dissertation is about compact and elegant
knowiedge representation which draws its power from its descriptive focus and its

dependency upon racursion.

1.6. Some Fundamental Definitions

This section formulates the most basic definitions we use in our work. We
begin with the familiar classical definitions from graph theory. Next we construct
our own definitions for a graph property, a graph characteristic and a graph
description. Finally we explain how this terminology effects our formal language
formulation. Additional, more special definitions will be. introduced as needed,

throughout the dissertation.
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1.6.1. Basic Graph Terminology

We begin with the basic definitions for graph theory:

 Let V be a finite set of elements called nodes or vertices.

Let | be the Cartesian product V X V, | = {(xy) | xy e v}.

e If E is any subset of | the ordered pair <V,E> is used as the standard
representation of a graph.

o If (Xy) s E such that x and y are distinct (x)y) is called an edge and is

‘ abbreviated as xy. If x,y e V and xy e E, vertices x and y are said to
be adjacent and x is said to be a neighbor of vy.

* A graph G = <V/E> is undirected when xy s E if and only if yx s
E Otherwise the graph is directed.

o If XX) e E, (xx) is called a loop and is abbreviated as xx. Every
element of | is either an edge or a loop and not both. The set of ail
possible loops on Vis 1 = {(xx) | x e V}.

 The cardinality of a set S is the number of distinct elements it
contains and is denoted by |S|. We define [V| =n and [E|] = m

elfn=0then m « 0 and G = <$,£> is defined to be the empty graph.

S

» Two graphs G; ° <V TEj> and G, = <V 2E2> are isomorphic to each

other if there exists a one-to-one mapping tr : V1 -> V2 such that xy

« B if and only if irxjirly) e E-,‘£ The mapping tr is called an

isomorphism.
By now the reader will be grateful to learn that Appendix | is a reference table of
symbols and their definitions. There is also an index (immediately following the
references) citing ail definitions and algorithms in this document Definitions labelled
"thesis specific" are our own terminology. All others are drawn from the
benchmark texts, b Algorithms appear in ail capital -letters. The ordered pair <V,E>

is the standard representation of a graph G; all subsequent semantics will be given

in terms of this standard representation.



1.6.2. Graph Properties, Characteristics and Descriptions

Let U be the set of finite graphs closed under isomorphism. A graph
property p is a function mapping U into some range S of values. A graph property
is said to be boo/ean if S = {true.false}, (e.g. planarity, compieteness); it is said to
be numeric if S is the set of non—negative integers (e.g., chromatic number,
circumference). Two graph properties P, and p, are equa/ if and only if p,(G) =
pz(G) for all G € U

Graph theory includes:

e the definition of graph properties

e theorems establishing necessary and sufficient conditions for these
properties to assume particular vaiues

e aigorithms to calculate the value of a property on a specific graph

A characteristic of a graph is an ordered pair (p,s) where p is a graph

property with range S and s € S.
A description d is a set of such characteristics.

A description d = {(p1,51).(;:2,52),m,(pk,sk)} is satisfied by a graph G if and only
if pi(G) = s for i = 1,2,k It is possible for a description to be unsatisfiable with
respect to U (satisfied by no members of U, e.g. "self-compliementary and n = 3"),
unique (satisfied by exactly one isomorphism class of members of U, eg,
"self-complementary and a cycle”), or general/ (satisfied by more than one

isomorphism class of members of U, e.g. "cyclic").

Let D be a finite set of descriptions. If for every two descriptions d1,d2 €D
and graph G € U, either G does not satisfy d, or G does not satisfy d,. then D is
said to be mutually exclusive. If for every G € U, there exists some d € D such
that G satisfies d, D is said to be co//ectively exhaustive. A set D of descriptions

which is mutually exclusive and collectively exhaustive partitions U into equivalence
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classes, (for example, D = {{(cyclic,true)},{(cyclic,false)}}). A major objective in
Chapter 2 is to formulate languages whose semantic interpretations are graph
characteristics from which a D may be created whose partition of U is describable

by a concise syntactic form or signature for each class.

1.6.3. Graph Terminology and Graph Grammars

This section explains the interaction between a formal language representation

and graph theory.

In Chapters 2, 3 and 4 we define a set of graph grammars. Each grammar
will generate a language L of L-expressions. (For examplie, "'m = 3" might be a
terminal string in language L) The semantic interpretation of each L-—expression will
be a graph characteristic; we call such a characteristic an L-characteristic of a
graph. (Continuing the example, the semantic interpretation of "m = 3" might be "the
number of edges in the graph is 3" Two L-expressions in a language L are
equivalent if and only if their semantic interpretatiéns are the same. (For example,
in language L, ‘'m = 3" and "2 < integer m < 4" might be shown to be equivalent)
Equivalence of semantic interpretation defines a set of equivalence classes on
L-expressions. (Thus "'m = 3" and "2 < integer m < 4" will both be in the same
equivalence class of L-expressions.) An equivalence class of L-expressions
designates a subset of U, namely, the ;et of all those graphs in U satisfying that
L-characteristic. (Among others, G, = <{12,3},{12,1323}> and G, =
<{1,2,3,4,5},{12,34,25}> satisfy “m = 3" and are in the same subset of U) The
number of distinct equivalence classes of L-—expressions is exactly the number of
distinct L-characteristics. Another aspect of the equivalence of L-expressions is
that there may exist a finite set T of equations on L-expressions such that A and B
are equivalent L—-expressions if and only if one is derivable from the other using T
as a replacement system. Members of T for edge—set languages are dispiayed in
Chapter 2, and consideration of a way to demonstrate such equivalence appears in

the discussion of subsumption in Chapter 4.



If a set P of (.--characteristics designates a partition of U such that all the
subsets are non-empty, P is said to be an L-property. By restricting our definition
to non-empty subsets, we require that L-characteristics be satisfied by some graph
in U. (Continuing the example, {the number of edges in the graph is 0, the number
of edges in the graph is 1, the number of edges in the graph is 2, .} would
partition the set of all finite graphs.) The sets formed by an L-property partition
the set U into equivalence classes The language L allows us to name these
equivalence classes and describe the one containing any given graph in U. (In our
example, the classes could be named 0,1,2,~, and any finite graph would belong to
that class whose name was equal to the number of edges in the graph.) Thus if
there are precisely k distinct I-properties, the L-characterization of a graph G is
the L-deschption of length k which G satisfies; this is as much as L can say about
a given graph. An L-characterization is the most detailed description possible within
L The set of all satisfiabie L-characterizations partitions the set U into equivalence
classes; we call each such class an L-c/ass. Any element in a class- can serve as a

representatlve or signature for its corresponding L-class of graphs.

As we postulate and explore languages for graph theory representation, we will
focus on the preceding definitions In particula'r

e« An L-characterization may or may nhot be satisfiabie. The number of
satisfiabie L-characterizations is a way to measure the expressive
power of the language.

 An L-characterization may or may not be unique. The number of
uniqUe characterizations is a way to measure the expressive power of
the language. When an L-characterization is general, some graphs will
be indistinguishable from each other.

 There may be finitely many or infinitely many L-classes of relatively
equal or unequal cardinality. The evenness with which U is distributed
among the L-classes is another way to measure the expressive power

of the language.

A representation's procedufal power will be measured by its ability to generate
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examples, to test objects for properties, to construct aigorithms, to hypothesize, to
prove theorems, and to perform any other research behaviors observable when a
mathematician thinks about graph theory. Methodology (e.g. focusing, intuition) is not

part of procedural power.

We have now laid the framework for describing classes of graphs and

modelling graph theory in formal languages. We begin with the edge—set languages.
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.CHAPTER 2
EDGE-SET GRAPH LANGUAGES

All mathematicians ... would be of nimble discernment if they had
good sight, for they do not argue falsely upon princip/es familiar to
them; and discerning minds would be mathematical if they could turn

their eye towards the unfamiliar principles of mathematics.
-—Pascal

This chapter develops the first of two major, interrelated families of languages
for graph theory. The first section is an overview of the seven edge—sat languages
and their salient features. The next four sections describe edge—set languages in

detail. The last section is an assessment

2.1. General Overview

A family of languages is a collection of languages whose grammars and
semantic interpretations are hierarchical and mutually consistent A family of
languages is always based on a (not necessarily explicitly defined) bounding language.
The bounding language contains the underlying set of symbols, terms and
expressions in the family. A hierarchy is defined by gradually including more
symbols, terms and expressions in each new language, without eliminating those in
the preceding language. The evolution of this hierarchy is motivated by a desire to

- increase the expressive power of a language.

] éxtanding a language to formulate more expressive languages in the
hierarchy, we postulate the following principles:
e Each language extension should be a refinement of that which precedes

it, preventing loss of expressive capability.



» Additional expressive capability should partition many previously-existing
classes, rather than a few, and particularly the largest
previously-existing classes.

« Finiteness in the number of classes is a property to be preserved as

long as possible.

This section describes, briefly and informally, the seven edge-set languages,
which become a cornerstone of the recursive languages in Chapters 3 and 4. The
terms in the grammars are always edge sets. Traditional' set theoretic relations
between edge sets are L-characteristics. These relations are selected so that
properties are frequently boolean. The number and nature of the L-classes formed

under the partition of L-characterizations is always finite for fixed n.

We would expect these edge-set languages to have a broad expressive ability.
The simplest edge-set language \s Ly, Lj, L3, Lin, L2y and Lz, are ail extensions of
L; and closely interrelated The inability of these six to express certain graph
properties suggests a somewhat different extension of t-; to L% the seventh
edge-set language. More extensive details are available in the remainder of this

chapter.

2.1.1. Language L; Summary

In 163 we said that the expressions in a formal language have semantic
interpretations which are graph characteristics. Language L, begins with primitive
symbols whose semantic interpretations are edge-sets. The initial edge sets are |,
E, 1, and 0. | is the Cartesian product V X v,

= {xy j xy eV}
E is any subset of I, 1 is the set of ail loops on V,

1 = {xx | ‘x e V}
and 0 is the empty set j>. We introduce two unary operators on any edge set S:
reversal of the direction of all edges (denoted by S) and complementation with

respect to | (denoted by 9) We define the binary operations of union and
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intersection on ;dge sets. Finally we allow an equality relation (denoted as =) or an
inequality relation (denoted as # between any two edge sets constructed with the
operators from the original four. Some sample L;expressions follow:

ENt1#g

EUE=EnNnE

I=EUFE U1
Our interpretation of these expressions will be in terms of the standard
representation of the graph G by <V,E> Thus the first expression is interpreted as
"the intersection of E and 1 is not the empty set’ or "the elements of E include
some non-loops” or "G includes at least one edge.” Similarly, the second is
interpreted as "if an edge is in E so is its reverse,” and the third as "every edge or
its reverse is in E" Many L -expressions, however, are equivalent (via this
interpretation) to others. For example, '

Ent=¢
is equivalent to

E N = (g

in its semantic interpretation.

-

Although the language contains infinitely many L;expressions, they have only
finitely many distinct interpretations. L. being interpreted as only a finite number,
say p, of distinct L;properties. can be used to produce a description of length p
for each graph Because the L 1—properties are all boolean and appear in

complementary pairs, an L, -characterization can be efficiently represented as a

binary vector of length p. There are 2° such L,-characterizations and thus at most
2° L,—classes for all finite graphs. L, identifies the L,-characteristics shared by
two graphs as their matching vector entries. Because there are only finitely many
L;classas. a given description is not likely to describe only a single graph, although
it may be taken as a canonical form for an equivalence class of graphs whose
L,-properties are interpreted from L -expressions. Further details on this language

are provided in 2.2.



2-1.2. Language L, Summary

Language L, is an extension of L, which permits the relations of cardinal

equality (denoted as ~) and cardinal inequality (denoted as t-) between two edge sets.

Because an interpretation of an Lz-express'lon does not use integers
specifically in its property staterﬁents, L, manages to remain finite in the number of
distinct properties which can be interpreted from it although it provides a superset
of the descriptions available in L, Characteristics which can be interpreted from
Lz-expressions but not from L;-expressions include:

B ~E

1luEhE
Based again on the standard representation G = <V,E>, the first expression is
interpreted as "the reversal of the complement of the edge set has as many edges
as the edge set does"; the second as "there are not the same number of edges in

the complement of the edge set as there are in the edge set and all the loops."

The statements pertaining to descriptions and deterministic algorithms in L; are

equally applicable to L,. Further details on this language are provided in 2.3.

2.1.3. Language L;’ Summary

Language Lg is an extension of L, which permits the relation of lesser
cardinality (denoted as <) instead of cardinal inequality (/*). The interpretation of an
Ls;-expression does not use integers specifically in its property statements, and Lj
also remains finite in the number of distinct properties which can be interpreted
from it Lz provides a superset of the properties available L,. Characteristics

which can be interpreted from Lj-expressions but not from L,-expressions include:

€ <E
E<1uE
Based again on the standard representations G = <V,E>, the first expression is’

interpreted as the "the reversal of the complement of the edge set has fewer



edges than the edge set’; the second as "there are fewer edges than the locps in

the graph plus the edges in the compiement”

The statements pertaining to descriptions and deterministic algorithms in l.2 are

eé;ually applicable to L3. Further details on this language are provided in 2.4.

2.1.4. Summary of Languages Lm. L, and L3n

2n

Recall that n denotes the number of vertices in the graph. We will extend
language L. for i = 1,2,3, to language Lin by permitting as expressions:
' n=1

n=2

n=3

Each of the finitely many equivalence classes in Li is thus split into finitely or
infinitely many equivalence classes in L . Language L _ provides a superset of the
properties available in language Li. Further resuits on language Lin are provided with

the details on language L. (See 2.2, 2.3 and 2.4)

2.1.5. Language L: Summary

Language L: was motivated by the inability of the six earlier edge—set
languages to express most properties commonly appearing in graph theory texts,
and does enhance the expressive power of L1 to a limited extent Language L’; is
an extension of L, which includes the symbol E®, the transitive closure of E E" has
a recursive definition:

xy € E" if xy € E or if xp,pyeE"

Thus xy is in E* for G = <V.E> if and only if there is an alternating sequence (a

Path) X,.xV .V .V Vy..V, VY of distinct vertices in V and edges in E beginning with x

1
and ending with y. We chose to introduce the notion of transitive closure as a

single symbol, rather than a unary operator on a term, in order to control the



combinatorics. Some sample L:-expressions follow:

E'n1=34

l=EUE U1
Using the standard representation G = <V,E> the first expression is interpreted as
"‘no element of the transitive closure of the graph is a loop.” The second is
interpreted as "every edge is in the edge set or represents a path in the edge set”
Any L:-expression not including the symbol E* is an L1-expression. Further resuits

on this language are provided in 2.5.2.

2.2. Language L1

This section describes, in detail, the theoretical nature of language L1 and the

empirical resuits achieved with it

2.2.1. A Grammar for Language L1

The formal grammar for L. on a graph G = <V.E> is

symbol: EJI1]1]0
term: symbol | (term) | (term) | (term U term) | (term N term)
expression: term = term | term # term

For all the grammars in this family, we accept the convention of avoiding

parentheses whenever a construction would be unambiguous without them.

Although the grammar clearly generates infinitely many L,-expressions (for
example, E = 0, (E = 0, (EYY = 0, .), the semantic interpretations we give these
L 1-expressions place them in only finitely many equivalence classes. We interpret E
as the edge set of the graph. We interpret | as the Cartesian product V X V for
the vertex set V of the graph )
I= {xy | xy & V}

We interpret 1 as the set of all loops on V,
1= {xx | x € V}

and 0 as the empty set 4.



We interpret the construction term = term as the binary relation of set
equality defined on edge sets in the customary fashion. For edge sets S, and Sz,
S, = S2 if and only if for every xy € S, xy € 82 and for every xy € SZ' Xy €
S,
edges sets S, and S,, S, # S, if and only if S, =S

Similarly, the construction term # term is interpreted as set /nequality. For
2isfalse. ENi1=0is an

expression in L,, interpreted as "none of the elements of E is an edge” Such a

graph is G, = <{1,2,3},{11}> or G, = <{1,2},4>. Another example of an

expression in L1 is EUE # ENn E, interpreted as “"there is a difference between
the set of edges whose reverses are in E and the set of edges in E and its

reverse” Such a graph is G, = <{1,2,3}.{12}> or G, = <{1,2,3},{12.21,23}>

We interpret the construction (term) as the unary operator reversa/, which
interchanges the order of the vertices in each element of an edge set. ie. if S is
an edge set

S = {yx | xy & S}

We interpret the construction (term) as the unary operator comp/ement, which
replaces an edge set by its compiement will respect to the universal set |. Thus for
any edge set S

S=1{xy | xy ®S, xy &1}

Now we begin to assembie a set T of valid transformations on L, —expressions.

(A transformation is valid if it preserves the semantic interpretation of an
expression) T includes the following transformations, for any edge set S, by
definition of reversat:

(Syy <=>§

I <=>|

1 <=>1

0 <=>0
where "<=>" means that one expression may be replaced by the other without
altering the semantic }interbretation. Any odd number of successive applications of

reversal is equivalent to one reversal, and any even number is equivalent to no



T includes the transformation "the complement of the complement of S is S
itself”, so any odd number of successive applications of the complement is
equivalent to one complementation, and any even number is equivalent to no

compliementation at all. T also includes:

!<=>0

([=]

<=> |
By <=> (E)

The validity of the last transformation is due to the fact that both (E) and (E) are

{xy|yx & E}.

We interpret the constructions (term U term) and (term N term) as the binary
operations of union and intersection, in the traditional set operations. For edge
sets S, and S,.

S1 U 52

S, ns, = {xy | xy € S, andxyesz}

{xy | xy @ s, oi'xyesz}-

T includes the following transformations from set theory:
(ANB <=>AUB
AuB <=>ANB
and
(ANBy <=>ANng
(AUB <=> A UB
These, along with our earlier observations about reversal and compiementation, make
it possible to restrict both those unary operators to symbols rather than terms,

without loss of expressive ability. That is, under this restriction, the same

equivalence classes will be formed. Thus the following grammar will have the same

L;properties, although its expressions are a subset of the first grammar's. l
. symbol: E|I|]1|O|E|E]|E |1

term: symbol | (term U term) | (term N term)

expression: term = term | term # term
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This is the grammar we will use for L,

We are now interested in simplifying strings such as

«S;n Sy u.)n (...)
From set theory we have, for any edge sets S, S* S".

(S1 U Sy)) n S3 <=>(S; n S3) U (S2 n Sy)

(S1 n sp) U Sz <=>(S; u Sz n (Sz.U Ss)
It remains, then, only to simplify such pairings from among the eight symbols. For
any set S

lu S <=>I|

InS<=>8S

OuS<=>S

On S<=>0
Thus we need only consider expressions of the form S; u S, and S, n S, where
S.l and S:‘ are chosen from among E, E, 1, 1, E and _[E. We also know that T
includes:

Sus<=>|

SnS<=0
for any set S. What distinct sets of graphs will L; describe? Fortunately, set
theory provides us with a classical problem transformation: the Venn diagram. For
ail possible unions and intersections of sets S;S, .Sy and their complements with
respect to a superset |, the Venn diagram draws k intersecting circles in a rectangle.
Every L, term corresponds to exactly one of the finitely many regions in the
diagram _'i'hus L, has only finitely many terms and. therefore, finitely many
expressions. How many such expressions are there? We must consider undirected
and directed graphs separately. Since undirected graphs are combinatorially simpler,

we look at them first



2.2.2. L; for Undirected Graphs

For an undirected graph, the symbols E and E refer to the same edge set, as

do E and E. A Venn diagram for an undirected graph appears in Figure 2-1.

Figure 2-1: A Venn Diagram for Undirected Graphs
The symbol | is, by definition, the union of the others
| "Eui uOQUuEUI_

and the symbol 0. as the empty set requires no explicit description on a Venn
diagram Complements with respect to | have a natural representation in a Venn
diagram. Thus Figure 2-1 is justified in explicitly labelling only the symbols I, E and
1 Observe that | is partitioned into four subsets, which we call regions . We have
. labelled these regions with a shorthand to be used throughout this chapter

a denotes E n i, the non-loop edges not in the graph
c denotes E n |, the non-loop edges in the graph
d denotes E n 1, the loops in the graph

f denotes E n 1, the loops not in the graph
The interpretation of any term in L; for undirected graphs is either the empty set
or the union of some of these four regions. Any L;-expression is interpreted as a
statement of set equality or inequality between two such terms. There are only 2*
= 16 distinct interpretations of L™ -terms. Since_ these relations are symmetric and
complementary, -there are at most 2(*| ) = 240 L1-characteristics. Because these

characteristics represent the truth or falsity of a boolean relation (set equality), there



are at most 240/2 = 120 L,-properties and at most 2120 gifferent

L 3 —characterizations.

L;proper‘cies. however, are far more manageably finite than that We need
only test for set equality, because all the properties are boolean. Since the regions
a.c.d, and f partition the space, the correct interpretation of a statement of equality
between L1—terms is really a list of empty regions, those appearing on only one
side of the equal sign. For example, the L ;Texpression 1 = 1 U E is viewed in the
Venn diagram representation as a U ¢ = a U d U f. Because we always have a = a,
the non=-trivial portion of this is ¢ = d U f but, since ¢, d and f are disjoint, the
equivalent statement is that c.d and f are all empty, which we denote as simply cdf.
(Note that this implies |V| = n = 0 and the only graph with this particular property
will be the empty graph.) Thus there are really only 4 non-trivial distinct
L 1 -properties:

® 3 is empty

e C is empty

e d is empty
o f is empty

The L ,—characterization of a finite undirected graph therefore consists of four

characteristics, one for each boolean property. There are 2* = 16 such

L,—characterizations. We denote each L,-characterization by the list of regions it
declares to be empty. Four of these L,—characterizations (df, adf, cdf and acdf)
are satisfied only by the empty graph <g¢,4> and are consolidated as acdf. The
characterization ac is equivalent to saying |V| = 1. Since there are only two such
graphs, one satisfying description acd and the other satisfying description acf, the
L;characterization ac is eliminated The 12 remaining L, —characterizations partition
the set of all finite graphs and may be regarded as signatures for their respective
classes. In Table 2-1 the 12 L,~classes of undirected graphs are listed The
signature of a class is a canonical form given as a list of empty regions. In the

table's interpretations "edge” continues to denote a non—loop and "some’ denotes a



non—-empty proper subset Subsequent languages will have signature computations

performed by machine; these were performed by hand

Class Signature Interpretation
1 none some edges and some loops
a all poésible edges and some loops
3 c no edges and some loops
4 d some edges and no loops
f some edges and all possible loops
6 ad all possible edges and no loops
7 _ af all possible edges and all possible loops
cd no edges or loops but at least two vertices
S cf no edges and all possible loops
10 acd V={1}E=%
1 _ act v={1} E= {11}
12 acdf V=¢g E=¢

Table 2-1: Equivalence Classes for Undirected Graphs in L,

What appeared to be a rich language is really quite coarse. Three of these
signatures, (acd, acf and acdf) are for unique characterizations. Four more (ad, af,
cd and cf) would describe a unique graph, up to isomorphism, if accompanied in L in
by a value for n. Specifically, all members of class 6 are complete graphs of the
form <V,1>; all members of class 7 are complete graphs with all their loops <V,I>;
all members of class 8 are of the form <V,¢>; and all members of class S are of

the form <V,1>. A potential of 2120

classes has been reduced to 12, of which 5
will hold the majority of the graphs. It is to the credit of L,. however, that its
interpretation is able to describe three graphs without explicitly stating the elements
of either V or E L 1n IS able to characterize the 6 finite undirected graphs uniquely
for n = 2. For each fixed n > 2 and eaéh of the first 9 classes, there is at least

one graph.



2.2.3. L, for Directed Graphs

For a directed graph we return to the original seven symbols in the L,
grammar E, I, 1, O, E\ E, E, 1. Once agan E. B, 1, | and O have inherent

interpretations in the Venn diagram, leaving us with three sets (E, 1 and B) to
explore in Figure 2-2.

Figure 2-2: A Venn Diagram for Directed Graphs

This time | is partitioned into eight subsets The following calculations, however,
show that the two starred subsets of Figure 2-2 are always empty:

For the * region: If xy « (EnEn1)thenxy mland x =y. If xxe B

then xx « E and xx * E Thus (E n E n i) is empty.

For the *» region: If xy « (En B.n1)then xye 1 and x *y. If xx m E
then xx s B and xx * B. Thus (E n B_n 1) is empty.

Thus we are left with the six labelled regions in Figure 2-2. The labelling is
interpreted as follows:
*a denotes £E n B n ], the non-loop edges not in the graph whose
reverses are not in the graph either

* b denotes E n B n 1, the non-loop edges in the graph whose reverses
are not in the graph



c denotes E N E N 1, the non—loop edges in the graph whose reverses

are in the graph

d denotes (E U E) N 1, the loops in the graph

e denotes E N E N 1, the non-loop edges not in the graph whose

reverses are in the graph

f denotes (E U E) N 1, the loops not in the graph

The interpretation of any term in L, for a directed graph is the union of some

of these six regions. Any L,-expression is interpreted as a statement of set

equality or inequality between two such terms. Although there are potentially 28 =

64 interpretations of L,—terms, at most 2(6; ) = 4032 L, -characteristics and at

most 220'6 L1-characterizations, the number of distinct L1—properties can be
reduced using the same reasoning as in the undirected case. The empty graph this
time has signature abcdef, subsuming classes which would have had the signatures
df, adf, cdf, acdf, bdef abdef and becdef. The relationship between E and E
requires that b ~ e, so b is empty if and only if e is empty. The signamre abce
means n = 1 and is subsumed by abcde and abcef. This resuits in only 5
L,-properties and 24 equivalence classes for finite directed “graphs based on
L,-properties. The classes and their signatures are listed in Table 2-2 with an
interpretation. Note that the undirected case is equivalent to both b and e being
empty, which occurs in exactly 12 instances A "one—way edge’ denotes either xy in
E or yx in E and not both A graph G = <V.,E> is said to be weak/y-complete if
and only if xy € E or yx @ E for every distinct pair x,y € V. In the Venn diagram
representation, G is weakly-complete if and only if a is empty. In the table a
"two-way edge’ denotes both xy and yx in E The calculations for the tabie were

performed- by hand.

Thus L,-properties may be used to partition all finite directed graphs into 24
equivalence classes. Again 3 signatures are for unique characterizations and 4
describe a unique graph, up to isomorphism, if accompanied in Lm by a value for

n. The remaining 17 might be a useful categorization technique for small undirected



Class Signature Weakiy- One-way Two-way Loops

Complete Edges Edges
1 none no some some some
2 a yes some some some
3 c no some none some
d no some some none
5 f no some some all
ac yes some none some
ad yes some some none
8 ‘ af yes some some all
=] cd no some none none
10 cf no some none all
11 be no none some some
12 abe . .yes none all some
13 acd yes some none none
14 acf yes some none all
15 bce no none none some
16 bde no none some none
17 bef no none some all
18 abde E=1
19 abef E =1
20 becde E=0
21 bcef E=1
22 abcde V={1}E=¢
23 ' abcef V= {1}, E= {11}
24 abcdef V =4, E=¢

Table 2-2: Equivalence Classes for Directed Graphs in L,

graphs. For n > 2 there is at least one graph in each of the first 21 classes. Fc



n = 2 there are 7 finite non—-isomorphic directed graphs, 5 of which have distinct
signatures in L, and two of which (<{1.2},{12,11}> and <{1,2},{12.22}>) are

members of the same class (with signature ac).

2.2.4. An L, Graph Generator

A graph generator accepts an L-description and produces an arbitrary graph
which satisfies that L-description. Since undirected graphs are a subset of directed
graphs, in L1 we can write a single graph generator for them both. Since there are
only 5 L1-properties for directed graphs, any L,-description may be given as a
five—place vector specifying whether a region is empty (1), not empty (0), or its
contents are undefined (u), where the second region is b and e taken together. To
use the generator we write a "front—end algorithm” which takes an L;description
as input (e.g. <1 0 u u u>) and chooses, in a non—deterministic fashion, a more
detailed version of the signature, replacing the u's with O's or 1's, to create and
output an L;characterization
FRONT-END

Dimension S (5)

For k = 1 to §

Read S (k)

If S(k) = u then S(k) <- 0 or S(k) <- 1

Next k

Print S

Now we can write a generator which accepts an L, -characterization from
FRONT-END and creates a graph which satisfies it L1-GENERATOR labels the
relationship between each unordered pair of vertices by the number of edges they
will share. "Find" may be interpreted as "check to see that there exists.” Only
or-labels (e.g, "1 or 2" or u (undefined) labels may be changed. The algorithm
embodies, in its case statement, knowledge of the minimal number of vertices
possible in a graph satisfying each L ,—characterization. The options permit all
graphs to be accessible through the generator: the choice of the number of
vertices ("do for a while"), the choice made when labelling, the elimination of

or-labels at the end, and the final edge choice for a vertex pair labelled "1". The



algorithm's worst time complexity is quadratic in the internally generated (not i
value of n.
L1-GENERATOR
Read L -characterization S
Case: /*minimal case knowledge’/
abcdef in S: output <¢,¢>, halt
abc in S: VvV = {1} |
ab or ac or bc in S: VvV = {1,2}
else: V = {1,2,3}
Do for a while
add a vertex to V
Create all loops and edges and label them u
If a in S
then label all edge pairs ''1 or 2"
else find or label some edge pair '0"
If b in$S
then label all ‘edge pairs "0 or 1"
else find or label some edge pair '"2"
If ce in$§
then label all edge pairs "0 or 2"
else find or label some edge pair "1"
Ifdins$S
then label all loops "F" A
else find or label some loop "T"
If f in S
then label all loops "T"
else find or label some loop "F"
For each edge pair labelled u, re}abel as '"0" or '"1" or "2"
For each edge pair labelled "1 or 2', relabel as "1'" or "2"
For each edge pair labelled "0 or 1", relabel as "0" or '"{"
For each edge pair labelled "0 or 2'", relabel as "0" or '"2"

For each edge pair xy labelled "1'", place only one of xy or yx
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For éach edge pair xy labelled "2", place xy and yx in E
For each loop labelled u, relabel as ™' or "F"

For each loop xx labelled "T", place xx in E

Qutput <V, E>

2.2.5. An L; Testing Algorithm

A testing algorithm for language L accepts an L-description and a graph, and
returns "true" if the graph satisfies the L-description and "false" if it does not
Since an L;-description may be written as a 5-place vector, the testing algorithm

L1-TESTER is as follows:
L1-TESTER

Read graph G » <V,E>
Read L‘-description S
Create all loops and edges and label them u
Do for each xy 6 E, x and y distinct
Relabel edge xy "T"
Do for each xx e E
Rel abel loop xx ''TY
If (1 xy, distinct x and y, labelled u and yx labelled u, a in S
or (i xy, distinct x and y, labelled u and yx labelled T, be in §
or (3 xy, distinct x and y, labelled T and yx labelled T, ¢ in §)
or (3 xx labelled uand f in §
(3 xx labelled Tand d in §)

then print, "fal se't

or

else print "truet
This testing algorithmis quadratic in n.



2.2.6. Transition from L1 to L2

We have demonstrated that L1 is a very limited language, contrary to our
expectations. For undirected graphs, L, is coarse in that it does not distinguish
many disjoint subsets of U. L1 fares somewnhat better for directed graphs. The
graph generator and testing algorithms for L1 are QqQuadratic in the number of
vertices. A description composed of values for all the properties partitions the set
of all finite graphs into 12 classes for undirected graphs and 24 classes for
directed graphs. in three of these classes the signature is for a unique
characterization. L, has 5 properties for undirected graphs, 6 for directed graphs,
and creates infinitely many classes. There are four L,-properties which can become

unique characterizations in Lm’

With the principles of 2.1 in mind. we will proceed to language Lz'

2.3. Language L2

This section describes, in detail, the theoretical nature of language L2 and the

empirical results observed for it on the DEC-20.

2.3.1. A Grammar for Language L2

The formal grammar for L, on a graph G=<VE>is

symbol: E|jl1]|1]o0
term symbol | (termf | (term) | (term U term) | (term N term)
expression term = term | term # term | term ~ term | term # term

We interpret the construction term ~ term as the binary relation of equa/ set
cardinality. For edge sets S, and S, S, ~ S, if and only if |S | = |[S,|
Similarly, the construction term # term is interpreted as /nequality of set

cardinality. For edge sets S1 and Sz' S1 * 82 if and only if S1 ~ S2 is false.



Since the grammar for L2 differs from the grammar for L , only in its use of
set cardinality, we may reformulate it, as we did the grammar for L v without loss

of expressive capability, to be:

symbol: E|I|1|O0|E|E|E |1
term: symbol | (term U term) | (term N term)
expression: term = term | term # term | term ~ term | term # term

Once again we will consider undirected and directed graphs separately.

2.3.2. Lz for Undirected Graphs

Every Li-property is an Lz-proper'ty. With L2 we can suppliement the Venn
diagram representation by stating that certain regions, or unions of regions, have the

same number of elements. By reasoning similar to that for L,. we can show that

thera are at most 2(12) = 240 Lz-characteristics which ére interpretations of
Lz-expressions involving the relation ~ or 4 Many of these Lz—characteristics.
however, are equivalent to L;characteristics. For example,

EUI~ENNUENY
is, in the Venn diagram,

|[]avucud| =] aud]
or, more briefly,

|acd| = |ad|
Because regions are disjoint, this suggests an equation in integer unknowns:

la| +le| + |d] = [a] + [d|
which we will abbreviate as

a+c+d=a+d
This provides no more information about the nature of G than does |c| = 0, which
is equivalent to the L1-expression c is empty. As in Lr all properties are boolean
and thus we may restrict our attention to only = and ~ Sinced + f =nand a + ¢
= nin—1)/2, the property d ~ acf implies d = nin-1)/2 + n - d Since d is no
larger than n, we have n < 4. Since ac ~ df implies n = 3, and it is not possible

for d ~acf if n = 1 or n = 2, the property d ~ acf is redundant and is excluded,



as is f ~ acd in a similar proof. After these eliminations, only 27 Lz-properties

remain; they are listed in Table 2-3.

Number Property Number Property
1 a 15 af ~ ¢
c 186 af ~ d
d 17 cd ~ a
4 f 18 cd ~ f
a~c¢ 19 cf ~a
a~d 20 cf ~ d
a~f 21 : df ~ a
8 c~d 22 df ~ ¢
c~f 23 ac ~ df
10 d~f 24 " ad ~ cf
11 ac ~d 25 af ~ cd
12 - ac ~ f 26 a ~ cdf
13 ad ~ ¢ . 27 c ~ adf
14 ) ad ~ f

Table 2-3: Properties of Undirected Graphs in L,

The calculations for Table 2-3 were performed by hand, but here the manual
labor ends. Cardinal set inequality does not readily lend itself to an elegant proof
of the number of distinct characterizations possibie in Lz' Thus we chose to create
a FORTRAN program (called L2 and on view with its results in Appendix i) to
explore exactly how many of those 227 possible Lz—characterizations ever occur.
"Ever’ is a long time in an infinite class, so we ran L2 untii we despaired of ever
finding a new signature. L2 examined every graph for which n < 26 and found

only 106 distinct Lz-characterizations. The last new one occurred at n = 12.



Manual computations indicate that among the 106 signatures for these classes,
S are unique (in the sense defined in 1.6.2) descriptions and are listed in Table 2-4.
All edges are undirected and only listed once. The first three of these were also

available in L ’

Signature \'} ' E

acd {1} ¢

acf {1 {11}

acdf é )

ac~d-~f {1.2} {12,11}
cca~d-~f {1.2} ~ {11}

ad, ¢ ~ f {1,2,3} {12,13,23}

af, c ~d {1,2.3} {12,13,23,11,22,33}
cd, a~f {1.2,3} $

cf,a~d - {1,2.3} {11,22.33}

Table 2-4: Unique L, Characterizations for Undirected Graphs

An LG graph testing algorithm requires only the number of elements in each of
a, d and n in order to generate the Lz-characterization for a graph. We call such a
value triple a case. The material in Table 2-5 is drawn from machine—generated
computations. For a fixed number of vertices, the table compares the number of
L,—characterizations which actually occurred for a given n to the number of
possible cases. Since d + f = n and a + ¢ = nn—=1)/2, we have (n+1)}{1+nin—1)/2)
possible césas for a graph on n vertices. The signature which satisfies none of the
27 properties is by far the largest class for n > 5. The initially declining value of
the percentage of cases in the largest class is attributable to the relatively few
cases for n < 5. The class with signature "none” is increasingly more populated as

n increases, especially for prime n, where none of the modulo—oriented restrictions

apply.

Two finite graphs which have the same values for a, d and n will be

indistinguishable from each other via their Lz-characterizations and will lie in the



Largest Largest

Cases Characterizations Class Size Class Percent

1 1 1 100
1 2 2 1 50
2 6 1 17
3 18 12 2 13
4 35 33 2 6
5 66 28 8 12
6 112 42 24 21
7 176 29 48 27
8 261 80 76 29
9 370 34 186 53
10 506 36 272 54
1" 672 35 400 60
12 - 871 58 512 59
13 1106 30 792 72
14 1380 36 860 70
15 1696 43 1268 75
16 2057 50 1460 71
17 2466 30 1984 80
18 2926 40 2276 78
19 3440 35 2808 82
20 4011 80 3136 78
21 4642 34 3964 85
22 5336 36 4400 82
23 6096 35 5236 86
24 _ 6925 58 8732 83
25 7826 30 6912 88

Table 2-5: Results of Program L2 on Undirected Graphs

same Lz-class. For n = 2, however, each a and d value pair defines a unique (up
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to isomorphism) undirected graph and thus the Lz-characterization is unique, i.e., no
two non-isomorphic undirected graphs on 2 vertices have the same
Lz-characterization For n = 3 the cases are spread among 12 classes, with never
more than 2 in a class. For n = 4 the cases are spread among 33 classes, with
never more than 2 in a class. For fixed n > 7, a minimum of 30 different
Lz-characterizations occur, but as n increases the grain of this partition coarsens.
Forty—eight of the signatures turn out to be applicable to only a singie value of n,
and 16 more restrict n to values modulo some integer. These results are due to
the fact that an Lz-characterization is interpreted as a system of equations and
inequalities in non—negative integer unknowns (a3, ¢, d and f) which may be soived
for n. The following are always a part of this system:

a+c=nn-=-1/2 '

d+f=n

0sdsn

0sfsn

Osas n(n-1)/2

0scsnn=-1)/2

For example, consider the Lz-description ¢ ~ f and cf ~ d This may be rewritten

as:
c=f
c+f=4d
or
2f = d
which, by substitution, yields
3f =n

so n is congruent to 0 modulo 3. This example is intended to demonstrate the

strengths and weaknesses of Lz'



2.3.3. L2 for Directed Graphs

For directed graphs in L2 the same six—region Venn diagram is applicable.

Using the established reasoning pattern we make initial estimates of 2% = 64

interpretations of L, terms, 4(6‘;) = 8064 Lz'-characteristics and at most 24932

Lz-characterizations. We have aiready shown, however, that 2(6;) of these resuit in

only 5 properties using =. The other 2(6;) properties arising from ~ are reducible,
by manual calculations, to 197. The program L2DI (on view with its output in
Appendix lll) explored how many of these possible' characterizations occur up to n
= 25. (Limiting values for n are based upon space and time limitations) The
material in Table 2-6 is drawn from L2DI output 4849 distinct signatures were
found; 2572 of them for more than a single value of n. The last new signature
abpeared atn=25 Forn=1andn-=2 L2 provides no finer a partition than L.
For n > 2 the partition is a substantial improvement over L. of increasing

refinement untii n = 9. A minimum of 811 classes appear for n > 7.

2.3.4. Algorithms for Generating and Testing in L2

The construction of an arbitrary graph satisfying an Lz-description requires the
solution of a system of linear inequalities in the non—negative integer variables b, c,
d and n. The same six equations from 2.3.2 form the basis for this system. Each
of the 27 boolean properties without a u value in the signature contributes another

equation. For example, af ~ d is interpreted as a + f = d

The approach of L1-GENERATOR, where we reset u values to O or 1 would
be inefficient here, because so many properties are incompatible with each other.
Instead we search for the constraints on the variables first and then set their values
arbitrarily. (There is, therefore, no consideration of a minimum case) GENERATOR
reads in the dimension of the signature and then the signature itself, constructing
the relevant equations and inequalities. GENERATOR then calls a package (such as
[BM's Mixed Integer Programming) [ 75] to solve the system of inequalities
established. GENERATOR then selects arbitrary values for a, ¢, d, f and n consistent

with the solution. The construction of a graph with these values is similar to that
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GENERATOR

Read k

Dimension S (k)
+b+c+e <-n(n-1)/2
+ f <= n
d <n
f n
n(n=-1)/2
n(n=-1) /2
n(n-1)/2
n(n=-1)/2

a
b

(-

o o o o o o a o
AN AN N AN IANN
W AN N AN

e

For | = 1 to k

Read S (j)

Write equation (inequality) based on S(j)

Next j

Call Mixed Integer Programming to solve system

Choose values for b, ¢, d and n consistent with the solution

e <-b

a<-n(n-1)/2 -b=-c-e

f<-n-d

Call Heap's program to construct graph G

Append d loops to G

Qutput G
The last steps of GENERATOR call a package (perhaps Heap's program from the
National Physical Laboratory at Middiesex) to construct a graph G with the b, ¢ and
n values specified, and then appends d loops before outputting the graph
Alternatively, the tuple <ab,c.d.e.f.n> may be output Although this form of the
graph is one to which we are unaccustomed, it is really all L2 is capable of saying
about G.

