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ABSTRACT

The problem of representing and utilizing a large body of knowledge is

fundamental to artificial intelligence. This thesis focuses on two important

issues related to this problem,

1. An agent cannot maintain complete knowledge about any but the most

trivial environment, and therefore, he must be capable of reasoning with

incomplete and uncertain information.

2. An agent must act in real-time. Human agents take a few hundred

milliseconds to perform a broad range of intelligent tasks, and agents

endowed with artificial intelligence should perform similar tasks in

comparable time.

It is argued that the best way to cope with partial and incomplete

information is to adopt an evidential form of reasoning, wherein, inference

does not involve establishing the truth of a proposition but instead, it involves

finding the most likely hypothesis from among a set of alternatives.

It is also argued that in order to satsify the real-time constraint, we must

identify the kinds of inference that need to be performed very fast, and

provide a computational account of how this limited class of inference may be

performed in an acceptable time frame. This latter requirement prompts us to

consider massively parallel models of computation, in particular models that

do not require an interpreter.

Inheritance and categorization within a conceptual hierarchy are identified

as two operations that humans perform very fast. It is suggested that these

operations are important because they seem to lie at the core of intelligent

behavior and are precursors to more complex reasoning.

The above concerns and proposed solutions lead to an evidential



framework for representing conceptual knowledge, wherein the principle of

maximum entropy is applied to deal with uncertainty and incompleteness. It

is demonstrated that the proposed framework offers a uniform treatment of

inheritance and categorization, and solves an interesting class of inheritance

and categorization problems, including those that involve exceptions, multiple

hierarchies, and conflicting information. The proposed framework can be

encoded as an interpreter-free, massively parallel (connectionist) network, that

can solve the inheritance and categorization problems in time proportional to

the depth of the conceptual hierarchy.
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Chapter 1

Introduction

1.1 The thesis

The problem of representing and utilizing a large body of knowledge is

fundamental to artificial intelligence. It is well recognized that intelligent

activity of any significance, whether it be natural language understanding,

vision, problem solving, or planning, requires access to a large storehouse of

knowledge at all levels of processing. Artificial intelligence has a rich tradition

of work in knowledge representation and the related problem of inference.

Given the vast scope and the central nature of the knowledge

representation problem, there is no dearth of issues that need to be addressed

or problems that remain to be solved. This thesis focuses on two of the issues

that I consider to be crucial.

These issues are:

1. The necessity of identifying and formalizing inference structures that

are appropriate for dealing with incompleteness and uncertainty. An

agent cannot maintain complete knowledge about any but the most

trivial environments, and therefore, he must be capable of reasoning

with incomplete and uncertain information.

2. The importance of computational tractability. An agent must act in real-

time. Human agents take a few hundred milliseconds to perform a

broad range of intelligent tasks, and we should expect agents endowed

with artificial intelligence to perform similar tasks in comparable time.

It is argued that the best way to cope with partial and incomplete

information is to adopt an evidential form of reasoning, wherein, inference



does not involve establishing the truth of a proposition but instead, it involves

finding the most likely hypothesis from among a finite set of alternatives.

It is also argued that in order to satsify the real-time constraint, we must

identify the kinds of inference that need to be performed very fast, and

provide a computational account of how this limited class of inference may be

performed in an acceptable time frame. This latter requirement prompts us to

consider massively parallel models of computation, in particular models that

do not require an interpreter.

Inheritance and categorization within a conceptual hierarchy are identified

as two operations that humans perform very fast It is suggested that these

operations are important because they seem to lie at the core of intelligent

behavior and are precursors to more complex reasoning.

The above concerns and proposed solutions lead to an evidential

framework for representing conceptual knowledge, wherein the principle of

maximum entropy is applied to deal with uncertainty and incompleteness.

The proposed framework offers a uniform treatment of inheritance and

categorization, and solves an interesting class of inheritance and categorization

problems, including those that involve exceptions, multiple hierarchies, and

conflicting information. In particular, the proposed treatment of inheritance

offers distinct advantages over existing solutions based on default logic and

inferential distance ordering. The evidence combination rule employed in this

thesis is demonstrably better than the Dempster-Shafer evidence combination

rule in the context of the problems addressed in this thesis. Furthermore, it is

established that the framework can be encoded as an interpreter-free,

massively parallel (connectionist) network, that can solve the inheritance and

categorization problems in time proportional to the depth of the conceptual

hierarchy.

1.2 Reasoning with incomplete and uncertain information:



The computational cost of gathering, processing and storing information

about a complex and constantly changing environment makes it impossible

for an agent to maintain complete knowledge. However, an agent must act

and make choices on the basis of available information, and this compels him

to make inferences based on incomplete knowledge. With the exception of

some formal and artificially constructed domains, an agent seldom has

sufficient information to pin down the exact state of the world. Consequently,

a straight forward application of deductive reasoning is not very useful in

making decisions or choices. Consider a situation in which an agent must

choose between actions A and B, where action A is appropriate if hypothesis

P is true while action B is appropriate if hypothesis Q is true. Assume that the

agent's knowledge is incomplete and the best that he can do is deduce MP V

QM. What should an intelligent agent do in such a situation? Should he give

up in despair and make an arbitrary choice, or is there any other option open

to him? An excellent strategy would be to make the best use of all available

information and try and identify which of the two hypothesis is more likely to

be true. If P is more likely than Q then he should perform action A else he

should perform action B. This form of reasoning is best viewed as evidential

reasoning, wherein inference does not involve establishing the truth of a

proposition, but instead it involves finding the most likely hypothesis from

among a finite set of alternatives. Informally, evidential reasoning justifies

inference, not on the grounds that the selected hypothesis is true in all

possible worlds that are consistent with the agent's knowledge, but rather on

the grounds that there are more possible worlds consistent with the agent's

knowledge in which the selected hypothesis is true, than there are those in

which one of the alternative hypothesis is true1.

1. This interpretation does not apply to all theories of evidential reasoning. However,
this is the interpretation adopted in this work.

Although the need for formalizing inference structures that deal with

incomplete and uncertain knowledge is well recognized in knowledge



representation circles [Doyle 83][Fox 81][Halpern & McAUester 84][[Joshi

78][Levesque 82][McCarthy 84][McDermott & Doyle 80][Moore 83][Nilsson

84][Reiter 80], only a few of these attempt to adopt an evidential approach

[Haplern & McAllester][Joshi 78][Nilsson 84].

1.3 Computational tractability: limited inference and parallelism

The issue of computational tractability is of utmost importance to artificial

intelligence and it should not be dismissed as a mere concern for the

efficiency of implementation. Computational tractability is not about

efficiency, programming tricks, or faster machines; the issue is more

profound. The crucial question that it raises is: "does there exist a

computational account (any account) of how an agent may draw the relevant

inferences in the time scales he is permitted by the environment"? For if we

desire to build an intelligent agent (robots or what have you), then we must

realize that such an agent will have to act in real-time, and often this may

mean that it will have to perform non-trivial inferences in a very short time.

Human agents take but a few hundred milliseconds to perform a broad range

of tasks such as visual recognition, categorization, and property inheritance,

and it should not be unreasonable to expect agents endowed with artificial

intelligence to perform similar tasks in comparable time.

Given that unrestricted inference is undecidable, a concern for tractability

should prompt us to consider limited inference [Frisch & Allen 82] [Levesque

84]. One must identify the kinds of inference that an agent needs to perform

very fast, and provide a computational account of how these may be

performed within an acceptable time frame. It is possible that one may

succeed in identifying such a class of restricted inference and also ensure that

at least these inferences are performed with great efficiency.

In view of the above, the knowledge base and reasoning subsystem of an

agent may consist of two components. One of the components, the knowledge



base (KB), may contain a highly structured collection of the agent's

knowledge together with a reasoner that is capable of performing a limited

class of inference with extreme efficiency. The other component may be a

collection of several domain dependent modules (domain experts), each of

which may be capable of elaborate reasoning but contain a lot of domain

specific meta-information (or control information) to help it perform its

inferences efficiently. The operation of the overall subsystem may proceed as

follows: The actual task dependent reasoning is performed by the various

domain experts. Each expert may query the KB for information and use its

own reasoner to draw requisite inferences based on the information provided

by the KB, While performing these inferences, the domain expert's reasoner

would make full use of the control information available locally, and hence

perform the inferences efficiently. In the limiting case, a domain expert will

have enough control information to make its reasoner functionally equivalent

to a set of compiled routines, each of which is dedicated to a specific domain

task. This approach to a knowledge base and reasoning subsystem is similar in

spirit to the functional view proposed in [Brachman et al. 83].

The extremely tight constraint on the time available to an agent to

perform non-trivial inferences entails that we need to look beyond limited

inference in our quest for computational tractability. Many of the perceptual

and cognitive tasks that need to be performed in a few hundred milliseconds

would require millions of instructions on a serial computer, and it is fairly

obvious that at some point we must resort to even massive parallelism. For

this reason one must consider massively parallel models of computation, in

particular, models that do not require an interpreter. It is my contention that

one can exploit the full power of parallelism only if it is taken as an

important premise, and used to direct one's search for interesting solutions in

the space of possible knowledge representation frameworks; it will not suffice

to find serial solutions and then look for possible uses of parallelism in

implementing these solutions. Section 2 discusses this issue in greater detail.



1.4 From issues to problems

The specific problems this thesis addresses are those of inheritance and

categorization in semantic networks. This choice is well motivated because a

broad range of reasoning tasks that human agents perform effortlessly and

extremely fast may be viewed as examples of inheritance and categorization,

and furthermore - as is argued in section 1.6, inheritance as well as

categorization involve reasoning with incomplete knowledge.

Inheritance involves inferring properties about an individual or class,

based on our knowledge of the properties of a more general class. Consider

the kind of reasoning that goes on when we act as though we know that

"Tweety flies" when what we actually know is: "Tweety is a bird" and "birds

fly". This kind of reasoning, often referred to as default reasoning, is

commonplace - one may even argue that it is the quintessense of common

sense reasoning - and may be characterized as inheritance. If artificial

intelligence models of language processing are to be believed, then

inheritance plays a crucial role in natural language processing [Findler

79][Allen & Frisch 82] (also see [Cottrell 85]).

Each one of us is constantly classifying and categorizing our experiences.

Our survival in a complex environment depends on our ability to organize

our knowledge in terms of a manageable number of categories. A perfect

example of categorization is visual recognition; it would not be inappropriate

to claim that at higher levels of processing, visual recognition is based on

matching a collection of features detected in an image to some internal

representation of the visual characteristics of objects (or classes of objects).

Inheritance and categorization may be defined with respect to complex

entities besides physical objects and their properties. One could have

hierarchically organized information about events and relations and apply the

same form of reasoning. For example, inheritance may be generalized to



include reasoning about parts and temporal intervals [Allen 83][Fahlman

79][Schubert et al 83], (also see section 3.3).

It is my belief that the operations of categorization and inheritance are

among the fundamental ingredients of intelligent behavior. They lie at the

core of and act as precursors to more elaborate forms of reasoning, and

provide the raw material for more complex and specialized reasoning

processes. With reference to the architecture of a knowledge base subsystem

alluded to in section 1.2, the structure of the central knowledge base is that of

a semantic network. Domain experts constantly query the semantic network

and the questions they pose amount to inheritance and categorization

requests.

In the following sections I demonstrate that the reasoning underlying

inheritance and categorization is based on incomplete and uncertain

information, and is best described as evidential reasoning.

L5 Semantic networks

Since their introduction by Quillian [Quillian 68], semantic networks have

played a significant role in knowledge representation research. Semantic

networks are representation formalisms that express knowledge in terms of

concepts and their properties. A salient feature of semantic networks is that

they highlight the hierarchical (subsumption) relationships between concepts.

Each concept is represented by a node and its hierarchical relationship is

depicted by connecting appropriate concept nodes via IS-A links. Nodes at

the lowest level of the hierarchy denote individuals2 (Tokens) while nodes at

higher levels denote classes of individuals (Types). As one moves up the IS-A

links one encounters more and more abstract concepts. Properties are

attached to concept nodes via suitably labelled links. A property is attached at

the highest possible level of abstraction in the conceptual hierarchy. Thus, a

property that is true of mammals is attached to the node MAMMAL instead of



being attached to nodes such as DOG, WHALE Consequently, if a property

is attached to a node C then it is assumed to be applicable to all nodes that

are descendants of C

2. Alternately, the lowest level may denote "phases" of individuals, thus one may have
nodes such as "Fido when he was a puppy" and "Fido when he was two years old".

Inheritance is the form of reasoning that permits an agent to infer ("by

inheritance") properties of a concept based on the properties of its ancestors.

For example, if the node BIRD has the property "FLIES" attached to it, and the

node TWEETY is connected to BIRD via an IS-A link, and we do not know

whether Tweety flies or not, then using inheritance one may infer that Tweety

flies.

Categorization is the dual of the inheritance problem. Unlike inheritance

which seeks a property value of a given concept, categorization seeks a

concept that has some specified property values. The categorization problem

may be described as follows: "Given a description consisting of a set of

properties, find a concept that best matches this description. This problem is

seldom analysed in artificial intelligence work related to semantic networks

although it is the central problem in perception (a notable exception is NETL

[Fahlman 79]).

In order to understand and formalize inheritance and categorization one

must begin by questioning the nature of knowledge represented in semantic

networks. In other words, one must pin down the meaning of Types and the

properties associated with Types. These questions have been raised in the past

[Woods 75], [Allen & Frish 82], and several answers have been provided. In

the following section I discuss some attempts that have been made at

answering the above question and point out their shortcomings in modelling

natural concepts.

1.5.1 Semantic networks are notational variants of first-order logic.



Attempts to explain semantic networks as notational variants of first-order

predicate calculus (FOPC), date back to Cercone & Schubert [Cercone &

Schubert 75]. They claimed that semantic networks were simply a graphical

notation for predicate calculus; - they even developed an elaborate graphical

notation to represent all of FOPC. A formalization of the supposed content of

a semantic network appears in [Hayes 79] and [Charniak 81]. The translation

involves mapping Tokens to constants, Types to unary predicates, and

properties to either binary or unary predicates. Thus, an IS-A link between

TWEETY (Token) and BIRD (Type) is expressed as:

BIRD(TWEETY)

the IS-A link between BIRD and LIVING-THING (Type) is expressed as

VX BIRD(x) = > LIVING-THING(x)

If a property is mapped to a unary predicate then the property of a concept

may be expressed as:

V(x) CANARY(x) = > YELLOW(x)

Alternately, properties may be treated as two place predicates in which

case the above information may be expressed as:

V(x) CANARY(x) = > HAS-COLOR(x, YELLOW)

In the translation described above, inheritance amounts to one or more

applications of modus ponens. For example, starting with CANARY(TWEETY)

one may deduce YELLOW(TWEETY) or alternately, HAS-COLOR(TWEETY,

YELLOW), by a simple application of modus ponens. However, if a property

were attached several levels above in the conceptual hierarchy then

inheritance would require repeated applications of modus ponens.

Despite its elegance and simplicity, the above translation has three



shortcomings,

1. The above translation does not explain how the information encoded in a

semantic network could be used to solve categorization problems,

2. The control aspect of IS-A links is lost in the proposed translation to

FOPC for the translation treats IS-A links as if they were any other

implication in the knowledge base,

3. It overlooks two crucial aspects of world knowledge namely, the presence

of exceptions and multiple hierarchies.

The translation to FOPC overlooks a fundamental dimension along which

knowledge representation formalisms ought to be compared, A knowledge

representation framework should not merely prescribe how small units of

information ought to be represented, but it should also detail how the totality

of information ought to be structured and organized so that appropriate

information may be located with ease and relevant inferences may be

performed efficiently. In other words, two knowledge representation

formalisms are equivalent only if they contain the same information about the

world, as well as the same control information about how to make inferences

using this information.

The above translation to FOPC only encodes the component of

information in a semantic network, which is about the world being modelled.

However, semantic networks not only encode information about the world,

but they also encode knowledge that may be used by an interpreter to

perform certain inferences efficiently. Semantic networks make certain

commitments about which inferences are important, and provide mechanisms

for facilitating these inferences. For example, if we view semantic networks as

graphs then inheritance reduces to a simple graph traversal problem. This

shortcoming is avoided by Allen and Frisch [Allen & Frisch 82], They

introduce special predicates: TYPE and SUBTYPE together with special
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axioms that describe the transitive nature of IS-A links, in order to capture

the special role played by these links during inheritance.

However, the most fundamental problem with the proposed translation

into FOPC is the manner in which information about properties is translated.

Either of the two translations involve the use of the universal quantifier.

Thus, if one wanted to say "Birds fly", a translation into FOPC may result in:

VXBIRD(X) =>FLIES(x)

or else one may say:

Vx BIRD(X) => has-mode-of-Uansportation(x, FLYING)

Such a characterization of properties is confounded by two aspects of

world knowledge:

Exceptions: There is a preponderance of situations where one may want to

associate a property with a class, although - strictly speaking, the property

may not hold for all members of the class. This leads to the notion of

exceptions. To use a classic example, one might consider it natural to

associate the property of being able to fly with birds, knowing fully well

that all birds do not fly.

Multiple hierarchies: Often there exist several alternate but equally useful

hierarchical organizations of concepts in a domain.3 Consequently, it

becomes more natural to organize concepts in the form of multiple

hierarchies, wherein a concept may have more than one ancestors.

3. It is possible to map such "multiple views" into a taxonomy. However, this can only
be done by introducing artificial concepts that correspond to "cross products" of concepts
in individual hierarchies. For instance, we may want to classify objects in two ways: one by
their shape, and the other by their color. Collapsing these two classifications to yield a
single taxonomy will force us to introduce concepts corresponding to all possible pairs of
shape and color values.



The presence of exceptions and multiple hierarchies in semantic networks

introduces non-monotonicity and ambiguity, neither of which can be handled

within the theories of first order logic that were suggested to correspond to

semantic networks.

To illustrate that exceptions lead to non-monotonicity, consider the

following example:

Assume that the agent knows that "Birds fly", "Penguins do not fly",

"Penguins are birds". If he is told that "Tweety is a bird", he will infer that

"Tweety flies". However, if in addition to the above, he were told that

"Tweety is a penguin", then we would expect him to retract his earlier

inference "Tweety flies". This would give rise to non-monotonicity.

The problem of ambiguity arises when the agent may hold seemingly

conflicting beliefs, as is illustrated with the help of a familiar example

(henceforth the quaker example):

The agent may simultaneously believe that:

Quakers tend to be pacifists. - SI -

Republicans tend to be non-pacifists. - S2 -

Dick is a quaker. - S3 -

Dick is a republican. - S4 -

A translation into FOPC leads to inconsistency and renders the resulting

theory unusable. In this example, Dick has two parents in the conceptual

hierarchy, one (Quaker) arose from classifying persons in terms of their

religious beliefs, and the other (Republican) arose from classifying persons on

the basis of their political beliefs.

1.5.2 Semantic networks are equivalent to suitable theories of default logic.

Recognizing the inability of simple theories of first order logic to



formalize semantic networks with multiple hierarchies and exceptions,

Etherington and Reiter have proposed an alternate formalization based on

default logic [Reiter 80]. Etherington and Reiter [Etherington & Reiter 83]

have shown that default theories that admit semi-normal defaults can handle

inheritance in semantic networks with exceptions.

The Etherington and Reiter proposal does handle the problem of

exceptions4. However, its treatment of multiple inheritance (inheritance from

multiple unrelated ancestors), seems to overlook an important characteristic of

real world knowledge. We substantiate this with the help of the quaker

example.

4. I have some basic reservations about this approach which are discussed in section
5.4.

Let us examine how the proposed system would draw conclusions about

Dick's pacifism - or the lack of it, on the basis of the agent's world knowledge

given in SI through S4 (cf. the quaker example). In default logic, SI through

S4 would be represented as shown below:

QUAKER(X) : PACIFIST(X) — dr-1

PACIFlST(x)

REPUBLICAN(X) : NON-PACIFIST(X) — dr-2

NON-PACIFIST(x)

QUAKER(DICK) —- A - l

REPUBLICAN(DICK) —- A-2

SI and S2 map to default rules dr-1 and dr-2 respectively, while S3 and S4

translate into simple first-order assertions given by Al and A2. In each

default rule, the formula to the left of the colon is called the prerequisite of

the default, the formula to the right of the colon is called the justification,



while the formula in the "denominator" is called the consequent. A default

rule has the following interpretation: if the prerequisite is known to be true,

and if the justification is consistent with what is assumed, then one may infer

the consequent

The knowledge encoded in dr-1, dr-2, Al and A2, leads to two extensions.

One of the extensions includes PACIFIST(DICK), while the other includes NON-

PACIFIST(DICK). Default logic prescribes that "any one of these extensions may

be interpreted as an acceptable set of beliefs about the world", and hence, a

system like the one outlined in [Etherington & Reiter 83] would arbitrarily

choose between one of these extensions and respond with an answer that lies

in the chosen extension. The choice of extension would depend on which of

the two default rules - "Quakers tend to be pacifists" and "Republicans tend

to be non-pacifists", is selected first by the inference algorithm. If the default

rule that encodes "Republicans tend to be non-pacifists" happens to be

selected first, the system would infer that "Dick is a non-pacifist". Once this

inference is made, the rule encoding "Quakers tend to be pacifists" would no

longer be justifiable with reference to Dick and hence, would not play any

role in drawing conclusions about Dick. If instead, the default rule "Quakers

tend to be pacifists" happens to be selected first, the system would infer that

"Dick is a pacifist" and the rule "Republicans tend to be non-pacifists" would

be rendered inapplicable and play no further role in the inference process.

One may make two observations on the basis of the above discussion.

1. In deciding whether Dick is a pacifist or a non-pacifist, only one of the

two default rules is used. In general, once a rule is selected and applied, it

precludes the use of other default rules that conflict with the inferences made

by the former. Thus, if the system happens to make use of the knowledge that

"Quakers tend to be pacifists", it has to essentially ignore the world

knowledge that "Republicans tend to be non-pacifists".



2. The conclusions drawn by the system depend on a non-deterministic

choice of the order of rule application. Hence, the conclusions drawn by the

system are not only dictated by the inference structure but also depend on the

process structure that implements some ad-hoc strategy for choosing rules.

(The italicized terms are used in the sense of [Hayes 77]).

Our intuitions about the knowledge in the quaker example suggest that in

drawing conclusions about Dick, both the statements - "Quakers tend to be

pacifists", and "Republicans tend to be non-pacifists", are relevant and hence,

both must affect the final conclusion. In general, the final conclusion should

reflect the combined effect of all the relevant information. However, because

default logic makes the implicit assumption that all default rules have the

same "significance" or "import", it follows that if two or more rules have

conflicting consequences then either the use of one rule should preclude the

use of the other rules (as was the case in the quaker example), or no

conclusions should be drawn based on these rules (see [Reiter & Crisculo

81]).

The nature of knowledge encoded by default rules suggests that all rules

need not have the same import (even those having the same inferential

distance). For instance, an agent may believe that the tendency of Quakers to

be pacifists outweights the tendency of Republicans to be non-pacifists and

an epistemotogically adequate formalism should be capable of expressing such

differences.

A way to formalize these distinctions is to treat statements such as SI and

S2 as evidential assertions and to associate a numeric quantity with each

assertion to indicate its evidential import. If one could assign meaning to

these numbers and explain how these may be extracted from world

knowledge, and also specify a formal calculus for computing the combined

effect of multiple (conflicting as well as reinforcing) evidential assertions then

one would be able to handle situations such as the quaker example more



satisfactorily. For instance, statements such as "Quakers are pacifists" may be

interpreted to mean - "the fact that 'x is a Quaker' lends evidence a to the

fact that 'x is a pacifist'". Similarly, "Republicans tend to be non-pacifists"

may be interpreted to mean "the fact that 'x is a Republican' lends evidence /$

to the fact that 'x is a non-pacifist'". In the evidential version of the quaker

example, there will be evidential support a for "Dick is a pacifist" (because

Dick is a Quaker and Quakers tend to be pacifists), while there will be

evidential support p for "Dick is a non-pacifist" (because Dick is a

Republican and Republicans tend to be non-pacifists). Deciding whether Dick

is a pacifist or a non-pacifist need not be based on arbitrary choices but instead,

be resolved by a formally specified theory of evidential reasoning.

It may be argued that in order to handle interactions between default rules

it may not be necessary to introduce numbers. For example, given n default

rules one could enumerate all the possible cases of interactions (about n!

combinations), and specify the correct inferences that need be drawn in each

case. For instance, in the quaker example, if "Quakers tend to be pacifists" is

a stronger default rule than "Republicans tend to be non-pacifists", then all

one needs to do is posit the following default rules:

"If someone is a Quaker and a Republican then he is probably a pacifist"

"If someone is a Quaker and not a Republican then he is probably a

pacifist"

"If someone is a Republican but not a Quaker then he is probably a non-

pacifist".

These rules could mimick the effect of associating numbers with the

original pair of simple default rules. However, the argument against this

suggestion is that having a formal calculus for computing the effects of

interactions between default rules in a justifiable manner is far more desirable

than having to explicitly list the outcome of every possible interaction.



Furthermore, knowledge acquisition would be problematic in a scheme that

handles interactions between defaults by explicit enumeration of cases

because adding new knowledge may require extensive modifications of

existing default rules.

In the quaker example, I have deliberately used the construct "tend to be"

instead of "are". Thus, SI reads "Quakers tend to be pacifists" and not

"Quakers are pacifists" or "All Quakers are pacifists". However, none of the

arguments offered above would have been less relevant had I used "are"

instead of "tend to be". In everyday situations when we say "Quakers are

pacifists" or even "All quakers are pacifists" we seldom mean that - "ALL

quakers are pacifists- period". What we actually mean is more akin to "most

Quakers are pacifists, of course there are exceptions, but generally it is the

case ....". The normal usage of language often belies the complexity of the

information being communicated. Details and qualifications are often left

unarticulated, because the speaker relies upon the hearer to fill in the

necessary qualification by utilizing his knowledge of linguistic (and cultural)

conventions.

L5.3 Touretzky's inferential distance ordering

Touretzky [Touretzky 84] has suggested a formal account of inheritance in

semantic networks. His thesis may be summarized by quoting what he calls

the principle of inferential distance ordering. The principle states that: if A

inherits P from B, and ~P from C, then "if A has an inheritance path via B to

C and not vice versa, then conclude P; if A has an inheritance path via C to B

and not vice versa, then conclude ~P; otherwise report an ambiguity". (From

[Touretzky 84] p. 204). In the quaker example, Touretzky's system would

report an ambiguity, for the principle of inferential distance ordering does not

solve the problem of combining information from disparate sources. The

principle induces only a very specific kind of distinction between default

rules. This distinction primarily addresses the issue of exceptions and indeed,



using this ordering Touretzky's system is able to handle exceptions5.

However, his formalism treats all rules at the same inferential distance as

having the same import and this forces him to report ambiguity in multiple

inheritance situations such as the quaker example.

5. I have some basic reservations about the manner in which Touretzky handles

exceptions, these are discussed in section 5.4

1.6 Evidential nature of knowledge in semantic networks

It was pointed out in section 1.4.1 that a simple translation of the

relationship between concepts and their properties into a universally

quanitified implication does not suffice because very often we associate a

property with a Type, even though the property may not hold for all

members of the Type. Similarly, many of the properties that are used to

categorize instances of a Type are not unequivocally indicative of the Type.

In other words, it is extremely difficult - if not impossible, to determine a set

of necessary and sufficient properties that may be associated with a Type.

It is worth pointing out that the above observations are being made with

respect to a "working definition" of a Type, i.e. descriptions of Types we use

in our day to day interactions; information we use to make inferences of the

sort: MTweety flies because Tweety is a bird" even though we know that all

birds do not fly, or information we use to recognize a person walking down

the hallway as being a friend, although there is a distinct possibility that the

person is just a look alike.

It may be possible to pin down the ideal definition of a Type. For

example, one could state that the definition of "gold" is "the element whose

atomic number is 79". Although it seems possible to find definitions for

extremely elementary concepts such as gold, the situation becomes tricky

when one tries to write down precise definitions of concepts such as

"furniture" - or to mention a classic example, "game" [Wittgenstein 53]. I do



not intend to get involved in a philosophical debate, but the following

observation is pertinent The identification of precise definitions of concepts

is not critical to our ability to cope with our environment, and hence is not of

much interest to me in the context of this thesis. For when we interact with

our environment, the kind of information available to us may not be the kind

that is required to evaluate the precise definitions of a category; nature has not

endowed us with an "atomic number finder", but with a visual system that

can "see yellow and detect lustre". For a discussion of categories (Types), the

related psychological findings, and references to relevant philosophical

literature, see [Smith & Medin 81].

It is argued in section 3.4, that Types evolve in order to enable an agent to

cope with a complex environment Given his limited resources, the best

strategy open to an agent is to make generalizations that help him in breaking

up the world into a manageable number of categories. By doing this he is able

to categorize novel experiences and make predictions about these, based on

past generalizations. It is certain that some of the categorizations and the

consequent predictions that the agent will make will turn out to be wrong,

but this is a small price to pay for being most often right, when the alternative

is inaction.

What has been said above about Types should not be new to researchers

in knowledge representation, but it has been repeated because in spite of it

being obvious, when the time comes to formalize the notion of Types, this

basic characteristic of Types is ̂ overlooked, simply because it is inconvenient

to deal with. This state of affairs is a very good example of a theory taking

precedence over the phenomena it is purported to model.

The stand taken in this thesis is that the notion of Types - specially as it

corresponds to natural kind terms, is best modelled within an evidential

framework, the basic idea of which has already been introduced in section

1.4.2. Within an evidential framework, beliefs such as "Apples are red" are



interpreted to mean that if Mx is an apple" then there is some evidence a that
Mx is red in color", and also that "if x is red in color" then there is some

evidence p that "x is an apple". In the general case, if we are told that an

object is red in color then we would have varying degrees of evidence that it

is an apple or a tomato or a rose Similarly, if we are told that an object is

an apple, then we would have varying degrees of evidence that its color could

be red, green or yellow.

If all the apples we had ever seen, read, or heard about, were red in color,

then "x is a apple" would have provided evidence only to "x is red in color".

(This situation would be equivalent to Vx APPLE(X) => RED(x), but notice

that there is no requirement that the evidence provided to RED would equal

1.0 or some such maximum value). Finally, if all the red things that we were

aware of were apples, then "x is red" would have provided evidence only to

"x is an apple". (This would correspond to Vx RED(x) => APPLE(X) ).

In the quaker example we considered a situation where two conflicting

pieces of evidence needed to be resolved; evidential reasoning can deal with

such situations. The details of an evidential treatment of inheritance and

categorization in semantic networks are laid out in section 5, however, the

following section gives a broad outline of the evidential framework.

1.7 Evidential reasoning

Evidential reasoning involves finding the most likely hypothesis from

among a finite set of alternative hypotheses. This form of reasoning is

essential when an agent must act and make choices on the basis of available

information, and he does not possess sufficient information to pin down the

exact state of the world. It was argued in section 1.2 that in such situations, a

straight forward application of deductive reasoning is not very useful for

making decisions because the agent would not just want to know the various

possibilities, but also their relative likelihoods.6
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Evidential reasoning may be summarized as follows:

Given a set of mutually exclusive hypotheses {«^, <*2, ... «n}

For each hypothesis a[

* Gather available evidence

* Combine evidence

Choose the hypothesis that receives the highest combined support

It is required that the evidence combination rule be such that the

hypothesis which is most likely - given the information at hand, receives the

highest combined support,

jS. This is not to suggest that decision making is based on likelihoods alone. For
instance, a complete account of decision making would at least have to incorporate the
notion of "utility". The actual decision criteria may be arbitrary complex, but determining
the likelihoods of the possible outcomes would still remain a basic step in the decision
process.

