
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Parsing Method for Context-free

Tree Languages

Karl Max Schimpf

A DISSERTATION

in

Computer and Information Science

ented to the Graduate Faculties of the University of Penns}
artial Fulfillment of the Requirements for the Degree of Dc
osophy.

1982

rvisor of Dissertation

uate Group Chairperson

ABSTRACT

A parsing method for context-free tree languages

Karl Max Schirapf

Jean H. Gallier

Tree structures (or hierarchies) are commonly used by c

ntists. For example, data bases, theorem proving, c

riptions of abstract data types use tree structures,

ertation presents a new, more general form of tree

hing which allows one to test if a given tree fits a pai

of pattern. In particular, it presents a new form

maton called a tree pushdown automaton, shows that the cl

uages recognized by tree pushdown automata is identical

s of context-free (outside-in) tree languages, and pres

er constructor for the tree pushdown automaton whic

truct a deterministic parser (called the BUTLR(O) parser)

lass of the context-free tree languages. Furthermore, the

instructing the BUTLR(O) parser mimics LR(0) techniqi

ext-free string grammars by lifting these techniques up t<

e, the BUTLR(O) parser is constructed by building a bottom-

maton, called the characteristic automaton, to recognize

characteristic trees". The characteristic automaton :

erted to a tree pushdown automaton by augments

acteristic automaton with internal memory in the form of

the addition of stack-like operations on these trees.

COPYRIGHT

KARL M SCHIMPF

1982

Acknowledgement s

I wish to express ray gratitude to Jean H. Gal

for this dissertation, for introducing me into the

Languages, for his guidance and advice throughout t

this manuscript, and for providing me with continue

Jean has been the ideal thesis advisor. He was pat

optimistic, helpful, and full of ideas. I thank hj

advisor, but as a friend and a colleague.

I would also like to thank my committee; Pete

chairman of the committee, Aravind Joshi, and Saul

constructive criticism and suggestions. In partici

especially indebted to Saul Gorn for his careful re

manuscript and his suggestions on possible applicat

I also thank the audience of my first colloqui

strength and courage to attend (even if they felt t

their faces behind "Groucho Marx" eye glasses).

Finally, I would like to thank all my friends,

Kathy McKeown, Kathy McCoy, Sitaram Lanka, Eric Ma)

ambers of the Northwest Corridor Athletic Association, for

ling unwavering interest in my work even if they did not ha

test inkling of what I was doing.

iv

Table of Contents

1.0 INTRODUCTION

2.0 PRELIMINARY NOTATION

2.1 Sets
2.2 Relations
2.3 Functions
2.4 Strings
2.5 Natural Numbers
2.6 Ranked Alphabets
2.7 Terms
2.8 Trees
2.8.1 Z r e e Ooraains •
2.8.2 i - Trees
2.8.3 Trees With Variables
2.8.4 Subtrees , , ,
2.8.5 Tree Replacement
2.8.6 Tree Composition
2.8.7 The N m-way Tree Composition

3.0 LR PARSERS .

3.1 Context-free Grammars
3.1.1 Derivations , . , , ,
3.1.2 Language Generated 3y Context-free Grs
3.1.3 Reduced String Grammars ,
3.1.4 Right-linear Grammars , ,
3.2 Finite-state Automata
3.3 Pushdown Automata ,
3.4 LR(0) Parsers «
3.4.1 LR(0) Parsing Tables
3.4.2 LR(0) Characteristic Automaton . . . ,
3.4.3 Constructing LR(0) Parsing Tables . ,
3.4.4 Converting LR Parsers To PDAs . . . ,

4.0 CONTEXT-FREE TREE LANGUAGES

4.1 Context-free Tree Grammars And Tree
4.2 Augmented Tree Grammars
4.3 Redundant Tree Grammars

4.4 NT/T Segmented Grammars . •
4.5 n - Normal Forms
4.6 Derivation-renaming Grammars
4.7 Erasing Grammars
4.8 Reduced Tree Grammars • • .
4.9 Weak Chomsky Normal Form • •
4.10 Leaf-linear Tree Grammars
4.11 Root-linear Tree Grammars

5.0 TREE PUSHDOWN AUTOMATA

5.1 Tree Pushdown Automata
5.2 Stateless Tree Pushdown Automata • • •
5.3 Equivalence To Tree Grammars
5.3.1 Converting Tree Grammars Into STPDAs
5.3.2 Converting STPDAs To TPDAs
5.3.3 Converting TPDAs To Tree Grammars
5.3.4 Comparing Classes Of Tree Languages

6.0 THE BDTLR(O) PARSER

6.1 BUTLR(O) Parsing Tables
6.2 The BUTLR(O) Characteristic Automaton
6.3 Constructing BUTLR(O) Parsing Tables «
6.4 Conjectures On Determinism

7.0 THE MACRO LANGUAGES - AN APPLICATION

7.1 Simulating LR(0) Parsers Using BUTLR(O) Pars
7.2 The Macro Languages , , , >
7.3 Parsing The Macro Languages

8.0 CONCLUSION

8.1 Summary Of Research
8.2 Open Questions • • «
8.3 Future Research . «

9 . 0 INDEX

10.0 BIBLIOGRAPHY

v i i

Chapter I

INTRODUCTION

Tree rewriting systems have been in existence fo

» some time* Among the most common and simplest

.cations of tree rewriting systems is the

ix-directed translation for context-free string

lages used in compilers (see Aho and Ullman[72,79

:ies[71])« However, tree rewriting systems have

used in many other types of applications. For

ince, tree rewriting systems have been used to

L formula manipulating systems such as program

aization (see LaLonde and Rivieres[81]), formula

Lification (see Huet[80], Huet and 0ppen[80], or

i[73]), and theorem proving (see Buchi[60], Buchi

and Elgot[58], or Elgot[61]). They are also us

abstract interpreters for recursive schemes (s*

Courcelle[76,81], Friedman[77a,77b], Gallier[8(

Nivat[75])« Yet another application of tree re

systems is to define abstract data types using

equivalence classes of trees (Guttag and

Horowitz[76,78], Wand[77], or Milner[78]).

Associated with these tree rewriting syst(

the interesting problem of recognizing if the

particular tree under consideration meets any c

"tree patterns" used by the rewrite system and,

tree matches one of these patterns, the rewrite

performs the actions associated with the "matel

pattern. Viewing this problem as a parsing prc

formal language theory, the process of testing

input tree matches any of the specified patten

viewed as performing a parse of the input tree

the topic of interest in this thesis), and the

of performing actions if a match is found can 1

as performing a transduction.

In particular, this thesis is an indepth

investigation into the development of a new foi

pattern matcher (or parser) for a common class

patterns known as context-free tree grammars.

>hasis is specifically directed toward the

:erministic form of the parser, and a parser

lerator which will construct a deterministic pars*

: a large subclass of the context-free tree

iguages. To obtain these goals, this thesis pres

lew form of a tree automaton, called a tree pushd-

:omaton (a tree automaton augmented with internal

lory consisting of a sequence of trees).

Both the tree pushdown automaton and the parse

lerator for the tree pushdown automaton are inspi

m̂ LR-techniques (Knuth[68], Harrison!78], and Le

1 Papadimitriouf81]), and are original. The

ierlying concept behind the new model and the par

lerator is to lift LR(0) parsing techniques for

rings up to trees, in order to recognize a large

Dclass of the context-free tree languages using a

terministic machine•

A secondary goal is to modify the tree pushdow

tomaton to recognize the class of macro (or index

ring languages. That is, to take the newly devel

*e pushdown automaton which recognizes context-fr

se languages and apply this new parsing model to

rings (using the fact that the yields of trees in

citext-free tree language corresponds to a macro

language, see Fischer[68,69]). The results of t

application should produce a parser whose determ

form has the power to recognize a larger subclas

the string languages than the class recognized b

deterministic LR(k) parsers since the parsing

construction method that developed the tree push

automaton is a generalization of the LR(k) parsi

techniques.

Before describing the type of tree pushdown

automaton used in this thesis, it is important t

understand what are the main issues involved. 0

issue is the class of context-free tree language

new model will be geared to accept. Unlike

context-free string languages, there are two dis

classes of tree languages that can be generated

context-free tree grammars (as opposed to one fo

context-free string languages). The difference

to the existence of two different forms of deriv

(or rewrite) modes, known as inside-out and outs

and each derivation mode generates a different t

language (see Englefriedt and Schmidt[77,78]).

Pag

A second issue about the new model is the type

e automaton used. The two most common types of t

omata are top-down and bottom-up tree automata wh

-down automata scan the input tree from the root

frontier (leaves) while bottom-up tree automata

n the input tree from the frontier to the root (s

tcher and Wright[68], Doner[70], and Magidor and

an[69])« At first glance, this consideration may

appear to be important since it has been shown t

deterministic top-down and bottom-up tree automat

h recognize tree languages in the class of regula

e languages (Brainerd[69], Thatcher[73]). floweve

object of this research is to develop a parser

structor to generate a deterministic parser for a

ge subclass of the context-free tree languages ar

is a well known fact that the class of regular ti

guages is identical to the class of tree language

epted by deterministic bottom-up tree automata

atcher[73]) while the class of tree languages

epted by deterministic top-down tree automata is

per subset of the class of regular tree languages

atcher[73])» Hence, in the drive for deterministi

choice of tree automata may play an important re

The third issue is what the internal memory

be used for. Typically, either the memory of th

parsing model is used to keep track of the port!

the input already scanned or, it is used to dete

what the unscanned portion of the input must loo

in order for the input to be legal. To clarify

difference between the two different types of us

the internal memory, consider the pushdown autora

which comes in LL(1) (see Lewi.s and Stearns[68]

Knuth[71]) and LR(1) flavors (along with many ot

flavors). Both the LL(1) and the LR(1) parsers

pushdown automata. However, the internal memory

used for very different purposes.

In a LL(1) parser, the stack is used to sira

derivation in a top-down fashion. The parse sta

initializing the stack to contain the start symb

Then, the LL(1) parser simulates the sequence of

derivation steps that generates the input string

other words, at any point in time, the unscanned

portion of the input string is legal if and only

string the stack represents will derive (or rewr

the remaining portion of the input string. Ther

the LL(1) parser uses the stack to describe what

unscanned portion of the input string must look

order for the input string to be legal.

Page

In a LR(1) parser, the stack is used to simulate

ration in reverse, or bottom-up fashion. At any

: in time, the stack of the LR(1) parser represent

ring oc such that the string oc derives the porti<

le input string already scanned by the LR(1) parsi

:he string oc is legal if and only if the start

>1 derives the string oc . Hence, the stack is us<

ascribe what it has already seen.

Summarizing the above issues, there appears to b<

: plausible models of the tree pushdown automaton

i eight models are based on three major

[derations and each consideration has two natural

:es. These considerations are: (1) The class of

languages accepted by the model (inside-out or

Lde-in); (2) The type of tree automaton used

•down or bottom-up); and (3) What the internal

:y is used for (to describe the scanned portion o

: or, to describe the unscanned portion of the

The model of tree pushdown automata presented in

dissertation is based on a bottom-up tree

naton, the internal memory is used to describe th

scanned portion of the input in the same manner

LR(0) parser, and is geared to recognize the cla

outside-in tree languages.

In terms of current research, only the surf

been scratched when it comes to solving the prob

parsing context-free tree languages. Most resea

focused its attention to (very) small subsets of

context-free tree languages such as regular tree

languages (see Buchi and Wright[60], Doner[70],

Eilenberg and Wright[67], Magidor and Moran[69],

Thatcher[73], and Thatcher and Wright[68]) and t

adjunct grammars (see Joshi, Levy and Takahashi[

Some research has used forms of tree grammars cl

related to context-free tree grammars such as re

schemes (see Courcelle[76,81], Friedman[77a,77b]

Gallier[80,81], and Nivat[75]). However, the em

of the research in this area has focused on the

properties of such languages as opposed to the

development of acceptors and transducers.

The only directly related research in this

has been done by Guessarian[81], which has taken

straightforward approach to the problem. Guessa

has developed a version of the tree pushdown aut

different than the one presented in this thesis,

Pag

a top-down tree automaton, which uses internal

ory to state what should appear on the remaining

canned portion of the input tree, and also

ognizes the class of outside-in context-free tree

guages. This model of tree pushdown automata

responds very closely to that of LL(0) parsers fo

text-free string languages.

The major drawback of Guessarian's model is tha

class of tree languages recognized by the

erministic version of the tree pushdown automaton

ears to be rather small. The reasons for this cl

twofold: First, it uses a top-down tree automat

its finite-state control which, as mentioned

lier, is already known to be less powerful than t

erministic bottom-up tree automaton. Secondly, t

el appears to be a generalization of the LL(0)

ser for strings (in terms of its memory usage),

well known that the class of string languages

ognized by LR(k) parsers is a superclass of the

ing languages recognized by LL(k) parsers. Hence

may assume that a generalization of the LL(0)

ser lifted to trees is not as powerful as a

eralization of the LR(0) parser lifted to trees.