The L2 graph testing algorithm is a simplistic procedure. It reads in the graph

and the Lz-signature, and then confirms each of the properties flagged as true



(denoted by 1):
TESTER

Read k
Read graph G e« <V, £>
Calculate a, b, ¢, d, e, f and n
For I « 1tok
Read S(I)
If S(i) » 1 and interpretation (S (lI)) is false
then print FALSE and halt
else continue
Next |
Print TRUE

The testing is quadratic in n.

2.3.5. A Comparison of L; and L,

Clearly I», is an extension of L; and fité the criteria for extension suggested in
2.1. Iz-characterizations subdivide each of the 9 non-unique classes of the
partition of ail finite graphs formed by L;-characterizations, as shown in Table 2-7.
Lz-characterizations offer further information on the values of a and d without

explicitly stating them. There are still a finite number of L,-classes.

L, appears to extend L; in the desired fashion, concentrating much of its
precision where L; was weakest For undirected graphs with n less than 7 or 3,

L,-characterization may be an adequate categorization

L, is certainly an improvement on L, It provides substantially more
equivalence classes and refines the largest L; classes. The graph generator is based
upon a problem transformation into a system of linear inequalites. Both the
exploratory program and the graph tester find the numerical values of a, b, c, d, e,
f and n an adequate description of G A description composed of values for the
L,-properties appears to partition the set of all finite graphs into 106 classes for

undirected graphs and at least 4849 classes for directed graphs. L,, has 28



L, Signature Number of L2 Subdivisions

none 70
a
c _ 4
d 10
f .10
ad 2
af 2
cd 2
cf 2

Table 2-7: Refinement of L . by L2
properties for undirected graphs, no more than 202 properties for directed graphs,
and creates infinitely many classes. In the spirit of 2.1 we will now expand our

edge—set language hierarchy once again.

2.4, Language L3

This section describes, in detail, the theoretical nature of language L3 and the

empirical results achieved with it

2.4.1. A Grammar for Language L3

The formal grammar for L, on a graph G=<VE>is

symbok: EjI1|1]o0
term: symbol | (term) | (term) | (term U term) | (term N term)
expression: term = term | term # term | term ~ term | term # term |

term < term

We interpret the construction term < term as the binary relation of /esser
cardinality between sets. For sets S, and Sz, S, < S2 if and only if |S1] is less

than |52|~ Since the grammar for L3 differs from the grammar for L, only in its



introduction of lesser set cardinality (as denoted by <), we may reformulate it (with
the T transformations as we did the grammars for L, and L,) without loss of

expressive capability, to be:

symbot: E|I|1|]O0O]|E|E]|E |1
term: symbol | (term U term) | (term N term)
expression: term = term | term # term | term ~ term | term # term |

term < term

Language L3 is an extension of L2 which permits the relation of lesser cardinality
between two sets. The interpretation of L3 does not specifically use integers, and
L3 also partitions U into finitely many classes. Properties which can be interpreted
from L3-expressions but not from Lz-expressions include:

E<FE

1NE<E
The first may be interpreted as "the complement of the edge set has fewer edges
- than the reversal of the edge set’, the second as "there are fewer loops in the

graph than there are edges in the complement of the reversal of the edge set”

We will again consider undirected and directed graphs separately.

2.4.2 L3 for Undirected Graphs

L3 includes all L 1-properties and Lz-properties In addition to the

Lz-expression term # term, L3 uses term < term. There are 2(’62) = 240
L3-characteristics which are interpretations of L3-expressions involving the

asymmetric relation <. The L3-expressions term., < term_ and term_ < term_ are

1 2 2 1
refinements on the Lz-expression term, # tarmz. Some of these, such as ac < a,
would be mathematically impossible. |f we restrict term 4 < term, so that term, is

not a proper subset of term_,“we have a potential of only 175 L3-characteristics

zl
involving <.

The count of L3-characteristics is therefore 54 Lz—characteristics plus 175



characteristics new to L., for a total of 228, suggesting a potential of 2228
different La—characterizations We can reduce this estimate substantially by
observing that many such characterizations would be mathematically unacceptabie. L3
still has a valid transformation as a system of equations and inequalities, but a set
of Ls-expressions such as

a<ece

c<d

d<a
would be entirely unacceptable. We observe that the most complete and consistent
set of statements L3 could formulate about a graph would be an ordering of the
distinct non—-empty subsets available as unions of the four regions in Figure 2-1.
(This also indicates that the introduction of the relations > < and 2 would not
increase the number of L-classes and shouid not be considered) There are 2° -1
= 15 such subsets and in any such ordering we could force acdf to be the last
There are therefore 14! permutations of the subsets. Between every pair of
subsets in a permutation either = or < must appear, in order to construct an
ordering Our bound on the number of L3-characterizations has now impfoved to

21314 < 250

We created a FORTRAN program (called L3 and on view with its resuits in
Appendix V) to explore how many of those 2'314 possible L3-characteristics ever
occur. L3 examined every graph for which n < 26 and found only 259 distinct
L3-characterizations The last new one (as with L,) occurred at n = 12. Of these,
187 were for more than a single value of n The 102 signatures restricted to a

single value of n occurred onily for values of n less than 8.

The material in Table 2-8 is from L3 output For a fixed value of n, the tabie
compares the number of L3-characterizations which actually occurred for a given n
to the number of possible cases. For fixed n, 7 < n < 28, L3n separates graphs
into at least 108 equivalence classes, with no class containing more than 17% of

the cases. For n = 1, 2, 3 and 4, L3 was able to uniquely characterize every case



Largest Class Largest Class

n Cases Characterizations Size Percent
0 1 1 1 100
1 2 2 1 50
2 6 6 1 17
3 16 16 1 6
4 35 35 1 3
5 66 52 2 3
6 112 90 4 4
7 176 96 6 3
8 261 129 7 3
9 370 112 16 4
10 506 118 28 6
11° 672 120 50 7
12 871 149 70 . 8
13 1106 108 114 10
14 1380 122 144 10
15 1696 128 203 12
16 2057 145 245 12
17 2466 108 336 14
18 2926 126 392 13
19 3440 120 504 15
20 4011 145 576 14
21 4642 112 730 16
22 5336 122 820 15
23 - 6096 120 1001 16
24 6925 153 1111 16
25 7826 108 1344 17

Tabla 2-8: Characterizations for Undirecti3d GraDhs in. Ly

(not graph) submitted to it



49

243. L, for Directed Graphs

For directed graphs in L_‘-j the same six-region Venn diagram remains applicable
This time we have 2567 mathematically acceptable Ls-characteristics. There are now
2° - 1 = 63 subsets to permute, and a bound of 2°%63! < 2’? possible
Ls-characterizations. The program L3DI (on view with its output in Appendix V)
explored how many of these possible characterizations occur up to n = 13. (The
limiting value of 13 was based upon space constraints.) The material in Table

2-9 is drawn from L3DI output

Largest Largest

n Cases Characterizations Class Size Class Percent
0 1 1 1 100
0 1 1 1 100
1 2 2 1 50

2 6 6 1 17
3 24 24 1 4

4 80 80 1 1
5 216 200 2 1
6 504 476 4 1
7 1056 876 6 1
8 2025 1670 9 0

9 3610 2734 16 0
10 6072 4080 28 0
1 9744 5848 50

12 15028 7809 73 0

Table 2-9: Results of Program L3DI on Directed Graphs

20,001 distinct signatures were found; 5191 of them for more than a single value
of n. The last new signature occurred at n = 13. Because the program exhausted

its space constraints and never completed n = 13, it is likely that there are far



more than 20,001 distinct signatures and that fewer than 5191 of them are
restricted to a single value of a For n = 1 and n = 2, Lz provides no finer a
partition than L; or Lz' For n > 2 the partition is a substantial improvement over
L., of increasing refinement at least until n = 13. For n > 3, no class contains more

than 1% of the cases.

2.4.4. Algorithms for Generating and Testing in Lg

The construction of an arbitrary graph satisfying an Lz-description requires the
solution of a system of linear equations and inequalities, just as it did for L,. For
undirected graphs there are five integer variables (a,c,d,fn), three of which are
independent (a,dn). For directed graphs there are seven integer variables
(ab,cdefn), of which four (abdn) are independent Each boolean la-property
contributes an inequality or an equation to the basic system of six. If we set the
dimension of the signature to 258 for undirected graphs, or 2567 for directed
graphs, the algorithm for generating graphs' with ~-properties is identical to the
GENERATOR in 2.3.4. The L; graph testing algorithm is also a reproduction of
TESTER in 2.34.

2.45. A Comparison of t-3 with L,

L is definitely an improvement on L,. The proble'm transformation into an
ordering of the subsets in the Venn diagram provides a much greater bound on the
number of distinct signatures. For n > 2, the density is substantially reduced for
both directed and undirected graphs. L -characterizations offer further information
on the values of a, b and d without explicitly stating them. There are still a finite

number of Ls-classes.

L; appears to extend L, in the desired fashion, concentrating much of its
precision where L, was weak. For undirected graphs with n less than 16 or 17,
L, -characterization may be an adequate characterization. For directed graphs with n

less than 13, this is certainly true, and the value of n may even be higher.



L3 provides a remarkable number of equivalence classes. It appears to
partition the set of all finite graphs into 258 classes for undirected graphs and
more than 20,000 for directed graphs. L3n has at most 229 properties for
undirected graphs, at most 2567 for directed graphs and creates infinitely many
classes. In the spirit of 21 we will now expand our edge-sét language hierarchy

once again.

2.5. The Language L:

This section describes, in detail, the theoretical nature of language L: and

makes some empirical observations on it

2.5.1. A Grammar for Language L:

The formal grammar for L'; on a graph G = <V,E> is

symbot: E|E"|1]1]0
term: symbol | (term) | (term) | (term U term) | (term N term)
expression: term = term | term # term

We interpret the symbol E" as the transitive closure of the edge set

E* = {xy | xy € E or xp,py € E%
Note that we have not introduced transitive closure () as a unary operator on edge
sets, but instead have introduced a new symbol €. effectively limiting transitive
closure to E alone. This introduction of a new edge set symbol makes analysis of
the language more manageable. Language L: is an extension of L, which permits
consideration of paths existing in the graph. We may reformulate the grammar for
L'; without loss of expressiveness so that the unary operators are restricted to
symbols:
symbol: E|E" |1|1|o0|E|E|E|1]|E"|E|E"

term: symbol | (term U term) | (term N term)



expression: term = term | term # term

Properties which can be interpreted from L:-expressions but not from
L ] —-expressions include:

E'=0

E'n1=E
The first may be interpreted as "the complement of the transitive closure of the
edge set is empty”; the second as “all the non—icops in the transitive closure of the
edge set are in the edge set aiready.” For L: we will explore oniy the undirected

graphs.

2.5.2. L’; for Undirected Graphs

If there is a path from x to y in the undirected graph G = <V,E> then there is
also a path from y to x, ie.,

€Y ="
For undirected- graphs we still have S = S for any edge set, and thus a Venn
diagram need only represent the relationships among the seven symbois E, E", I, 1, 0,
1 and E" Using our traditional arguments we arrive at Figure 2-3. In order. to
interpret Figure 2-3 intalligibly, it heips to think about what effect the transitive
.closure of E has on G = <V,E> E is always a subset of E". In E", every vertex
lying on a cycle will have a loop. Also in E" every connected component of G will
become a complete subgraph. Thus the labelling in Figure 2-3 is interpreted as

follows:

e a denotes E_" N 1, non-loops not in the transitive closure of the edge
set

e c denotes E N 1, edges in the graph

e d denotes E N 1, loops in the graph

e f denotes _E_: N 1, loops neither in the graph nor in the transitive
closure of its edge set

e p denctes E' n E N 1, edges not in the graph but in the transitive

closure of its edge set



Figure 2-3: A Venn Diagram for Undirected Graphs in L:

e q denotes E* n E n 1, loops not in the graph but in the transitive

closure of its edge set

The interpretation of any term in L'; for an undirected graph is the union of
some of these six regions. Any L: —expression is interpreted as a statement of set
equality between two such terms. There appear to be 2% = 84 distinct L: -terms.
Using the same analysis we applied to L, we see that an L)-characteristic is a
statement as to whether or not a subset is empty. This suggests the possibility of

as many as 63 L:-signatures.» We interpret the first six on G = <V,E> to aid our

analysis:

a is empty means G is connected or n < 2

¢ is empty means G contains no edges

d is empty means G is loopfree

. f is empty means there are no isolated vertices in G

p is empty means every connected component in G is complete



e g is empty means every unisolated vertex in G has a loop in G

Given these interpretations we can now make some oObservations which
substantially reduce the number of L: —signatures. We abbreviate by omitting “is
empty”:

i. If ag then f or c.

Explanation: If the graph is connected (a) but no new loops are
derivabie (q), then either all loops were aiready in the graph (f) or no
edges were possible (ac) or n < 2 (acp or acdfpq).

ii. If ¢ then pq.

Explanation: |f the graph contained no edges (c). then E* will be the
same as E (pq).
iii. If dfq then acdfpq.
Explanation: |If no loops are possible (dfq) then we have the empty
graph (acdfpq).

iv. If adg then acdfpq or acdpq
Explanation: If adq then (by i) adfq or acdq |f adfq then (by iii)
acdfpq. If acdqg then (by i) acdpq and n < 2 (acp). |

v. If a then f or cp.

Explanationn If G is connected (a) then every loop is in E or E* (P or
n < 2 (acp or acdfpq).

vi. If dq then c.

Explanation: If every unisolated vertex is looped (q) and G is loopfree

(d) then every vertex is isolated (c).

These interpretations leave us with only 22 signatures for undirected graphs in L';,
shown in Tabie 2-10.

The values for ac.d.f.p.q, and n are very closely related. In particular, we can
show that

d+f+q=n
nin=1)/2

a+c+p



Smallest

Class Signature n Value
1 d 4
2 f 4
3 p 3
4 q 4
8 af 3
6 df 5
7 dp 3

Interpretation
disconnected, some edges, loopfree,
some isolated vertices,
not every connected component complete,
not every unisolated vertex has a loop
disconnected, some edges, some loops.
no isolated vertices,
not every connected component compiete,
not every unisolated vertex has a loop
disconnected, some edges, some loops,
some isolated vertices,
avery connected component complete,
not every unisolated vertex has a ioop
disconnected, some edges, some loops.
some isolated vertices,
not every connected component compiste,
every unisolated vertex has a loop
connected, some edges, some loops,
no isolated vertices,
not every connected component complete,
not every unisolated vertex has a loop
disconnected, some edges, loopfree,
no isolated vertices,
not every connected component compiete,
not every unisolated vertex has a loop
disconnected, some edges, loopfree,
some isolated vertices,
every connected component complete,

not every unisolated vertex has a loop

Table 2-10: Undirected Graph Signatures in L]



Smallest
Class Signature n Value Interpretation
8 fp 3 disconnected, some edges, some loops,
no isolated vertices,
every connected component complete,
not every unisolated vertex has a loop
S fq 4 disconnected, some edges, some loops,
no isolated vertices,
not every connected component complete,
avery unisolated vertex has a loop
10 pPq 3 disconnected, some edges, some loops,
some isolated vertices,
every connected component compiete,
every unisolated vertex has a loop
1" adf 3 connected, some edges, loopfree,
no isolated vertices,
not every connected component complete,
not every unisolated vertex has a loop
12 afp 2 connected, some edges, some loops,
| no isolated vertices,
every connected component complete,
not every unisolated vertex has a loop
13 afq 3 connected, some edges, some loops,
— no isolated vertices,
not every connected component complete,
every unisolated vertex has a loop
14 cpq 3 disconnected, edgeless, some loops,
some isolated vertices,
.every connected component complete,
every unisolated vertex has a loop

Table 2-10: Undirected Graph Signatures in L';, continued



Smallest
Class Signature n Value Interpretation

15 dfp 4 disconnected, some edges, loopfree.
no isolated vertices.
every connected component complete.
not every unisolated vertex has a loop
16 fpq 4 disconnected, some edges, some loops.
no isolated vertices.
every connected component complete.

every unisolated vertex has a loop

17 adfp 2 1

18 afpq 2 1

19 cfpq 2 1

20 acdpq 1 <{1}.*>

21 acfpq 1 <{1},{11}>
22 acdfog 0 <g,9>

Table 2-10: Undirected Graph Signatures in [, continljed
if c =1 then f £ n-2
if k(kTi)/2 < ¢ & k(k+1)/2 then f £ n-k for k » 2,34,~
O S g” min(2c,n-d)
0*p* (%)
From these we observe that the values for ad and n are independent variables and

will determine the possible values for the dependent variables a,f,p and g.

2.5.3. Evaluation of L’;

Ly is a good refinement on L, for undirected graphs. For directed graphs,
however, we will also have to consider the sets E, E, E5 E£, E*, and BA These
lead to the unpleasant Venn diagrarh of Figure 2-4. The interpretations of the’
regions in the diagram become challenges to English grammar and resemble few
properties appearing in graph theory texts. This awkwardness, coupled with a

desire to explore recursive formulations, causes us to abandon further exploration



Figure 2-4: A Preliminary Venn Diagram for Directed Graph_s in
w»

of

of L, The idea, however, of working with transformations (such as transitive edge
closure) producing properties appearing in graph theory texts will not be abandoned
It motivates, as a matter of fact the recursive formulation of graph theory

discussed in Chapters 3 and 4.

2.6. The Edge-Set Languages: a Review

We conclude our exploration of the edge-set languages at this point Each
language refines the partition of the set of all finite graphs. The operations chosen
for the grammars reflect our initial need to find similarities and differences in a set
of graphs. The similarities and differences among graphs are readily available
through their signatures. The fact that only finitely many, and far fewer than
expected properties appear, suggests that a primitive form of hashing based on the
signature of a graph in an edge-set language, may be an acceptable solution for

graphs of reasonable size (say n < 17).
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There is no difference between the procedure for producing a graph with
several specified edge—set language characteristics and that for only a single
characteristic; both use the same generator. Similarly, testing for a set of
characteristics uses the same procedure as testing for one. The edge-—set languages
describe very few of the graph properties customarily dealt with in books on graph

theory. The recursive languages will attack this problem in the next two chapters.
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CHAPTER 3
RECURSIVE LANGUAGES

.10 prove even the smallest theorem [we] must use reasoning by
recurrence, for that is the only instrument which enables us to pass

from the finite to the infinite.
--Poincare

This chapter examines the fundamental concepts we use in the recursive
description of graph properties. It begins with an explanation of incremental graph
construction. Recursive graph grammars are defined and their components examined
in detai. A minimality notion, the floor of a graph property, is discussed We
define inversion and present a technique for automated inverse construction. Finally,

twenty three elementary recursive graph properties are described at length.

3.1. Graph Construction

This section introduces construction of graphs by a gradual, iterative process.
The algorithm CONSTRUCT iterates toward a specific graph; the algorithm GENERATE
iterates toward an arbitrary graph. The definition of a graph property (edgelessness)

through a recursive algorithm motivates the remainder of the chapter.

A graph consists of finitely many vertices and finitely many edges. We
therefore envision the creation of any graph as a construction process, in which we
add one element (a vertex or an edge) at a time. Assume first that we have a
specific goal, a graph we wish to copy. An aigorithm to produce such a copy may
be formulated recursively, and appears in Figure 3-1. CONSTRUCT has a target
graph G, = <V_E_> which it is attempting to build from G = <V.E>. Termination is
guaranteed if CONSTRUCT is initially called on (<V_E >K.) beginning with the



CONSTRUCTI<V_E_> <V E>)
Either V <= V U {x} for x € V., x & V
or E <= E U {yz} for yz€V yzeE_ yze&E

If G =G;

then hait

else CONSTRUCTI<V_E > <V,E>)

Figure 3-1: An Algorithm to Recursively Construct a Target Graph

smallest possible graph. (The empty graph will be studiously avoided.) Each iteration
adds to G either a missing vertex in V or a missing edge in E between vertices
already present in V. CONSTRUCT terminates when G is isomorphic to G, A trace
of CONSTRUCT could be encoded as a sequencing of the set V. U E_ in which
each edge xy is (not necessarily immediately) preceded by both x and y. There are

many such construction sequences for any target graph GT.

CONSTRUCT could be modified to produce an arbitrary graph. Rather than
compare the progress of the algorithm against a target, we could “randomize” the
process as in Figure 3—-2 |

GENERATE(<V.E>)
Either V <= V U {x} for x & V

or E<-EU {yz} for yzeV, yz&E
Either output <V.E>

or GENERATE<V.E>
Figure 3-2: An Algorithm to Recursively Generate Graphs

The initial c;all to GENERATE is on K,. GENERATE arbitrarily adds vertices and edges
until it decides to halt There is no guarantee that GENERATE will terminate, but at
the end of each iteration its "current product” is a graph, and its output, if any, will
always be a graph. Figure 3-3 show the iterative steps in "building” a graph during
a sample run of GENERATE

An aiternative, recursive definition of graph might be: "A graph is K, or any
output from GENERATE(K,." This definition enumerates the set of all graphs. The

enumeration is in no particular order and may well be redundant because of the
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Figure 3-3: A Sample Run of GENERATE

many possible construction sequences. Yet, since every graph is constructable in

this sense, the definition is equivalent to that given in Chapter 1.

A graph property is, as we have said, & partition of the set of all graphs into
two classes: those graphs (Gp) which have the property and thc?se which do not
Thus one way to define a graph property is to list all the graphs possessing it For
example "edgelessness” could be defined as:

G = {{<1>,4),(<1,2>,4),(<1,2,3>,¢)...}
or if we let E = <{1,2,3..k}.¢> more concisely, as:

G; = {E, | k an integer, k 2 1}

An alternative listing could be in the form of an algorithm which generated precisely
that set "Edgelessness is K1 or any output from EDGELESS(K1)." The algorithm
EDGELESS appears in Figure 3-4. Figure 3-5 shows the iterative steps in a sample
run of EDGELESS. | '

Let O denote the set of all possible graphs output by EDGELESS. Since

edgeless
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EDGELESS«V,E>)
V<-VU {x} for x *V
Either output <V,E>

or EDGELESS(<V,E>)
Figure 3-4: An Algorithm to Generate Graphs without Edges

Figure 3-5: A Sample Run of EDGELESS

EDGELESS never changes E, E will remain empty, anoi every element of Oe(bems will
be of the form <V,$>, La, edgeiess. Thus the algorithm produces only edgeless
graphs and OedmmaSS £ G;. Since any (<1,2,3,.«,k>%$> in Gg may be constructed by
inserting 1, then 2, and so on, up to k, EDGELESS produces all edgeless graphs, i.e,
Geg £ Oedge|ess. Therefore Gg = Oedﬁuess and we have demonstrated the equivalence
of the two definitions for edgelessness. EDGELESS is an example of a graph

property definition in a recursive language.



3.2. Recursive Graph Grammars

Now that we have clarified iterative graph construction as a definition
technique, this section defines recursive graph grammars to implement it

GENERATE and EDGELESS are reformulated in this context

A recursive grammar for graph properties has concise terminal expressions
whose semantic interpretations are aigorithms similar to GENERATE and EDGELESS.
There are three key components in such a grammar:

e the primitive operations permitted on the graph (such as adding an

edge)

e the seed graphs on which the algorithm may be called initially (such as

K1)
e the selector conditions under which choices are made during execution
(such as "for x & V").
‘More formally, let a recursive graph grammar R be an ordered triple R = <P.LI>
where P is the language for primitive operators permitted on the graph, L is a seed
language used to specify the seed set (graphs on which the algorithm may be called
initially), and T is a selector language in which the selector conditions are formuiated.
A terminal R-expression will be of the form p = <f,S,0>, where f is a terminal
P-expression, S is a terminal L-expression and ¢ is a terminal [ expression. The
semantic interpretation of this 'R—expression is an algorithm which iterates an
unspecified number of times. On each iteration the se/ector o chooses one or more
vertices and/or edges with respect to the current graph G, and then f modifies G,
using those choices, to produce a new G Initially G is a seed graph selected from
the set of graphs which is the semantic interpretation of the expression S. More
formally, an A-property is the following semantic interpretation of the triple <f.S,o>
as a recursive algorithm called on any graph described by S:
#G) ‘

G if enough

f(G) where G = f(G) using elements from G or new to it
selected by o in order to apply f
Any G for which. S is true has the R—property, and any output from the algorithm



on such a G has the R-property. In the event that no vertices or edges satisfy o,
or the algorithm "decides” to hait, "enocugh” is true. If G is any seed graph, the
triple may be written grammatically as (fo)'(G). ie. "zero or more successive
applications of f to G, each subject to selection criterion ¢.” Thus an R-property p
is a graph generator which may be stoppqd éfter any iteration, vyielding a graph
The set of such possible outputs defines the graph property p. For example, if G is
a seed graph, G, f(G), #5G) and f'7(G) under ¢ may all be said to "have" the
property p = <f,S,0> Thus a variety of graphs having propérty p may be produced
by varying G within the set described by S or varying the number of times f is
applied. Even if those are kept constant, the selector ¢ makes arbitrary choices, so
that several executions of f<(G) for fixed k and G will not necessarily produce the

same graph, although all outputs will have property p.

A generator is said to be correct if every graph output by the generator must
have property p. A generator is said to be comp/ete if every graph with property p
has an imaginable construction under some execution of the generator which makes
appropriate selections on each iteration. (No attempt has been made, however, to
prevent redundancy. A given generator may produce isomorphic graphs in different
application sequences.) The triple <f,S,0> is a valid syntactic representation of some
graph property p if and only if the generator interpreted from the triple is correct
and complete with respect the set of all graphs having property p.

Let us reexamine GENERATE and EDGELESS now within these definitions.
Clearly the only seed graph for GENERATE is K, and the primitive operations we
wish to allow are "add a vertex x", which we shall denote as A . and "add an edge
yz', which we shall denote as Ayz. Then GENERATE is merely

A+ Ayz)*(K ) where x £V, yz €V, yz & E
The "+" sign denotes the option of choosing either A or Ayz on each iteration.
We observe the addition of an element aiready in a set to that set can effect no
change, and therefore revise GENERATE (and our recursive definition of a graph) to
be:

A+ Ayz)*(K1) where y,z € V



Here fis A + A , S is {Kj andais';y,zs\f'.
X yz 1

3.3. The Components of a Recursive Language

Although we have now established the nature of the terminal expression, it
remains to identify the language R in which it lies. Thus we explore in this section

the nature of the R-components P, L and E.

For the primitive language P we postulate some primitive operators, listed in

Table 3-1. Each prirﬁitive operator is intended to modify a graph and return that

modificatioa

Primitive Effect Representation

N No change N<V,E> = <V,E>

A Add vertex X A <VE> a <Vu{x},E>

Axy Add edge xy A y<V,E> « <V,EU{xy}>

D, Delete vertex x D <v.E> a <V-{x},E>

ny Delete edge xy ny <V,E> = <V,E-{xy}>

| Identify vertices <V,E> = <V-{v.},E]| >

XV gV XV,...V, I V. <-X

Fva1~vk Fragment vertex x ny"'n;"" <V,E> a <VU{ry}1ELVl_>y\h>
into vertices x and y

L Loop on all vertices L<VE> a <v,E u 1>

L Unloop on all vertices L<VE> = <VE n 1>

Table 3-1: Primitive Operators for R-Grammars

A primitive operator makes no assumptions about its ability to perform its operation



meaningfully; x and/or y may or may not be present in V and xy may or may not

be present in E Operators are provided for addition and deletion of a vertex (Ax,

D) or an edge (A , D ), for the merger of k+1 vertices (| ), for the splitting

X A Xy Xy ° XVp#ie,

of one vertex into two (F ), and for the introduction (U and removal (L) of
. xyvr_vk

loops on all the vertices.

Now we postulate some possible Ps for the R-grammar <P,L,I>. Each P has a
set n = {ir,jr,,.-,jr} of terminal symbols and the following grammatical rules:

L -> 1+ 1|11

This P grammar permits both primitive operators (members of II) and composite
operators constructed from them. With this grammar understood, it is sufficient to
define a P language by its terminal symbols. In particular we define:

Py = Ay Ay N}

Py =Py YV Loy oxy}

Py - ry U{U L}

Py s py U {'xv.v

Ps = rg U tyycFyy)
Note that P; will be adequate for GENERATE

Composite operators are introduced for conceptual and notational conveniende.
Each is expressible as a combination of primitive operators. For operators f and g,
the composite fg means "first apply g and then apply f" For operators f and g,
the composite f + g means "apply exactly one of f or g" The function for a graph
property could involve both kinds of composition, evolving forms such as ff + gg*
or f + f)(g + ¢g). We have found some composite operators to be so useful in
developing graph properties that we have assigned them their own symbols. These

appear in Table 3-2.

We stress again that no operator, primitive or composite, is assumed to be

applicable to an arbitrary graph. The selection conditions in a (such as "distinct



Composite Effect Equivalence

S Subdivide edge xy DA A A

xvy Xy XV vy Vv

by vertex v
Branch from x to y A A
xy Xy 'y
F Fully connect vertex x
X V1X sz vV X X
to A
Y Add cycle u u,..uu A A A A A A LA
Uyl 17277k 1 Uyugt UgUaT U U U u T
Y Delete cycle u u,..u u D D .DD D D D
TU el 17277k 1 Uy, U UqUg Ugugt oy Y Uy
where D', = D, if degree of i is O

N eise

Table 3-2: Some Composite Operators for R-Grammars
u1,u2.....uk" to guarantee that a cycle is simple) place restrictions on the bindings of
the variables referred to by the operator. The complexity of any algorithm is
dependent both on the matching required by o and the resources needed to update

the graph

For L in the R-grammar <P,LI> we can use any graph property language. In
particular, the languages L., Lz' L3. Lm, L2n and L3ﬂ of Chapter 2 are excellent
candidates. It is also permissible for L itself to be a recursive graph property
language. (We shall have more to say about this later) We will also reluctantly

permit L‘2 the language which precisely lists the vertices and edges of a graph.

The ¥ in the R-grammar <PLI> will affect the complexity of the aigorithm.
Any constructive algorithm to produce a specific graph will be at least O(max(m,n))
as long as m+n is increasing from one iteration to the next and the selector is not

of greater order. (We employ the traditional definitions for the order of an



aigorithm throughout) Thus we focus wherever possible on simple selector
languages (preferably of O(1) or Ofn)), leaving the data structure implicit In T
vertices are ViV and edges are ordered pairs ofk vertices. We offer the
following selector languages with their generating grammars. Many others are, of

course, possible:

z,
A formal grammar for I , is
I => || | vertex sign V | edge sign E
vertex > v v, fvg |-
edge -> (vertex,vertex)
sign > €| =

Selector expressions such as

x € V
or

yz & E
are possible in 21. Note that we could produce the selector for GENERATE in 21
as follows:

I => 1l

=> vertex sign V, vertex sigh \Y

->yeV, zeV

L
A formal grammar for 22 is
I => |l | vertex sign V | edge sign E | vertex # vertex |
edge # edge
vertex >V, v, vy |-
edge -> (vertex,vertex)
sign -> €| =

22 contains all the terminal expressions of 21. In addition, selector expressions
such as

xX€V, yeV x#y
are possible in 22, but not in 21'. The expression # will be interpreted semantically

as "is distinct from” The expression x # y would therefore mean x and y are



distinct vertices. The expression "yz # vw" for undirected graphs means that neither
"v =vand z=w nor'y =wand z = V' is true The expression "yz # vw" for
directed graphs means "y # v and z # w."
Ls

A formal grammar for 23 is

[ => |1 | vertex sign V | edge sign E | vertex # vertex

edge # edge | divertex) rel number

vertex >V, v, vy |-
edge -> (vertex,vertex)
sign > e | =

rel ->=|>|2|<IS

number >0]1]2].
23 contains all the terminal expressions of L, and 22. In addition, selector
expressions such as

x €V, dx) > 1
ére possibie in 23, but not in 21 or 22. We define Nix), the neighborhood of a
vertex, to be the set of vertices adjacent to x, other than x itself, ie.,

Nix) = {xy | yeV, xy € E x # y} )
We then define the degree of a vertex x to be the cardinality of Nix) with the
stipulation that the degree is non—zero (say, one half)] when the neighborhood is
empty but there is a loop on x, ie, xx € E This emphasis on loops is intentional
and will be clarified in Chapter 4 The expression dix) will be interpreted
semantically as the degree of vertex x.
L

A formal grammar for I 418

| => |1 | vertex sign V | edge sign E | vertex # vertex |

edge # edge | divertex) rel number

vertex >vo vy vy |-

edge => (vertex,vertex)
sign >e |
rel >=|>]2]|<|c<=

number =>max |n| 0] 1]2].



L, contains ail the terminal expressions of Z, Zz and 23. In addition, selector
expressions such as
x € V, dlx) = max
are possible in L, but not in I y 22 or 23. The expression max will be interpreted
semantically as the maximum degree of a vertex in G The expression n will be
interpreted semantically as the cardinality of V.
s
A formal grammar for Xs is
! => ~{) | I | vertex sign V | edge sign E |
vertex # vertex | edge # edge |
divertex) rel number |d(vertex) rel variable sum number |
| {vertexset} N V| rel number |

| {edgeset} N E| rel number | variable rel number |

| {vertexset} | = |V|
vertex > v, v, v -
edge => (vertex,vertex)
sign ->e | =
rel ->=|>]2|<]=s
number ->n|0]|1]2].
vertexset -> vertex | vertex,vertexset | {vertex|l}
edgeset -> edge | edge.edgeset | {edge|l}
variable >i|ljlk]-
sum ->+ | -

The expression ~{l) is interpreted semantically as "not |,” providing the negation of
any expression. The expression |A N B| is interpreted semantically as the
cardinality of the intersection of the sets A and B. An expression of the form
variable k 2 n is intended to refer to the index numbers on the vertices. (See the
property EULERIAN for an example.) Xs contains all the terminal expressions of L v
22, and 23, but not I, because 25 lacks max. Selector expressions such as
k25
or

| {x.y.z2} n V]| # 2



are possibie in Zs, but not in % 4 22, 23 or I &
Lg
A formal grammar for Zs is the 25 grammar with one additional production:
| => statement
"Statement’ is any English language sentence. 26 is a deliberate catchall, to be used,

like LQ when all else fails.
In the event that the selector makes no restrictions at all, L is designated as 4.

We have now assembled the raw material from which to construct
R-languages. We have arbitrarily mentioned five primitive languages P, eight seed
languages L, and six selector languages L. (The reader is invited to define additional

appropriate languages.)

3.4. The Fioor of a Graph Property

Part of the challenge in writing a graph property recursively is choosing an
appropriate recursive language. This section explores a minimality condition for

R—properties. GENERATE and EDGELESS are again used as examples.

We return now to GENERATE, which we had identified as
»
A+ Ayz) K ;) where y,z € V

Clearly f = A+ Ayz could lie in any of the P's, S = K_ in any of the L's and y,z €

1
V in any of the I's. Since the power of the languages we define is a primary
concern, it seems reasonable to seek a minimal R-language for each property.
implicit in their definitions were partial or full orderings for the P's, the L's and the
T's. Diagrams of these orderings are pictured in Figure 3-6. Arrows point from

less powerful languages to the more powerful ones which contain them.

We define a f/oor of a graph property p = <fS,0> to be an R-grammar
<P,L.I> such that for every other R—-grammar <P'.L.I'> in which p is a terminal

expression, either P > P or L' > L or L' > L Note that, because of the partial
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Fig:xro 3-8: Orderings for Property Languages
order, a graph property may have more than one floor. Intuitively, we are
identifying the weakest possible grammar(s) enabling the property. For GENERATE
we have indicated that P1 and 21 are adequate. Since the expressions EN 1 = 0
and E = 0 in L1 are simultaneously satisfied only by graphs isomorphic to K, L1 is
also adequate for GENERATE  Thus the floor for GENERATE is <P.L,.Z,>
Similarly, EDGELESS may be written compactly as:
(A "K ) .
Here the floor is <P.L,¢> because no selector at all is required As more
complex graph properties are introduced, other floors will be required It is
interesting to note that EDGELESS has a lower floor than GENERATE Although the

property of being an edgeless graph is a special case of being a graph, the minimal



+

R-grammar required to achieve it is (counterintuitively) /ess complex.

3.5. Inversion

Now that we understand the nature of a recursively-defined graph property,this
section defines the inverse of a graph property and the implications of its automatic

construction.

If a graph may be constructed one edge or vertex at a time, it may also be
dismembered in the same fashion. Given algorithm p = <f,S,a> which generates
precisely those graphs with property p, under certain circumstances it is possible to
calculate an inverse, call it p"'.  This new algorithm methodically attempts to
dismember an input graph until it is again a seed for p. Each testing algorithm may
be stopped after any iteration, yielding a graph with the same truth value for the
property being tested as each of the preceding graphs. For example, if p is the
property of being Eulerian and the graph G is not Eulerian, then the graphs f~'(G)
“and f~*G), if they exist will also be non-Eulerian. More formally, a terminal
R-expression p~' » <f~'S,a~'> is said to be the inverse of another terminal
R-expression p = <f,S,a> if and only if the testing semantic interpretation of p~*
returns ‘TRLjE* on ail outputs of the generator which is the R-property defined by
p, and "FALSE" on ail other graphs. The testing semantic interpretation of p~' =
<f"! s,a"'> is the following recursive algorithm:

f~1(G) = TRUE if G is described by S

= f~G') where <5 = f~!(G) using elements from

ml nnl

G selected by a"™" in order to apply f
% FALSE if G is not described by .S and a"! is
not applicable
Note that every selection suiting the requirements in o guarantees the correct
results, not simply some selectioa If G was a product of p, its dismemberment
sequence and seed graph need not mirror its construction sequence and seed graph,
since there are likely to be many such correct choices. If G has property p, and

only if it does, repeated applications of f~* will return it, in some fashion, to some



seed graph of p. A concise grammatical representation of p~' is (f~'a~)*G). The
seed set S is implicit in this representation. Thus (f~'a~")*(G) is interpreted as

nl

"apply f~' until an answer is reached, La, G is described by S or f*' cannot be

applied because a"' fails." The number of iterations required for testing may vary

nl

with a"~ and is not in general predictable.

Certain graph properties have inverses which may be computed automatically
from p. It is those properties which we examine in this chapter. It may be argued
that a computer which is taught to generate objects with a given property, and can
then calculate a procedure to test input objects for that property, has understood
the nature of the property and has learned it Thus we argue that this computation
of a testing algorithm from a generator algorithm is both automated deduction and

machine learning.

3.6. Automatéd Inversion

Having explained the significance of an inverse, in this section we present a
mechanism for its constructioa Not every R-property will be invertible via this

mechanism. In particular, consider an R-property whose formulation includes | , the
Xy
primitive operator which identifies or merges vertex x with vertex y, leaving only

the revised vertex x in the graph and assigning ail the adjacencies of y to x. After
such a merger occurs there is no indication of which vertex is the revised one, let
alone which edges incident with x were attributable to x, to y, or to both of them.
Thus a property whose formulation includes I will not always be susceptible to
inversion.  Similarly, an R-property which employs the primitive operators L or [,
looping or unlooping ail the vertices, will obscure the prior loop status. For
properties which exploit loops, such inversion also presents a problem. This loss
of information frequently causes difficulties for inversion, some of which are dealt
with in Chapter 4. Properties whose floor requires P?* or higher are rarely
considered in this chapter and a formulation of a given property with the lowest

floor is always preferred



Here is the technique for the automatic construction of p™!

from p. We
emphasize that this technique is guaranteed only for R-properties whose floor
includes P; or P, and that under certain circumstances, it may not be applicable

even to those.

Each of the five primitive operators under consideration should have a fairly
obvious inverse, for example, we expect Ax'1= Dx Recall however that the
formulation of EDGELESS was originally

A;(K1) where x * V

and was modified to

If we were to undo each step in the construction of some edgeless graph G, we
might find an instance of inverting the "addition" of some vertex that was in the
graph prior to the "addition." Since the second addition made no change to the

graph, the inverse of that addition should also make no change. Thus we have
-1

AX =D if x *V before A
X . X
« N else
and
A"l =D if X « E before A
xy Xy Xy
= N else

Rather than engage in existential debates, we prefer to invert the less elegant more
constricted algorithm formulation which avoids ineffectual iterations. Thus, although
GENERATE is more concise as

(Ax + ANffIN) where y,z e V
it is easier to invert as

(Ax + Ay’\(K" where x *V,yzeV, yz*E
Ax may be applied to a graph G = <V,E> whether or not x is in V. Inverting a
particular application of Ax is an uncertain procedure because we have no way of
knowing if Ax was effective, ie., changed V. Similarly, Axv may be meaningfully
applied as long as x and y are in V, whether or not xy is in E Again we have no

way of knowing whether Axy was effective. With the deletion operators Dx and



ny, any meaningful application (x € V or x,y € V, xy € E) must also be effective.