The form of evidential reasoning employed in this thesis (cf. section 5.1)

justifies inference, not on the grounds that the selected hypothesis is true in

all possible worlds that are consistent with the agent's knowledge, but rather

on the grounds that there are more possible worlds consistent with the agent's

knowledge in which the selected hypothesis is true, than there are those in

which one of the alternative hypothesis is true. If K denotes the agent's

knowledge, then instead of K entailing a, if and only if all interpretations that

satisfy K also satisfy a, we have the following situations:

from among «1? a^, ... <*n, the most likely alternative a* is found, where a

hypothesis a\ is more likely than a\t if and only if from among all

interpretations that satisfy K, more interpretations satisfy ax than a;. A

measure of the likelihood of a{ is given by the number of interpretations that



satisfy K and also satisfy av

If only one of the alternatives is provable (and hence the rest are provably

false), then only the provably correct hypothesis will receive any evidence; all

other hypotheses will receive zero evidence. This is a situation in which one

could have used deductive reasoning to make a choice, and in such a situation

the evidential reasoning would also produce the same result

A common objection to evidential reasoning has been that by abandoning

standard deduction, one will be abandoning truth, and time and again it has

been said that such reasoning is inexact and "unjustified". This results in a

misconception that evidential reasoning is ad-hoc and informal. However,

adopting evidential reasoning does not mean that one has given up the notion

of truth. On the contrary, it means realizing that (absolute) Truth is often

elusive, that one's knowledge is partial, and the desire to ascertain truth does

not mean that if we cannot ascertain truth we should not try and seek what is

most likely (or most probably) to be true.

Attempts to simulate evidential reasoning as a deductive system without

facing up to the issue of likelihood, usually end up being mired in

consequences such as non-monotonicity or probabilistic truth values. Other

alternative approaches such as default logic also do not deal with likelihood

and leave the issue of selecting an extension as an implementation detail.

Likelihood becomes an issue of inference strategy, a quirk of implementation,

and at best a fuzzy thing called heuristics.

Needless to say, there will occur situations in which two or more

conflicting conclusions receive exactly equal evidential support and a system

based on an evidential formulation will have to report an ambiguity or make

arbitrary choices. However, this will happen only when a choice cannot be

made because of the inherent nature of the world knowledge. For instance, if

one is asked to choose between heads and tails as the possible outcomes of



the toss of a fair coin, one is entirely justified in making an arbitrary choice.

However, such cases will be extremely improbable, at least much less

probable than those that will occur if all default rules were to have the same

evidential import; which indeed is the case in default logic.

My apologies to the reader with a background in statistical inference and

probabilistic reasoning, who may find this section stating the obvious.

However, this thesis is primarily aimed at readers who are engaged in

knowledge representation research, and given the tradition in this field, most

of what has been said above is pertinent. In spite of continued interest in

evidential reasoning [WUPAI 85], specially in the area of expert systems

[Pople 77][Shortliffe 76][Duda et al. 76], researchers in knowledge

representation have largely ignored evidential reasoning as a framework for

modelling commonsense reasoning. This thesis establishes the relevance of

evidential reasoning to mainstream knowledge representation work by

demonstrating that an evidential approach suggests principled solutions to the

problems of exceptions and multiple inheritance in semantic networks, and at

the same time offers a uniform solution to the categorization problem.

L8 System Overview

This section presents an overview of the proposed knowledge

representation system with the help of two examples. The first example

illustrates how knowledge may be encoded and accessed via networks of

simple processing elements, and the second example describes how such a

system has been simulated on a conventional computer.

1.8.1 Basic organization of the knowledge base system

The system's conceptual knowledge is encoded in a network referred to as

the memory network. This network is composed of a large number of

extremely simple processing elements (nodes) that interact with one another

by propagating activation along weighted links. The memory network



employs spreading activation to perform limited forms of inference such as

inheritance and categorization in accordance with the theory developed in this

thesis.

In order to perform specific inferences - as against exhibiting general

associative behavior or modelling diffuse priming effects, the memory

network must be capable of controlling the propagation of activation. An

important aspect of this research was the development of control mechanisms

for regulating the spread of activation. The control mechanisms suggested in

this thesis are embodied in the pattern of interconnections between nodes as

well as in the computational characterstics of the nodes. Furthermore, these

mechanisms are entirely domain independent.

The translation from a body of knowledge to a network that embodies this

knowledge and performs inferences based on it, is purely mechanical - in

particular, it does not involve any ad hoc manipulation of weights to achieve

the appropriate behavior.

In keeping with the commitment to massive parallelism, it is important

that the network operate without the intervention of a central controller or a

central interpreter. Consequently, the memory network is such that once the

relevant nodes are activated, the appropriate inferences get performed

automatically and the result becomes available in the form of activation levels

of appropriate nodes. A mechanism for accessing the information encoded in

the memory network is outlined below; a detailed description is provided in

[Shastri & Feldman 84].

The information encoded in the memory network is accessed via other

network fragments called routines. Thus, not only the representation of

knowledge but also its access is actualized via networks. Routines encode

canned procedures for performing specific tasks and are represented as a

sequence of nodes (units) connected so that activation can serve to sequence



through the routine. In the course of their execution, routines pose queries to

the memory network by activating relevant nodes of the memory network.

Once activated, the memory network performs the required inferences via

controlled spreading of activation, and returns the answer by activating

appropriate response nodes in the routine.

All queries are posed with respect to an explicit set of answers and there

is a response node for each possible answer. The activation returned by the

memory network is a measure of the evidential support for an answer.

Response nodes compete with one other and the node receiving the

maximum activation from the memory network dominates and triggers the

appropriate action.

Figure 1.1 depicts the interaction between a fragment of an agent's

restaurant routine and a part of his memory network. In this routine

fragment, the task of deciding on a wine results in a query to the memory

network about the taste of food and the decision is made on the basis of the

answer returned by the memory network. Action steps are depicted as oval

nodes, queries as hexagonal nodes and response nodes as circular nodes. The

memory network in the example encodes the following information:

Concepts in the example domain are characterized by two properties, has-

taste and has-color. HAM and PEA are two concepts in the domain. HAM is

SALTY in taste and is PINK in color, PEA is SWEET in taste and is GREEN in

color.

The arcs in the memory network represent weighted links. The triangular

nodes (called binder nodes) associate objects, properties and property values.

Each node is an active element and when in an "active" state, sends out

activation to all the nodes connected to it. The weight on a link modulates the

activation as it propagates along the link. A node may become active on

receiving activation from another node in the memory network or the routine.

Binder nodes behave slightly differently in that they become active only on



receiving simultaneous activation from a pair of nodes.

To find the taste of HAM a routine would activate the nodes has-taste and

HAM. The binder node bl linking has-taste and HAM to SALTY will receive

coincident activation along two of its links and become active. As a result, it

will transmit activation to SALTY which will ultimately become active.

If some routine needs to find an object that has a salty taste it would

activate the nodes has-taste and SALTY. This will cause the appropriate binder

node to become active and transmit activation to HAM. Eventually, HAM will

become active completing the retrieval.

These two cases roughly correspond to how inheritance (finding property-

values of a specified object) and categorization (identifying an object given

some of its attributes) may be processed by the network. The above examples

do not involve any evidential reasoning or actual inheritance, and are solely

meant to give the reader an idea of the parallel implementation that is

described in section 6.

1.8-2 An overview of simulation

This section describes how the behavior of the memory network is

simulated on a conventional computer. The simulation proceeds in three

stages, as depicted in figure 1.2. During the first stage, a high-level description

of the information to be encoded in the memory network is processed by a

compiler (SNAIL) and translated into a set of commands to a general purpose

network builder (SPIDER). The high-level description input to SNAIL does

not depend on any aspect of the parallel implementation.

During the second stage, SPIDER constructs a network in accordance with

the commands generated by SNAIL. Finally, the activity of the network

constructed by SPIDER is simulated using CISCON - a connectionist

network simulator.



As an example consider the "quaker example" discussed in section 1.4.1.

Assume that an agent has the following world knowledge:

"Most persons are non-pacifistsM —- SI

"Most quakers are pacifists" — S2

"Most republicans are non-pacifists" —- S3

"Dick is a quaker" — S4

"Dick is a republican" —- S5

Within an evidential framework, sentences such as SI through S3 are
viewed as evidential assertions and a numeric quantity is associated with them
(cf. section 1.4.2). The precise interpretation of these numeric quantities and
their subsequent use in drawing inferences is described in chapters 4 and 5,
for now an intuitive interpretation of these numbers as being indicators of
"evidential strenghts" will suffice.

An agent whose knowledge includes SI through S3 may have the
following view of the world:

70% of all persons are non-pacifists, while 30% of them are pacifists.

70% of all quakers are pacifists but 30% are non-pacifists.

80% of all republicans are non-pacifists while 20% are pacifists.

In addition to the above, let us assume that the agent also believes that 5%
of all persons are quakers while 40% are republicans.

Let us also assume that persons have a property (attribute) "has-belieff

(i.e. persons have the property that they hold beliefs), and that some of the
values of the property "has-belieff are "pacifist" and "non-pacifist".

The above information may be input to SNAIL in the form of four lists:

i) a list of concepts,

ii) a list of properties and their associated values.



iii) a list indicating the "subtype11 and "instance-off relationship between

concepts,

iv) a list specifying how members of a concept are distributed with respect

to various property values. The numbers that appear in this list specify

the distribution; these numbers have a simple interpretation that is

explained in chapter 4.

The actual input to SNAIL is as follows:

(NB-COncept'( PERSON REPUBLICAN QUAKER

BELIEFS PACIFIST NON-PACIFIST))

(NB-property '((has-bel PACIFIST NON-PACIFIST))

(NB-is-a X (QUAKER PERSON 0.05) (REPUBLICAN PERSON 0.40)

(DICK QUAKER 0.1) (DICK REPUBLICAN 0.0125)

(PACIFIST BELIEFS 0.3) (NON-PACIFIST BELIEFS 0.7))

(NB-delta'( (PERSON has-bel PACIFIST 1.0 0.3)

(PERSON has-bei NON-PACIFIST 1.0 0.7)

(QUAKER has-bel PACIFIST 0.12 0.7)

(QUAKER has-bel NON-PACIFIST 0.02 0.3)

(REPUBLICAN has-bel PACIFIST 0.27 0.2)

(REPUBLICAN has-bel NON-PACIFIST 0.46 0.8) )

When the above input is provided to SNAIL, it generates commands to

SPIDER which in turn constructs a network similar to the one shown in

figure 1.3.

When the question: "Is Dick a pacifist or a non-pacifist" is posed to this

network7, the activation levels of the nodes PACIFIST and NON-PACIFIST



stabilize to values that are in the following proportion:

1.00 : 0.66

This implies that based on the knowledge encoded in the network, it is

more likely that Dick is a pacifist Furthermore, the ratio gives a quantitative

measure for comparing the likelihood of Dick being a pacifist versus he being

a non-pascifist

7. The exact steps involved in posing the question and obtaining the answer are
described in chapter 6. In broad terms, the question is posed by activating the nodes
DICK, has-belief, and BELIEFS, and enabling the IS-A links emanating from DICK.

1.9 Organization of the thesis

The rest of the thesis is organized into 6 chapters. Chapter 2 briefly

describes the model of parallel computation adopted in this thesis and the

reasons for its choice. Chapter 3 discusses some knowledge representation

issues relating to Types (categories) and proposes an organization for the

conceptual structure. Chapter 4 specifies the representation language for

capturing the evidential nature of information associated with Types.

The evidential formulation and its applications to inheritance and

categorization are developed in chapter 5. Section 5.1 derives an evidence

combination rule based on the principle of maximum entropy, and section 5.2

compares this approach to the Dempster-Shafer evidence combination rule

and the Bayes' rule for computing conditional probabilities. Section 5.3

derives a theory of inheritance based on the result derived in section 5.1, and

section 5.4 compares this formulation to solutions proposed by Fahlman,

Touretzky, and Etherington and Reiter. Section 5.5 develops the solution to

the categorization problem based on the result derived in section 5.1. Both in

the case of inheritance and categorization, the conditions are specified that

the conceptual structure must satisfy for the solutions to apply. The solution

developed in this chapter provides a natural treatment of defaults, exceptions



and conflicting information.

The solutions developed in chapter 5 may be realized as a highly parallel

network of active elements connected via weighted links. This parallel

encoding is described in chapter 6, and it is proved that the resulting

networks solve the inheritance and categorization problem in time

proportional to the depth of the conceptual hierarchy. For pedagogical

purposes, the network description and the proof of correctness are provided

separately for inheritance (section 6.1) and categorization (section 6.2).

Section 6.3 specifies how the two networks described in sections 6.1 and 6.2

can be synthesized into a single network that can solve the inheritance as well

as the categorization problem. Section 6.4 elaborates on some implementation

details. Finally, section 6.5 describes how the proposed system has been

simulated on a conventional computer and presents the results of several

simulations to illustrate the behavior of networks during inheritance and

categorization tasks.

Chapter 7 discusses some limitations of the current approach and lists

some unresolved issues. It also indicates possible directions that may be taken

in pursuing the line of research described in this thesis.
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Chapter 2

Massive Parallelism

Human agents perform non-trivial cognitive tasks in but a few hundred

milliseconds. If performed on a serial computer, these tasks would require

millions of instructions, and it is fairly obvious that if one wants agents

endowed with artificial intelligence to match or improve upon human

performance, then at some point one will have to exploit parallelism. One

may approach the issue of parallelism in two ways:

1. Treat parallelism purely as an implementation issue; work on problems

independent of any consideration for parallelism, and having solved the

problem, investigate the possibility of exploiting parallelism.

2. Take parallelism an an important premise and use it to guide the search

for interesting solutions in the space of possible solutions.

This research was guided by the belief that in order to exploit the full

potential of parallelism one must adopt the second strategy, and furthermore,

one must focus on massively parallel models of computation. Consequently, I

adopted connectionism as the underlying model of computation for this work.

The connectionist framework has emerged as a serious candidate for

modeling cognitive processes. It provides a plausible model of computations

carried out in neuronal networks, and independent of any such

considerations, is a powerful model of massively parallel computation.

2.1 The connectionist model

A connectionist network consists of a large number of simple computing

elements called units. Each unit has a very large number of incoming and

outgoing connections and it communicates with the rest of the network by



transmitting a single value. A unit transmits the same value to all elements it

is connected to. The output value is closely related to the unit's potential and

is best described as a level of activation. A unit's activation reflects the

amount of activation the unit has been receiving from other units. All inputs

are weighed and combined in a manner specified by the site functions and

potential function in order to update a unit's potential. A more technical

description follows:

A network consists of a large number of units connected via links. The

units are computational entities defined by:

{q} : a small set of states, (fewer than 10)

p : a continuous value called potential

v : an output value, approximately 10 discrete values

i: a vector of inputs ii, 'u ... L (this is elaborated below)

together with functions that define the values of potential, state and

output at time t+1 , based on the values at time t:

Pt+i <— ^ w t f

q t + 1 < — Q0 r p r q t )

v t + i < — v(irp t,q t)

A unit need not treat all inputs uniformly. Units receive inputs via links

(or connections) and each incoming link has an associated weight. A unit

weighs each input using the weight on the appropriate link. Furthermore, a

unit may have more than one input site and incoming links are connected to

specific sites. Each site has an associated site-function. These functions carry

out local computations based on the input values at the site, and it is the

result of this computation that is processed by the functions P, Q and V. The



notion of sites is useful in defining interesting behavior. For example, some

inputs may be treated as "enabling" inputs whose presence or absence

determines whether the unit attends to the remaining inputs or ignores them.

The functions P, Q and V are arbitrary but keeping with the underlying

philosophy of these models, they are assumed to be simple. For a detailed

account of the connectionist model refer to [Feldman & Ballard 82].

In course of my work, the only major departure I have made from the

standard model is to assume that the output of each unit may have the same

precision as its potential (cf. Chapter 6).

Connectionist models have been used by researchers in the domain of

vision. [Ballard 84] describes the application of the paradigm to problems in

low-level vision. [Sabbah 85] presents a system to recognize objects in the

origami world, and [Feldman 82] proposes a connectionist model of the visual

system. [McClelland & Rumelhart 81], [Rumelhart & McClelland 82]

describe a network that is similar to a connectionist network, for word or

letter recognition from visual input. Other applications are in the areas of

speech errors [Dell 80]; early language processing [Cottrell 85]; low-level

motor control like that of the Vestibulo-ocuiar Reflex [Addanki 84]. Recently,

Hop field and Tank have shown that a good (not necessarily optimal but close

to optimal) solution to the Travelling Salesman problem may be obtained

within a few time steps by using a massively parallel network. Their networks

are similar to the kind of networks employed in this work in that they also

employ units that have a continuous (analog) potential. For a collection of

papers describing state-of-the-art research based on connectionist models

refer to [Cognitive Science 85]. This research demonstrates that connectionist

network can be "programmed" to carry out relatively sophisticated reasoning

tasks such as inheritance and categorization that were regarded to be "hard"

problems for such networks.

2.2 Relevance of connectionist models to this work



There were three reasons for choosing connectionism as the model of

parallel computation:

1. It is a massively parallel model of computation.

2. It provides a natural encoding of evidential reasoning.

3. It permits the encoding of non-trivial computations.

2.2*1 Importance of massive parallelism

The massively parallel nature of connectionism permits one to exploit

parallelism to the fullest. The fine grain of parallelism permits one to assign a

single processing element to each unit of information. This has the following

interesting consequence:

Assume that besides enumerating facts about the world, we also identify

the important inferential connections between these facts. Now if we encode

each piece of information as a connectionist unit (henceforth unit), and an

inferential interconnection between pieces of information as an explicit link

between the appropriate units, then we can view inference as spreading of

activation in a connectionist network1.

1. Needless to say, this is a gross oversimplification, but the basic idea is sound - at

least in the context of limited inference. That the idea works is demonstrated by this thesis.

The above metaphor has tremendous appeal because it suggests extremely

efficient parallel implementations. This is not a new metaphor, and dates back

at least to Quillian's work on semantic nets [Quillian 68] who employed the

propagation of discrete "activation tags" in a network to find common

properties of concepts. Quillian's semantic nets consisted of nodes

interconnected by labeled links. Nodes in the network represented "word

concepts" that were defined in terms of their associations with other word

concepts. He proposed the notion of "breadth first tracing", with the trace



leaving activation tags on nodes. This formed the basis of the "intersection1'

operation for finding common properties of concepts.

Fahlman [Fahlman 79] was the first to seriously investigate the possibility

of exploiting the power of parallelism using a Quillian like propagation of

activation tags (markers). Fahlman's NETL system design consists of a central

computer connected to a large number of node and link elements, each of

which is a hardware element. The central computer is a serial machine and

issues commands to links and nodes. Each basic concept is represented as a

node, and each assertion by a link. Nodes and links communicate over a

shared bus with a central computer. Nodes have a small number of memory

bits, called marker bits. The nodes propagate markers along links, in response

to the instructions issued by the controller. This operation, called marker

passing, is the basis of computations performed by the network.

NETL uses marker passing to perform simple inferences based on

operations like set intersection, and transitive closure. The intersection

operation locates items that share a set of properties (i.e. categorization),

whereas the transitive closure operation handles inheritance as well as closures

of relations like part-of. These operations are performed in parallel and allow

the system to conduct a very fast search, essentially independent of the size of

the knowledge base. The marker passing mechanism is very similar to

Quillian's idea of breadth first tracing using activation tags. However,

Fahlman suggests a complete design of a hardware machine to implement

marker passing as a parallel operation.

A limitation of marker passing systems is that the communication

between network elements is in terms of a small number of discrete markers,

each of which may be on or off. Furthermore, each element is only capable of

detecting the presence or absence of a marker in the input. This makes the

system incapable of supporting evidential reasoning. For example,

categorization amounts to finding all concepts that have all the specified set



of properties. As each propety has the same import, there

"best matchtf or a "partial match". Furthermore, Fahlmar

inheritance problem suffers from serious drawbacks, the an

the network are sensitive to race conditions, specially u

exceptions and multiple hierarchies. The limitations c

systems are discussed in [Fahlman 82], [Fahlman et ai. 81] and alsolii secuon

5.4. The connectionist networks described in chapter 6 encode the evidential

theory of inheritance and categorization developed in chapter 5.

2.2.2 Ease of encoding evidential computations

The connectionist framework provides the neccessary primitives for

capturing notions like "weighted evidence" and "evidence combination". This

makes it ideal for performing evidential reasoning, and differentiates

connectionist models from schemes like NETL. A unit may be interpreted as

representing a hypothesis and the inputs to the unit may be viewed as

evidence provided to it by the rest of the network. A unit's potential may be

viewed as the result of combining all the evidence impinging on the unit

using the evidence combination rule encoded by the site functions and the

potential functions. Connectionism does not prescribe any single theory of

combining evidence and it is possible to encode a wide range of these in the

connectionist framework.

2.23 Sophisticated processing elements

The presence of multiple sites, and multiple states make it possible to

encode non-trivial behavior in connectionist network. It becomes possible to

encode rules for performing built-in inference that are far more sophisticated

than those of marker-passing systems. Furthermore, unlike NETL, where a

serial computer controlled the activities of the parallel system, connectionist

networks can support interpreter-free systems that may operate

autonomously. The latter is significant from the point of view of



computational tractability because it frees us from the interpreter bottleneck.

When knowledge is encoded in connectionist networks the traditional

distinction between representation and an inference engine (interpreter) gets

blurred. Since the networks consist of active elements and the computations

in a network take place via spread of activation, the "static" structure of the

network also determines the "dynamic" relationships between bits and pieces

of knowledge. Thus, during any computation or information processing task,

the structure itself determines what information is relevant for the

computation. The links, weights on links and the computational characterstics

of units encode not just the knowledge but also the way in which various

constituents of knowledge interact during computation. The strong coupling

between the structure of knowledge and inference is a desirable state of

affairs.



Chapter 3

Structure of Knowledge

It was argued in section 1.5 that in the light of the problems concomitant

with inheritance and categorization, a simple treatment of concepts as one

place predicates, and properties as binary relations is inadequate, and so are

other frame based schemes that are mere notational variants of the above. We

had argued that an evidential treatment of conceptual information would be

more appropriate for formalizing categorization and inheritance. This section

presents our intuitions about conceptual knowledge that form the basis for

the formal language specified in section 4. We focus mainly on the notion of

Types because it directly relates to inheritance and categorization.

At the outset we would like to state that in discussing conceptual

knowledge we are concerned with an agent's internal representation of the

external world; we are not interested in the external world per se, but rather

in its conceptualization by the agent. We will refer to the latter as the agent's

conceptual structure.

We begin by discussing the notion of conceptual attributes, which we

consider to be fundamental to the notion of concepts.

3.1 Conceptual attributes

A cognitive agent interprets the external world in terms of conceptual

attributes and their associated values, and his entire factual knowledge is

represented using these attributes and values. In the restricted context of

vision, a conceptual structure may be defined in terms of visual attributes like
Mhas-colorff (with values such as red, blue, purple), "has-shape"(with values

such as round, oblong, square), "has-size", "has-texture" etc. Such a

conceptual structure may be extended by including non visual attributes like



"has-tasteM, "has-weight," "has-temperature," "has-odor," "has-location,"
Mhas-utility" and "has-function" (i.e. has-use). In addition to the conceptual

attributes mentioned above, other knowledge structuring relations such as is-

a-kind-of, is-a-part-of are also considered to be conceptual attributes. The

distinction between different kinds of conceptual attributes is discussed in

section 3.3.1. Notice that an "attribute-value" pair in our notation

corresponds to the term "feature" in many psychological models [Smith &

Medin 81], thus what we refer to as [has-color RED] in our notation would

correspond to the feature RED.

The explicit identification of conceptual attributes (henceforth, simply

attributes) and their values is a crucial first step in extracting the structure of

knowledge because all other components of the conceptual structure are

defined in terms of attributes and their values.

Attributes need not be unstructured entities. One may easily imagine

complex attributes like "has-shape" that may have finer structure consisting

of several "sub" attributes such as "has-length-to-breadth-ratio"; the attribute

"has-color" may itself have other attributes such as "has-hue", "has-

brightness", "has-saturation"; and "has-physical-property" may be regarded

as an attribute in some domain but may be composed of more specific

attributes like "has-size", "has-weight", "has-color" etc. However, in our

present endeavor, we will assume that all attributes are primitive.

3.2 Concepts

Concepts are labelled collections of [attribute, value] pairs. For instance, a

concept labelled FIDO may partially consist of the following [attribute, value]

pairs:

{ is-an-instance-of DOG,

is-an-instance-of ANIMAL,



has-body-part LEGS,

has-body-part TAIL,

has-coat-type FURRY

The values of attributes are also concepts and hence, concepts may be

arbitrarily complex. For example, the concept of FIDO refers to other concepts

such as DOG and FURRY. This definition does not imply circularity because

some concepts (in particular values of properties such as color) are grounded

in perception and some attributes are assumed to be innate.

Given that concepts are described as (labelled) collections of [attribute,

value] pairs, there exists a very direct relationship between concepts that

denote objects possesing a certain attribute value, and the attribute value

itself. For example, one may think of RED as being a value of the attribute

has-color, or one may create a concept RED-THING denoting "all red things"

by attaching the label RED-THING to the [attribute value] pair [has-color RED].

There are no a priori criteria for determining whether some attribute value

has been so labelled.

Concepts may denote different types of things in the domain. Some

examples are: individuals, categories, events, locations and relations. For

instance, concepts may denote "my dog Fido", "the color red", MDog",

"Color", "the Sox Phillies game", "the concert tonight" or "John's passing of

the ball to Leo".

All attributes need not be applicable to all concepts. In general, different

types of concepts will have different types of attributes applicable to them.

For example, attributes such as "is-an-instance-of\ "has-color", "has-shape",

and "has-size" may apply to physical objects, whereas attributes such as "has-



location", "has-agent", and "has-time-of-occurrence" may be associated with

events.

33 Attributes: properties and structural links

Attributes may be classified into two broad categories: properties and

structural links. This distinction is crucial and forms the basis of controlled

interactions that may occur between concepts.

Structural links: Structural links provide the coupling between structure

and inference. They reflect the epistemological belief that world knowledge is

highly organized and that much of this structure can be factored out to

provide general domain independent inference rules. Structural links are

attributes that have this quality and are used to provide built-in inference

paths. These paths correspond to special axioms that define the capabilities of

specialized inference engines employed in limited inference formalisms such

as [Allen & Frisch 82]. The most representative structural link is the is-an-

instance-of link that is used for inheritance in semantic networks.

One can extend the notion of property inheritance to include other

structural links such as the is-a-part-of, and occurs-during links [Schubert et

al. 83][Allen 83]. For example, is-a-part-of links may be used to infer values

of attributes such as has-location, while occurs-during links may permit

inferences pertaining to time. Each structural link has an associated set of

properties that may be inherited along the link and this information may be

used to perform inferences.

Properties: Properties correspond to the intrinsic features of concepts and

may vary from one domain to another. When describing physical objects the

relevant properties may be has-weight, has-shape, and has-color, while events

may have properties such as has-location, has agent, and has-time-of-

occurence. So far, properties roughly correspond to the notion of "roles" of

KLONE [Brachman 77], "role nodes" of NETL [Fahlman 79] and "slots" of



FRL [Robert & Goldstein 77]. However, in spite of superficial similarities, our

interpretation of a property and its associated values is different from any of

the above approaches. The crucial difference is that we give an evidential

interpretation to the relation between property values and the concepts they

describe. [Cf. section 3.6].

3.4 Types and Tokens

3.4.1 Tokens

An agent interpretes the world as consisting of instances. These are

represented as Tokens in his conceptual structure. For example, Tokens may

represent: "Fido the Dog", "the table in my office" and "the location that is

the top of my table".

3.4.2 Types

An agent has to deal with a complex and constantly changing

environment, consisting of a large number of objects and an even larger

number of interactions between them. In comparison, the memory resources

and processing capabilities of an agent are extremely limited and in order to

survive it becomes essential that the agent impose some structure on the

external world in order to reduce its complexity. A way of structuring the

knowledge about the environment is to detect and record similarities between

objects that occur in the environment. Once recorded, these similarities may

be exploited to categorize novel objects and to make predictions about their

properties. Types serve exactly this purpose.

Types are abstractions defined over Tokens, and they arise when there are

similarities in a large number of Tokens. Types are summary descriptions that

may be viewed as encoding the agent's belief that there are objects in the

physical world that conform to these description and that these descriptions

may be used to categorize objects, and thence to make inferences about them.



The most important inference supported by Types is inheritance. For

example, having identified an object (Tweety) as a bird, and knowing that

birds fly, an agent may infer that Tweety flies. Without a notion of Type, an

agent will not be able to perform such inferences.

Types ensure that the "quantum" of knowledge remains within

manageable bounds. Once a Type exists, the shared properties need only be

encoded in the representation of the Type, and need not be copied for each

Token separately.

The mere presence of similarities in a large number of Tokens is not a

sufficient condition for the existence of a Type. The above condition is too

weak and may lead to a proliferation of Types. The primary justification for

creating a new Type would be its usefulness to the agent. It is assumed that

Types arise out of recognizing similarities that help the agent make useful

distinctions. Although, one may create a Type that corresponds to "all dogs

that have more than 13 fleas on them" - and there may be numerous such

objects (dogs), such a Type would hardly serve any useful purpose.

The is-an-instance-of relation expresses the relationship between Tokens

and Types while the inverse relationship between Types and Tokens is

expressed by the "is-instantiated-by". Thus, FIDO is-an-instance-of DOG and

DOG is-instantiated by FIDO.

Property values and Types

The [attribute, value] pairs associated with a Type are summary

descriptions of the property values of its Tokens. Thus, the Type ELEPHANT

may own the value GRAY for the property has-color to represent the fact

"most elephants are gray", and the Type APPLE may own the values RED,

GREEN, and YELLOW to represent that "apples may be red, green or yellow".

However, simply associating property values with Types is not sufficient.



For a given Type, a property value may occur more often among its instances

than some other property value. For example, there may be more instances of

apples that are red in color, than those of apples that are green. This sort of

information may be useful to an agent in making predictions about the world,

and hence, he may want to remember such information. Furthermore, there

may be many concepts that share a property value. For example, both apples

and grapes share the color value green. However, a shared value may be more

indicative of one concept than of another. For example, green may be more

indicative of grapes than apples. Such information may also be relevant to an

agent in making predictions about the world. An epistemologically adequate

representation should allow additional information to be stored with property

values in order to capture the distinctions alluded to above. As is discussed in

section 3.6, and subsequently made precise in section 4, our formalism does

allow such distinctions to be made.

3.43, Hierarchies

The process of abstraction need not stop at one level. Abstractions over

Types may yield more abstract Types (or a Type may be differentiated to

produce more refined Types). This leads to a hierarchical structure. In

general, multiple hierarchies may be defined over the same set of Tokens. For

example, one may define a hierarchy over physical objects based on the

functions they perform (i.e. their use), or one may classify physical objects

according to their physical properties based on their form (i.e. their

appearance). The result of having multiple hierarchies is that each Token may

be related to more than one Type. A toy example of multiple hierarchies is

shown in figure 3.1, where persons have been classified according to their

religious beliefs in one hierarchy, and according to their political beliefs in

another. Notice that DICK is related to two Types: QUAKER and

REPUBLICAN.

3,5 A proposal for structuring concepts: "multiple views"



In this section we suggest a particular organization for concepts. Since our

primary interest is in suggesting a way of structuring or organizing concepts,

and not in the compilation of human knowledge, we would not argue for or

against a specific set of Types that fill the proposed structure.