Chapter 2 of this thesis provides the terrai

used throughout the remainder of the thesis. Th

includes the definitions of sets, relations, fun

strings, ranked alphabets, terms, and trees.

Chapter 3 reviews LR(0) parsing techniques,

purpose of this chapter is to provide insight in

use of the LR(0) parser and the construction of

LR(0) parser generator. This chapters also sets

background on the ideas and notions which will b

in the construction of the tree pushdown automat

the tree pushdown parser generator.

Chapter 4 introduces context-free tree gram

and context-free tree languages. It presents th

definition of a context-free tree grammar, and s

how a context-free tree language is generated fr

given context-free tree grammar via a series of

derivation (or rewrite) steps. This includes

presenting the two types of derivation modes kno

inside-out and outside-in, which will generate

inside-out and outside-in context-free tree lang

The chapter also studies several properties of

context-free tree grammars as well as transforma

on these grammars to modify a context-free tree

such that certain undesired properties are remov

articular, one of the goals of these transformati

s to introduce a standard form of context-free tr

rammars called "weak Chomsky normal form".

Chapter 5 presents the main object of study,

ew model of the tree pushdown automaton. Besides

resenting the definition of the model, this chapt

hows that for the nondeterministic version of the

ushdown automaton, the class of tree languages

ecognized by the model is identical to the class

utside-in context-free tree languages.

Chapter 6 takes the model of the tree pushdov

utomaton introduced in chapter 5, and presents a

arser generator (called the BUTLR(O) parser genet

hich will automatically generate a tree pushdown

utomaton from a context-free tree grammar. The p

onstructor is based on the notions of LR(0) parsi

ifted up to trees, and produces a deterministic t

ushdown automaton for a subclass of the outside-i

ontext-free tree languages.

Chapter 7 takes the BUTLR(O) parser generatoi

ttempts to apply this new type of parser generate

he class of macro string languages. The chapter

egins by showing how a context-free string gramme

e lifted to a tree grammar such that the generate

BUTLR(O) parser will simulate an LR(O) parser (t

showing that indeed the BUTLR(O) parser is a

generalization of the LR(0) parser). It also

introduces the definition of macro string gramma

macro string languages. The chapter concludes I

showing a possible method of using the BUTLR(O)

generator to construct a new parsing model such

will simulate a LR(0) parser whenever the gramma

is a context-free string grammar, but more gener

the sense that it is also able to also parse an}/

language. Furthermore, it is conjectured by the

that the deterministic version of this new model

recognize a superclass of the string languages

recognized by deterministic LR(0) parsers.

Chapter 8, the conclusion, provides a brief

summary of the results of this thesis, open ques

and provides a brief summary of the direction tY

author sees future research heading.

Chapter II

PRELIMINARY NOTATION

This chapter presents the notation and terminolo^

in the remainder of this dissertation. The

;pts of sets, relations, functions, and strings

mted below can be found in most elementary

imatical textbooks (for further details on these

s, see Arbib, Kfoury, and Moll[81] or

ter[76]).

2*1 Sets

A set is a collection of objects^ (In this

thesis, the type of sets that will frequently be

consideration are alphabets and languages« A se

enumerated by either listing all its members enc

by braces ({a,b,c} for example) or, more general

denoted {x | P(x)} where P(x) is a proposition

describing the elements in the set. The set tha

contains no elements is called the empty set and

denoted 0. The cardinality of a set A, denoted

the number of elements in A. A set A is finite

is finite, otherwise A is infinite. Furthermore

is used to denote that flaff is a member of the se

while a$A is used to denote that "a" is not a me

the set A.

Two sets A and B are identical (denoted A=I

and only if both A and B have the same elements.

A is a s u ^ s e t of the set B (denoted A £ B) if ar

if every element in A is also in B. Furthermore

set A is a proper subset (denoted A C B) if A jC

Page 15

e union of two sets A and B (denoted A\/B) is

consisting of all elements that are members of

set. The intersection of two sets A and B

d AAB) is the set consisting of all members of

and B. The difference of two sets A and B

d A-B) is the set consisting of all members of A

re not members of B. The powerset of a set A

d 2A) is the set 2 A - {B | B £ A}. Furthermore,

Aa language and B is any subset of 2 , then B is

tly called a class of languages.

e product of two sets A and B (denoted A x B) is

of all ordered pairs (a,b) such that a€A and

wo ordered pairs (a,b) and (c,d) are regarded as

f and only if a^c and b^d. Furthermore, a

over a single set A (i.e. A x A) will

2
tly be denoted as A •

n-tuple of objects from a set A (denoted

A)) is inductively defined as follows:

tupleQ(A) *• A

tuple^A) « {(a) ! a€A}

i i i) tuple i+1(A)

for a l l i>l

)ne should note that condition (i) of the definit

lonstandard. Typically, tuple~(A)-0. However, t

simplify notation later on in this thesis, the

lonstandard representation will be used. Let tup

lenote the infinite union of the sets tuple.(A) f<

L>0.

1.2 Relations

A bi n a ry relation (or simply a relation) is i

:riple (A,R,B) where A and B are sets and R is a i

>f the product A x B. Given any a€A and any b€B,

related to b (denoted a R b) if and only if (a,b)<

Similarly, a is not related to b (denoted a jt b)

>nly if (a,b)i&R. The domain of the relation (A,R

lenoted dom(R), is the set {a | a€A, 3b€B, and (*

md the range of (A,R,B), denotecj range(R), is th<

[b | b€B, 3a€A, and (a,b)€R}. The relation (A,R3

:otal if A=dom(R). Also, given any relation (A,R

Let R C A x B denote the relation (A,R,B).

Page

Let R £ A x A be a relation. R is reflexive if

x for all x€A, R is transitive if for all x,y,z€

y and y R z implies x R z, and R is antisymmetri

for all x,y€A, x R y and y R x implies that x3y.

^ e transitive closure of a relation R JC A x A

loted R) is the set of ordered pairs such that

i) if (a,b)€R, (a,b)€R+

ii) if (a,b)€R+ and (b,c)€R, then (a,c)€R+

Lii) nothing else

The transitive reflexive closure of a relation

A x A (denoted R) is the set of ordered pairs

• R+V{(a,a) | a€A}.

A partial ordering is any relation < £ A x A su

t ̂ is reflexive, antisymmetric, and transitive,

relation <̂ is considered total if and only if fo

x,y€A, either x R y or y R x. Furthermore, give

partial ordering j£ £ A x A, the strict ordering

ition < £ A x A is defined by the set of ordered

rs {(afb) | a < b and

Page

Functions

A relation F jC A x B is a partial function if a

y if for all a€A and all c,d€B, if a F c and a F

n c-d. A function is total if in addition dom(F)

thermore, a partial function is said to have fini

ain if and only if |dom(F)| is finite. For

ational convenience, a function F JC A x B will be

oted as F : A -> B, Furthermore, if a€dom(F) and

b, then b will be denoted as F(a).

Let F : A -> B be any function. F is injective

only if for all x,y€A such that x^y, f(x)^f(y).

surjective if and only if for all y€B, there exis

x€A such that y*F(x). Furthermore, F is bijectiv

and only if F is both inj'ective and surjective.

Strings

Let 2 be any alphabet. The set of strings

noted i) is the free monoid (i ,*,6) generated b

alphabet i where "•" is concatenation (or

taposition) and 6 is the identity denoting the em

ing (see Lentin and Schutzenberger[67]).

thermore, let i denote the set 1. -{6}.

Page

—*
Tlle l e n8 t^ of a string oc€i (denoted length(oc'

string's length as a sequence of alphabet symbol!

:hermore, for any string oc€i , ocn denotes the s

;isting of the concatenation of n sequences of th(

Lng oc •

Let J> be any alphabet and oc,j3,8€J>. • Then,

i) if oc»8«j3, then oc is a prefix of j}

ii) if oc*8 = j3 and 8^6, then oc is a

proper prefix of j}

Lii) if oc^e^p, then j3 is a suffix of oc

iv) if oc=9*p and 8^6, then j3 is a •

proper suffix of oc

»: In the literature, a string prefix (or suffix)

jtimes called the head (or tail) of the string.

Natural Numbers

The set of natural numbers {0,1,2,..*} is denot

SI and the set of positive integers is denoted as

re N+=N-{0}.

Pa

N

The function max : 2 -> N takes a finite set

itural numbers and returns the maximal natural nui

i the set.
N

The function sum : 2 ->N takes a finite set

itural numbers and returns the sura of the element

ie set•

.6 Ranked Alphabets

A ranked alphabet (sometimes called a stratif

r graded alphabet) is a set]> together with a rani

inction r : 1. -> N. Every symbol f in i has arit;

lere n=r(f). Symbols in i. are called function syi

iere the arity denotes the number of parameters (

rguments) the function has. Symbols with arity z

re also called constants«

.7 Terms

A term is the structure that a macro grammar

len generating strings in the corresponding macro

inguage (see Fischer[68] and Fischer[69]). Let 2

i alphabet, | be a ranked alphabet, and X -{x,,..

itiote a set of n variables. The set of terms def

7 J anc* i> denoted term(jj[S ,i.) , is a set of strings

lat term(l,I) C SVlV { " (" ,lf,!l, ") fl} VX A where

Pag<

iax{ r (F) | F€(j>} and term(<j> ,5) i s i n d u c t i v e l y de f i i

follows:

i) g€ter«(f,I)

ii) if x€XA, then x€term(

iii) if a€i, then a€term(l,i)

iv) if F€J where r(F)*0, then F€term($,1)

v) if F€f where r(F)»m>0 and oc ,,.•., oc €term

then F(oc . , • . • f oc)€term(|,i!)

vi) if oc ,p€term(|,5!) , then oc • p€term(S ,5L)

vii) nothing else

ETthermore, each string oc €term(l ,i) is called a Ĵ

Let 2 be an alphabet, $ a ranked alphabet, and

rm((j>,iL) be the set of terms defined by (J and i.

/ e n a n y m - t u p l e o f t e r m s (oc . , . . • , oc) i n
l m

plem(ter«(i,i)) , and a term jj in term(l,i), the

ring substitution of (oc .,•••, oc) into the strin

loted 3 [oc .,••., oc], is the string subst(3) wher

action subst : term(<8 ,3L) -> term(Q,i) is recursiv

fined as follows:

subst(6)»g

ii) subst(x *e) » oc •subst(e) where x.€X
1 1 1 1

iii) substCx^-e) » x.'subst(e) where i>m

iv) subst(a#9) = a#subst(8) where

v) subst(F*8) - F#subst(0) where F€$ and

vi) subst(F(e ,...,e)*e) »

F(subst(91),...,subst(0))*subst(O) w
1 tn

and r(F)*m>0

In other words, every occurrence of the variab

lj^iXm, occurring in the string 3 is simultaneo

replaced by the string oc.•

Example 2,7,1: Let i={a,b,c} and i={F} where r

Then, xaF(xa,yF(xb,ya,zc)b,zc)b[ax,by,cx] =

axaF(axa,byF(axb,bya,cxc)b,cxc)b.

Page 2

Trees

Tree Domains -

^ t r e e domain D (Gorn[62],Gorn[65]) is a nonempty

f strings over the set of positive integers N

fying the following two conditions:

i) for every string u in D, every prefix v of u

is also in D

i) for every string v in D and every integer i i

N , if the string v i is in O, then for ever?

j in N+ such that Kj<i the string v j is als

in D.

Essentially, a tree domain is used to provide an

ssing scheme which uniquely identifies each node

n a tree. This is achieved by letting the root c

ree have the tree address represented by the empt

g. The tree addresses of all other nodes in the

are propagated down from the root where for any

with a tree address u, its i immediate

ndant has the tree address u»i.