Hence we do not have the same tentativeness associated with D; land D;y1 We also

note that the inverse of the null operator N is itself. We now list five rules for

"= <f7'5,6"'> from an R-property p

1

the automatic construction of an inverse p~
= <f,S,0>. The initial rules are designed to construct f

RULE 1

from f.

Every primitive operator in P2 has an inverse. The inverses are

AT'=D
X X
A"l'=pD
xy xy
D '= A
X X
D '=D
Xy xy
N =N

The inversion of the other primitive operators usually entails loss of information and
is not discussed here.
RULE 2

The inverse of a sequential corhposite is the inverse of its elements, in the
reverse order, ie.,

(fg)°1 = g"f"
For exampie,

A A =AAl=DD
RULE 3

The inverse of an additive composite is the sum of the inverses of its
elements, in the same order, i.e,

(F+g ' =f"+g!
For example,

A+ A=Al A= D D,
RULE 4 .

The inverse of an uncertain addition is a tentative deletion, ie., if it is not

known whether dix) = O when f~' arrives at Dx use

All= D
X X

D _ifdx =0
X

N else



The construction of o !

from ¢ is a bit more compiex. It is here that the
inversion technique may fail. The major inversion heuristic is that the vertices and
edges involved in the f iteration just completed are either immediately identifiable, so
that f(G) may be returned to G, or belong to a set of possible choices, any of
which will move f(G) back correctly toward some seed vgraph of p or FALSE,
without necessarily returning to G at all. We define the profi/e of a variable to be
a (not necessarily exhaustive) list of its distinguishing features in a selection
language, for exampie "x € V, dix) = 1.” A pre-profi/le is a profile immediately
before the application of an operator. Although o initially constitutes a profile, we

expand o to ¢ This new pre-profile excludes ineffectual (equivalent to N)

pre
operations. opré also includes the properties of the seed preserved under f. A
post-profile is a profile immediately after the application of an operator. For most
cases, the construction of ¢~ ' from o is embodied in

RULE 5

Let 0 be a pre-profile of those variables involved Expand o to Ore

Compute the changes to 0., Caused by f. The new description, ¢~ ', is in I & o !
is now a post-profile of the variables after f. (If the selector language for p is 25

or 2‘,6, the new description must also be constructed in Zs in 26.)

in other words, p singles out a variable x by its relationship to G and then
applies f to it, changing in some fashion the nature of x with respect to G This
new description of x enabies us to select it for inversion. What aspects of x (or
xy) are significant? Most of the graph properties in this chapter find membership
with respect to V and E, distinctness, degree of a vertex and maximum degree .of
any vertex in the graph to be an adequate perspective, hence the choice of T & It
is important to recognize that the floor may shift during inversion, ie., the inverse

may be stated in a more or less compiex R-language.

Throughout this document, inverses whose floors are based on I, Zz, 23 or
)X s are computed automatically . As simple examples, we compute the inverses of

EDGELESS and GENERATE. (More complex examples are available in subsequent



sections.) For EDGELESS we have

f7'=A""=D

X X

In this example the initial pre—profile ¢ is empty. We expand ¢ to Toe = X g V to
exclude the ineffectual operation of adding an already present vertex. Immediately
after A we know that x € V and dix) = 0. Thus we set 0~ ' to x € V, dix) = O.
Since the maximum degree of a vertex in G could not be altered by the addition of
a vertex of degree zero, the max is not mentioned in o~ . Therefore, the following

algorithm tests to see if an arbitrary graph is edgeless:
! TRUE if G is K,

f"(DX(Gn where x € V, dix) = 0
FALSE if G is not K :

and there does not exist x € V such that dix) = 0
This edgelessness tester deletes vertices of degree zero until it arrives at the empty
graph (success and the input graph was edgeless) or all vertices are of degree
greater than zero (failure and the input graph was not edgeless). In Figure 3-7 we

show the algorithm operating on a graph G & Gp and a graph G # Gp.

TRUE

FALSE

1 2

Figure 3-7: EDGELESS™' in Operation



For GENERATE we have
f'=(A_+A ) "=A%AT'=D +D
X 24 X yz X yz

The pre-profile g is yz € E, which we expand to x € V, yz € V, yz € E The
post-profile o s xy.z € V, yz € E, dix) = 0. Since the maximum degree of a
vertex in G could not be altered by Ax and is unpredictable under Ayz, the max is
not mentioned in ¢~ . This yields the following algorithm for testing to see if an
input ordered pair of sets (V,E) is a graph:

£ TRUE if G is K,

7D, + D )G} where xy.z € V, yz € E, dix) = 0
FALSE if G is not K,

and there does not exist x € V such that dix) = 0

and there do not exist y,.z € V such that yz € E
Note that the selector variables are grouped for convenience of notation, but that
they need not all be successfully bound in order for o~ ' to succeed. ie. we need
to find x or yz but not both, as distinguished by separate lines in the FALSE

1

selector ¢ . In Figure 3-8 we show the aigorithm operating on a graph G e Gp

and a graph G . Gp.
4 5

1 3 TRUE
2 6
<{1,2},.{12,13}> <{1,2},{13}> <{1},{13}> FALSE
1 2 3 4

Figure 3-8: GENERATE™ ' in Operation

From now on we will describe inverses merely by stating £, re and o~ .-

We observe that in both of these examples the floor shifts for the inverse.



For GENERATE the fioor was <P L, L,> and for GENERATE™' it is <P 1,L1,213>. For
EDGELESS the floor was <P L, .¢> and for EDGELESS ' it is <P L, L,> Because

the post-profile is constructed with respect to L 4 whenever possible, we expect
the floor for p~' to invoive T o regardless of the T used in p. To the extent that

features of I, are not applicable, lower T's will appear for p~'. Thus a shift in the
floor suggests that perhaps the "true” context of a property resides in the more

powerful of the two R-languages. We will pursue this further in Chapter 5.

3.7. Readily Invertible Graph Properties

All the fundamental concepts in our recursive formulation of graph theory are
now established Each of the segments in this section deals with a specific graph
property. Each segment begins with the necessary definition(s) from graph theory.
The R-property is formulated, proved correct, inverted and proved complete. Many
graph properties have more than one forrﬁulation within a given R-grammar. In
some instances, more than one valid formulation is provided, with relevant

explanations.

In order to prove that an R-property is complete, we need only show that its
inverse is correct The situation is pictured in Figure 3-9. For p = <f,S,0> f maps
G & S into Gp and f maps G 0 into Gp, where G‘J is the set of all graphs with
property p. For the inverse p~' = <f ',S,0”'> f ! maps G @ Gp into Gp, and
eventually back into S. Assume that £~' only maps G # G‘_J into (G & G o e 1
is correct Let G € G Since £ is defined on G and f~' is correct, there exists
some sequence of applications £~ '™G) which is a "trail" back to some seed graph H
€ S. We need only automatically invert these applications into *H) to create a "trail”
from H to G Thus G is "reachable” via f and p is complete.. Our completeness

proofs will therefore consist in showing that the "automatic” inverse is correct

Frequently there are several possible formulations for a graph property.

Occasionally we will show more than one. In constructing the properties in this



Figure 3-9: The Behavior of f and =1 on thé Set of All Graphs

chapter and the next, we strive to work in the simplest floor possible. Because our
selection languages L are reasonably limited (e.g, there is no notion of a path

before 26), such construction may require considerable ingenuity.

3.7.1. Acyclic Graphs

A wal/k of a graph G is an alternating sequence of vertices and edges,
VoV Vo Vo Vo Va VoV, oV VY beginning and ending with vertices, in which each
edge is incident with the two vertices immediately preceding and following it (We
will use the abbreviated form V VeV, ) A walk is c/osed if v, = v,. otherwise it is
open. A cycle is a closed walkk on k vertices, all distinct, with k 2 3. We will
describe such a cycle as Cv1v2mvk. An arbitrary cycle on k vertices is written as
simply Ck. A graph is acyc/ic if it contains no cycles, ie, every walk is open.

Several examples of acyclic graphs appear in Figure 3-10.

The R-property ACYCLIC is
*
(Bxy + A )I<V.$>) where x € V, y & V




% -
Figure 3-10: Some Acyclic Graphs

The seed set is intended not to ‘include <+$>. Figure 3-11 shows the iterative

steps in a sample run of ACYCLIC

Since precisely all graphs of the form <V,£> other than <*>> are identified in
L; by E = 0, and since va = AxyAx, we have a floor for acyclic graphs of

<PrLr21>.

Clearly ACYCLIC is correct the only edges it ‘adds are loops (which do not
occur as part of cycles or qualify as cycles) or edges from a vertex in the set V
to one previously outside and of degree zero which has just been created Thus no
edge can, by its addition, complete a cycle. (We observe that for the last edge in
the construction of a cycle, the vertices involved must already both be of degree at
least one.) Loops may be added at any time. A loopfree version is

Bxy*(<v,*>) where x e V, y *V

The inverse of ACYCLIC is computed from:
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Figure 3-11: A Sample Run of ACYCLIC
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xy 22
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Xy ¥y 22

=A" AT+ AT
y Xy 2z

DD +D

Y Xy 22

xeV, yegV

apre
2€V, 2z E

xy €V, xy € E dy) =1

Q
0

zeV, zzeE

There is a shift in the floor to <P 1,L 1,2:3>. In Figure 3-12 we show
AcycLic™! operating on a graph G € Gp and a graph G # Gp. In order to show
that an inverse is correct, we must demonstrate that it behaves properly both on G
€G andonG# G, If GeG, p~' will detach and delete only vertices of degree
one. .Thus any walk will be decimated from its endpoints inward, and any acyclic

graph will be reduced ultimately to a set of isolated vertices <V,¢> with one
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TRUE

FALSE

Figure 3-122 ACYCLIC™' in Operation

eilement remaining in V for each mutually accessible set of vertices originally in V. If
G#= Gp, p =1 will decimate any acyclic protrusions. What remains will be a graph in
which every vertex has degree at least two. Such a graph must contain a cycle,

and o' will not be applicable on it Thus p~' is correct and p is complete.

3.7.2. Trees

A graph is connected if every pair of vertices are joined by a path. A tree is
a connected acyclic graph. Several examples of trees appear in Figure 3-13. The
R-property TREE is

(Bxy + Azz)'(K1) where x € V, y g V, z € V

Figure 3-14 shows the iterative steps in a sample run of TREE

Since the only graph matching the L, characterization E U 1 = 0 is K,, the

floor for trees is <P1,L1.Z1>,
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Figure 3-13: Some Trees
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Figure 3-14:- A Sample Run of TREE

Clearly, TREE is correct the only edges it adds are loops or edges which




cannot complete a cycle and are part of a single connected component

The inverse for TREE has the same f*! and a™' as ACYCLIC, namely

f~t =DD +D
y Xy 22

s~! =xy 6V xyekEdy =1
26V, Z26 E

Again there is a shift in the floor to <P,L;E3>. This kinship is not accidental and
will be discussed at length in Chapter 4. Figure 3-15 shows TREE™ operating on

a graph G € Gp and a graph G * G,.

AU

3
TRUI
1 . o 4 3 . A
‘ FALSE
5
"-i —
1 2 3 4

Figure 3-15. TREE™ in Operation

TREE"™ reduces any tree to, ultimately, a single, isolated vertex isomorphic to
K, TREE™ on a graph which is not a tree will remove all tree-like protuberances”
and then a"' will fail leaving a graph composed of disconnected and/or cyclic
graphs, which is not isomorphic to Kr Thus TREIE"l is correct and TREE is

complete.
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Figure 3-18: LOOPFREE™' in Operation
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3.7.4. Chains

A chain is a graph consisting of a single open path on at least two vertices.
The length of a chain is one less than the number of its vertices, ie, n - 1.

Several exampies of chains appear in Figure 3-19.

o—© o0 0

9
®
o

Figure 3-19: Some Chains
The R-property CHAIN is
s” (K,) where xy € V, v £ V, xy € E

xvy
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Figure 3-21: CHAIN™ in Operation
=DD '

y Xy

pre axX€V,yov,dxXal

o’ «xyeV,xyekE dy)=1dx) =2

The floors remain constant Figure 3-22 shows CHAIN’Z*l operating on a graph

GeG andagraph G * G.
P P

CHAII\L*lremoves terminal edges (to a vertex of degree one) in a chain until the
chain is of length one. On a non-chain, CHAII\L"1 retains simple cycles and vertices
of degree greater than two. Thus CHAINAYs correct and CHAIN, is complete. We
have shown two formulations for the property of being a chain, one with a lower

floor than the other.
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Figure 3-22: CHAIN;1 in Operation

3.7.5. Cycles.

Several examples of cycles appear in Figure 3-23.

oo ¢

®
.\ '/
*—o < /' ! o
oo

Figure 3-23: Some Cycles
The R-property CYCLE is
*
sxvy(K3) where xy € V, v # V, xy € E

Figure 3-24 shows the iterative steps in a sample run of CYCLE
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Figure 3-24: A Sample Run of CYCLE

In L; the characterization of K; is the same as K, In L,. however, {K3} is

uniquely defined by:

Enl=0
Enl=o0
|Eni| = |[En 1]

It is also possible to reach K; in Ly, as Enj=0, Enl1l=0and n = 3. Thus the

floors of CYCLE are <P,X;E;> and <P,L;Z>.

CYCLE is correct; on each iteration it replaces one edge in a cycle with a chain

nl

of length two. The inverse for CYCLE has the same f"' and a'*' as CHAIN, namely

frl DD D A

V. VY XV Xy

a"? XYV 6V, xv, yv 6 E, xy * E, dv) = 2

Again, this is not accidental. There is a shift in the floors to <P itpiag> and
Aihytr Rgure 3-25 shows CYCLE"' operating on a graph G e G oand a
graph G * G .
p-

CYCLE"™! will contract any simple cycle until it is isomorphic to «z. Any
non-cycle will have its chain-like portions contracted by CYCLE"' to length one and
its simple cycles to Cs, leaving the remaining graph untouched Thus CYCLE"! is

correct and CYCLE is complete.
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Figure 3-25: CYCLE™ in Operation

3.7.6. Stars

A bipartite graph G is a graph whose vertex set V can be partitioned into sets
2 and V2 such that every edge of G is between a vertex in V; and a vertex in
V,. If E =Vj XV, then G is a complete bipartite graph. If |Vi1 = a, |V2| = b,
the complete bipartite graph on V = V; u \j, where Vi3 n V, = +, is denoted K.
A star is a complete bipartite graph Kl'n for n = 3. Several examples of stars
appear in Figure 3-26. The R-property STAR is

B)?;Klﬁ*w“ere xeV,y0V, dx = max

Figure 3-27 shows the iterative steps in a sample run of STAR.

In L1 K1.3 is characterized by E n i = 0, but so are all loopfree graphs. In
F2r Ky g seharacienzed py En 1 = 0 and |E| = |E, but so is any graph with half
its possible edges and no loops. In L, K. - has the same signature as a chain of
length three. Here is our first example of a seed graph which defies definition in

any of our preferred languages. The floor for star graphs is “Pi'Lq,Es”. It is



Figure 3-26: Some Star Graphs
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Figure 3-27: A Sample Run of STAR

possible to define star so that K]? or Ki 4 is considered a star. This would
require some a statement about the maximum degree vertex being unique or about
all vertices other than the one of maximum degree being of degree one, neither of
which is available in any E postulated thus far. This is an example of the potential

tradeoff between L and L

We call the vertex of maximum degree in a star its center STAR adds one
spoke (degree one vertex and edge from the center to it) at a time STAR is

correct The inverse is computed from:

f1 = By
xy
= DD,
UF" . _ xy« v,y « V,dx) = max
gl = xy =V, dx) = max. dfy) = 1

The floor shifts to <7,’*Q'74”- P'9U"® 3.28 shows STAR™ operating on a
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Figure 3-28: STAR™' in Operation

graph G € Gp and a graph G # Gp. -

On a star graph, STAR™' will delete the spokes one at a time until arriving at

K, 3 On a non-star graph, STAR™' will repeatedly delete spoke—iike constructs. A

chain will contract to K, under STAR™' and thereby fai. Thus STAR™' is correct
and STAR is complete.

3.7.7. Wheels

A whee/ W, is a graph in which n 2 3 and

V= {v,vl,vz,...,vn} '
E={vv , |i=12.n=1} U {vv}ufw |i=12.n}
A wheel is composed of a rim (C ) and an additional vertex (the Aub v) which
VivorY

is adjacent to all the other vertices. Several examples of wheels appear in Figure

3-29. The R-property WHEEL is
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Figure 3-29: Some Wheels

(A_S_ )"K,) where distinct x,y.z € V, v& V, xy € E, diz) = max
2V xXvy 4
Note that K, is merely another notation for W, . Figure 3-30 shows the iterative

steps in a sample run of WHEEL

AL AT

Figure 3-30: A Sample Run of WHEEL

We use "distinct x,y,2" here as an abbreviation for the 22 notation "x # vy, x % 2, y
#2" InL 1 K 4 has the same characterization as any other loopfree compiete graph.

This is also true in L2 and Ly In L, however, {K 4} is precisely specified by:
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En1=0
Ent=0
n=4

Thus the floor for wheels is <P_L, T, >.

WHEEL is correct; it replaces any rim edge with a chain of two edges,
connecting the new vertex to the hub. Because K 4 contains no loops, x # y is

unnecessary.

The inverse is computed by:
£ =S )
v xXvy
=1
xXvy 2zv

DD D A D

V VY XV Xy zv

distinct x,y,z € V,v £ V, xy € E, d(z) = max

Q
L}
Q
]

Q
L}

distinct v,x,y,.z2 € V, xv, vy € E, xy € E, d(2) = max,

divi = 3
The floor remains constant Figure 3-31 shows WHEEL ™' operating on a graph G
€ Gp and a graph G # Gp.

Figure 3-31: WHEEL™' in Operation



WHEEL™" contracts the rim of a wheel until the graph is isomorphic to K & On
a non-wheel, any vertices of degree other than 3 or n - 1 will remain untouched,
with the wheel-like portions collapsing into K,. Thus WHEEL*" is correct and

WHEEL is complete.

3.7.3. Complete Graphs

A graph is complete if and only if E = {xy | xy e V, x # y}. The complete
graph on k vertices is denoted K- Several examples of complete graphs appear in

Figure _ 3-32

Figure 3-32: Some Complete Graphs

The R-property COMPLETE is
FJK,) where x * V, distinct v,vowVvny * V, |[{V:V:,Vvnl]| « |V]

Figure 3-33 shoWs the iterative steps in a sample run of COMPLETE Since F. =

A_ Ay the floor for compiete

xv “xv XV,
1*2

A

graphs is <P,L.Zs5>.

COMPLETE is correct it connects a new vertex to every vertex currently in

the graph.

The inverse is computed by:

rl o I:u].

X
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Figure 3-33: A Sample Run of COMPLETE

A A A A
XV XV XV X
1 2 n
ATATT AT AT
X XV XV

-1 XYy

n
DD D D
X XV XV Xv
n n-1 1
x & V, distinct Vv

Q
]
Q
"

gV € Vv, I{v1,V2,...,Vn}! = |V|

-1 v, € V. [{xv v,..v}]| = |V] dx) =n

Q
"

distinct x,v .v,....
The floor shifts to <P2,L1,£5>. Figure 3-34 shows COMPLETE ™' operating on a

graph G € Gp and a graph G # Gp.

COMPLETE™' deletes only fully connected vertices from a graph. If G initially

has n vertices, COMPLETE™' must delete E;‘;; i = nn=1)/2 = ('2') distinct edges to be

successful; thus G must have been complete. COMPLETE™' is correct and

COMPLETE is complete.

3.7.9. Graphs with an Even Number of Vaertices

Several examples of graphs with an even number of vertices appear in Figure
3-35. The R-property EVEN-N is

(A_ + A A)'E.) where xy € V,

xy w 2 2
wzEgV w#z

Figure 3-36 shows the iterative steps in a sample run of EVEN-N. In L, the graph
E2 has the characterization of most edgeless graphs, E = 0. In L2 the
characterization remains the same. In L3, however, the characterization is E = 0 and

EN1<EnN1 These properties imply nin = 1)/2 < n which requires n < 3. Since
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Figure 3-34: COMPLETE™' in Operation

Figure 3-38: Some Graphs with an Even Number of Vertices

all the other graphs for which n < 3 have characterizations different from Ez's, L,
describes {Ez} uniquely. Alternatively, in L, . E, is characterized by E = 0 and n =
2. The floors for graphs with an even number of vertices are therefore <P1,L3,22>

and <P by n,22>.

EVEN-N is correct; it adds arbitrary legal edges singly and vertices two at a

time.
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Figure 3-36: A Sample Run of EVEN-N

The inverse is computed by:

1

£ A + A A)
Xy w 2z

1

AT+ A A
Xy w 2

]

A-1+ A-‘IA-‘I
xy z w
D +DD

\ z W

X

Q
]

Xy eV, xy gV

wze&V w#*z

Q
n

Xy €V, xy € E

wz€V, w#zdw =0 dz)=0

There is a shift in the floors to <P2,L3,23> and <P,L, 1>  Figure
3-37 shows EVEN-N' operating on a graph G € Gp and a graph G # Gp.
EVEN-N"' deletes the edges of a graph with an even number of vertices and
removes the isolated vertices two at a time until the graph is isomorphic to Ez' A
graph with an odd number of vertices will go from E3 to E, and then fail. Thus

EVEN-N"' is correct and EVEN-N'is complete.

~
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Figure 3-37: EVEN-N"' in Operation

3.7.10. Graphs with an Odd Number of Vertices

Several. examples of graphs with an odd number of vertices appear in Figure
3-38. |

Figure 3-38: Some Graphs with an Odd Number of Vertices
The R-property ODD-N is
(A + A A)K.) where xy € V,
xy w 2z 1 .

wz €V, w##2
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Eigure 3-39: A Sample Run of ODD-N

Figure 3—-39 shows the iterative steps in a sample run of ODD-N. The floor for
graphs with an odd number of vertices is <P1,L1,22>, lower than that for graphs

with an even number of vertices because of the simpier seed graph.

ODD-N is correct; it adds single arbitrary legal edges and vertices two at a
time. The inverse for ODD-N has exactly the same 7' and o~ as those for
EVEN-N, namely,

f-j

-1
¢

D +DD
zZ W

xy

xy € V, xy € E
wzeV, w#z2dw =0dz=0

The floor shifts to <P2,L1,23>. Figure 3-40 shows obb-N"! operating on a
graph G € Gp and a graph G # Gp. ODD-N"" is correct; it deletes the edges of a
graph with an odd number of vertices and removes the isolated vertices two at a
time until the graph is isomorphic to K, A graph with an even number of vertices

will go from Ez to <¢,4> and then fail. Thus ODD-N is complete.

3.7.11. Graphs with an Even Number of Edges

Several examples of graphs with an even number of edges appear in Figure
3-41. The R-property EVEN-M is

A+ AyzAvw)*(K1) where v,w,y.z € V, yzvw £ E, yz # vw ‘
Figure 3-42 shows the iterative steps in a sample run of EVEN-M. The floor for

graphs with an even number of edges is <P, .L,I,>.
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Figure 3-40: ODD-N"' in Operation

AT R

Figure 3-41: Some Graphs with an Even Number of Edges

EVEN-M is correct; it adds vertices singly and legal edges two at a time. The
inverse is computed by:

£ A +A A )
x ¥z vw

-1

AT+ A A )
X yz vw

A"+ ATAT!
X . vWw y2
Dx +D D

W yz
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Figure 3-42: A Sample Run of EVEN-M
o =x &V
pre
vw,y,z € V, yzvw £ E, yz # vw
o =x €V, dx =0

vw,y.2 € V, yzvw € V, yz # vw
The floor shifts to <P,.L 1,Z:3>. Figure 3-43 shows EVEN-M~' operating on a
graph G € Gp and a graph G & Gp. EVEN-M"' deletes singly the isolated vertices
of a graph with an even number of edges and removes the edges two at a time
until the graph is isomorphic to Kr A graph with an odd number of edges will

reduce to K2 and fail. Thus EVEN-M"' is correct and EVEN-M is complete.

3.7.12. Graphs with an Odd Number of Edges

Several exampies of graphs with an odd number of edges appear in Figure
3-44. The R-property ODD-M is

(Ax + AVZAVW)'(KZ) where v.w,y,.z € V, yzvw # E, yz # vw
Figure 3-45 shows the iterative steps in a sample run of ODD-M. The floors for

graphs with an odd number of edges are <P L, 1> and <P1,L3,22>.

ODD-M is correct; it adds vertices singly and legal edges two at a time. The

1

inverse for ODD-M has exactly the same #~' and o~' as those for EVEN-M,
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Figure 3-43: EVEN-M"' in Operation

RERs

Figure 3-44: Some Graphs with an Odd Number of Edges

namely
§=1 =D +D D
X vW Y2
o ! =xe&V,dx =0

vwy,z € V, yzvw € V, yz # vw
The floors shift to <P2,L,1n,23> and <P2,L3,Z3>. Figure 3-46 shows ODD-M"'
operating on a graph G € G 0 and a graph G # Gp. oDD-M"" deletes singly the
isolated vertices of a graph with an odd number of edges and removes the edges
two at a time until the graph is isomorphic to Kz' A graph with an. even number of

edges will reduce to a graph isomorphic to <¢,4> and then fail. Thus ooo-M~ ! is

correct and ODD-M is complete.
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Figure 3-45: A Sample Run of ODD-M
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Figure 3-46: ODD-M  in Operation



3.7.13. Euiertan Graphs

A walk is a trail if all its edges are distinct and a path if all its vertices are
distinct A closed walk which traverses each edge of a graph exactly once and
passes through every vertex at least once is called an Eulerian walk. An Eulerian
graph is one for which an Eulerian walk exists. -Several examples of Eulerian

graphs appear in Figure 3-47.

FaN @

Figure 3-47: Some Eulerian Graphs

The R-property EULERIAN is

S +Y *(KJ where w,z « V, v * V, wz « E,
wvz vtYz % 3
|{v1v2...vk} nv|zi1, .
v * E, ViV *E, i = 1,2__k—1, distinct V., i = 12«X k £ 3

Figure 3-48 shows the iterative steps in a sample run of EULERIAN.

Bepse

Figure 3-48: A Sample Run of EULERIAN

The algorithm either subdivides an existing edge or appends a cycle CV yovp” This
: i'r'k



cycle must have at least one vertex and no edges in common with the current

graph. Since Y = A A A A A A .A and K- is describable
V1Yo 12 v3  vi\ vk Y1 Y2 Yk 3

in Ly, or Ly, the floors for Eulerian graphs are “P,'tin'A5> and <Pprtoiag>

Given a graph G which is Eulerian, there is an Euierian walk for it Where the
edge wz occurred in that walk, we substitute wv,v,vz and the walk will remain
Eulerian. In any one location where v, s V occurred in the Eulerian walk, we
substitute the cycle

ViViVia 1 Vip =Y VgV ViV Vo VoV,

and the walk will remain Eulerian. Thus cycle additions are closed path "detours"

appended to the original Eulerian walk. We have shown that EULERIAN is correct

The inverse is computed by:
rt als +v rt

WVZ viVrt
* S"’l + Yul

WVZ V:LVZ:"VK.
- Sul + Y

wvz "ANTANfC

DD D A +Y

V. oVy Xv o Xy ~"Vivarvig
a = a =w,z6V, wzeeE

pre
i{VIVVk} I"IVI _)l_ Vk * E_
WwVin OE, i= 1,2,-.,k-1, distinct vy i « 12,~K,

k=3
ax? = distinct v,w,z € V, wvyvz s E, wz * E, d(v) = 2
distinct vizvoM v €V,
viiv SE,i= 1,2,,,k-1, vivie s E, kK = 3,
not all Y,v,,....vy of degree s 2
The floors shift to the less powerful <P~X, ,Z*> and <P, L~Z~>- Figure

* in o 2 2 3

3-49 shows EULERIANM' operating on a graph G s GD and a graph G * Gp. Note
. o . . . 1. TN VeV .

our first application of tentative deletion (Rule 4) in f~' via Y 12 'k |t is not clear

whether all (or even any) of the vertices " v,,...,vx were present before the cycle

was added After the edges of the cycle are deleted however, those vertices of
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Figure 3-49: EULERIAN™ in Operation

degree zero will cieariy be the ones introduced by the cycle and deleted afterwards.
If all of V.Y,"*"Vk “°'® introduced to the graph by the cycle addition, they would

all be of degree two on its completion, hence the "not air statement

On an Eulerian graph EULERIAN®' detaches closed path "detours" from the
underlying Euierian walk without ever deleting the entire graph when it is a cycle,

|VV|V

thanks to "not al ° degree £ 2" Once the Eulerian graph being tested

has no further closed path "detours™, it is a simple cycle, to be contracted by SW{/Z

until it is isomorphic to Ks. On a non-Euierian graph, EULERIAN™! also behaves
correctly. There is a well known theorem in graph theory: "A graph is Eulerian if
and only if each vertex is of even degree." A non-Eulerian graph will contain at
least one vertex v of odd degree. Since the deletion of a cycle reduces the
degree of each vertex by two, and the contraction of a subdivision deletes a
degree two vertex, leaving all other degrees unchanged, v will remain of odd degree
and a non-Eulerian graph will never become isomorphic to K; under repeated
application of EULERIAN™. Thus EULERIAN™ is correct and EULERIAN is complete.



3.7.14. Graphs with K Vertices

Several examples of graphs with k = 3 vertices appear in Figure 3-50.

Figure 3-50: Some Graphs with 3 Vertices
The R-property K-VERTICES is:
»
Axy(Ek) where x,y € V

Figure 3-51 shows the iterative steps in a sampie run of K-VERTICES for k = 5.

4 5

Figure 3-51: 5-VERTICES in Operation

L, L2 and L3 would characterize Ek and any other edgeless graph as E = 0. A
precise description of Ek is first available in L. as E =0 and n = k. The floor for

graphs with k vertices is <P L I, >

K-VERTICES is correct; it only adds edges and cannot change n on any
iteration. This algorithm is capable of running indefinitely, although eventually its

additions are likely to be repetitive, since a graph on k vertices has at most k2



edges.

The inverse is computed by:
-1 - a1
f = Axy

xy
=xy €V xy €E

o
pre
o =xy€V, xyeE

The floor shifts to <P2.L1n,2 ,> Figure 3-52 shows K-VERTICES ™' operating on a

graph G € Gp and a graph G € Gp for k = 4.

e d/ss/ennn

5

¢ ®
H H () @ raLse

1 2 3 4

Figure 3-52: 4-VERTICES™' in Operation

K-VERTICES™' is correct; it deletes all edges and then tests for isomorphism

between two sets of isolated vertices. Thus K-VERTICES is complete.

3.7.18. Graphs with K Edges

Several examples of graphs with a fixed number of edges k = 3 appear in

Figure 3-53. We define M, = <{v,v v, Jev Vo v,}> to be the

2 1V2rVaVa—Vox-1V2
matching graph on 2k vertices. M, consists of 2k vertices and k edges such that
each vertex is "matched’ via an edge with exactly one other vertex. The

R-property K-EDGES is:



Figure 3-53: Some Graphs with 3 Edges

(A + lyz)*(Mk) where distinct y,.z € V, yz € E, dly) > 0, diz) > O,
~[w € V, yw,zw € E]
Figure 3-54 shows the iterative steps in a sample run of K-EDGES for k = 5. F
k > 2, {Mk} will not be uniquely describable in any language but Lg Thus the flo
for graphs with k edges is <P 4,LQ,25>,

Figure 3-54: 5-EDGES in Operation



K-EDGES is correct; it adds isolated vertices and merges unisolated ones. An
edge could be lost during such a merger only if the vertices being merged had a
common neighbor; "there does not exist w € V such that yw,zw € E" prevents this.

We prevent the transformation of an edge into a loop by "yz # E”

Although we have never required it expiicitly, a seed graph has been employed
untii now as a minimal case of a property p. Thus far this minimality has been
directed to the values m and n In K-EDGES, however, an intuitive incremental
approach such as:

(A_+ A D _)S)

X yz vw
for some S with minimal n will not be readily invertible, because it will be possibie
for the inverse

D +A D)
x yz

vw
to churn in place, exchanging edges, indefinitely. In the formulation of an
R-property we must strive for a monotonic function on the graph sequence to
insure termination of the inverse. In the case of K-EDGES, this function is
decreasing in the number of connected components, a topic to be defined and

discussed later in this chapter.

The inverse is computed by:

-1 -1
f (Ax + lyz)

ATl 7!
X yz

DX+FZV V,
Y2V Ve

x &V

o
pre
distinct y,z € V, dly) > 0, diz) > 0, yz # E

~[w e V, yw,zw € E]

o =xeV dx) =0

-

yeV, zeV, yw €E i=12.k 2 <dly) dy >k

The floor remains constant The use of the fragmentation technique Fyzv v
_ Vi
requires some explanation. An arbitrary vertex y is subdivided into two vertices, y

and 2z, which between them share all edges previously belonging to y without



118

duplication. (In particular z éets the adjacencies to v - Normaily, merger and
fragmentation are inadequate inverses fbr each other because of the loss of
information discussed in 3.4 In this instance previously merged vertices are
identifiable by their degree, and merger is invertibie. Figure 3-55 shows

K-EDGES ™' operating on a graph G € Gp and a graph G & Gp for k = 4.

o .5 TRUE

../H 6
o ©

o

e
@
@
@
®

Figure 3-55: 4-EDGES”' in Operation

On a graph with k edges, K-EDGES™' deletes isolated vertices and detaches the

edges from one another until reaching Mk. On a graph with m # k edges,

K-EDGES™' will create Mm and then fail. Thus K-EDGES™' is correct and K-EDGES
is complete.
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3.7.16. Graphs of Minimum Degree K

The minimum degree of a graph is the smallest degree of any of its vertices.

Several examplies of graphs with minimum degree k = 3 appear in Figure 3-56.

E@

Figure 3-568: Some Graphs of Minimum Degree 3

The R-property MIN-K is:

A +A A _A AVK
Xy VX1 sz ka v
distinct x1,x2....xk eV, veV

. +1) where distinct x,yw € V, diw) = k

The purpose. of vertex w is to reserve at least one vertex which is always exactly
of degree k. Figure 3-57 shows the iterative steps in a sample run of MIN-K for k
= 2 Aithough {Kk +1} is uniquely describable for k = 1, k = 2, and k = 3 in L,
L, and L,. respectively, for k > 3 {Kk +1} is precisely describable only in L, . Thus
the floor for graphs with minimum degree k is <P, L, T.>.

A

Figure 3-87: MIN-2 in Operation



MIN-K is correct; it adds only éuperfluous (degree-increasing) edges or new
vertices of degree k to a graph. Vertex w prevehts at least one vertex of degree

k from a degree increase by a new edge.

The inverse is computed by:

f~1 =A +A A A Af?!

Xy vx1 vxd wvxk v

A+ A A LA Af!
Xy VX \

1 in VXk
= AL+ A-TA-TACE AT
Xy \% ka VXR"? VX1
=D +DD D .D
Xy V VXK VXk=1 vXx 1
2 = distinct x,y,w e V, xy * E, dw) = Kk
distinct w,X ., X,.. X, € V, v * V
or? = distinct x,y,w 6 V, xy 6 E, d(x) > k, d(y) > k, dw) = k

distinct v,XX2,..., Xk € V, XV XVp,.-,xvx € E, d(v) = k

The floor shifts to “P,'tin'A3>> Rgtre °-°% shows MIN-K~' operating on a

graph G « Gp and a graph G * Gp for k = 4.

On a graph with minimﬁm degree k, MIN-K"* deletes vertices of exactly
degree k preserving a single degree k vertex and reduces the degree of vertices of
degree larger than k, until only Kg.; remains, if a graph has a vertex z of degree
less than k, MIN-K*' cannot delete z nor increase its degree, and the graph will

never be isomorphic to K If a graph has all vertices of degree greater than K,

k+T
MIN-K*! can delete neither a vertex nor an edge, because no correct v or w s Vv

can be found Thus MIN-K*' is correct and MIN-K is complete.

3.7.17. Graphs of Maximum Degree K

The maximum degree of a graph is the largest degree of any of its vertices.
Several examples of graphs with maximum degree k = 3 appear in Figure 3-59.
The R-property MAX-K is

(AXV + AZ)*(Kl'k) where distinct xy eV, dx <k, dy) < k
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Figure 3-58:  MIN-4"" in Operation

ks

Figure 3-59: Some Graphs of Maximum Degree 3

Figure 3-60 shows the iterative steps in a

Note that the seed graph is a star.
sample run of MAX-K for k = 5. The floor for graphs with maximum degree k is

<P ] ,Ln,z 3>

MAX-K is correct; it adds only isolated. vertices z and edges xy which will not

increase the degree of vertex x or y beyond k.
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Figure 3-60: MAX-5 in Operation

The inverse is computed by:

f-1

<\ * Ayt
y b3
—f wl -
Axy + AZ

ny + D2

Q
1

distinct w,x,y e V, xy M E,
dx) < k, d{y) <k, 2 *V, dw) =k
2 *V

pre

l .

<j~ distinct w,x,y e V, xy e E, dx> * k, d(y) £ k> d(w) = k
2«V,d@2 =0

The floor shifts to <F2nrpnrg>  Note that a,o incorporates properties of Ky
preserved under f to deduces that some vertex of degree k will always be present

Figure 3-61 shows MAX-K*' operating on a graph G « Gp and a graph G * Gp for
k = 4.

3

On a graph with maximum degree k, MAX-K~ ' deletes isolated vertices and

reduces the degree of vertices only of degree no larger than k, preserving a single
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Figure 3-61: MAX-4""' in Operation
degree k vertex until only K1 K remains. If a graph has a vertex z of degree

greater than Kk, MAX-K~! cannot delete z or even reduce its degree, and the graph

will never be isomorphic to K - If a graph has all vertices of degree less than k,
no vertex degree will ever increase under MAX-K™' and isomorphism to K, K will

never occur. Thus MAX-K™' is correct and MAX—K is complete.

3.7.18. Pinwheels on Hubs of Size h

A pinwheel W, _is a graph in which, for r 2 3

VvV = {v1,v2,.",v W W wr}

L D R At
E = {st,’ | i#jij=12.h} U {wiwi+1 | i=12.r=1} u
{w1wr} u {viwj | =120 j=12.r}
that is, a pinwheel is composed of a rim (Cw woow ! and a complete graph (the
: 17277

hub) on VoV, Each vertex on the rim is adjacent to every hub vertex. A

wheel is a special case of a pinwheel, where h = 1. A cycle may be thought of as

a special case of a pinwheel where h = 0. Several examples of pinwheels appear
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Figure 3-622 Some Pinwheels
in Figure 3-62. The R-property PINWHEEL is

#* o a0
(AW TAWZ”.AWkaW) (Wk.s) where distinct XYV VooV, € V,veYV, xy €E,

dix) =k + 2, dly) =k + 2, div) = max, i = 1,2,k
The seed graph is the smallest possible pinwheel on a hub of size k, one with a
triangular rim. Figure 3-63 shows the iterative steps in a sample run of PINWHEEL
for k = 4. Pinwheels are generated by gradually increasing the rim. The floor for
pinwheeis on hubs of size k is <P2,Lg,25>, because {Wk.3} is not precisely

describabie in any of our lower languages.

PINWHEEL is correct; it replaces any rim edge with a chain of two edges.

connecting the new vertex v to each vertex in the hub. The inverse is computed

by:
£ A A A § )
Wt W, v, Ty
=1 A=1,-1 -1
sxvyAw Avv "‘Avv
k k=1 1
DD D A D D D

VIVY XV Xy v v T
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Figure 3-63: PINWHEEL in Operation

Oe = 0 = distinct XYV VoV, € V, v &V, xy €E,

dix) =k + 2, dly) =k + 2, d(vi) =max, i = 1,2,..k
0! = distinct XYWV, V.V, € V, xy € E, xv,vy € E,

dix) =k + 2, dly)y =k + 2, dlv) =k + 2,

div) = max, i = 1,2,..k

The floor remains constant Figure 3-64 shows PINWHEEL ™’ operating on a graph
GGGpandagrathﬂprork=3.'

On a pinwheel of k hubs, PINWHEEL™' contracts the rim until the graph is
isomorphic to W, 3 On a graph which is not a pinwheel on k hubs, any vertices of
degree other than k + 2 or max will remain untouched, with the pinwheel-like

portions collapsing into Wk > An inadequate (incomplete) hub will remain so and

never become isomorphic to W, .. Thus PINWHEEL™' is correct and PINWHEEL is

complete.