In the proposed scheme, concepts are organized in a three tier structure as

shown in figure 3.2

The topmost tier consists of a pure taxonomy that is called the ontological

tree. This tree classifies the universe of concepts into several distinct

ontological types, where any two ontological types represent fundamentally

different sorts of things. If these were to correspond to categories of Aristotle,

then at the first level of branching, the concepts in the ontological tree would

be: Substance, Quantity, Relation, Time, Position, State, Activity, and

Passivity. Alternately, using ontological categories suggested by Jackendoff

[Jackendoff 83], one would have: Things, Place, Direction, Action, Event,

Manner, Amount, Sound, Smell, Time etc., as the ontological types at the first

level of branching.

Keil [Keil 79][Sommers 65], has argued extensively in support of a

hierarchical structure composed of ontological categories. Some ontological

categories suggested by Keil are: Thing, Physical object, Solid, Aggregates,

Event, Intentional event, Nonintentional event, Organism, Functional artifact,

Animal, Plant, Human, Nonsentient etc. Keil derives ontological categories

using the principle of predicability, which says that different sorts of things

have different sorts of predicates applicable to them (predicates correspond to

properties in our terminology), and one may classify things according to the

predicates that apply, or do not apply, to them.

Keil describes what he calls the M-constraint and the W-constraint, (based

on earlier work by Sommers) that rule out the possibility of an ontological

category having multiple parents. As a consequence, ontological categories



form a strict taxonomy. Figure 3.3 gives an example of an ontological tree

based on [Keil 79]. According to Keil, predicates may be attached to

categories in the ontological tree, and once a predicate is attached to a

category, it applies to all categories that are dominated by this concept. This

agrees with our notion of property applicability described in section 3.6.

In the proposed structure, the leaves of the ontological tree are all Types,

and we envisage these to be concepts such as Animal, Human, Furniture,

Instrument, Liquid, Color, Shape, Taste etc. These concepts roughly

correspond to the superordinate categories of Rosch [Rosch 75]. To our mind,

superordinate categories have the right level of complexity to be the leaves of

the ontological tree.

The third, or the lowest tier of the conceptual structure consists of Tokens.

The second tier consists of a large number of taxonomies called views. The

root of each view is a leaf of the ontological tree, and the leaves of each view

are Tokens. There may be multiple views that have the same leaf of the

ontological tree as their root. Furthermore, there may be multiple views that

have the same Token as one of their leaves. The latter implies that Tokens

may have multiple parents, however each parent of a Token must lie in a

distinct view.

Each view corresponds to a classification of the Tokens represented by a

leaf of the ontological tree. Thus, multiple views permit the agent to classify

the same set of Tokens in different ways.

The organization suggested above offers advantages permitted by tangled

hierarchies by allowing Tokens to have multiple parents, but retains the tree

like characterstic that helps in analyzing the properties of the conceptual

structure.

3,6 A representational notation



We will employ a graphical notation in order to present the role of

evidence in the representational framework. Figure 3.4 displays a sample

network encoding the following information: "Fruits are a kind of Things,

Apple is a kind of Fruit, Things have the property color, Apples are generally

Red or Green, and Red and Green are instances of Color". (This graphical

notation is not a description of a connectionist networks. Those are discussed

in section 6).

The representation uses three kinds of nodes: the concept nodes, property

nodes and binder nodes. Concept nodes label collections of [attribute, value]

pairs. While properties and values are associated to concepts via binder nodes,

structural links are encoded directly as links. The framework permits

associating properties as well as property-values with concepts. For example,

the binder node bl in the above network associates the property of having

color (has-color) with Things (and hence, Fruits and Apples) without

specifying any particular color values. On the other hand, the Binder node b2

represents: "the value of the property color for Apples may be Red" and

also: "something that has color Red may be an Apple". The interpretation of

b3 is analogous to that of b2 with Green replacing Red. The interpretation of

node b4 is slightly different. It represents the agent's belief that there is a non

zero possibility that Apples may have other colors besides Red and Green.

Thus, b4 provides a compact representation for: "it is possible that Apples

could be Blue, Yellow, Brown ..." This would otherwise require a binder

node, one for each possible color value, to associate these color nodes with

Apple.

A weight - in the range of 0 and 1 - is associated with each link and

provides the basis for an evidential semantics of knowledge. The precise

interpretation of these weights is given in section 4, but a general explanation

follows. With reference to Figure 3.4 the weight Wl on the link from b2 to

RED is a quantitative measure of the evidence provided by the fact "an object
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X is an Apple1' to the fact "the color of X is Red" and similarly, the weight W4

on the link from b2 to APPLE is a measure of the evidence provided by the

fact "the color of an object X is Red" to the fact "X is an Apple". The weights

W2 and W5 have a similar interpretation for the relationship between Apple

and Green. The weights W3 and w6 measure the likelihood of Apples having

colors other than Red and Green.

The graphical notation points out some salient features of the

representation:

Applicability of properties: The framework permits associating properties

as well as property values with concepts. Thus, it is possible to specify the

properties that apply to a concept. Once a property is associated with a Type

it gets associated with all Types or Tokens that occur below the Type in the

is-an-instance-of hierarchy. Furthermore, a Type or Token may own a value

for a property only if the property is owned by itself or by a Type higher up

in the is-an-instance-of hierarchy. For instance, APPLE may own a value for

has-color because this property is owned by FRUIT which is a supertype of

APPLE.

Multiple and weighted property values: Apples could be Red or Green in

color, and the representation of the value of the property has-color for the

Type APPLE accounts for both these colors. The weights wl and w2 would

depend on the agent's beliefs about what fraction of Apples are Red and what

percentage are Green. This is explained in section 4.

Distinction between Property and Value: The representation includes a

node has-color and a node COLOR. These two represent two distinct aspects

of the knowledge encoded in the network. The node has-color represents a

property whereas the node COLOR represents a Type whose instances may

include WHITE, BLUE, RED etc, each of which could be a value of has-color.



FIGURE 3.1 Multiple hierarchies
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Chapter 4

Representation language

4.1 A formal description of the representation language

This section specifies the representation language that is used for

formalizing the problems of inheritance and categorization.

An agent's apriori knowledge consists of the septuple:

9 = <<c, o, \ , A, # , 8, <>, where

C is the set of concepts, $ is the set of properties, \ is a mapping from C to

the power set of <f>, A is a mapping from <& to the power set of C, # is a

mapping from C to the integers I, 8 the distibution function is a mapping

from CX$ to the power set of CXI, and < is a partial ordering defined on C,

These terms are explained below in a more meaningful manner.

C is the set of concepts and $ is the set of properties. These terms were

described in sections 3.3 and 3.4.

For each C € C, X(C) is the subset of <& that consists of those properties

that are applicable to C. For example, X(APPLE) may be {has-color has-taste

has-shape}. As discussed in section 3, different properties apply to different

sorts of concepts.

For each P € if, A(P) is the subset of C that consists of all possible values

of P. For example, A(has-color) may be {RED, GREEN, BLUE, YELLOW,

BROWN}

For each C € <C,

If C is a Token then # C = 1, and if C is a Type then # C = the number



of instances of C observed by the agent.

Recall that values are also concepts. If V is a value of some property P

then # V is defined to be equal to the number of instances that possess this

value. Thus, #RED equals the number of red colored entities in the domain.

Given a concept C and a property P € X(C),

#C[P,V] = the number of instances of C that are observed by the agent to

have the value V for property P

Thus, #APPLE[has-color, RED] equals the number of red apples observed

by the agent

The above notation may be extended to include multiple property values.

Thus,

#C[P1,V1] p2*V2] - lpn'Vnl = ^ number of instances of C, observed

to have the value Vj for property P^, value V2 for property P2,... and value

Vn for property Pn.

The distribution function S(C,P), where C € <C and P € \(C), specifies how

instances of C are distributed with respect to the values of property P. Recall

that a concept may have several values for the same property and hence, if C

is a Type, then 8(C,P), corresponds to the summary information abstracted in

C based on the instances of C.

Example: if A(P) = {RED, GREEN} then, 5(APPLE, has-color) may be

expressed as:

{(RED, 60), (GREEN 40)}

indicating that 60 apples are red and 40 are green.

Alternately, 5(C,P) may be expressed in terms of #C[P,V]'s:



Thus, S(APPLE, has-color) may also be expressed as:

{#APPLE[has-color, RED] = 60, #APPLE[has-color, GREEN] = 40}

It was pointed out in section 3.3 that properties correspond to roles or

slots. Consequently, 5 may be taken as a specification of role values or slot

fillers. However, there is a crucial difference. For a given concept C, and a

property P, S(C,P) may specify multiple values for P. Furthermore, the

specification of 5(C,P) involves stating the quantities #C[P,V] for each V €

A(P). The ratios of these quantities are used during inheritance and

categorization. How this is done is discussed in chapter 5.

It may be observed that if the domain is extremely well behaved and the

concepts have unique property values such that generalizations such as:

vx TYPE(x, T) => P(x,V)

{i.e. for all instances of Type T, the value of property P is V.}

may be made, then S reduces to a "non-evidential" mapping. In such a

situation 5 may be expressed simply as a binary predicate:

P(C,V), or equivalents 8(C,P) = V.

The following observations about 8 are significant.

L An agent's knowledge of the distribution mapping 8 is partial. Thus, the

agent may not know 5(C,P) even though P may belong to \(C). It is assumed

that an agent acquires and stores only those distributions that are useful to

him.

2. Although we have used absolute numbers to specify the distributions

and the size of concepts, it is shown in section 5.3 that in order to solve the

inheritance and categorization problems, an agent need only deal with relative

information and rational numbers that lie in the interval [0,1],



The relation <^ structures the concepts in C into a partially ordered set and

corresponds to the is-an-instance-of relation mentioned in section 3. In this

formulation, < relates Types to other Types as well as to Tokens.

The applicability of properties is such that: if P € X(A), then for all B such

that B < A, P € \(B).

The ordering induced by < on C may be compactly represented in the

form of an ordering graph. Figure 41 depicts an ordering graph for a

specified < Each node in the graph denotes a concept. A directed link

connects aj to every node aj, (a[ * ap such that aj < a; and there exists no a^

(other than a} and a;) such that aj < a^ <^ aj. If there is a direct link from a^ to

a; then aj is referred to as a parent of â .

Given a set of concepts S, where S = {s^ S2 ... sn}, if a; is such that for all

S} € S, S[ < aj, and there is no a^ (other than aj) such that for all s^ € S, S[ <

a^ < aj, then aj is a reference concept for S. For instance, in figure 4.1, b is

the reference concept for {c e f}.

4.2 Some properties of the "multiple views" organization

In terms of the language described in section 4.2, the multiple views

organization described in section 3.5 has the following restrictions:

1. The partial ordering < is restricted. Refer to section 3.5 for a detailed

specification. For example, concepts in tier I (the ontological tree) are

organized in a strict hierarchy, but the concepts in tier III may have multiple

parents from among concepts in tier II.

2. The applicability of properties is such that: if co is a leaf of the

ontological tree then for all C such that C < <o, if P € X(C), then P € \(<o). In

other words, the applicability of properties is defined within the ontological

tree, and no new properties become applicable at tiers II and III.



Caution: This restriction applies to properties and NOT property values.

Thus, information about property values may be attached to concepts in tiers

II and III.

In addition to the above, we assume that the conceptual structure decribed

in section 3.5 has the following well-formedness property:

WFR-mv-1: If a is a leaf of the ontological tree then for each P € X(«),

8(w,P) is known.

4.3 An Example

An agent's knowledge about a hypothetical domain may comprise:

C = {THING, FRUIT, APPLE, GRAPE, A-5, A-9, G-8, COLOR, RED, GREEN,

TASTE, SWEET, SOUR}

<& = {has-taste, has-color}

X(FRUIT), X(APPLE), X(GRAPE), X(A-5), X(A-9), X(G-8)

= {has-taste, has-color}

X(COLOR), X(TASTE), X(RED), X(GREEN), X(SWEET), X(SOUR) = 0

A(has-color) = {RED, GREEN},

A(has-taste) = {SWEET, SOUR}

# FRUIT = 150

S(FRUIT, has-COlor) = {(RED, 65), (GREEN 85)}

8(FRUIT, has-taste) = {(SWEET, 100), (SOUR 50)}

#APPLE = 100

5(APPLE, has-COlor) = {(RED, 60), (GREEN, 40)}

# GRAPE = 50



8(GRAPE, has-taste) = {(SWEET, 30), (SOUR 20)}

# COLOR = 150; #RED = 65, # GREEN = 85;

# TASTE = 150; # SWEET = 100; #SOUR = 50;

< is given by:

(APPLE < FRUIT), (GRAPE < FRUIT), (A-5 < APPLE),

(A-9 < APPLE), (G-8 < GRAPE), (RED <̂  COLOR),

(GREENE COLOR), (SWEET < TASTE), (SOUR < TASTE)

Notice that the agent's knowledge is partial and he does not store all the

information observed by him. Although the agent has observed 100 apples and

50 grapes, only 2 apples and 1 grape are stored explicitly. Furthermore, for

apples and grapes, the agent does not remember 6(APPLE, has-taste) and

8(GRAPE, has-color). Finally, 3 instances of apples and grapes have been

represented (A-5, A-9, and G-8), the agent only remembers S(G-8, has-taste).

Figure 4.2 represents a part of the information given above in the graphic

notation introduced in section 3.6. One may now assign a precise meaning to

the weights on links. If a binder associates a property P, a concept C and a

value V, then the weight on the link from the binder to the the value V is

given by:

#C[P,V] / #V

and the weight from the binder to the concept C is given by:

#C[P,V] / # C

If concept A is a parent of concept B in the ordering graph defined by C

and <, then the weight on the link from A to B is given by:

#A / #B.



The weights in figure 4.2 correspond to these quantities.

We conclude this section by stating the problems of inheritance and

categorization in terms of the representation language described above. In

section 5 we present a solution to these problems based on evidential

reasoning. As it turns out, an evidential approach leads to a natural

interpretation of exceptions, defaults, and multiple inheritance in the presence

of conflicting information.

4.4 The inheritance and categorization problems in terms of the representation

language.

The inheritance problem may be restated as follows:

Given: e = <C, <f>, A, A, # , 5, <O,

C € C, P € X(C), and

V-SET = {Vlf V2, ... Vn}, a subset of A(P)

Find: V* € V-SET, such that among members of V-SET, V* is the most

likely value of property P for concept C. In other words, find V* €

V-SET such that, for any Vj € V-SET, the best estimate of

#C[P,V*] > the best estimate of #C[P,Vi]
fs.

The inheritance problem where C = APPLE, P = has-color, V-SET =

{RED, BLUE, GREEN}, may be paraphrased as:

Is the color of an apple more likely to be red, green or blue?

The standard way of posing the above problem would be:

What is the color of an apple?

Our specification is similar to the standard specification of the inheritance



problem but with two crucial differences. In the evidential framework, the

question is always posed with respect to a set of possible answers, and the

correctness of an answer lies in it being the most likely answer relative to the

set of possible answers. The requirement that a set of possible answers be

specified is not a restriction, because by default one may always assume V-

SET to be A(P). Furthermore, the measure of correctness employed by us is a

generalization of the standard measure of correctness; if a particular member

of V-SET is the correct answer (i.e. the only possible answer) and the rest are

false (i.e. are impossible), then the correct answer will be found. However, in

situations where no definite answer exists, the solution presented in section 5

will ascertain the most likely answer. We argued in section 1.2 that except in

some trivial situations, one does not have sufficient knowledge to deduce the

correct answer, and one must resort to judgements based on likelihoods. The

next section specifies the precise sense in which an answer is judged as most

likely.

The categorization problem is posed as follows:

Given: e = <<C, $, \ , A, # , 8, < >, and

i) an explicit enumeration of possible answers, i.e. a set of

concepts, C-SET = {C^, C2,... Cn}, where either all members

of C-SET are Types, or all members of C-SET are Tokens.

ii) a description consisting of a set of property value pairs, i.e., a

set DISCR = { pVVxl, [P2,V2], ... [Pm,Vm] }, such that, for

each [Pj,Vj] € DISCR,

pj € n C 6 C-SET *(O, and Vj € A(Pj).

In other words, a property mentioned in the description should

apply to every concept in C-SET, and the values specified for

these properties should be appropriate.



Find: C € OSET such that relative to the concepts specified in C-

SET, C is the most likely concept described by DISCR.

If C-SET = {APPLE, GRAPE}, DISCR = {[has-color, RED], [has-taste,

SWEET]} then the categorization may be paraphrased as follows:

"It is red in color and sweet in taste", is it more likely to be an apple or a

grape"?

Once again, the two distinguishing features of the problem statement are

that a choice is to be made from among a set of possible answers, and the

most likely answer is to be found. In the simple case where only one of the

possible answer matches the given description, the evidential treatment finds

the appropriate answer. But even when the description is partial, and many

possibilities exist, the present formulation finds the answer that best matches

the given description. The detailed solution appears section 5.5.



The partial ordering is:

) (e,a) (c,b) (d,b)
(e,b) (f,b) (e,c) (e,d)

The directed graph on the left is the ordering graph

for the partial ordering defined on the right.

FIGURE 4.1 Ordering graph



FIGURE 4.2 Partial representation of the example in section 4.2



Chapter 5

An evidential treatment of inheritance and categorization

5.1 The problem of combining evidence

It was argued in section 12 that an agent is often compelled to make

decisions and perform actions based on partial knowledge. Imagine a

situation in which an agent has to choose and perform an action from

amongst a set of mutually exclusive actions: a ,̂ &i, ...an. It is assumed that

the conditions under which each action is appropriate are known to the agent

For example, he may be aware that that if condition a; is true then action aj

is appropriate. If the agent had complete knowledge about the world, he

could have deduced which of the conditions: a\% a^, ... <*m> is true and

thence, performed the appropriate action. However, the agent may only have

partial knowledge about the world, and therefore, he may be unable to

deduce which condition is true.

In the above situation, the best strategy that the agent can adopt is to take

into account whatever he knows and determine as to which condition is most

likely to be true, and thereafter perform the action indicated by this

condition.

As an example, assume that an agent has the following knowledge:

c = {APPLE, GRAPE, RED, GREEN, SWEET, SOUR}

X(APPLE), X(GRAPE) = {has-color, has-taste}

X(RED), X(GREEN), X(SWEET) and X(SOUR) = 0

A(has-color) = {RED, GREEN}; A(has-taste) = {SWEET, SOUR}

#(APPLE) = 100;
6(has-color, APPLE):



#APPLE(has-color, RED) = 60; #APPLE(has-color, GREEN) = 40

S(has-taste, APPLE):

#APPLE(has-taste, SWEET) = 70; #APPLE(has-taste, SOUR) = 30

#(GRAPE) = 50

S(has-color, GRAPE):

#GRAPE(has-color, RED) = 5; #GRAPE(has-color, GREEN) = 45

6(has-taste, GRAPE):

#GRAPE(has-taste, SWEET) = 30; #GRAPE(has-taste, SOUR) = 20

<: 0

Given the above knowledge, a rational agent would have no difficulty in

guessing the most probable identity of an object given one of its property

values. The following table lists the choices we expect him to make:

Description of object most likely identity of object

has-color RED APPLE (60 apples v/s 5 grapes)

has-color GREEN . GRAPE (45 grapes v/s 40 apples)

has-taste SWEET APPLE (70 apples v/s 30 grapes)

has-taste SOUR APPLE (30 apples v/s 20 grapes)

In each case the agent chooses the more likely concept on the basis of the

available information. For example, there are 30 instances of sour apples as

against 20 of sour grapes. Hence, in the absence of any other information, a

rational agent will believe that a sour object is more likely to be an apple than

a grape.

But how should a rational agent decide the most probable identity of an

object given a description specifying multiple property values such as "red

and sweet". In other words, given that an agent possess sufficient knowledge

to decide if something is an apple or a grape when given that it is red or



when given that it is sweet, then how should he use this knowledge to decide

whether something is an apple or a grape when given that it is both red and

sweet

The above question embodies a central problem of evidential reasoning

namely, the problem of combining evidence. This section presents a solution

to this problem based on the notion of maximum entropy, a notion that is

fundamentally related to information theory and statistical mechanics. (See

[Jaynes 57] and [Jaynes 78]) and also bears resemblance to statistical methods

developed for error estimation and hypothesis testing.

5.1.1 Problem formulation

The information about apples and grapes given above, may be expressed

in the form of matrices as shown in figure 5.1. The rows of the two matrices

correspond to the different values of the property has-taste while the columns

correspond to the different values of the property has-color. The numbers at

the end of each row(column) represent the number of instances of the

concept that have the appropriate value of taste(color).

In general, an agent's knowledge about a concept A may be represented as

an n-dimensional matrix where n = | \(A) |. Each dimension of the matrix

corresponds to an applicable property and the extent of a dimension is given

by the number of distinct values the property may have. The #A[P,V]'s

appear as marginals or the sums of hyper-rows and hyper-columns.

The internal matrix elements may be used to specify the number of

instances of the concept that have the appropriate combination of property

values. For instance, the top left element of the APPLE (GRAPE) matrix in

figure 5.1 indicates the number of instances of apples (grapes) that are both

red in color and sweet in taste.
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The problem of guessing the identity of an object given its color as well as

its taste would be trivial if the agent knew the internal matrix elements. For

example, to decide whether a red and sweet object is an apple or a grape, the

could simply compare the top left elements of the two matrices in figure 5.1

and choose the concept that has the higher value.

However, if the agent does not know the internal matrix elements the best

that he can do is find the most probable estimates of these on the basis of the

available information and use these estimates to reason about the world In

section 5.1.2 we show how the most probable estimate may be found.

5.1.2 Computing the most probable configuration

The general 2-dimensional case, may be represented as shown in figure 5.2.

The matrix represents the concept A, and

R[ = #A[property 1, i * value of property 1]

Cj = #A[property 2, jfi value of property 2]

N = # A = 2 i = l n Ri = 2j

ay = #A[property 1, i^1 value of property l][property 2, j * value of

property 2]

Le. the number of instances of A having the i1*1 value for property 1 and

the j * * 1 value for property 2.

The ay's are unknown and need to be determined on the basis of N, R['s

and the Cj's.

Let a macro-configuration be a specification of all the ay's. Our goal is to

find the most probable macro-configuration indicated by the following

information:



Vi (i = l,n) Zj = :Um (ay) = R{

vj 0 = ljn) 2 i = l n (ay) = Cj

2 i=l ,n;j = l,m (aij) = N

The problem of finding the most probable macro-configurations may be

recast as follows:

Consider distributing N distinct objects into a 2-dimensional array of cells.

Then a macro-configuration specifies the number of objects placed in each

cell Let a micro-configuration be the complete specification of the result of

such a distribution In other words, for each cell a micro-configuration

specifies the objects that are placed in the cell.

Let the number of objects placed in the ijt*1 cell be given by ay. It follows

that there is a many to one mapping from the space of micro-configuration to

the space of macro-configurations.

Let a micro-configuration be termed feasible if it satisfies the constraints

imposed by row sums and column sums. Then:

Given his knowledge, an agent has no basis for assuming that a particular

feasible micro-configuration is more probable than some other feasible micro-

configuration and the only rational assumption he can make is that all feasible

micro-configuration are equally probable.1

In view of the above assumption the most probable macro-configuration

will be that which results from the greatest number of feasible micro-

configurations.

1. This is in essence the principle of indifference or the principle of insufficient reason

first stated by Bernoulli in 1713.
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If w denotes the number of placements resulting in a configuration then w

is given by:

w = N!/ni = l f l l j = l f m ay!

{number of ways of dividing N distinct

objects into n*m groups of a^, a12 ... anm

each.}

One may now maximize w subject to the constraints:

Vi (i = l,n) Z ^ m (ay) = Rj

Vj (j = l,m) 2 i = l n (ay) = Cj

2 i=l ,n; j = l,m (aij) = N

in order to find the most probable macro-configuration.

We show that for the above maximization problem:

vi j (i = l,n; j = l,m):

ay = R-Cj/N

satisfies the condition of maximality.

The maximization is performed by using a technique that involves

introducing the constraints as Lagrange multipliers.

Keeping in view the presence of product terms in w we work with log w

instead of w and use the Stirling's approximation for factorials; if n » 0 then

log n! * n*log n - n where log is the natural logarithm.



tog w = log N! - 2 i = l n . Hm log ay!

log w = N *log N - N - 2 i = l n . ylm (ay*log ay - ay) Stirling's approximation

Differentiating the above and introducing Lagrange multipliers obtained

by differentiating the constraint expressions:

we have:

Vij (i = l,n; j = l,m)

d log w/d ay = - [ay/ay + log ay -1] + Xo+ Xi + 5j

Setting the derivative to 0, we have

Vij (i = l,n; j = l,m) log ay = X o+ Xi + 5j

i.e. vij (i = l,n; j = l,m) ay = exp( X o+ Xi + 8j) -I-

Substituting exp( Xo) = ao, exp( Xi) = ai, vi (i = l,n); and

exp( 8] ) = )8j, vj (j = l,m) in I we have,

Vij (i = l,n; j = l,m) ay = ao*ai*8j - II-

Substituting -II- into the constraint equations to solve for ao, afs and /?j's,

we have,

Vj(j = l ,m)ao*j8j*2 i = l n a i = Cj -IV-



l ,m a i ^ = N

i.e. ao-(2i=1,n ai) * ( 2 j = l m ft) = N -V-

We now show that:

ao = l/(a*b*N), «i = a*R[ vi (i = l,n); and /?j = b*Cj vj (j = l,m)

are a set of constant solutions, where a and b are arbitrary constants

This may be shown by substituting the above values of ao. ai's and ft's into

equations III, IV and V.

Notice that 2 j = l mf t = b-2 j=slm Cj = b*N

and 2 i = l n a i=a*2 i = l n R i = a*N

Hence, Vi (i = l,n) ao'oi* 2j= Unfl = (l/(a*b*N))*a*Ri*b*N = R,

as required by equation III,

Similarly, Vj (j = l,m) ao«/3j«2i=ln ai = (l/(a*b*N))*b*Cj*a*N = Cj

as required by equation IV,

Finally, ao*(2i=ln ai) * (2 j = U n #) = (l/(a*b*N))*a*N*b*N = N.

as required by equation V.

This shows that the suggested solutions of ao. ai and fa are indeed correct.

Hence, vij (i = l,n; j = l,m), the values of ay are given by:

ay =ao*ai«Sj = (l/(a*b*N))*a*Ri*b*Cj = R^Cj/N.



In other words the best estimate of:

#A[P1,V1][P2,V2]

that an agent may make on the basis of # A[P^,V J and # A[P2,V2] is given

by:

^ V J * #A[P2,V2] / # A

The above result can be extended to higher dimensions. The result is

analogous to the result for 2-dimensions and is given by:

where N equals the total number of objects, n equals the number of

dimensions in the array, Ajf Bj, C^ ... denote the sums of hyper-rows or

hyper-columns and ay^ is the most probable number of objects in the

ijk...^1 cell of the array.

The above result will be referred to as the best estimate rule and may be

restated as follows. Based on the knowledge of:

#A[P1,V1], #A[P2,V2],... and #A[Pn,Vn],

the best (i.e. the most probable) estimate of,

#A[P1,V1][P2,V2]...[Pn,Vn]

is given by:

Referring back to the example about apples and grapes - the result derived

above implies that a rational agent would believe that the most probable way

in which the instances of apples and grapes could be distributed is given by

the matrices shown in figure 5.3. Thus, he will identify a "red and sweet11



object to be an apple as there are probably 42 apples meeting this description
as aeainst onlv 3 cranesas against only 3 grapes.

In conclusion, it must be pointed that the best estimate rule is based on the

agent's state of knowledge and provides a relative measure of likelihood

instead of an absolute probability value. The following section discusses how

the approach adopted in this section compares with the Dempster Shafer

evidence theory and Bayes' rule for conditional probabilities.

5.2 Relation of the maximum entropy approach to some other treatments of
uncertainty.

5.2.1 Relation to the Dempster-Shafer theory

The Dempster-Shafer (DS) evidence theory [Shafer 76][Garvey et al.

81][Barnett 81] suggests an evidence combination rule that is currently in

vogue in aritificial intelligence. One can show that a straight forward

application of the DS rule for evidence combination does not produce the

correct results - for the kinds of problems we wish to solve. It is shown that

the DS result agrees with the best estimate rule if one assumes that the

frequency (i.e. the prior probability) of all concepts is the same.

A simple example illustrates the point. Consider the information about

apples and grapes as given in section 5.1.

If one wishes to use the DS rule to decide whether a green and sour object

is an apple or a grape one would essentially proceed as follows:

One would treat each property value as a source of evidence. The evidence

provided by green and sour will be:

E(Apple | green) = 40/85, E(Grape | green) = 45/85
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E(Apple | sour) =30/50, E(Grape | sour) = 20/50

Applying the DS rule for evidence combination we get:

E(Apple | green & sour) = (40/85)*(30/50) and

E(Grape | green& sour) = (45/85)*(20/50)

{The above is a simplified account of the actual steps using DS theory.

We have focused on the essentials. In particular, we have not normalized the

quantities because we are only interested in a relative measure.}.

Comparing the evidence for Apples and Grapes we have

E(Apple | green & sour) : E(Grape | green & sour) equals,

(40/85)*(30/50): (45/85)*(20/50) = 4 : 3

and the decision is in favor of Apple.

However, on the basis of the given information, the best (most probable)

estimate of the number of green and sour Apples is 12 and that of green and

sour Grapes is 18. (See figure 5.3). Hence the appropriate ratio is:

12 :18 = 2 : 3

and the decision is in favor of Grapes!

It is not difficult to locate the reason for this discrepency. Given that one

is only interested in making comparisons, the ratio of the relative likelihood

of two concepts A and B using the DS rule is given by:

ni=1,n(#A[Pi,Vi]/#B[Pi,Vi]) DSrad0

However, the best estimate rule gives the ratio as:



/ #B[Pi,Vi])] * (#B

which may be restated as:

n l -Eq-I-

If one were to assume # A = #B, or in effect that all concepts have the

same prior probability, then the DS rule and the best estimate rule become

equivalent

One might suggest that by including an additional source that provides

evidence about the prior probabilities of apples and grapes, one might be able

to correct the DS result However, an examination of Eq-I will indicate that

the problem is more complex. In order to make the DSrati0 the same as that

obtained by the best estimate result one will have to multiply it by the factor:

( # B / # A ) n - 1

But introducing an evidential source to account for the prior probability

only introduces the factor # A / # B , which acts in the wrong direction.

5.2.2 Relation to Bayes' rule

It can be shown that in case none of the internal entries in the concept

matrix are known, then conventional Bayesian inference used in conjunction

with certain independence assumptions produces the same results as those

obtained by the maximum entropy formulation. However, as discussed below,

the maximum entropy formulation is more attractive as it offers a precise

means for formalizing and conceptualizing the problem of estimating

unknown probabilities; independence assumptions do not appear as ad hoc

assumptions but can be justified as the only meaningful assumptions one may

make given the state of one's knowledge. If additional information suggesting

dependence is available (i.e. if a few internal entries are known), the

maximum entropy formulation exploits this information in a consistent



manner.

One can pose the problem raised in section 5.1 about deciding whether an

object is an apple or a grape, in terms of conditional probabilities. The

decision task amounts to determining which of the two probabilities is

greater:

Pr(Apple | red & sweet) or Pr(Grape | red & sweet)

In the above context Pr(A | B) denotes the conditional probability of A

given B. "Apple", and "Grape" are to be read as "x is an apple", and "x is a

grape" respectively, while "red" and "green" are to be read as "x has the

value RED for property has-color", and "x has value SWEET for property has-

taste" respectively.