One of the properties of tree domains is i

several total orderings can be defined. In pa

this thesis will use two of these orderings, ti

lexicographic ordering and the postfix lexicog

ordering of tree domains* That is, given a tr<

D, the prefix lexicographic ordering of the tr<

D is the relation <̂ J2 D x D such that for any

addresses u,v€D, u £ v if and only if either

i) u is a prefix of v

ii) there exists a prefix w of u such tha

v=wjz, i,j€N+, and i<j

Similarly, given a tree domain D, a postfix

lexicographic ordejrĵ ng oj[th^ tree domain D is

relation <̂ £ D x D such that for any two tree ;

u,v€D, u <̂ v if and only if either

i) u is a suffix of v

ii) there exists a prefix w of u such tha

v*wjz, i,j€N+, and

Page

2 1 ~ Trees -

A l»tree (or tree for short) is a function

D -> 2 such that

i) D is a tree domain

ii) 2 is a ranked alphabet

.ii) for every u in D, if n*|{i€N+ I u*i€D}l, th<

n=r(t(u)) which is the arity of the symbol

labeling the node u

: is, a i-tree is a mathematical representation o

» where each node in the tree is labeled with a

rtion symbol in i. The symbol labeling each node

: have an arity which agrees with the number of

idiate descendants the node has, and the immediat«

rendants correspond to the parameters of the

:tion symbol.

iple 2.8*1: The tree

a
/ \

b c
/ I \

b b b

i e f i n e d by the f u n c t i o n t : D -> i such that

i , b , c } where r (a) » 2 , r (b) » 0 , and r (c) = 3 , and the

tree domain D is the set D={6,1,2,2•1,2•2,2•3}

represents the tree structure

6
/ \

1 2
/ I \

21 22 23

The elements of the tree domain are calle

addresses. A node is defined as a pair (u,v)€

where u is a tree address in D and v=t(u). A

(u,v) is a leaf if r(v)-0, otherwise (u,v) is

internal node. The node with the tree address

corresponding to the empty string is the root

tree. Furthermore, let (u,v) and (w,y) be any

nodes in the tree. Then, (u,v) is a descendan

(w,y) if w is a proper prefix of u, and (u,v)

ancestor of (w,y) if w is a proper suffix of u

Let t : D -> 1 be any tree. The tree dora

the tree will be denoted as dom(t). The set o

nodes, denoted leaf(t), will be the set

leaf(t) - {(u,v) | (u,v)6t, r(v)=0}. The dept

tree t, denoted depth(t), is defined by the va

depth(t)=max{length(u) 1 u€dom.(t)}. Furthermo

any ranked alphabet i, let the set of all fini

S-trees be denoted as T-r-.

It should be noted that the definitions of a i

jing tree domains have existed for quite some tim<

Lte back to Gorn[62,65,67].

8.3 Trees With Variables -

it X denote any set of n variables where
n. J

- {x.,...,x }. Adjoining X to the set of cons

i a ranked alphabet][(i.e. giving each variable

ink of zero), one obtains the set Ty(X) of trees
Lriables in X .

n

cample 2.8.2: Let S»{atb,c} where r(a)=2, r(b)«0,

;c)*3. Then the tree

a
/ \

b c

/ I \
xl b X2

a tree in T-r-(X2) .

Let m be a constant in N and t be any tree in

-(X)• If | £ i, the set of nodes labeled using

rmbols in <jj, denoted l-(t), is the set

— 22
(t) • {u | (u,v)€t, v€^}. The set of all nodes

ibeled by variable symbols, denoted var(t), is th

ir(t) =* {u | (u,v)€t, v€X }. Furthermore, the se

all nodes labeled by constant symbols in i, d«

const(t), is the set

const(t) - {u | (u,v)€t, v€Jl, r(v)ssO}. Note i

leaf(t) » const(t) Vvar(t).

Note; For convenience of notation, the variab!

x 2, x~, and x, will frequently be denoted as :

and w respectively•

2*8.4 Subtrees -

Given a tree t and a tree address u in d<

subtree rooted at u jLn t, denoted t/u, is the

defined by the function consisting of the set

ordered pairs

{(v,t(u*v)) 1 udv€dom(t)}.

In other words, it is the subtree of t, start

tree address u.

Example 2.8,3: Let t be the following tree:

a
/ \

b c
/ I \

b b b

Then,

Page

c
/ i \

b b b

= t / 2 1 - t / 2 2 -" t / 2 3 - b , and

" c

/ I \
b b

aa 2«8.1 Given any ranked alphabet i, any mM) , an

2 t€Ty(X), and any u#v€dom(t), (t/u)/v • t/u#v .

>ft Assume (w,f)€t/u*v. By the definition of

trees, f»t(u #vw) and u* v w€dom(t) . Assume

E)$(t/u)/v. By the definition of subtrees, eithe

jdom(t/u) or (t/u)(Vw)^f. Similarly, either.

•w$dom(t) or t(u*vw)^f. But this is a

tradiction. Hence (t/u)/v <C t/u#v. On the other

1, assume (w,f)3(t/u)/v. By the definition of

trees, vw€dom(t/u) and (t/u) (v w) = f . Similarly,

•w€dom(t) and t(u #vw)*f. Assume (w,f)^t/u»v. B

definition of subtrees, either u*vw#dom(t) or

•vw)^f. But this impossible. Hence

u)/v £ t/u»v, or t/u*v « (t/u)/v.

2.8.5 Tree Replacement -

Given a tree t-, a tree address u ii

a tree t ~ , the replacement of the tree t(

subtree t,/u, denoted t,[u<-t«], is the

the function consisting of the set of or<

{(vft.(v)) | v^domCtJ, u is not a pn

V{(u'v,t2(v)) | v€dom(t2)}.

In other words, the tree t. is truncated

address u and the tree t~ is inserted in

Example 2.8,4: Let t. and t~ be defined .

t - a t - a
1 / \ 2 / \

be b b
/ I \

b b b

Then, t,[2<-t9] » a
1 Z / \

b a
/ \

b b

2.8.6 Tree Composition -

Let m be a constant in N and i be a

alphabet. Given any n-tuple of trees (t

tuple (T-r-(X)) , and a tree t in T̂ -(X) ,

composition (or tree addition) of the fu

the functions t. through t is the tree defined 1

function consisting of the set of ordered pairs

} V

i l i>n} V

{(u*v,ti(v)) | u€var(t), t(u)«xjL, Ki < n } .

In other words, all occurrences of the variable 5

the tree t, are simultaneously replaced by the ti

Let the composition of t and (t, ,... ,t) be denot

1 n

Example 2.8.5:

Let t » a , t. = a , and t0 = b.
/ \ l / \ 2

X. C X. X-

V I \ l 2

x2 b xx

Then, t(t.,t0) » a
1 Z / \

a c
/ \ /l\

x. x_ b b a

/ \
xl X2

Lemma 2 . 8 . 2 : Given any ranked a l p h a b e t i , any ^

pM), any t r e e t ^ T y (^ m) > a n c * ^^y two m - t u p l e s of t

(t . , ' . . « 9 t) i n t u p l e (T^-(X)) and (s M . . . } s) i n1 m m J L m 1 m

t a p l « a (T 2 (X p)) , t (t l , . . . , t r a) (s 1 , . . . , 3 m) -

Proof: Assume t(t.9««.,t)(s-,...,s) £

t(tj(8lf•..fsm),..•,tm(s1,...,sm)). By ins;

tree composition, there must exist a u€dom(

v€dom(t.) for some i, K H m , and u*v€dom(t(

such that t(u)*x , t.(v)ssx., and

t(t1(s1,..,,s!Q),...,tm(s1>...,sni))/u'v $ Sj

definition of tree composition and subtrees

Similarly, t.(s.9«..,s)/v = s.. But then,

2.8.1, t(t1(s1,...,sm),...,tm(s1,...,s^))/u

which is a contradiction. Hence

t(tt,•..>tm)(s1,•..,sm) »

t(t1(s1,«..,s),...,t (s1,...,s X) is true.I I m m l m

2.8.7 The N m-way Tree Composition -

Let m,p be constants in N and i be a r.

alphabet. Given any two m-tuples of trees

in tuple (T^(X)) and (ti9...,t) in tuplem JL p 1 m m

let the n. m-way tree composition of (t - , •

(s 1 9«.. 9s) 9 denoted [(t1,...,t)(s1,...,sl m l m l m

recursively defined as follows:

, t m) (s] , , . . . ,

i) f o r a l l i > 0 , [(t , . . . , t) (s , . . . , s)]

l e 2 . 8 . 6 :

- a , t . - f , s . » f , and s .
1 / \ I I

b .

x y

0
l (t 1 , t 2) (8 1 , 8 2)] W - (f , b) ,

[< t , , - , s 7)] = (a , f) , and
1 / \ I

f b b

1 2 1 • - (a , f) .
/ \ I

a f f
/ \ I I

f b b b
I
x

Chapter III

LR PARSERS

This chapter reviews a construction method

build deterministic bottom-up parsers for a larj

subclass of the context-free (string) grammars,

parsers are called LR parsers because they scan

input from left to right and construct a rightm<

derivation iji reverse. Furthermore, it is a we!

fact that of all the deterministic string parse

class of LR parsers recognize the largest class

context-free languages (see Knuth[68]).

ogically, an LR parser consists of two parts, a

routine and a parsing table (see figure 3 • 1 • 1) •

rsing tables are dependent on the given

t-free grammar, and must be constructed, while

iver routine is the same for the type of LR

used. Furthermore, the construction method for

ng the parsing tables is dependent on the type of

ser one is interested in using, and there are

1 different types of LR parsers to chose from

, LR(k), SLR(l), and LALR(l) to name a few),

hat this chapter will only concentrate on the

parser construction method (For further

ation on the different types of LR parsers, and

corresponding construction methods, see

68], DeRemmer[69][71][72], Harrison[78],

77a][77b], Anderson, Eve, and Horning[72],

kis and Ripley[77], LaLonde, Lee, and

g[7l], Geller and Harrison[77], Schimpf[81],

[79], and Harrison and Havel[73]).

he purpose of this chapter is not to provide

us definitions and proofs about the LR(0)

uction method. Instead, the intent is to provide

t and background into the method of constructing

parsers which will be lifted to tree grammars in

ding chapters. Hence, only pertinent definitions

I, _L1 _J _m IM l^m __m _m „ „ _ , — , „. t-

I table | parsi
string grammar —>j |-->

j generator j table

a) generating the parsing tables
li- ill — TO mm — *m mm — •— •— .— — — — f •— •«» — mm mm mm — — — mm

I I n p u t t a p e . . .

T
I Driver I I parsing |

I I > l I
| Routine | I tables |
I

+ + |
| stack |«+

b) operation of LR parser

Figure 3.1.1: Layout of an LR parser

and theorems will be given. Furthermore, in ge

proofs will not be provided unless they provide

or construction methods in building LR(0) parse

However, before describing the LR(0) parse

chapter begins by presenting background about

context-free grammars, finite-state automata, 2

pushdown automata.

Pa*

1 Context-free Grammars

A context-free grammar (or simply string grami

is a quadruple G * ($,3L,P,S) where

| is a finite alphabet of nonterminal symbols

i is a finite alphabet of terminal symbols,

P is a finite set of pairs. (A,j3) € jfi x ($Vl)*

called productions, and

S€(| is a nonterminal called the start symbol.

production (A,j3) will be denoted as A—> p. Also,

111 be assumed that all string grammars are augme

lat is, there is a production of the form S->S'€P

illed the start production where S,S'€$ and S doe

:cur in any other production in P.

For notational convenience, upper case letter

111 be used to denote nonterminal symbols, lower

otters to denote terminal symbols, underlined upp

ase letters to denote grammar symbols (i.e. symb

i either $ or i) , lower case greek letters to den

trings of grammar symbols (strings in (iVi)), ai

tie symbol 6 will be reserved to denote the empty

tring.

Pa;

sample 3«1.1: A str ing grammar which generates st

E the form a b is G «($,>,, P,S) where

i « {a,b}; and

P = {S->A, A->6, A->aAb}.

)te: S->A is the start production.

.1.1 Derivations -

Given a string grammar G=((J5,>, P,S), let the

le-step derivation (or rewrite) relation

=> C (UJVi)* x (fVl)* be defined by the set of pa

{ (oc AjJ, oc6j3) | A€$; oc , j3 >QG(Q\/X) ; and A-}

i other words, given any string oc A3 and the prod

->6, the nonterminal A can be replaced by the str

• Let —> and => denote the transitive and the

ransitive reflexive closures of => respectively.

From the above relation, the one-step rightmo

arivation relation can be defined which implies a

rdering on the rewrite steps. That is, the one-s

ightmost derivation re la t ion ===> £ (fVi) x

s defined by the set of pairs

{(ocAj3, oc8j3) | ocAj}=>ocejJ and

n other words, =~> is the one-step derivation app
K

o the rightmost nonterminal occurring in the stri

cc A3 • Let —K-> and —=-> denote the transitive and

transitive reflexive closures of ===> respectivel;

Example 3.1.2: Let G2»(J ti,P, S) be a string grami

where

S » {S,A,B,C};

J> * {a,b}; and

P - {S->C, C->ACB, C->6, A->a, B-

Then, aaCBB = > aaBB using C->6 and aaCBB = > aa

using the productions O>6, A->a, and B->b. Als'

aaCBB = > aaCBb while aaCBB =£> aaBB since C is

rightmost nonterminal in aaCBB. Also, like G1 i

example 3«3.1, the language generated by G« is s

of the fon a b ,

3*1*2 Language Generated By Context-free Gramma

Given a string grammar G^CJ ,5L, P, S) , the str

language generated by (», denoted L(G) , is the se

terminal strings derivable from the start symbol

That is,

L(G) =* {ji | S=>j3, J36l*}

Note: It can be shown that the order in which t

derivation steps are applied (i*e* the choice o

nonterminal to rewrite next) has no effect on th

suiting string produced. Hence the language L(G)

ild have been alternatively defined by the set

L \ G) — { p I S—=r> p , p €JL /

rthermore, any string of grammar symbols derivabl<

>m the start symbol S, under a rightmost derivati<

a s ^ n t e n t i a l form. That is, any string oc€(JV.i.)

sentential form if and only if oc€{j} | S:=>jJ}.

imple 3.1*3: Let G^ be the string grammar defined

imple 3.1.2. The language generated by G 2 is the

L(G) = {a nb n | n^O}.