2

Figure 3-64: PINWHEEL™' in Operation

3.7.19. Graphs with K Components.

If for every pair of vertices x,y € V there exists a path in E between them,
the graph G = <V.,E> is connected. A graph G' = <V'E> is a subgraph of the graph
G = <VE> if and only if V' € V and E &€ E A maximal connected subgraph of G is
a connected component of G (or merely a component). Any graph G may be
partitioned into its connected components <v,.s,>,<v2,sz>,...,<vk,sk> such that

G =<, Vv, U, s>
where the V's partition V and the Si's partition E We then say that there are k
components in G Several examples of graphs with k = 3 components appear in
Figure 3-65. The R-property K-COMPONENTS is

Bue * By * Ay A Ay * AgALA, ALy, B

where w € V, z & V
distinct XV V.V, € V,ygV, dx) >0, xv, € E, i=1,2..t
Recall that Ek is the edgeless graph on k vertices. There are two options. The

first is a simple branch from vertex w. The second option begins when assigning x's
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Figure 3-65: = Some Graphs with Three Components

adjacency to V, VoV, t0 Y instead. K-COMPONENTS fragments vertex x into
vertices x and y. Then K-COMPONENTS either connects x and y or permits them to

both be adjacent to v VgV, OF both. Figure 3-66 shows the iterative steps in a

sample run of K-COMPONENTS for k =

///'-

5 6
Figure 3-66: 2-COMPONENTS in Operation

@
@1

The floor for graphs with k components is <P, L, T >.

We now demonstrate that K~-COMPONENTS is correct Let G be a Connected
graph and apply one iteration of K-COMPONENTS to it, fragmenting vertex x into

vertex x and vertex y. Let v be another vertex other than x and y, in G We must



show that there exists an xv path and a yv path. Prior to fragmentation there was
an xv path xw..v. After fragmentation either xw or yw is in E, say yw. It remains
to construct an xw path. If Axy were part of the iteration, then xyw..v will be a
valid xv path, else there is some v, which is adjacent to both x and y, so that
XVYW...V is a valid xv path. In either case, G is connected and K-COMPONENTS is

correct

The inverse is computed by:

f~1 =B +A +A A A +A A A .A)
wz Xy Xvi{ xvg XV Xy XV1 Xvg XVt
F f1
xyvr~vt
-B"' + F! A +A A A +A A A
wz XYV 1..Vt Xy XV1 Xvg XVt Xy XvV1 Xvz
A f!
XVy
= B"t + F"! A'+A A LA fP+A A A
wz XyV 1.Vt Xy i XV] XVg XVt Xy Xvi Xxvg
-1
AV
x\rt
: B_l + Flll (A_l_AlllAllLA_l + A _ V L
wz xyv 1.vt Xy xvt xvt=1xv1 vt *Vay
1 lll
;vﬁxy)
=DD +1 (D + D D .D +D D
z wz Xy Xy xvte Y1 V1 BT S
D D)
xv'l Xy
a sa =weyV z*V

distinct x NV A v s V, y 0V, dix) > O
xv. e E, i=1,2,~t
a"? « distinct w,z e V, wz s E d@@) =

distinct x,y,v,v,vy e V, dx) > 0, diy) > O,

xy e E or XV.YV. eE,i= 12,4
The floor remains constant (Although "or" is not in 2y an equivalent more complex
notation in Zz can convey the same list of possible bindings.) Figure 3-67 shows
K-COMPONENTS"I1 operating on a graph G e Gp and a graph -G * Gp for k = 1.
On any graph, K-COMPONENTS"' merges vertices which are adjacent or have a

common neighbor, until each component is contracted into a single isolated vertex.
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Figure 3-67: 1-COMPONENTS"! in Operation

Thus K-COMPONENTS™ is correct and K-COMPONENTS is complete.

A graph is connected if it consists of a single connected component Thus
connectedness is an R-property, a special case of K-COMPONENTS, for k = 1:
w +A A A +A A A LA F IHKJI
- A I B GRS -
where distinct x,v,v,, ,vi e V, y * V, dx) > 0, XV. « E, =12t

We will see-another formulation for connectedness later in this chapter

3,7.20. Regular Graphs

If every vertex of a graph is of the same fixed degree k, the graph is said to
be k-regular or simply regular. Several examples of regular graphs appear in
Figure 3-68 for varying k values. This property must deal with k even an.d‘k odd
in separate algorithms. To simplify the notation we introduce some new composite

operators, EM : om* : OMiy v w
TR T k= 1T = 1 WY ke 1Y 17 Wi
OM , CM_ . and PR,
1" "k=1 1k V1%
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Figure 3-68: Some Regular Graphs

EMxv , introduces an even degree vertex x while maintaining the degree of
1"k '

every vertex to which it is adjacent EMXV , Celetes k/2 edges among k distinct
Vi
vertices, and adds k new edges to x, ie.,
EM =A .A D .D A
XV XV v

XYYy 1 k V1Y2 o Yk=1%

oM introduces two odd degree vertices v and w while
vwyv 1...Vk+ 1W1...Wk_ 1

maintaining the degree of every vertex to which they become adjacent There are

two ways this can be done. OM\:"W v wow deletes (k—1)/2 edges among
1" k=1"1""k=1

k=1 distinct vertices for each of v and w and adds k-1 edges to each of v and w

plus the edge vw. om? deletes (k+1)/2 edges for v among k+1
VWV eV W W

vertices, permitting exactly one vertex (v, _.) to repeat, deletes (k—-1)/2 edges among

k+1

k=1 distinct vertices for w, and "gives" the adjacency of Vo, OW also. Thus we

have:



VWV V) W W, WL W v1v2"' Vel WWL T oww, w1w2
DW w AWV A AW
k=2"k=1 Wk+1 Y
O'VI\IWV Vv w W, = OM\:WV v w w M OM‘fWV ' w wW
1"k 11T k=1 1" k=1"1""k=1 1" k#1717 k=1
CM"1“"’k+1 adds an entire copy of Keeq ON VoV, ., to the graph, ie.,
cM = A A LA A A _A A LA
Vl...Vk+1 V1V2 V1V3 V1Vk V2V3 vivj ‘lkvk.’_1 V1 Vk""l
CMV , adds k vertices of degree k and (k+1k/2 edges to the graph, without
-

changing the degrees of any previously existing vertices.

FFRV v "fractures” the degree k vertex v
Vi
which form among themselves a complete K, subgraph. Each vertex assumes one

. into a set of k vertices, VeV

of the adjacencies previously assigned to v

ie., if the neighbors of v, were

1’ 1

X g pers X s then

FR = A D A D A D cM

V1...Vk V2X2‘ V1X2 V3X3 V1X3 kak \I,IXk \I(‘...Vk

Also for notational convenience we define the inverses:
EeM! =DA A DD

XV1..;Vk X vk"1vk V“V2 ka XV1

om' "'=D DD A WA D -

VWY ¥ W W, WoVTwWow oW, T W wy =1
D A <A D D

1 Yk=2"%-1 Y1Y2 Wk-1 Wi

2 -1 _
(om "' =D DD, A A, D

= . D
1=V ViVl Y%k kK% ViRket Yk=1%k-1 VX2 V2X2

Now the R-property for EVEN-REGULAR is

EM_ +A A D CM D + FR o]
k

v v s 2 ) where
1'" k YZq Y1p Y1y2 y1"'yk+1 pq 1"‘

K+ 1



distinct v, v,..v, € V, x & V, Voia1Vy € E i=12..k/2
distinct p,q € V, distinct Yo YorrYyt gV, pgeE
distinct Xy XX, 2 € V, distinct 2,252, & V.z,x €E i=12.k
The seed set Q requires some explanation. Let K/ K2 K! be t distinct

k+1
copies of a complete graph on k+1 vertices. Take

k+17 kA1 K

— ot i
Qk+1 = {Ui=1 Kk+1 I t=12..}

in other words, each element of Clk i is a t component graph, composed of t

disjoint copies of K Clearly K € Q‘; +1 As EVEN-REGULAR iterates on G

k+1° k+1
the number of connected components may or may not reduce, depending upon
whether or not the v's lie in the same component Figure 3-6S shows the iterative

steps in a sample run of EVEN-REGULAR for k = 4.

i

Figure 3-69: EVEN-REGULAR in Operation for k = 4

The edges to be used for the next iteration appear dotted in the figure. The floor
for k-regular graphs with k even is <P2,LQ,22>. EVEN-REGULAR has three options.
The first adds vertex x, replacing k/2 edges with k edges. Each affected vertex v,

loses one edge and gains another, leaving dlv) unchanged. The new vertex x is



constructed to have dix) = k. Thé second option deletes an edge between two old

vertices (p and g), adds a copy of K delétes an edge from the copy (y1y2) and

k+1°
connects the copy to the original graph with two edges (y,p and Y,Q restoring the
degree of all four vertices to k. In total, k+1 new vertices and (k+1)k/2 new edges
are added to the graph. The third option fragments a vertex (z,) while maintaining
the degrees of its neighbors. The vertices in the fragmentation each have degree k
(k=1 edges among each other and one "external” edge to a previous neighbor of
z,)l. There are k-1 new vertices created, each of degree k. Thus EVEN-REGULAR is
correct

The inverse is computed by:

£1 = (EM +A A D CM D+
XV vy Yo@ V4P ¥ ¥y YywYy .y PG
FR )
21...2k
= -1 =1
= EM""1“"’k (Ayquy pr y2CMy1‘"kaD 0 q) +
FR-1
21...2k
=EM-'  +A CM A D D _+
V=Y PA YyYipr V¥ V4P V29
FR"
' 21...zk
e = distinct v P eV, x &YV, Vaia1Vai € E,
i=1,2,..k/2, d(vj) =k, j= 1,2,...,k
_ distinct p,q € V, distinct Yy Yo Yy a £V, pqge€E,
dip) = k, dig =
distinct x 1 X g X\ o2y € V, distinct 22.23,....2 &V,

2, eE i=12.k dz ) =

14 = distinct x,v 1V gy €V, xv, € E i=12..k,
Voia1Va; £ E i=12..,k/2, dix) = k, d(vi) =k, i=1,2,.k
distinct p.q.y .yz,....yk . € V.pq#V, Y € E dly) =
i=12.k+1, j=12.k+1 except y Yo

y,P. ¥,9 € E
distinct x.2 € V, x.z. € E, d(xi) = k, d(zi) =k i=12.k
X412 £E j=23.k z € E. rs=12.k



The floor shifts to <P2,LQ,Z3>. Figure 3-70 shows EVEN-REGULAR ™' operating on
agraph G & Gp and a graph G £ Gp for k = 2. The edges to be used for the next
iteration appear dotted in the figure. Any vertex of degree other than k will be
unmodifiable and isomorphism will eventually fail in a graph containing such a vertex.
Under the first option, EVEN-REGULAR™' removes a degree k vertex x and inserts
k/2 edges maintaining the regularity of the v's, until K . is reached in each
connected component Under the second option, a copy of Kk”—xy (the complete
graph on k+1 vertices missing a single edge)} attached to two non-adjacent vertices
(p and q) is deleted, removing k+1 vertices of degree k without changing the degree
of any other vertex in the graph. Under the third option a copy of K, each of
whose vertices has one different neighbor not in K. is replaced with a single
vertex (z,) of degree k without changing the degree of any other vertex in the
graph. EVEN-REGULAR™ is clearly correct for k = !2 (the last two options are
instances of edge subdivisions) and we believe it to be correct for k > 2, although
a formal proof will be offered eisewhere. At this writing no G € Gp has been
shown inaccessible and its behavior on G # G is correct, so we will postulate

EVEN-REGULAR™' to be correct and thus EVEN-REGULAR to be complete.
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Figure 3-70: EVEN-REGULAR™' in Operation for k = 2




The R-property for ODD-REGULAR is

(OM +A A D CM D+ FR )"
VWV1---Vk+1W1-«Wk_1 yzq Y1D Y1Y2 Y1...Yk+1 pqQ Z,..2

(Qk +1) where distinct v,w € V, distinct v oV

- e e
distinct w . w,..w,_, €V, v,._ v, Woio Wy E

i=1,2...kk+1)/2; j =1,2,..=1)/2

distinct p,q € V, distinct Y Yy £V pqeEE

""yk+1

distinct X X oo X, 12 € V, distinct 2 e €YV, 2z X € E. i= 12.k

277k 2
ODD-REGULAR appends two vertices at a time to G because an odd regular graph
must have n even. Figure 3-71 shows the iterative steps in a sample run of

ODD-REGULAR for k = 5.

Figure 3-71: ODD-REGULAR in Operation for k = 5

The edges to be used for the next iteration appear dotted in the figure and are
labelled v or w indicating their relationship to the new vertices. The floor for
k-regular graphs with k odd is also <P2,Lg,22>. ODD-REGULAR has three options.
The first maintains the degree of every vertex in G while appending two vertices of
odd degree. The new vgrtices v and w are constructed to have div) = diw) =

k. The second and third options are identical to those for EVEN-REGULAR and



maintain the degree of all previously-existing vertices while adding k+1 or k-1

vertices, respectively. Thus ODD-REGULAR is correct

The inverse is computed by:

fr = (OM +
VWV“_.Vk+1W1...Wk_1
A A D CM D +FR f
yg YR WY  yV k+1 RO Ll
= OMIIl +
b R Mk TS
A A EM )"t + FR"
\V yylFF’ Y¥ro o Y9¥k,1: P * 1% ’
- oMIIl -
V\W’\ll'.[...'»‘k_'.1\-'!',|....\.'\l'k_1
A CM A D D + FR"!
pq Yeo.Yk+1 Y.Y2 Y.,P y2q v * k
a = distinct v,w « V, distinct v,,v_,...,v. ,. SV,
pre 12 k+l

distinct X;X;»,Xx_>1 S V, d(vl.) * d(x.) =k,
i = 1,2-.k; distinct Vj;.,"’\, W2 _1Woj s E,
i=1,2,..Kk+1/2; | = 1.2..k=1/2
distinct p,g e v, distinct y,y.»-'y+1 * V, pq s E
d(p) =k, d@) = k
distinct XX, _,Xx<21 s V, distinct z,,z,,. zx * V,
2’\.l eE,i=12"k, diz®» =k
a"?! = distinct v.vAv2A.. A sV, distinet W, WeWo,« Wk_y S V
vw,wiww.J « E, ijl.2,~,k+1; j= 12, ™k-1
V2i-1V2i'W2i-1V2j * B i=1.2 (k.1)/2;
j = 1,2_,(k-1)/2. dM = k, d(w) =k, d(v.) =k,
i=12_ k-1 d<w) » k, i=T,2,__k-1
distinct p,d,y:y2,~Yks1 € V, pa SV, yy, 6 E. diy) =k,
i = 1,2. ,k+1, j = 1,2.. k+1 except y " ;
y;p, y2q s E
distinct XpZ, « V, X\Z, * E, d(xi) = k, d(zl) =k, i = 12,..k;
x,LiEj=23..kKi zss E, rs = 12,..k
The floor shifts to <°,’'Q'E3”- Pigure 3-72 shows ODD-REGULAR"' operating on
a graph G s Gp and a graph G « Gp for k = 3. The edges to be used in the next
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Figure 3-72:  ODD-REGULAR" in Operation for k = 3

iteration appear dotted Any vertex of degree other than k will be unmodifiable and
isomorphism will eventually fail in a graph containing such a vertex Under the first
option, ODD-REGULAR™ removes pairs of degree k vertices v and w and replaces
2k-1 edges with k-1 edges, maintaining the regularity of the v'is and the w.'s, until
K., s reached in each connected component The second and third options
behave as they did in EVEN-REGULAR", maintaining the degree of all other vertices
while deleting k+1 or k-1 vertices, respectively. ODD-REGULAR™ is clearly
correct for G * Gp and has been confirmed correct for k « 3 against [Statman
82]. We believe it to be correct for k > 3 although a formal proof will be
offered elsewhere. At this writing no G « G, has been shown inaccessible, and we
will postulate ODD-REGULAR"™ to be correct and thus ODD-REGULAR to be

complete.



3.7.21. Connected Graphs

A graph G = <V,E> is connected if for every pair of vertices in V there is a
path constructabie between them using only edges in E Several examples of

connected graphs appear in Figure 3-73.

A

Figuré 3*73:  Some Connected Graphs

There are many ways to write an R-property for connectivity. One reasonably
obvious form is

B* (KJ where x e V
Xy |

We prefer a more complex statement which will relate connectivity to other
properties. Our formulation for the R-property CONNECTED is
«N+A UN+A DA F { )KJ
XV XV Xy Xyv ..v - 1

where distinct xvie V, y 0V, xvie E, 0 £r £ dX)
Figure 3-74 shows the iterative steps in a sample run of CONNECTED. The floor

is <Py4,L,25>.

An iteration of CONNECTED begins by fragmenting vertex x into vertices x and
y and forces y adjacent to Xx. The iteration requires y to assume r (2 0) of x's

adjacencies to the v.'s and permits x to retain any or al of those adjacencies as



Figure 3-74: CONNECTED in Operation

well. Because x retains ail its previous adjacencies through E or through the edge
xy, and because each newly—introduced vertex y has access to the remainder of the

graph via the edge xy to its originating vertex x, CONNECTED is correct

The inverse CONNECTED ™' is computed by:

! =(N+A JIN+A J)A_F )~ !
XV XV XY XYV, ..V
1 r 1% r
=F' ATIN+A )N+ A )T
XVV1...Vr Xy er XV1
= DIN+D MWIN+D )
Xy Xy XVr XV1
Ore = = distinct x,v. € V, y # V, xv. € E. 0 < r < dix)
o ! = xy.v, € V, xy,yv ...yv_ € E 0 s rs dix

The floor remains constant Figure 3-75 shows CONNECTED ™' operating on a
graph G € Gp and a graph G # Gp. CONNECTED ™' collapses each connected
component of a graph into a single vertex. If G is connected, the result will be K,
and success; if G is not connected the result will be a set of at least two isolated
vertices, which will fail. Thus CONNECTED ' is correct and CONNECTED is

complete.

3.7.22. Biconnected Graphs

A graph G = <V.,E> is biconnected if there is no vertex in V whose deletion
(with all its associated edges) disconnects the graph. Several examples of
biconnected graphs appear in Figure 3-76. There are several ways to write an
R-property for biconnectivity. We choose one closely related to the formulation
for connectivity. The R-property BICONNECTED is



Figure 3-75: CONNECTED ' in Operation

T

Figure 3-76: Some Biconnected Graphs

wz

(N + Axv1)...(N + Axvr)Axnyyv Lt N + AWt N + A wt JA wt A

1%°r 1 s s+1

»
sztr..ts* ’) (K3)

where distinct x,v. € V, y # V, xv. € E, 1 <r < dix—-1

distinct wt € V, z&V, w‘ti € E, s = diw)-1
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Figure 3-77: BICONNECTED in Operation

Figure 3-77 shows the iterative steps in a sampie run of BICONNECTED. The

floors are <P 4,L2.25> and <P, L m,2:5>.

An iteration of BICONNECTED behaves exactly like an iteration of CONNECTED,
except that the new vertex must receive at least one of the old vertex's neighbors
in the fragmentation, and the oid vertex must retain at least one of its neighbors.
(This is indicated by BICONNECTED's two options; the first leaves some neighbor of

x untouched, while the second shares a neighbor ts ., between w and z) A graph

1
with n > 2 is biconnected if and only if every pair of vertices lie on a common
cycle. After an iteration of BICONNECTED, if edge xv, is not present, xyv. may be
substituted to produce all the previously existing cycles. Thus the graph will stiil be

biconnected and BICONNECTED ié correct

The inverse BICONNECTED ' is computed similarly to that for CONNECTED:

1 =(N+A_)IN+A JA F + N+ A ).
XV XV XY XYV, ..V wt
1 r 1%r 1
-1
N+ A A A F )
wts wtsq'_1 wz wzt,...ts_ﬂ
- -1
= (N + Axv N+ Axv )Axnyyv ...v) + (N + Awt )
1 r 1 r 1
-1
(N + Awts)Awts +1szszt1...ts +1)
= Ixnyy(N + va J.(N + va ) + IW:DWz D wt (N+D wt )
r 1 s+1 s
(N + Dwt1)
g = distinct xv, € V,y YV, xv, € E 1 srsdx -1,

pre
dix) > 1, dlv) > 1, i=1,2,..r

distinct w,'ti eV, z&YV, w‘ci € E s = diw)=1, diw) > 1,



dit)>1, i=1 iy

amt = distinct x,y,v. e V, xy,yvi_yv, « E, 1 S,

dx) > 1, dy) > 1, div) > 1,
jfpv, | peV,py, 6Ep#Xx p*yt| >0,
i=,2_r

distinct w,z,t s V, wz,zt,,.~zt ~,wt .. e E, dw) > 1,

| 1 S+1 S+1
d@ > 1, d(t) > 1, s = dw> - 1,

[{pte | p«V, ptt «E, p#xXx,p#y}| >0, isl,2,s+1
The floor remains constant The inversion procedure has noted that the degree of
each vt () which y (2) acquires will be at least two. and each vi () will be adjacent
to some vertex other than x and y (w and z). Figure 3-78 shows BICONNECTEDA*
operatfng on a graph G « G and a graph G~ Gp. BICONNECTED*' collapses each
block of a graph into Kz A disconnected graph will continue to reduce to a set of
disjoint chains, a connected but not biconnected graph to a chain of length two, and
a biconnected graph to K. Thus BICONNECTED"! is correct and BICONNECTED is

completa

3.7.23. k-Connected Graphs

A graph G = <V,E> is /(-connected if there is no set of k-1 vertices in V
whose deletion (with all their associated edges) disconnects the graph. Two
examples of 5-connected graphs appear in Figure 3-79. Note that 1l-connected is
equivalent to connected and that 2-connected is equivalent to biconnected The
somewhat awkward constructions of the two previous sections are now seen to be

special cases of the R-property K-CONNECTED:

(N+A UN+A A F + N+ A ,UN+AA" A 4 -
XV1 xvr Xy va1~vr wtl " WI WtS—k+2
A A_F VK, )
Wts+1 w2 wzt,...ts_” k+1

where distinct xv. eV, ylV, xve E, k-1 £r < dXx) - k+1
distinct w,t e V, 2 *V, wt.e E, s = dw) - k+1
Figure 3-80 shows the iterative steps in a sample run of K-CONNECTED for k =
The floor for K-CONNECTED is <P4J-1,.Z5>.
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Figure 3-78: BICONNECTED ' in Operation

An iteration of K-CONNECTED behaves exactly like an iteration of
BICONNECTED, except that the new vertex must receive at least k-1 of the old
vertex's neighbors in the fragmentation, and the old vertex must retain at least k-1

of its neighbors. The removai of k-1 vertices from K _, leaves K, Thus the seed
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Figure 3-79: Some 5-Connected Graphs

SRt

Figure 3-80: 4-CONNECTED in Operation

is k—-connected. Suppose that G is a k—connected graph but a single iteration of
K-CONNECTED on G results in G' which is not k-connected. Then G must contain
k=1 vertices w....w, _,, whose deletion will disconnect G. Certainly the new vertex
is among them or the same vertices would have disconnected G Thus there are
vertices t and u in G which have no path between them once the new vertex is
removed The deletion of the old vertax in G should have had the same effect,
however. Thus our supposition is incorrect, G is k—connected and K-CONNECTED

is correct

The inverse K-CONNECTED ™' is computed similarly to that for BICONNECTED:
_1 -
f _ =N+ A )N+ A A

1 Ve XY XV LV

+ N+ A  JLIN+ A YA WA
wY, Whick+2 Wlsek+3  Wiseq



=(N+A )LIN+A JAF )~ !
xv, XV XY XYV LV

+({(N+ A LN+ A A LA
wt, Whick+2 Whoksz Wi+

-1
wz wazt ..t )
1™ 's+1

=l DIN+D )LIN+D )+
Xy Xy xv_ xv,

D D -D IN+D ).ue

wzZ w2z WtS"'1 MS‘k+3 W(s_k+2

N + DM1)

Tore = distinct XV, € V,y &YV, xv € E.

k=1 < r < dx) = k+1, dix) > k=1, div) > k=1
distinct w,t € V, z # V, wt€ E s = dw) = k+1,

diw) > k=1, dit) > k=1

g = distinct x,y.v. € V, xy, yv ..yv_€ E
k=1 sr <dx) -k + 1, dx) > k=1, dly) > k-1,
d(vi) > k=1,
|{pv, | PEE pv, € E. p # x, p # y}| > k-2,
i=1,2,..r

distinct w,z.t. € V, wz, zt, ...zt wt gmWE e E

s=k+
s =dw =k + 1, diw) > k=1, d(z) > k-1,
|{pt. | peE pt €eE p#*w p#zl| >k -2
dit) > k-1, i=1,2...s

The floor remains constant Now the invers;ion procedure has noted that the degree

of each v, (ti) is at least k, and that each v, (ti) will be adjacent to at least k-1

vertices other than x and y (w and 2). Figure 3-81 shows K-CONNECTED ™'
operating on a graph G € Gp and a graph G # Gp for k = 3. A graph is
k-connected if and only if there exist at least k edge-—disjoint paths between any
two vertices. K-CONNECTED™' collapses adjacent vertices x and y of degree at
least k=1, any path available through x or y will now be available through the
resuiting merged x. In particular at most one xqg-—path (for any q € V) used the edge
xy and that path ‘ after the merger will be available directly from x. Thus
K-CONNECTED ™' performé properly on G & G  and will eventually reduce it to

Kewr If G # Gp, there are k-1 points which disconnect it  This ability to
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Figure 3-81: 3-CONNECTED™! in Operation

disconnect the graph is retained under contraction (possibly resulting in even fewer
vertices capable of disconnecting the graph), and must ultimately cause failure

because contraction creates no more edge-disjoint paths than previously existed

Thus K-CONNECTED™ is correct and K-CONNECTED is complete.



147

CHAPTER 4
ADVANCED TOPICS IN RECURSIVE LANGUAGES

The essential characteristic of reasoning by recurrence is that it
contains, condensed, so to speak, in a single formula, an infinite
number of syllogisms.

—Poincare
This chapter considers an assortment of advanced topics in recursive graph
property languages. The first section extends R-properties by access to a register
and contrasts Ze “''" 1;- T”s second section explores loop marking and contrasts
£3 with Z,- The third section discusses loop labeling and demonstrates properties
available with it Subsequent sections are devoted to graphs with more elaborate

labels, subsumption, merger and NP-completeness.
4.1* Extended Recursive Languages

By enlarging the input and slightly modifying the interpretation, this section
extends R-properties to R*-properties, motivated by the calculation of n and m. An

application to the selector languages Z, ®"® £3  givea

Imagine an algorithm, similar to the ones we used for R-properties, with a
register which tallies the number of algorithmic iterations and outputs both the
register value and the graph. Such algorithms will be for properties associated with
an integer value More formally, we define an R*-property as the following
semantic interpretation of the triple p = <f,S,a> as a recursive algorithm, called on
(G,0) for -any graph G described by S:

p(GK) = (GK) if enough

°* p(G\k+1) where G' = f(g) using elements from G selected
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by o in order to apply f
At the end of each iteration, the graph G has the R"'-property with value k. Note
that k is incidental to p. The definition of an R"'-property is independent of the

value of k.

4.1.1. Calculating the Number of Vertices and Edges in a Graph

As a first example of an R*-property, we offer VERTICES to construct graphs
with a known number of vertices. In section 3.7.14 we had K-VERTICES which
operated for fixed k. Now we define VERTICES as:

(A:yAz)*(<¢,¢>,O) where distinct x,y € V, z € V
Figure 4-1 shows the iterative steps in a sampie run of VERTICES.

k= =3 k=4

k=g k=1 | 2 k
g @ @ O @
1 2 3 4
([

Figure 4-1: VERTICES in Operation

Note that on each iteration any number of edges (including zero) may be added and

exactly one vertex must be added The floor for VERTICES is <P1,L1,Z1>.

Similarly we can define the R*-property EDGES to construct graphs with a
known number of edges. In section 3.7.15 we had K-EDGES which operated for
fixed k. Now we define EDGES as:

(AyzA:)*(KVO) where distinct yz € V, yz € E
Figure 4—-2 shows the iterative steps in a sample run of EDGES. Note that on each
iteration any number of vertices may be added and exactly one edge must be added.

The floor for EDGES is <P1,L1,):1> also.
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Figure 4-2: EDGES in Operation

Now we require an inverse for an R"'—property. This inverse should be a
tester which, given an input graph G and register vaiue k. attempts to restore G to
a seed graph in S and k to zero, counting its iterations in the register. More
formally, a terminal R*~expression p = <f ',S,0”'> is said to be the inverse of
another R+-expression p = <f,S,0> if and only if the testing semantic interpretation
returns (TRUE.O) on all outputs of the generator which is the R*-property defined
by p. and (FALSE.k) on all other graphs. The testing semantic interpretation of p'1
= <f7'.5,07'> is the following recursive algorithm:

p~ M GK) (TRUE,0) if k = O and G is described by S

£~ G k=1) where G = f~ (G using
1

in order to apply '
(FALSE,k) if G is not described by S and

elements from G selected by o~

o~ is not applicable
(FALSE k) if G is not described by S and
k=0

(FALSEk) if G is described by S and k # O
First p‘1 checks to see if G has returned to S and k is zero, in which case the
algorithm terminates, returning (TRUE,0). Otherwise, p'1 attempts to iterate by
finding suitable vertices and edges for ™' If successful termination and iteration
are both impossible, p"’ tgrminates. returning (FALSE.k). Failure is caused by G in S
with a non—-zero k, by G not in S with a zero k., or by G not in S with an

unmatchable o~ .

The automated calculation of an inverse for the sample R+-properties we have



shown is complicated by their (f'g)" format In our attempt to return to S, we may
not iterate f enough, masking what should be successful results. Thus we will
define an extreme superscript e, in order to force the most iterations of #71
possible, ie. (F~1)® will be interpreted as "do ' as many times as o will permit”
This will avoid under-iterating f' We therefore add a new ruie to those already
existing for R—-property inversion:
RULE 6

The inverse of a function occurring an unknown number of times is as many

iterations as possible of its inverse. (f)”' = (f~')®

We construct inverses now for VERTICES and EDGES. For VERTICES™' we
have:

T Aa* A7l

Xy 2z

= A-‘l (A* )-‘I

z xy

= A"HAT)®

z xy

D D®

z xy

distinct x,y €'V, z # V, xy € E

g
pre

-1
a

distinct x,y,2 € V, xy € E, dix) = 0
The floor shifts to <P2,L1,23>. Figure 4-3 shows VERTICES ™" operating on two

graphs, one with a correct k vaiue and one with an incorrect k value.

For EDGES™' we have:
£ = (A A"

yz x
TR

X yz
(A- 1)0 A- 1

X yz

= D°D

X yz
distinct yz € V, x # V, yz € E

g
pre

-1

o distinct x,y,2 e V,yz€E dx) =0

Again the floor shifts to <P2,L1,23>. Figure 4-4 shows EDGES™' operating on two

graphs, one with a correct k value and one with an incorrect k value.
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Figure 4-3: VERTICES™' in Operation

K= 1

K =4 K=3 K=2
_‘ ‘ K=0
. Bd TRuUE,Q
5 6
A é—. @ —@ #% raLse
1 2 3 4 5

K=4 K= 3 K=2 K=1

Figure 4-4 EDGES™ ' in Operation
4.1.2. Calculating the Degree of a Vertex

The R*—property "has vertex v of degree k" is the concept used to extend 22
to 23. This property, DEGREE, may be stated as:

(A A+ Ayz)*)*(< {v},$>,0) where distinct v.w,y,.z € V, x € V, vw & E
Figure 4-5 shows the iterative steps in a sample run of DEGREE. Note that on

each iteration any number of vertices and edges may be added and exactly one

o



1 2 3 4
Figure 4-5: DEGREE in Operation

edge must involve vertex v. The floor for DEGREE is <P,L,Z,”- Th® inverse.
DEGREE"!, is computed by:
f~ A A + A !
vw

X yz

a1
A, + Ayz )AL

[e)

(7]

B * A, A

A"l ATTEAT]
X yz vw
» D+ D )D
X yz VW
0=0 as distinct vwy,z € V, x * V, yzvw 2 E
a~ as distinct x,v,w,y,z 6 V, yzvw e E, d(x) = 0
The floor shifts to <Pl ,E*>.  Figure 4-6 shows DEGREEN! operating on two

graphs, one with a correct k value and one with an incorrect k value

Clearly any o e MS - \Lz references the degree of a vertex v. Such a
procedure may be thought of as calling DEGREE”' on (Gn) and interpreting the
output (FALSER) to mean that v had degree n-k. Of course such calls could be
inefficient; it might be more economical to use 0O(n) (one register for each vertex)
storage and calculate the degree of all vertices in 0O(n + m). iterations. As an
R-property in <PX,Z3  iterates, it could update the degrees of the vertices at 0(i)
cost where i is "the number of iterations. In the worst case, .O(m) = 0(n? and O(m
+ n) as 0(n?; in the best case, m = 0 and O(m + n) = O(n). Thus an R-property

whose floor requires £3 rather than £, represents an additional complexity of

between O(ni) and O(n%) for a graph on n vertices requiring i iterations for
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Figure 4-6: DEGREE™' in Operation

generation or testing. The vailue of i is property—dependent
4.2. The Loop as Marker

H*-properties were one way of extending our recursive formulation. In this
section we explore a different extension, a marking technique using loops. motivated

by the calculation of max. A comparison of 23 and I, is made.

4.2.1. Calculating the Maximum Vertex Degree in a Graph

All work in this segment is for directed graphs only. In order to apply this
algorithm to an undirected graph G, transform every undirected edge between x and
y into two directed edges. xy and yx. Any o € s " 23 references max, the
maximum vertex degree .in the graph. In 3.7.17 we had MAX-K which operated for
fixed k. Now we define the R+-property MAX as:

(A:(DWAYZ)"L)'(Ep,O) where distinct y,z € V, yy € E, yz € E
On each iteration, MAX places a loop (L) on every vertex, marking those which have
not yet had their out degrees increased. Then, n times, MAX selects a vertex y
with a loop on it, adds an edge from y to sorﬁe other vertex z, and removes y's
loop. (The selector operates after the application of L) Finally, MAX adds zero or

more vertices to the graph and increments k, completing a single iteration. Figure
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Figure 4-7: MAX in Operation

4-7 shows the iterative steps in a sample run of MAX with p = 5. After i
iterations, each of the p vertices initially in the graph will have out-degree k. Those
vertices added on the first iteration will be of out-degree k-1, those added on the
second of out-degree k-2, and so on. The floor is <P2'A)yag> wahs is our only
algorithm in which f is dependent on the size of the graph. An alternative
formulation without loops would be more difficult to follow. We therefore permit

this construction, albeit with reservations.

We have already noted that the loops are used as uniform markers. "L" may
be interpreted as "we are going to do this to every vertex." At any intermediate
point say after (DWAW)II where i<n, those vertices with loops have not yet acquired
a new out-edge. Thus the loop marks the vertex in a context known to the
algorithm. Under inversion we expect loop markers to continue as adequate. The
inverse MAX"! is computed by:

£ = AD A U
Lo, A A
LMo, A )T ATy
L-I(A;; D;—v1 }nlA:1}‘

= UD A )'D®
“yzlyy? Tx
apu = distinct yzs V, x ft V, yy s E, yz 8 E
a"? = distinct xy.z s V, yy ft E. yz s E. dx) = 0

By dx) = 0, we mean both the in degree and the out-degree of x are zero. The



floor shifts to <P3,L1,23>. Figure 4-8 shows MAX ™" operating on two graphs, one

with a correct k value and one with an incorrect k value.
K=2 K=1 K=0 ‘
@ I:I @ O T-°
: 4
1 2 3
@ Z FALSE,2
2 | 3

= K= 2
K=3 Figure 4-8: MAX™ ' in Operation

b

In MAX™' the loops mark those vertices which have already had an out-edge
deleted until all (n) vertices have loops, at which time all loops are removed (L)
Thus the contextual significance of a loop has changed (from “"needs a new
out-edge” in MAX to "has lost an out—-edge” in MAX~'). What remains constant is
the loop (or absence of a loop) as a partitioning of the vertices into "already
processed” and “to be processed’. Any application of loops to the vertices of G
creates a partition on V. Such a partition may be exploited in various ways. When
all vertices are looped, and then gradually uniooped in a single iteration, we will say

that we are /oop marking.

An algorithm using 0 € L, - 23 clearly references max. Such a procedure
may be thought of as calling MAX™! on (G.n) and interpreting the output (FALSEK)
to mean that max = n—k+1. Of course such calls could be inefficient; it might be
more economical to use OIln) storage to maintain the number of vertices of each
degree. For an initial set-up cost of O(m) time, the value of max will be available

as long as the algorithm executes. [ a therefore represents an additional compiexity



of Om + n) over 23.

4.3. The Loop as Label

Loops can be used as other than markers. This section demonstrates ancther
extension to our recursive formulation, the use of loops as labels. Motivation is

provided from bipartite graphs, and examples of other loop-labelled properties are

provided.

4.3.1. Bipartite Graphs

Several examples of bipartite graphs appear in Figure 4-S.

e—©
o—© o

Figure 4-9: Some Bipartite Graphs

The R-property BIPARTITE is:

(A +A A + Ayz)*(<{‘l.2}.{1 1}>) where y2 € V, x £ V,

| {yy.zz} n E| =1

Figure 4-10 shows the iterative steps in a sample run of BIPARTITE In L,
<{1,2},{11}> is characterized by EN 1 =0 and EN 1 # 0, but so is any edgeless
graph with some loops. In L2 the seed is uniquely characterized as:

EnN1=0

Eni~Eni1

EnN

-—d

~EnNni1
n L, the seed is uniquely characterized as EN1 =0, EN1#0andn =2 Thus
the floors for bipartite graphs are <P1,L1n,25> and <P1,L2,25>. The seed graph

makes the partition of the vertices explicit those vertices with loops are in one
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Figure 4-10: BIPARTITE in Operation

class, those vertices without loops in the other. New vertices have their class
specified (by the presence or absence of a loop) when they are added to V (Ax or
AxxAx). An edge may only be added between a vertex with a loop and vertex
without a loop. The final output is a bipartite graph whose partition is clearly
labelled by its loops. This loop labelling is different from the loop marking
technique of the previous section. Loop marking is temporary, for uniform

processing within an iteration. Loop labelling is retained from one iteration to the

next

The inverse BIPARTITE™! is computed by:
f~1 aA +A A +A f!
X XX X yz
aA-'+ A A f1 + A
X XX X yz

X X XX yz

D, +DD + D
X X XX yz

N =yz«V, x«V,yz«E, |{yy.zz} nEl =1
pro
lll

a exy,zs V,yzak |{yyzz} nE * 1, dXx) < 1,
{plp * V, d(p)=0} > 1,
[{plpaV,ppsEdp < 1| >1

Um'2s> and <Ppl,Es>. Figure 4-11 shows BIPARTITE"

The floors shift to Py

operating on a graph Gs Gp and a graph G < Gp. Notice that BIPARTITE' will not
accept just any graph when testing to see if it is bipartite. Each graph in the Gp
produced by BIPARTITE is loop labelled, and the only input on which BIPARTITE"!

will return "TRUE" is a correctly loop-labelled bipartite graph. On a non-bipartite
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Figure 4-11: BIPARTITE™' in Operation

graph or an uniabelled bipartite graph or an incorrectly labelled bipartite graph, the
tester will return "FALSE." |f we imagine all possible non-trivial loop labellings of a
graph (there are 2" - 1 such labellings) the tester could perform in parallel on all
possible labellings of an unlabelled input graph in Olm + n) time, but sequentiaily in
02" time. We will see this potential for parallelism throughout the labelling
properties in this chapter. If labelling is required to construct a graph, then labelling
will be required to test it We suspect that properties of unlabelled graphs which
can only be impiemented by labelling are intrinsically different from those which do
not require labelling. Each segment in the remainder of this section describes a

specific graph property which appears to require loop labelling.

4.3.2. Complete Bipartite Graphs

A complete bipartite graph K is a bipartite graph G = <V,E> where V is

partitioned into V, and V., |V,]| ’=2n1, |V, = n, and all possiEle edges are
present, ie.,

E={xy | xeV, yeV}]
Several examples of complete bipartite graphs appear in Figure 4-12. K is not

nrnz
"complete” in the full sense of COMPLETE because of the bipartite restriction. The

R-property COMPLETE-BIPARTITE is:
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Figure 4-122 Some Complete Bipartite Graphs

A A A +A A A A <{1.2}.{11,12}>) where
X \" w w

vx, " v o wy, yq ww
distinct x. € V, v # V, xx € E i=1,2..p; [{z | x €V, xx € E}| = p
distinct y, € V, w # V, yy & E i=12,..q |z |yeV.yyeE} =g

Figure 4-13 shows the iterative steps in a sample run of COMPLETE-BIPARTITE.

eende ok

Figure 4-13: COMPLETE-BIPARTITE in Operation

The seed is described in L1 as ENt=0and EN1s# 0 as are all other
graphs which contain some loops and all their non—loop edges. In Lm the seed is
described uniquely as E N1 =0 EN1# 0 andn =1 and in L, the seed is
described uniquely as

ENt1=0

EN1~EN1~EnNi1

Thus the floors for complete bipartite graphs are <P1.L1n,25> and <P1,L2,25>.