The following are some of the probabilities known to the agent by virtue

of the information given in section 5.1:

Pr(Apple) / Pr(Grape) = #APPLE / #GRAPE;

Pr(red | Apple) = #APPLE[has-color, RED] / # APPLE;

Pr(red | Grape) = #GRAPE[has-color, RED] / #GRAPE

Pr(sweet | Apple) = #APPLE[has-taste, SWEET] / #APPLE;

Pr(sweet | Grape) = #GRAPE[has-taste, SWEET] / #GRAPE

Using Bayes' rule of conditional probabilities:

Pr(Apple | red & sweet) equals:

Pr(red & sweet | Apple) * Pr(Apple) / Pr(red & sweet)

and



Pr(Grape | red & sweet) equals:

Pr(red & sweet | Grape * Pr(Grape) / Pr(red & sweet)

Hence, Pr(Apple | red & sweet) / Pr(Grape | red & sweet) equals:

(Pr(red & sweet | Apple) * Pr(Apple)) /

(Pr(red & sweet | Grape) * Pr(Grape) - EQ-I

If we make the following independence assumption:

PiOPi-ViJ & [Pj,Vj] I Ck) = PiOPi.Vj] j Ck) * Pr([Pj,Vj] | Ck) - IA-I

we have: Pr(red & sweet | Apple) = Pr(red |Apple) * Pr(sweet | Apple),

and

Pr(red & sweet | Grape) = Pr(red | Grape) * Pr(sweet | Grape)

Substituing these probabilities in EQ-I we have,

Pr(Apple | red & sweet) / Pr(Grape | red & sweet) equals:

(Pr(red | Apple) * Pr(sweet | Apple)) /

(Pr(red | Grape) * Pr(sweet | Grape)) * (Pr(Apple) / P(Grape))

Expressing the probabilities in terms of #C[Pj,VJ's and #C's,

Pr(Apple | red & sweet) / Pr(Grape | [red & sweet) equals:

((#APPLE[has-COlor, RED] / #APPLE) *

(#APPLE[has-taste, SWEET]/ # APPLE)) /

((#GRAPE[has-color, RED] /#GRAPE) *

(#GRAPE[has-taste, SWEET]/ # GRAPE)) *

(#APPLE/#GRAPE)



which equals:

((#APPLE[has-color, RED] * #APPLE[has-taste, SWEET]) /

(#GRAPE[has-color, RED] * #GRAPE[has-taste, SWEET])) *

(#GRAPE/ #APPLE) - EQ-II

as would be computed using the best estimate rule.

Thus, using Bayes' rule in conjunction with the independence assumption

IA-I, leads to the same result that would be obtained by the best estimate rule

derived in section 5.1.

However, in deriving the best estimate rule we did not make any

assumption such as IA-I. Therefore, let us examine, why the two results are

identical, and identify the relation between assumption IA-I and the

derivation of the best estimate rule.

The independence assumption provides a way of dealing with unknown

probabilities. For example, the computation of Pr(Apple | red and sweet)

required the knowledge^ of Pr(red & sweet) | Apple), but since the latter was

not known, one applied the independence assumption and assumed that

Pr(red & sweet | Apple) was equal to Pr(red | Apple) * Pr(sweet | Apple).

The independence assumption IA-I is equivalent to the independence

assumption of the form:

j & ej | H) = Pr(q | H) * Pr(ej | H)

which in turn is equivalent to the assumption:

Pr(ei | ej & H) = Pr(ej | H)

In the above, H is a hypothesis, and ej, e; are two pieces of evidence.

This form of independence is often assumed in reasoning systems based



on Baysean statistics [Hart & Duda 77], but its use is widely criticized as being

unreasonable and even unwarranted [Charaiak 83].

The problem with the independence assumption is that it usually appears

as an ad hoc assumption, unrelated to the rest of the agent's body of

knowledge. Because it is not stated as to how the rest of the agent's

knowledge affects the validity of this assumption, it remains unclear as to

when the assumption is warranted and when it is not.

In the derivation of best estimate result, the agent's knowledge consisted

of terms of the form #A's and #A[Pj,Vjj's for different concepts A and

property value pairs [Pi,Vi]'s. None of the quantities #A[Pj,,VJ[Pj,Vj] were

known. The best estimate result established that in this specific situation, the

most probable estimate of the unknowns:

#A[Pi,Vi][Pj,Vj]'s

is given by,

tfApV^] * #A[Pj,Vj] / #A

It is only in this specific condition that the best estimate result matches the

result obtained by using Bayes' rule in conjunction with the independence

assumption. Indeed, it is only under this condition that the independence

assumption is justified.

The maximum entropy approach offers a precise way of formulating and

conceptualizing the problem of estimating missing probabilities. In essence, if

Pr(X) is not known then the principle of maximum entropy prescribes that we

use all the information at hand, and compute the probability of each possible

value of Pr(X), and choose that value of Pr(X) which is most probable.

Under thev maximum entropy approach, each piece of information is

viewed as a constraint that is used to determine which micro-configurations of
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the domain are feasible and which are not Next, the most probable macro-

configuration of the domain is ascertained by finding a macro-configuration

that is supported by the largest number of feasible micro-configurations.

Once such a macro-configuration has been ascertained, the unknown

probabilities are computed using this macro-configuration. If there is no

dependence or correlation in the underlying information then the result

obtained by the maximum entropy principle does agree with the result

obtained by using Bayes' rule in conjunction with the independence

assumption. However, if additional information indicating dependence is

available, it is incorporated in the derivation of the most probable

configuration as an additional constraint and the result reflects this

dependence. For example, if the agent knows one of the #A[PJ,VJ][PJ,VJ]'S,

i.e. with respect to figure 5.2, if the agent knows one of the internal matrix

elements, then the constraints used during the maximization of:

w = N!/ni = U ; j = l 4 n ay!

are altered. Without loss of generality, let the agent know that a]j = a. Then,

the constraints are:

2 i = 2,n (ail) = c l ' a

Vi (i = 2,n) 2 j = l f m (ay) = Ri

vj (j = 2,m) z i = 1§n (ay) = Cj

2 i = l,n;j = l,m (aij) = N

The most probable configuration is given by:

Vj (j =l jn) aXj = Cj * (RL - «)/(N-



vi (i =tn) m = K[ * (Ci - a)/(N- Rx) and

Vij (i 56 1 and j * 1) ay =

As should be obvious, if many internal elements are known then the

above computations get complex; the implications of this are discussed in

section 7.

5.3. Evidential inheritance

This section develops an evidential theory of inheritance based on the

result derived in section 5.1. Let us recall the definition of the inheritance

problem.

Given: e = «C, <&, X, A, # , 5, <>,

C € <C, P € X(C), and

V-SET = {Vx, V2, ... Vn}, a subset of A(P)

Find: V* € V-SET, such that among members of V-SET, V* is the most

likely value of property P for concept C. In other words, find V* €

V-SET such that, for any Vj € V-SET, the best estimate of

#C[P,V*] > the best estimate of #C[P,Vi]
1s.

In order to solve the inheritance problem, an agent needs to know the

#C[P,VJ's. If the agent knows S(C,P) then the solution to the problem

becomes trivial. However, if the agent does not know 5(C,P), then he has to

compute the most probable (best) estimates of the #C[P,VJ's based on his

knowledge about other concepts in the conceptual structure. It is this latter

case - where fi(C,P) is unknown, that is of interest to us. In the rest of this

section, we develop a theory of inheritance which prescribes how #C[P,VJ's



may be computed based on knowledge available at concepts that lie above C

in the ordering induced by <̂  on C. The resulting theory can deal with

exceptions as well as multiple inheritance situations. In particular, it is shown

that the results apply to the "multiple views" organization proposed in section

3.5.

The section begins by considering the simplest case of inheritance (direct

inheritance) and progressively considers more complex cases that require

combining evidence from multiple sources (multiple inheritance).

5.3.1 Direct inheritance

Given two concepts C and B, and a property P such that:

C <̂  B, S(C,P) is not known, but 5(B,P) is known,

then in the absence of any other information, #C[P,V]'s are best estimated

by:

#B[P,V]*(#C/#B)

For example, if 40% of fruits are red, then in the absence of any other

information, except that apples are a subtype of fruits, the best estimate of the

percentage of red apples is 40%.

A proof follows directly from an application of the best estimate rule, and

is a special case of the proof given in section 5.3.4.1

Direct inheritance is analogous to the notion of direct inference in statistical

inference.

5.3.2 Generalization of direct inheritance

As stated above, the direct inheritance rule applies only when the agent's

knowledge is limited to knowing that C < B, and S(B,P) is known. A useful



generalization of direct inheritance would be to include the case where it is

known that B has other offsprings besides C. This may be done if we make

the following assumption about the conceptual structure of the agent:

Well-formedness rule 1 (WFR-cs-1)

The agent stores (or remembers) all distributions that are important to

him and that cannot be estimated accurately on the basis of information

available at concepts higher up in the conceptual structure. In other

words, if the knowledge of #C[P,Vj]'s is important to the agent, and if

#C[P,VJ's are significantly different from those that would be

obtained by inheritance (i.e. if #C[P,V^]'s are exceptional), then the

agent must store 8(C,P).

In the absence of such an assumption, the generalization of direct

inheritance could lead to erroneous results, as is illustrated by the following

example.

Let apples and grapes be two subtypes of fruits. Assume that there are 150

fruits, 100 of which are apples and 50 of which are grapes. Also assume that

40% of the fruits are red (i.e. 60 fruits are red). In the absence of any other

information, the best estimate that one can make is that there are 40 red

apples, and 20 red grapes. (This follows from direct inheritance). However, if

it is also known that 50% (i.e. 50) apples are red then it follows that only 10%

(i.e. 5) grapes are red, and this differs significantly - the error is 300%, from

the estimate obtained by direct inheritance (40% or 20). WFR-1 would ensure

that if it is important for the agent to predict the number of red grapes, then

in the above situation he would store 8(has-color, GRAPE).

It should be noted that there are two preconditions associated with WFR-1.

The rule suggests that S(C,P) be stored if the information encoded in 8(C,P)

is useful to the agent, and the estimate obtained by direct inheritance are

significantly different. In the above example, if we reverse the situation so



that instead of knowing that 50% apples are red, it is known that 50% (i.e. 25)

grapes are red, then the correct estimate of the number of red apples is 35%.

Now 35% may not be considered significantly different from the estimate

obtainable by direct inheritance, (direct inheritance leads to 40%, hence the

error is only 12.5%), and the agent may not store S(has-color, APPLE), even

though it may be important for the agent to predict the number of red apples.

5.3.3 Principle of relevance

Given a concept C and a property P € X(C), a concept B is relevant to C

with respect to P, if and only if:

i) C < B,

ii) 8(B,P) is known and

iii) there exists no concept A (distinct from C and B) such that S(A,P) is

known and C < A < B.

We will often need to refer to the set of concepts that are relevant to C

with respect to P, and this set will be referred to as r(C,P).

Figure 5.4 illustrates the above definition. Notice that a concept could be

relevant to itself with respect to some property P. Furthermore, it follows that

for such a concept, there exists no other concept relevant to it with respect to

P.

The principle of relevance states that:

Given a concept A and a property P such that P 6 A(A) and 5(A,P) is not

known, and if there is only one concept (say B) that is relevant to A with

respect to property P, then the best estimate of 5(A,P) may be directly

inherited from B, and all other information may be ignored.

Example: Suppose an agent knows that apples are a subtype of fruits,



delicious is a subtype of apples, 40% fruits are red and 60% apples are red.

Given this information, the best estimate of the percentage of red delicious is

60%, based on the more specific information about apples.

The principle of relevance appears as the reference class problem in

statistical inference [Kyburg 83] and also corresponds to the inferential

distance ordering in [Touretzky 84].

5.3.4 Multiple inheritance

This section presents a solution to a restricted class of the multiple

inheritance problem. However, the scope of the solution is general enough to

apply to a conceptual structure that has the "multiple views" organization

described in section 3.5.

The existence of multiple relevant concepts requires that evidence from

many sources be combined. The goal is to apply the result derived in section

5.1 and arrive at a evidence combination rule. We begin by observing that for

the purpose of inheriting the property P of concept C, we need to consider

only those concepts D[ that are above C in the conceptual hierarchy, and for

which S(Dj,P) is known. This is the motivation behind introducing the

following definition:

Given a concept C and a property P 6 \(C):

<C/C,P, the projection of C with respect to C and P, is defined as:

<C/C,P = { x | x € C and S(x,P) is known and C < x }

Figure 5.5 illustrates the above definition.

In the ensuing discussion we will always work with the projected structure.

We now consider two cases of multiple inheritance. In the first case, all

the relevant concepts have a common parent and a direct application of the



best estimate rule suffices. In the second and the more general case, a

common parent does not exist In this case, evidence from relevant concepts

is combined by progressively moving up the conceptual structure and

repeatedly applying the result derived in the common parent situation. This is

done until a common ancestor of all the relevant concepts is reached. It is

shown that by doing so evidence from all relevant concepts gets assimilated.

5.3.4.1 Multiple inheritance: the simple case

Let 6 = <C, <S>, A, A, #, 5, <> be the conceptual structure of an agent If

the ordering induced on C/C,P by < is such that there exists a unique

reference concept (say Q) for r(C,P), that is also the parent of all members of

r(C,P), then:

the best estimate of #C[P, Vj] / #C[P,Vq] is given by:

<nkaU(#Bk[P,Vj] / #Bk[P,Vq])) * (#O[PfVq] / tfQPWj])11-1 - EQ-I

In the above expressions, Vj and Vq are members of A(P), B '̂s are

members of r(C,P), and n = |r(C,P)|.

(Notice that if there is only one relevant concept B, then Q may be taken

to be B itself, and the above result reduces to the direct inheritance result)

In other words, if an estimate of #C[P,Vj] is required solely for the

purpose of comparing it with estimates of other #C[P,Vq]'s, then it suffices

to compute:

<nk=u#Bk(p< vjD / tfalP.VjF1 - EQ-II

The result is summarized in figure 5.6, and illustrated with the help of an

example in figure 5.7.

Proof: We prove the above result by first establishing the following result:



Given a set V, and n sets S^ S2,- Sn, each Sk C V;

let W denote r \ = l n Sk

Then, the best estimate of #W based on all available information is given

by:

# w = #v * nk=ln(#sk/#v)

Proof: The problem of estimating #W is a special case of the

problem of determining the most probable configuration. The

correspondence is as follows: Each Sk may be treated as a 2-valued

property applicable to V. For each v € V, if v € Sk then the value

of the property Sk for v equals 1 otherwise it equals 0. Hence,

finding the best estimate of #W is identical to finding the best

estimate of the number of elements in V that have the value 1 for

each of the properties S\ through Sn. The result of section 5.1

states that that the best estimate is given by EQ-III above.

After having established EQ-III we may now establish EQ-I by

recognizing that:

If D be the set n k = l n Bk, then #D[P, Vj] is best estimated by:

#D[P, Vj] = (nk = l n#Bk[P, VjD / #Qp\Vjp l - EQ-IV

; using EQ-III above and identifying V in

EQ-III with Q[P,Vj] in EQ-IV and each Sk in

EQ-III with Bk[P, Vj] in EQ-IV.

Although, the set D may not be explicitly defined as one of the concepts

in the domain, it may be introduced for the purpose of this analysis2.



With reference to D, one may estimate #C[P, Vj] by:

#C[P, Vj] = #D[P, Vj] * ( # C / # D )

Similarly, one may estimate #C[P, Vq] by

#C[P, Vq] = #D[P, Vq] * ( # C / # D )

Thus, the best estimate of #C[P, Vj] / #C[P, Vq] is given by:

#C[P, Vj] / #C[P, Vq] = (#D[P, Vj] * (#C /#D) ) / (#D[P, Vq] * ( # C / # D ) )

= #D[P,Vj]/#D[P,Vq] - EQ-V

It is easy to see that EQ-V is equal to EQ-I by using the result derived in EQ-

IV.

This ends the proof,

2. Any arbitrary set may not be introduced in this manner. However, D is a well

defined set in that it is the intersection of existing sets.

With reference to derivation of EQ-III above, suppose it is known that

there are a number of sets Vj, V2, ... Vm such that, for each Vj, each S^ C

In this case there would be m different estimates of # W, one for each V :̂

Which of these is the best estimate of # W? In other words, which of the

Vj's should be used as the reference set for finding the most likely

intersection of Sj^s. This is essentially the reference class problem mentioned

in section 5.3.3.

If one of the Vj's - say V*, is such that V* c Vj, for each Vj 1 < i < m, then



the best estimate of # W is the one that is computed using V* as the reference

set. That is, the best estimate of # W is given by:

Notice that in the derivation of EQ-IV, V was identified with Q[P,V;] and

each S^ with Bj^Vj], where Bĵ 's are the members of r(C,P). This explains

the motivation behind the requirement on Q that it be a parent of all the

members of r(C,P).

53.4.2 Multiple inheritance: the more complex case

This section deals with a more complex multiple inheritance situation, one

in which a single common parent of the members of r(C,P) does not exist

The result of this section states that:

If the ordering induced on C/C,P by < is such that there exists a unique

reference concept Q for r(C,P) and there is a unique path from each B[ €

r(C,P) to Q, then the best estimate of

#C[P,Vj] / #C[P,Vq]

is computed by the following algorithm:

# C p , V j ] / # C p , V q ] : = BEST-ESTIMATE(Qj\Vj) /

BEST-EST!MATE(Q,P,Vq);

The function BEST-ESTIMATE(£, <p, v) operates on the tree induced by <

on C/C,P and is as follows:

Function BEST-ESTIMATE (|, <p, v) \ returns real

{£ is a concept, <p is a Property and v is a value}

If i € r(C,P) then BEST-ESTIMATE : =



else BEST-ESTIMATE : =

#£[<p,*] * n (BEST-ESTIMATE^,*) /#Z[<pA)

{The product is taken over all the sons (i.e. the £j's) of £}

Explanation: The requirement placed on the conceptual structure is such

that the ordering induced by < on C/C,P results in a graph that includes a

tree with B^s as its leaves and Q as its root. The situation is depicted in figure

5.8 The above algorithm combines evidence provided by each Bj € r(C,P) by

repeated application of the result derived in section 5.3.4.L Specifically, the

result computed at each concept £ that lies on a path from Q to a Bj,

combines the evidence provided by all the B '̂s that lie below £. This ensures

that the evidence provided by all the Bj's has been combined when the result

is computed at Q.

The second and the third arguments of the function BEST-ESTIMATE (B.E.

in brief), remain fixed during recursive invocations of the function. Hence, in

analyzing the computation performed by B.E. (J2,P,Vj), we will refer to all

recursive call by specifying only the first argument. The first argument

indicates the concept at which the function is currently being evaluated. The

invocation trace of the function corresponds to a tree traversal, where the tree

consists of the concept £2, and all concepts that lie on paths from Q to a B .̂

It can be proved that the B.E.(Q,P,V1) / B.E.(Q,P,V2) equals:

the best estimate of #C[P,V1] / the best estimate of #C[P,V2].

As the first step of the proof we derive the following lemma:

Lemma-MI: B.E. (O,P,Vj) computes the best estimate of:

#D[P,Vj], where D is the set n i = u Bj, such that, for all i, 1 < i < r, B^s

are the members of r(C,P).



Inductive proof for Lemma-MI:

Base case:

At the lowest level (level 0) of the ordering defined by < and C/CJP, each

concept £, is a member of r(C,P). Hence, the result computed by B.E.(£),

where $ is some Bj € r(C,P), is #£[P,Vj].

If £ is a concept at level 1 then each of its offsprings will be a relevant

concept Let these be: B^, B2 ... B r Then it follows that B.E.(£) computes:

(ni==lr#Bi[P, Vj]) / # |[P,VjFl

Hence, the result computed by B.E.(£), for all concepts £ at level 1,

corresponds to the best estimate of #D[P, Vj], where D is the set n i = l r Bj,

and Bl5 B2, ... Br are the offsprings of £. (cf. section 5.3.4.1 EQ-IV).

This establishes the base case (for level 1 nodes).

Induction step

Inductive hypothesis: Assume that the result computed by B.E.(£) for each £

at some intermediate level k, corresponds to the best estimate of #D[P,Vj],

where D is the set n i==lr Bv such that, for all i, 1 < i < r, Bj's are descendants

of £.

We now show that the result computed by B.E.(|) for each £ at level k +1,

also corresponds to the best estimate of #D[P,Vj], where D is the set n i = l r

Bj, such that, for all i, 1 < i < r, Bj's are descendants of £.

Let £ be a concept at level k + 1, and let £t, t =1, q, be its offsprings. As

each offspring will be a concept at level k, it follows from the inductive

hypothesis that:

= #Dt[P,Vj],



where Dt is the set n i = a t b t Bj, such that, for all i, at < i < bt, Bj's are

descendants of £t.

Then the result computed by B.E.(£), for some £ at level k + 1, is:

(nt=1.q#Dt[P,Vj]) / ^ ^ P . V j F 1

But by the derivation of EQ-IV (cf. section 5.3.4.2), the above expression

is the best estimate of #D[P,Vj] where D is given by:

which may be rewritten as:

Bal n Bal + 1 ~n B bl n Ba2 n Ba2 + 1 - n Bb2 n Baq n B aq+1 -
n Bbq

which is the intersection of all B^s that are descendants of £.

This concludes the inductive step.

But by definition, Q is the ancestor of all members of r(C,P), hence, B.E.

(Q,P,Vj) computes the best estimate of:

#D[P,Vj], where D is the set n i = l n Bj, such that, for all i, 1 < i < r, Bj's

are the members of r(C,P).

This concludes the inductive proof.

Hence, B.E.(Q,P,V1) / B.E.(Q,P,V2) equals:

#D[P,V1] / #D[P,V2]

where D is the set n i = l n Bi? where, {Bl5 B2, ... Bn} = r(C,P).

This establishes Lemma-MI.



By virtue of the arguments leading to EQ-V (cf. 5.3.4.2):

#D[P,V1] / #D[P,V2] equals:

the best estimate of #C[P,V1] / the best estimate of #C[P,V2].

This establishes the correctness of the inheritance algorithm.

53.5. Evidential inheritance: a summary

Problem statement:

Given: 0 = <C, $, X, A, # , 5, <>,

C € C, P € X(C), and

V-SET = {VI, V2, ... Vn}, a set of values of P, i.e. V-SET €

A(P)

Find: V* € V-SET, such that among members of V-SET, V* is the most

likely value of property P for concept C In other words, the best estimate of

#C[P,V*] > the best estimate of tfCpW^s.

Solution:

i) Find r(C,P)

ii) If there exists a unique reference concept Q for r(C,P) and there is a

unique path from each y € r(CJP) to Q in the ordering diagram defined

by <̂  and C/CJP then:

Find V* such that for all i

BEST-ESTIMATE(Q, C, V*) / BEST-EST!MATE(Q, C, VJ) > 1

(Direct inheritance and the case where 5(C,P) is known are special cases of

the above result)



The condition specified in step ii) is not unduly restrictive. The conceptual

structure described in section 3.5 is more restricted than the conceptual

structure permitted by the above condition. Thus, the solution developed

above applies to the "multiple views" organization in which the Type

structure defined over Tokens consists of several distinct taxonomies. Recall

that in such an organization, each Token may have several parents, and

hence, multiple relevant concepts.

In particular, condition ii) does NOT require all concepts in C to be

organized as a tree; if this were the case, multiple inheritance situations would

not even arise. Notice that, the condition stated in step ii) does not require

the ordering graph defined by C and < to have tree like properties, it only

requires that the ordering graph defined by C/C,P and «, have a tree like

structure.

Consider the concepts in figure 5.9a. Assume that the property has-belief

with values pacifist, and non-pacifist, applies to the concepts shown in the

figure, and that the agent has stored 5(C, has-belief) for any concept C that is

enclosed in a dark box. The concepts are embedded in a multilevel hierarchy

ans some of the concepts have multiple relevant concepts. Yet the most likely

property-values of these concepts may be obtained via inheritance. In

particular, the question: "Is Dick a pacifist or a non-pacifist", may be posed

as an inheritance problem. Figure 5.9b shows the projected structure for this

question. The issue of Dick's pacifism would be resolved by combining

evidence from the two relevant concepts Quaker and Republican at the

reference concept Person, and the answer would depend on which of the two:

1) ((#QUAK[has-belief, PAC] * #REPUB[has-belief, PAC]) /

#PERSON[has-belief, PAC])

2) ((#QUAK[has-belief, NON-PAC] * # REPUB[has-belief, NON-PAC]) /

#PERSON[has-belief, NON-PAC])
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is greater. If 1) is greater then it is more likely that Dick is a pacifist, and if

2) is greater then it is more likely that Dick is a non-pacifist If 1) and 2) are

the same then there is nothing in the agent's body of knowledge to make the

above decision, and he may make an arbitrary choice. The answers still

depend on the information available at the concepts Quaker, Republican, and

Person, just as was the case in the simpler example considered in section

5.3.4.1, figure 5.7. The distribution information available at Christian node

plays no role in arriving at a decision.

5.3.6 The role of numbers in the theory

The representation language specified in section 4.1 required the

specification of absolute numbers. It was assumed that the agent knew the

values of #C for each member of C. It was also assumed that he knew the

values of #C[P,V], for Cs and Fs for which 8(C,P) was defined.

However, an important characteristic of the theory of inheritance

developed above is that none of the calculations require the knowledge of

absolute numbers. All the necessary numeric information is embodied in the

following ratios each of which lies in the interval [0,1}:

a) For all C and P such that 5(C,P) is known, ratios of the form

#C[P,Vi] / #D[P,Vi] and #C[Py{] / # V^

where, D is a parent of C in the ordering induced by <^ on C/C,P and

Vys are possible values of P.

b) For all pairs of concepts C and D such that D is a parent of C in the

ordering induced by < on C, the ratios:

# C / # D



5.4 Comparison of the evidential approach to other approaches to inheritance

This section illustrates some of the advantages of adopting an evidential

framework for formalizing inheritance in conceptual hierarchies. It was shown

in section 1.5 that none of the existing formalizations of inheritance: those

based on first-order logic, Reiter's default logic [Etherington and Reiter 83],

or Touretzky's principle of inferential distance ordering [Touretzky 84], can

deal with multiple inheritance adequately. This section considers a simpler

situation that involves exceptions but does not involve multiple inheritance. It

is shown that in this situation, a system based on default logic, or one based

on Touretzky's principle of inferential distance ordering, would yield

intuitively correct result, but these solutions are not backed by any model-

theoretic account of the reasoning that underlies these systems. I am not

considering systems based on first-order logic because the formalization of

inheritance based on first-order logic is clearly not intended to handle

exceptions, whereas Touretzky, as well as Etherington and Reiter claim to

deal with the problem of inheritance with exception.

We consider a very simple example (henceforth, the penguin example)

and solve it using the evidential approach. Next, we compare the

representation of the problem and the interpretation of the answer suggested

by my approach with that suggested by Fahlman [Fahlman 79], Tourtezky,

and Etherington and Reiter (henceforth referred to as E &R.)

Let us assume that an agent's knowledge consists of the beliefs that 80% of

the birds fly, penguins and robins are subtypes of birds, and while none (0%)

of the penguins fly, 95% of the robins do. Let us posit that there is a property

has-mode-of-transport (has-md-trnspt in brief) with one of its values being

FLY, and let us gather all other values into a single value -FLY. The other

concepts are BIRD, ROBIN and PENGUIN.

If the agent is told that "Tweety is a bird1', and asked "does Tweety fly",



how would he respond? The problem is easily analyzed in terms of evidential

reasoning. As the agent does not know whether Tweety can fly or not, he

considers all possible configurations of the world that are consistent with his

knowledge. On the basis of the information available about Tweety, it could

be any bird; it could be a penguin, a robin, (and if there were any other

subtypes such as ravens and ostrich, it could also be any one of these). Based

on the information that is available to him, an agent may compute the ratio of

the number of feasible configurations of the world in which Tweety can fly,

to the number of feasible configurations in which Tweety cannot fly. This

ratio equals 80 : 20, and is given by:

#BiRD[has-md-trnspt FLY]

2X #BiRD[has-md-trnspt x]

where, X ranges over all other modes of transport, in our case there are only

two values FLY and ~FLY.

The ratio 80 : 20 (i.e. 4 : 1), suggests to the agents that it is four times

more likely that Tweety is a bird that flies than that Tweety is a bird that does

not fly. Therefore, if the agent has to make a choice he would choose MTweety

flies11.

There are three points that need to be made:

1. The agent is not certain that Tweety flies. He only believes that it is

more likely that Tweety flies.

2. The above does not imply any fuzziness about birds that fly or about

Tweety. It is not as if Tweety is a 0.8 flier and 0.2 non-flier. Tweety either

flies or it does not; it is only the likelihood of Tweety being either of these

that is 4 : 1.

3. It is not assumed that Tweety is not a penguin. (The agent would have



arrived at the same answer even if he had reasoned by cases: considering

Tweety to be a penguin or not a penguin ... etc.)

Now consider another situation. The agent has the same information as

before about birds and penguins, but this time he is told that Tweety is a

penguin. (It does not matter whether he is also told that Tweety is a bird, for

this follows from the fact that Tweety is a penguin, and all penguins are

birds). In this situation, Tweety could be any penguin. Given that 0%

penguins fly and 100% don't, the ratio of the number of feasible

configurations of the world in which Tweety can fly, to the number of

feasible configurations in which Tweety cannot fly is 0 : 100. This ratio is

given by:

#PENGUiN[has-md-trnspt FLY]

2X #PENGUiN[has-md-trnspt x]

The ratio 0 : 100 (i.e. 0 : 1), tells the agents that it is impossible that

Tweety flies. Hence, the agent will infer that 'Tweety does not fly". Notice

that this time the agent is certain of his choice, he knows that that there is no

feasible configuration of the world in which Tweety could fly.

Finally, if the agent were told that "Tweety is a Robin" he would choose

"Tweety flies", in this case the ratio of the likelihood of "Tweety flies" to

"Tweety does not fly", is 95 : 5, i.e. 19 : 1. The agent's response is the same as

it was when he was told that "Tweety is a bird", but this time he will be

much more confident about his choice.

The above example demonstrates that in each of the three situations,

evidential reasoning gives a crisp meaning to what the agent believes about

Tweety. The likelihood of Tweety being a flier or not being one, changed in

each of the three cases because the agent had different information about

Tweety. In each case, the agent found the most likely possibility on the basis



of all the information that was available to him, and in all the three situations,

the measures of likelihood were based on the same body of a priori

knowledge and each of the conclusions were mutually consistent. More

importantly, in each case the choices made by the agent can be justified in

terms of his beliefs about the possible configurations of the world. Notice that

there was no need to "cancel" any links, nor to arbitrarily select one of many

extensions, neither was it necessary to introduce the notion of non-

monotonicity or fuzzy truth values.

Let us now examine how this example would be treated by Fahlman,

Touretzky and E & R. The agent's knowledge about the world would be

rendered as follows:

Touretzky and Fahlman:

Birds fly.

Penguins are birds.

Robins are birds.

Penguins don't fly.

E & R :

Normally birds fly, but there may be exceptions.

Penguins are always birds.

Robins are always birds.

Penguins never fly.

Figure 5.10 gives the graphical notation associated with these

representations. As robins are not exceptional, the information available

about the ability of robins to fly would not be represented explicitly in either

formalism. Fahlman and Touretzky employ a special CANCEL link to block

the effect of the IS-A link between BIRD and FLYER in the context of



PENGUIN. Thus, BIRD IS-A FLYER, PENGUIN IS-A BIRD, but it is not the case

that PENGUIN IS-A FLYER, E & R employ a total of 5 different kinds of links,

four of these kinds are required in this example (see figure 5.10).