: example, a derivation which generates the string

ibbb is as follows:

s =f > c T ACB ̂ ACb =!>
AACBb ==> AACbb ==> AAACBbb ==>

R R R

AAACbbb —> AAAbbb = > AAabbb = >

Aaabbb ==> aaabbb
R

[.3 Reduced String Grammars -

A string grammar G**(§Ji9X9? ,S) is reduced if and

Ly if for every production A->oc€P, there exists

rivation such that S —>6Ap = > 0 oc j3 = > 6p where

— * / -.*
,$Vi) and 6,j3€i • In other words, for every

)duction p there exists a terminal string 6j3, in

Page

uage generated by G, such that the production p 1

in the derivation producing the string op (i.e.

unnecessary productions are removed).

rem 3.1.1: (see Bar-Hillel, Perles and Shamir[61]

Harrison[78]) Given any string grammar

19^.9P.9S)9 one can construct a reduced string

imar Go
a(|,l,Po,S) such that Po C P, and

Cm L JL mmmm 1

)»L(G2).

tple 3.1.4; Let G, = ($,5,P.,S) be a string grammar

•e

| - {S, A, B, C, D, E};

L. - {a,b, c} ; and

C -> ACB,
C -> 6,
A -> a,
B -> b,
D -> aacbb,
C -> E,
E -> EcE}.

language generated by G, is the set

,(G3) - {a
nbn | nM)}.

reduced string grammar of G, is the string gramm;

J,S,P4,S) where

P 4 - {s -> c,
C -> ACB,
c -> e,
A -> a,
B -> b}.

Note: The production D -> aacbb has been remo

the nonterminal D is not reachable from the st

symbol and the productions C -> E and E -> EcE

been removed since the nonterminal E can not d

terminal string in i .

3.1.4 Right-linear Grammars -

A string grammar G-(3[,2,P,S) is right-lin

and only if every production p€P is of the for

where A€(j>, oc GX , and B€<j>V{6}. That is, if a

production's right-hand side contains a nonter

the nonterminal must be the last symbol occurr

the right-hand side. A string grammar G=((jj,.i.,

strict right-linear if and only if every produ

is of the form A->aB where A€f, a€5V{6}, and 1

That is, a string grammar is strict right-line

right hand side of a production is either the

string, a single terminal symbol, a single non

symbol, or a single terminal symbol followed b

single nonterminal symbol.

cample 3 . 1 . 5 : Let Gc = (^ , i , P , S) where

$ = { S , A , B } ;

2 • { a , b } ; and

P * {S->A, A->6, A->aB, B->b, B->bA}.

len, G. is a strict right-linear string grammar a

jnerates the language L(G-) * { oc | oc=ab, nM)}.

le following results about right-linear grammars

isily be shown.

leorem 3.1.2 Given any right-linear string gramma

lere exists a strict right-linear string grammar

ich that L(G1)*L(G2).

leorem 3.1.3: The class of right-linear string

rammars is identical to the class of regular

inguages•

roof: See Harrison[78] or Bar-Hillel and Shamir[6

.2 Finite-state Automata

This section presents a brief review of

inite-state automata (For more information on

inite-state automata see Harrison[78], Eilenberg[

abin and Scott[59], and Salomaa[69,73])• Logical

inite-state automaton (FSA for short) consists of

nput tape and finite-state control (see figure 3.

•/here the input tape is read from left to right,

scanning the input tape just once.

(I n p u t t a p e
j

I

finite

state

c o n t r o l

Figure 3.2.1s Layout of a finite state automate

More formally, a finite-state automaton is a

quintuple M

i is a finite alphabet of input symbols,

jK,&,qQ,Q) where

K is a finite set of states,

& : K x (SV{8}) -> 2K is a function called the

transition map,

Q C K is a set of final states.

An instantaneous description (ID for short)

ovides a "snapshot" description of the FSA betwee

ves defined by the transition map o. That is, an

stantaneous description is a pair (q,oc) £ K x i

ere q is the current state of the FSA, and oc is

ring left to scan. The initial configuration of

A is the instantaneous description (qn,oc) where

e input string to parse.

The computation relation h £ ID x ID describe

e manner in which the FSA operates. That is, gi\

A M»(ifKfo,qgfQ) and two instantaneous descriptic

x and id2, ±dl h id2 if and only if idj - (q^a

d id2 - (q2,oc) where a€lV{S} and q ^ & U ^ a) . I

her words, each move is a shift-move (or read-mo\

ere the read head on the input tape is advanced,

ross the string "a", and the state is updated to

A finite-state automaton M accepts (or parses]

ring oc if there is a computation which will reac

d of the input string oc, and the corresponding

rrent state of the computation is a final state,

at is, the language accepted by .a finite-state

tomaton M, denoted L(M), is the set

L(M) = {oc6l* I (qQ,oc) I-* (q p,6), qp€Q}

ere I- is the transitive reflexive closure of I-

A FSA M=(i,K,&,qo,Q) is deterministi<

if for each q€K and a€i, either

i) S(q,a)=0 and 6(q,6)=0,

ii) o(q,a) is a singleton set and o(

iii) o(q,a)ss0 and 6(q,£) is a singlet

In other words, a FSA M is deterministic

instantaneous description id , the automa

defined such that there is at most one le

instantaneous description (i.e. if id- h

id9 is unique).

Example 3.2.1; Let Mj-Ci.K,&,0,{2}) where

1 - {a,b};

K » {0,1,2}; and

o is defined by the following table wh

input pair (c,d), the rows represent v

the columns represent values of d. Fu

empty table entries represent null set

a b 6
+ + + +

0 I {1} I I {2} |
+ +«. +-«„«+

II I {2} | |
+ +—.—+-„—+

2 1 I I {0} |

Page

Note: The transition map o can also be graphical

depicted as follows:

where the final state (i.e. state 2) is enclosed

a double circle.

The language accepted by M1 is the set

L(ML) - {w
11 I w»ab, nX>}

For example, the string "ababab" is accepted as

follows:

(0,ababab) K (l,babab) h (2,abab)

f- (0,abab) I- (l,bab) I- (2,ab)

I- (0,ab) I- (l,b) t- (2,6)

which is the accepting condition. Also note that

is not deterministic since o(0,6)=s{2} and

4(0fa)-{l}.

While there are many results known about

Lite-state automata, the remaining portion of thi*

ition presents only those facts which apply to LR

•sing.

p.

[Theorem 3.2,1: (see Harrison [78], Eilenberg [74] , ,

5alomaa[73]) The class of (string) languages acce

>y finite-state automata and the class of regular

[string) languages are identical.

rheorem 3.2*2: For every right-linear string grami

»•($9^> P,S), there exists a FSA M such that L(G) =

Proof: By theorem 3.1.3, the language generated b

right-linear string grammar is regular. By theor

5.2.1, the class of regular languages is identica

:he class of languages accepted by FSA. Hence, t

aust exists some FSA M such that L(G)=L(M).

While the last theorem does not provide a

:onstructive proof, one can easily build a FSA M

:hat L(G)=L(M). That is, using theorem 3.1.3 whi

states that for the right-linear string grammar

'-(IfifPtS) there exists a strict right-linear st

grammar G' =(f ,!, P' , S) , let M=(I,1V {F} , & , S , {F}) wti

r-j8g| and o is defined such that for each productio

i) if p*A->6, then

ii) if p*A->a where a€i, then F€&(A,a)

iii) if p»A->B where B€$, then B€&(A,£)

6

iv) if p*A->aB where a€i and B€j, then

a

ample 3.2.2: Let Gj-Ci,i,P,S) where

| » {S,A,B};

i • {a ,b}; and

P - {S->A, A->8, A->aB, B->b, B->bA}•

ten, the corresponding FSA is M *(]E,iV {F} , o , S , {F}

iere the transition map o is graphically depicted

• Hows :

Theorem 3,2,3: (Rabin and Scott[59] and Harrison

For every FSA M^djK, o, q0 ,Q) , one can construct

deterministic FSA M'-(ifK',&',qQ',Q') such that

L(M)s=L(M/) and M' does not contain any epsilon tr

(i.e. for all q€K', &'(q,6)»0).

The idea used to construct the FSA M' is to

simultaneously follow every possible computation

by having each state q'€K' be a set of states in

where q' is reachable by M' if and only if for a

q€q', q is reachable in M. The construction met

given by algorithm 3.2.1 (see below) and contain

procedures. The function "closure" takes a stat

q'€K', and returns the set of all states, reacha

from states in q', without reading any more inpu

performs epsilon closure on M) . The procedure fl

is the main routine. It starts by defining q' a

epsilon closure of the start state qQ in M (i.e.

set of all states q€K such that (qn,oc) h (q,oc

Then, using the function "GOTO", it takes each s

Page

C' already built, and determines the transitions

a q, as follows:

each a€i, if there exists q€q. such that

l'€o(q,a), then there is a unique transition in M

such that o'(q. ,a)ssq2 where q2 is the epsilon

:losure of the set {q' | q'€o(q,a), q€q-}.

i the graph defining the transition map o' is bui

set of final states F' is defined such that for

ry. state q'€K', if there exists a state q€q' such

t q€F, then q'€F'.

jrithn 3,2,1: A method for constructing

i deterministic finite automaton.

it: a FSA M-(2fK,o,qft,F) (possibly nondeterminist

put: a deterministic FSA M'»(S,K/,^',q^,F') where

ioes not contain any epsilon moves.

iod: The three procedures below, initiated

by calling ITEMS(M);

:edure ITEMS(M);

begin

for all input pairs (a , b)€Kx(SV {6})

let &'(a,b)-0;

q^ := closure({q0});

repeat

for each set q €K', and each inpi

such that q2=G0T0(q1,a) a;

_do

K' := K' V {q2};

o'Cq^a) := {q2};

od_;

until no more sets of states can be

F' := 0;

for each q'€K' jd_£

if there exists a q€q' such that

then F' := F' V{q'}

od;

end;

Function

begin

return closure (q 2);

end;

Function closure(q);

begin

s := q;

while there exists a state p€s such that

q'€&(p,g) and q'tfs d£

s :- s V {q'};

£d;

return s;

end;

Example 3.2.3: Consider the FSA M« created in exe

3.2.2. Using the above algorithm, the created

deterministic FSA is the FSA M »(][,K' , &' , q' ,Q') *

I - {a,b};

K =* {{S,A,F},{B},{A,F}};

q^ = {S,A,F};

Q = {{S,A,F1,{A,F}}; and

o', the transition map, is defined by the fol]

graph:

a
a ^ ^ j ^ —

:(S,A,F}1

Theorem 3.2.4; For every right-linear strii

G=(l,i,P,S) there exists a FSA M such that

and M does not contain any epsilon-moves.

Proof; First, using theorem 3.2.2, one can

M' such that L(M')-L(G). Then, using theo

one can construct a deterministic FSA M su<

L(M)=sL(M/)=L(G) and M does not contain any

epsilon-moves•

Finally, one can define the relations]

the sequence of states visited in a FSA, ai

corresponding input string parsed. This ii

the "spelling" and is defined as follows:

Definition 3.2.1: Given a FSA M=(K,2!, & , q- ,<
_* u

spelling : K -> 2 be a function recursi

such that for any string of states s.s«...!

i) spelling(£) - 0

ii) spellingCsj) - {6}

iii) spelling(s1. . .sn) - 0 if n̂ >2, and

does not exist a symbol a€i such

s2=d(s1,a) or spelling(s^...sn>=0

^ • • , s n) = {aj3 I j3€spelling(

s 2 €o(s . , a)} otherwise.

shdown Automata

is section presents a brief review of pushdown

a (PDAs for short). One should note that the

f the PDA presented in this section is not

d. Instead, the model is purposely defined to

resemble the type of pushdown automata used by

arsers (for a more formal description of PDAs,

rison[78], Oettinger[61], and Lewis and

itriou[81]).

gically, a pushdown automaton consists of an

ape, finite-state control, and internal memory

form of a stack (see figure 3.3.1). Like

state automata, the input tape is read from left

t, and scanned just once. The stack is defined

st-in first-out structure in which only the top

can be read. Furthermore, elements can only be

pushed) or deleted (popped) from the top of the

and these modifications are bounded (i.e. only

e sequence may be pushed or popped at a time),

venience, the stack will be defined as a string

ols where | is a reserved symbol denoting the

empty stack, concatenation is the

operator which performs a push, and the top of t

stack is assumed to be the rightmost symbol in t

string.