COMPLETE-BIPARTITE uses the same loop labelling as BIPARTITE to denote the
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partition on V. It adds all the appropriate edges to G when it adds a vertex. Thus
COMPLETE-BIPARTITE is correct The inverse COMPLETE BIPARTITE ' is computed

by:
-1

£ A A A +A A A A)
X v w

VX‘| v ) y1 qu WW W
(A A A
VX VX v

1 p 1
DD .D +DD D .D

v pr VX1 W wWw qu WY,‘
distinct X, eV, veyV, X.X. € E,

1

+ (A LA A A
wy ww w

w
yq

Q
L}
Q
L}

|[{z | xeV, xxeE}| =p
distinct y, € V, w €V, yy, € E
[{z]|yeV.yy2E} =q
o = distinct v,x, € V, xx.,vx.
€ E i=1.2..p;
|[{z | ze V, zz € E}|

|[{z]|zeV, zzeE}| > 1 dv=p

]
0

distinct w,y. € V, wy, € E
yy, ® E i=1,2,...9,

q
|[{z| z€V, 2z€E}| > 1, dw =g

|[{z ]| zeV, zz  E}|

Again the floors shift to <P2,L1n,25> and <P2,L2,Zs>. Figure 4-14 shows
COMPLETE-BIPARTITE "’ operating on a graph G € Gp and a graph G # Gp. On a
complete, loop-iabelled bipartite graph, COMPLETE-BIPARTITE™' will delete one
vertex at a time (preserving one looped and one unlooped vertex) untii G is the
seed On a"graph which is incorrectly loop—ilabelled, some edge will be unremovable
and the graph will eventually fail. On a graph which is correctly labelled as bipartite
but is not a complete bipartite graph, the absence of some edge necessary for
"completeness” will prevent the deletion of both vertices associated with it, and the
graph will ultimately fail Thus COMPLETE-BIPARTITE-' is correct and
COMPLETE-BIPARTITE is complete.
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Figure 4-14: COMPLETE-BIPARTITE™ in Operation

4.3.3. K-Vertex-Covered Graphs

A vertex x covers an edge yz if x is y or i Given a graph G = <V,E>, a set
of vertice's A-£ V is a vertex cover if for every edge yz in E either y is in A or z
is in A or both. If A is a vertex cover for G and |A| = k. G is said to be
k-vertex-cover able. If a graph G is k-vertex-coverabie, A is its vertex cover and
A is labelled, G is said to be k-vertex-covered. Several examples of

5-vertex-covered graphs appear in Figure 4-15.

?A 3 io‘og

¢

Figure 4-15: Some 5-Vertex-Covered Graphs
The R-property K-VERTEX-COVERED is |



(A + Ayz)*(LEk) where y.z € V, y # z, |{yyzz} N E| # O

Figure 4-16 shows the iterative steps in a sample run of K-VERTEX-COVERED

e e 8 8 es
o
C Gzéé:a

Figure 4-16: 4-VERTEX-COVERED in Operation

The seed is a graph on k vertices with no edges and all possible loops, which we
have abbreviated as LE:

LE, = <{1.2..k}.{11,22,.kk}>
The set of all LEk's is described in L, as

Ent=0
and

ENt1=0
‘but in order to distinguish a particular l.Ek we require L. . Thus the floor for
K-VERTEX-COVERED is <P1,L1n,25>. The loops label the vertex cover throughout
the execution of the algorithm. No loops may be added and every edge is covered
by at least one looped vertex. Thus K-VERTEX-COVERED is correct There is no

guarantee that the looped vertices form a minimal cover, merely a cover.

The inverse K-VERTEX-COVERED ' is computed from:
£ = +A)"
X yz



= AII1+ Alll
X yz

=D +D
) X yz
o =X «V
pre
yziV.y#z yz«E |{yyzz} nE| #0
a"t =xsV, xx«E o =0

vzeV,y#z yzeE, |{yy,zz} nE| #0

Figure 4-17 shows K-VERTEX-CSOVERED™'

The floor shifts to “P,'“;,'2:5”-
operating . on a graph G e Gg and a graph G « G‘J for k = 3.

Figure 4-17:  3-VERTEX-COVERED~' in Operation

Just as for BIPARTITE", K-VERTEX-COVERED" checks to see if a particular
vertex labelling is in fact a vertex cover for the graph. On a correctly indicated
cover, all edges will eventually be removed, as will all unlooped vertices, returning
the graph to LEx. On an incorrectly indicated cover some edges will remain or the
final edgeless graph will contain the wrong number of looped vertices Thus
K-VERTEX-COVERED" is correct and K-VERTEX-COVERED is complete.



4.3.4. Graphs with K Independent Vertices

Given a graph G = <V,E>, a set of vertices A & V is /independent if for any
Xy € A xy € E, ie, no two are adjacent Several exampies of graphs with 3

independent vertices appear in Figure 4-18.

2N

Figure 4-18: Some Graphs with 3 Independent Vertices
The R-property K-INDEPENDENT is
A+ Ayz)*(LEk) where distinct y.z € V, |{yy.zz} n E| s 1
Figure 4-19 shows the iterative steps in a sample run of K-INDEPENDENT for k =

-

3

o o 6o ? ?
Figure 4-19: 3-INDEPENDENT in Operation
The seed is’ again a graph on k vertices, with all possible loops and no edges. The
loops label the independent set throughout the aigorithm. New, unicoped vertices

may be added. Any edge may be added, as long as it is not between two looped

independent) vertices. There is no guarantee that the looped vertices form a



maximal independent set, merely an independent set

The floor for K-INDEPENDENT is <P1,L1n,25>. Because no edges are ever
added between the labelled vertices, K~-INDEPENDENT is correct

The inverse K-INDEPENDENT ' is computed from:

£ =A +A )
x vz
= A_1+ A..1
X yz
=D_+D
X yZ
o =x &V
pre
distinct y.z € V, yz # E, |{yy,zz} n E| s 1
o ! =x €V, dx) =0

distinct y.z € V, yz € E, |{yy,zz} N E| < 1

The floor shifts to <P,L, L.> Figure 4-20 shows 2-INDEPENDENT ' for k
= 2 operating on a graph G € G 0 aﬁd a graph G # Gp. On a graph from Gb all
edges and uniocoped vertices will be deleted On a graph G & Gp, either there are
the wrong number of loops or loops on the wrong vertices. If there are
incorrectly—placed loops, some edge will have two looped endpoints and will never
be removed If there are too few or too many loops, since loops are unremovable,
the graph will never be isomorphic to LEk. Thus K-INDEPENDENT™' is correct and
K-INDEPENDENT is complete.

4.4, Labelling/Coloring Graphs

Abandoning loops for now, this section describes a substantial extension to our
recursive formulation, labelling graphs. Properties which require labels by definition
(such as coloring properties) and properties which are achievable via labels are

considered.

Let G = <V.E> be a graph and let ¢ be a function defined on V, ie. clv) is

defined and unique for each v € V. Then we say that c is a /abe//ing of G, that



FALSE

Figure 4-20: = 2-INDEPENDENT™' in Operation

the range of ¢, A = {civ) | v € V}, is the set of /abe/s for G, and that G =
<V,E.c.A> is a /abel/led graph. It is important to distinguish the name of the vertex
(v} from its label (ctv). We use lower case Greek letters for labels. Vertex names
are distinct; vertex labels need not be. As a matter of fact,
15 |A] s |V|

A primitive form of labelling is the loop, where |A| = 2, ie, the labels are "has a
loop” or "has no loop.” One helpful way to think about labels is to imagine them as
colors in which the vertices may be painted, one color to a vertex. There are many

graph properties which are described in terms of colors.

A labelling of G such that no two adjacent vertices have the same label is
called a coloring of G. If cV->A is a coloring and |A| = k, ¢ is a k-coloring, and
partitions V in to k classes. A graph G is k-colorable if there exist a k—coloring

for G. A graph G is k-co/ored if it is k—colorable and ¢ is a k—coloring defined on



it ie, it is appropriately labelled

In order to represent coloring or labelling, we must extend the definition of an
R-property. Recall that an R-property p = <f,S,a> had its origin in the ordered
triple <P.LE>. We must provide first an operator to assign a label or color to a
vertex This coloring operator Z will take two arguments, a vertex v and a color a.
Zya(G) will set c(x) to a, leaving the remainder of the graph unchanged More

formally, we ‘define the primitive operator sets:

and call any Pl.‘= a Pc-language. When a vertex is added to a graph, it must always

be labelled separately.

We must also provide Lc-languages in which labelled graphs may be specified
These languages have a "most-powerful” equivalent to Lo which we call L‘-. L‘. is
the language which precisely lists the vertices, edges and labels of a labelled graph.
We offer the following possible amendments to the L-grammars of 3.3:

e | -> labels are unique | labels are not unique

e | -> labels range from 1 to k
The first, appended to the languages LI and Lj, will yield the Lc-languages me and

hnuc *°" * ¢ '2-'6. Ths second appended to the languages L,and Ly, will yield

the L -languages L and L, for i « 12,~.6.
C IC Inc

Finally, 2 must be augmented to test colors, as well as vertices and edges.
We augment the original 2 grammars with the following:
I -> c(vertex) * c(vertex) | c(vertex) # ctvertex) |
-> 1 £ color £ k | color even | color odd
color >al|p|7]|_
The expression # will be interpreted semantically as "is different from" and the
expreséion T as "is identical to." By appending these forms to the Ianguageé E;

through Zg we produce the E.-languages E;. through Eec, respectively. We now

can formally define an Rc-property as the semantic interpretation of the triple



<f,S,0>, where f is a terminal Pc-expression, S is a terminal Lc-expression and o is

a terminal Zc-expression.

Each of the segments in the remainder of this section deals with a specific
R°-property. Either the property is for a labelled graph or its recursive formulation

appears to require a labelled graph to be correct and complete.
4.4.1. K-Colored Graphs

Our first example of an RS-property is k-colored. Several exampies of

3-colored graphs appear in Figure 4-21.

=< g

zr./ ®
\

B

Figure 4-21: Some 3-Colored Graphs

X

The R-property K-COLORED is
*
(Axy + ZmAz) (Uk) where x,y € V, cix) # cly)
z€V, 1s«csk

The seed is U, the uniquely colored edgeless graph on k different-colored vertices:

Uk = Zv1 1Zv22'"zvkkEk

Note that our "colors” are really integers between 1 and k, inclusive. Uk is in L 1y

Figure 4-22 shows the iterative steps in a sample run of K-COLORED for k = 4.
The floor for K-COLORED is <P_ L. T

’ >-
1¢" " 1nuc’1e

Clearly K-COLORED is correct the only edges it adds are between



-l_=-i‘9ura 4-22: 4-COLORED in Operation

different—colored vertices, and each vertex is assigned a color when it is added to

the graph.

The automatic inversion of an R-property raises an interesting question with
respect to the operator Zxa. Other than keeping a list of all previous values for
cix) (@ computationally appalling prospect)) we have no way of knowing what x's
label was prior to Zx“. Thus inversion will be severely limited uniless we can
assume that the label was )\, denoting irrelevant and/or unknown. We will therefore
utilize

1 2
Zxa - le

with the understanding that some properties may not be autornatically invertible.

The inverse K~COLORED ™' is computed from:
-1 _ -1
f - (AXV M ZZQAI)

-1 -1
Axv + (ZZ“AZ)

A-1 + A-l 2-1
Xy z 2

=D +DZ)‘
Xy 2"z
% e =xy €V, xy £ E c{x) # cly)
22V, 1sSsask
o =xy €V, xy € E, c{x) # cly)

distinct v,z € V, diz) = 0, clv) = cf2)

Note the post—profile statement that z's color is not unique. The floor shifts to
<P, L, I

>
2¢" 1nuc’®1e

Figure 4-23 shows K-COLORED ™' operating on a graph G € Gp and a graph G
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Figure 4-23: 2-COLORED" in Operation

* Gp for k = 2. On a correctly-labelled k-colored graph, the edges will be
removed one at at time and any degree zero, vertex of non-unique color deleted
until Uy is reached If any vertex in G is improperly colored, some edge will not be
removable. If G * Gp is colored With the wrong number of colors, there will be no
isomorphism -with U. Note that as for loop labelling, a correct graph incorrectly
labelled will fail. For example, a six-colored graph is also seven-colorable if n = 7,
but if it is submitted to 7-COLORED™ in six colors it will fail. K-COLORED"™ is
correct and K-COLORED is complete

4.4.2. K-Chromatic Graphs

A graph is said to be k-chromatic if it is k-colorable but not colorable in
fewer than k colors. (This is equivalent to saying that it is k-colorabie but not k-1
colorable.) If a graph is k-chromatic,. k is the smallest number of colors with which
it can be colored Several examples of labelled k-chromatic graphs appear in Figure

4-24 for k = 3. For clarity of presentation we define two new composite



Figure 4-24: Some 3-Chromatic Graphs

operators, S and X S is a double—subdivide operator; it replaces
XVWy v“s1 v s Xvwy

the edge between x and y wuth a chain of length three, ie.,
=D

A
Xvwy Xy XV VW wy

vawy is distinguishable from the regular subdivide operator vay by the arity of its

subscript X s vs is an exchange operator which introduces similarly—labeiled
1717

surrogate vertices .S58 for the vertices v v Ve respectively. X

27 1772 VS V.S,
replaces each edge between a v. and a v with three edges, one between s, and S

another between s, and v, and a third between v, and s; Xv Vs also appends

correctly—labelled vertices s..s,....s_t0 G

=D A A A Z Z Z A A LA
VySyV S, V.V, Vs. S$S. S c(v) s.clv)"Ts etv) s, s
171 ] |; iv] Tij 272 rr 1

whereD A A A occurs for each vv. € E
VV. S.V. V.S. S.S. i

The R~property K~CHROMATIC] is

(Zxan M Ayz + Atw 1Atw2'"Atw Auw Auwz"'Auwk_3

k=3 1
ﬂ")(v1s1 )(T)

wherex!V,1$a:$k,

ch(w)zqc(t)stpqu

y.z2 € V, cly) # clz)

distinct tuw, € V, p.q # V, tu € E, distinct cft).clul.ciw)

distinct v. € V, distinct s, # V, r 2 k-1
Figure 4-25 shows the iterative steps in a sample run of K-CHROMATIC for k = 4.
The seed is Tk, the complete graph on k vertices with each vertex a different color.
Clearly Tk‘ is k—-chromatic, for each pair of vertices is adjacent and must be a
different color. The floor for K-CHROMATIC is <P2c,L > There are four

1nuc’®2c
property-preserving choices for an iteration of K-CHROMATIC. The first two,
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Figure 4-25: 4-CHROMATIC in Operation

Zxan and Ayz add a properly-labelled vertex and a legal edge, respectively. |If we
had stopped here, with seed Tk we would know that we had forced k colors.
Consider, however, the wheel W L5 To color C5 alone requires three colors.
Since the hub is adjacent to every vertex on the rim, a fourth color is required, and

thus W, has chromatic number four. How would we reach W__ from T . The

1,5
third choice, a double subdivision of any edge with appropriate linkage is the

answer. This not—-so—obvious construction is displayed in Figure 4-26.

Figure 4-26: The Generation of W, 5

Unfortunately, this does not soive all our problems. Graph theorists have shown
that for any k > 0, there exist k—chromatic graphs containing no triangle (cycie of
length three). A famous example of such a graph for k = 4 is the Grotzsch graph,
shown in Figure 4-27. Certainly Tk is filled with triangles and we must provide
ways to obliterate them. The fourth choice is a surrogate procedure which enables
us to construct triangle—free graphs. The exchange selects a set of vertices {vi}

already in the graph and appends a set of similarly-labelled vertices {s}. Since {v}



Figure 4-27: The Grotzsch Graph

Is not necessarily all of V, it is possible to obliterate many, or even all, triangles. In
particular, the Grotzsch graph is constructabie from W, 5 by this technique, taking

the {vi} to be the rim vertices. (See Figure 4-28.)

| 2 |
Figure 4-28: Generating the Grotzsch Graph

Having explained the motivation for K-CHROMATIC, we now demonstrate that it
is correct |If any k-1 coloring were possible for ZgscA xG or A“G, it would have
been possible for G and thus the first two choices are correct The third choice
creates a chain of length three which alternates color§ c(t) and c(u) on its four
vertices. Since c(t) and c(u) are distinct from c(wy), the new graph will still be
k-colorabla If a k-1 coloring is possible after the third choice, it would have to

color t and u the same since tu is the only edge removed from G by this option,



but then we would need two additional colors for p and g, and k — 3 more colors
for the w's, for a total of k colors. Therefore G will be k-chromatic after the
third choice. Finally we examine the fourth choice. Since cis) = c(v) all the added
edges are legal. |If there were a k-1 coloring after the fourth choice, it wouid
have to color some v, and vy the same, for a previously existing v.v, € E Note,

1 172

however, that c(s ;) and cfs ) must still be distinct because s 155 is now in E and no
reduction in the number of colors needed is possible. Since there are r 2 k-1
distinct surrogate colors, this will not be possiblee We have, at length, shown

K-CHROMATIC to be correct

The inverse K-CHROMATIC™' is computed from:
f_1

(Zxan * Ayz *

At At ...At
WL, T uw T uw,

-1
«V S
rr

+
uwk_3zpc(w)zqc(t)stpm

Y134

Z AT+ AT+ A A LA A A A
X& X yz tw‘l th twk_3 uw1 uw2

We-3

' -1 -1
zpc(w)zqc(t)stpqu) M Xv 151

DZa* Dyz + unquDtp tUD D qusz

D D D D D D +
ka_s l.ka-4 '.J\IV,l th_s twk_4 tW1

DD .D Z XZ )\...Z XD D D A
S Semt S SR SN SR SE VS SV VY

x &V, 1sask

...VS

opfc
vz €V, yz £ E, cly) # cz)

distinct tuw. € V, pq & V, tu € E, distinct c(t),c(u),c(wi)
distinct v, € V, distinct s & V,r 2 k=1
] = distinct x,x' € V, dix) = 0, 1 £ « £ k, ¢lx) = cx)
y.2y.2 € V, y2,y'2 € E, cly) # c(2), cly) = cly),
clz) = cl2)
distinct p.Qtuw, € V, distinct c(t),c(u).c(wi);
ciw) = cip), cig) = cit), dip) = k=1, dig) =
tppqQqu € E, tu & E

distinct V.S, €V, c(v.l) = ctsi). sisj,sivj,visj € E, ";Vj € E,



civ) # civ)

The floor shifts to <P, L. T > Figure 4-29 shows K-CHROMATIC™'

1nuc’

operating on a graph G € Gp and a graph G # Gp for k = 2.

Figure 4-29: 2-CHROMATIC™' in Operation

If G = Gp because some edge has endpoints of the same color or because G has
the wrong number of colors, K-CHROMATIC™ " will not change those conditions and
the graph will fail. If G & Gp because a k-1 coloring is possible, G cannot reduce
to T, under K-CHROMATIC™' and G will fail It remains only to show that G € G 5

will reduce to Tk. Such a proof requires sv:':me background first

An el/ementary edge contraction is defined to be 'xny;: for x,y € V, xy € E A

graph G is contractib/le to a graph H if there exists a sequence of elementary



contractions transforming G into H. Hadwiger's Conjecture states that every
connected k—-chromatic graph is contractible to Kk.' Hadwiger's Conjecture has been
shown true for n < 4 and equivalent to the Four Color Theorem for n = 5, which
this author accepts as proven. Since the inverse of a double subdivision may be
seen as a sequence of two elementary edge contractions (ltpo and | D ) and

ugq ugQ
since the inverse of the surrogate exchange process Xv1 iy is a sequence of r
elementary edge contractions (IVS'D .s.), we assert that the completeness of
K-CHROMATIC is equivalent to theI |'cru't;'n of Hadwiger's conjecture which, thus far,
has held up since 1943. Thus K-CHROMATIC appears "reasonably complete,” ie.,

within our current knowledge of graph theory.

It is interesting to observe that an attempt to formulate k—CHROMATIC based
only on Hadwiger's Conjecture is doomed to failure, i.e, not any sequence of
elementary edge subdivisions (the opposite of contractions) will maintain the
chromatic number. Notably, SXWC 4 = Cs' but C, has chromatic number two and C5

has chromatic number three.

4.4.3. Graphs with Vertex Covering Number K

A graph G = <V,E> has vertex covering number k if there is a k—vertex cover
for it and no vertex cover of smaller cardinality exists. (This is equivalent to saying
that no vertex cover of cardinality k—1 exists for it) A graph with vertex covering
number k is k—-vertex—coverable, but not necessarily vice versa Several examples
of graphs with vertex covering number five appear in Figure 4-30. For a graph G
=<VE> G = <V'E> is a subgraph of Gif VV SV and E € E A subgraph G of a
graph G is a b/ock of G if every pair of edges in G lies on a common cycle and
there is no larger subgraph of G containing G' which is also a block. (In other
words, G is a maximal subgraph of G for which every pair of edges lie on a
common cycle) The blocks of G do not necessarily partition V; two blocks share
at most one vertex. The blocks of G do partition E, however, and the partition is
finer than that imposed by connected components. Two blocks have at most one

vertex in common; such a shared vertex is called a cutpoint. Cutpoints between



Figure 4-30: Some Graphs with Vertex Covering Number 5

blocks of more than one edge can always be covering vertices in a minimal vertex
cover. Every block, except Ky, is biconnected The vertex covering number of a
graph is the sum of the vertex covering numbers of its connected components.
That is, if G has r components with vertex covering numbers c,c,,...,c;, the vertex

covering number of G is E[sxs: C;

Our approach will be to construct a graph each of whose connected
components is a different color. Withir] a given component every vertex will be
the same color. Within each component is a skeleton subgraph, consisting of the
largest cycle in each block. (If the block is a single edge, that edge lies in the
skeleton.) The skeleton determines the size k of the minimal vertex cover. Thus
there are two kinds of operations within the RC*-propert_y we will describe:
operations g which enlarge k by expanding the skeleton, and operations h which
leave the value of k unchanged Because each iteration of an R*-property is
supposed to increment k by one, the R°*-property VERTEX-COVER is of the form
ho):

Clvex)*xvy * “ze(w)®wz '+“Anql*[zt1c{r1lzslc{r1){As13 * At t }Bs 1 B s

1 11 11 1

* ztzc{r 2}Zschr 2!Aszs,z_asztzsr 252 * zbcmzdchbbsabde

1

* 2gc<f>?he<f,Ag*hiPghPig * Zjc(i,Aid%i * \ A\ A v 0D

where xy <V, v 2 V, Xy xx,yy s E, cx) = c(y)



wo6eV 2*V, wveeE

p.g sV, |[{pp.aq} n E | = 1, c(p) = o>

r s V, distinct s;t; * V, r* s E

r, e V, distinct s,,to * V, roro * E

distinct a,e e V, distinct b,d £ V, ae,aaee e E

f 6 V, distinct gh * Vv, ff « E

ieV,j*V, |V] =1, |[E|] =0

distinct u,ii;,uz « V, u~u ~u "6 E, |V|] =3, |[E|] =2
The seed is the uniquely colored complete graph T, The floor for VERTEX-COVER
is <P2cticu/~5c™*  F'9U'® 4.31 shows the iterative steps in a sample run of

VERTEX-COVER (All of the labels are identical and omitted)

A
o o060

Figure 4-31: VERTEX-COVER in Operation

VERTEX-COVER is of the form (h*g)*, where h has three options and g has seven.
The looped vertices are the covering vertices throughout the execution of the
algorithm.  The uniform coloring of each component is maintained Each of the
three h options for iteration safely expands the graph, adding a covered edge and

not adding vertices which could permit a smaller cover by their participation. The



subdivision of an edge (xy) between two covering vertices will resuit in two new,
covered edges (xv and vy), and a new vertex which, to reduce the covering number,
would have to replace x and y, an impossibility. A branch from a covering vertex
(w) results in a covered edge and a new vertex (z) which cannot possibly reduce the
vertex covering number. An edge addition (Ap q) with at least one covering endpoint
is covered and cannot change the vertex covering number. Those options do not
increment k and any number of them may appear in a single iteration of
VERTEX-COVER. These are followed by the seaven options which will increment
k. The first two options add chains of length two to a looped vertex (r1). The first
(s,) or second (t,) added vertex becomes a covering vertex. The third option adds
a chain of length two to a non-iooped vertex (rz). The first added vertex (sz)
becomes a covering vertex. The fourth option double subdivides an edge between
two looped vertices (a and el The first added vertex (b) becomes a covering
vertex. The next option adds a triangle with one new looped vertex (g), appending
it to a looped vertex (f. The last two options are applicable only once. One of
them produces an appropriately looped and labelled Kz; the other moves from a
correctly looped and labelled chain on three vertices to a correctly looped and
labelled cycle on three vertices. Every edge introduced by (h’g)* is covered. No
vertex introduced by h could make a vertex cover smaller by its inclusion, and the

increment to k is carefully controlled by g Thus VERTEX-COVER is correct

The inverse VERTEX-COVER™' is computed by:
T = ([Z cSwy * ZacwBwz * Aod F2¢ o 2 (A

veix) xvy ze(w) wz t1c(r1) s1c(r1) $,s,

A . B B + Z Z A B
t1t1 s1t1 P tzc(rz) szc(rz) S5, szt2 foSo
Zbc(a)zdc(a)Abbsabdo * Agc(f)Ahc(f)AggAthgthg *

Z AB +A A D

jeti) jjij Uguy ugug

1
[zt‘c(r1)zs1c(r1)(Asts * At t )Bs t Br s, M

1 11 1" 1
Z 4
t.zc(rz) szc(rz) $555 szt2 L

2y c@Zdc@Pobomde T AgettPhet®agPhiBanBig *

Z AB +A A 1YWz .S +z B

+
jeli) i ij Uguyugug ve(x) ™ xvy zeiw) wz

* =1
ADCI] )



pre

(z b4 (A +A B . B +
t1c(r1) sTC(r1) $,8, t1t1 s1t1 48

zt cir )Zs cflr )As s Bs t Br s *
2720 727720 C272 T22 272

Zbc(a)zdc(a)Abbsabde * Agc(f)Ahc(f)AggAthgth

AB +A A 1Mz .s +2

jeli) jj i u,u, u1u3 vel(x)  xvy
-1.e
pq] )
[Ds D D D {») + D‘

1 TS Y Sy sy, 14

DszorzszotzosztzoszszzsZXZIZX *

BP:PuePodPan aePuoZarZor *

d b de
DgD DD D D Z + D.D..D..Z.)\ +

fg h gh hf gg hlzgk P
b, D, JADDDZ, +DD Z,

UjugTu,u, Xy VY Xv X Vv

xy €V, veyV xyxxyy € E cix) = cly

)Zs1lzt1)\ *

wevV z&V wwEeEE

+
g
B

zciw) - wz

+D
ole}

distinct p.qr € V, pqrr € E |{pp.gq} NE | 2 1,

cip) = clq), not[pp.pr # E. qq.qr & E]
r,eV distncts .t #V, rr, & E
r, € V, distinct s,t, # V, rr, & E
distinct a,e € V, distinct b.d # V, ae.aa,ee € E
fev, distinct gh g V, ff e E
ieV,jgV, |V =1 |E| =0
distinct u,.uu; € V, uuuuuu; € E V|
|E| =2
distinct t.ux,v.y € V, txuy,xxyy,xv,vy € E,
v, tt uu,xy & E, dlv) = 2,
cix) = cly) = clv) = cft) = ciu)
distinct s'w,z € V, swww,wz € E, s's',zz & E,
diz) = 1, ciw) = clz) = clis)
distinct a,b'.p.q € V, ap,b'qpqg € E
aabb # E |{pp.gq} N E| 2 1,
clp) = clg) = cfa) = clb),

there exists a cycle containing pq

=3

]e

distinct r1,s1,t1 eV, rr r1s1,s1s1,s1'c1 € E, tt, E.

1" 1/

+

180



10 |

s,y =2, diy/ = 1. dr) = c(s, = dty)

S_,tr1t1t'.[ s E_ sis: & E.

distinct .+, s.t, sV, r,r isi

risr
ds, = 2.d(t,)» 1 dr* = cis,) = dt,)

1>

distinct FySut, S5V, Lytorors E, stz.rer£3: € E
d<sy) = 2. d(tp) = 1, c(ry) ='dsy) = dXy)

distinct a,b,d.e « V, aa,bb,ee.ab,bd,de s E, dd.ae * E,
d(b) = 2. d(d) = 2, da) = c(b) = c<d) = de>

distinct f,g,h s v, ff,gg,fg,gh,fh s E, hh ss E. d(g) = 2,
d<h) = 2, c(f) = dg) = dh)

distinct ij s V, ij.jj s E, ii * E. d(j) = 1, |V| =2,
|[El = 1, di) = dj)

distinct uruz.us e V, ug“p2'7%i2'Y13'%23 ° & Y33 * B

[V * 3. |E|] = 3, du,) = duy) = c(ug)

The floor shifts to <P_ X. JL >e Figure 4-32 shows VERTEX-COVER"!
Zc leu oc

operating on a graph G « Gp and a graph G * Gp. VERTEX-COVER"!' deletes as
many edges as possible which -do not destroy the underlying skeletal graph. It
accomplishes' this by testing for other "justifying" (primed) adjacenciés Which would
argue for retaining the covering status of a vertex and the connectedness of a
block. Then VERTEX-COVER~' will contract the underlying skeletal graph. On G e
Ge VERTEX-COVER"! will return G to K, decrementing k aé it goes. If the cover
to be tested is not of size k, k will not be zero on termination and G will fail. If
the cover of the input graph is not minimal some looped vertices will not be
deleted and G will fail. If the cover of the input graph is incorrectly indicated,
some edge will lie between two unlooped vertices and never be deleted causing

failure Thus VERTEX-COVER""' is correct and VERTEX-COVER is complete.

This algorithm is an interesting construction The skeleton could have served as
a seed set for an R-property K-VERTEX-COVER instead Such an elaborate seed

set would require L* and has interesting connotations, to be discussed in 4.7.



Figure 4-32 VERTEX-COVER™' in Operation

4.4.4. Graphs with Independence Number K

The cardinality of the largest independent vertex set in a graph is its
independence number. Several examples of graphs with independence number 3

appear in Figure 4-33.
o - *—o
® O

- Figure 4-33: Some Graphs with Independence Number 3

The RS-property INDEPENDENCE-K is:
2, o ~Z, ¢ Z.aPu A, A AJILE)

v, & n x& xyi XZ1 P

11
where x € V, y .2 € V, 2 is in the ith independent set,



p = number of label-indicated sets, xa are correctly constructed
labels

Figure 4-34 shows the iterative steps in a sample run of INDEPENDENCE-K for k =
3.
e o o o )
1 2

3 4

Figure 4-34: INDEPENDENCE-3 in Operation

The floor for graphs with independence number k is <P1C,L1nc,)36c>. The elaborate
labels are the key to the success of this aigorithm. Initially, we have a maximal
independent locped set of k verticess On the first iteration we add a vertex x,
creating the potential for k new sets of k independent vertices and one set of k+1
independent vertices. To prevent the formation of k+1 independent vertices we
deliberately attach x to one of the looped vertices y. Now there are two
independent sets of size k, V - {y} and V - {x}. We label x and relabel each v,
in V to reflect the "names” of these two sets and the v's
membership/non-membership in each of these two sets. (Such a label is probably a
numerical encoding and need not be elaborated upon here. We may "iriterpret" the
loop numerically to make it consistent with the notation for subsequent iterations.)
On any subsequent iteration the number and names of each extant set of k
independent vertices may be deciphered from the label of any vertex. We carefully

attach the new vertex x to one vertex (z) in every such set, and then to as many
more vertices (yi) as we choose. The loops refer to the original (but not
necessarily the only) set of k-independent vertices. There may be up to (k'l]) new
independent sets of k vertices formed by this iteration; x and all of V must be

relabelled accordingly. INDEPENDENCE-K is correct

The inverse INDEPENDENCE-K™' is computed by:
£ =@2Z .2 _Z A"A _.A_A)"
Vna xXZ X

1% n X& XY X2,

-



184

-1=1 A-=1 * =lo=1y-1 -1
Axsz "'sz (Axy_Axy.) Zvazv « "'Zv «
p 1 i i nn 171

DD .D A®° ZAZ )\.Z N
X X2z X2 Xy. V v v
o] 1 i n 1

0re = x gV, vz € V, z is in the ith independent set,
p = number of label—indicated sets, «.x are correctly
constructed labels

o ! = xy,z € V, xx & E, z is in the ith independent set,

p = number of label-indicated sets. x.x correctly

constructed labels, cix) indicates Y, is not independent
of x
The floor shifts to <P2c,L 1l_m,26c>. Here is an example of an automated inverse
computation on which we must improve. In particular, the labeis for V must be
recalculated to reflect the remaining independent sets of size k. so that
f'=Dp .D_ ALZ, g2, g
P 1 i TaFa TP
This is permissible, we argue, because the next correct label is computable from the
encoding. * Figure 4-35 shows INDEPENDENCE-K ™' operating on a graph G € Gp
and a graph G # Gp fork =4 OnG e Gp, the label maintenance and the fact that
~ xx may not be in E insures a return to the original seed On G Gp, there must be
k loops, or G will fail. Given G # Gp with k loops, either some set of vertices
labelled independent is not (making some edge unremovabie) or some set of more
than k vertices is independent (making some vertex unremovable because the
appropriate z's cannot be found). In either case G will fail Thus
INDEPENDENCE-K ™' is correct and INDEPENDENCE-K is complete.

4.4.5. Graphs with Labelled Edges

In the development of R°-properties, we specified that the labels or colors be

applied to the vertices. If we apply labeis to the edges instead (using the operator

ny «t© color edge xy with &), we will call the properties R‘-proberties. We
immediately extend all the definitions and terminology of vertex labelling to edge

labelling, producing the languages Pie, Lie, Lm, Li“, Lirm and Eie, corresponding to

P,L.,L ,L ,L_ _ and I , respectively. The only difference between vertex
Ic Ic nc Jc inuc IC



i

e
@

6\ Gi '3 o

Figure 4-35: INDEPENDENCE-4"' in Operation
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coloring and edge coloring is that no equivalent of loop labelling vertices is available
for edges. Edge labelling facilitates the construction of graphs with properties thus

far inaccessible.

4.4.6. Graphs with Circumference K

The circumference of a graph is the length of any longest cycle it contains.

Several examples of graphs with circumference k = 5 appear in Figure 4-36.
Although labels are not required for the definition of circumference, they do
facilitate the construction of graphs with circumference k. We will denote the biock

partitioning of E by coloring the edges uniformiy within a biock.

Figure 4-37 shows a graph with four blocks. Any cycle in a graph is totally
contained within a single block. We will construct graphs with circumference k
using the R®-property CIRCUMFERENCE-K:

Z A +A +2Z B +2Z o .Z o Z Y )*(C':)

xyf” "xy 2 pax  pq v1v2a Voo Y& VL& Yy

where x,y,x,y' € V, xx',yy' € E, c{xx) = clyy) = B
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Figure 4-36: Some Graphs with Circumference 5
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Figure 4*37: A Graph and its Blocks
psV,qg”V, ais a new color
Vi SV, Vo,...,v;y * V, <x is a new color, r £ k
The expression "a is a new color” is an abbreviation for "ctt® # a, c(t,) # a,...c(t) *
<>ttt} = VU The seed CN is the cycle Cy with all its" edges colored one.
Figure 4-38 shows the iterative steps in a sample run of CIRCUMFERENCE-K for k
= 6. The floor for CIRCUMFERENCE-K is <P;ALQ"ZJ"- ‘

We will prove the correctness of CIRCUMFERENCE-K as we explain its



Figure 4-38: CIRCUMFERENCE-6 in Operation

workings. There are four options for growth. First, an edge (xy) may be drawn
between any two vertices in the same block and colored the color of their common
block. Such an edge can introduce smaller cycles than those aiready present in the
block, but not larger ones. The second option is to begin a new connected
component by the addition of an isolated vertex to the graph. (Note that no color
is associated with such a vertex at this time) The next option is to branch from
any vertex (p) in the graph to a new vertex (q), beginning a new block and coloring
the new edge unlike any currently in the graph. The final option is to add a small
enough cycle (r < k) to the graph, attaching it at v, and coloring it unlike any other
block currently in the graph. Since each of these options maintains the

ciccumference at k, we have shown CIRCUMFERENCE-K to be correct

The inverse CIRCUMFERENCE-K™' is computed by:

-1 -
f = (nyBAxy + Az + qu“qu +

z z z vy

vV,
v1v2<: vr_1vr¢ vrv1¢ 1vr

_ -1 -1 -1
= (nypry) + Az + (quaqu) +



V4 z z vy )

v, v, & v vV V. V.Y
172 r-1°r r2 1"7r

= nyzxyk * Dz * DquqquX * Z'V1o--VrZVrV1XZVr_1VrX"ZV1V2)\

ore = xy.x,y €V, xx,yy € E, xy € E, cixx) = clyy) =
z gV
peV gV, «is a new color
v, € V, VoV, & V, « is a new color, r < k
ot = xyx,y € V, xy,xx,yy' € E, cixx) = clyy’) = cixy), X' # vy,

y # x, there exist two edge—disjoint paths from x to
y without edge xy,

zeV,dz =0

pQ€eV, pgeE dg = 1, clpg = « « is a unique color

v, €V, v, v ..V _,vVvv €E
|{rs|rs & V.rs € E cirs) = clv v )}| =,
there exists another cycle of at lea#t size r

The floor shifts to <P, Lo I, >  Figure 4-39 shows CIRCUMFERENCE-K

operating on a graph G € Gp and a graph G # Gp for k = 3.
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Figure 4-39: CIRCUMFERENCE-3"' in Operation

The input for the inverse may be edge colored according block in time Oin.. Then



CIRCUMFERENCE-K ™! deletes isolated vertices (2), small enough cycles attached only
at one vertex (v1), and blocks containing a single edge (pg). It removes edges (xy)
internal to a cycle. Thus a graph from Gp will be returned to C’; where the color <x
is not relevant to the isomorphism testing. A graph G * Gp with overly-small
cycles will be reduced to <+4> and fail, while a graph with an overly-large cycle
will retain it and fail. Thus CIRCUMFERENCEH<~' is correct and CIRCUMFERENCE-K

is complete

4.4.7. Graphs with Edge Covering Number K

For a graph G ~ <V,E> an edge subset E S E is an edge cover if every vertex
in V lies on at least one edge in E. If E is an edge cover for G, \E\ = k and
there is no edge cover for G of smaller cardinality, then G is said to have edge
covering number k. Several examples of graphs with edge covering number k = 4

appear in Figure 4-40.
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Figure 4*40: Some Graphs with Edge Covering Number 4

Interestingly, the edge covering number of G is bounded by the nature of the
minimal spanning tree for G It is this fact which motivates our approach. If G were
connected the maximum value of n for edge covering number k would be n = 2k,v
where G would be a chain on 2k vertices, and the minimum value would be n =
k+1, as in the star W|.fc. Since the edge covering number of a graph is the sum
of the edge covering numbers of its connected components, for fixed k the seed

graphs must represent distinct, additive, non-zero sums of k. For example, if k = 3,



we can write k = 3, k = 1 + 2 or k = 1"+ 1 + 1. The seeds will be based on
the sum, substituting disjoint chains or stars for the intégers. We color each seed
edge to denote both its connected component and whether it is covering or
non—-covering A color is restricted to a single component  Within the pth
component two colors appear: even (2p) for covering edges, and odd (2p - 1) for
non—-covering edges. All edges in a star seed are labelled covering Edges in a
chain seed are -alternately labelled covering and noncovering, beginning and ending
with the covering color. The set of such appropriately colored seed graphs we wiill

denote as Sk. Figure 4-41 shows the four labeiled seed graphs in S3.