Before we examine the solutions that follow from the above

representations, let us point out a basic problem with each of these

approaches. The above approaches treat properties and Types as equivalent

constructs3. Not making a distinction between Types and properties leads to

some unusual results; the cancel links employed by Fahlman and Touretzky,

and the fact that E & R entertain situations wherein there may be a default

IS-A link and also a default ISNT-A link from A to B, are symptomatic of

these confusions.

3. In NETL, Fahlman does make a distinction between properties and Types but his

subsequent remarks in the context of cancellation [Fahlman et al. 81] indicate that he

thinks that this distinction is not crucial

Touretzky's proposal is an improvement over Fahlman's NETL. Touretzky

has given a precise specification of what he expects the inheritance hierarchies

to do, and shown how to condition NETL networks so that they perform

inheritance in accordance with the principle of inferential distance ordering.

However, Touretzky also makes use of CANCEL links, and what follows

applies to Fahlman and Touretzky as well. In Fahlman's and Touretzky's

scheme one may say: A IS-A B and B IS-A C, and at the same time have a

CANCEL link from A to C. This CANCEL link is supposed to imply that A's

are not BPS. But how can A's be B's and B's be Cs and yet A's not be C's? It

would be desirable to have a clear semantic account of what this means. As it

stands, the CANCEL link appears to be a construct that is an artifact of

implementation, required to make the network do the right thing, but without

any clear representational import.

Now consider E & R's proposal. This proposal allows one to construct a



situation as shown in figure 5.11 (see E & R 83] pp. 107). There is a default

IS-A link as well as a default ISNT-A link from A to B. According to the

semantics (?) of these links as suggested in [E & R 83]: this situation is to be

understood as follows:

"Normally A's are B's but there may be exceptions, and normally A's are

not B's but exceptions are allowed".

The above seems to say nothing meaningful about what A's normally are.

Returning to the penguin example, one may see how each of the proposals

would handle the three questions posed about Tweety. If the agent is told

"Tweety is a bird", Fahlman's and Tourtezky's systems would infer that

"Tweety flies" by moving up the IS-A link from TWEETY to BIRD and thence

to FLYER. A similar explanation holds for the case where "Tweety is a robin".

However, if the agent is told that "Tweety is a penguin", then the CANCEL

link at PENGUIN would block the effect of the IS-A link between BIRD and

FLYER.

The explanation of the E & R's system is along similar lines. The strict

ISNT-A link from PENGUIN to FLYER would block the inference that would

have been made by the presence of the default IS-A link from BIRD to FLYER.

The graphical notation of E & R may be mapped to a set of default rules, and

the information related to flying in the penguin example may be translated as

follows:

BIRD(X) : -PENGUIN(X) & FLYER(X) - dr-1

FLYER(x)

PENGUIN(x) = > ~FLYER(x) - R l

In the situation where it is known that "Tweety is a bird," dr-1 applies and

it is inferred that "Tweety flies". However, if it is known that Tweety is a



penguin, it may directly be inferred that "Tweety does not fly" by using R-l

(notice that in any case, the default rule dr-1 remains blocked).

In each of the above cases the response of the E & R system and that of

the Touretzky or Fahlman systems matches our intuitions. However, these

formalisms do not provide a model-theoretic account of their inferential

behavior. It is not sufficient to have precise rules of inference; the inferences

drawn should be justifiable in terms of how they claims the world to be.

Default rules and CANCEL links seem to characterize a methodology that

amounts to identifying the inferences that are desirable in certain special

situations, and explicitly encoding these as default rules or CANCEL links.

Turning to the evidential framework, an attractive feature of the

representation is that either a concept is an instance of (subtype 00 another

concept or it is not. The < relation specifies this unequivocally. The notion of

exception only applies to property values and even here, exceptions do not

entail "cancellation" or "blocking" of properties. I claim that the approach

presented in this thesis is the only one - within the knowledge representation

circles, that handles inheritance in hierarchies with exceptions, in a justifiable

manner, and offers a model-theoretic account of the conclusions that are

drawn.

The approach applies only under conditions stated in section 5.3, but the

class of situations handled by this approach subsumes the class of situations

handled by Touretzky and Etherington and Reiter. Furthermore, for this class

of inheritance problem there exists an extremely efficient implementation on

an appropriate parallel computer. Section 6.1 demonstrates that it is possible

to encode the evidential knowledge of an agent as a highly parallel

(connectionist) network of active elements connected via weighted links that

can perform the computations required to solve the inheritance problem in

only O(d) time, where d is the length of the longest path in the conceptual

hierarchy defined by <



5.5 Evidential categorization

This section develops a solution to the categorization problem based on

the results derived in sections 5.1 and 5.3. In terms of the language presented

in section 4.1, the problem of categorization may be defined as follows:

Given: e = <C, 4>, \ , A, # , 8, < >, and

i) an explicit enumeration of possible answers, i.e. a set of

concepts, C-SET = {C^, C2,... Cn}, where either all members

of C-SET are Types, or all members of C-SET are Tokens.

ii) a description consisting of a set of property value pairs, i.e., a

set DISCR = { [P^Vi], [P2,V2], - Pm^m] h s u c h * * , for

each [Pj,Vj] € DISCR,

pj € n C € C-SET *(O. ^ v j

In other words, a property mentioned in the description should

apply to every concept in C-SET, and the values specified for

these properties should be appropriate.

Find: C € C-SET such that relative to the concepts specified in C-

SET, C is the most likely concept described by DISCR.

In order to solve the categorization problem, we need to compute the most

likely estimates of:

#Ci[P1,V1][P2,V2] ... [Pm,Vm]

for each C[ € C-SET, and choose C such that the above estimate for C is

greater than or equal to the estimates of all other members of C-SET.

By virtue of the best estimate result derived in section 4, the best estimate

of:



based on the knowledge of #qPi,V1], #qp2,V2], •••• #qPm»vnJ is:

Hence, the primary step in solving the categorization problem is the

estimation of #Cj[Pj,Vj], for each Cx € C-SET and each Pj mentioned in

DISCR.

The categorization problem is more complex than the inheritance problem

for, whereas inheritance involves only a single concept and a single property,

categorization involves multiple concepts and multiple properties. In this

section we identify conditions under which the solution to the categorization

problem remains computationally simple. Section 5.1 considers the case

where for each C[ € C-SET, and each Pj mentioned in DISCR, there is only

one concept relevant to Cx w.r.t. Pj. Section 5.5.2 considers the more complex

case where multiple relevant concepts exist It is shown that under suitable

restrictions, even these cases may be handled with ease. Finally, section 5.5.3

evaluates the results of sections 5.5.1 and 5.5.2 with reference to the

conceptual structure described in section 3.5, and demonstrates that there is a

natural fit between these results and the "multiple views11 organization

proposed in section 3.5.

5.5.1 Unique relevant concepts:

If there exists a unique concept By, that is relevant to C[ w.r.t Pj, then by

direct inheritance, (section 5.3.1), the best estimate of #CJ[PJ,VJ] is given by:

Therefore, if DISCR is such that for each Pj mentioned in DISCR, there

exists a unique concept By relevant to Cx w.r.t Pj, then the best estimate of:



#Ci[P1,V1][P2,V2] ... [Pm,Vm]

which is given by: (n j = lm #q[Pj,Vj]) /

equals: (n j = iiin(#Bij[Pj,Vj] * #q / #By)) / (#C i )
m " 1

which in turn equals : q * nj = 1?m(#By[Pj,Vj] / #By)

If the above holds for every member of C-SET, i.e. if each q € C-SET is

such that for each Pj mentioned in some [Pj,Vj] € DISCR, there exists a

unique concept By relevant to q w.r.t to Pj, then the categorization problem

may be solved as follows:

i) For each q € C-SET, and each Pj mentioned in some [Pj,Vj] € DISCR,

find By, relevant to q w.r.t. Pj.

ii) For each q € C-SET, compute: q * nj = lm(#By[Pj,Vj] / #By)

where Pj, 1 < j < m, are properties mentioned in DISCR.

iii) Choose a C for which the quantity computed in ii) has the highest

magnitude.

Note that, there is no requirement that the By's be distinct, i.e. it is

possible that By = By for some 1 < i,k < n, and 1 < j,l < m.

5.5.2 Multiple relevant concepts

If there exist multiple concepts By\ By% ... By^, that are relevant to q

w.r.t. Pj, i.e. r(q,Pj) = { By1, By2, ... By^ }, and if there exists Qy such

that, Qy is the unique reference concept of r(q,Pj), and it is also the

reference concept of all subsets of r(q,Pj), then the best estimate of

#q[Pj,Vj] is given by:

[Pj,Vj] = #nByk[Pj,Vj] * #q / #nBy k ,



EQ-I

where nByk refers to: n ^ - . ] ^ Byk; the class obtained by intersecting all
kthe Byk's.

Because Qy is not only a reference concept for r(Cj,Pj) but also for all

subsets of r(Cj,Pj), it may be treated as the "parent1' of all the Byk's - the

members of r(Cj,Pj), for the purpose of computing #nByk[Pj,VY|. Thus, EQ-

III derived in section 5.3.3.1 applies and,

v j])/(#Qy[P j,Vj])qri - EQ-II

The expression for #C^[Pj,Vj] given in EQ-I above, includes the factor

#nBy k ; the size of the set obtained by intersecting all Byk's, It is not

possible to estimate #nBy k without taking into account information about

S(Byk,Px) for all properties Px that apply to Byk's - even those that are not

mentioned in DISCR.

However, if one makes the simplifying approximation, that:

#DByk = ( n k = l q i j #Byk)/(#Oy)cl iJ"1 - APPROX-1

then, by substituting EQ-II in EQ-I and employing APPROX-1 we have that:

y / #Qij[Pj.Vj] yN-1 * (nk = l f q #Byk[Pj,Vj] / #Byk)

-EQ-III

The above expression depends only on the properties and property values

mentioned in DISCR. The expression may be further simplified by imposing

the following conditions on the conceptual structure:

COND-1: For each Pj there exists a unique 12; such that for all 1 < i < n,



Qy = Qj. In other words, Qj is the common reference concept

for all r(q,Pj), q € C-SET.

COND-2: The number of concepts relevant to q w.r.t Pj is the same for

all q € C-SET, i.e. |r(ClfPj)| = |r(C2,Pj)| ... = |r(Cn,Pj)|.

Alternately, qXj = q2j ... = qnj = qj

If the conceptual structure satisfies the above two conditions, then in the

expression for #q[Pj,V;] given in EQ-III (this section), the term:

is identical for all q € C-SET. This is because for all 1 < i < n, COND-1

implies that fly = Qj, and COND-2 entails that qy = qj.

For the purpose of categorization, it is only required to make a relative

comparison the magnitudes of #Cj[P^VJ[P2,V2] ... [Pm^ml f°r different

q 's . Given that the computation of #Ci[Pi,V1][P2,V2] ... [Pm,Vm] for each

q equals:

which only involves a product of #Cj[Pj,Vj]'s, it follows that it is not

necessary to compute #Cj[Pj,Vj]'s using the full expression given by EQ-III;

it suffices to compute:

# C i * (n k = i,qj tfBijkfPj.Vj] / #Bijk) -EQ-IV

which is derived from EQ-III by ignoring the term common to all

#Ci[Pj,Vj]'s.

Consequently, for the purpose of categorization, it is only necessary to

compute the expression:

i * -EQ-V
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for each q € C-SET.

EQ-V may be simplified to yield:

#Ci * n j = 1 ^ . k = l i q , ( # B a t y j . V j ] / #Bijk) - EQ-VI

5,5,3 Categorization in the "multiple views" organization

In this section we examine how the categorization problem may be solved

if the conceptual structure has the "multiple views" organization described in

section 3.5. In particular, we show how the results of sections 5.5.1 and 5.5.2

apply in this situation.

There are two kinds of categorization problems; one in which members of

C-SET are all Types and the other in which they are all Tokens. We refer to

these as Type categorization and Token categorization, respectively.

Type categorization

In the "multiple views" organization described in section 3.5, all Types are

organized into a strict taxonomy, and there is a unique path from a Type to

the root of the conceptual structure. Hence, each Type q may have at most

one concept relevant to it w.r.t a property Pj € X(Cj).

However, the existence of at least one relevant concept is guaranteed by

the fact that if Pj € \ ( q ) then, if o> is the leaf of the ontological tree for which

q < <o, then 8(<o,Pj) is known. (C.f. section 4.2 WFR-mv-1).

Hence, each Type q has exactly one concept relevant to it w.r.t. any Pj €

\(Cj). Consequently, the results of section 5.5.1 directly apply to the case of

Type categorization in the "multiple views" organization described in section

3.5.

Token categorization



In case of token categorization, all members of C-SET are Tokens, and

hence they may have multiple parents. Consequently, each Cj € C-SET may

have multiple relevant concepts w.r.t a property Pj.

It was shown in section 5.5.2 that even if there exist multiple relevant

concepts, the categorization problem may be solved by computing the

relatively simple expression given in EQ-VT, provided conditions: COND-1

and COND-2 are satisfied.

COND-1 requires that for a given Pj mentioned in DISCR, the reference

concept for r(Cj,Pj), be the same for all Cj, members of C-SET. In the

context of the "multiple views" organization, COND-1 may be satisfied if we

place the following well-formedness constraint on the manner in which the

categorization problem is posed:

WFR-cat-1: C-SET should be such that, all members of C-SET are

descendants of a single leaf of the ontological tree. It follows

that all members of C-SET belong to the same ontological

type.

If WFR-cat-1 holds, then there exists a CJ such that CJ is a leaf of the

ontological tree and for all Cj € C-SET, Cj < CJ. Let H]̂ , H2, ...Hq be q views

defined with CJ as their root. Each Cj may have at most one parent in each

view Hfc, and hence, there can be at most one concept By^, that is relevant to

Cj w.r.t. Pj, and that lies in the view H^. In other words, there may be

multiple concepts relevant to Cj w.r.t Pj - but at most one per view defined

over Cj. Consequently, each relevant concept lies in a different view, and

hence, Qy the reference concept for r(Cj,Pj) in the ordering defined by < on

C/Cj,Pj, cannot lie within any of these views, but must lie at or above CJ. But

8(co,Pj) is known and hence CJ is the reference concept for r(Cj,Pj). It follows

that CJ will be the reference concept for r(Cj,Pj), for all Cj € C-SET. This

satisfies COND-1.
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COND-2 requires that the number of concepts relevant to C| w.r.t Pj, be

the same for all Ox € C-SET. In the context of the "multiple view"

organization, this condition would be satisfied if the conceptual structure were

such that:

WFR-mv-2: If for some Token C^ there exists a concept By^, relevant to

Cj w.r.t. Pj, and By^ lies in the view H^ (refer figure 5.5.1), then for every

Token C[ that lies below H^, there exists a concept in H^ that is relevant to

Cj w.r.t. Pj.

The above well-formedness rule requires that if the distributions for

property Pj are stored at concepts in some view H^, then such distributions

should be stored at enough concepts in H^ so that for every Token C[ that is

under H^, there exists at least one concept By^ within H^, for which

k,Pj) is known (stored).

If the conceptual structure satisfies WFR-mv-2 then, for a given property

Pj and view H^, either each C[ € C-SET has exactly one concept By^ relevant

to it w.r.t. Pj in view H^, or each C[ € C-SET has no concept relevant to it

w.r.t. Pj in view H^. Thus, every C[ € C-SET will have the same number of

relevant concepts w.r.t any property Pj mentioned in DISCR.

Thus, the result of section 5.5.2 (EQ-VI), applies to the case of Token

categorization provided:

a) the conceptual structure is as described in section 3.5 and conforms to

the additional well-formedness properties specified by WFR-mv-1 (cf.

section 4.2) and WFR-mv-2, and

b) the categorization problem is posed so that C-SET meets the criteria

laid out in WFR-cat-1.
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8(C,P) known

8(C,P) not known

r(C1,P) = {C7}

T(C2,P) = {C4, C6}

T(C4,P) = {C4}

FIGURE 5.4 Relevance
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FIGURE 5.5 Projection
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FIGURE 5.6 Multiple inheritance with a common parent



IF

#QUAK[has-bel, PAC] x #REPUB[has-bel, PAC]

#PERSON(has-bel, PAC]

#QUAK[has-bel, NON-PAC] x #REPUB(has-bel, NON-PAC]

#PERSON(has-bel,NON-PAC]

then DICK is pacifist.

FIGURE 5.7 Simple case of multiple inheritance
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FIGURE 5.8 Generalization of multiple inheritance



RICK PAT

5(C,P) not known

S(C,P) known |

DICK SUSAN

P = has-belief
Values: PACIFIST, NON-PACIFIST

FIGURE 5.9a A complicated case of multiple inheritance
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FIGURE 5.9b Projection w.r.t. DICK and has-belief
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FIGURE 5.11 An ambiguous case in Etherington & Reiter's
representation



Chapter 6

Parallel implementation

This chapter describes how an agent's a priori knowledge may be encoded

as a network of active elements. It is shown that if the knowledge encoded in

the network satisfies the assumptions listed in sections 6.1.4 and 6.2.4, then

the network computes the solution to the inheritance and categorization

problems in accordance with the results developed in section 5. The time

required to perform these operation is only O(d) where d is the maximum

depth of the conceptual hierarchy (i.e. the longest path in the ordering graph

defined by C and <). For most practical applications, the value of d would be

small ( perhaps 10 ).

In order to keep the exposition clear, the parallel implementation is

described in four stages. Section 6.1 focuses on inheritance and suppresses all

details pertaining to categorization, section 6.2 focuses on categorization and

describes interconnections required to solve the categorization problem, and

section 6.3 specifies how the networks described in sections 6.1 and 6.2 can be

synthesized into a single network that can solve the inheritance as well as the

categorization problems. Finally, section 6.4 explains the implementation of

some control mechanisms alluded to in section 6.1. The chapter concludes

with section 6.5 that describes how the proposed networks have been

simulated on a conventional computer and presents several examples to

illustrate the behavior of the networks during inheritance and categorization

tasks.

The networks described below need to perform specific inferences - as

against exhibiting general associative behavior or modelling diffuse priming

effects. This requires that the networks be capable of controlling the

propagation of activation.



Furthermore, the network design has to satisfy another crucial constraint

in that the networks should operate without the intervention of a central

controller. Once a query is posed to the network, it is expected to function

autonomously, with all the nodes computing in parallel. This required that

local control mechanisms be encoded in each node while satisfying the

requirement that each node be a simple processing element The design

involves introducing explicit control nodes - namely binder nodes and relay

nodes, that provide foci for controlling the spread of activation.

6.1 Inheritance

6.1.1 Encoding the conceptual structure

A concept is represented in the network by a node while its relationship

with other concepts is encoded via links to appropriate nodes.

Nodes encoding concepts are called £-nodes. These nodes have four input

sites: QUERY, RELAY, CP, and HCP. The significance of these sites will be

explained in due course.

With reference to the ordering graph defined by C and <9 if B is a parent

of A then there is a t (bottom up) link from A to B and a I (top down) link

from B to A. The weight on both these links equal # A / # B . The t links are

just used for spreading activation and do not have any evidential import.

However, for convenience their weight is set equal to the corresponding i

link. All t and I links are incident at site RELAY. Figure 6.1 illustrates this

situation. As the t and i links always occur in pairs, they will often be

represented by a single undirected arc.

Each property is also encoded as a node. Such nodes are called <p-nodes,

and each of these nodes has one input site: QUERY.

If 5(A,P) € A then for every value V{ of P there exists a node [A,P -> Vj]



that is connected to A, P and Wx as shown in figure 6.2.

A triangular node such as [A,P -> VJ is called a S^-node. 5^-nodes

have two sites: ENABLE and EC. Each 5^-node [A,P -> VJ receives one

input from node A and another from node P. Both these inputs are incident

at site ENABLE, and the weight on these links is 1.0. The input from the

concept node (A) is referred to as the £-input, while the input from the

property node (P) is referred to as the <p-inpuL

Values are also concepts and hence they are also encoded as £-nodes.

Links from 8^-nodes to £-nodes (for example, the link from [A,P -> VJ to

Vj), are incident at site CP. The weights of such links are given by

#A[P,V i]/#V i.

If B is a parent of A in the ordering induced by < on C/AJP, then there is

a link from [AJP -> VJ to [B,P -> VJ. The weight on this link is given by

#A[P,VJ/#B[A,VJ. Links from one S^-node to another 8^-node are

incident at site EC of the destination S^-node. (Refer to figure 63).

Finally, if S(B,P) € A and there exists no C, such that B <^ C, and S(C,P) €

A, then the link from [B,P -> VJ to V-x is incident at site HCP, instead of site

CP. However, as before, the weight of this link equals #B[P,VJ/#V i. (Refer

to figure 6.4).

Besides the interconnections described above, all nodes representing

concepts, properties, and values (£-nodes and <p-nodes) have an external input

incident at the site QUERY, and the weight on this link is 1.0.

6.1.2 Description of network behavior

General computational characteristics

As described in section 2, each node in the network is an active element



having an associated real valued potential that can take values in the interval

[0, 1]. A node computes its potential based on its inputs. Each incoming link

provides an input whose magnitude equals the output of the node at the

source of the link times the weight on the link.

In our implementation, each node has two states: active or inert. The

quiescent or normal state of each node is the inert state. In this state, nodes

do not transmit any output A node switches to an active state under

conditions that are specified below. In the active state, all nodes transmit an

output equal to their potential.

There is a distinction between a node transmitting no output (NIL output),

and a node transmitting an output of magnitude 0.0. Similarly, there is

distinction between a NIL input (coming from a node not trasmitting an

output), and an input of 0.0 (coming from a node transmitting an output of

0.0.

Computational characteristics of specific node type:

£-nodes:

State: Node is in the active state if it receives one or more inputs,

otherwise it is in the inert state.

Potential: If no inputs at site HCP then

potential = the product of inputs at sites QUERY, RELAY and CP

else

potential = the product of inputs at sites QUERY, RELAY and

HCP

{NIL inputs are ignored while computing the product}



fij^-nodes:

State: Node is in the active state if it receives both the <p-input and the £-

input, otherwise it is in the inert state.

Potential: If node is in the active state then

potential = 1.0 * the product of inputs at sites EC

else

potential = NIL

<p-nodes:

State: Node is in the active state if it receives input at site QUERY,

otherwise it is in the inert state.

Potential: Potential is equal to 1.0 in the active state, NIL otherwise.

In addition to what has been described above, the networks have an

additional property in that the 4 and t links are special links. Unlike others,

which always transmit the output of their source node, the 4 and t links

normally remain disabled and transmit activity only when they are enabled.

Each |-node has some additional control machinery associated with it

whereby all 4 or t links emanating from it can be enabled. The enabling of t

and 4 links has a chain effect. For example, if the t (4) links emanating from

node A are enabled, then the t (4) links emanating from all nodes that are

reachable from A via t (4) links, also get enabled. The control machinery is

described in section 6.4.

6*1.3 Posing the inheritance problem and computing its solution

In the context of the network implementation, the problem of inheritance

is recast as follows:



Given: i) a concept C and a property P, P € APL(C),

ii) an explicit enumeration of possible answers, Le. a set V-SET

= {vl* V2> ~ v n } w h e r e e a c h V-SET c A(P), the set of
values of P, and

iii) a reference concept REF for V-SET such that for all Vj € V-

SET there exists a unique path from Vj to REF in the

ordering graph defined by C and < (Typically, REF is a

parent of Vj's. For example, if Vjfs are RED, GREEN, BLUE

... then REF could be COLOR).

Find: V € V-SET such that relative to the values specified in V-SET,

V is the most likely value of property P for concept C.

If the conceptual structure satisfies the conditions specified in section

6.1.4, the solution to the above problem may be computed using a network

constructed according to the description given in section 6.1.1 and 6.1.2. The

following algorithm describes how this may be done.

Phase-1

Set the external inputs, i.e. the inputs to the site QUERY, of nodes C and

P to 1.0, and wait for three time steps,

Phase-2

If any V-{ € V-SET reaches an active state {i.e. if any V{ receives any

inputs):

then: Phase-2a

Set the external inputs to REF to 1.0, enable I links leaving REF,

and wait d+3 time steps.



else { no Vj 6 V-SET received any activation}

Phase-2b

Set the external inputs to REF to LO, enable I links leaving REF,

enable t links leaving C, and wait d+3 time steps.

The above will result in the potentials of nodes being such that the for any

two nodes V̂  and Vj € V-SET, the following holds:

(potential of Vi)/(potential of Vj) = #C[P,Vi]/#C[P,Vj]

It follows that the node V € V-SET with the highest potential will

correspond to the value that is the solution to the inheritance problem.

The time required by the network to reach the desired state is O(max(l^,

l2», where 1̂  is the path length from C to some B such that, B is the highest

node in the ordering graph for which S(B,P) € A, and I2 is the maximum of

the path lengths from REF to the nodes in V-SET. However, both 1̂  and I2

are bounded by the length of the longest path in the ordering graph defined

by C and < Thus, the time required to solve the inheritance problem is O(d),

where d is the depth of the conceptual structure. In the current

implementation, the required time is 3*d.

Let us consider an example to illustrate the working of the network.

Figure 6.5 depicts how the following information:

Quakers tend to be pacifists,

Republicans tend to be non-pacifists

Dick is a Quaker and a Republican.

is encoded in network form. We have interpreted the above information as



follows (cf. section 4.1):

Has-bel is a property, and pacifism and non-pacifism are two values of this

property. The nodes PAC and NON-PAC denote the concepts pacifism and non-

pacifism respectively. The node BELIEFS is purported to represent a concept

comprising of all beliefs - pacifism, non-pacifism, liberalism, nationalism

The node PERSON denotes a concept that is a common ancestor of the concepts

Quaker (QUAK) and Republican (REPUB). It is assumed that 5[QUAK, has-bel],

5[REPUB, has-bel], S[PERSON, has-bel] are known, while 5[DICK, has-bei] is

unknown.

In order to decide - "Is Dick a pacifist or a non-pacifistM?, i.e. in order to

solve the inheritance problem:

C = DICK, P = has-bel, V-SET = {PAC, NON-PAC} and REF = BELIEFS

the network is initialized by setting the external inputs of DICK and has-bel

to 1.0. Because S[DICK, has-bei] is not known, there will be no inputs reaching

PAC or NON-PAC nodes. Hence, after three time steps, the external input to the

node BELIEFS will be set to 1.0, and the t links originating from DICK and the I

links originating from BELIEFS will be enabled.

The resulting potentials of some relevant nodes are as follows:

QUAK

This node receives an input at site RELAY from DICK. Hence its potential

equals:

output of DICK * (1/#QUAK) = 1.0 * (1/#QUAK) = (1/#QUAK)

REPUB

This node receives an input at site RELAY from DICK. Hence its potential

equals:



output of DICK * (1/# REPUB) = 1.0 * (1/# REPUB) = (1/# REPUB)

PERSON

This node receives two inputs at site RELAY, one from QUAK and another

from REPUB. Hence its potential equals:

output of QUAK • (# QUAK/ # PERSON) *

output of REPUB * (# REPUB/# PERSON)

« (1/#QUAK) * (# QUAK/ # PERSON) * (1/# REPUB) *

(# REPUB/ # PERSON)

- 1/(# PERSON** PERSON)

[REPUB, has-bel •> PAC], [REPUB, has-bei •> NON-PAC]

These S^-nodes are in the active state because they receive their ^-inputs

from REPUB and their <p-inputs form has-bel. As these nodes receive no

inputs at site EC, their potential equals: 1.0

[QUAK, has-bel -> PAC], [QUAK, has-bel -> NON-PAC]

These 8^-nodes are in the active state because they receive their ^-inputs

from QUAK and their cp-inputs form has-bel. As these nodes receive no inputs

at site EC, their potential equals: 1.0

[PERSON, has-bel -> PAC]

This node reaches the active state because it receives its £-input from

PERSON and its <p-input from has-bel. Furthermore, it receives inputs at site

EC from [QUAK, has-bel -> PAC] and [REPUB, has-bei -> PAC]. Hence its

potential equals:

1.0 * output of [QUAK, has-bel •> PAC] *



(#QUAK[has-bel, PAC] / # PERSON[has-bel PAC]) *

output of [REPUB, has-bel -> PAC] *

(#REPUB[has-bel, PAC] / #PERSON[has-bel PAC])

= (#QUAK[has-bel, PAC] / #PERSON[has-bel PAC]) •

(#REPUB[has-bel, PAC] / #PERSON[has-beL PAC])

[PERSON, has-bel -> NON-PAC]

The behavior of this node is analogous to the behavior of [PERSON, has-

bel -> PAC], and its potential equals:

1.0 • output of [QUAK, has-bel -> NON-PAC] *

(#QUAK[has-bel, NON-PAC] / #PERSON[has-bei NON-PAC]) •

output of [REPUB, has-bel •> NON-PAC] *

(#REPUB[has-bel, NON-PAC] / #PERSON[has-beL NON-PAC])

• (#QUAK[has-bel, NON-PAC] / #PERSON[has-bel NON-PAC]) •

(# REPUB[has-bel, NON-PAC] / #PERSON[has-bel NON-PAC])

PAC

This node receives an input from BELIEFS at site RELAY, an input from

[PERSON, has-bel •> PAC] at site HCP, and inputs from [QUAK, has-bel •> PAC]

and [REPUB, has-bel -> PAC] at site CP. However, because site HCP receives an

input, the inputs at site EC are ignored and the potential equals:

output of [PERSON, has-bel -> PAC] * (# PERSON[has-beL PAC] / #PAC) *

output of BELIEFS • (#PAC / # BELIEFS)



= (#QUAK[has-bel, PAC] / #PERSON[has-bel PAC]) •

(#REPUB[has-bel, PAC] / # PERSON[has-beL PAC]) •

(#PERSON[has-bel PAC] / # P A C ) •

1.0 * (#PAC / # BELIEFS)

• (#QUAK[has-bel, PAC] • #REPUB[has-bel, PAC]) /

(#PERSON[has-bel PAC] • # BELIEFS)

NON-PAC

The behavior of this node is analogous to the behavior of PAC], and its

potential equals:

output of [PERSON, has-bel -> NON-PAC] *

(#PERSON(has-bel NON-PAC] / #NON-PAC) *

output of BELIEFS • (#NON-PAC] / # BELIEFS)

= (#QUAK[has-bel, NON-PAC] / #PERSON[has-beL NON-PAC]) •

(#REPUB[has-bel, NON-PAC] / #PERSON[has-bel NON-PAC]) •

(#PERSON[has-bei NON-PAC] / #NON-PAO*

(# NON-PAC / # BELIEFS)

= (#QUAK[has-bel, NON-PAC] • #REPUB[has-bel, NON-PAC]) /

(#PERSON[haS-bel NON-PAC] • # BELIEFS)

Ignoring the common divisor (# BELIEFS), in the potentials of the node;



PAC and NON-PAC, the potential of the node PAC corresponds to the best

estimate of the number of people that are both quakers and republicans but

subscribe to pacifism while the potential of the node NON-PAC corresponds to

the best estimate of the number of people that are both quakers and

republicans but subscribe to non-pacifism.

Hence, a comparison of the two potentials will give the most likely answer

to the question: Is Dick a pacifist or a non-pacifist.

5.1.4 Network behavior: a proof of correctness.

In this section we prove that a network constructed according to the

description given in sections 6.1.1 and 6.1.2, correctly1 solves the inheritance

problem provided the conceptual structure encoded by the network satisfies

the conditions listed below.

The proof is based on establishing that if one focuses only on concept

nodes (the £-nodes), then the structure of the network has the property that

with reference to any query, it can be partitioned into two subparts such that

in each subpart, activation spreads in a single direction - top to bottom or

bottom to top. The two subparts interact via 5^-nodes. However, this

interaction is again strictly unidirectional; the activation flows from one of the

subparts (sat "netA") to the other (say "netB"), but not visa versa.