+ - - > (I n p u t t a p e . . .
I +
I

I finite |
I state |
j control j

I

I Stack of symbols I<—+

Figure 3.3.1: Layout of a Pushdown automato

Definition 3«3.1 : A pushdown automaton (PDA) is

quadruple D-(i, p , o ,J_) where

i is a finite alphabet of input symbols;

P is a finite alphabet of stack symbols;

6 : (P x I) V(P+ x {6}) -> 21

is a function called the transition map wt

has finite domain; and

J_€p is a reserved constant denoting

the empty tree stack.

The transition map o is defined such that all

Page

initions are one of the following two forms:

ft-move:

A€o(B,a) where A,B€p and

ixce—move:

BA€&(Boc,6) where B«P , A€PV{6}, and oc€p*

An instantaneous description of a pushdown

omaton (ID for short), provides a "snapshot11

cription of the pushdown automaton between moves,

t is, an instantaneous description is a pair

oc) € p x i where j3 is the current stack and o

string left to scan on the input tape. The init

figuration of a PDA is the instantaneous descript

oc) where oc is the input string to parse.

The computation relation I- £ ID x ID describes

manner in which a pushdown automaton functions,

t is, given a PDA D=(S, P , o ,J_) and two instantane

criptions id- and id«, id I- id^ if and only if

the two following conditions hold:

i) ±dl - (j3B,aoc) h (j}BA,oc) - id2 where

, and oc €l

ii) idx - (j}B8,oc) I- (j3BA,oc) = id2 wher

, and oc €l* .

In other words, condition (i) is a shift-i

read-move) while condition (ii) is a reduce-mo

stack-update move). Note that a shift-move ca

read-head to be advanced one symbol on the inp

and the symbol A is pushed onto the stack. On

other hand, the reduce-move leaves the read-he

input tape stationary, removes (pops) the stri

the stack jJB9, and adds (pushes) the symbol A

new top of stack resulting in the stack 3BA.

Furthermore, after removing the string 0 from

stack, the new top of the stack is consulted t

that it is labeled with the symbol B (i.e. pe

stack look-back of one symbol).

Acceptance, in a computation, occurs if t

computation reaches an instantaneous descripti

the end of the input string is reached and has

stack. That is, the language accepted by a. P^

denoted N(D), is the set

N(D) = {oc€l* | (!,«) h* (1,6)}

where r is the transitive reflexive closure o

Page 59

>DA is considered deterministic if and only if

:y instantaneous description id-, if there is an

meous description id« such that id. I- ici
2,

, is unique. That is, a PDA is deterministic if

r if either

for all aBl and B€p , |&(B,a)Kl

for all B€p and oc€p*, I £(B oc ,6) | O..

Furthermore, if 6(Boc,6) is a singleton set,

then for any string 6,6233Boc where 6,^6,

2,6)i-o.

for all a€i, B€p , and oc€p*, if |£(B,a)l=l the

&(ocB,6)»0 and if |&(ocBf6)|-l then i(B,a)*0

> condition (i) guarantees that there is only

sible shift move that is applicable (i.e.

»es that there can not be a shift/shift

t), condition (ii) guarantees that there is only

sible reduce move that is applicable (i.e.

les that there can not be a reduce/reduce

t), and condition (iii) guarantees that if a

)ve is applicable, then there is not a reduce

at is applicable and vice versa (i.e.

aes that there can not be a shift/reduce

t).

Example 3.3.1; Let D ^ C L , P , & ,J[) be a

I - {a,b};

P - {i»a,b,AfS}; and

0 is defined by the following table wi

input pair (oc , j3) , the rows represent

the columns represent values of 3. Fi

empty table entries represent null se

a b 6
+ + + +

1 I {a} | | {\JL} !
+ > + .-_+ +

a i {a} 1 | {aA} |
+ + +—. +

A ! I {b} | |
+ + + +

aaAb | | | {aA} |
+ + + +

iaAb | | | {J_A} |
+ + + +

J.A I I I (IS} |
+ + + +

is | | " I Q.} I
+ + + -I-

The language accepted by D. is the set

N(D-) » {anbn | n>0}. For example, the i

is accepted as follows:

(J_,aaabbb) I- (J_a,aabbb) I-

(JLaa,abbb) h (J_aaa,bbb) h

(JLaaaA,bbb) h (^aaaAbjbb) I-

(J_aaA,bb) 1- (laaAb,b) I-

(JjaA,b) I- (J_aAb,6)_ \-

(1A,6) h (1S,§) h (i,§)

Page

h is an accepting condition. Also, D, is not

rministic since there is a shift/reduce conflict

een o(j_,a) and o(J_,6).

The main result about PDAs used by LR(0) parsers

hat the class of languages accepted by

eterministic PDAs is precisely the class of

ext-free languages which is stated by the followi

rem:

rem 3*3.1: (Chomsky[62], Schutzenberger[63], or

[63]) The class of string languages generated by

ng grammars is identical to the class of string

uages accepted by PDAs.

LR(O) Parsers

An LR(0) parser is a PDA which is presented in s

htly different format. That is, the transition

tion o is implicitly defined by a set of parsing

es generated from some given string grammar. In

, the LR(0) parsing tables are a "compressed"

esentation of the transition map 6. Hence, a LR(

er can be viewed as consisting of two parts, a

er routine and a set of parsing tables generated

the string grammar given (see figure 3.4.1).

H >I I n p u t t a p e •••

I
| Driver | | Parsing |
I I >l I
| Routine | | tables |

+ + I
I Stack of symbols|<—+

Figure 3.4.1: Organization of an LR(0) p

In generating the LR(0) parser, from a g

string grammar G, the tables are built so tha

parser traces a rightmost derivation in rever

is accomplished by essentially scanning the s

bottom to top, between each move, to determin

sentential forms, if any, could exist with th

prefix defined by th.e stack. It turns out th

can be done using a FSA (called the character

automaton) which parses the stack to recognizi

string prefix the stack matches. Furthermore

not necessary to read the stack from bottom t

every move. Rather, by encoding the elements

stack to'uniquely determine both the string p

parsed and the states of the characteristic a

Page

top of the stack will always be a symbol which

itifies what state the characteristic automaton

Ld be in if the stack was scanned from bottom to

Thus, the LR(0) parser can determine all the

Drmation it needs to know by only inspecting the

the stack and the next input symbol.

This section begins by presenting the LR(0) par

terms of its parsing tables. It continues in

tion 3.4.2 by presenting how the LR(0)

racteristic automaton is built. Section 3.4.3

sents how the LR(0) parser is generated from the

racteristic automaton. Finally, section 3.4.4

eludes this section by presenting how a LR(0) par

be transformed into a PDA as defined in section

. 1 LR(O) Parsing Tables -

The LR(0) parser is a machine which has string

nt, uses a stack, and three parsing tables. The

ck is a string of "states11 which implicitly holds

ormation on both the string of grammar symbols

Dgnized and the states of the characteristic

omaton used to parse the stack. More formally, a

3) parser M is a 6-tuple M^CG, K, shift, reduce,

Pag

to, start) where

G = (i,.X,P9S) is the string grammar defining

the LR(0) parser;

K is a finite set of parser states;

shift : K x 5L -> KV{error} is a function definir

the parsing shift table;
p

reduce : K -> 2 is a function.defining

the parsing reduce table;

goto : K x | -> KV{error} is a function defining

the parsing goto table; and

start€K is the initial state and defines

the empty stack symbol.

An LR(0) parser is considered well defined if

ly if the LR(0) parser is deterministic (i.e. no

/ing any shift/reduce or reduce/reduce conflicts)

other words, an LR(0) parser is well defined if

Ly if

i) for all k€K, |reduce(k)[<1

ii) for all k€K, for all a€2, if shift(k,a)€K,

then reduce(k)-0.

Page 6

As stated earlier, an LR(O) parser is just a

rent presentation of a deterministic PDA. Hence,

stantaneous description of an LR(0) parser

ted ID) is the same as for a PDA. That is, an

ntaneous descriptions is a pair (j3,oc)€K x X

p is the current stack and oc is the string left

an on the input tape. The initial configuration

e pair (start, oc) where oc is the string to parse

The decision relation k : ID x ID of an LR(0)
a

r M*(G»(l,i,P,S), K, shift, reduce, goto, start)

mines the next move made by the LR(0) parser M.

is, given two instantaneous descriptions id, and

±dl hd id2 if and only if

i) id^CjJk^aoc) and id2»(j i k ^ , oc) where

i) id^CjiqQ, oc) and id^Cpqgqj^ , oc) where

reduce(qQ)={A->6} and goto(qQ,A)«qt

i) id^CpqQkj . . .kn, oc) and Id^i^q^q^ 9 cc) where

n>l; k1,...,kn€K, reduce(kn)~{A->8},

length(e)=«n, and goto(qQ , A)=
tq1

Pag

iv) id^CstartqQ ,6) and id =(start ,6) where

reduce(qQ)«{S->S'}c

other words, condition (i) is a shift-move,

cidition (ii) is a reduce-move on an epsilon rule,

ndition (iii) is a reduce-move on a non-epsilon r

i condition (iv) is a reduce-move on the start

Dduction causing acceptance*

Acceptance of a string oc only occurs if the

vision relation reaches an instantaneous descript

the form (start,6)« That is, the language accep

a. well defined LR(0) parser M, denoted N(M) , is

t

N(M) - {oc€i* | (start, oc) I-* (start ,6)}

are K is the transitive reflexive closure of h,.d a

ample 3.4.1: Let M = (G,K,shift,reduce,goto,1) wh

6 - (lf^,P,S) such that

1 - {S,A};

i = {a,b}; and

P = {S->A, A->ab, A->aAb};

K = {1,2,3,4,5,6}; and

shift,reduce and goto are defined by the followi

tables:

shift reduce goto

a b A
4. + + -I- .—+ + +

1 | 3 | I 2 | S->A I 1 I 2 I
+ + + + + + +

3 I 3 I 4 I 4 | A->ab | 3 | 5 |
+ + + + + + +

5 | I 6 I 6 | A->aAb |
+ + + + H-

language accepted by the LR(O) parser M is the se

(M) « {a b 1 n M }

example, the string "aaabbb11. is accepted as

ows :

1,aaabbb) l~d (13,aabbb) t-d (133,abbb)

-. (1333,bbb) K (13334,bb) K (1335,bb)
d d d

-. (13356,b) K (135,b) K (1356,6)
d d d

% (12,6) K (1,6) which is the accepting conditi<

One should note that there is a relationship

een the set of states on the stack of the LR(0)

er and the corresponding grammar that the LR(0)

er is based on. This relationship is known as tin

lling" as is defined as follows:

Given an LR(0) parser M=(G«(<B ,£, P , S) , K, shif

educe, goto, start), let spelling : K - > 2 ^ '

e a function recursively defined such that for ar

tring of states s^s^.^.s €K

Pa

i) spelling(g) = spelling(start) = 0

ii) spellingCs- • . .s) » 0 if n^2 and eit.her

a) there does not exist a symbol a€i such

shift(s.,a)«s^ and there does not exist

symbol A€(j> such that goto(s t , A) = so

b) spelling(s9...s) = 0

iii) spelling(s, •••s) = {a3 | 3€spelling(so•• . s
l n « • z

a€i, and s?€shift(s1,a)} V

{A3 | 3€spelling(so•••s), A€f, and

s^€goto(s1,A)} otherwise

•4.2 LR(0) Characteristic Automaton -

An LR(0) parser M is constructed based on a %

tring grammar G*(g5,2, P , S) • in generating M, the

onstruction method tries to maintain the property

hat for any input string 6 oc , if (6,0oc) K (j3, oc

ne of the following two conditions hold:

i) if 6oc is a string generated by G, then

S = > 3 oc = > 6 oc

.i) there exists a string oc'€i such that

O " Ji." / |3 OC "r\r v/ OC

>te: While in a LR(0) parser the stack is a strii

: states, this discussion assumes that the stack

iferenced corresponds to the "spelling11 of the

:ring of states which is a string of grammar

nnbols •

:her words, the construction method tries to

:ain the property that every instantaneous

ription corresponds to some legal sentential form

Ltion (i) states that this will be the case

jver the input string is legal while condition (i

»s that even if the input is illegal, there exist

ring 8oc'€L(G) such that if 6"oc ' was the input, t

Instantaneous description would correspond to a

L sentential form (i.e. the scanned input string

i legal suffix oc ' such that 9oc'€L(G)).

Another way of looking at the above condition is

the construction method for the LR(0) parser wil

I a PDA where every reduce-move will be defined t

)rm the inverse of some derivation step and the

rse of every derivation step will be defined by

reduce-move. Hence, for any sentential form oc j3

i) 6€i , and any production A->|3 in P3

If the current instantaneous description is the p.