21{2 3‘2t1‘2‘__1_’_2_'

e 00 00 :
‘i" o0 ._2"" 1+1+1

Figure 4-41: The Seed Graphs for Edge Cover 4

Now we can state the R®~property K-EDGE-COVER as:
Z A F +2Z

*
xye(xt)=1""xy xyu vweivt =12 1S) where

distinct x,tu € V, y # V, xtxu € E, cixt) = c(xu) is even
vw.tu € V, vtwu € E, civt) = ciwu) even,
not [r € V, rv, rw, € E, cirv) = cirw) even]
Figure 4-42 shows the iterative steps in a sample run of K-EDGE-COVER for k =
6. The floor for K-EDGE-COVER is <P, Lo L >  The first option for
K-EDGE-COVER fragments a vertex x (on at least two covering edges xt and xu)
into two adjacent vertices x and y. The new edge xy is not covering  This

operation will be applicable k times to a star on k+1 vertices. The operation



Figure 4-42: 6-EDGE-COVER in Operation

ultimately expands a star on k+1 vertices into a tree on 2k+1 vertices, with
alternatingiy labelled edges containing at least one vertex of degree three Such a
tree will have covering number k. The second option adds an edge between any two
vertices of a component which is as treelike as it can get, ie, there are no more
fragmentable vertices under the first option. No edge will be able to reduce the

edge covering number at that point Thus K-EDGE-COVER is correct

The inverse K-EDGE-COVER~" is computed by:

f - (zxyc(xt)-lenyyu * szc(vt)—lAvwI
- -1 -
- (zxyc(xt)-lenyyu) * |Iszc(vt)—l"ﬂ‘vwl
=1 b Z ,+D Z >
Xy~ Xy xXyA VW VWA
e s distinct x,tu « V, y 0V, xtxu e E, c(xt) = c(xu) is even

v,w,tu 6 V, vttwu s £ vw 0 E, c(vt) = c(wu) even,
_ not [r e V, rv,rw e E, c(rv) = c(rw) even]
2 « distinct x,y,t,u e V, xyxtyyu e E, cxy) odd,
c(xt) = c(yu) even, c(xt) = c(xy) + 1, c(xt) = c(yu),



| {rs|rs & E, cis2) = cixy)} | < |{rs|rs € E,
cirs) = cixy) + 1}], |V| = |E] + 1
vw € V, vw € E, clvw) odd,

|{rs|rs € E. cirs) = ctvw)} | 2 |{rs|rs € E.

cirs) = clvw) + 1},

not{r € V, rvrw € E, cirv) = cirw) even]
The floor remains constant Figure 4-43 shows K-EDGE-COVER ™' operating on a
graph G € Gp‘ and a graph G & G, for k = 3.

2
Figure 4-43: 3-EDGE-COVER™' in Operation

The generation process for K-EDGE-COVER really has two stages: the construction
of a spanning tree and the addition of extraneous edges. During the construction
of a spanning tree from a star, there MH always be more even (covering) edges
than odd edges. The inverse exploits this two stage process. For G € G o Ay edge
cover spans (touches all) the vertices of G. If the edge cover is connected, such a
spanning tree will be contractible into the star or the chain on 'n/2' vertices. If
the edge cover is disconnected, it will be contractibie into one of the k sum images.

For G £ G o either the number of covering edges is incorrect (and the graph will



uitimately fail) or the indicated edges do not cover the graph. If there is a smaller
covering, some uncovered edge will form a cycle and be unremovabie. |If the
covering is inz:.xdequate. there will be some chain ending in an uncovered vertex
which will not be removed. In either case the graph will fail Thus

K-EDGE-COVER™' is correct and K-EDGE-COVER is complete.

4.4.8. Graphs with a k-Factor

A k-factor of a graph G = <V,E> is a regular subgraph of degree k (>0) which
spans V and is not totally disconnected Several exampies of graphs and their

3-factors appear in Figure 4-44.

Figure 4-44: Some Graphs with 3-Factors

The factor edges appear darkened in the figure. The R®-property K-FACTOR has

separate options for k even and k odd, using the composite operators EMxv v’

1"k
OM"W‘H""’kHWr""’k-{ CM"r""k and Fernvk defined in 3.7.20 for appending even
and odd degree vertices without changing the degree of any previously—existing
vertex. The R®-property K-FACTOR is

(Zx an M EMss M OMvwv v W, ..W + C™M *
Vi y 1S Ve W1 W o Uyl

*
Ay Dy My L, D * PR, LK)

where x,y € V, xy € E



distinct s;s,_,sx SV.sAV, S,j-i52j & B 55 j.182j) # =
j = 1,2,...ki2; k even

distinct vAv.”v, . s V, distinct w.,Wa,..w. . sV, distinct vw £ V,
Vai1Vaiaj.aWai & B SWaLqVy) B & ctwyqwop ¢
i = 1.2,..,(k+1)/2; j = 12..(k-1)/2; k odd

distinct u1,U2,.-,uk & V

distinct p,g e V, distinct y,y,'-'Vk+1 * V, pq e E. c(pq) # a

distinct xAx~x"Zj s V, distinct z,,z3,...,zx * V, ZjX.Ie E, i = 12~k;

C(lei) # a

Figure 4-45 shows the iterative steps in a sample run of K-FACTOR for k = 4.

Figure 4-45: 4-FACTOR in Operation

Throughout its execution, K-FACTOR distinguishes the edges in the factor (unlabelled)
from the edges not in the factor (labelled a) The floor for graphs with a k-factor
Is <P23] W5‘L4e>'

K-FACTOR has six options. The first adds a non-factor edge (xy). The
second applicable only for even k, alters the k-factor correctly, appending a single
new vertex (s) without changing the previously-existing degrees of any of the
vertices. All the new edges are uniabelled and appear in the factor. The third,
applicable only for odd k, alters the k-factor correctly by appending two new

vertices (w and v) without changing the previously-existing degrees of any of the



vertices. Again, all the new edges appear in the factor. The fourth option adds a
set of k+1 vertices (u 1,...,uk) simuitaneously to the k-factor, with a complete
subgraph on them. The fifth option adds k+1 vertices to the k—factor, replacing a
previously—existing edge with 1 + (k+1)k/2 edges. The sixth option adds k-1
vertices to the k—factor, replacing a previously—existing vertex with a copy of Kk.
each of whose vertices maintains one of the old vertex's previous adjacencies.

Clearly K-FACTOR is correct

The inverse K-FACTOR™' is computed by:
T =(Z_ A _+EM + OM + CM

Xy Xy ss 1...Sk vwv 1...Vk+ 1W 1...Wk_ 1 [¥] 1...le

+A A D CM D +FR )1
Yzq Y.'P Y1Y2 Y1---Yk+1 Pq 21...zk

(Zx GAX )-1 * EMS.S1 S * OM\‘I’V:IV \J w w *
ye xy 175 1Yk 1V 1 Wk=1

cM™! +A A D CM D +Ffr”'
Uyl y2q y1p y1y2 Y Yiw 1] 22y

+eM' +om s oMm]
$S Sy 1Vk+ 1Y 1" Wk =1 Uyl

+A M7 A D D _+F’]
Pa YVy=Yeer Yi¥2 V4P Y49 e

Tore =xy€V xy £E

CE nyzxyl

distinct s 1+SprmS, € V,s &YV, S5._1S5; € E.
2j=172]j

ClSyj-1Sg) * & | = 1.2.k+1V/2; | = 1.2...k=1)/2:

k odd, dis) = k, i = 1.2,..k

distinct Vv € V, distinct w..w eV,

2 Wik=1
€ E,

2 Vi+ 1
distinct vw £ V, Voi-1VarWaj- 1 Wy
2i-1V2) * % CWy_ Wo) # <,

i = 1,2..k+1)/2; j = 1,2,..k=1/2; k odd; div) = k,
i = 12.k+1; dw) =k, i = 1.2,.k=1

clv

distinct u gl # \Y

distinct p,.q € V, distinct YqYs
dip) = k, dlg) =

distinct x X g X 2, € V, distinct 2 g BgmnZy & Vv,

z,x € E i= 12..k d(z,) =k

"“'yk.,." ‘ V' pq € E:

o = xy € V, xy € E, clxy) =



186

- <
distinct s,s,.s,,..5, € V, $yj-152; € E. c(szl 1sz) * «,

j = 1.2..k/2; k even, dis) =

distinct v,v,,v....V € V, distinct w.w_,w_,..W eV,

17727 Tk 1 12 k=1
VWV ww, € E, Voic1VairWai-1Wy; £ E
vy, _ Vol * & c(w 2) # «, k odd, dlv) =
d(w) k, div) =k, d(w) =k, i = 12..k+1)/2;

j = 1.2..k=1/2;
distinct U, Uy u € V,
[{pu, | P & VI| = [{uy]| uy, € E}| = kk=1)/2
distinct P.QY YoV yq € V, pq &V, VY € E, dly) =
i= 1,2.k+1, j = 12..k+1 except Y,V
y,P. v, €E
distinct x.z. € V, x2z € E dix) =k dlz) =k i = 12.k
x,z & E. j=23.k z_€E rs=12.k
J rs
The floor shifts to <P2',Lm‘,23’>. Figure 4-46 shows K-FACTOR™' operating on a
graph G e Gp and a graph G # Gp for k = 2 In the figure the uniabelled factor
edges are darkened. On a graph with a correctly (un)labelled k-factor, K-FACTOR™'

will remove the irrelevant edges, contract connected components to K (assuming

k+1
the completeness of EVEN-REGULAR and ODD-REGULAR), and remove all but one

K+ 1
irrelevant edges and then discover that some vertex of degree not equal to k is

of the K _.'s, untii G succeeds. On a graph G # Gp, K=-FACTOR™' will remove the

irremovable, warranting failure. Thus K-FACTOR™' is correct and K-FACTOR is

complete.

4.4.9. K-Factorable Graphs

Let G, = <V E,> and G, = <V,.E,> be two graphs. The union of G, and G,
is @ new graph G = <V,E> where V =V, U V,and E=E, U Ez' If a graph G is
the union of a finite set of k-—factors, we say that G is k-factorab/e. Several
examples of 2-factorable graphs. appear in Figure 4-47. Note that the degree of

every vertex in a k—factorable graph is a muitiple of k.
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Figure 4-46: 2-FACTOR™' in Operation
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Figure 4-47: Some 2-Factorable Graphs
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X PXPH X 2= 1 2Pt X% Xnks2= 1%z S0 =T
where x. € V, |{x}| = n, every x &€ V appears exactly k times in {x},

£E j= 12.nk/d

wr1 )

X2j-1%2;
f is appiied according to EVEN-REGULAR, k even, same vertices
restriction
g is applied according to ODD-REGULAR, k odd, same vertices
restriction
Throughout its execution, K~-FACTORABLE distinguishes each factor by a unique edge
label. Figure 4-48 shows the iterative steps in a sample run of K-FACTORABLE for
k = 3. In the figure the edges of one factor appear darkened. The floor for
k-factorable graphs is <P2°,L1ne,228>. In an attempt to make this algorithm readable,
we have abbreviated it somewhat The first operator adds an entire new k-factor
to the graph and appears exactly once on each iteration. Recall that p is the
register value representing the number of k-factors composing G The second
operator, f, denotes an application of EVEN-REGULAR in which the ith factor is
expanded to ‘ cov;ar (1 or k+1 or k=1) more vertices and the new edges are
appropriately labelled for their factor. The selector is ihtended to indicate that the

same vertices must be added to each factor under rli"= 11‘i by each application of

f. The third operator, gi, denotes an application of ODD-REGULAR in which the ith
factor is expanded to cover (2 or k+1 or k-1) more vertices and the new edges
are appropriately labelled for their factor. The seiector is intended to indicate that
the same vertices must be added to each factor under nf; 1gi by each application of
g Within any. iteration each of these last two operators may be applied any number

of times without changing the number (p) of k factors. K-FACTOR is correct

The inverse K-FACTORABLE™ ' is computed by:

£ =2 -2, C oriA A §
1%2P nk/2-1%nk/2° 1*2 *nk/2-1%nk/2

o, H°m", gh" "

1 h=lenl ci=le
Mapl@) VY T2, o tPx o x o0+

A A )~ !

*1X2 *nk/2-1%nk/2
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Figure 4-48: 3-FACTORABLE in Operation

- ! =Nhiem1 - 1ihe
= m_ (g hem_ (F" "D,

..D
nk/2-1%nk/2  X1%2

Z l
Xs2=1%nki2t X150
=x €V, |{x5}| = n, every x € V appears exactly k

times in {x}, Xgj-1%2; & E j= 12..nk/4

f is applied according to EVEN-REGULAR, k even,

same vertices restriction
g is applied according to ODD-REGULAR, k odd,

same vertices restriction

=x €V, |{x}| =n every x &V

(B2
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appeafs exactly k times in {x}, *21,_1X2i e E,
c(X,. Xn.) =p, i = 1,2,~nk/4
f~' is applied according to EVEN-REGULAR™, k even,
same vertices restriction
g"! is applied according to ODD-REGULAR", k odd,
same vertices restriction
We are presuming that f~' and g~' are relabelling the restored edges correctly.
The floor shifts to “P,.'"ine/A5e™ Rgure 449 shows$ W FACTORABLE™ operating
on a graph G s Gp and a graph G 2 Gp for k = 2.

TBU! B

FALSE

3

1 | 2
Figure 4-49: 2-FACTORABLE"! in Operation

On each iteration K-FACTORABLE”' removes an entire, correctly labelled k-factor
and deletes as many correctly attached vertices as possible from the graph
(assuming the completeness of EVEN-REGULAR and ODD-REGULAR). If no k-factor

can be found, G * G and will falil. K-FACTORABLE" is correct and
P
K-FACTORABLE is complete



4.5. Subsumption

Having demonstrated our ability to describe most graph properties in some
extension of our original recursive format, we discuss in this section one merit of

such a representation: subsumption.

Given two recursively-formulated properties (in the same R-language,

R+—Ianguage, R°~language or R°®-language) P, = <f1,51,a1> and P, = <f2,Sz,o >, we

2
say that property P, subsumes property P, if every graph with property P, also
has property p . If P, subsumes Py Py is a special case of P, In addition, if
property p, subsumes property P, and property P, subsumes property P, then P,
and p, are equivalent properties. The recursive formulation makes a test for
subsumption quite simple. p, subsumes P, if and only if:

° f2 is subsumed by f1

e p; (S} is TRUE for every S & S,

® o, is subsumed by o,

2
Thus we need only specify how operators and selectors subsume each other. We

first define selector subsumption. Lst g,

sets V1 and V2 with respect to a graph G We say that selector o

and 9, be selectors which select vertex
; Subsumes
selector o, if and only if there exists a mapping ¢:V2->V , such that
® ¢ is a function (ie.. ¢(v) is unique for each v & V)
e ¢ is one—to-one (ie., ¢lv) = ¢(v) if and only if v = V)
e ¢ preserves the following relationships:
seV
s gV
s vertex color

s edge color

e a vertex v selected by o, will always be accepted as ¢(v) by o,

We can be certain that o, will accept v as ¢lv) if and only if the description

of ¢lv) in o, is consistent with and no more restrictive than the description of v in

1
P The following is a list of such relationships, where "expr” denotes the degree



of a vertex or the cardinality of a set

e "description 1 on V" is less restrictive than "description 1 and
description 2 on v." For example, "v e V" is less restrictive than "v s
V, vw e E" The first permits v to be isolated, the second does not

* "expr < k" is less restrictive than "expr < kz" if k1 > kz_

o "expr £ k™ is less restrictive than "expr < k2" if k1 > k—}.'

* "expr > k.j" is less restrictive than "expr > k" if k; < ka.

e "expr £ kM is less restrictive than "expr = kz" if k1 < kZ'

o "expr M K" is less restrictive than "expr < K"

e "expr < k" is less restrictive than "expr = K-

o "expr £ K" is less restrictive than "expr > K"

o "expr £ k" is less restrictive than "expr = k"

* "d(v) = max" is consistent with "d(v) rel k" only if rel is = and k is max
or rel is £ > £ < when k £ max, k < max, k £ max, k > max,
respectively _

» "d> < max" is consistent with "d(v) = k" only if k < max.

e 'd(v) < max" is consistent with "d(v) > k" only if there exists an integer
i such that k < i < max

e "d(v) < max" is consistent with "dv> £ k" only if k £ max.

We offer the following example of selector subsumption:
0 Xy 6V, xy*E dx £ 2
a; XysV,xy*E dy) > 2, dx =1

0; subsumes o-zunder the mapping <6 = y and <t>(y) = X

We postulate the following conditions for operator subsumption:
Condition 1

f subsumes f.
Condition 2 -

f + g subsumes f. Clearly f is a special case of "f or g.".

20;
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Condition 3

f* subsumes f*. We may choose to iterate k times, and f* is a special case
of f*

Condition 4

f* subsumes N. We may also choose to iterate f no times, and the null

primitive N is a special case of f*

These operator subsumption conditions may be combined in fairly lengthy
reasoning procedures. For example, if f1 = (f + g*)(f2 + g) we can rewrite f1 as
f, - £+ fg + g~* + gy

Then we can show that f1 subsumes, among others, each of the following.

We are now ready to demonstrate the hierarchical concepts inherent in our
representation of graph theory. We offer a simple example. "Every chain is a tree"’
We "prove" this by examining the R-properties p; (TREE):

B* (K.) where x s Vx y « V
Xy
and p, (CHAIN):

B* (K|) where x « V, y «V, dXx) = 1

Xy @

B  subsumes itself. p*(K.) returns TRUE Define 0(x) « X, O<¥) =Y. Thus our
Xy N2

R-language "knows" the relationship between trees and chains. The RHanguage

representations are inherently capable of reasoning out hierarchical relationships.



4.6. Merger

Subsumption is one merit of our recursive formulation. This section describes
another, a rigorous way to combine graph properties. Several sample mergers are

offered.

Given a graph property P, and a graph property P, we define their merger to
be a graph property p = P, " P, (read ";:»1 and pz") which is the set of all graphs
with both properties, ie, G. . = G. N G . In the context of our recursive

PPy P, Py

representation, p, = <f1,S 194> Py = <f2,Sz, >, and the merger is a new algorithm

92
p = <f,S,0> generating exactly the set

{G | p; G = TRUE. p; (G = TRUE}

One of the strengths of our recursive representation is that merger appears to
be reasonably amenable to automatic computation. Given P, and P, we will deveiop
a series of principles for constructing p. We do not claim that every merger can be
computed from the#a principles. We do claim that any merger constructed from
these principles is corréct. - The principies are assembied gradually, each one

motivated by an example.

Let p, be TREE and P, be CHAIN. Their merger p is clearly CHAIN, since P,
subsumes P,
PRINCIPLE 1

If P, subsumes P,. the merger of p, and P, is simply Py

Many attempts at merger, upon examination, become simple cases of
subsumption. Examples of this include:

e ACYCLIC and STAR = STAR

e CYCLE and EULERIAN = CYCLE

e WHEEL and PINWHEEL = WHEEL

e BICONNECTED and CONNECTED = BICONNECTED

o K-COLORABLE and K-CHROMATIC = K-CHROMATIC



We recall that P, = <f1,s1,o1> subsumes P, = <f2,Sz.az> only if f1 subsumes
fz' o, subsumes 0, and p?(S) = TRUE for every S € Sz. We will now examine
variants where subsumption is not possible because one of these conditions fail.
Whenever possible, we will state p, and P, with variable names which suggest the
direction the merger should pursue. An automated version would, of course, need
to search for such pairings. Consider the following exampie:

Py B + A KKK

where x € V, y £ V, dix) > 2
w,z € V

Py B:V(K3) where x € V, y £ V, d(x) even
Property P, generates K3 and graphs with a “"center” subgraph of K 4 O Ks.
Property P, generates only four graphs, K3 with a branch possible on any vertex.
Although f1 subsumes f2 and p?’(K3) is TRUE, neither o subsumes the other and it
is their combination we desire, i.e.,

p: B:y(K3) where x & V, y # V, dix) > 2, dix) even
This is particularly interesting because p ‘cannot iterate; the merger consists only of
K,. We have arrived at

3
PRINCIPLE 2

If f1 subsumes fz and p?’(S) = TRUE for every S € Sz' then the merger p is

<f2,$2,a>. The variables are mapped so as to demonstrate the subsumption of f2

by f, and so that o eliminates any references to variables not in o, If a,

subsumes o, o will be simply a,

1’
Consider next the exampie:
. *

Py (Bxy + sz) (K3,K4)

where x € V, y & V

w,z € V

*

Py Bxy(Ka'Ks) where x § V,y £V, dix) even

The p, graphs have "center" subgraphs of l(3 or K graphs are tree-like and

. P
4 P2
have "center” subgraphs of K3 or Ks. Their merger demands a common seed:

p: B:V(K3) where x € V, y £ V, d(x) even



We can now postulate:
PRINCIPLE 3

If f1 subsumes fz' o, subsumes g,
<f2,S1 n Sz, a,>. Again we assume a proper mapping of the variables.

and S1 n 52 # ¢, then the merger p is

The most difficult variant is when f1 does not subsume fz. Consider next the
example:
. *
P, (AxAyAz + qu) (K1)
where distinct x,y,z &€ V
distinct p.g € V
»
Py (AxAy + qu) (K1)
where distinct x,y & V

distinct p.g € V

Property P, adds vertices three at a time, P, two at a time, to K1. The
merger must deal with the fact that P, graphs have n's 1 (mod 3) and P, graphs
have n # 1 imod 2. The most complete soiution is n = 1 (mod 6), where

p: (Ax1Ax2....Ax6 + qu)*(K1) where -

distinct x. & V, i = 1,2...6

distinct p.q e_v
We observe at this time that incremental graph aigorithms "grow” graphs in iterative
steps. We denote the change in n after a single iteration of P, as An, and the
change in m as Am.l. We define An and Am correspondingly for property p.
PRINCIPLE 4

If p is the merger of p, and P, An is the least common muitipie of An , and
Anz, and Am of Am, and am..

. Clearly principle 4 is only guidance for dealing with uncooperative f's. Thus
far, most of our examples have been on "toy" graph properties, that, is, ones
artificially constructed to make a point When we attempt to apply these principles

to "real" properties, our experience suggests some techniques for f construction.



First, composite operators may obscure the nature of f1 and fz; rewrite them in
terms of the primitive operators. Second, lock for possible subsumption
relationships. Third, attempt to create a hybrid f which is a specialization of both
f, and fz' This f is formed by specializing f, and fz until they are equivalent, or
one subsumes the other. This series of transforms is guided by the an's and Am's.
We offer here a limited list of such specializations. The reader may feel free to
augment it

PRINCIPLE 5

Each of the following is a valid specialization:

»

- (f £ f "
ab,... a 1 b 1 az.bz.... ak’bk'"’

This restricts the number of times f is applied within an iteration to

o f

some multiple of k. Subscripts are presumed distinct

»
o f - f f .f
a,b.,... at'bt‘"’ az.bz,... ak, e

This fixes the number of times f is applied within an iteration to

b

exactly k.
* foo ™ fan.
This denotes "at least one iteration is required.”
o f =N
This means f is not iterated at all.
o (f + g = f'g"
(f + g" = g"f"
These require that the applications of f and g appear in a specific
order.
o (f +g" = (f + fg"
(f + g = (f + gf"
(f + g =» (g + fg"
(f + g)’ - (g + gf)'
These insist that some alternatives may not occur alone.
o (f + g)* -
(f+ g = g"

These eliminate an option.



o f f

sl
«.B.... ab.,...
This represents a consistent substitution of variable a for «, b for p...
within the constraints of ¢. For example, if o0 does not say x # v,

then A_ may be specialized to A__ or A .
Xy XX Yy

The astute reader should have noticed that these "specializations” are merely
subsumption tests applied in reverse, ie. if f1 subsumes fz, then fz is a

specialization of f . We recognize that as we transform f,  and f, o, and o, must

1
be modified accordingly to keep track of the restrictions on newly=—introduced

variables.

Now we try an interesting "real’ merger, to create trees (p1) with an odd
number of vertices (pz):

P B:y(K1) where x € V, y & V

. L}
Py At AyAz) K,
where x,w &€V
distinct y,.z & V

In keeping with the techniques discussed above, we first rewrite f1:

f,: A_A)

xy 'y
The seeds are identical, but no other subsumption reiationships are visible ~We
calculate An1 =1, Am , = 1. For P, hdwever, there are choices: sither An2 =0
and Am2 =1, or An2 = 2 and Am2 = 0. We must specialize both f1 and f2 so
that merger is possible. The motivation for the particular specializations given is an
attempt to match An, with Anz, and Am, with Amz. First we push f1 toward An =
2= (A A) = (9" = (A AA A)
xy y 1 Xy Yy wz z

o, =x€V, y&gV =sxw eV, distinct yz & V
Note that it is quite legitimate for x and w to be the same, but y and z must be
distinct because y is added after z and is not in V at the time. Now we push f2
toward An = 2 and Am = 2

* * * »* *
f2 =(@ +hh =(A + AyAz) =+ (gghh) = (AwaquyAz)
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a, = x,w 6V, distinct y,z £ V = x,w,p,q e V, distinct y,z 2 V

We will continue our example in a moment After specialization we will frequently

need to verify that f, and f_-é are equivalent or one subsumes the other. Thus we

offer some verification rules in:

PRINCIPLE 6

Each of the following pairs of expressions may be verified equivalent

® fn.fan. ® fap..

Note that the subscripts are identical hence the lack of impact on the

graph.
e fN a f
Nf a f

The null operator may be ignored
[ f4b EJ . s N

faon. bp.. &N

An operator and its inverse cancel each other out as long as they are

applied to the same vertices/edges.
o f*f* s f*

This is a notations! equivalent
<+ 9) 3 + gy

f+9' <+ gV

These are simplifications.

f+93@+1

This is the inherent commutativity in the iteration choice.

« fi g where g is the defined priméry equivalent of the composite f, a

verification we assumed informally above.

e Avfap a f‘t_, Ay if a prevents x from being ab,~.

This is a very limited form of commutativity.

f\u. g o

o -

Ch fé'p mCiu if opermitSa=3 P=b_
These are principles of absorptioa

o ff 2 Ay Ma can be changed

3, L2 1= '2'b2"“ Ao

f*y, a f* % if a permits a = a, p = b,~

to

select variables



appropriately.

Now continuing with our exampie, we can rewrite f2 (and az) in an attempt to

match f . In f we uniformly replace w with y, p with w, and g with z to get

(AxyszA A) where x.'y,w,z € V, distinct y,z2 € V
Because y and z are added during the iteration, y,z € V is irrelevant and we now

have a specialization of f2 and o, that is
(A A AA) where x,w € V, distinct y,.z & V
Xy wz vy 2z
When we contrast this with the specialization of f1 and o,

(A_AA A) where x,w € V, distinct y,.z € V
Xy y WX
we see that applying the limited commutativity rule to permute Ay and wa will
demonstrate the equivalence of these two algorithms. With their common seed.
then, we create the merger, an algorithm (TREE-AND-ODD-N) which generates all
trees with an odd number of vertices:

p: (A_AA A)(K)where x,w & V, distinct y,z & V

Xy y wz

As our next real example, we offer the merger for complete (pl) Eulerian (pz)

graphs:
Py F:(K1) where x & V, distinct v. € V, |{v}]| =
. »
p2’ (swvz + Yv1...vk) (K3)
where w,z € V, wz € E,

vv, £ E i=12.k

|[{v} n V| 21, distinct v, € V, vv, v v,

We rewrite f1 and f2 as

f: A LA A
1 xv1 XV X

f.. D A A A +A A A A LA

2 Wz wWv vz 2z Vivy vk_1vk A

We observe that An, = 1, Am, = n and either 4n, = 1, Am, = 1 or An, <k, am,
= k. Using fz’s second option on K3 it will not be possible to iterate and restrict
Aﬂ2 to 1, since all the cycle edges must be new to the graph. Thus we specialize
f, land o) to

f,: FF, distinct xy & V, distinct v, € V, |{v}| =
Now &n, = 2, &m, = 2n + 1. A specialization of f2 s



Y Y Y Y

YV W VitV
This set of cycle additions is equivalent to the specialized f, and therefore
subsumed by it We need a seed, however. p~21(K? is FALSE In this particular
case, we select the "first" graph G generated by p; for which p-2~1(G) is TRUE K,
fails, but Ks is acceptable. Thus the merger, the algorithm COMPLETE-EULERIAN for
complete euierian graphs, is

p: (FAFy)*(Kg) where distinct x,y * V, distinct v, eV, | {V'.} | =n
This "discovery" of the seed in this example is more good fortune than technique

An extended discussion of the appropriate seed for a merger appears in Chapter 5.

Our next example is the merger for connected (p" bipartite (p2) graphs:
pr B’;y(K’\ where x s v
Py A+ A A +A Jic{12}.{11}>)
where x * V
yz*V, {yy.zz}] n E[ » -1 i
f1 may be rewritten as A"yA’\. Noting that An; = O or 1 (depending on whether y
is or is not already in V), Anr® = 1, we have the following alternatives from fz:
&n, =1 Am, * O
An,s 1 Am*s O
An, * O Am, = 1
Note that we choose- not to count loops in any Am. The first two alternatives
require specialization to match fj, so we specialize f, (and zy' to:

f, D AA+AAA+A
2 T XV X XW XX X vz

where x*V, v€V, w«E

XMV, wsv,wwOE

v.zs V, {yy.zz} n El « 1
Examining fq, we see that By, is equivalent to the first alternative (for v e V),
BwBxs to the second (for v * V), and Byz (for y,z e V) to the third Thus f; is
equivalent to the specialized f* The seed for the merg‘er is the minimal bipartite_
connected graph <{1,2},{1U2}>. (Again, we refer the reader to Chapter 5 for a

discussion of seed choice.) The final merger, to generate connected, bipartite' graphs



212

prAA +A A A + Ayz>*(<{1,2},{1 1,12} >)

where x € V, ve V, vweE

xEV, wevV ww g E

y.z € V, |{yyzz} nE| =
This example demonstrates that se/ective iteration (such as Avax)' where the
variables are more restricted, can be the key to the creation of f. It also indicates
that loop labels may participate in a merger for a single property. |f both
properties utilized loops, the meaning of the label would likely be obscured and

coloring might be more appropriate.

Another application of merger is to test for the existence of a graph with
certain characteristics. For example, do there exist odd regular graphs on an odd
number of vertices? We consider the merger of odd-regular (pz) graphs with an

odd number of verticss (p1):
Py A+ AwAz)"(K ,) where x,y & V, distinct w,z # V

P, (OM +A A D ™ D_+F. )
vwv1..vk+1w1...wk_”l yzq y1p y y2 y1...y +1 pq z,...zk
Q,,,

distinct w . wo...w,_, € V,'v,._ .V, Woi-1Waj €E

i=1,2,..k+1)/2; j =1,2,..k=1)/2

) where distinct v,w & V, distinct v vz,...\Lk €V,

distinct p,q € V, distinct y #V, pgeE

12 Y
distinct x XX 2y € V, distinct 2,252, ® V. zx € E i=12.k

Either An, = 0, &m, = 1 or &n, = 2, Am = 0, and either An, = 2, Am, =k, or

An2 = k+1, Am, = k+1)k/2, or an, = k-1, Am, = kik=1)/2. The seeds indicate that

n, wil always be 1,3,5,.... and n,

Clearly no merger is possible since no common seed will ever be found. This fact

will always be k+1, k+3... where k is odd

is well-known in graph theory. Characterizations of n and m may be based on the
generating algorithms, producing not hypotheses, but proved theorems about the

nature of graphs with muitiple properties.



4.7. NP-Compieteness and R-Properties

Another, unanticipated strength of our representation is the peculiar formuiation
NP-complete problems seem to assume. (We adopt the definitions of [Garey 7S]
and use it as a source for our examples in this section) A seed set is simpl/e if it
is finite or definable in an edge-sat language other than LQ, otherwise it is comp/ex.
Most of the R—properties presented thus far have had simpie seed sets. When one
attempts to write an R—property, and cannot find a formulation with a simple seed,
this is not a proof that such a formulation does not exist It is interesting,
however, that those properties which we have not been able to formulate with a
simple seed are also known to be those for which a testing algorithm is
NP-complete. In this section we discuss some properties with compiex seed sets.
By an NP-complete property, we mean a property whose testing algorithm is

NP-compiete.

A cycle which visits every vertex of a graph is called a Hami/tonian cycle.. A
graph with a Hamiltonian cycle is a AHamil/tonian graph. Several examples of
Hamiltonian graphs appear in Figure 4-50, with one Hamiltonian cycle appearing as
darkened edges..

The R-property HAMILTONIAN is:

A:y(C) where x,y € V
Figure 4-51 shows the iterative steps in a sample run of HAMILTONIAN using C5 as
a seed The seed set C is the set of all cycles, ie.,

C= {Ck | k = 1,2..}.
The fioors for Hamiltonian graphs are <P <P L I >I > and <P <P L, T >I >

Note that the language in which the seed is described is itself an R—language.

HAMILTONIAN begins with a cycle (the Hamiitonian cycle) and adds only edges,
thereby insuring that the graph remains Hamiltonian. Clearly HAMILTONIAN is correct

The inverse HAMILTONIAN™' is computed by:
-1 oAt
f = Axy



Figure 4-50: Some Hamiltonian Graphs
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Figure 4-51: HAMILTONIAN in Operation

D
Xy

xyeV, xy*E dx) £ 2, dy) £ 2

pre

Xy eV, xy 6 E,
there exists some largest cycle not including xy
The floors shift to <P,<P,",,Z1>,E¢> and “P,'<F2''m~nj>ng>+ Roure 4-52 shows

HAMILTONIAN™! operating on a graph G € G and a graph G * Go. If xy does not
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&<
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Figure 4=-522 HAMILTONIAN™' in Operation

FALSE

destroy some largest cycle in G HAMILTONIAN ™' will preserve a Hamiltonian cycle
and HAMILTONIAN™' will return TRUE for G € G o OnGe G o G will reduce to its
largest cycle and some set of isolated vertices, and ultimately fail HAMILTONIAN ™
cannot create any new edges, sO HAMILTONIAN™' is correct and HAMILTONIAN is

complete.

4.7.1. Subgraph Properties and Two-Stage Algorithms

. One interesting way to see HAMILTONIAN is as a two—stage algorithm of the
form f"(g"(S) subject to o, ie,
A (S0 1K)
where x,y € V
A w2zeV veEyV wzeE
There are many graph problems which are known to be NP-complete [Garey 79]

and can be formulated as "test to see if G has an induced subgraph with property



p" If G = <VE>is a graph and A € V, the graph G, = <A, {xy|xy € A xy € E}>
is the subgraph of G induced by the vertex set A, and GA is an /induced subgraph
of G) Qur recursive formulation readily produces all such graphs, for if p = <f,S,0>
then all graph with a subgraph in Gp are generated by:
(A, + A IS

where f is subject to ¢

vz €V
The p p;'operties which have been shown to make such a formulation NP-complete
include bipartite, acyclic and 3-regular [Garey 79]. Our representation seems to
model such NP-compieteness by the use of a complex seed set Once again, our
inability to model a property in another way is not a proof, merely a suggestion of

some underlying pattern.

Of course, not all properties of the form "G contains an induced subgraph with
property p" require such a two-stage formulation, and those which do not will not
be NP-complete. For example, if p were edgeiessness, every graph G = <V,E> has
an edgeless subgraph G = <V,$>. In addition, the nature of G may be so restricted
by the problem formulation that the problem becomes linear. For example, "G
contains an independent set of at least k vertices” is a restricted form of
edgelessness and is NP-complete, but if G is also bipartite, a formulation with a

simple seed set is possible.

Another problem, shown NP-compiete, is whether or not a graph G = <V,E>
has a degree—constrained (dix) S k for all x € V) spanning tree. This too may be
viewed as a two-stage algorithm:

*
A+ Ayz) B, K
where y,z € V

veEV, weg&V, dv) <k

Essentially, "having an induced subgraph with property p" has a two-stage

formulation f"(g"(S) because the kind of operations permitted in g* may no longer
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be permissible after one or more iterations of f. There is the danger of a loss of
information. Once f begins, the L-language for g becomes inadequate. The only

known prevention, within our formulation, is to construct a two—-stage procedure.

4.7.2. Graph Properties with Elaborate Seed Sets

Whether or not a graph has a k-vertex cover is an NP-complete probiem.
The reader may recall that the one-stage algorithm VERTEX-COVER required an
underlying skeletal graph, almost as though there were an elaboratg seed set being
buiit upon. Looking back, we find such an awkward construction noteworthy,

because it is associated with an NP-complete probiem.

Our immediate impulse now is to leaf back through Chapters 3 and 4, locking
for properties whose L-ianguage is LQ. In some instances, although the L-language
is LQ. the seed set consists of one or two graphs and we are confident from
results in graph theory that such a property can be tested in linear time (STAR,
K~EDGES, MAX=K, PINWHEEL). Only EVEN-REGULAR and ODD-REGULAR have seed
sets in L‘2 which are infinite and can be tested for in linear time. Upon reflection

we see that, rather than beginning with Q a set of finitely many disjoint copies

k+1’

of Kk L We might have written the regular formulations utilizing CMV v to
Vi1

permit the addition of a compliete graph on k+1 vertices at any time. These
"improved” algorithms, and the ease with which they are developed suggest that

"linear” properties have simple seed sets and that NP-complete properties do not

The only exceptions to this neat little package are the labelling properties,
those which implicitly or explicitly use labels. Such NP-compiete properties (e.g.,
"has independence number k" or "is k—colorabie”) have simple seed sets. Thus in the
transition to R°~ or R®-languages we seem to lose the language's ability to predict
NP-completeness. This may well be due to the fact that labelling will distinguish

among previously—isomorphic graphs.
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4.7.3. NP-Completeness and the Recursive Formulation

The cleverness of the automated inversion technique was the pre—profile
construction Ore and the preservation after f of the information re contained. |If
we cannot construct e adequately or if f destroys that information, then search is
required. For example, in HAMILTONIAN, if we begin with a cycle and add some
edges to construct G, which edges can we deiete in our search to return to the
seed? Only those which would not have been in the seed to begin with, ie., those
which some largest cycle does not contain. The embedding languages (both L and 1)
state what data is explicitly represented and representable. If, for exampie, a graph
were characterized in L by describing its cycles and I referred to its cycles,
HAMILTONIAN would have an impiementation which was not NP-compiete. This
suggests that if one knows the properties of interest in a set of graphs, a language
L couid be designed to characterize graphs based on only those properties as
L-characteristics, speeding the impilementation of properties previously regarded as

- NP-compiets.
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CHAPTER 5
CONCLUSIONS

A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they are
made with ideas.
—Hardy
The purpose of this chapter is to draw together the various themes in this
work. Rather than a synopsfs, this chapter is an evaluation, a critique and a plan for
future work. Our work has not consisted of theorems, or even conjectures. We
postulated a representational framework and then explored its adequacy from an
- experimental sample It is therefore appropriate that this chapter consists of
observations, comments and intuitons. We evaluate first the formal language
framework, and then the two families of languages. We detaill a hypothetical
implementation, and conclude with some open questions and implications of this

work.

5.1. Languages for Graph Properties

This section evaluates the formal Ilanguage framework for knowledge
representation in graph theory. It provides an overview of the more detailed

material in the subsequent section

This work chose two complementary approaches to the problem of
representation in graph theory. The first approach (in Chapter 2) tried to describe
an edge sets behavior under simple manipulations on a fixed number of vertices.
We explored the edge-set languages L: Lin Lz, Lon, Ls, Lsn and L3 The

properties available turned out to be



finite

hierarchical

» far fewer than the theoretical upper bound

perfectly capable of inversion

» perfectly capable of merger

e rarely mentioned in graph theory texts
Experimental results suggest that such edge-set languages may provide an adequate
hashing technique for graphs up to a certain size. Edge-set languages offer
valuable classification schemes for similarities and differences within sets of graphs

Further details appear in 5.2.

The second approach (in Chapters 3 and 4) uses the edge-set languages to
represent a given graph property in a recursive formulation. The graph property is
an algorithm, which incrementally constructs precisely the set of ail graphs which
have the property. The R-languages were shown to have substantial expressive and
procedural power. The strengths of this representation‘ are its -

 clarity and conciseness

ability to express a wide range of "common" graph properties

 hierarchical transparency (See subsumption in 4.5.) The representation
provides efficient testing of such hierarchical statements as "every tree
is acyclic" or "every biconnected graph is connected” These are
trivially deducible from the R-language representations for those
properties.

. amenabiliti/ to inversion (See 3.5) An algorithm in this representation
can be manipulated to construct a new algorithm which tests an
arbitrary graph for a property defined by a graph generator without
reference to any other graphs.

e amenability to merger (See 4.6.) The representation can usually be used

to construct a new algorithm which computes from two algorithms the

set of graphs with both properties.

~ Further details appear in 5.3.
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How do these representations compare with others for mathematics? Lenat's
AM couid only construct examples and make conjectures based on its observations.
It had no facility for proof. We also believe that the poverty of and restrictions on
its concept representation (a frame language) substantially hampered its ability to
hypothesize. An R-language representation, if automated. could provide the facility
to hypothesize and prove theorems from their representational structure, ie,
perform mathematical research in graph theory. It would be able to observe
theorems, ie., postulate statements which are suggested by the structure of the
representation and immediately test their validity. Recall our observations on the
format of graph theory thecorems in 1.3. We observe that a theorem of the form
"if a graph has property p and property q then it has property r" is a statement
first of merger and then of subsumption. A theorem of the form "a graph has
property p if and only if it has property q' is merely a double subsumption
(equivalence) test A theorem of the form "it is not possible for a graph to have
both property p and property q"» is a report of merger failure. An impiementation
which searched out and attempted merger and subsumption relationships- woulid be

performing the conjecture and proof research behaviors of a mathematician.