Consequently, there are no cycles and the potentials of nodes stabilize at the

appropriate value in time proportional to twice the depth of the conceptual

hierarchy; the potentials of nodes in "netA" stabilize in one sweep of

spreading activation and become available to nodes in "netB" which may now

compute their potentials in a single sweep of spreading activation. Although

the potentials of nodes in "netB" have to wait for the potentials of nodes in

"netA" to stabilize, as there are no cycles and feedback effects, the activity in

each subpart may proceed in parallel and there is no need for any kind of

synchronization. The only requirement is that one wait for time proportional



to twice the depth of the conceptual hierarchy before utilizing the potentials

computed by the nodes.

1. Here correctness is defined relative to the solution presented in section 5.3.

The conditions imposed on the conceptual structure in order to compute

the solution in parallel are:

COND-1: For any P € <&, if V € A(P), then P € \(V). Furthermore, for all

A such that A < V, P £ \(A).

In other words, a property P is applicable neither to its values nor to the

descendents of its values. For example, the property has-color does not apply

to RED.

There are two obvious corollaries to COND-1.

a) V A such that Vj < A for some Vj € A(P), P C X ^ ) . In simpler terms, a

property is not applicable to any ancestors of its values. (For then it would be

applicable to its values). With reference to the inheritance problem (cf.

section 6.1.3), the above implies that P € A(REF).

b) If P € \(C) then, for any Vj € A(P) it is not the case that C < V-v In

other words, C is not a descendent of any V[ £ A(P).

COND-1 requires that property values and the concepts they apply to,

belong to distinct ontological Types and this appears to be a reasonable

assumption. Consider the values of properties such as has-taste, has-shape,

has-color on the one hand and the concepts they apply to on the other. It is

easy to convince oneself that the values of has-taste (SWEET, SOUR ..), has-

shape (ROUND, SQUARE ..), and has-color (RED, GREEN ...) are not

subconcepts or superconcepts of objects that these properties apply to.

COND-2: For any V-v Vj € A(P), neither V{ < Vj, nor Vj < W-v



COND-3: The ordering graph defined by C/C,P and < is a tree.

This is a stronger condition than the one placed in section 5.3.5. Therein,

only the portion of the ordering graph below the reference concept Q of

r(C,P) was required to be a tree. However, this condition trivially holds for

the "multiple hierarchies" organization outlined in section 3.5, wherein, the

type structure defined over Tokens consists of several distinct views.

In addition to the above constraints posed on the conceptual structure,

there is an additional constraint on the manner in which the inheritance

problem may be specified

COND-4: It should not be the case that C < REF.

One may now show that the networks compute the solution to the

inheritance problem as outlined in section 5.3.5.

The proof can be broken down into two distinct cases: the local

inheritance case, and the non-local inheritance case.

In the case of local inheritance, 5(C, P) is known, that is, for all possible

values Vj of P, #C[P, VJ is known, and there is a S}nh-node [C,P -> VJ

connecting C, P and Vv In the case of non-local inheritance, 5(C, P) is

unknown and #C[P, Vj]'s have to be estimated based on the distributions

available at concepts above C in the conceptual hierarchy. In terms of the

parallel network, 5^-nodes associated with £-nodes that are above C in the

conceptual hierarchy take part in the inheritance process.

The burden of the proof is to show that at the end of phase-2 (cf. section

6.1.3), of the inheritance process, the potentials of any pair of nodes Vj and

Vj, € V-SET, are such that:

(potential of ViVCpotential of Vj) = #C[P,Vi]/#C[PfVj]



6.1.4.1 Proof for the local case of inheritance.

Lemma-Ll: Besides C and P, the only other nodes active at the end of

phase-1 (cf. section 6.1.3), are 8-nodes that encode S(C, P), and £-nodes that

represent members of A(P).

Proof: At the onset of phase-1, nodes C and P are activated as a result of

the input of magnitude 1.0 they receive at site QUERY. AS per the potential

function of £-nodes and <p-nodes described in section 6.1.2, C and P acquire a

potential of 1.0. As none of the t and * links are enabled, activation from C

and P spreads only along links leading into S^-nodes. However, only 5 ^ -

nodes that encode 5(C, P), i.e, nodes labelled [C,P -> Vjj, (where V{ is any

member of A(P)), receive the £-input as well as the <p-input at site ENABLE,

and hence, switch to the active state.

A 8^-node such as [C,P -> V[] sends output to the node V[ and possibly

to some other 8^-nodes of the form [B,P -> VJ where C * B. However, the

8^-nodes that receive inputs from S^-nodes such as [C,P -> Vj], do not get

the appropriate £-input at site ENABLE, and hence, do not become active.

Recall, that a 8^-node requires input from a £-node and a <p-node at site

ENABLE to become active. Thus, at the end of the second time step of

phase-1, the active nodes are:

C, P, and for every Vj € A(P), the £-node Vj and the S^-node [C,P ->

Vil.

The addition of nodes from A(P) to the set of active nodes does not cause

any new nodes to become active. To see this, consider an arbitrary node in

A(P), say V[. Because the t and i links leaving Vj are not enabled, none of

the £-nodes receive activation on acccount of Vj. Furthermore, as P is the

only <p-node that is active, and P does not apply to Vj (by virtue of COND-1),

no new Sj^-nodes can become active on account of V-v



Thus, at the end of phase-1, the set of active nodes would comprise of the

nodes: C, P, and for every Vj € A(P), the £-node Vj and the S^-node [C,P -

> VjJ.

This establishes Lemma-Ll.

Lemma-L2: At the end of phase-1, the potential of S^-nodes [C,P -> V\\

is 1.0, while that of {-nodes Vj is given by #C[P, VJ / #VV

Proof of Lemma-L2.

First consider the S^-nodes [C,P -> VJ. None of these nodes receive any

inputs at site EC. This is because inputs to a node [C,P -> Vj] at site EC can

only originate from other S^-nodes labelled [B,P -> Vj], B * C, and no such

B is active. (Lemma-Ll).

Thus, the potential of each node [C,P -> V|], will be 1.0

Next consider the £-nodes Vj € A(P). Each £-node Vj receives an input

from the S^-node [C,P -> VJ. The output of the S^-node is 1.0 and the

weight on the link connecting [C,P -> V\\ to Vj is #C[P, V[] / # Vj. Thus, the

input to V[ would be 1.0 * #C[P, Vj] / #Vj. As this is the only input

received by Vj, its potential will be #C[P, Vj] / #V i .

In calculating the potential of nodes Vj, we glossed over one detail If C is

such that there exists a D such that C < D and S(D,P) is known, then the link

from [C,P -> VJ would be incident on site CP of Vv However, if such a D

does not exist then the link would impinge on site HCP. In either case, the

potential of V[ computes to #C[P,Vj] / #Vj.

This establishes Lemma-L2.

At the end of phase-1, nodes V[ would be active and hence phase-2a

would ensue. This would lead to the activation of REF, and the enabling of



the I links emanating from REF.

Lemma-L3: As a result of phase-2a, each W[ member of V-SET, receives

exactly one new input This is incident along a I link (at site RELAY), and has

a magnitude of #V[ / #REF.

In order to prove Lemma-L3, we first prove Lemma-L4.

Lemma-L4: No additional S^-nodes become active during phase-2a.

Proof of Lemma-L4.

For a S^-node to become active it must receive coincident inputs from

an appropriate £-node and an appropriate S^-node. COND-1 guarantees

that P does not apply to REF or its descendants, and hence, none of the S ^ -

nodes that receive a £-input from REF or its descendants receive activation

from P. But P is the only active <p-node. It follows that none of the 8 ^ -

nodes receiving activation from REF or its descendants, become active. This

establishes Lemma-L4.

Proof of Lemma-L3.

As a consequence of Lemma-4, the only possible inputs to V(s may come

from £-nodes activated as a result of the activation of REF and the enabling

of I links. By definition, REF is such that, for each Vj € A(P), there exists a

unique path from REF to Vj via 4> links. Thus, activating REF and enabling

the l links results in a single input to each V[ along a i link. Let the path

form REF to V{ be via £-nodes D]̂ , D2, ...D^. The weights along this path

would be # D ] / # R E F , tfEty^Di, ... # D k / # D k . 1 , # V i / # D k . Thus, the

input to V{ along this path would be:

output of REF. * n (the weights along the path to Vi)

that is:



1.0 * # D 1 / # R E F * # 0 2 / ^ ! * .... # D k / # D k . 1 *

the above equals: # \ y # R E F

Finally, as the input is along I links, it would be incident at site RELAY.

This establishes Lemma-L3.

Combining the results of Lemma-L2 and Lemma-L3, and noting that the

potential of each Vj € A(P), will be equal to the product of the inputs to Vj,

we have:

The potential of each Vj € A(P) at the end of phase-2a is given by:

#C[P,Vi]/Vi * #V/REF = #C[P,Vj]/#REF

Ignoring the common factor in the denominator which would occur in the

potential of each Vj, it is clear that each V[ has the desired potential.

Specifically, for Vif Vj € V-SET,

(potential of VjVCpotential of Vj) = # C[P, Vj]/ # C[P,Vj]

as was desired.

This completes the proof that the network computes the correct solution

to the inheritance problem in the case of local inheritance.

6,1.4.2 Proof for the non-local case of inheritance:

As 5(C,P) is not know, there are no Sj^-nodes encoding 5(C,P). Hence,

the activation of C and P alone does not activate any S^-nodes.

Furthermore, because neither the t, nor the I links are enabled, no £-node

gets activated. Thus, at the end of phase-1, only nodes C and P are active,

each with a potential of 1.0. In particular, none of the Sj^-nodes in A(P) are

active. As a result phase-2b will ensue. This will lead to a) the activation of



REF and the enabling of the i links at REF, and b) the enabling of t links at

C.

We will consider the effects of the two actions a) and b) separately, and

then show that as far as the nodes in V-SET are considered these effects are

independent.

Lemma-NLl: If C and P are active, then the following Sj^-nodes are

activated as a result of enabling the t links at C.

V X € <C/C,P and V Vj e A(P), the Sinh-nodes [X,P -> VJ.

Proof of Lemma-NLl

By the definition of projection, each X € <C/C,P is such that C < X.

Hence, each X € C/CJP will be activated if C is active and the t links at C are

enabled. Furthermore, if X € C/C,P then S(X,P) is known, and there exist
8inh"noc*es °f ^ e form P^P •> vi] that encode S(X,P). As X becomes active,

and P is already active, the nodes [X,P -> V\\ also become active. Thus, all

5^-nodes that encode 8(X,P), for some X € <C/C,P become active.

This completes the proof of Lemma-NLl.

Lemma-NL2: If C and P are active, then the £-nodes that become active

as a result of enabling the t links at C are exactly those that either lie above

C, or are members of A(P).

The £-nodes activated as a result of enabling the t link at C may be

divided into two categories, the ones that receive activation from C along a

chain of £-nodes connected by t links (let this category be SET1), and those

that receive activation along a path that includes one or more 8}^-nodes (let

this category be SET2).

The nodes in SET1 are exactly those £-nodes that are above C.



We now consider the category SET2.

At the onset, recall that the only active <p-node that is P. Consider the

nodes in SET2 that are activated via a path that includes only one S^-node.

This implies that the solitary S^-node in such a path must be one that it

gets its £-input from a £-node in SET1, and hence it must be of the form

[X,P -> VJ, where X € C/CJP and Vfs are members of A(P). It follows that

the nodes in SET2 that are activated via a path that includes only one 5 ^ -

node are exactly the £-nodes that are members of A(P).

However, as P is the only 9-node that is active, and as P does not apply to

members of A(P), no new S^-nodes become active on account of £-nodes

that are members of A(P). Furthermore, by virtue of COND-1, no member of

A(P) lies above C, and hence, the t links emanating from the members of

A(P) will not get enabled in spite of the enabling of the t links at C.

Consequently, no new £-nodes become active on account of £-nodes that are

members of A(P). Thus, only £-nodes that are members of A(P) can be

members of SET2.

This establishes Lemma-NL2.

Lemma-NL3: If C and P are active, then every Sinh*node activated as a

result of enabling the t links at C is of the form:

[X,P -> Vi], where X € C/C,P and Vt € A(P)

Any active 5^-node will be receiving a £-input and a 5-input By virtue

of Lemma-NL2, the only £-nodes that are active are either those that are

above C, or those that are members of A(P). Now, the only 9-node that is

active is P. But by virtue of COND-1, the property P does not apply to any

member of A(P), and hence, the only 5^-nodes that receive both the £-input

and the 9-input must be those that get their £-input from £-nodes that lie

above C, and their <p-input from P. But these are exactly the 5^-nodes of
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the form [XJP -> Vi], where X € C/C,P and V{ € A(P).

This establishes Lemma-NL3,

Lemma-NL4: If C and P are active, then enabling the t links at C causes

exactly the following S^-nodes to become active:

V X € <C/C,P and V Vi € A(P),

the S^-nodes [X,P -> VJ.

Proof of Lemma-NL4

Lemma-NL4 follows directly from Lemma-NLl and Lemma-NL3.

Lemma-NL5: The set of {-nodes activated as a result of nodes C and P

being active and the t links at C being enabled, does not include REF, or any

{-node that lies between REF and a member of V-SET.

Proof of Lemma-NL5

By virtue of Lemma-NL2, the only {-nodes that become active under the

conditions defined in this Lemma are either those that lie above C or those

that are members of A(P).

By virtue of COND-4, C is not below REF. Hence, no node above C can

either be REF, or any node below REF. Consequently, no node above C can

either be REF, or any node that lies between REF and members of A(P).

Therefore, the only {-nodes that lie between REF and members of A(P),

and may become active as a result of enabling the t links at C, are nodes that

are in A(P). However, by virtue of COND-2, there exists no V: € A(P) such

that Y[ < V;. Therefore, there exists no V; € A(P) that is above V-v and hence,

there exists no V: € A(P) that lies between REF and V[.



We have established that none of the £-nodes activated as a result of

nodes C and P being active and the t links at C being enabled, lie between

REF and members of A(P). (We have also shown that REF cannot be one of

the nodes thus activated).

Now V-SET is a subset of A(P), therefore none of the nodes activated lies

between REF and members of V-SET. This establishes Lemma-NL5.

Lemma-NL6: Given that C and P are active, the effect of activating REF

and enabling the i links at REF, on members of V-SET, is not modified by

the enabling of the t links at C.

Proof of Lemma-NL6

Lemma-L4 proved that activating REF and enabling I links at REF does

not activate any 5^-nodes. Activation originating at REF reaches members

of V-SET along a path consisting of £-nodes connected via i links.

Lemma-NL5 proved that none of the £-nodes activated as a result of

enabling the t links at C lie between REF and members of V-SET (nor do

the nodes thus activated include REF).

Thus, enabling the t links at C has no effect on the activation reaching

member nodes of V-SET as a result of REF being active and the * links at

REF being enabled. This establishes Lemma-NL6

Lemma-NL7: Given that C and P are active, the effect of activating the t

links at C, on members of V-SET, is not modified by the activating REF and

enabling the i links at REF.

Proof of Lemma-NL7

The effect of activating the t links at C on the members of V-SET is via £-

nodes that lie above C. These in turn activate 5^-nodes that directly activate



members of V-SET. Activating REF and enabling the i links at REF does

not activate any 5^-nodes (Lemma-L4). Furthermore, none of the £-nodes

affected by activating REF and the enabling of i links at REF lie above C.

This follows from COND-4 which requires that C must not be below REF.

Hence, none of the nodes that participate in affecting the members of V-SET

as a result of C being active and the t links at C being enabled, are modified

by activating REF and enabling the I links at REF. This establishes Lemma-

NL7.

Lemma-NL8: Given that C and P are active, then, with respect to the

member nodes of V-SET, the effect of activating REF and enabling the i

links at REF and the effect of enabling the t links at C, are independent of

each other.

Proof of Lemma-NL8

Lemma-NL8 follows directly from the conjunction of Lemma-NL6 and

Lemma-NL7.

We have already established that each Vj € V-SET receives an input of

magnitude # V / # R E F at site RELAY as a result of activating REF and

enabling the i links at REF. (Lemma-L3). We now consider the effect of

activating the t links at C on the members of V-SET.

Lemma-NL9: For each member Y-x of A(P), the interconnections between

Sj^-nodes of the form [X,P -> VJ where X is a member of C/C,P, are

isomorphic to the ordering graph defined by C/C,P and <

Proof of Lemma-NL9

The above follows from the definition of projection and the encoding

rules for s^-nodes described in section 6.1.1. A S^-node [X,P -> Vj] exists

for every X that is a member of C/C,P. Furthermore, there is a link from



[X,P -> Vj] to [Y,P -> V[] iff Y is a parent of X in the ordering induced on

C/C,P by < This establishes Lemma-NL9.

Recall that the ordering diagram defined by C/C,P and < is a tree

(COND-3). In light of Lemma-NL9, the interconnections between S^-nodes

of the form [X,P -> Vj] where X is a member of C/C,P, also define a tree

structure. By virtue of Lemma-NL4, all the 5^-nodes of the above form

become active during phase-2b.

Lemma-NLIO: For each Vj € V-SET, the tree of S^-nodes referred to in

Lemma-NL9 computes:

BEST-ESTIMATE^P^) / #V{

during phase-2b. In the above expression BEST-ESTIMATE is the

function described in section 5.3.4.2 and, Z is such that there exists no D

such that Z < D and S(D,P) is known.

Proof of Lemma-NLIO

Except for the case where the recursion bottoms out, a call to BEST-

ESTIMATE (B.E. for short), performs the following computations:

B.E. ({, > , *)

#S(Vtp) * n[ B.E. ({if9fr) / #|(<p, p)]

op3 op2 opl

The operation opl follows each recursive call, one for each son of £, and it

divides the value returned by the recursive call by #£(<p, p).

op2 computes the product over all the recursive calls,

and finally, op3 multiplies the result of op2 by

In the ground case, the function simply returns



Now consider figure 6.6. We claim that the process enclosed in the dotted

region surrounding the S^-node [X,P -> VJ corresponds to a call to B.E.;

B.E.(X, P, Vi).

Each input link into [X,P -> VJ corresponds to a recursive call to B.E.

made from within B.E. (X,P,V^). For example, the input link from [XS,P ->

VJ into [X,P -> VJ corresponds to a recursive call B.E. (Xs, P, Vj) made from

within the call B.E.(X,P,Vj). However, there is one caveat: an input received

along an incoming link not only corresponds to the value returned by the

recursive call, but also includes the effect of performing opl. For example,

the input coming into [X,P -> VJ along the link [XS,P -> VJ corresponds to

the value returned by B.E.(Xs,P,Vi) divided by #X[P,VJ. Thus, instead of

being performed by B.E.(X,P,V|), opl - which in this case is a division by

#X[P,VJ, is being performed by B.E.(XS,P,V^). However, as is shown below,

this preemptive computation of opl is being done consistently.

To continue the correspondence between [X,P -> VJ and B.E.(X,P,Vj),

note that [X,P -> VJ computes its potential by multiplying all its inputs and

this step corresponds to op2 in the definition of B.E.

Finally, the output of [X,P -> VJ is multiplied by #X[P,VJ/ #Xf{P,VJ

before it appears as an input to its parent. The numerator corresponds to

op3, and the denominator corresponds to the preemptive computation of opl.

Normally, the division by #Xj[P,VJ would have been performed as opl by

B.R(Xf,P,Vi)f which is the call that invokes B.E.(X,P,Vi).

The recursion bottoms out when a call is made to B.E. with a relevant

concept as the first argument. In this case, the call B.E.(X,P,Vj) returns

#X[P,VJ. In the tree structure defined by S^-nodes, the ground instances

of calls to B.E. correspond to the lowest level S^-nodes. A lowest level S ^ -

node [X,P -> VJ, does not receive any inputs at site EC and hence, its

potential and output equals 1.0. However, before this output is incident at a



higher level node, it is multiplied by a weight of the form:

#X[P,Vi]/#Xf(P,Vi]

where the numerator corresponds to the desired result, while the

denominator corresponds to the preemptive computation of opL

It remains to be shown where the op3 of the very first call to B.E. is

performed. Thus far, the highest node in the tree of S^-nodes does not

perform op3. (op3 is performed when the output of a node is multiplied by

the weight of the outgoing link). The problem is solved by the presence of the

link that goes from the highest 5^-node to Vj, and is incident at site HCP.

This link has a weight of #X[P,Vi] / #V{. The multiplication by #X[P,Vi]

performs the required op3, although it introduces an unwanted division by

the factor #Vj.

Thus, the input to V[ at site HCP equals B.E.(Z,P,Vi) / #Vi, where s is

the highest £-node for which the distribution for P is defined; i.e. 5 is a £-

node such that there exists no D, such that 2 <̂  D and S(D,P) is known.

This completes the proof of Lemma-NL10.

In order to solve the inheritance problem we require:

(potential of V^Apotential of Vj) = B,E.(O,PfVi)/B.E.(Q,P,Vj)

and what we have thus far is:

1) as a result of activating REF and enabling the l links at REF, each Y{ €

of V-SET receives an input of magnitude #Vj / #REF at site RELAY.

2) as a result of enabling the t links at C, each V{ € of V-SET receives an

input of magnitude B.E.(Z,P,Vj) at site HCP.

3) each V{ € V-SET, also receives inputs at site CP from active Sj



of the form [X,P -> VJ where X € <C/C,P.

As per the potential function of £-nodes, inputs at site CP will be ignored

because site HCP is active, and the potential of each meember node of V-SET

will be given by the product of the inputs at site HCP and RELAY. (There are

no inputs at site QUERY). Thus, the potential of each Vj € V-SET is:

B.E.(2,P,Vi)/#REF

The factor 1/#REF occurs in the potential of all V{ € V-SET. Hence, for

any Vi$ Vj € V-SET

(potential of ^/(potential of Vj) = B.E(*J\Vi)/B.E(S,P,Vj)

We now need to show that

for then we would have shown that

(potential of VjVCpotential of Vj) = B.E(Q,P,Vi)/B.E(Q,P,Vj)

and hence, by the result derived in section 5,

(potential of V^Apotential of Vj) = #C[P,Vi] / #C[P,Vj]

Recall that COND-3 requires that the ordering induced by < on C/CJP

result in a tree. Hence, if there exists an S2 that is a reference concept for

r(C,P), it follows that the ordering induced on C/C,P by <̂  is as shown in

figure 6.7. In particular, there is a single chain of nodes linking Z and Q.

From the definition of B.E. it follows that if A has only one son say As,

then,

B.E(A,P,Vi) = #A[P,Vi] * B.E.(As,P,Vi) / #A[P,Vi] = B . ^ A ^ ^ ) .



As there is a linear sequence of nodes from s to 0, it follows that

B.E.(SjP,Vi) = B.E.(Q,P,Vi).

This concludes the proof that the network decribed in section section 6.1.2

and 6.1.2 computes the solution to the non-local case of the inheritance

problem in accordance with the solution developed in section 5.3.

The time taken by the network to solve the inheritance problem is

where d is the depth of the conceptual hierarchy, i.e. the longest path in the

ordering graph defined by < and C.

6.2 Categorization

This section focuses on categorization and describes how an agent's

knowledge may be encoded in a network form and used to solve the

categorization problem. The basic approach is analogous to the one employed

in section 6.1

6.2.1 Encoding the conceptual structure

As in section 6.1.1, a concept is represented in the network by a £-node,

and a property by a <p-node; each (p-node has a site named QUERY. However,

the sites of £ -nodes required for categorization are different from the sites of

£-nodes described in section 6.1.1. £-nodes have four input sites: QUERY,

RELAY, INV, and PV. The significance of these sites is explained below.

As in section 6.1.1, if B is a parent of A in the ordering graph defined by

C and <, then there is a t (bottom up) link from A to B and a I (top down)

link from B to A. The weight on both these links equal # A / # B . As before,

the weight on all the t links may uniformaly be set to 1.0 without effecting

the outcome of any of the computations. All t and I links are incident at site

RELAY.

If 5(A,P) € A then for every value Vj of P there exists a Scat-node [P,V^ ->



A] that is connected to A, P and Vj as shown in figure 6.8. Notice the reversal

of connections in the Scat-nodes. The 8cat-nodes described in section 6.1.1

had the form [C,P -> VJ and the output of such a node fed into the "value"

node. However, the output of 5cat-nodes that participate in categorzation is

incident at the "concept" node. For instance, the output of the 8cat-node

[P,Vj -> A] is incident at the site PV of the £-node A, and the weight of this

link is given by #A[P,Vi] / #A.

Scat-nodes that participate in categorization have one site: ENABLE. Each

Scat-node [P,V^ -> A] receives one input from node A and another from node

P. Both these inputs are incident at site ENABLE, and the weight on these

links is 1.0. The input from the concept node (A) is referred to as the £-input,

while the input from the property node (P) is referred to as the <p-input.

If B is a parent of A in the ordering induced by <^ on C/A,P, then there is

a link from [P,Vi -> B] to A. This input is incident at site INV of the £-node A,

and the weight on this link is given by #B[P,Vj]/#B. (Refer to figure 6.9).

As in section 6.1.1, all nodes representing concepts, properties, and values

(£-nodes and <p-nodes) have an external input incident at the site QUERY, and

the weight on this link is 1.0.

6.2.2 Description of network behavior

As in section 6.1.2, each node in the network is an active element with an

associated potential and two states: active and inert. The basic behavior of the

nodes is similar to the nodes described in section 6.1.2. The following

describes the potential function and the state function of each node type:

£-nodes:

State: Node is in the active state if it receives one or more inputs,

otherwise it is in the inert state.



Potential: potential = the product of inputs at sites QUERY, RELAY, PV

and INV

{NIL inputs are ignored while computing the product}

8cat-nodes:

State: Node is in the active state if it receives both the cp-input and the £-

input, otherwise it is in the inert state.

Potential: If node is in active state then

potential = 1.0

else

potential = NIL

<p-nodes:

State: Node is in the active state if it receives input at site QUERY,

otherwise it is in the inert state.

Potential: Potentialis equal to 1.0 in the active state, NIL otherwise.

Additional control machinery is associated with £-nodes whereby all I or t

links emanating from it can be enabled. As explained in section 6.1.2, the

enabling of t and l links has a chain effect.

6.2.3 Posing the categorization problem and computing its solution

In the context of the network implementation, the categorization problem

is recast as follows:

Given: i) an explicit enumeration of possible answers, i.e. a set of

concepts, C-SET = {C^, C2, ... Cn}, where either all members



of C-SET ate Types, or all membeis of OSET are Tokens.

ii) a reference concept REF, such that for all C € C-SET, C <

REF. For example, if C-SET = {APPLE, GRAPE, PEAR}, then

REF could be FRUIT.

iii) a description consisting of a set of property value pairs, i.e. a set

DISCR = { [?hyxl [P2,V2], ... [Pm,Vm] }, such that,

for each [Pj,Vj]€DISCR,Pj € n c € c-SET x(c)* a n d

Vj € A(Pj)-

In other words, each property mentioned in the description should

apply to every concept in C-SET, and the values specified for these

properties should be appropriate.

Find: C € C-SET such that relative to the concepts specified in C-SET, C

is the most likely concept described by DISCR.

If the conceptual structure satisfies the conditions specified in section

6.2.4, the solution to the above problem may be computed using a network

constructed according to the description given in section 6.2.1 and 6.2.2. The

following algorithm describes how the categorization problem is to be posed

to the network:

For each [PyVjJ € DISCR, set the inputs to the site QUERY of nodes Pj

and Vj to 1.0. At the same time, set the input to the site QUERY of REF to

1.0, and enable the I links emanating from REF. Wait d + 3 time steps,

where d is the longest path in the ordering graph defined by C and <

The above will result in the potentials of nodes being such that, for any

two nodes Ĉ  and Cj € C-SET, the following holds:



(potential of (^/(potential of Cj) equals:

the best estimate of #q[Pi,V1][P2,V2] ... Pm^m! divided by the best

estimate of #Cj[P1,V1][P2,V2] ... [Pm,Vm].

The best estimates referred to above are computed based on the result

derived in section 5.1.

It follows that the node C € C-SET with the highest potential will

correspond to the concept that is the solution to the categorization problem.

The time required by the network to reach the desired state will be

O(max(lj), where each lj is the path length, from REF to some C[ € C-SET,

in the ordering graph defined by C and <. However, each 1̂  is bounded by d,

the length of the longest path in the ordering diagram. Thus, the time

required to solve the categorization problem is O(d). In the current

implementation the time required is 3*d.

We illustrate how the network computes a solution to the categorization

problem with reference to the network in figuire 6.10. The network is

intended to depict the following information:

Fruits and vegetables are a kind of edible thing.

Grapes and apples are a kinds of fruit

Root-vegetables are a kind of vegtable, and

Beet is a root-vegetable.

Red and green are two values of has-color, while sweet and sour are two

values of has-taste.

Edible things have the property has-color and has-taste associated with

them. The distribution for the property has-taste is known for fruits,



grapes, and vegetables, while the distribution for the property has-color is

known for fruits, and beets. In other words, S[FRUIT, has-color], 5[FRUIT,

has-taste], S[GRAPE, has-taste], 8[VEGGIE, has-taste] and S[BEET, has-color]

are known.

The network in figure 6.10 encodes the above information as per the

description given in section 6.2.1, except that the 5cat-nodes and links

associating SOUR and GREEN nodes to appropriate nodes in the hierarchy

have been omitted as they do not play a role in the example, and would

unnecessarily complicate the diagram.

Notice that for GRAPE, information about color has to be inherited from

FRUIT, but specific information about taste is available locally, in addition to

the more general information available at FRUIT. For APPLE, the information

about taste as well as color has to be inherited from FRUIT, while for beets,

the information about color is available locally, but the information about

taste is to be inherited from VEGGIE which is two levels away in the

conceptual hierarchy.

In order to decide - "Is a red and sweet edible thing an apple, a grape, or

a beet11?, i.e. in order to solve the inheritance problem:

C-SET = {APPLE, GRAPE, BEET}, REF = ED-THING, DISCR = { [has-

color, RED], [has-taste, SWEET]}

The network is initialized by setting the external inputs of has-taste, has-

color, RED, SWEET, ED-THING to 1.0, and enabling the i links at REF.

After d + 3 time time steps the resulting potentials of some relevant

nodes are as follows:

ED-THING = 1.0

All 5cat-nodes shown in figure 6.10 will be active and their potential will be



1.0.

FRUIT

VEGGIE

GRAPE

APPLE

= potential of ED-THING * ( # FRUIT / # ED-THING) *

(#FRUIT[haS-COl, RED] / # FRUIT) •

(#FRUiT[has-taste, SWEET] / #FRUIT)

= 1.0 * ( # FRUIT / #THING-TH) •

(#FRUIT[haS-COl, RED] / # FRUIT) *

(#FRUiT[has-taste, SWEET] / # FRUIT)

= (#FRUlT[has-color, RED] • (#FRUiT[has-taste, SWEET]) /

( # FRUIT • # ED-THING)

potential of ED-THING • ( # VEGGIE / # ED-THING) *

(#VEGGIE[haS-taste, SWEET] / #VEGGIE)

1.0 * (#VEGGIE / # ED-THING) *

(#VEGGIE[has-taste, SWEET] / #VEGGIE)

= (#VEGGiE[has-taste, SWEET] / # E D - T H I N G

potential of FRUIT * ( # GRAPE / # FRUIT) *

(#GRAPE[has-taste, SWEET] / # GRAPE) /

(#FRUiT[has-taste, SWEET] / # FRUIT)

= (#FRUiT[has-color, RED] • #GRAPE[has-taste, SWEET] ) /

(# FRUIT * # ED-THING)

potential of FRUIT • (# APPLE / # FRUIT)



= (#FRUiT[has-color, RED] *

(#FRUIT[has-taSte, SWEET]* #APPLE) /

( # FRUIT* # FRUIT* # ED-THING]

ROOTV = potential of VEGGIE * ( # ROOTV / # VEGGIE)

= (#VEGGiE[has-taste, SWEET]* # R O O T V ) /

( # VEGGIE* # ED-THING)

BEET = potential of ROOTV * (#BEET / # ROOTV) *

(#BEET[has-COlor, RED] / # BEET)

= (#VEGGiE[has-taste, SWEET] * # BEET[has-color, RED]) /

( # VEGGIE* # ED-THING])

Ignoring the common divisor (#ED-THING) in the potentials of nodes

GRAPE, APPLE, and BEET, the potential of the node GRAPE corresponds to the

best estimate of the number of red and sweet grapes, the potential of node

APPLE corresponds to the best estimate of the number of red and sweet

apples, while the potential of the node BEET corresponds to the best estimate

of the number of red and sweet beets.