[ocj3,0), one wants to create a reduce-move such t:

'ocp,0) K (ocA,0). To accomplish this, one must

*ay of recognizing all possible stack configurati

*hich a reduce-move should be defined (i.e. when

reverse of a derivation step should be performed)

Clearly, from above, the set of all such stack

configurations is the set { oc j3 I S=> ex: A6=> oc j36}

string oc j3 in this set is called a characteristic

string. Let CS- denote the set of all characteri

strings. That is, given a string grammar G,

:SG = {ocj3 | S=>ocAe==>ocjJ0}.

It is an important result that given a strin

grammar G^d ,i,P, S) , the set of characteristic st

3SO is generated by a strict right-linear string

grammar (see Knuth[68]). The method used, for

constructing the strict r-ight-linear grammar Gn i

create a new set of nonterminals, where each

lonterminal is a "marked production11. That is, a

narked production is a pair (A->oc,i) where A-> oc

production in P and 0<_iO.ength(oc) is a marker wi

the production A-> oc • A marked production (A->oc

:>e denoted as (A->j3 . j3) where .$i.VI, oc^^jK, ar

L=length(3.)• Also, let mp(P) denote the set of

narked productions defined by the set of producti

Using marked productions, the conversion can

aasily be defined as follows:

Definition 3.4,1: (Geller and Harrison!77],

larrison[78]) Given the string grammar G^Cf,i, P,S

Its corresponding characteristic grammar Cn be th

string grammar CG=(mp(P) V S' ,8Vi, P' , S') where P'

the set of productions defined as follows:

i) for all S->oc€P, S '->(S-> . oc)€P'

i i) for any A€<g, X € i V l , and oc , j3€(<j>Vl) * sue

(A->oc .xp)€mp(P) , (A->oc *Xp)->X(A-> oc X. j3

i i i) for any A,B€j, B->j3€P, and oc

that (A-> oc .B9)€mp(P) , (A-> oc B8)->(B->

iv) For any A€j$ and oc€(lVi) such that

(A-> oc . ;€mpQP; , (A-> oc •)->t

rheorem 3,4,1: Given any string grammar G, and it

corresponding characteristic grammar C as define

lefinition 3,4.1, L(Cn)»CSo.

Sxample 3,4,1: Let G=(f ,5!,P, S) be a string gramma

/here

$ a {S,A};

i. « {a , b} ; and

P = {S->A, A->6, A->aAb}.

Clearly, L(G) - {anbn 1 n]>0} and the set of

characteristic strings is the set

CŜ , « {6,A}V{anAb | n>l}. Furthermore, the

right-linear grammar Cr defined by definition

the string grammar CG=(mp(P) V { S ' } ,<j>Vl, P ' , S ')

contains the productions

(A->.aAb)->a(A->a.Ab)
(A-> a.Ab)->(A->.aAb)

(A->a.Ab)->A(A->aA.b)
(A->aA*b)->b(A->aAb.)
(A->aAbO->6

For example, a derivation in G is

S — > A = > aAb ==> aaAbb = > aaaAbbb

and hence "aaaAb" is a characteristic string.

corresponding derivation in C^, which generat

characteristic string "aaaAb11, is as follows:

S' = > (S->.A) = > (A->.aAb) ==>

a(A->a.Ab) ==> a(A->.aAb) ==>

K K
aa(A->a.Ab) = > aa(A->.aAb) = >

R R

aaa(A->aeAb) = > aaaA(A->aA« b) :==£>
K K

aaaAb(A->aAb.) = > aaaAb

Using the results of theorem 3.2.4, one ca

the characteristic grammar C_ and create a

deterministic FSA CG to accept the set of

characteristic strings. However, rather than g

through the three different conversions separat

(i.e. construction the string grammar Cp, buil

nondeterministic FSA M from C_, and building tin

deterministic FSA CG from M), these three conve

can be combined into a single algorithm as foil

Algorithm 3.4.1; Method to construct an LR(0)

characteristic automaton

Input; a string grammar G-(I,5L,P,S)

Output: a Deterministic FSA CG^CSjK,&,qQ,F)

without epsilon rules.

Method: The three procedures below, initiated

by calling ITEMS(G);

Procedure ITEMS(G);

begin

For all input pairs (a,b) € K x (5V

let &(a,b)=0;

q0 := closure({ (S-> . oc) | S->oc6P});

K := {qQ};

repeat

for each set of marked productic

and each grammar symbol X€(§\

such that J=GOTO(I,X) and Jj

do

K :« K V {J};

&(I,X) :=* {J};

od;

until no more sets of marked produc

can be added to K;

F :=* 0;

For each I€K <d£

if there exists a marked product

of the form (A->oc.)GI

then F := F V {1}

it?

od;

end;

Function GOTO(I,X);

begin

J :=* {(A->ocX*p) I (A->oc .X

return closure(J);

end

Page

it ion closure(I);

>egin

J :- I;

while there exists a marked production

of the form (A-> oc . Bj3)€I such that

B->8€P and (B->.e)f$J

do

J :- J V {(B->.8)};

od;

return J;

>nd;

iple 3,4,2; Let G*($,i,P,S) be a string grammar

:e

I - {S,A};

I = {a,b}; and

> - {S->A, A->ab, A->aAb},

i, the d e t e r m i n i s t i c FSA CG to accept the s e t of

r a c t e r i s t i c s t r i n g CSG i s the FSA CG*(i,K,^,qQ ,Q)

re

[- { a , b } ;

C* { { (S - > . A) , (A-> .ab) , (A->.aAb)} ,

{ (S - > A .) } ,

{ (A - > a . b) , (A->a.Ab), (A-> .ab) , A->,aAb)}>

{{(S->A.)},

{(A~>ab.)}}; and

o is defined by the following graph:

(A->.ab)
(A->.aAb

A->a.
(A->a.Ab)
(A->.ab)
(A->.aAb

3.4.3 Constructing LR(O) Parsing Tables -

This section presents how to construct an

parser from the characteristic automaton. The

construction does not always construct a well d

LR(0) parser (i.e. it may produce a nondetermi

PDA). However, for a subset of the string grait

known as "LR(O) grammars", it is guaranteed to

a well defined LR(0) parser.

Pa

The process of conversion is straightforward

resented by the following Algorithm:

Lgorithm 3.4*2: Constructing an LR(0) parser

lput: a string grammar 6-(5,ifPfS) and its

corresponding characteristic automaton

CG»(I,K,&,qo,F)

itput: an LR(0) parser

M>(G,C,shift,reduce,goto,start)

sthod: Let K»{I. ,I-,•.• , I } be the set of sets of

irked productions from the characteristic automat

*• Then C**{ 1 , 2 , * • • ,n} where state i corresponds

tie set of marked productions I.. let startak whe

=qn is the start state of the characteristic

uitomaton CG. The three parsing tables are define

DIIOWS:

tiift table:

For all i€C, all productions A->oc€P, and all a

(A->j3.a6)€I where j3ae=oc and I#€&(I .,a), then

shift(i,a)»j. Otherwise shift(i,a)aerror.

educe table:

For all states i€C, reduce (i)«{A-> oc | (A->oc.)

*oto table;

For all i€C, all productions A->oc€P, and al

A->j3.B66Ii where j}Be=oc and I .€$>(I±9B) 9 then

goto(i ,B)~ j « Otherwise goto(i,a)aerror.

Example 3*4,3; Let G«(|,i,P,S) and CG=(i,K,&,q0

defined in example 3«4«2« Then, using algorith

the constructed LR(0) parser is

Ma(G,C,shift,reduce,goto,1) where

O{1 ,2,3,4,5,6} such that

I1*{(S->.A), (A->,ab), (A->.aAb)},

->a.b), (A->a*Ab),

I5={(A->aA,b)}, and

and the three parsing tables are defined as

shift reduce goto

a b A
+ + + . + + + +

1 ! 3 | | 2 | S->A | 1 I 2 |
+ + + + + + +

3 ! 3 | 4 | 4] A->ab | 3 | 5 |
+ + + + + + +

5] I 6 | 6.1 A->aAb |

Note that this corresponds to the LR(0) pars

presented in example 3«4«1*

Page

As mentioned earlier, the above algorithm does

essarily guarantee to produce a well defined LR(0

ser. Rather, it only guarantees a well defined

0) parser if the given string grammar is an LR(0)

mmar . That is, a string grammar G=(35 ,i>P > S) is

0) if and only if for any two derivations S —=r> <

ocj36 and S = > oc'A'6' = > oc'p'6', if oc j3 is a

oc'jJ', then oc»oc ' , jJ-ji'* and A=*A'.

.4 Converting LR Parsers To PDAs -

As mentioned throughout this section, an LR(0)

ser is nothing more than a PDA while a well defir

0) parser is a deterministic PDA. To show this,

s section provides an algorithm which will convex

0) parser into a PDA.

The conversion is done by constructing the

nsition map o such that the computation relation

ulates the decision function K . The algorithm 1

omplish this is as follows:

Algorithm 3>4>3: Converting an LR(0) parser

into a PDA

input s An LR(0) parser

M=s(G*(i,5,P,S) ,K, shift,reduce,goto, start) a

"spelling" function of its corresponding

characteristic automaton.

output: a PDA D=(S,K,&,start)

Method; The procedure below which constructs

the function 6.

procedure convert(M,spelling);

begin

for all input pairs (a,b) do

initialize &(a,b)=0.

od;

Page

for all states k€K do

for all £

i£ shift(i,a)**j

then &

fi

ojd

for all productions A->6€reduce(k) do

for all q such that goto(k,A)-q do

od

for all productions A->oc€reduce(k)

such that A^S and length(oc) M do

for all qj,q2^K such that gotoCq.,A)»q

do

for all ^ k € K l e n 8 t h (o c) such that

spelling(3k)» oc ^£

i(qijJk,6) :- i(qipk,6) V {q1q2}

od

od

od

Pa

for all productions S->S'€reduce(k) do

a(startk,6) :» 6(startk,S) V {start}

od

od

end

xample 3.4.4: Let M=* (G,C,shift,reduce,goto,1) be

R(0) parser defined in example 3.4.3. Then the

orresponding PDA D«(i, C , b , 1) , defined by algoritln

.4.3, has its transition function defined by the

ollowing table:

a b 6

1 I 3 i | |

12 | | | 1 |

3 | 3 | 4 | I

134 | | I 12 |

334 | | | 35 |
•4»«MB OB «w4>i<w «a mm-io«me « • mm mm mm -4»

5 | | | I

1356 | | | 12 | .

3356 | I I 35 |

Chapter IV

CONTEXT-FREE TREE LANGUAGES

A tree language is simply some subset of the set

1 finite trees (i.e. TV for the ranked alphabet

Except for trivial cases, a tree language is an

ite set. Even though such sets may be infinite,

ould like to have finite means for defining them,

uch method is a generative device called a

ar. A grammar is a set of rules which defines

tree in a tree language. Of interest here is the

of tree languages which are generated by

xt-free tree grammars, called the class of

xt-free tree languages.

This chapter begins by presenting the defii

of a context-free tree grammar, and by showing 1

tree language is generated from a given context-

tree grammar via a series of derivation (or rewi

steps. This includes presenting the two types c

restricted forms of derivations, known as outsic

and inside-out. The remainder of the chapter si

properties of context-free tree grammars, as we]

transformations on some of these grammars which

the grammar such that certain undesired propert:

removed. One goal is to provide a standard fort

context-free tree grammars which are said to be

Chomsky normal form. Another goal is to descril

distinct forms of tree grammars, known as root i

linear tree grammars, which generate distinct

subclasses of tree languages called regular and

coregular tree languages.

4.1 Context-free Tree Grammars And Tree Languaj

This section defines the set of trees (or t

language) generated by a tree grammar. The gen<

process can be characterized as a series of suc<

tree rewrites (or one-step derivations) until a

which is only labeled with terminal symbols is

generated. This section provides the definitioi

P;

:ree grammar, followed by an overview of the gene

>rocess•

A context-free tree grammar (or tree grammar

;hort) is a quadruple (l,i,P,F,) where

3! • {¥* 9T?29 • • • 9% } is a finite ranked alphabet

nonterminal function symbols (where the ari

each F., Ki<n, is denoted as a.),

2 * {f19f99»««9f } is a finite ranked alphabet

terminal function symbols,

F is a designated symbol in jjj called the

start symbol and

P is a finite set of pairs of trees of the for

(F , t),
/ 1\

for any i9 lĵ iĵ n, and t is a finite tree in

Each pair (F , t) € P is called a production
/ *\

x« • • • x
1 ai

Note that under tree composition ,

g - g (x l f . . . , x)
/ \ l n

X * • • • X

1 n

ire g€iVI a nd n=r(g). For convenience of notatio

c.,«««,x) will be denoted in vector form as g(x")

)ductions will be denoted as F#("x)->t where

,(),t)€P« Iti general, upper case letters such a:

J,H,... will be used to denote nonterminal symbo:

Lie lower case letters such as f,g,h,... will be

id to denote terminal symbols. Depending on the

itext, G will also be used to denote a tree gramm<

rthermore, unless otherwise defined, one can assui

it A = max{a | a -r(F.) and F €$}.