Mathematicians perform other tasks as well They organize knowiedge, as
Michener has suggested, and are able to detect significance and relations among
concepts. Her frame representation evolves into a set of vague but rigid hierarchical
structures, requiring value judgements (is a resuit basic? key? culminating?) to
pigeonhole the knowledge. Our languages have systematized her spaces to achieve
procedural ”p'ower. In return we have had to sacrifice notions of cognitive power
and interestingness (such as "key resuits”’). We could also generate arbitrary terminal
strings in an R language, merely by following its grammatical property rules. The
semantic interpretations of such random strings would be graph properties.
Whether or not such properties would be mathematically interesting is open to
question. An AM-type guidance system for property development would be

necessary.
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5.2. Edge~-Set Language Resuits

This section summarizes the results of empirical exploration on the DEC-20

using the edge-—set languages L1, L, Lz' LZn’ L3 and Lan‘

The major resuit in this area is that the languages L. L2 and L3 are, in fact,
finite, ie., that each grammar, whose set of terminal strings is infinite, has only a
finite number of interpretations for those strings. The theoretically—calculated
number of these interpretations and the number empirically observed under machine
computation for thé stated n values is summarized in Table 5-1 for Lm, L., and

2n
L3n’ both directed and undirected cases.

Undirected Language Properties Characterizations
L..n=12,. 4 12
in .
L2 ,ns 25 27 106
n
L3 ,ns 285 229 258
n
Directed Language Properties Characterizations
L] ’ n = 1121-- A 6 24
n
LG' n <25 202 4849
L3n’ n<13 2567 >20,000

Table 5-1: Edge—Set Language Properties
Listings of the programs used to achieve these resuits appear in Appendices |

through V.

The edge-set languages have substantial procedural power. They make merger
and subsumption, as well as generation and testing, virtually trivial. In addition they
have an interesting potential for the kind of graphs which arise [Roberts 76] in
many application areas: an ability to find similarities and differences.among a set of
graphs from their edge—set language characterizations. The languages' ability to
categorize graphs into exactly one of finitely many possible classes (for fixed or
variable n) suggests that their graph signatures have significant potential as a hashing

function.



The operations defined on the edge sets, however, we!:e deliberately limited to
control the expressive hierarchy. These limitations also severely festrict the
expressive power of the edge—set languages. Even l.3 can be reduced to
describing an ordering of the cardinalities of the partitioning sets in a Venn diagram.
Graph properties commonly appearing in graph theory texts (with the exception of
something like edgelessness or loopfree) are generally not available in the edge-set

languages.

5.3. R-Language Resuits

Having evaluated the edge-—set languages, we turn in this section to the
following facets of our R-language representations:

e expressive capability

e the <P L.I> formulation (See 3.3)

e floors (See 3.4)

e inversion (See 3.5.)

o subsumption (See 4.5)

e merger (See 4.6) |

e compliexity

e redundancy

5.3.1. Expressive Power

We have no certain way to determine whether or not a given property is
within the expressive range of a given R-language. One writes an R-property, as
cleverly as possible, and then determines its floor. How do we judge whether the
R-language representation as a whole is valid/adequate for all of graph theory? Our
work has explored this question empirically. We originally began with <P1,L1,Z1>
and several respected texts on graph theory. From the indices of the books we
selected many properties. The early choices (in Chapter 3) were simpie properties
and met with immediate success. The later, more complex choices (in Chapter 4)
suggested natural extensions (a register, labels) to R-languages, but were realizable

within the basic <PL,L> formulation. The properties discussed in this document



represent a broad selection from contemporary graph theory.

It would be remarkable to report that all the experimental results (pick a
property, express it in an RHanguage, show correctness and completeness) were
positive. (See 3.2) We did have a limited number of failures, instances where either

* we could not find any <f,S,a> description for a property
or where

« we could find an <f,S,a> description whose correctness was apparent

but we could not prove completeness
We suspect that the properties in the first category are merely awaiting a new
extension to RHanguages, just the way k-factorability needed edge labels. The only
property we can cite in the first category is having diameter k. (The diameter of a
graph is the maximal length of the shortest path between any pair of its vertices.)
This property may require edge labels of an elaborate nature. As for the second
category, the ingenuity brought to bear in constructing an RHanguage representation
frequently reflects knowledge of theorems in grabh theory about equi\)alent
definitions or characterizations. We are hampered both by our own m.odest
knowledge of 'graph theory and the current development’ of the subject, particularly
with respect to complexity. We are also now aware of the two-stage formulation
which NP-complete problems seem to require. (See 4.7) We attribute our inability
to prove completeness to these two factors for the following properties:
self-complementary, uniquely k-colorable, k-edge-colorable. Table 5-2 summarizes
the 43 properties correctly and com.pletely expressed in this document Many
others, for example "line graph/' with well-known characterizations are clearly

expressible as well.

Graph theory, however, is not only properties but also relations among them.
R-languages have impressive procedural power. We recall our examples of
mathematical research behavior at the end of 16-3. A system using an R-language
for representation will certainly be able to generate examples of any property
known to it As long as the inverse of a property is computable, the system will

also be able to test objects for the property. What about proving theorems?



graph

edgeless graph

acyclic graph

tree

loopfree graph

chain

cycle

star

wheel

complete graph

graph on even number of vertices
graph on odd number of vertices
graph with even number of edges
graph with odd number of edges
Eulerian graph

graph with n vertices

graph with m edges

graph of minimum degree k
graph of maximum degree k
pinwheel

graph with k components

even—regular graph

connected graph
biconnected graph
k—connected graph

graph on counted vertices

"graph with counted edges

graph with calculated maximum degree
bipartite graph

complete bipartite graph
k—-vertex—coverad graph
k-independent graph

k—colored graph

k—chromatic graph

graph with vertex covering number k
graph with circumference k

graph with edge covering number k
graph with a k—factor

k—-factorable graph

graph with independence number k

‘Hamiltonian graph

planar graph
non-planar graph

odd-regular graph

Table 5-2: Graph Properties Studied under Recursive Generation

Looking back at 1.3 we recognize that relations among properties are usually

verifiable with an R-language representation, and thus most theorems are provable.

in particular:

e "If a graph has property p and property g, then it has property r' can

be proved by demonstrating that the merger of p and q is subsumed

by r.

e "A graph has property p if and only if it has property q" can be

proved by demonstrating that p subsumes q and g subsumes p.

e "It is not possible for a graph to have both property p and property
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q'" can be proved by attempting a merger on p and q and

demonstrating that the merger is impossible. Inconsistent n and m

values are one such proof, and there may be others.
More generally, an R-language representation offers the material for many types of
classical mathematical conjectures. The concept of subsumption refiects perfectly
the inclusion of one property by another. The merger technique enables us to
consider graphs with any finite number of properties. Property equivalence is an
exprassion of alternative characterization. Thus the R-language formuiation appears
to express not only graph theory properties but also the relations among them. We
consider R-languages a potentially powerful representation for all of graph theory.

(A detailed treatment of this potential appears in 5.4)

5.3.2. The <P,L.I> Formulation

In effect, we developed a hierarchy of R-languages. Each language is based
on a triple <P,L.I> and the hierafchy for R-languages stands upon the hierarchies
for P-languages, L-languages, and L-languages diagrammed‘ in Figure 3-6. Thus the
R-language <P1,L1,Zz> is less complex than <P2,L323>, but not comparable with

1, 2,2 >  The P-languages, although limited, appear adequate to provide the
expressive power of the benchmark texts. The L-languages also appear adequate,
although we would have preferred more edge—sat languages and less need for Ly
This reliance on Lg may be an intrinsic limitation of the edge-set languages as we
define them. The I-languages are adequate, although Zs is merely a catchall

("everything you always wanted in an inverse but were afraid to ask for.")

5.3.3. Floors

The floor of a graph property is useful in categorizing the difficulty invoived in
the calculation of a property. Figure 5—-1 summarizes these results for R-languages

and R+—!anguages

We observe that if P, subsumes P, the floor for p, may be more complex

than the floor for p, (GENERATE/EDGELESS). less complex (TREE/CHAIN) or the
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STAR
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ODD-M
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Pubyls>
BICONNECTED
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EVEN-REGULAR
ODD~-REGULAR

2 2'2 >
CYCLE

LL,>
CHAIN

<P 1 :L9023> '
MAX-K

Pkals>
EVEN-N
oDD-M

<P4'L 1 n’25>
BICONNECTED
K-CONNECTED

<P4'L 1 n'23>
K-COMPONENTS
CONNECTED

. Z'L 1 n'z2>
CYCLE

<P Lylg>

BIPARTITE

COMPLETE-
BIPARTITE

<P 1'L 1 n'z3>
MIN-K
CHAIN2

<P 1 L 1 n'22>
EVEN-N
QDD-N
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<P2'L 1 n'25>
K-INDEPENDENT
EULERIAN

<P,l,Llg>
EULERIAN

Paliyly>
MAX

<Plilg”
BIPARTITE
COMPLETE-
BIPARTITE
K-VERTEX-COVERED

<Pl Is>
COMPLETE

<P,L,.I,>
ODD-N
LOOPFREE
EVEN-M
DEGREE

Graph Properties with Edge—Set L-Language Grouped by Floors
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“Prtmv AV A A
K-VERT1CES GENERATE EDGELESS
ACYCLIC
TREE

VERTICES

EDGES
Figure 5-1: Graph Properties with Edge-Set L-Language
Grouped by Floors, continued

same (ACYCLIC/TREE). In general the only way we can distinguish usefully among
properties with an L-language is to categorize them as "requiring an edge-set
language” or "requiring an R-language”. A hierarchy of those R-properties and
R*-properties using edge-set LHanguages appears in Figure 5-2. This hierarchy is
based only on P-languages and “-languages. The figure does not split properties
between claséifications (@as Figure 5-1 did) and shifts the floor to include the
inverse as well. It also makes explicit some of the following points:

* No property required Pﬁ for generation.

© Z might be replaced with two E-languages to improve the

differentiation between £4 and Es-
e The L-languages describe the minimal case(s) of the property but do

little to clarify the hierarchy.

Floor shifting (see 3.6) occurs when the generation language is inadequate for
the statement of the inverse. By definition of p~' (in 3.5), the L-language cannot
change from p to p"'. If p utilizes Py, the P-language must change to P, for p~',
since the inverses of the P; primitives are in P2 and not in P1. Indeed every
P, -based property has a P,-based inverse None of the other P-languages have
this problem The virtue of separating P; from P, lies in the ability to distinguish
purely incremental procedures from those which may decrease the size of the
graph. In our opinion this merits the separation and we are willing to have

automatic shifts from P,-based properties to P,-based inverses.

nl

A change in E from p to p"~ is somewhat more difficult to deal with. With
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CPy.Zs3 <—— Pl
K-EDGES COMPLETE
BICONNECTED EULERIAN
K-CONNECTED PINWHEEL

't : BIPARTITE -
[P,L,] COMPLETE-BIPARTITE
K-COMPOINENTS K-VERTEX-COVERED
CONNECTED ‘ K-INDEPENDENT

1 T
[P3.23] [Po.L,]
MAX STAR

WHEEL

P,Z,] tP,2,] P21
CHAIN : GENERATE K-VERTICES
CYCLE EDGELESS
EVEN-N ACYCLIC
ODD-N TREE
EVEN-M LOOPFREE
ODD-M CHAIN,
MIN-K
MAX-K
EVEN REGULAR
ODD-REGULAR
VERTICES
EDGES
DEGREE

Figure* 5-2:  Graph Properties with Edge-Set L-Language Ranked by P-Language
and I-Language



'the exception of K-VERTICES (which never deletes a vertex) every inverse requires
a Z-—languagé of at least 23. With the exception of EULERIAN, no inverse has a
simpler L-language than its generator. With the exception of CIRCUMFERENCE-K, a

L-language no more complex than 23 for the generator is adequate for the inverse.

As we have mentioned before, there may be many adequate (correct and
complete) formulations for a given property. The fact that, from our work, a
property appears to have a particular floor is not a proof that no simpler
R-language would suffice. For example, the formulation for connectedness which
was originally mentioned in 3.7.21, has floor <P 1,L1,Z1>, whereas we used a
formulation with floor <P 4,L1,Z:,5>.‘ The first formuiation, aithough correct, has an
inverse which must reside in <P2,L1,26> and 'selects edges “which will not
disconnect the graph,” at best an awkward construction. In much the same fashion,

we suspect that CIRCUMFERENCE-K has a "better” formulation.

5.3.4. Inversion, Subsumption and Merger

The automated inversion technique is remarkably successful for generators with
L-languages no more complex than L & An R-language using Zs couid probably be
automated by skillful programming. The few properties with inverses in 26,
however, are simply not amenable to automation as we have conceived it and should
be reformulated if at all possible @ We have found that inversion even works
correctly on the output of a merger, although there is really no need to calculate an

inverse there.1

Subsumption is an important relation in graph theory. The clarity of its
definition for R-languages and the comparative ease with which it may be tested

contribute substantially to the strength of our representation.

~

The theory of computability offers support for our ‘inability to make certain
absolute statements, such as "an R—-property is always invertible if.." We allude to
these similarities in footnotes in this chapter, and expect to pursue them at a later
time. For inversion, we recall that a set is recursive if and only if both it and its
complement are recursively enumerable. Thus the ability to generate a property as a
set does not guarantee the ability to test for that property on a given input graph.



The merger technique is surprisingly adequate. We believe that the ability to
assert the impossibility of merger (as in ODD-N and ODD-REGULAR) is as important
as the ability to generate a merger, because it demonstrates a relation between the
unmerged properties. There are probably more merger principles awaiting discovery.
The most interesting open question is, "given a8 merged f and a merged o, how do
we find a common seed set when S1 n 52 = ¢ " The cases we tried were
"lucky” in that the new seed set quickly appeared within a few iterations, but we
have no guarantse that this will always occur. We suspect this to be quite a

difficult problem.

5.3.5. Complexity and Redundancy

There has been very little consideration of the compiexity of the algorithms
which are semantic interpretations of the R-—propertiess We did note that the
complexity of any algorithm is determined both by its internal representation and the
matching requirements made by its selector. Thus generation under I, 22, 23 orZ,
can certainly be achieved in linear time with properly constructed (not necessarily
linear) storage. Because 25 and 26 encompass a much broader range of choices, no’
such guarantee can be provided for them, and the complexity of algorithms based
on them is an open .question. The testing algorithms use, in the worst case, storage
of Oin) vertices and O(n?) edges, making the seiectors dependent on the size of the
input graph. Again, cleverness in storage organization should be able to overcome

this for 21, 22, 23 and ¥ o+ but probably not for many instances of Zs and Zs.

Redundancy is an interesting issue. The algorithms are non—deterministic; their
selectors read "choose any..” Such selection could be randomized. A tester would
always return the same output, a generator might not This non—determinism wouid
not affect the resuits of a testing algorithm, although its efficiency will be
dependent, for certain properties, upon the value of the output and the efficacy of
its choices. For example, testing completeness reduires deleting one vertex of
degree n-1 on each of n-1 iterations. On a complete graph, selection should be in

constant time and TRUE arrived at after Oin?) edge deletions. On a graph which



would be complete but for a single edge, selection will be in constant time and
FALSE arrived at after O(nz) edge deletions. On a graph without any vertex of
degree n—1, however, FALSE will be arrived at in O(n) time. Thus incompiete graphs

may be faster to test As another example, consider the graph in Figure 5-3.

Figure 5-3: A Graph with Variable Testing Time

If we test that graph to see if it is Eulerian, the speed with which we arrive at a
result depends upon the cycles we choose to delete. Deleting the largest cycle

first will require oniy two iterations; the smaller cycles can cause greater delay.

When we generate a set of graphs with a specific property, even if we force
distinct selections from one execution to the next we do not guarantee distinct
(non—isomorphic) graphsz. For example, we could generate the same tree on n
vertices in many different sequences, growing the tree out from its center, and yet
the output would be indistinguishable. Irredundant programs have been developed
for, among others, the enumeration of all graphs on n vertices, all trees on n
vertices and all spanning trees of a graph. This redundancy would be a problem if
generation were our only objective. Fortunately, generation is merely our

description -of a set of graphs, and we have no intention of executing the same

2This ambiguity is due both to the ambiguity of the formal language and to the
range of bindings permitted for the variables during execution of the algorithm.



algorithm repeatedly for distinct results. The same redundancy that may well

produce isomorphic graphs also appears related to correct behavior on inversion, a

worthwhile tradeoff.

5.3.6. Boolean Properties

Some properties, as we noted in Chapter 1, are boolean. Cyclic, connected
and 3-chromatic are all examples of boolean properties. If we have an algorithmic
formulation of property p, how will the algorithm for property not-p relate to it?
Although the relaxation of a selector condition a would permit a graph with the
opposite boolean value to appear in the generated set it will certainly not guarantee
that precisely the complement of the first graph set will be generated For
example, although

B* (KJ where x s V, y *V
xy 1 !

generates all trees, the expression

B* (KJ where x s V
xy 1

does not generate all non-trees, merely all connected graphs (with the possibility of

some loops). Let us consider this a bit more.

The reader with some knowledge of graph theory will have noticed an
important gap in the properties of Chapters 3 and 4; there is no mention of
planarity. A graph is planar if it can be drawn on the plane so that no two edges

intersect Several examples of planar and non-planar graphs appear in Figure 5*4.

Kuratowski's theorem provides what appears to be the ideal RHanguage
characterization for planarity: a graph is planar if and only if it has no subgraph
homeomorphic to Ks or Kss. (A graph is homeomorphic to Ky or Kss if it can be

obtained from one of them by a series of edge subdivisions of the form S )
7 * Xvy
Figure 5-5 shows the derivation of a non-planar graph from Kg. Every graph in

the figure is, by Kuratowski's theorem, non-planar.

It should, therefore, be quite simple to describe non-planarity in an R-language.
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RS

Figure 5-4: Some Graphs and Their Planarity

X

3
Figure 5-5: The Construction of a Homeomorph to K5

The ailgorithm NON-PLANAR is

*
(A, + A, + S, KK, )

5773.3

where y,z € V

pqeV, veV pqgeE



Figure 5-6 shows the iterative steps in a sample run of NON-PLANAR. The fioor

for non-planar graphs is <P,.Lo.L.>.

4

Figure 5-6: A Sample Run of NON-PLANAR

Note that we permit subdivisions to occur interspersed with vertex/edge additions.
Although Kuratowski's theorem is suggestive of a two-stage algorithm (first build
the homeomorph, then embed it as a subgraph), every subdivision of an edge not in
the homeomorph can also be achieved by the addition, in sequence, of a vertex and
two edges. Thus the one—stage algorithm is, by quatowski's theorem, both correct
and complete. Unfortunately, the "automatically” computed inverse is an extremely
unpleasant Es—based formulation:

f-1

D +D +DD D A )
X vz v vq pv pq -
x €V, dx) =0

=1

g

y.2 € V, yz € E, yz is not in every subgraph of G
homeomorphic to K5 or K3 3

pv.qg €V, pvwq€E pq#E dv) =2



Of course, Kuratowski spares us any need for NON-PLANAI.?~-1 in a
completeness proof, but the awkwardness remains. Quite a different alternative is
suggested by Tarjan's algorithm for planarity testing. Essentially Tarjan showed that
every planar graph could be embedded on the plane with respect to a central chain.
A representation which embodies this notion generates all planar graphs via PLANAR.
The formulation requires extensive details on Tarjan's algorithm, beyond the scope
of this work. Essentially PLANAR- constructs the graph from a central (labelled)
chaia (If c(xy) = 1 the edge is on the chain, else c(xy) = 0) Every vertex has
three labels associated with it which may be concatenated into a single label and
deciphered as necessary. The labels indicate upper and lower boundary pointers of
the arc on which the vertex lies, and whether the vertex lies to the left of, to the
right of, or on the central chain. Thus the R-language requires both edge labels and
vertex labels. The generator begins with a chain on two vertices and can extend
the chain, with appropriate labelling, at any time. In addition it provides for the
construction of arcs and tree-like structures on either side of the chain, properly
embedded and labelled Figure 5-7 shows the iterative steps in a sample run of

PLANAR

- 2 3 4 5 6 7
Figure 5-7: A Sample Run of PLANAR

The notation for the algorithm is not given here. Suffice it to say that Tarjan has

provided theory to prove such an algorithm is both correct and complete. The



general format is a one-stage algorithm based on A 's, S 's and B 's, with a
Xy XVy Xy
tester dependent, as usual on correct labelling.

We would have liked there to be a clearer relationship between PLANAR and
NON-PLANAR. This is not the only instance of this difficulty. The reader may
confirm that the following algorithm CYCLIC with floors <P,'tin'~j” 2" <Pitorng>

is complete and correct

where y,z s v
pgsV,vO0V, pqgsE
it too bears a disappointingly unclear relationship to its opposite, the algorithm

ACYCLIC with floor <P;.L.E;> of 3.7.1:

B* (<V,*>) where x m V, y * E
Xy

We would in retrospect have preferred a more transparent relationship
between such pairs of algorithms. In the edge-set languages, the opposite of a
boolean property was always equally expressible. In the R-languages, with their
procedural orientation, the value of a boolean property.may have a different floor
dependent on the boolean value, not to mention a different testing efficiency.® The
fact that the merger of two algorithms is impossible does not mean that they are

opposite values of the same property. (Witness ODD-REGULAR and ODD-N.)

]In the theory of computability, there are properties (i.e., subsets of the
integers) which can be generated by a Turing machine, but whose complements
cannot (Such sets are called recursively enumerable non-recursive sets.) In the
theory of NP-completeness, membership of a problem in NP does not imply
membership of its complement in NP. (Problems with complements in NP are
classified as co-NP and the relationship between NP and co-NP is unknown.)) The
parallels suggest that a theory for boolean properties in R-language contains difficult
guestions.



5.4. Applications

This section hypothesizes an implementation of our results to show their

significance to artificial intelligence. Lenats AM is used as a framework.

AM [Lenat 76] is intended to model scientific theory formation. AM is a
program which makes mathematical discoveries. AM begins only with a hierarchy of

115 set theory concepts and a collection of 242 heuristics.

An AM concept is either an object (e.g. set, list) or an activity (e.g., set—union,
first-element). Each concept is represented as a frame, a list of slots. A slot is a
(name, value) pair. For concept C and input X, siot names include generalization (i.e.,
names .of concepts more general than C), definitions (ways to test if X is a C),
examples (sample X's satisfying C's definition), and worth (a point value assigned to
C. The names and number of slots for all concepts are predetermined, uniformiy

fixed, and limited to a maximum of 285.

An AM heuristic is a rule in the form "if P then Q" P is the list of conditions
the heuristie must satisfy to be applicable. Q is the list of actions which will occur
if the heuristic is "fired” Heuristics focus AM's attention; they are predetermined

and not subject to examination.

The only goal of AM is to fill in slots AM is intended to perform
mathematical research, i.e., increase its knowledge (as represented by its concepts)
by acquiring new information and storing it appropriately. "Filling in the slots” is

therefore an appropriate, if admittedly limited, transiation of "research.”

The control structure for the program is a list of taskvs, called an agenda. Each
task has a priority rating assigned to it When AM is ready to perform a task, it
selects the one with the highest priority and allots it machine resources (time and
space) based upon its priority rating. A task ends either with success or by

exhausting its resources. Algorithmically AM reads:



i. Select the top task T on the agenda
ii. Assign resources r(T).
iii. While within r(T), execute T.
iv. Update the agenda
v. Go to i
Tasks can only:
e add a new task to the agenda
e define a new concept

e add an entry to some slot in some concept

After an hour of CPU time, and without any initial notion of proof, formal
reasoning, numbers or arithmetic, AM includes among its discoveries prime numbers
and the fundamental theorem of arithmetic (unique factorization of an integer into
primes). AM's failures are as interesting as its successes. It never "notices”
negative numbers, closure or trichotomy, nor does it ever find any interesting
properties of exponentiation. Lenat held AM's heuristics accountable for these
lapses. Although the heuristics were initially effective, they lose power as the
domain of exploration moves from set theory to number theory. (Lenat is currently
working on EURISKO [Lenat 82], an extension to AM. EURISKO attempts to

improve AM's research prowess by evolving new heuristics.)

We believe that our work in knowiedge representation can make substantial
contributions to AM-like activity. We postuiate an automated Graph Theorist (GT) as
an extension of AM and EURISKO. GT's domain is, of course, graph theory. GT,
like AM, is capable of muitiple definitions of a property (concept. A GT property
definition is a generator in a recursive language, labelled according to its floor.
Every definition has a corresponding testing algorithm, also labelled by floor.
Examples in GT are readily constructed by executing the definition. (In AM, example
generation is much more difficult and less general Examples are generated by one
task and tested by another. AM definitions 'are what we have described as testing
algorithms.) Extremal exampies in GT (of great importance to AM heuristics) are

elements of the seed set and therefore readily disclosed. Non-examples in GT must
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be constructed via generate—and-—test, ie., by running GENERATE and selecting those
which fail the property test Thus a major activity, example construction, is

guaranteed correct and complete in GT, although not in AM.

Why is example generation so significant? AM “discovers” primarily by
“randomly look [ing] at empirical data for regularities.” [Lenat 82] (In a sample run,
at least 198 of the 256 tasks were example construction. [Lenat 76]) In set theory,
and also on a limited test in plane geometry [Lenat 79], this is a reasonably
effective technique, without the breadth GT's generators can offer. With GTs

representation, the data available for synthesis improve in quality and accessibility.

This leads us to the nature of a "discovery.” An AM conjecture is a slot entry,
a relationship observed among examples of concepts. With GT's "better” examples,
its discoveries will be correct more oftenn GT also has an alternative set of
heuristics for conjecturing. In addition to examining examp/es for similarities or
differences, it can examine definitions as well. Because the GT definition is a
corract and complete representation of a property in a uniform, highly=structured
format, incorrect conjectures are less likely. Even better, many conjectures will be
immediately provable using the subsumption techniques outlined in 4.5. Thus GT
offers a more fertile representation for conjecture than AM, and a proof facility
which AM lacks completely. In GT, a proved statement (theorem) increases the
worth of its associated components. Thus temporarily fertile research areas are

highlighted with greater efficiency.

AM creates generalizations and specializations of concepts by syntactic tinkering
in the LISP concept definitions. GT can use subsumption and merger, thereby
preserving the properties of its schema which support completeness and
correctness. The GT schema (ie., the p = <f,S,0> formulation) is admittedly more
restrictive than a LISP expression. QOur empirical observation, however, has indicated
that it has substantial expressive power and is more conducive to reasoning (by

person or machine) than the typical A-expression.
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We come, finally, to the crucial issue of representation once again. Lenat
acknowledges [Lenat 76, Lenat 82] that a representational shift is a powerful
heuristic. AM's idea of a representational shift is to create a new concept, thereby
enlarging its vocabulary. In reality AM has a single representational language, LISP,
within which it discovers concepts. GT, however, permits, even encourages, multipie
representation. Each representation is a language, as detailed in this dissertation.
The following behaviors are accessible to GT:

e A GT concept can have different definitions in different languages.
(Consider, for exampie, the three definitions of connectedness
appearing on pages 123, 138 and 138)

e GT can be programmed with héuristics appropriate to a specific
representation.

o GT can find a common language for a set of concepts, using the
partial order of the language hierarchy.

e GT can estimate task difficulty and allocate resources based on the
complexity of its chosen representation. Because much of the
computational effort will be on matching to bind the selector variables,
this estimation should be fairly accurate.

e When a task fails in a given representation, GT can consider shifting to
a more complex (and possibly siower) language. GT can be
programmed to work in the simplest language possible.

e GT can explore the heuristic "if two properties have the same floor,
they may be reiated.”

e Best of all, as the domain of exploration changes we can guide GT to
select and focus upon the most productive representations. Thus, if
GT is studying cyclic properties, it may select a o-language which

accelerates its algorithms.

As demonstrated through GT, our recursive representational techniques are

powerful tools.



5.5. Open Questions

The strengths of the representations have been discussed above.

section we raise some questions for future work.

The edge—set languages have been shown both to benefit and to
suffer from the severely limited restrictions on their edge set
operations. What other operations might “gently” expand their
expressive ability, particularly toward properties commonly appearing in
graph theory texts?

Computer exploration of the graph equivalence classes for the
edge-set languages is limited by machine space and time. Are there
more efficient theoretical approaches which can bound these numbers?
How might we extend edge-—set languages to include graphs with
labels? with weights? with minimality and maximality properties?

The R-languages might be capable of non-redundant generation. What
controls would we have to impose and what would they cost us?

How should edge weights be implemented, either in an edge-set
language or an R-language? Do they differ from edge labeis in a
meaningful way? ‘

Are R-languages capable of enumeration probiems, e.g, finding all the
spanning trees of a given graph, or all the distinct k—factors?

Can R-languages be extended to deal with properties involving
minimal/maximal conditions, e.g., the travelling salesman probiem or the
Chinese postman problem?

Is there any theoretical proof that no one-stage algorithm based on 21,
22, 23 or T 4, IS NP-complete? Can any other relationships between
NP-complete problems and R-properties be derived?

What insights can the theory of computation give us into the

properties of R-languages?
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In this



5.6. Implications of This Work

We will continue this artificial intelligence experiment in knowiledge
representation, and we hope that others will be interested in our approach. A major
goal is to extend this kind of structure and organization of graph theory presented
here to other areas of mathematical knowiedge, such as number theory. In the
meantime, we believe that the work already accomplished has implications in many

areas.

R-languages are a way to categorize the simplicity or complexity of a graph
property. They make explicit (or readily discoverable) many relationships implicit in
the vast body of work mathematicians have aiready produced An implemented
version could provide graph theory with (in order of anticipated difficulty):

e generation of arbitrarily many, arbitrarily large graphs with specified

properties, for use in algorithm testing

o theorstical exploration of the equivalence of two characterizations

o explication of implicit hierarchical structure

e suggestions for new, interesting graph properties

In the artificial intelligence community, knowledge representation has been
characterized as an ill-defined problem. Consequently, work in knowledge
representation has usually concentrated on small, weli-defined, but toy, domains.
Mathematics as a whole is a very large, well-defined domain. We chose an entire
area of mathematics for our work in knowledge representation. Our results suggest
that others in artificial intelligence might consider mathematics as a domain
Mathematical theory offers both the certainty and precision of measurement (notably
lacking in most real domains) and the challenge of compiex relations (notably lacking
in most toy domains). In addition, we have suggested here an approach to modelling
which combines the factual with the procedural 6ur approach in the edge-set
languages is important, we believe, because it is a model o.f controlled exploration
with absolute certainty of the resultant impressive procedural power and modest

exprassive power. Our work in the R—languages is significant, we believe, because
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it uses related algorithms to describe properties as well as procedures, resulting in

an impressive multifunctional representation.

Finally, the work described here should be significant in several other areas of
computer science. The transparency of the relationships among properties
(algorithms/procedures/programs) is due to the structure we have imposed upon
them. The ease with which certain inversions occur may suggest new approaches in
code generation. Perhaps such techniques are more generally applicable in automatic
programming. The ability to discern .hierarchies may be relevant in data base work.
The ability to hypothesize and prove graph theory theorems is certainly relevant to
automated deduction. Last but not least a machine which is told the definition of a
property, and can then apply it (by subsumption, by merger, by inversion) must

surely be said to learn, to understand, and, perhaps, to think.
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APPENDIX A
KEY TO NOTATION

Interpretation
Add vertex x to the graph
Add edge xy to the graph
Branch from vertex x to vertex y
Cycie on k vertices
Delete vertex x from the graph
Delete edge xy from the graph
Edge set of the graph
Empty graph on k vertices
Fully connect vertex x to the graph
Fragment vertex x into vertices x and y
Fracture vertex v; into Kz maintaining previous adjacencies

"Graph
Identify vertices X,V;...,Vk

Complete graph on k vertices .

Loop on alil vertices
Unloop on all vertices
Language i for graph properties
Number of edges in the graph
-+ Matching graph
Number of vertices in the graph
Null operator
Order complexity
Primitive language
Quantity of disjoint complete graphs

Subdivide edge xy by vertex v
Subdivide edge xy by vertices v and w

Replacement system for testing equivalence of L-expressions
Complete graph on k different-colored vertices

Set of ail finite graphs closed under isomorphism
Edgeless graph on k different-colored vertices

Vertex set of the nranh
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Page
66
66
68
82
66
66
12
62
68

66
131

12
66

101

66
66
14
12
115
12
66
69

64
132

63
171

14
171

13
168

10



Pinwheel on h hubs and r rims
Surrogate operator

Add cycle ujuy».ugu; to the graph

Delete cycle u Ur.u U, from the graph

1
vertex X with <x
Label edge xy with a

Selector, element of |
Selection language
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123
171

68
68

167
184

64
64
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APPENDIX B

INVESTIGATION OF THE LANGUAGE L, FOR UNDIRECTED

GRAPHS

B.1. The Program L2

The following is a listing of the program L2.

c

s NsNe]

(s NN NesNeNel

OO0 0O00O00O0000O00O00

PROGRAM NAME: L2

AUTHOR: SUSAN EPSTEIN

THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L2 FOR
UNDIRECTED GRAPHS QOF UP TO N = 25 VERTICES

GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
THE NUMBER OF EDGES NOT IN THE GRAPH

THE NUMBER OF EDGES IN THE GRAPH

THE NUMBER OF LOOPS IN THE GRAPH

THE NUMBER OF LOOPS NOT IN THE GRAPH

THE NUMBER OF VERTICES IN THE GRAPH

—_mo O >

THE SIGNATURE FOR EACH GRAPH 1S CALCULATED AS THE VECTOR
S AND THEN PACKED, TO SAVE SPACE, INTO THE VECTOR FAKE.

A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES IS STORED
IN THE VECTOR G.

THE NUMBER OF SIGNATURES AT ANY TIME IS CT.

MAT CONTAINS DATA ABOUT THE SIGNATURES.

THE MOST RECENT VALUE OF | AT WHICH A NEW SIGNATURE IS
FOUND IS LAST.

THISC TALLIES WHICH CASES OCCUR FOR FIXED | GREATER THAN 0.
ISUM AND IMAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
FREQUENTLY OCCURING CASE.

INTEGER N,A,C,D,F,|,LAST

INTEGER S (27),FAKE,G(107) ,CT,MAT (107) ,THISC(107)

INTEGER ISUM(25), | MAX (25)

DUMMY VARIABLES

INTEGER T,K,F2,F3,HUND, |DUM, IDUM2,FF,ZERO °

DATA N,A,C,D,F,|,FAKE,CT,LAST/9%0/
DATA HUND,ZERO/100,0/

DATA (G (J),J=1,107) /107%0/

DATA (MAT (J) ,J=1,107) /107%0/
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DATA (TH SC(J) , J-1,107)/107*0/
DATA (1SUMJ) , J«1, 25)/ 25% 0
DATA (1MAX(J) ,J-1,25)/25%0/
N=25

NI TIALI ZE CASE FOR GRAPH ON NO VERTI CES
CT-1

FAKE- 0

00 1 K-1,27

FAKE- FAKE* 2+1 .

CONTI NUE

G( 1) »FAKE

GENERATE HEADER AND FI RST DATA LINE

TYPE 2

FORMATC VERTICES CASES CLASSES ~ LARGEST  DENSI TY!)
TYPE 1*50, ZERO, CT, CT, CT, HUNO

MAJOR LOOP ON | » # VERTI CES
DO 500 I«1,N
00 5 K- 1,107

THI SC(K) - 0

CONTI NUE
Tmi® (-1} /2

LOOPS ON A ANO 0 TO CREATE CASES
DO 400 A-O. T
DO 300 0-0,

1
VALUES FOR C ANO F CACULATEO FROM A,D AND |
C

ZERO OUT Sl GNATURE
DO 10 K-1,27

S(K -0
CONTI NUE

S| GNATURE _CALCULATI ON

(A+C.EQ D+F) S
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OO0

OOO0

kk

50

300
1*00

M5

450
500

1
P ———— P R
1 [ 1 [
IR TR TR\ HEN

PACKI NG SI GNATURE S INTO FAKE TO SAVE SPACE,
FAKE- 0
DO kk L1-1.27
FAKE- FAKE* 2+S( L1)
CONTI NUE

TEST FOR S| GNATURE ALREADY OCCURRI NG
DO 50 F2-1.CT
IF (GF2) - NE. FAKE) GO TO 50
MAT(FOO) STORES FIRST VALUE OF |
ONCE SI GNATURE RECURS, MAT (FOO)
VALUES FOR WiHI CH SI GNATURE OCCURS.
|F (MAT(F2) .GT.0) MAT(F2) - MAT (F2)+1
F3 - -l

245

1 GROUP OF 30

FOR SI GNATURE FQO AS -1.
|'S NUMBER OF DI FFERENT |

|F ((MAT(F2) .LT.0) .ANO. (MAT(F2) .NE.F3)) MAT(F2)»2

THI SC( F2)

GO TO 300

CONTI NUE :
| NSTALLATI ON OF NEW SI GNATURE

CT-CT+1

G( CT) »FAKE

MAT (CT) -

THI SC( CT) »1

LAST- |

CONTI NUE

CONTI NUE

CASE BY CASE OUTPUT ROUTI NE.
| MAX |S THE LARGEST CLASS SIZE FOR FIXED I.

~ THI SC(F2) +1

| SUM IS THE NUMBER OF CASES OCCURRING FOR FIXED I.

CALCULATING | MAX AND | SUM FROM THI SC.
DO kkS FF-1.CT
IF (THSC(FF) .GT.0
|F (TH SC(FF) . GT. | MAX(1))
CONTI NUE |

COMPUTE ANO PRI NT OUTPUT LINE FOR |
IDUM= ()41} % {1+t (1=1) /2)
| DUM2- 100. 0*1 MAX ( 1)/ 1DUMt. 5

TYPE 450,1,1DUM | SUM(1),1 MAX(1), | DUM2

FORMAT ( 5MO)
CONTI NUE

| SUM1)-1 SUM 1) +1
| MAX (1) - THI SC(FF)



c SUMMARY STATISTICS
TYPE 520,CT
520  FORMAT (' NUMBER OF SIGNATURES IS ',15)
F2=0
c THE SIGNATURE FOR I=0 IS UNIQUE TO THAT | VALUE.
D0 525 K=2,CT
IF (MAT (K) .GT.0) F2=F2+1
525  CONTINUE
TYPE 530,F2
530 FORMAT (' NUMBER OF SIGNATURES FOR MULTIPLE | VALUES 1S',15)
F2=CT-F2
TYPE 540,F2
540  FORMAT (' NUMBER OF SIGNATURES FOR SINGLE | VALUE (S ',15)
TYPE 550, LAST
550  FORMAT (' LAST NEW SIGNATURE OCCURS AT | = ',15)
END

B.2. L2 Qutput

The following is an output listing from program L2.
[PHOTO: Recording initiated Tue 28-Dec=-82 10:34AM]

LINK FROM EPSTEIN, TTY 114

TOPS-20 Command processor 5(134712)
End of COMAND.CMD.2
2@EXE L2.FOR
LINK: Loading
[LNKXCT L2 execution]

VERTICES CASES CLASSES  LARGEST  DENSITY
0 1 1 1 100
1 2 2 1 50
2 6 6 1 17
3 16 12 2 13
N 35 33 2 6
5 66 28 8 12
6 112 L2 2h 21
7 176 29 L8 27
8 261 50 76 29
9 370 34 196 53
10 506 36 272 54
11 672 35 Loo 60
12 871 58 512 59
13 1106 30 792 72
14 1380 36 960 70
15 1696 L3 1268 75
16 2057 50 1460 71
17 2466 30 1984 80
18 2926 Lo 2276 78
19 3440 35 2808 82
20 Lo11 50 3136 78
21 Lé42 34 3964 85
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22 5336 36 LLoo 82
23 6096 35 5236 86
24 6925 58 5732 83
25 7826 30 6912 88

NUMBER OF SIGNATURES IS 106

NUMBER QOF SIGNATURES FOR MULTIPLE | VALUES IS 58
NUMBER OF SIGNATURES FOR SINGLE | VALUE 1S 48
LAST NEW SIGNATURE OCCURS AT | = 12

CPU time 18.47 Elapsed time 1:22.29

2@PQOP

[PHOTO: Recording terminated Tue 28-Dec-82 10:36AM]
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APPENDIX C

INVESTIGATION OF THE LANGUAGE L, FOR DIRECTED

GRAPHS

C.1. The Program L2DI

The following is a listing of the program L2DL

(s NaNaNg)

OOOOOOOO0OO00O0n

s NesNesNsNeNsNsNs N NN

PROGRAM NAME: L2DI

AUTHOR: SUSAN EPSTEIN

THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L2 FOR
DIRECTED GRAPHS OF UP TO N = 25 VERTICES

GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE

A = THE NUMBER OF EDGES NOT IN THE GRAPH

B = THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS NOT IN

THE GRAPH ‘

C = THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS IN THE
GRAPH

THE NUMBER OF LOOPS IN THE GRAPH

THE NUMBER OF EDGES NOT IN THE GRAPH WITH REVERSALS IN
THE GRAPH

F = THE NUMBER OF LOOPS NOT IN THE GRAPH

| = THE NUMBER OF VERTICES IN THE GRAPH

D
E

THE SIGNATURE FOR EACH GRAPH 1S CALCULATED AS THE VECTOR
S AND THEN PACKED, TO SAVE SPACE, INTO THE VECTOR FAKE.