Hence, a comparison of the three potentials will give the correct answer to

the question: IS a red and sweet edible thing is an apple, a grape, or a beet?

In order to understand the significance of the potentials of the nodes

GRAPE, APPLE, and BEET, we elaborate on the potential of GRAPE.

The best estimate of the number of red grapes is:



1 0 1

(#FRUlT[has-color, RED] * #GRAPE / #FRUIT) ; via direct inheritance

The number of sweet grapes is:

(#GRAPE[has-taste, SWEET]) ; 5(GRAPE, has-taste) is known.

Therefore, by the result derived in section 5.5, the best estimate of the

number of red and sweet grapes is:

((#FRUIT[haS-COlor, RED] * # GRAPE / # FRUIT) *

#GRAPE[haS-taste, SWEET]) / # GRAPE

which may be simplified to yield:

(#FRUiT[has-color, RED]*#GRAPE[has-taste, SWEET]) / # F R U I T

which is exactly the potential of the node GRAPE if we ignore the common

denominator #ED-THING.

A similar analysis of the potentials of nodes APPLE, and BEET leads to

similar result.

6.2.4 Network behavior: a proof of correctness.

In this section we prove that a network constructed according, to the

description given in section 6.2.1 and 6.2.2 correctly2 solves the categorization

problem, provided the conceptual structure encoded by the network satisfies

the conditions listed below. The basic strategy is the same as the one adopted

in section 6.1.4.

2. Here correctness is defined relative to the solution presented in section 5.5.

COND-1: The conceptual structure is as defined in section 3.5, and

satisfies the well-formedness rules WFR-mv-1 and WFR-mv-2.
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COND-2: For any P € <fr, if V € A(P), then P € X(V). Furthermore, for all

A such that, A < V, P $ \(A).

This condition is the same as the one imposed in section 6.1.4.

According to it, the values of a property, and the concepts that the

property applies to, belong to distinct ontological Types.

In addition to the above constraints on the conceptual structure, there is

an additional constraint on the manner in which the categorization problem

may be posed.

COND-3: Let <*> be the leaf of the ontological tree that is required by

WFR-cat-1 (cf. section 5.5.3) to be the ancestor of all member of

C-SET. Then REF should be such that <o < REF.

In other words, REF should be at least as general as the most specific

ontological Type that is the common ancestor of members of C-SET.

Condition COND-3 is required only if members of C-SET have multiple

parents, i.e. there are multiple views defined with respect to w. If members of

C-SET have multiple parents and COND-3 is not satisfied, then, when

computing the solution to the inheritance problem, the network will be

unable to incorporate information available in views other than the one that

includes REF.

As discussed in section 5.5.3, there are two cases of categorization; Type

categorization and Token categorization.

6.2.4.1 Proof for Type categorization

In order to prove that the network computes the correct solution, we have

to show that after O(d) time steps the potential of each C[ member of C-SET

equals:



where Pj, 1 < j < m, are properties mentioned in DISCR, and By is the

concept that is relevant to q w.r.t Pj.

Instead, we will prove that the potential of each q member of OSET

equals:

(I/CONST) * q * n j = 1$m(#BijlPjfVj] / #By)

where (I/CONST) is a common factor in the potential of all q € C-SET.

Proof:

Because each q is a Type, COND-1 entails that there can be at most one

concept By that is relevant to q w.r.t Pj. It also entails that there is a unique

path * from REF to q . Let this path be REF, Dj, D2,... Ds, q . Note that *

has been defined so as to include REF and q .

COND-1 in conjunction with COND-3 entails that for each Pj, there must

be at least one node X such that, C[< X < REF, and 5(X,Pj) is known. The

latter follows from the fact that <o < REF, and for each leaf *> of the

ontological tree, S(a>,P) is known if P € \(a>). (WFR-mv-1, Cf. section 4.1).

Hence, each By is on *.

Lemma-TCl: The only Scat-nodes activated during categorization are of

the form [Pj,Vj -> Y], for all [P^Vj] € DISCR.

Proof of Lemma-TCl

All Scat-nodes of the form [Pj,Vj -> Y] become active when the

categorization problem is posed to the network because the initialization

involves activating all the nodes Pj and Vj such that [Pj,Vj] € DISCR. The

only other node activated during intialization is the £-node REF. COND-2



implies that none of the £-nodes reachable from REF via i links can be a

node in A(Pj) for any P; mentioned in DISCR. But the only <p-nodes active

are Pj's that are mentioned in DISCR. Thus no 5cat-node receiving its <p-

input, receives its |-input because of REF, or nodes activated by REF.

Hence, no new 8cat-nodes become active because of REF, or nodes activated

by REF. COND-2 also implies that none of the £-nodes activated by 5 c a t-

nodes of the form [Pj,Vj -> Y] can be a member of A(Pj) for any P;

mentioned in DISCR. Thus, the only 8cat-nodes that become active during

categorization are nodes of the form [Pj,Vj -> Y].

This concludes the proof of Lemma-TCl

Lemma-TC2: The only £-nodes transmitting activation to C[ are nodes

that lie on *.

Proof of Lemma-TC2

The only way a £-node may transmit activation to Cj is via i links

activated as a result of activating REF and enabling the I links at REF. These

are exactly the nodes on the path *.

This concludes the proof of Lemma-TC2.

The only nodes that can transmit activity to C[ are i) 8cat-nodes of the

form [Pj,Vj -> Z], where Z is a parent of REF in the ordering defined by < on

C/CpPj, ii) Scat-nodes of the form [Pj,Vj -> X], and iii) £-nodes X, where X

lies on *. Note that, each By is one such X. With reference to the 5 c a t nodes

of the form [Pj,Vj -> X], the links from these nodes to £-nodes at site INV

ensure that only the inputs from nodes that are of the form [Pj,Vj -> By]

contribute to the potential of Cv Thus, the net potential of C[ is given by the

product of three terms:

The first term is contributed by the nodes of the form [Pj,Vj -> Z]. The



inputs from these nodes are incident at REF and hence, their effect is

identical on all C^s and may be ignored.

The second term is the effect of the activation travelling along the path

from REF to C[ and is given by:

1.0 * #D! /#REF * # D 2 / # D ! * ... #D S /#D S . 1 * # q / # D s

The above reduces to #Cj/#REF.

The third term is the contribution of all the 8cat-nodes of the form [Pj,V; -

By] and equals:

Thus, the net potential of C[ is:

(1/#REF) * q * nj = l j

The factor 1/#REF is also common to all members of C-SET and may be

ignored.

Furthermore, the time taken for the appropriate activation to reach Ox

would equal the length of the path from REF to Ov Notice that all relevant

Scat-nodes would be activated in the very first step and hence, the total time

required to compute the solution remains proportional to the length of the

path from REF to Cj. The latter can be at most d, where d is the longest path

in the conceptual hierarchy.

This concludes the proof for the case of Type categorization.

6,2.4,2 Proof for Token Categorization

For Token categorization one must show that the potential of each Ĉ  equals:

i * n j = s l i m .k = l t q a(#B i jk[P j fVj] / #Bij



where By^'s are the concepts that are relevant to Ĉ  with respect to

property Pj. Each By* lies in a different view defined over C .̂

However, since C '̂s are Tokens, #Cj = 1, and the above expression equals:

One can show that the potential of each Ĉ  equals:

where a equals:

(1/#REF)Q * n j = 1 ) m ; k = 1 ^ j k )

In the above expression, w is the leaf of the ontological tree that is a common

ancestor of all members of C-SET and q is the number of views defined w.r.t.

CO.

0jk equals 1 if there exist By^'s relevant to Cj's, w.r.t. Pj's, in the paths from

REF to Ci's via view H^, otherwise /Jj^ equals #<o[Pj,Vj] / #<o.

The proof is essentially the same as that for Type categorization, except

that there are q paths from REF to each Cj. The activation along each of

these paths contributes the factor 1/#REF, in addition to the appropriate

factors of the form #By'c[Pj,Vj] / #Byk introduced by the 5cat-nodes

activated during the initialization of the network. Furthermore, if a view H^

is such that there are no concepts X in H^ for which 5(X,Pj) is known, then

the activation propagated from REF to each Ĉ  along each path in H^ would

also include the factor #<o[Pj,Vj] / #w. Thus, the potential of each C[ is

given by:



Recall that either all members of C-SET have relevant concepts w.r.t to a

property P; in a view H^, or none of them have (WFR-mv-2 cf. section 5.5.3).

Therefore, (1/#REF)C1 * nj _ i^m;k = l̂ qO ĵ̂ ) *s a common factor for each

member of C-SET. Hence, the relative potentials of Cj's may be used to find

the answer to the categorization problem.

As the propagation time from REF to members of C-SET is not a

function of the number of paths from REF to members of C-SET, the time

required to find a solution to the categorization problem is still bounded by d,

the depth of the conceptual structure.

6.3 A single network for inheritance and categorization

This section explains how a single network can be constructed to perform

both inheritance and categorization tasks. Such a network is formed by

combining into one network, the computational capabilities of the networks

described in sections 6.1 and 6.2. The separate descriptions in the last two

sections were strictly for pedagogical purposes.

63.1 Encoding the conceptual structure

In the combined network, each concept is represented by a £-node that

has six sites: QUERY, RELAY, CP, HCP, PV, and INV. These are a combination

of the sites that were present in £-nodes of the inheritance and the

categorization networks.

The <p-nodes in the combined network are exactly like the <p-nodes

described in sections 6.1 and 6.2.

If S(C,P) is known, then for every Vj € A(P) the network has S^-nodes

of the form [C,P -> VJ and 5cat-nodes of the form \?yx -> C]. The

interconnections between 5-nodes (i.e. S^-nodes or Scat-nodes), £-nodes,

and <p-nodes are exactly as described in section 6.1.1. and 6.2.2. (Notice that



|-nodes in the combined network have all the requisite sites).

In addition to the £-nodes, <p-nodes and the S-nodes, the combined

network has two more nodes: INHERIT and CATEGORIZE. Each of these nodes

has one input site: QUERY, at which it receives an external input whose

weight is 1.0. Each $inh~nocte receives an input from the node INHERIT at site

ENABLE, and each 8cat-node also receives an input from node CATEGORIZE at

site ENABLE. The weight o these links are 1.0.

63.2 Description of network behavior

The following describes the computational characterstics of each node type

in the combined network.

£-nodes:

State: Node is in active state if it receives one or more inputs.

Potential: If no inputs at site HCP then

potential = the product of inputs at sites QUERY, RELAY, CP,

PV and INV.

else

potential = the product of inputs at sites QUERY, RELAY,

HCP

{NIL inputs are ignored while computing the product}

Siah-nodes:

State: Node is in active state if and only if it receives the <p-input, the £-

input and the input from INHERIT node. (The three inputs at site

ENABLE).



Potential: If node is in active state then

potential = 1.0 * the product of inputs at sites EC

else

potential = NIL

8cat-nodes:

State: Node is in active state if and only if it receives the <p-input, the £-

input and the input from CATEGORIZE node. (The three inputs at

Site ENABLE).

Potential: If node is in active state then

potential = 1.0

else

potential = NIL

9-nodes:

State: Node is in active state if it receives input at site QUERY.

Potential: Potential is always equal to 1.0 in the active state.

ENABLE and CATEGORIZE nodes:

State: Node is in active state if it receives input at site QUERY.

Potential: Potential is always equal to 1.0 in the active state.

As mentioned in sections 6.1.3 and 6.1.4, unlike other links that always

transmit the output of their source node, the t and i normally remain

disabled, and transmit activity only when they are enabled. This control is



affected via additional control machinery associated with £-nodes whereby all

i or t links emanating from it can be enabled. Furthermore, the enabling of t

and I links has a chain effect The implementation details are specified in the

section 6.4.

6.3.3 Posing the problems and computing their solution

The inheritance and categorization problems are posed exactly as

described in sections 6.1.3 and 6.2.3, except that when an inheritance

(categorization) problem is posed to the network, the external input incident

at site QUERY of node INHERIT (CATEGORIZE) is set to 1.0. The answers to the

inheritance and categorization problems are obtained exactly as described in

sections 6.1.3 and 6.2.3 respectively.

Inheritance problem

Given: i) a concept C and a property P, P € \(C),

ii) an explicit enumeration of possible answers, i.e. a set V-SET =

{vl> V2* - v n } w h e r e e a c h V-SET C A(P), the set of values of

P, and

iii) a reference concept REF for V-SET such that for all Vj € V-

SET there exists a unique path from Vj, to REF in the ordering

graph defined by C and < (Typically, REF is a parent of Vj's.

For example, if V{s are RED, GREEN, BLUE ... then REF

could be COLOR).

Find:NT € V-SET such that relative to the values specified in V-SET, V is

the most likely value of property P for concept C.

If the conceptual structure satisfies the conditions specified in section

6.1.4, the solution to the above problem may be computed by as follows:



Phase-1

Set the external inputs, i.e. the inputs to the site QUERY, of nodes C, P

and INHERIT to 1.0, and wait for three time steps,

Phase-2

If any Vj € V-SET reaches an active state {i.e. if any Vj receives any

inputs):

then: Phase-2a

Set the external inputs to REF to 1.0, enable I links leaving

REF, and wait d+3 time steps.

else { no Vj 6 V-SET received any activation}

Phase-2b

Set the external inputs to REF to 1.0, enable I links leaving

REF, enable t links leaving C, and wait d+3 time steps.

The above will result in the potentials of nodes being such that for any

two nodes Vj and Vj € V-SET, the following holds:

(potential of ̂ /(potential of Vj) = #C[P,Vi]/#C[P,Vj]

It follows that the node V € V-SET with the highest potential will

correspond to the value that is the solution to the inheritance problem.

The time required by the network to reach the desired state will be

where d is the depth of the conceptual structure. In the current

implementation the time required is 3*d.

Categorization
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Given: i) an explicit enumeration of possible answers, i.e. a set of

concepts C-SET C <C.

ii) a reference concept REF, such that for all C € C-SET, C <

REF. For example, if C-SET = {APPLE, GRAPE, PEAR},

then REF could be FRUIT.

iii) a description consisting of a set of property value pairs, i.e. a

set DISCR = { [P^VJ, [P2,V2], ..• P m ,V m ] }, such that,

for each [P^Vj] € DISCR, ?[ € n c € c-SET x(c)> a n d

Vi € A(Pi).

In other words, each property mentioned in the description

should apply to every concept in C-SET, and the values

specified for these should be appropriate.

Find: C € C-SET such that relative to the concepts specified in C-

SET, C is the most likely concept described by DISCR.

If the conceptual structure satisfies the conditions specified in section

6.2.4, the solution to the above problem may be computed as follows:

For each [Pj,Vj] € DISCR, set the inputs to the site QUERY of nodes Pj

and Vj to 1.0. At the same time, set the input to the site QUERY of

CATEGORIZE and REF to 1.0, and enable the I links emanating from REF.

Wait d + 3 time steps, where d is the longest path in the ordering graph

defined by C and <.

The above will result in the potentials of nodes being such that, for any

two nodes Cx and Cj € C-SET, the following holds:

(potential of ^/(potential of Cj) equals:



the best estimate of #Ci[P1,V1][P2,V2] ... [Pm,Vm] divided by the best

estimate of #Cj[P1,V1][P2,V2] ... [Pm,Vm].

The best estimates referred to above are computed based on the result

derived in section 5.3.

It follows that the node C € C-SET with the highest potential will

correspond to the concept that is the solution to the categorization problem.

The time required by the network to reach the desired state will be O(d).

In the current implementation the time required is 3*d.

6.3.4 Network behavior: a proof of correctness

The combined network essentially operates in two modes: inheritance and

categorization. It can be shown that the computations performed by the

combined network, (henceforth simply the network), in the inheritance mode

are exactly the computations performed by the network described in section

6.1, and similarly, the computations performed by the combined network in

the categorization mode are exactly the computations performed by the

network described in section 6.2.

6.3.4-1 Inheritance mode

In this mode, the node INHERIT is active while the node CATEGORIZE is

inert. We show that in this mode, all the £-nodes, 5-nodes, and <p-nodes

behave exactly as they did in the inheritance networks described in sectio 6.1.

cp-nodes: As was the case with the inheritance network, a <p-node receives

exactly one input, namely, an external input at site QUERY, and has the same

state and potential functions. In both the networks, a <p-node becomes active

under exactly the same conditions, namely, when the inheritance problem

specifies a property P encoded by the <p-node.



S-nodes: During inheritance, the CATEGORIZE node remains inert, and

hence, all the 8cat-nodes remain inert throughout the inheritance mode.

Furthermore, since the INHERIT node remains active throughout the

inheritance mode, all S^-nodes receive an input from INHERIT node at site

ENABLE throughout the inheritance mode. Consequently, the enabling

conditions, and the state and potential functions of the 5^-nodes become

exactly identical to that of the S^-nodes in the inheritance networks

described in section 6.1. Thus, each 8inh"n°de behaves exactly like the

corresponding 8^-node in the inheritance network.

£-nodes: The £-nodes now have six sites: QUERY, RELAY, CP, HCP, PV,

and INV instead of the four sites: QUERY, RELAY, CP and HCP present in the

inheritance networks. Furthermore, the state and potential functions now

depend on the inputs received at all these sites.

However, in spite of these changes, the behavior of £-nodes remains the

same as the behavior of £-nodes in the inheritance network. This is because in

the inheritance mode, none of the 5cat-nodes ever become active, and these

are the only nodes that send inputs to £-nodes at sites PV and INV.

Consequently, only the appropriate sites of the £-nodes namely, QUERY,

RELAY, CP and HCP, take part in computations performed during the

inheritance mode. It is easy to see that under these conditions, the state and

potential functions of £-nodes reduce to the state and potential functions of £-

nodes specified in section 6.1.2. Thus, each £-node behaves exactly like the

corresponding £-node in the inheritance network.

We have established that during the inheritance mode, all the £-nodes,

S^-nodes, and <p-nodes of the combined network behave exactly like the

corresponding nodes in the inheritance network. We have also shown that the

Scat-nodes do not play any role in this mode. Finally, because of the manner

in which the inheritance problem is posed, the initial state of all the £-nodes,

5^-nodes, and <p-nodes in the combined network corresponds to the initial



state of the corresponding nodes in the inheritance network. Thus, the

combined network solves the inheritance problem.

6-3.4.2 Categorization mode

In this mode, the node CATEGORIZE is active while the node INHERIT is

inert. It can be shown by arguments similar to those given in section 6.3.4.1,

that in the categorization mode, all the £-nodes, 5-nodes, and <p-nodes behave

exactly as they did in the categorization networks described in section 6.2.

<p-nodes: By an argument analogous to that put forth in the previous

section, it can be shown that in the categorization mode, <p-nodes behave

exactly like the <p-nodes in the categorization network described in section 6.2.

5-nodes: During categorization, the INHERIT node remains inert, and

hence, all the 5^-nodes also remain inert. Furthermore, since the

CATEGORIZE node remains active throughout this mode, all Scat-nodes

receive an input from the CATEGORIZE node at site ENABLE. Consequently,

the enabling conditions, and the state and potential functions of the 5ca t-

nodes become identical to that of the Scat-nodes in the categorization

networks described in section 6.2. Thus, each 5cat-node behaves exactly like

the corresponding 5cat-node in the categorization network.

£-nodes: The £-nodes now have six sites: QUERY, RELAY, CP, HCP, PV,

and INV instead of the four sites: QUERY, RELAY, PV and INV present in the

categorization networks. However, the behavior of £-nodes remains the same

as the behavior of £-nodes in the categorization network. This is because, in

the categorization mode, none of the S^-nodes ever become active, and

these are the only nodes that send inputs to £-nodes at sites CP and HCP.

Consequently, only the appropriate sites of the £-nodes namely, QUERY,

RELAY, PV and INV, take part in computations performed during the

categorization mode. It is easy to see that under these conditions, the state

and potential functions of £-nodes reduce to the state and potential functions



of £-nodes specified in section 6.2.2. Thus, each £-node behaves exactly like

the corresponding £-node in the categorization network.

We have established that during the categorization mode, all the £-nodes,

Scat-nodes, and <p-nodes of the combined network behave exactly like the

corresponding nodes in the categorization network. We have also shown that

the Sjj^-nodes do not play any role in this mode. Finally, because of the

manner in which the categorization problem is posed, the initial state of all

the |-nodes, 5cat-nodes, and <p-nodes in the combined network corresponds

to the initial state of the corresponding nodes in the categorization network.

Thus, the combined network solves the categorization problem.

6.4 Implementation of t and I links

It was mentioned in sections 6.1.2 and 6.2.2 that unlike other links that

always transmit the output of the source node, the t and I links normally

remain disabled and transmit activity only when they are enabled.

Furthermore, the effect of enabling the t (4) links at a £-node has a chain

effect; if the t (;) links emanating at a £-node C are enabled, then, the t (i)

links at all nodes that are reachable from C via t (i) links also get enabled.

This section describes how this is implemented.

A t o r i link is not encoded as a simple link between two nodes, instead,

it is encoded via relay nodes. Figure 6.11 illustrates the encoding; figure 6.11b

shows the actual implementation of the .t and 4 links for the network

described in figure 6.11a.

Each £-node C, has two relay nodes: C-l and C-t, associated with it; C-i

for encoding the I links, and C-t for encoding the t links.

A relay node such as C-t receives an external input at site ENABLE, an

input at site OWNER from the £-node C, and inputs at site UPSTREAM from



all relay nodes X-t such that, C is a parent of X in the ordering graph defined

by C and < All these inputs have a weight of 1.0. The output of C-t goes to

the site RELAY of all Anodes Y, and to the site UPSTREAM of all relay nodes

Y-t such that, Y is a parent of C in the ordering graph defined by C and <

The weight on the link to Y-t is 1.0, while the weight of the link to Y is

# C / # Y .

The interconnections of a node such as C-i are analogous to that of the

node C-t. Thus, C-l receives an external input at site ENABLE, an input at site

OWNER from C, and inputs from nodes X-i, such that X is a parent of C in

the ordering defined by € and <. The output of C-l goes to the site RELAY of

all £-nodes Y, and the site UPSTREAM of all relay nodes Y-* such that, C is a

parent of Y in the ordering graph defined by C and <. The weight on the

link to Y-l is 1.0, while the weight on the link to Y is # Y / # C .

The state function and potential functions of relay nodes are as follows:

State: Node is in active state if it receives input at site ENABLE, or if it

receives one or more inputs at site UPSTREAM. Otherwise it is

in the inert state.

Potential: Potential equals the input at site OWNER.

6,5 Simulation

Section 6.1 through 6.4 specified the design of a massively parallel

(connectionist) network that can solve the inheritance and categorization

problem in time proportional to the depth of the conceptual hierarchy. A

rigorous proof of correctness was also provided. In order to explicate the

behavior of these networks and demonstrate the nature of inferences drawn

by them, several networks of the kind described in section 6.3 have been

simulated. These networks encode examples that are often cited in the



knowledge representation literature as being problematic. The results of

simulations demonstrate how the approach developed in this thesis deals with

inheritance and categorization in an uniform manner, and solves some of the

classic problems related to inheritance in presence of exceptions and

conflicting information. This section describes the results of some of these

simulations.

The simulation involves three stages. During the first stage, a high level

description of the information to be encoded in the network is processed by a

compiler (SNAIL) and translated into a set of commands to a general purpose

connectionist network builder (SPIDER).The high level input to SNAIL does

not depend on any aspect of the parallel implementation. During the second

stage, SPIDER constructs a network in accordance with the commands

generated by SNAIL. Finally, in the third stage, the activity of the network

constructed by SPIDER is simulated using CISCON - a connectionist

network simulator.

SNAIL and SPIDER are written in LISP, while CISCON is written in C.

All the examples presented in this section were run on a VAX-750. SPIDER

and the current version of CISCON have been coded by Mark Fanty and are

described in [Fanty 85a][Fanty 85b].

The first example is an extension of the Mquaker example" discussed in

section 6.1.3. It demonstrates how the network performs inheritance in the

presence of conflicting evidence. Figure 6.12 depicts the information to be

encoded. There are two properties, has-bel (has-belief) with values PAC

(pacifist) and NON-PAC (non-pacifist), and has-eth-org (ethnic-origin) with

values AFRIC (african) and EURO (european). In broad terms, the information

encoded is as follows:

"Most persons are non-pacifistsff

"Most quakers are pacifists"



"Most republicans are non-pacifists"

"Most persons are of european descent"

"Most republicans are of european descent"

"Most persons of african descent are democrats"

The input to SNAIL consists of four lists:

i) a list of concepts,

ii) a list of properties and their associated values.

iii) a list specifying the < partial ordering where each element of the list

consists of a tuple of the form (A B #A/#B) , where concepts A and B

are such that B is a parent of A in the ordering induced by < on C,

and

iv) a list specifying the distributions S(C,P)'s that are known to the agent.

Each element in this list is a tuple of the form (C P V #C[P,V]/#V

#C[P,V]/#C), where V € A(P) for some P such that 8(C,P) is known.

The input to SNAIL based on the information depicted in figure 6.12 is as

follows:

(NB-concept'( PERSON P-GRP R-GRP DEMOC REPUB

CHRIST ZORAS QUAK MORM

BELIEFS PAC NON-PAC

ETH-ORG AFRIC EURO

DICK RICK SUSAN PAT))

(NB-property '((has-bel PAC NON-PAC) (has-eth-org AFRIC EURO))

(NB-lS-a'( (R-GRP PERSON 1.0) (P-GRP PERSON 1.0)

(ZORAS R-GRP 0.7) (CHRIST PERSON 0.3)

(QUAK CHRIST 0.1667) (MORM CHRIST 0.8333)



(DICK QUAK 0.1) (DICK REPUB 0.0125)

(RICK MORM 0.02) (RICK REPUB 0.0125)

(SUSAN QUAK 0.1) (SUSAN DEMOC 0.0083)

(PAT MORM 002) (PAT DEMOC 0.0083)

(PAC BELIEFS 0.3) (NON-PAC BELIEFS 0.7)

(AFRIC ETH-ORG 0.2) (EURO ETH-ORG 0.8)))

(NB-delta'( (PERSON has-bel PAC 1.0 0.3)

(PERSON has-bel NON-PAC 1.0 0.7)

(CHRIST has-bel PAC 0.4 0.4)

(CHRIST has-bel NON-PAC 0.26 0.6)

(QUAK has-bel PAC 0.12 0.7)

(QUAK has-bel NON-PAC 0.02 0.3)

(REPUB has-bel PAC 0.27 0.2)

(REPUB has-bel NON-PAC 0.46 0.8)

(DEMOC has-bel PAC 0.73 0.37)

(DEMOC has-bel NON-PAC 0.54 0.63)

(PERSON has-eth-org AFRIC 1.0 0.2)

(PERSON has-eth-org EURO 1.0 0.8)

(REPUB has-eth-org AFRIC 0.125 0.0625)

(REPUB has-eth-org EURO 0.47 0.9375)

(DEMOC has-eth-org AFRIC 0.875 0.29)

(DEMOC has-eth-org EURO 0.53 0.71)))

On the basis of its input, SNAIL generates commands to SPIDER to
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create the required £-nodes, <p-nodes, S^-nodes, 5cat-nodes, and relay

nodes. SNAIL also generates commands that instruct SPIDER to connect

various nodes in accordance with the interconnections described in sections

6.1 through 6.4.

In addition to the nodes discussed so far, the simulations also make use of

driver nodes. A driver node is associated with each £-node, cp-node, and relay

node, and each of these nodes receive an input from their associated driver

node at the site QUERY. This input acts as an external input that can be

turned ON or OFF by simply turning the driver node ON or OFF. Thus, a

query may be posed to the network by turning ON the appropriate driver

nodes.

As our first example, consider the inheritance query:

"Is Dick a pacifist or a non-pacifist"

In other words: V-SET = {PAC, NON-PAC}

C = DICK; P = has-bel; REF = BELIEFS

This query is posed by activating (turning ON) INHERIT, d-DiCK, and d-

has-bel and the activity of PAC and NON-PAC is observed for 5 time steps (it

was specified in section 6.L3 that one must wait for 3 time steps, the extra

delay is caused by the presence of driver nodes.) Both PAC and NON-PAC

remain INERT with a potential of -1.0. (A potential of -1.0 means that the

node is inert.) Consequently, the nodes d-bu-DiCK, d-BELiEFS, and d-td-

BELIEFS are activated.

The trace of potential of some relevant nodes is shown in the following

table:



CLOCK: 9 10 11 12 13 14 15

PERSON < 0.0--— > 0.005 0.005 0.25xW4

CHRIST < ~ 0 . 0 — > < 0.017 >

QUAK < 0.01 >

REPUB < 0.0125 ->

PAC 0.0 0.3 <—0.00972~-> <—O.12xlO-2--> 0.00972

NON-PAC 0.0 0.7 <~0.00644—-> <™O.13xlO-3-> 0.00644

The potentials remain unchanged after the 15th cycle, and the final

potentials of PAC and NON-PAC for DICK are:

DICK

Value Raw potentials Normalized potentials

PAC 0.00972 1.00

NON-PAC 0.00644 0.66

Thus, the ratio of the likelihoods of Dick being a pacifist and Dick being a

non-pacifist is about 3:2. Thus, on the basis of available information , Dick

who is a republican and a quaker is more likely to be a pacifist

Similar simulations for RICK, PAT, and SUSAN lead to the following results.

RICK

Value

PAC

NON-PAC

Raw potentials

0.03240

0.08372

Nor

0.39

1.00

Normalized potentials



Rick who is a mormon republican is more likely to be a non-pacifist.

PAT

Value Raw potentials Normalized potentials

PAC 0.08760 0.89

NON-PAC 0.09828 1.00

Pat who is a mormon democrat is also more likely to be a non-pacifist, but

only marginally so.

SUSAN

Value Raw potentials Normalized potentials

PAC 0.02628 1.00

NON-PAC 0.00756 0.29

Finally, Susan who is a quaker democrat is a pacifist with a very high

probability.

As an example of categorization, consider the query:

"among the following persons, who is most likely to be a pacifist and of

african descent: DICK, RICK, SUSAN, PAT".

in other words: C-SET = {DICK, RICK, SUSAN, PAT}

REF = PERSON

DISCR = { [has-bel PAC] [has-eth-org AFRIC] }

The query is posed by activating (turning ON) the nodes CATEGORIZE, d-

PERSON, d-td-PERSON, d-has-bel, d-has-eth-org, d-PAC, and d-AFRic. {The



nodes with prefix Md-M refer to driver nodes. For example, d-PERSON is the

driver node for PERSON and d-td-PERSON is the driver node for td-PERSON,

which in turn is the top-down (l) relay node associated with PERSON).