Having defined a tree grammar, the next step i

fine a rewrite step. Given a tree grammar

[<j> ,i,P ,Fj) , a one-step derivation (or rewrite) is

fined by the relation = > G C ^ y ^ k) x T I N / - (X A)

Llows:

For any two trees tx , 12
€TI\/S(XA) * tl = ? 6 Z2 i f

only if t^sfv <- Y{a. 9 . . . 9s)] and

t2*s[v <- t(slf...,s)] where r(F)=q,

s,s.,...,s €T-r-y*(XA) , v€dom(s), and F(x")->t is a

production in P.

other words, the subtree F(s,,...,s), of the tr

> is rewritten (or replaced) with the tree

3.,...,s) using the production F(lc)->t. When th

itext of G is clearly known, :=v> will simply be
U Ijr

loted as = > .

Paj

Equipped with the meaning of a one-step

irivation, one is able to define precisely the se

:ees generated from a tree grammar. Let G-Cj^iP

» a tree grammar and b.,...,b be a sequence of
al

srminal trees in T^~* A sentential form is any tr

* *
3T\"\/^ such that F.Cb.,...^) = > t where = >
JLV 32 l l a .

le transitive reflexive closure of ===> • Furthermi

le t r e e language generated by the tree grammar CJ,

inoted L(G,F-(b1 , . • . ,b)) , is the set of all1 1 ax

sntential forms t such that t€5T^. Hence,

;G,F1(b1,...,ba)) » {t | F1(b1,...,ba) = > * t a

cample 4.1*1: Let G »($,][,P,F) such that

| - {F} where r(F)»l,

1. • {f,a} where r(f)*l and r(a)*0, and

P - { F -> x , F -> f}.

I I I
x. x F

I
x

Then, L(G,F(a)) = {a, f, f, f, ... }

I I I
a f f

I I
a f

I
a

Also, a sample derivation which derives

f
I
f
I
a

is as follows:

F = > f = > f = > f

1
a

1
F
1
a

1
f
1
F
1
a

1
f
1
a

It should be noted that the situation regar

derivations is not as simple as in the case of s

grammars. Unlike in string grammars, one-step

derivations are not commutative in the sense tha

t. ==> t2 using F(l£)->s , and t = > t3 using G(

it is not necessarily the case that there exists

t'2 such that tL = > t'2 using G(l?)->s2 and t^ — >

using F(tf)->s.« To show this, consider the foil

example:

Pag

at:

| = {S,F,G} where r(S)»O and r(F)«r(G)=l;

i • {a,g} where r(a)asO and r(g)=»l; and

P - {S->F , F->a , G->g}
II II
G x x x
I
a

Clearly, F = > F using G->g and F = > a using F-

I I I I I I
G g x x ' g x

I I I
a a a

On the other hand, when the order of the derivat

steps is reversed,

F = > a using F->a and it is. now
I 1
G x
I
a

impossible to perform a rewrite using G->g«
I I
x x

Hence, the order in which derivation steps are

plied affects the resulting derived tree (i.e.

rivation steps are not independent of one anothei

is has been shown by Englefriedt and Schmidt[77,7

rthermore, this result indicates that any proof

owing results between two different derivations n

consider every possible ordering of derivation

To simplify proofs, one would like to have a m

derivation (i.e. prior knowledge about actual

orderings of derivations that will occur) whic

reduce the number of potential derivation orde

must consider, even at the cost of restricting

class of tree languages allowed. Thus, one sh

consider what modes of derivation one will all

least restrictive is not to specify any deriva

(i.e. unrestricted as above). However, the c

practice is to put a partial ordering on the d

steps by using either an outside-in (01) or an

inside-out (10) derivation mode. Intuitively,

modes of derivation correspond to call by name

by value respectively.

An 10 one-step derivation (denoted ==>n)
_ _ _ _ _ _ .___________-_»_-_> JLQ (j

one-step derivation which is applied to an inn

nonterminal occurring in a subtree. It can be

to any subtree whose root is labeled with a no

symbol and none of its other nodes are labeled

nonterminal symbol. Note that an 10 derivatio

applied to any subtree meeting the above condi

More formally, the zFi$>n relation is defined as

For any two trees t ̂ , t ^ T ^ U ^ , ^ ==>Q I

only if t. = > t. such that

Page

s[u <- F(s][, . . . ,sn)]

L) t- * s[u <- t(s.,...,s)]

L) F(lf)->t is a production in P where r(F)=sn, an

T) for all v€N such that u»v€dom(tl), where N

denotes the set of nonempty strings of positi

integers, t.(u#

i that conditions i) through iii) are just the

iitions of a one-step derivation while condition

:he added condition for an 10 derivation.

Similarly, an JOÎ one-step derivation (denoted

„) is a one-step derivation applied to an outermo

terminal symbol* It can be applied to any node

»led with a nonterminal symbol such that none of

»stor nodes are labeled with a nonterminal symbol

» an 10 derivation, an 01 one-step derivation may

Lied to any subtree meeting the above condition.

> formally, the relation =>• is defined as folio
01 G

?or any two trees t j , t^T^^X^ , ^ ==>Q t2 if a

>nly if t, = > t, such that

i) t. = s[u <- F(s.,...,s)]

ii) t2 - s[u <- tCsj,...,sn)]

iii) F(*)->t is a production in P where r(F)

iv) for all prefixes v of u, when v^u, t.(v

Again, as in an 10 one-step derivation, condit

through iii) are just the conditions for a one

derivation while condition iv) is the added co

for an 01 derivation. Furthermore, whenever G

fixed, « > „ and Ir5>n will simply be denoted as

==> respectively.

To clarify the differences between unrest

10, and 01 derivations (i.e. = > , ===>, and ===

consider the following example:

Example 4.1*3: Let G3 = (|,i, P,S) be a tree gram

that

1 » {S,F,G} where r(S)»0 and r(F)-r(G)-l;

2 « {f,g,a} where r(f)«r(g)»2 and r(a)«l;

P - {S->F , F->f , G->g , G->x}
I I / \ I / \ I
G x x x x x x x
I
a

The set of all possible 10 derivations is a

follows:

Page

5 To* * To> * 10
\

g g g
\ / \ / \
a a a a a

G
I
a

a

)n the other hand, the set of all possible 01

lerivations is as follows:

I / \ / \ / \
G G G g G g g

I I I / \ I / \ / \
a a a a a a a a a a

* 0l>/f\ 0
G
!
a

G
I
a

?> f

G g G
I / \ I
a a a a

f OT*

I 0I / \ 0I
G
I
a

G
I
a

G
I
a

* 0I>/f\

f
/ \

g a
' \

a

f
/ \

a g
/

a

f

\

G
I
a

G

I
a

G

I
a

G

I
a

G G
I
a

G
I
a

\
g

/ \
a a

0 I \
g g

/ \ / \
a a a a

$ *** I ̂ /\ CT> /'\ w> /N
G G G G g a g

I I I I / \ / \
a a a a a a a a

01 oT oT 01
01 , 01 M 01 / \ 0 I / \

G G G G a g a

I ! I I / \
a a a a a a

OT OT OT OT
0 1 i 0 I / \ 0 I / \ 0 I / \

G G G G a a a

I I I I
a a a a

Also, the set of all possible (unrestr

is as follows:

S ' . \ T? \ -C "\ •C \ 4p

/ £ ' X i. X JL S -L

I / \ / \ / \
G . G G g G g g
I I I / \ I / \ / \
a a a a a a a a a a

S = > F = > f = > f = > f
I / \ / \ / \
G G G g G g a
I I I / \ I / \
a a a a a a a a

S = > F = > f = > f = > f
I / \ / \ / \
G G G a G a g
I I I I / \
a a a a a a

S = > F = > f = > f = > f
I / \ / \ / \
G G G a G a a
I I I I
a a a a

; = > F = > f = > f = > f
l / \ / \ / \
G • G G G g g g
I I I I / \ / \ / \
a a a a a a a a a a

; = > F = > f = > f = > f
I / \ / \ / \
G G G G g a g
I I I I / \ / \
a a a a a a a <

5 ==> p ==> f = > f = > f
I / \ / \ / \
G G G G a g a
I I I I / \
a a a a a a

5 = > F = > f = > f = > f
I / \ / \ / \
G G G G a a a
I I I I
a a a a

5 = > F = > F = > f
I I / \
G g g g
I / \ / \ / \
a a a a a a a

3 = > F = > F = > f
I I / \
G a a a
I
a

Note that under an 10 derivation, i t is impossi

generate the trees

f f
/ \ / \

a g 8 a
/ \ / \

a a a a

ch can be generated by an 01 derivation.

Pag

rthermore, at least for this example, the set of

ees generated under an 01 derivation is the same

der the unrestricted case. It turns out that the

suits are true in general, and are stated explici

theorem 4•1•1• Before stating these results

wever, the definition of a tree language must be

tended to allow the derivation mode to be specifi

For notational convenience, the transitive

osures of the different derivation modes are defi

follows. The transitive closure af = > , yj?> > atl

:> are denoted as = > , ̂ ffp > an(* oT^ respectivel

ile the transitive reflexive closures of :=>, =—>

* * *
d r̂y> are denoted as — > , — > , and ^j>

spectively.

To extend the notion of a tree language under

ther 01, 10, or unrestricted derivations, one mus

so generalize the definition of sentential forms,

ven a tree grammar G^Cf,][, P, F.) , a derivation

lation z:~:> where R€{I0,01,u}, and a sequence of
K

ees b. , • . . ,b €T-r-, a sentential form is any * tree
l a i JsL ' * " ' ' —•——•—•

1 *

T— w- such that F (b.,...,b) =E:> t. Furthermo

e t r e e language generated by £ using ==> , denote

(6yF1(b1»...9b)), is the set

| F (b-,...,b) ===> t and t€T^-} . Having

Pa)

ineral ized these d e f i n i t i o n s , the fo l lowing resu l

i g l e f r i e d t and Schmidt[77,78] i s presented withou

roof:

leorem 4 , 1 , 1 : Given a tree grammar G=((|j , i , P ,F.) a

jquence of t r e e s b 1 9 . . . , b €T:r-, the tree language
1 ax ±

inerated from the three different derivation rela

re related as follows:

Q I 1 1 a

» Lu(G,F1(b1,,--«,ba))•

The remainder of this thesis will mainly deal

L derivations, since the class of tree languages

»nerated by unrestricted derivations and the clas

»nerated by 01 derivations are identical. The re

D focus on 01 derivations, as mentioned earlier,

lat they introduce restrictions which reduce the

imber of cases that need be considered in proofs,

ifortunately, the restrictions only correspond to

artial ordering, and hence the remainder of this

action introduces an unconventional form of a 01

le-step derivation such that a total ordering can

ssumed. That is, the notion of an 01 derivation

lower bound u, as well as an 01 derivation under

refix lexicographic ordering on tree domains are

introduced. Furthermore, it will be shown tha

tree language generated by an 01 derivation un

prefix lexicographic ordering for tree address

equal to that generated by an 01 derivation.

An OHL one-step derivation with lower boun

(denoted —>-,) is an 01 one-step derivation wh

be applied at any tree address v where \i<y • G

tree grammar G=(1,2,P,F1), the —>_ relation i

as followsi

For any two trees t. , to€T-r\/7R(XA) , t. — >r t

only if t ===> t and

ii) t2 - s[v <- t(s1,...,

iii) F(l?)->t is an production in P where r(F

iv) u <_ v

Similarly, an OJL one-step derivation unde

prefix lexicographic ordering on tree domains

— > G) is an 01 derivation applied to the

lexicographically smallest tree address labele

nonterminal. The — > relation is defined as
G

For any two trees ^ , t2
€TS\/f (XA) ' Cl ~ > G

only if tx ==> t2 and

Page

s[u <- F(s1, . . .»

L) F(#)->t is a production in P where r(F)=n, an<

r) for all v<u, t (v)iS|.

For convenience, whenever the context of G is

*n, =^>o and ==> will be denoted as — > and ==>
G G

>ectively.