A LIST OF ALL PREVIQUSLY ENCOUNTERED SIGNATURES 1S STORED
IN THE MATRIX G.

THE NUMBER OF SIGNATURES AT ANY TIME IS CT.

MAT CONTAINS DATA ABOUT THE SIGNATURES.

THE MOST RECENT VALUE OF | AT WHICH A NEW SIGNATURE IS
FOUND 1S LAST.

THISC TALLIES WHICH CASES OCCUR FOR FIXED | GREATER THAN O.
ISUM AND IMAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
FREQUENTLY OCCURING CASE.

INTEGER N,A,C,D,F,!,LAST

INTEGER S (90) ,FAKE (3),G (5000,3),CT,MAT (5000) ,THISC (5000)
INTEGER I1SUM(25), IMAX (25)

DUMMY VARIABLES

INTEGER T,K,F2,F3,HUND, | DUM, | DUM2,FF,ZERQ, D2
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DATA N, A C D, F, I, CT, LAST/ 80/

DATA HUND, 2ER0/ 100, 0/

DATA (S(J) , J«1,90/90'Q

DATA (FAKE(J) , J»1,3)/3*Q

DATA ((QJ,K) , J-1,5000) ,K-1,3) /15000*0/
DATA (MAT(J), J- 1, 5000) / 5000* 0/

DATA (TH SC(J), J- 1, 5000) / 5000* 0/

DATA (1SUMJ) , J»l, 25)/ 25+ Q

DATA (I MX(J), J-1, 25)/ 25* 0/

N- 25

INTIALI ZE CASE FCR GRAPH ON NO VERTI CES
cr- 1

F2-0

00 1 K-1,30

F2- F2*2+1

CONTI NUE

DO 2 J-1,3

q1,J)-F2

CONTI NUE

GENERATE HEADER ANO FI RST QATA LINE

TYPE 3

FORVAT (" VERTICES CASES CLASSES  LARGEST
TYPE i »50, ZERQ CT. CT. CT, HU\D _

MAJOR LOOP ON | - # VERTI CES
00 500 I-1.N
DO5 K - 1,5000
TH SO(K) - 0
CONTI NUE
Tai®(1-1) /2

LOCPS ON A, BANOO TO CREATE CASES
00 400 A-0.T -

00 300 0-0,I
- (T-A) /2
00 200 B-0,[2
VALUES FCR CANOF CACULATEO
CT-A2*B
R 1-0
ZERO OUT S| GNATURE
00 10 K-1, 90
S(K -0
CONTI NUE

SI GNATURE CALCULATI ON

IF (A+C. EQ D+F) S(1)-1
IF (AEQO S(2)-1
IF (CEQQ S(3)-1
IF (DEQQ S\A-1
IF (FEQO S(5f-1
IF (AEQC) S(f)-1
IF (AEQD S(7)-1

DENSI TY?)
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L3
Ly

b5

50

PACKING

IF (A+B+D.EQ.C) S(62)=1
IF (A+B+D.EQ.F) S(63)=1
IF (A+B+F.EQ.C) S (64)=1
I|F (A+B+F.EQ.D) S (65)=1
IF (A+C+D.EQ.B) S (66)=1
IF (A+C+D.EQ.F) S(67) =1
IF (A+C+F.EQ.B) S (68)=1
IF (A+C+F.EQ.D) S(69)=1
IF (A+D+F.EQ.B) S(70)=1
IF (A+D+F.EQ.C) S(71)=1
IF (B+C+D.EQ.A) S(72)=1
IF (B+C+D.EQ.F) S(73)=1
IF (B+C+F.EQ.A) S (74)=1
IF (B+C+F.EQ.D) S (75)=1
IF (B+D+F.EQ.A) S(76)=1
IF (B+D+F.EQ.C) S(77)=1
IF (C+D+F.EQ.A) S(78)=1
IF (C+D+F.EQ.B) S(79)=1
IF (A+B+C.EQ.D+F) S (80)=1
IF (A+B+D.EQ.C+F) S (81) =1
IF (A+B+F.EQ.C+D) S (82)=1
IF (A+C+D.EQ.B+F) S(83)=1
IF (A+C+F.EQ.B+D) S (84) =1
IF (A+D+F.EQ.B+C) S (85) =1
|F (B+C+D.EQ.A+F) S (86) =1
IF (B+C+F.EQ.A+D) S (87)=1
IF° (B+D+F.EQ.A+C) S (88)=1
IF (C+D+F.EQ.A+B) S (89)=1
S (90) =0

SIGNATURE S INTO FAKE TO SAVE SPACE, 3 GROUPS OF 30

DO L4 L1=1,3

FAKE (L1) =S ((L1=1) %30+1)

DO 43 L2=(L1-1)*30+2,L1%*30
FAKE (L1) =FAKE (L1) #2+S (L2)
CONT INUE

CONT INUE

TEST FOR SIGNATURE ALREADY OCCURRING

D0 50 F2=1,CT

DO 45 FF=1,3

IF (G(F2,FF) .NE.FAKE (FF)) GO TO 50
CONT INUE

MAT (FOO) STORES FIRST VALUE OF | FOR SIGNATURE FOO AS -1.
ONCE SIGNATURE RECURS, MAT (FOO) 1S NUMBER OF DIFFERENT |
VALUES FOR WHICH SIGNATURE OCCURS.

IF (MAT(F2) .GT.0) MAT (F2)=MAT (F2)+1

F3 = -]

IF ((MAT(F2) .LT.0) .AND. (MAT (F2) .NE.F3)) MAT (F2)=2
THISC(F2) = THISC(F2)+1

GO TO 200

CONT INUE

INSTALLATION OF NEW SIGNATURE

CT=CT+1



(s NeNeNeg]

60

200
300
Loo

4h5

k50
500

520

525
530

540

550

25€

DO 60 FF=1,3

G (CT, FF) =FAKE (FF)
CONTINUE

MAT (CT) =-|

TH1SC (CT) =1
LAST=|

CONTINUE
CONTINUE

CONT INUE

CASE BY CASE OUTPUT ROUTINE.
IMAX |S THE LARGEST CLASS SIZE FOR FIXED |.
ISUM IS THE NUMBER OF CASES OCCURRING FOR FIXED |I.
CALCULATING IMAX AND ISUM FROM THISC.
DO 445 FF=1,CT
IF (THISC(FF) .GT.0) ISUM(1)=1SUM(I)+1
IF (THISC(FF) .GT.IMAX (1)) IMAX(1)=THISC(FF)
CONTINUE

COMPUTE AND PRINT OQUTPUT LINE FOR |
F2=T/2%2
IF (F2.EQ.T) |DUM= (T#%2/L+T+1) = (i+1)
IF (F2.NE.T) [1DUM=((T+1) %%2/b+ (T+1) /2) * (1+1)
IDUM2=100.0%IMAX (1) /IDUM+.5
TYPE 450,1,1DUM, ISUM(1), I1MAX (1) ,1DUM2
FORMAT (5110)
CONTINUE

SUMMARY STATISTICS

TYPE 520,CT

FORMAT (' NUMBER OF SIGNATURES IS ',15)
F2=0

.THE SIGNATURE FOR |=0 IS UNIQUE TO THAT | VALUE.

DO 525 K=2,CT

IF (MAT(K) .GT.0) F2=F2+1

CONTINUE

TYPE 530,F2

FORMAT (' NUMBER OF SIGNATURES FOR MULTIPLE | VALUES 1S',15)
F2=CT-F2

TYPE 540,F2

FORMAT (' NUMBER OF SIGNATURES FOR SINGLE | VALUE S ',15)
TYPE 550,LAST

FORMAT (' LAST NEW SIGNATURE OCCURS AT | = ',15)

END



C.2. L2DI

Output

The following is the output listing from program L2DL

BATCON V

10:38:21
10:38:21
10:38:21
10:38:21
10:38:21
10:38:21
10:38:21
10:38:26
10:38:26
10:38:26
10:38:26
10:38:26
10:38:26
10:38:26
10:38:26
10:38:30
10:38:54
10:38:58
10:39:08
10:39:09
10:39:09
10:39:09
10:39:09
10:39:09
10:39:09
10:39:10
10:39:13
10:39:23
10:39:49
10:40:31
10:42:09
10:44:27
10:L48:01

28-Dec-82 10:38:20

ersion 104 (6133) GLXLIB Version 1(527)
Job FILE Req #4LO for EPSTEIN in Stream 2
QUTPUT: Nolog TIME-LIMIT: 10:00:00
UNIQUE: Yes BATCH-LOG: Append
RESTART: Yes ASSISTANCE: Yes
SEQUENCE: 2101

Input from => PS:<EPSTEIN>FILE.CTL.3

Output to => PS:<EPSTEIN>FILE.LOG

USER Rutgers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)
USER

USER The system is somewhat unstable. Save your work often!
USER Frequent test times 5:30-6:00 pm and after midnight.
USER

MONTR TIME-LIMIT 36000

MONTR @LOGIN EPSTEIN CS~SRIDHARAN

MONTR [Job 15 also logged into PS:<EPSTEIN>]

MONTR Job 12 on TTY254 28-Dec-82 10:38:25

MONTR Last login on 28-Dec~-82 at 09:07:50

MONTR End of COMAND.CMD.2

MONTR 10:38:26 MONTR [PS Mounted]

MONTR

MONTR [CONNECTED TO PS:<EPSTEIN>]

MONTR EXE L2D!.FOR

USER FORTRAN: L2DI

USER MAIN.

USER LINK: Loading

USER  [LNKXCT L2D! execution]

USER  VERTICES CASES CLASSES LARGEST  DENSITY
USER 0 1 1 1 100
USER 1 2 2 1 50
USER 2 6 6 1 17
USER 3 24 20 2 8
USER L 80 78 2 3
USER 5 216 141 8 4
USER 6 504 336 24 5
USER 7 1056 L84 L8 5
USER 8 2025 956 76 b
USER 9 3610 911 196 5
USER 10 6072 1065 L16 7
USER 11 9744 1045 1086 11
USER 12 15028 1750 2496 17



10:

11
11
11
11

22

22

53:16

:00:28
:10:16
122:45
143231
12:
12:
14
15:
17:
18:
20:
22:
22:
22:
22:
22:
22:
:36:04
22:
:136:05

26:02
59:139
25:18
38:47
33:05
L2:17
17:25
36:03
36:03
36:03
36:03
36:03
36:04

36:05

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR

13
14
15
16
17
18
19
20
21
22
23
24
25

22400
32430
L5792
63257
85698
114114
149640
193536
247192
312156
39014b
483025
592826

998
1098
1584
1785

968
1438
1104
1651
1255
1107
1081
2104
1108

NUMBER OF SIGNATURES IS 4849

NUMBER QF SIGNATURES FOR MULTIPLE | VALUES IS 2572

5746
9758
16156
23508
Lo284
55838
77874
101792
150060
189316
250364
305916
413362

NUMBER OF SIGNATURES FOR SINGLE | VALUE IS 2277

LAST NEW SIGNATURE OCCURS AT | =

CPU time 6:06:56.65

25

Elapsed time 11:56:54.81

22:36:05 MONTR Killed by OPERATOR, TTY 246

Killed Job 12,User EPSTEIN,Account CS-SRIDHARAN,TTY 2!
at 28-Dec-82 22:36:04,

Used 6:07:09 in 11:57:39
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APPENDIX D.
INVESTIGATION OF THE LANGUAGE L, FOR UNDIRECTED

GRAPHS

D.1. The Program L3

The following is a listing of the program L3.

o PROGRAM NAME: - L3

AUTHOR: SUSAN EPSTEIN

THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L3 FOR
UNDIRECTED GRAPHS OF UP TO N = 25 VERTICES

(s N Nel

GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE
THE NUMBER OF EDGES NOT IN THE GRAPH

THE NUMBER OF EDGES IN THE GRAPH

THE NUMBER OF LOOPS IN THE GRAPH

THE NUMBER OF LOOPS NOT IN THE GRAPH

THE NUMBER OF VERTICES IN THE GRAPH

2 Xs Xz Xakz X2

A
c
)
F
J

THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR

S AND THEN SORTED, TO SAVE SPACE, USING THE VECTOR S1 INTO
THE VECTOR S2. THE VECTOR Q BECOMES THE SIGNATURE,
REPRESENTING THE CARDINALITY OF THE REGIONS AND THEIR
ORDERING. THE SIGNATURE FOR EACH GRAPH IS THEN PACKED, TO
SAVE SPACE, INTO THE VECTOR FAKE.

A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES 1S STORED
IN THE VECTOR G.

THE NUMBER OF SIGNATURES AT ANY TIME IS CT.

MAT CONTAINS DATA ABOUT THE SIGNATURES.

THE MOST RECENT VALUE OF | AT WHICH A NEW SIGNATURE IS
FOUND IS LAST.

THISC TALLIES WHICH CASES OCCUR FOR FIXED | GREATER THAN 0.
ISUM AND IMAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
FREQUENTLY OCCURING CASE.

INTEGER N,A,C,D,F,I,LAST

INTEGER S(14),51(14),52(14),Q(27),G(300) ,CT,MAT (300)
INTEGER THISC (300) ,FAKE, ISUM(25) , IMAX (25)

c DUMMY VARIABLES

INTEGER T,K,F2,F3,HUND, |DUM, I DUM2,FF,ZERO, TEMP,Y,MI,Z,L1

s NsNasNesNsNes NN NN NN NN Ne]

DATA N,A,C,D,F,},FAKE,CT,LAST/9%0/



10

DATA HUND,ZERO/100,0/

DATA (S(J),Jd=1,1k) /14%0/
DATA (S1(J),d=1,14) /1Lx0/
DATA (S2(J) ,J=1,1L) /1L*0/
DATA (Q(J),J=1,27)/27%0/
DATA (G (J),J=1,300)/300%0/
DATA (MAT (J),J=1,300) /300%0/
DATA (THISC (J),Jd=1,300) /300%*0/
BATA (ISUM(J),Jd=1,25) /25%0/
DATA (IMAX (J),J=1,25) /25%0/
N=25

INITIALIZE CASE FOR GRAPH ON NO VERTICES
CT = 1

00 1 J=1,14
Q(J)=J

CONT I NUE

D0 2 J=15,27
Q(J) =1

CONT I NUE

D0 3 J=1,27
FAKE=FAKE%2+Q (J)
CONT I NUE

G (1) =FAKE

GENERATE HEADER AND FIRST DATA LINE

TYPE 4

FORMAT (' VERTICES CASES CLASSES  LARGEST
TYPE 450,ZERO,CT,CT,CT,HUND

MAJOR LOOP ON | = # VERTICES
DO 500 I=1,N
DO 5 K = 1,300

THISC(K) = 0
CONTINUE
T=i%x(1-1)/2

LOOPS ON A AND D TO CREATE CASES

DO 400 A=0,T

DO 300 D=0, |

VALUES FOR C AND F CACULATED FROM A,D AND |
C=T-A
F=|-D

ZERO OUT SIGNATURE

00 10 K=1,27
Q (K) =0

CONT I NUE

S VALUES ARE ASSEMBLEED
S(1)=A
S(2) =C
S(3)=D
S (L) =F
S (5) =A+C

280

DENSITY')



20

25

30

ko

L

50

S (6) =A+D

S (7) =A+F

S (8)=C+D

S (9) =C+F

S (10) =D+F
S(11) =A+C+0D
S (12) =A+C+F
S (13) =A+D+F
S (14) =C+D+F

S VALUES MUST BE SORTED INTO S2 TO CREATE SIGNATURE
00 20 Y=1,14
S1 (Y) =S (Y)
S2(Y) =Y
CONT INUE
DO 30 Y=1,13
MI=Y
00 25 Z=Y+1,1L
IF (S1(M1).LE.S1(2)) GO TO 25
Mi=Z
CONTINUE
TEMP=S2 (Y)
S2(Y) =52 (M1)
S2 (M1) =TEMP
TEMP=S1 (Y)
S1(Y)=S1 (M)
S1 (M1)=TEMP
CONTINUE
Q(14)=S2(14)
DO LO J=1,13
Q (J+14) =0
Q(J)=S2 (J)
IF (S(S2(J)) .EQ.S(S2(J+1))) Q(J+1k4)=1
CONTINUE

PACKING SIGNATURE Q INTO FAKE TO SAVE SPACE, 1 GROUP OF 30
FAKE=0
DO Lk L1=1,27
FAKE=FAKE#*2+Q (L1)
CONTINUE

TEST FOR SIGNATURE ALREADY OCCURRING
00 50 F2=1,CT
IF (G(F2) .NE.FAKE) GO TO 50
MAT (FOO) STORES FIRST VALUE QF | FOR SIGNATURE FOQ AS -1I.
ONCE SIGNATURE RECURS, MAT(FOO) 1S NUMBER OF DIFFERENT |
VALUES FOR WHICH SIGNATURE OCCURS.
IF (MAT (F2) .GT.0) MAT (F2)=MAT (F2)+1
F3 = -|
IF ((MAT(F2) .LT.0) .AND. (MAT (F2) .NE.F3)) MAT(F2)=2
THISC(F2) = THISC(F2)+1
GO TO 300
CONTINUE
INSTALLATION OF NEW SIGNATURE



300
400

OOO0

445

450
500

520

525
530

540
550

CT-CT+1

G CT) »FAKE
MAT( CT) =-1
THI SC( CT) »1
LAST- |

CONTI NUE
CONTI NUE

CASE BY CASE OUTPUT ROUTI NE.
| X 1S THE LARGEST CLASS SIZE FCR FIXED I,
| SIM IS THE NUMBER OF CASES OCCURRING FCR FIXED I,
CALCULATING | MAX AND | SUM FROM THI SC.
DO 445 FF-1.CT
IF (TH SC(FF) .GT.O | SUM(1)-1 SUMI)+1
|F (TH SC(FF) . GT. IMAX(1)) [MX (1) »TH SC(FF)
CONTI NUE

COMPUTE AND PRINT OUTPUT LINE FOR |
| DUMs (J41) &% (1% ([=1) /2)
| DUMR- 100. 0*I MAX( 1)/ I-DUM+. 5
TYPE 450, |, IDUM | SUM(T) , IMAX(1) , | DUMR
FORMAT (5110)
CONTI NUE

SUMVARY STATI STI CS

TYPE 520, CT '

FORMAT (' NUMBER OF S| GNATURES IS M5)

F2-0

THE S GNATURE FCR 1-O IS UNIQUE TO THAT |
DO 525 K-2.CT

IF (MT(K .GT.O F2-F2+1

CONTI NUE

TYPE 530, F2

FORVAT (' NUMBER OF SI GNATURES FOR MULTIPLE |
F2- CT- F2

TYPE 540, F2

FORMAT (' NUMBER OF S| GNATURES FCR SINGLE |
TYPE 550, LAST

FORVAT (' LAST NEW S| GNATURE OCCURS AT |
END

VALUE.

VALUES 1S, 15)

VALUE IS M5)
» M5)

D.2. L3 Output

The following is the output listing from program L3.
28-Dec-82 22:51:01

BATCON Version 104(6133) GLXLIB Version 1(527)
Job FILE3 Req #41 for EPSTEIN in Stream 2
OUTPUT:  Nol og TIME-LIMT: 2:00:00
UNI QUE:  Yes BATCH- LOG.  Append



RESTART: Yes ASS|I STANCE:  Yes
SEQUENCE: 2102

[nput from »> PS: <EPSTEI N>FI LE3. CTL. 1
Qutput to '»> PS:<EPSTElI N>FI LE3. LOG

22:51:01 USER Rut gers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)
22:51:01 USER '

22:51:01 USER The system is sonewhat unstable. Save your work often!
22:51+¢02 USER Frequent test times 5:30-6:00 pm and after m dnight.
22:51:02 USER

22:51:02 MONTR TIME-LIMT 7200

22:51:02 MONTR GLOG@ N EPSTEIN CS- SRl OHARAN

22:51+06 MONTR  Job 12 on TTY254 28-0ec-82 22:51:06

22:51+07 MONTR  Last login on 28-0ec-82 at 13:07:41

22:51+07 MONTR  End of COMANO. C\VD. 2

22:51+07 MONTR 22:51:07 MONTR [PS Mount ed]

22:51+ 07 MONTR

22:51+07 MONTR [CONNECTED TO PS: <EPSTEI N>]

22:51407 MONTR EXE L3.FOR

22:51:09 USER  FORTRAN. L3

22:51:12 USER MAIN.

22:51:13 USER  LINK Loadi ng

22:51:15 USER  [LNKXCT L3 execution]

22:51:16 USER  VERTICES CASES -  CLASSES  LARGEST  DENSITY

22:51:16 USER 0 1 1 1 100
22:51:16 USER 1 2 2 1 50
22:51*16 USER 2 6 6 1 17
22:51:16 USER 3 16 16 1 6
22:51:16 USER 4 35 35 1 3
22:51:16 USER 9 66 52 2 3
22:51:16 USER 6 112 90 4 4
22:51:17 USER ! 176 96 6 3
22:51:17 USER 8 261 129 7 3
22:51:17 USER 9 370 112 16 4
22:51:18 USER 10 506 118 28 6
22:51:19 SR 1 672 120 50 7
22:51:20 SR 12 871 149 70 8
22:51:22 SR 13 1106 108 114 10
22:51.24 USER 14 1380 122 144 10
22:51+21 USER 15 1696 128 203 12
22:51730 USER 16 2057 145 245 12
22:511 34 USER 17 2466 108 336 14
22:51139 USER 18 2926 126 392 13
22:51 #44 USER 19 3440 120 504 15
22:51:52 USER 20 4011 145 576 14
22:52:01 USER 21 4642 112 730 16
22:52:10 USER 22 5336 122 820 15
22:52:20 USER 23 6096 120 1001 16
22:52:30 USER 24 6925 153 1111 16
22:52:41 USER 25 7826 108 1344 17

22:52:41 USER NUMBER COF SIGNATURES IS 259




22:52:41
22:52: 41
22:52: 41
22:52: 41
22:52: 41
22:52:41
22:52:41

26

USER NUMBER OF SIGNATURES FOR MULTIPLE | VALUES IS 157
USER NUMBER OF SIGNATURES FOR SINGLE | VALUE IS 102

USER LAST NEW SIGNATURE QOCCURS AT | = 12

USER CPU time 1:03.09 Elapsed time 1:25.58

MONTR 22:52:41 MONTR Killed by OPERATOR, TTY 246

MONTR Killed Job 12,User EPSTEIN,Account CS-SRIDHARAN,TTY 254
MONTR at 28-Dec-82 22:52:41, Used 0:01:06 in 0:01:35
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- APPENDIX E

INVESTIGATION OF THE LANGUAGE L, FOR DIRECTED

GRAPHS

E.1. The Program L3DI

The following is a listing of the program L3DI

(g N g NNl

OoOO0oOoOOOOOOOO0O 0

s NasNesNasNsNzsEsEsNsNesNsNsNsNgsNg]

PROGRAM NAME: L3DI

AUTHOR: 'SUSAN EPSTEIN

THIS PROGRAM CALCULATES SIGNATURES FOR LANGUAGE L3 FOR
DIRECTED GRAPHS OF UP TO N = 25 VERTICES

GRAPHS ARE DESCRIBED AS CASES. THE CASE PARAMETERS ARE

A = THE NUMBER OF EDGES NOT IN THE GRAPH

B = THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS NOT IN

THE GRAPH

C = THE NUMBER OF EDGES IN THE GRAPH WITH REVERSALS IN THE
GRAPH

= THE NUMBER OF LOOPS IN THE GRAPH

= THE NUMBER OF EDGES NOT IN THE GRAPH WITH REVERSALS IN
THE GRAPH

F = THE NUMBER OF LOOPS NOT IN THE GRAPH

| = THE NUMBER OF VERTICES IN THE GRAPH

0
E

THE SIGNATURE FOR EACH GRAPH IS CALCULATED AS THE VECTOR

S AND THEN SORTED, TO SAVE SPACE, USING THE VECTOR S1 INTO
THE VECTOR S2. THE VECTOR Q BECOMES THE SIGNATURRE,
REPRESENTING THE CARDINALITY QF THE REGIONS AND THEIR
ORDERING. THE SIGNATURE FOR EACH GRAPH IS THEN PACKED, TO
SAVE SPACE, INTO THE VECTOR FAKE.

A LIST OF ALL PREVIOUSLY ENCOUNTERED SIGNATURES |S STORED
IN THE MATRIX G.

THE NUMBER OF SIGNATURES AT ANY TIME IS CT.

MAT CONTAINS DATA ABOUT THE SIGNATURES.

THE MOST RECENT VALUE OF | AT WHICH A NEW SIGNATURE 1S
FOUND IS LAST.

THISC TALLIES WHICH CASES OCCUR FOR FIXED | GREATER THAN O.
ISUM AND IMAX PRESERVE THE TOTAL NUMBER OF CASES AND MOST
FREQUENTLY OCCURING CASE.

INTEGER N,A,C,D,F,I,LAST

INTEGER S(30), 51(30) s2(30),Q(60), FAKE(7) G (20000,7) ,CT



a0

INTEGER MAT (20000) ,THISC (20000)

INTEGER I1SUM(25), IMAX (25)

DUMMY VARIABLES

INTEGER T,K,F2,F3,HUND, | DUM, | DUM2,FF,ZERC, TEMP,Y,MI,Z, L1

DATA N,A,C,D,F,!,CT,LAST/8%0/

DATA HUND,ZERQ/100,0/

DATA (S(J),J=1,30)/30%0/

DATA (51 (J),J=1,30)/30%0/

DATA (S2(J),J=1,30) /30%0/

DATA (FAKE (J) ,J=1,7) /7*%0/

DATA ((G(J,K),J=1,20000) ,K=1,7)/140000%0/
DATA (MAT (J) ,J=1,20000) /20000%*0/
DATA (THISC(J) ,J=1,20000) /20000%*0/
DATA (ISUM(J) ,J=1,25) /25%0/

DATA (IMAX (J) ,J=1,25) /25%0/

N=25

INITIALIZE CASE FOR GRAPH ON NO VERTICES WHERE Q(K)=K FOR

K<31 AND Q(K)=1 FOR K>30

CT = 1

D0 2 J=1,6

FAKE (J) = (J=1) *5+1
DO 1 K= (J=1) %5+2,J%5
FAKE (J) =FAKE (J) *100+K
CONTINUE -

CONTINUE

FAKE2=Q

DO 3 J=31,59

FAKE2=FAKE2%2+1

CONT I NUE

FAKE (7) =FAKE2

DO L J=1,7

G (1,J) =FAKE (J)

CONTINUE

GENERATE HEADER AND FIRST DATA LINE

TYPE 5

FORMAT (' VERTICES CASES CLASSES  LARGEST  DENSITY'
TYPE 450,ZERO,CT,CT,CT,HUND

MAJOR LOOP ON | = # VERTICES
DO 500 i=1,N
DO 6 K = 1,20000

THISC(K) = 0
CONTINUE
Tai%(1-1)/2

LOOPS ON A,B AND D TO CREATE CASES
DO 400 A=0,T
DO 300 D=0, !
D2=(T-A) /2
DO 200 B=0,D2
VALUES FOR C AND F CACULATED



c

10

20

25

C=T-A-2%8
F=1-D

ZERO OUT SIGNATURE
DO 10 K=1,60

CONTINUE

SIGNATURE CALCULATION

SORTING

Q (K) =0

S(1)=A

S(2) =C
S(3)=D

S (L) =F

S (5) =A+C

S (6) =A+D

S (7) =A+F

S (8) =C+D

S (9) =C+F

S (10) =D+F
S(11) =A+C+D
S (12) =A+C+F
S (13) =A+D+F
S (14) =C+D+F
S(15) =B

S (16) =A+B
S(17) =8+C

S (18) =8+D

S (19) =B+F

S (20) =A+B+C
S (21) =A+B+D
S (22) =A+B+F
S (23) =B+C+D
S (24) =B+C+F
S (25) =B+D+F

S (26) =A+B+C+D
S (27) =A+B+C+F
S (28) =A+B+D+F
S (29) =A+C+D+F
S (30) =B+C+D+Ff

S VALUES TO CONSTRUCT SIGNATURE

00 20 Y=1,30
S1(Y) =S (Y)
S2(Y) =y
CONTINUE

DO 30 Y=1,29
Mi=Y

DO 25 Z=Y+1,30
IF (S1(MI).LE.S1(Z)) GO TO 25

Mi=Z

CONT INUE
TEMP=S2 (Y)
S2(Y)=S2(M1)
S2(MI) =TEMP
TEMP=S1 (Y)

267



30

kO

43
kk

k$

46 -

eIeXe!

50

60

200
400

OO0

SL(Y)-SL (M)
S1(M) - TEMP

CONTI NUE
Q30 - S2(30)

COVPARI NG Q VALUES BY BITS

DO kO J-1, 29
Q(J+30 -0
QJ)-S2(J)

IF(S(S2(3)) . EQ S(S2(J+1)))
CONTI NUE

PACKING SI GNATURE Q INTO FAKE TO
AD 1 GROP OF 29
00 kk 11-1,6
FAKE(L1) »Q( (L1- 1) *5+D
DO U3 L2-(L1-1)*542, L1*5
FAKE (11) - FAKE(L1)* 100+Q
CONTI NUE
CONTI NUE
FAKE2- 0
DO kS L1-31.59
FAKE2- FAKE2* 2+Q( L1)
CONTI NUE
FAKE( 7) - FAKE2

268

QJ+30)-1
SAVE SPACE, 6 GROUPS OF 5

L2)

TEST FOR SI GNATURE ALREADY OCCURRI NG

DO 50 F2-1.CT
DO 46 FF-1,7

IF (G(F2, FF). NE. FAKE( FF))

CONTI NUE
MAT(FOO) STORES FIRST VALUE OF |
ONCE SI GNATURE RECURS, MAT(FQO)

G0 TO 50

FOR SI GNATURE FQO AS -1 .
'S NUMBER OF DI FFERENT |

VALUES FOR WHI CH SI GNATURE OCCURS.
LF (MAT(F2) . GT. 0) MAT(F2) - MAT (F2) +1
F3- -

IF ((

THI SC( F2)

@0 TO 200

CONTI NUE
| NSTALLATI ON OF NEW S| GNATURE

CT-CT+1

DO 60 FF-1,7

G CT, FF) - FAKE( FF)

CONTI NUE

MAT (CT) <

TH SC(CT) -1

LAST- |

IF (CT. EQ 20000)

CONTI NUE

CONTI NUE

CONTI NUE

CASE BY CASE OUTPUT ROUTI NE.
|
I

© THI SC{ F2) +1

QD TO 5

| MAX
| SUM

MAT(F2) .LT.O . AND. (MAT(F2) . NE. F3)) MAT(F2)-2

19

S THE LARGEST CLASS SIZE FOR FIXED I.
S THE NUMBER OF CASES OCCURRING FCR FI XED I.



C CALCULATING | MAX AND | SUM FROM THI SC.
DO 445 FF-1.CT
IF (THSC(FP) .GT.O | SUM(I) -1 SUM(1 ) +1
|F (TH SC(FF) . GT. IMX(1)) | MX (1) - TH SC(FP
445 CONTI NUE

C . COVPUTE AND PRINT OUTPUT LINE FCR |
F2-T/ 2*2
IF (F2.EQT) | OUMb(T**2/ 4+T+i )t (| +)
IF (F2.NET) | DUM ((T+1)**2/ 4+(T+1)72)* (1 +1)
10UNR- 100. 01 MAX(1)/ LOUM. 5
TYPE 450, 1, 1DUM | SUM(I),1 MAX(1), | DUM

450 FORMAT (5110)
500 CONTI NUE
GOTO521
C SUMVARY STATI STI CS

519  TYPE 520
520  FORMAT (' 20000 S| GNATURES DI SCOVERED, MATRI X FULLY)
521 TYPE 522, CT
522 FORVAT (' NUMBER CF SI GNATURES IS ', 15)
F2-0
C THE SI GNATURE FCR 1-O IS UNIQUE TO THAT | VALUE.
00 525 K-2.CT
IF (MAT(K .GT.O F2-F2+1
525  CONTI NUE -
TYPE 530, F2 .
530  FORMAT (' NUMBER OF SI GNATURES FCR MULTIPLE | VALUES IS, 15)
F2- CT- F2
TYPE 540,F2
540 FORMAT (* NUMBER OF SIGNATURES FOR SINGLE | VALUE IS ',15)
TYPE 550,LAST
550 FORMAT (' LAST NBW SIGNATURE OCCURS AT | - \I5)
END

E.2. L3DI Output

The following is the output listing from program L30I.

1-Jan-83 9:06:45

BATCON Version 104(6133) GLXLIB Version 1(527)
Job FILE3D Req #88 for EPSTEIN in Stream 2
OUTPUT:  Nol og TIME-LIMT: 1:00:00
UNI QUE:  Yes BATCH LOG.  Append
RESTART: No ASSI STANCE: Yes

SEQUENCE: 3037

Input from -> PS: <EPSTEI N>FI LE3D. CTL. 1
Qutput to »> PS:<EPSTEI N>FI LE3D. LOG



9:11:15
9:16:06
9:26:33
9:46:33
10:07:45
10:07:45
10:07:46
10:07:46
10:07:L46
10:07:46
10:07:46
10:07:46
10:07:46

USER
USER
USER
USER
USER
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
MONTR
USER
USER
USER
USER

270

Rutgers/LCSR DEC-20 (Red), TOPS-20 Monitor 5.2(107200)

The system is somewhat unstable. Save your work often!
Frequent test times 5:30-6:00 pm and after midnight.

TIME-LIMIT 3600

@LOGIN EPSTEIN CS-SRIDHARAN

[Job 10 also logged into PS:<EPSTEIN>]
Job 24 on TTY254 1-Jan-83 09:06:50
Last login on 1-Jan-83 at 08:55:45

End of COMAND.CMD.2
9:06:50 MONTR [PS Mounted]
[CONNECTED TO PS:<EPSTEIN>]
EXE L3DI.FOR
FORTRAN: L3DI
MAIN.

LINK: Loading
[LNKPCX Program too complex to load and execute, will

run from file DSK:O024LNK.EXE]

USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
USER
MONTR
MONTR
MONTR

[LNKXCT L3DI execution]

VERTICES CASES CLASSES  LARGEST  DENSITY

' 0 1 1 1 100
1 2 2 1 50

2 6 6 1 17

3 24 24 1 L

L 80 80 1 1

5 216 200 2 1

6 504 L76 IN 1

7 1056 876 6 1

8 2025 1670 9 0

9 3610 2734 16 0

10 6072 4080 28 0

11 974k 5848 50 1

12 15028 7809 73 0

20000 SIGNATURES DISCOVERED, MATRIX FULL

NUMBER OF SIGNATURES 1S 20000

NUMBER OF SIGNATURES FOR MULTIPLE | VALUES IS 5191

NUMBER OF SIGNATURES FOR SINGLE | VALUE IS 14809

LAST NEW SIGNATURE OCCURS AT | = 13

CPU time 53:36.85 Elapsed time 59:11.72

10:07:46 MONTR Killed by OPERATOR, TTY 246

Killed Job 24,User EPSTEIN,Account CS-SRIDHARAN,TTY 254,
at 1-Jan-83 10:07:46, Used 0:54:53 in 1:00:56
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INDEX

I_-language (thesis specific) 167

Acyclic 82
ACYCLIC (algorithm) 82
Adjacent 12

Biconnected 139

BICONNECTED (algorithm) 138
Bipartite 96

BIPARTITE (algorithm) 156

Block 176

Boolean property (thesis specific) 13

Cardinality 12

Case (thesis specific) 38

Center of a star (thesis specific) 97
Chain 90

CHAIN (algorithm) S0

Characteristic (thesis specific) 13
Circumference 185
CIRCUMFERENCE-K (algorithm) 185
Closed walkk 82

Collectively exhaustive description set (thesis specific) 13
Coloring 166

Compiement 23

Compiete 101

COMPLETE (algorithm) 101

. .Complete (thesis specific) 65
Compiete bipartite 96, 158
COMPLETE-BIPARTITE (algorithm) 158
Compiex seed set 213

Component 126

Connected 85, 126, 129, 138
CONNECTED (algorithm) 138
Connected component 126
CONSTRUCT (algorithm) 60
Contractible 175

Correct (thesis specific) 65
Covering an edge 161

Cutpoint 176

Cycle 82

CYCLE l(algorithm) 94



Degree 70

DEGREE (aigorithm) 151
Description (thesis specific) 13
Diameter 224

Directed 12

Edge 12

Edge cover 189

Edge covering number 188

EDGELESS (algorithm) 62

EDGES (algorithm) 148

Elementary edge contraction 175

Empty graph 12

Enumerate (thesis specific) 61

Equal properties (thesis specific) 13

Equal set cardinality 35

Equivalent L-expressions (thesis specific) 14
Equivalent R-properties (thesis specific) 201
EULERIAN (algorithm) 111

Eulerian graph 111

Eulerian walk 111

EVEN-M (algorithm) 106

EVEN=-N (algorithm) 102

EVEN-REGULAR (algorithm) 131

Expressive power (thesis specific) 8

Floor (thesis specific) 72
FRONT-END 32

General description (thesis specific) 13
GENERATE (algorithm) 61

Generator algorithm (thesis specific) 74
Graph 12

Graph generator 32

Graph property (thesis specific) 13
Graph theory (thesis specific) 7

HAMILTONIAN (algorithm) 213

" Hamiltonian cycle 213

Hamiltonian graph 213

Hub of a pinwhesi (thesis specific) 123
Hub of a wheei (thesis specific) 98

Independence number 182
INDEPENDENCE-K (algorithm) 182
Independent vertex set 164

Inverse of a property (thesis specific) 74
Isomorphic 12

Isomorphism 12

K-chromatic 170
K-CHROMATIC (aigorithm) 171
K-colorable 166



K-COLORED (algorithm) 168
K-colored (thesis specific) 166
K-coioring 166

K-COMPONENTS (algorithm) 126
K-connected 142

K-CONNECTED (algorithm) 142
K-EDGE-COVER (algorithm) 190
K-EDGES (algorithm) 115

K-f actor 193

K-FACTOR (algorithm) 193
K-factorabie 196

K-FACTORABLE (algorithm) 197
K-INDEPENDENT (algorithm) 164
K-reguiar 129

K-vertex-coverable 161
K-VERTEX-COVERED (algorithm) 161
K-vertex-covered (thesis specific) 161
K-VERTICES (algorithm) 114

L-characterization (thesis specific) 14. 15
L-class 15

L-expression (thesis specific) 14
L-property (thesis specific) 15

L1- CENERATOR 33

L1- TESTER 34
Ll.-Hanguages 167

Label (thesis specific) 166
Labelled graph 166

Labelling (thesis specific) 165
Loop 12 :
Loop labelling (thesis specific) ~ 157
Loop marking (thesis specific) 155
Loopfree 88

LOOPFREE (algorithm) 88

MAX (algorithm)  153.

MAX-K (algorithm) 120

Maximum degree 120

Merger of graph properties (thesis specific) 204
MIN-K (algorithm) 119

Minimum degree 119

Mutually exclusive description set (thesis specific) 13

Neighbor 12

Neighborhood 70

Node 12

NON-PLANAR (algorithm) 234
Numeric (thesis specific) 13

ODD-M (algorithm) 108
ODD-N (algorithm) 105
ODD-REGULAR (algorithm) 135
Open walk 82 :



Pc-language (thesis specific) 167

Partitioning description set (thesis specific) 13
Path 21, 111

PINWHEEL (algorithm) 124

Pinwheel (thesis specific) 123

Planar 233 '

PLANAR (algorithm) 236

Post-profile (thesis specific) 78

Pre-profiie (thesis specific) 78

Procedural power (thesis specific) 8

Profile (thesis specific) 78

R-property (thesis specific) 64
R*-property (thesis specific) 147
R°-property (thesis specific) 167

R®-property (thesis specific) 184

Recursive graph grammar (thesis specific) 64
Region 26

Regular 129

Reversal 23

Reverse 23

Rim of a pinwheel (thesis specific) 123

Rim of a wheel (thesis specific) 98

Satisfied description (thesis specific) 13
Seed graph (thesis specific) 64

Seed set (thesis specific) 64
Selector (thesis specific) 64

Set equality 23

Set inequality 23

Signature 15

Signature (thesis specific) ' 14

Simple seed set (thesis specific) 213
Spoke (thesis specific) 97

Star 96

STAR (algorithm) 96

“"Subgraph 126, 176

Subsumption 201

Testing algorithm 34, 74

Trail 111

Transitive closure (thesis specific) 51
Tree 85

TREE (algorithm) 85

Undirected graph 12

Unequal set cardinality 35

Union of graphs (thesis specific) 196
Unique description (thesis specific) 13
Unsatisfiable description (thesis specific) 13
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Vertex 12

Vertex cover 161

Vertex covering number 176
VERTEX-COVER (algorithm) 177
VERTICES (algorithm) 148

Wak 82 :
Weakly-complete (thesis specific) 30
Wheel 98

WHEEL (algorithm) 98
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