The network computes the solution in 12 steps (the depth of the network

is 4). The most likely person who is a pacifist and is of african descent is

SUSAN followed by DICK, PAT, and RICK.

The final potentials of DICK, RICK, SUSAN, and PAT are:

[has-bel PAC][has-eth-org AFRIC]

Normalized potentialsName

DICK

RICK

SUSAN

PAT

Raw potentials

0.00000004

0.00000002

0.00000037

0.00000021

Nor

0.11

0.05

1.00

0.57

As would be expected, Susan who is a quaker and a democrat best

matches the description "person of african descent with pacifist beliefs1'. The

least likely person turns out to be Rick. The latter seems intuitively correct

given that Rick is a republican and a mormon (Rick is neither a democrat

which correlates with african origin, neither he is a quaker which correlates

with pacifism).

In a similar fashion, the query for finding the most likley person who is a

non-pacifist and is of european descent results in the following potentials:

[has-bel NON-PAC][has-eth-org EURO]

Name Raw potentials Normalized potentials



DICK

RICK

SUSAN

PAT

0.00000450

0.00000900

0.00000267

0.00000535

0.50

1.00

0.30

0.59

A query for finding the most likely person who is a pacifist leads to the

following potentials:

[has-bel PAC]

Name

DICK

RICK

SUSAN

PAT

Raw potentials

0.00000350

0.00000200

0.00000645

0.00000369

Nor

0.54

0.31

1.00

0.57

Normalized potentials

As a second example, the information depicted in figure 6.13 was encoded

in a network. This corresponds to a popular example that is often cited in the

knowledge representation literature as a difficult problem of inheritance

[Etherington & Reiter 83][Fahlman 81]. In this example, the concepts have

the property epidermis-type associated with them. The values of this property

are: SHELL, SKIN, FUR, and FEATHER.

This information about S(C,P)'s may be paraphrased thus:

Most Molluscs are shell-bearers.

Cephalopods are Molluscs, but most Cephalopods are not shell-bearers

Nautili are Cephalopods, and all Nautili are shell bearers.

The final potentials of the nodes SHELL and SKIN as a result of the



inheritance of the property epidermis-type for MOLLUSC (or MOLLI),

CEPHALOPOD (or PODI), and NAUTILUS (or CREFTI) are given below (the

potentials of FUR and FEATHER were consistently 0.0 in each case):

MOLLUSC (or MOLL1)

Value

SHELL

SKIN

Raw potentials

0.087500

0.037485

Normalized potentials

1.00

0.43

Thus MOLL1 is more likely to be a shell-bearer which is consistent with the

agent's belief that most molluscs are shell-bearers

CEPHALOPOD (or PODi)

Value

SHELL

SKIN

Raw potentials

0.006250

0.025020

Normalized potentials

0.25

1.00

That is, POD1 is not likely to be a shell-bearer, which is in agreement with

the agent's belief about cephalopods.

NAUTILUS (or CREFT1)

Value

SHELL

SKIN

Raw potentials

0.006250

0.000000

Normalized potentials

1.00

0.00

CREFT1 is definitely a shell-bearer. Notice that the likelihood of CREFT1

having an epidermis-type other than Shell-bearer computes to 0.00 which is

exactly what shold be expected given that ALL nautilus are shell bearers.

Finally, a large network was constructed that included the two smaller



network described above as sub networks. The large network had 75 concepts,

5 properties, and 30 S(C,P)'s. The depth of the network was 11. A total of 632

nodes and 1591 links were required to encode this network. The time taken to

construct this network was around 40 minutes and the time taken to perform

a single step of simulation was just under a second (all times are elapsed

times). A description of the conceptual hierarchy underlying this example is

given in figures 6.14a, 6.14b, and 6.14c, while the known distributions are

specified in figures 6.15a through 6.15e.

When any of the queries posed to the tfquaker network" and the "mollusc

network", were posed to the large network, the answers obtained were the

same as those that were obtained by posing the query to the smaller networks.

The following results were obtained when the query "which of the

following ANIMAL is most likely to have epidermis type SKIN and habitat

LAND: MLUSC REPTILE BIRD ELEPHNT PERSON"

[epidermis-type SKiN][has-habitat LAND]

Normalized potentialsName

MOLLUSC

REPTILE

BIRD

ELEPHANT

PERSON

Raw potentials

0.01000000

0.09332800

0.03547398

0.02755139

0.44444799

Nor

0.02

0.21

0.08

0.06

1.00

Thus, a land dweller with epidermis type skin is most likley to be a

person.

When the query sought the answer for epidermis type SKIN and habitat

WATER, the following results were obtained:



[epidermis-type SKiN][has-habitat WATER]

Normalized potentialsName

MOLLUSC

REPTILE

BIRD

ELEPHANT

PERSON

Raw potentials

0.05333334

0.01110867

0.00682228

0.00091110

0.00000000

Nor

1.00

0.21

0.13

0.02

0.00

Thus, a water dweller with epidermis-type skin is most likely to be a

mollusc.

In evaluating these answers it must be borne in mind that they are based

on the information encoded in the network and if the information does not

capture the readers intuitions then neither will the answers computed by the

network.
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FIGURE 6.2 Parallel encoding for inheritance-II
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FIGURE 6.3 Parallel encoding for inheritance - III
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FIGURE 6.4 Parallel encoding for inheritance - IV
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FIGURE 6.5 An example of inheritance
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FIGURE 6.6 Computation at a 8inh node



Z is such that there is no D for which
Z <3D and 8 (D, P) is known.

Q

Y
The lowest level consists of Bj € T (C, P).

FIGURE 6.7 Relevant concept
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FIGURE 6.10 An example of categorization
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FIGURE6.11b Encodingof t and 1 links



.̂ PERSON = 200
*PERSON{has-bel PAC) = 60
#PERSON(has-bel NON-PAC] =
*PERSON(has-eth-org AFRlCl
#PERSON(has-eth-org EURO)

has-belief
Values: PAC. NON-PAC
has-eth-org
Values: AFRIC, EURO

#CHRIST * 60
#CHRlST(has-bel PAC! = 24
#CHRlST(has-bei NON-PAC]

4ZORAS = 140

#

QUAK = 10
UAK[has-bel PAC] = 7

OVJAK(has-bel NON-PAC1

t #REPUB = 80
#REPUB(has-bel PAC] = 16
#REPUB(has-bel NON-PAC] = 64
#REPUB(has-eth-org AFRlCl = 5
#REPUB[has-eth-org EURO] =75
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Figure 6.12 The quaker example
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In all 8(C,P)'s below, the distributions
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f #MOLLUSC = 100
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Figure 6.13 The mollusc example
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Properties listed with concepts are those for which the
distributions are known.

Numbers listed with concepts refer to #C.

FIGURE 6.14a Organism hierarchy -I



VERTEBRATE
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REPTILE
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(30)
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(6)
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epidermis-type
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FIGURE 6.12

ELEPHANT
(20)

CLYDE
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(171)
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(57)
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PENGUIN
(19)

mode-transport

TWEETY

Properties listed with concepts are those for which the
distributions are known.

Numbers listed with concepts refer to #C

FIGURE 6.14b Organism hierarchy -



HABITAT
(1500)

WATER
(675)

LAND
(675)

AMPIBIAN
(150)
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(800)

SHELL
(80)
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FUR
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TRANSPORT MODE
(1000)
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SWIM
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BELIEFS
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(60)
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(140)
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(200)
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(40)

EUROPEAN
(160)

FIGURE 6.14c Organism hierarchy -III
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FIGURE 6.15a Distribution w.r.t. epidermis type
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FIGURE 6.15b Distribution w.r.t. mode of transport
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Chapter 7

Discussion

This chapter discusses some limitations of the research described in the

previous chapters and lists some issues that remain unresolved. It also

indicates possible directions that one may take in pursuing the line of

research described in this thesis.

7.1 Representation issues

In this thesis I have focused on the nature of information underlying

inheritance and categorization, proposed an evidential framework for

formalizing this form of reasoning, and presented an efficient and massively

parallel implementation of the resulting formalism. In other words, the

traditionally distinct areas of representation, inference, and computation have

been dealt with simultaneosuiy. In order to maintain rigor, my strategy has

been to consider only a restricted class of representational issues and there

remain several issues that have not been addressed. These include

representation of actions, events, complex shapes, definition of composite

relations, finer structure of properties and values, and the relationship

between property values of a concept (analogous to structural descriptions of

KLONE[Brachman 79]). This section discusses some of the questions that are

important from an evidential viewpoint.

7.1.1 Relationship between property-values of a concept

The question of representing interrelations between property values is

particularly relevant to our concerns. How does one represent the belief that

"most red apples are sweet11 and use it when reasoning about the taste of an

apple given that it is red in color. In other words, if the correlation between

two property-values of a concept C is known (i.e. if #C[P|,V^][P2,V2J is



known), then how can this information be utilized in reasoning about C. The

evidential formulation developed in section 5.3 demonstrates that as long as

the knowledge about concepts and their property-values is in the form of

#C[P,V]'s, there exists an efficient way of utilizing this knowledge. In section

5.2.2 we saw how a limited amount of knowledge outside this form may be

incorporated. However, the computations soon become too complex and

computationally intractable. One way of representing such information is to

posit the existence of "intermediate concepts11. For example, in order to use

the information "most red apples are sweet", one would either posit the

concept "red apple" and attach the appropriate information about the taste of

such apples, or alternately posit the existence of the concept "sweet apple"

and attach the information about the color of such apples. This does not

imply that all such intermediate concepts have to be linguistic terms, however

it does entail that appropriate computational machinery (concept nodes and

binder nodes) has to be dedicated to make this information accesssible during

inheritance and categorization. An extension of the above idea directly leads

to the following conjecture: if information about correlations between

property values of a concept is available, and if this information is significant

and relevant, then new concepts are created in order to use this information

effectively. This provides a computational explanation for the creation of new

concepts and suggests that the goal of a concept formation (learning)

mechanism should be to create concepts - and the ensuing Type structure,

such that most of the distribution information may be expressed in terms of

#C[P,V]'s of existing concepts. In more general terms, the goal of a concept

formation mechanism should be to create concepts that allow significant

information to play a role in the inference process. This also explains why one

may have a lot of information that does not get used in actual reasoning or

decision making. Having information is not enough to guarantee its utilization;

for it to be used in the reasoning process, it must occupy an appropriate place in

the conceptual structure.



The above requirement should not seem unreasonable if one observes that

in real life, if a large amount of significant information about some concept is

available, the concept is subdivided in order to better encode this

information. All specialized domains have numerous concepts to express that

which is a single concept in common parlance. Thus, whereas we may be

happy to apply the term "rock" to a targe class of "relatively hard naturally

formed mass of mineral or petrified matter", a geologist has numerous

concepts to capture the subtle distinctions and interrelations in the properties

of such substances. These distinctions would be difficult to express and

equally difficult to conceptualize unless they were encapsulated into

appropriate concepts.

What remains to be specified is a theory of concept formation that can

identify the concepts (Types) that must arise if relevant information is to be

utilized. It was stated in section 3.4.2 that concepts record similarities between

objects and their properties, and make this information accessible for

categorizing novel objects, and predicting their property-values (i.e. concepts

provide the basis for categorization and inheritance). This suggests that a

criteria for creating concepts may be based on an information-theoretic

measure that takes into account the effectiveness of a particular conceptual

structure in solving categorization and inheritance problems, (in other words,

a measure that rates different conceptual structures vis a vis their ability to

categorize objects given their property-values, and their ability to predict the

property-values of an object given its category). For some ongoing work in

this direction refer to [Gluck & Corter 85].

7.1.2 Finer structure of property-values

A simplifying assumption made in this work is that all property values are

disjoint, for example, "red" and "green" are assumed to be disjoint values of

the property has-color. This is not always the case, as there are property-

values that do not fit this simplistic picture. Some property-values may be



composites of two or more property-values. For example, the taste "sweet and

sour" is a combination of "sweet" and "sour".

Furthermore, property-values may be organized in an hierarchical

manner; an artist would tell us that there are many different kinds of "red",

each of which may be treated as a subtype of "red". Even in common usage,

"pink" is at a lower level of abstraction than "red". It is not clear how

evidence for "red" should be distributed among its various subtypes. This

seems to be more of a question of typicality than frequency of occurrence. If

one observes the range of the visual spectrum that is classified as "red", it

may range from what would be described as "blood-red" to "pink", and

colors within this range will be more typical or less typical instances of "red".

One would like to distribute evidence for "red" according to some measure of

typicality. Among existing proposals, the work on fuzzy logic by Zadeh

[Zadeh 84] seems relevant for dealing with the notion of typicality. In the

framework of fuzzy logic, RED would be a fuzzy predicate and different

instances of "red" would have varying degrees of "redness" associated with

them; thus Rose may be red with degree 0.8 while Brick may be red only

with a degree 0.7. The major criticism of fuzzy logic is the manner in which

certainty factors are combined when analyzing compound terms. It handles

disjunctions by taking the maximum, and conjunctions by taking the

minimum. Such a combination rule often leads to conuterintuitive results. For

example, a guppy may be a very atypical fish, and also a very atypical pet,

however this should not necessarily entail that guppy is a very atypical pet

fish.

An alternative to the use of fuzzy predicates is the use of "exploded

values". It may be argued that property values are much more fine grained

than their "names" might suggest. Normal usage of language often belies the

complexity of the information being communicated. In some cases detailed

information may not be articulated as it is not relevant to the situation.



However, oftentimes, a speaker does not make certain distinctions because he

relies upon the hearer to make these by using his world knowledge. For

instance, while refering to the color of an apple and that of a brick as "red"

one seldom means that they are one and the same color. One assumes that

the hearer is aware of the difference between the two colors and hence will be

able to interpret the two usages of "red" appropriately. In view of the above

we ought to use exploded color values such as APPLE-RED, ROSE-RED and

BRICK-RED. It is important to make these distinctions in a knowledge

representation scheme inspite of the surface uniformity of language.

Traditional knowledge representation systems do not have to represent these

distinctions explicitly as they can shift this burden to the interpreter; the

interpreter may be programmed to treat differently the value "red" when it is

associated with distinct objects. The absence of an interpreter in the present

formulation, however, makes it necessary to explicitly represent concepts in a

finer grain. The relationship between concepts such as APPLE-RED and RED

may be the same as that between RED and COLOR, and the properties

associated with color - HUE, BRIGHTNESS and SATURATION - may be used

to make classifications like RED and GREEN and also to make finer

distinctions like BRICK-RED and APPLE-RED. These issues are addressed

within a connectionist framework in [Cottrell 85].

7.1.3 Representation of relations and events

In section 4.1 it was explained how non-evidential property values are

special cases of the general evidential construct 5. Thus, relations may be

represented using the graphical notation described in section 3.6 and

suppressing the evidential weights on links (for example all weights may be

assumed to have the weight 1.0). Figure 7.1 shows the representation of the

predicate LOVES. It is easy to see the similarity in the notion of properties as

used in this formulation and case roles that denote relations between

predicates and noun phrases [Bruce 75; Fillmore 68]. The simplified



representation in Figure 7.1 suggests that a PREDICATE has two case roles

namely, HAS-AGENT and HAS-PATIENT. For the more specific predicate

LOVES these case roles get mapped into HAS-LOVE-AGENT and HAS-LOVE-

PATIENT which in turn are filled by JOHN MARY in the representation of

"John loves Mary".

In a similar fashion, the network in figure 7.2 encodes the following

information:

"ON is a kind of spatial relation.

ON has two arguments: the thing on top and the thing at the bottom.

A is a ball and B is a cube.

A is on B."

In general, a relation or its instance is similar to a concept such as an apple

or bird, and the arguments of the relation are analogous to properties of an

object. Thus, the representation of a two place relation such as ON may be

characterized as an object with two properties (arguments): on-top and on-

bottom.

Many relations such as PARENT-OF and ON either hold or do not hold and

hence, their representation does not require an evidential treatment.

However, there are many relations that are best viewed as graded relations (in

a manner similar to various grades or degrees of "redness" or "bigness"). AN

example of such a relation is LIKES; as in "John likes Mary". There are at

least two ways in which a degree of strength may be associated with the

representation of this relation. First, "liking" itself may have a degree of

strength associated with it; John may "like Mary a lot" or "like her just a

little". Second, an agent's belief in the various degrees of John's liking of

Mary may also vary. Thus, one may strongly believe that "John likes Mary a

little1'. Representation of such distinctions may serve as a point of contact

between a probabilistic or evidential approach and a formalism such as fuzzy



logic.

Finally, figure 7.3 shows a simple example encoding the event described

by MJim made John hit Tom yesterday". As before, the figure is meant to

convey a general idea of how we intend to approach these problems.

7.2 Treatment of evidential information

The representation language described in section 4.1 assumes that if an

agent knows S(C,P) then he knows #C[P,V] for all V € A(P). This eliminates

the possibility of representing one form of ignorance. Assume that the agent

knows that 40% apples are red, 30% are green and 20% are yellow, but he is

unsure about the remaining 10%. In the evidential treatment outlined in

chapter 5, there is no explicit way of taking such information into account

(although such a situation was discussed in section 3.6, recall the use of

?COLOR node). One possibility is to posit a special value 0p for every

property P. One may now include #C[P,0p] in the specification of 8(C,P).

This raises the question of how to distribute the "ignorance" represented by

dp among the values of P. Should the count assigned to #C[P,0p] be

distributed equally among all V € A(P) - 0p, or should it be distributed

equally to all V such that #C[P,V] = 0. The answer would depend on

whether the count #C[P,0p] denotes the observations made by the agent

about miscellaneous values of P not represented in 5 because they were

insignificant, or whether the count denotes the agent's belief that there exist

other instances of C which may have values other than those he has observed.

In the former case the count #C[P,0p] would be distributed to all V such that

#C[P,V] = 0, while in the latter case it would be distributed to all #C[P,V].

In addition to the kind of ignorance discussed above, there is another form

of ignorance that ought be considered1. This form of ignorance may arise

because the agent may not have observed sufficient instances of a class to be

confident about its distributions recorded by him. In other words, # C may



be a so small that the agent may not want to use #C[P,V]'s to infer property

values of instances of C. It seems plausible to assume that in such situations

an agent may prefer to employ distribution information of a more general

class if such information is available and is thought to be more reliable. An

explicit representation of ignorance may help in modelling this situation. For

example one may posit that if the ignorance 9 C P associated with S(C,P) is

very high, then #C[P,V] be estimated on the basis of S(C,P) as well as

5(D,P), where D is some concept higher up in the conceptual hierarchy for

which GDP is very low. It remains to be seen how such a strategy may be

incorporated within the framework developed in this thesis.

1. The significance of this form of ignorance was pointed out by Gary Dell.

A related issue is that of treating likelihoods as intervals rather than point

values. There are many arguments in favor of using intervals [Loui et al. 85].

One of the most forceful being that intervals enrich our capacity to express

ignorance. If probabilites express uncertainty, then intervals allow us to

express uncertainty about probabilities. For example, if one were certain of

one's belief in the probability of some event as being p, then one would

express this probability as [p,p]. However, if one's belief about this

probability were itself uncertain, one might express this probability of the

event as [p-e, p + e]- With reference to the example about apples and grapes in

section 5.1 (figure 5.1), there could be at most 60 and at least 30 red and

sweet apples. Thus, Pr(red & sweet | apples) lies in the interval [0.3, 0.6].

Using the maximum entropy formalism we reduced this to a single point

value of 0.42 (42 out of 100 apples were red and sweet). Given the

information about apples and grapes in that example, the value 0.42 is the

most likely value from among the set of possible values in the interval [0.3,

0.6]. The rationale for this has been provided in section 5.1. However, the

introduction of 0p in the set of values of P introduces a complication that

needs to be resolved.



Another suggestion due to Rollinger [Rollinger 83] involves using a

dimensional representation for uncertainty. One of the dimension represents

positive evidence while the other represents negative evidence. It is argued

that a single value does not distinguish between "strong positive evidence in

conjunction with some negative evidence" and "some positive evidence and

no negative evidence". Thus, [1. 0] means the proposition is true, [0, 1] means

that the proposition is false, while [1, 1] means that there is a contradiction.

The problem of evidential reasoning becomes extremely complex if the

nature of information available to the agent includes inequality constraints.

For example, an agent may know that there are more red and sweet apples

than there are green and sour ones, without knowing how many such apples

there are. In the presence of inequaltiy constraints, the maximum entropy

computations become as complex as general optimization problems. Needless

to say, developing computationally tractable solutions to such problems is

beyond the scope of this thesis. For a promising approach for computing

approximate solutions to optimization problems using massive parallelism

refer to [Hopfield & Tank 85].

7.3 Extended inference

As stated in section 1.3, it was my contention that we must first identify

the kinds of inference that an agent needs to perform very fast and provide a

computational account of how this may be achieved. Consequently, this thesis

focuses on a form of reasoning that is performed effortlessly and

automatically by human agents. In contrast, a more conscious, directed, and

sometimes even painstakingly slow and belabored form of reasoning underlies

many cognitive activities. Examples abound; planning a trip, planning a talk,

solving puzzles, troubleshooting a VLSI circuit, playing chess and the like.

Some of these "higher forms" of reasoning are best modelled after standard

deductive reasoning, some others by qualitative reasoning [Bobrow 85], and



yet others by a hybrid approach. Considerable effort in AI has been directed

towards embodying this form of reasoning in computer programs.

One may be lead to believe that it may not be possible to employ the

proposed parallel architecture to handle more elaborate forms of reasoning.

Although many problems remain unresolved, some progress has been made.

For a description of how routines may be employed to perform more

elaborate inferences refer to section 3.4 in [Shastri & Feldman 84].

With reference to evidential reasoning, the discussion in this thesis may

lead one to conclude that it is being suggested that decisions should be based

only on the likelihoods of possible outcomes, and the agent must always

choose the most likely outcome. This is not the case. In most situations the

agent may want to take into account the utilities of various outcomes, then

again he may choose to take risks or be conservative, or he may adopt some

other strategy. My contention is that any complicated or elaborate strategy

(unless it simply involves making random choices) will perforce require the

knowledge of the likelihoods of the possible outcomes.

7.4 Learning

There has been an undercurrent of issues related to learning throughout

this thesis. The knowledge encoded in 8 was supposed to be based on the

observations made by the agent, it was mentioned time and again that Types

"evolve" when certain things happen, hence, it is only natural to discuss some

issues related to learning. If one examines the encoding of knowledge as

described in sections 6.1 and 6.2, one would notice, that most of the weights

drawn between links have a very simple explanation. If we view nodes in the

network to be active elements - as indeed they are, then the weights on the

links emanating from 5 nodes (both 8-m^ and Scat) and incident on other £-

nodes and 5-nodes have the following interpretation:



"the weight on a link is a measure of how often when the destination node

was active, was the source node also active."

This interpretation relates extremely well to a Hebbian interpretation of

synaptic weights in neural nets. These weights are based on purely local

information. Thus, the weight on a link from a 5 ^ node [C,P->V] to V is

precisely the fraction: "how often when V was firing was [C,P->V] also

firing". If V is RED, P is has-coior and C is APPLE, then the weight on the link

from APPLE to RED via the binder node would equal:

"what fraction of red colored things were apples"

The above explanation may sound plausible for computing the weights on

individual links, but it does not answer how structures such as concepts

evolve. The following is a preliminary attempt at answering this question.

Although the problem is far from solved, it does provide a general idea of

how learning may occur in connectionist semantic networks. The emphasis is

on identifying how pre-existing (innate) structure may give rise to new

concepts.

The proposed mechanism for learning in semantic networks is based on

the notions of recruitment and chunking [Feldman 82a; Wickelgren 79] and

these issues are discussed in brief before a plausible mechanism of concept

formation is outlined. Broadly speaking, the idea of chunking may be

described as follows: At a given time, the network consists of two classes of

nodes:

1. Committed Nodes. These are nodes that have acquired a distinct

"meaning" in the network. By this we mean that given any committed node,

one can clearly identify sets of other committed nodes, whose activation will

result in the former becoming activated. Committed nodes are connected to

other committed nodes by "strong" links, and to a host of other free nodes,

(see below), via "weak" links.



2. Free Nodes. These are nodes that have a multiplicity of weak links to

other nodes, both free and committed. These form a kind of "primordial

network" of uncommitted nodes within which the network of committed

nodes is embedded.

Chunking involves strengthening the links between a cluster of committed

nodes and a free node. Thereafter, the free node becomes committed and

functions as the chunking node for the cluster i.e., the activation of nodes in

the cluster results in the activation of the chunking node and conversely, the

activation of the chunking node activates all the nodes in the cluster. The

process by which a free node is transformed to a committed node is called

recruitment. The mechanics of recruitment in connectionist networks is

described in detail in [Feldman 82a]. The basic insight in the solution to the

problem of learning through weight change is that certain classes of random

connection graphs have a very high probability of containing the sub-network

needed for learning a new concept

The notion of chunking in its generic form only suggests a mechanism

whereby nodes can be associated and is not sufficient for explaining how

structured relationships arise. In the proposed solution we wish to exploit the

non-trivial structure resulting from assuming that knowledge is organized in

terms of properties and values thereof. We postulate that learning takes place

within a network that is already organized to reflect this structure. For

instance, in the context of vision, we specifically assume that concepts that

correspond to primitive properties like color, shape, texture and motion are

already present in the semantic network of an agent together with concepts

that represent some basic values of these properties. Simple forms of learning

result in the formation of concepts that represent coherent collections of

existing properties and values, while more complex forms of learning lead to

generalization of concepts and the formation of complex properties that in

turn lead to development of more complex concepts.



We will consider a toy example of a semantic network interacting with a

very simple visual system that is capable of detecting the colors blue and

green and the primitive shapes round and oval. The initial organization of the

semantic network takes into account these characterstics of the visual system.

Figure 7.4a is an oversimplified representation of the initial organization of

the semantic network. The network has four pre-existing concepts namely, the

property HAS-COLOR and its values BLUE and GREEN and the property HAS-

SHAPE and its values ROUND and OVAL. In other words, the nodes

representing the properties and values are already connected to the visual

system and may be activated by it under appropriate conditions. The nodes

representing the four concepts are committed nodes embedded in a

"primordial network" of free nodes that may be roughly partitioned into

three diffused sub-networks X, Y and Z. Network X consists of nodes that are

primarily connected to the nodes HAS-COLOR, BLUE and GREEN along with a

host of free nodes in network Z. Nodes in network Y receive most of their

connections from the nodes HAS-SHAPE, ROUND and OVAL and also from

numerous free nodes in network Z. Finally, the nodes in network Z are

connected to a large number of nodes throughout the semantic network. The

existence of networks X and Y indicates that the semantic network is pre-

wired to "know" that BLUE and GREEN are values of HAS-COLOR while

ROUND and OVAL are the values of HAS-SHAPE.

Figure 7.4b depicts the result of learning an instance of a blue and round

object. The figure only shows the committed units and their interconnections.

Learning an instance involves two stages of recruitment; the binder nodes Bl

and Rl are recruited first, followed by the concept node BRL When the

visual system detects the color blue in the stimulus it activates the node HAS-

COLOR and BLUE. The coincident activation results in the recruitment of a

free node (Bl) from the pool of free nodes in network X. The node Rl is

recruited in an analogous manner from the pool of nodes in network Y. The

simultaneous activity in Bl and Rl leads to the recruitment of the node



(BR1) from network Z. Thereafter, the nodes Bl and Rl act as binder nodes

and BR1 represents the newly acquired concept Bl is activated by the

coincident activity of HAS-COLOR and BLUE while Rl is activated by the

coincident activity of HAS-SHAPE and ROUND. The activity of the concept

node BR1 is strongly correlated with the activity of Bl and Rl.

The working of the scheme depends on the assumptions we made about

the pre-existing structure of the semantic network. It was crucial to assume

the existence of property and value nodes with appropriate connections to the

visual system. The organization of free nodes as networks X, Y and Z was

equally important. Networks X and Y provided binder nodes in order to

associate properties with their values, and the network Z provided a pool of

nodes that could be recruited to "chunk" binder nodes in order to form

concepts.

Figure 7.4c depicts the semantic network with three instances (BR1, BR2

and BR3) of blue round objects and one instance (GO1) of a green oval

object. In this situation a second kind of concept formation may occur and

result in the formation of the concept "blue and round object" which is a

generalization defined over BR1, BR2 and BR3. The resulting network is

shown in Figure 7.4d. The new concept is represented by the node BR that

owns the binders B and R that indicate its property values. These property

values correspond to the shared property values of the instances.

The transformation from the network in Figure 7.4c to that in Figure 7.4d

is best explained with the help of the simpler networks shown in Figure 7.5.

The network shown in Figure 7.5b is the result of a similar transformation of

the network in Figure 7.5a. The three instances A, B and C have the same

value (V) for the property P and this forms the basis for the formation of the

more general concept D. The transformation occurs in two stages.

I. A chunking node for bl, b2 and b3 is recruited from a pool of free nodes



that serves the same function as network Z in the previous example, i.e.

provides a potential concept node.

II i) Over a longer period of time, the multiple paths between P and V via

bl, b2 and b3 collapse into a single path via b, where b is one of the

existing binder nodes bl, b2 or b3. The collapsing of links does not mean

that the links disappear, but rather that the weights of links get reduced in

such a way that all binder nodes besides b gradually become free nodes

(are released).

ii) The connection between b and D remain strong but the connections

between other binder nodes and D become weak.

iii) The links x,y and z (in effect) now emanate from D rather than the

binder nodes.

(All changes described in stage II happen during the same time interval).

The net effect of I and II is that the network shown in Figure 7.5a behaves

like the network shown in Figure 7.5b. The scheme that we have just

described characterizes learning as network transformations that minimize the

complexity of the network (number of links and nodes) while maintaining the

cause effect relationships between existing concept nodes. Thus, the nodes P,

V, A, B and C have roughly the same effect on each other in the two

networks shown in Figures 7.5a and 7.5b. The complexity of networks is

substantially reduced by formation of more general concepts although this

may not be evident from this simple example. In general, if the generalization

takes place over p properties and c instances (the values of p and c were 1 and

3 in the example of Figure 7.5 and 2 and 3 in the example of Figure 7.4d),

then the savings in the number of links and nodes is of the order of pxc.

Referring back to Figure 7.4d, BR, a node in network Z, will be recruited

as a chunking node of Bl, B2, B3 as well as Rl, R2 and R3. The release of
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binder nodes and the collapsing of links will occur separately for the two

properties HAS-COLOR and HAS-SHAPE. Thus, Bl, B2 and B3 will collapse

into B while Rl, R2 and R3 will collapse into R.

The above is intended to be a crude description of how recruitment of free

nodes and release of committed nodes gives rise to representation of new

instances and development of concepts that are generalizations of existing

concepts. The latter kind of concept formation is accompanied by a

substantial reduction in the number of committed nodes and links.

7,5. Conclusion

This thesis demonstrates that certain problems in knowledge

representation and reasoning have elegant solutions within an evidential

framework. I hope that this work provides a point of contact between

researchers who adopt traditional approaches - (i.e. various non-monotonic

logics), and researchers who adopt an evidential approach to deal with partial

and uncertain knowledge. I also hope that this will lead to a greater

interaction between the two groups that have largely worked independently.

This thesis also demonstrates the efficacy of developing efficient

connectionist solutions to problems that are considered to be "too hard" for

an apparently "low-level" approach. My experience has been otherwise -

"thinking" in connectionist terms gave rise to the intuitions that lead to this

thesis. I believe that a deep understanding of what is intelligence, why is it

that we view the world to be structured as we do, and why are we good at

certain tasks while bad at some others, will only accrue if we seriously

examine the information processing characterstics and the computational

properties of the biological machine (i.e. the human brain) that embodies

intelligence.
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