In order to show that one can commute derivatio

least to some extent) when they are applied to

apendent subtrees, the following lemma is present

i£ 4,1,1; Given a tree grammar G. * (IfijPjF.), a

,e trees t j , t2, t^T^^X

re t2 - s[v <- FCSj,...,s

3 s[v <- t(s1f..#,s)], r
i q

3ts a t r e e to€T>"\/?l5^XA^ s u c h that t̂ ^ ==> t ' =ii>n t

F(3

s' [v <- tCsj , • • . ,s

trees t j , t2, t^T^^X^ , if tl =^>
n t2 = >

)],

3 s[v <- t(s1f..#,s)], r(F)ssq, and v<u, then the
i q

re t » s'[v <- F(3lf«««9s)] and

Pag

roof: By induction on n<

ase case s t. -z~> t~. Trivial*

nductive steps t1 ^=^> to =^>
n t~ = > t, such tha

s[w <- F(s1f«««»s)], t« * s[w <- t(s.9.««9s

s'[v <- G(s', . . . ,s' /)] ,

s'[v <- t'(s: ,. . . ,s' ,)] , r(F)=q, r(G)=q', ar

£ By induction, t« = > t' =^>n t, such that

2 = sfl[v <- G(s[9 ...fs',)] and

2 - sfl[v <- t'Csj,...^',)]. By the definition c

=>, v cannot be a prefix of w» But then, from th

efinition of tree substitution, there exists a ti

uch that

1 - tff[v <- G(8j,...,8^)][w <- F(S l,...,s q)],

2 - ttf[v <- G(s^, . . • ,s' .)] [w <- t(sL , . • . ,s)] , ar

J - t"[v <- t'(8^f...f8^)][w <- t(8 l f... f8 q)].

h e d e f i n i t i o n o f = > ,

x = t " [v < - G (8 J , . . . , 8 ^)] [W < - F (8 l f . . . - f 8)] = 5

f t [v < - t ' C s ^ , . . . ^ ^)] [w < • F (s l f . . . f a q)] - t'2.

he definition of — > ,

^ = t"[v <- t/(8j,...,8^)][w <- F(slf...f8

ff[v <- t /(sj f... f0^)][w <- t<slf...,s)] -

herefore t1 = > tj ^ n + 1

Pag(

Using this result, one can show that every 01

jrivation (to a terminal tree) can be converted t<

L derivation under a prefix lexicographic orderinj

; shown by the following lemma:

tmma 4,1,2: Given a tree grammar G-CJjijPjF.), a
1 ——————— . i ±

JO t r e e s t , and t~ such that t' G^yy JJ(XA) an<* t7^^

t h e n f c i — > n

roof; By i n d u c t i o n on n.

ise c a s e s : n*0 and n«l« Both are t r i v i a l .

iduc t ive s t e p : t . = > t ^ = > t ^ where n M ,

L * s [u < - F (s 1 > . . # , s)] f t^ - s [u < - t (s l f . . « f s

id F(lt)->t6P. Depending on whether or not there

cists a node w labeled by a nonterminal such that

\ere are two cases:

ise 1: there does not exists a w in domCt-) such

Cu and t.(w)€l. B u t then t- —> t,*. By inductio

}
 n t2. Therefore tj =^ j

ise ^: there exists a w in dom(t.) such that w<u

,(w)€j. Let v€dom(tj) be the least tree address

lat for all y'€dom(t), where t1(y
/)€i, vj< y • By

»finition of ^?>> clearly v is not a prefix of u.

len it must be the case that t. =^>m t, => t- =

lere m+p=n, m^O, t, * s'[v <- G(s' ..,,8' /

. - s'[v <- t'(s^f ... f8^)] , q'«r(G),

Pa

is the least tree address such that v<y and for a

y'€dom(t..) such that t1(y')€|, y£y' c By lemma 4.

tl Wl* Z6 ~ > m' t5 where ti = s"t v <~ G(s[,...,s' q
and t. = s"[v <- t'(s',...,s',)]. But then t. —

o 1 q 1

By induction, tfi — > n t2. Hence tl

Using this result, it is easy to show that t

tree language generated by an 01 derivation is eq

the language generated by an 01 derivation under

prefix lexicographic ordering. In other words, g

any tree grammar Ĝ CiJj ,L,P ,F) the tree language u

an 01 derivation under prefix lexicographic order

tree domains, denoted LnT(G>F1(b1,.««,b)) where

b ,«..,b €T~, is the set
1 al 2m

{t I F-Cb.,...^) ==> t where t€TT} •
1 l al ±

Theorem 4.1.2; Given a tree grammar G^CJ,2,P,F^)

any set of trees b.,...,b €T-r»,

L 1 b » L^CG F
0 1 ' • 1 l* ' a l 0 I X X al

Proof: Inspecting the definition of — > , it is cl

* *
that if S — > t, then S ==> t. Hence,

LJ (G,F (b ,...,b)) C L (G,F (b ,...,b)). C

other hand, if S = > t, where t€T^-, then by lemma

S — > * t. Thus

Page

; G , F . (b , . . . , b)) C L (G , F (b , , . . . , b)) , a n d
1 , 1

a l a l

Using the above theorem, and theorem 4.1.1, it

ir that the tree language generated using an

sstricted derivation is identical to the tree

guage generated using an 01 derivation under a

fix lexicographic ordering. For the remainder of

s thesis, all proofs will use 01 derivations unde

fix lexicographic ordering on tree domains. Henc

never an 01 derivation is used in a proof (i.e.

ation 5y>) it will be implicitly assumed that in

t it is an 01 derivation under a prefix

icographic ordering*

Example 4.1.4: Using the tree grammar G~ in examp

4.1.3, the set of all 01 derivations under a pref

lexicographic ordering is as follows:

l / \ / \ / \
G G G g G g g
I I I / \ I I \ I \
a a a a a a a a a a

> F — > f =^> f =^> f
I / \ / \ / \
G G G g G g a
I I I / \ I / \
a a a a a a a a

S =±> F =±> f =±:> f =±:> f

I / \ / \ / \
6 G G a G a g
1 1 1 I / \
a a a a a a

S — > F — > f — > f — > f
I / \ / \ / \
G 6 G a G a a
I I I I
a a a a

Note that the set of trees generated

as the set generated under an 01 derivati

Furthermore, the total number of possible

is reduced, indicating the point alluded

That is, the number of cases needed to co

proof should be reduced, since there are

derivations for any given tree language.

4.2 Augmented Tree Grammars

One of the problems with tree langua;

general, is that they are parameterized (

supply a sequence of trees b.,...,b alo
1 ax

tree grammar)• It would be more convenie

arity of the start symbol could be reduce

hence no parameters would be necessary,

that this is possible by augmenting the t

with a new start symbol with arity zero,

the augmentation will maintain the tree 1

l e r a t e d . Given a t r e e grammar G = ($, ,2 . ,P , F .) , a

[uence of t r e e s b. , . . . ,b •6TV, an augmented t r e e
1 a1 2.

immar Go , d e n o t e d a u g (G t , (b , , . . • ,b)) , i s t h e t u
'- z " i i a i

S (1 2 , ! , P 2 , S) where

<B2 * i ^ i S } where Sgj j^Vl ; and

P 2 * P 1 V { S - > F 1 (b] L > . . . f b a) } .

other words, the augmented tree grammar G9 is th

ae grammar G, with an added auxiliary start

3d-uction« Furthermore, the auxiliary start

oduction is not based on any "outside" parameters

•e. the tree grammar is totally defined).

A natural assumption is to believe that the ab

ansformation does not alter the tree language

nerated. This is shown to be true by the follow!

eorem:

eorem 4.2.1: Given a tree grammar G.-C5- jijP, ,F,)
1 • 1 1 1 1

t of trees b.,...,b 6T^-f and1 a1 ±

«aug(G1 >(b1 , . . . ,,ba)), then

I(G1,F1(b1,--.,ba)) » L Q I(G 2,S).

oof: Left as an exercise for the reader.

Pag

Since every tree grammar can be augmented wit

ffecting the tree language generated, the remaind

his thesis will assume that all tree grammars are

ugmented. Furthermore, since the start symbol ha

rity zero, L Q I(G,S), L I Q(G,S), and Lu(G,S) will t

enoted as L (G), L- 0(G), and L(G) respectively w

•3 Redundant Tree Grammars

A production p is redundant if p is of the *fc

(lf)->F(lt). Similarly, a tree grammar G =(f,i,P ,

edundant if there exists a production p€P, such t

s redundant. In other words, whenever t. = > t~

(!?)->F(iO , t * t 2 . Hence, there is no need for tti

roduction F(lc)->F(l?) . The nonredundant tree gran

£ G. , denoted nr(G.), is a tree grammar G2"(S>i.»5

here ?2 = ?x - {F(ie)->F(lf)€P1} •

Like augmented tree grammars, redundant tree

rammars can be converted to nonredundant tree gra

nd the transformation does not alter the tree lar

enerated. Without proof, this fact is stated by

ollowing theorem:

Theorem 4.3.1: Given a tree grammar G =($,̂ :,P

G2=nr(Gl), L0I(Gl) = LQ][(G2).

The remainder of this thesis will assume t

tree grammars are not redundant. Furthermore,

transformation presented in the remainder of tli

thesis introduces a redundant tree grammar, the

implicitly assumed that the actual tree grammar

generated is the nonredundant version of the ti

grammar generated.

• NT/T Segmented Grammars

NT/T segmented grammars are tree grammars

that each production's right-hand side is eithe

labeled using nonterminal symbols, or terminal

but not both. Furthermore, if the right-hand s

production is labeled by terminal symbols, thet

is only one terminal symbol in the tree. Howe\

order to present NT/T segmented grammars formal

new terminology which allows transforming termj

symbols to nonterminal symbols must be introduc

Page

-let i and p be two ranked alphabets such that

i) lAT - 0

i i) ill = I T I

iii) There exists a bijective function pi : S -

iv) For all a«2 r(a) - r(pi(a))

en, pi is a renaming function of X using p , deno

r^piCi)^ In general, renaming will be used to

eate a new unique nonterminal symbol for each

rminal symbol in the tree grammar.

Extending the renaming function pi, if i, <§, e

e three ranked alphabets such that p ^pid) and

A J - 0, let pi* : T ^ v p C V -> Tpv^(Xm) wher«

max{r(f) | f€i.VP}j be a function such that

tree

i) dom(pi (t)) * dom(t)

ii) For all u€dom(pi (t)), if t(u)€i, then

pi (t)(u) - pi(t(u)), otherwise

pi*(t)(u) = t(u).

t pin : TTw»(X) -> 2TlVlVP(Xm) be a function

cursively defined such that given any tree

iTiva(V>

Page

i) pl°(t) - {t}

ii) pi i + 1(t) * {s€pii(t)

35fu€dom(t) such that t(u)€i}

V {s[u <- pi(s(u))(s/ul,...,s/uq)

1 s€piX(t), u€dom(s), s(u)€i,

and r(s(u))=sq} for any i X).

thermore, let pi*"1 : ̂ y^ypUJ -> T ^ g U ^ be

ction such that given any tree ^ ^ w j w p C X),

i) doraCpi^Ct)) - dom(t)

ii) For all u€dom(t), if t(u)€p such that
— — i

pi(f)»t(u) for some f€i, then pi (t)(u)*f,

otherwise pi (t)(u)»t(u)•

other words, pi (t) is the tree t where all nodes

eled by i are renamed by their corresponding symt

p . If l^(t)<n, then pin(t) is the set {pi (t)}.

erwise, pi (t) is the set of trees obtained from

sible conversions of n nodes labeled by terminal

bols in i, to nonterminal symbols in p . Finally

en any tree t€pitl(t/) where t' € T\

(t)=st/. In other words, to some extent pi is

n *
erse function of pi and pi • These results are

wn by the following lemmas.

Pag

emma 4*4,1: Given three ranked alphabets i, (jj, ar

uch that r= pi(2), P A i = 0, any n>0 , and any tr

) where m = max{r(f) | f€iVffi}, then forX

ree t ^

i) if n a ^ t p , then lp(t2) = n,

-n, and pi*(t2)-pi*(t

ii) if n>l^(t1), then lp(t2)

and t^^pi (t.

roof s by induction on n.

ase case; n * 0* Trivial. By the definition of

i (t.) - {t.}. Hence, it must be the case that i

2€pi°(t1), t2-tj. By the definition of pi(I),

- 0, and we were given that f Af * 0« Hence

ince ti€T2\/i^Xm^ J 1 p ^ t 2 ^ = °* Furthermore, it ti

e the case that n <^ -'•s"̂ tl̂ since n = 0. Finally,

^(t2) - l^Ctj) and pi (t2) - pi (tj) since tj - t

nductive step: Assume the hypothesis is true foi

<JI for some n. We want to show that the lemma is

or any t^Spi11 (t.). According to the definitior

i , there are two possibilities:

ase 1: t^€pi (t,) and there does not exist a

€dom(t2) such that t2(u)€i. Clearly, l>;(t2) - 0.

.-r-(t) , then by induction on condition i),

ch

Page

contradicts that Iy(t2)-(K Hence, nXLyCt.).

.^(t.), by induction using condition i), l-r-Ct^^O,

* *

(t2)«l^(t]L), and t2 = pi (t2>=»pi (tj) in which case

:isfies condition ii) for the n+1 case. Finally,

•3"(t,)f by induction on condition ii), ̂ p (t2)
SSil±(

t2)*0, and t2=»pi (t2)=*pi (t^). Hence, for any t

lpi n + 1(t 1), when t 2€pi
n(t 1), condition ii) is

:isfied for the n+1 case.

2: t2*s[u <- pi(s(u))(s/ul,...,s/uq)] where

(t.), u€dom(s), s(u)€i, and r(s(u))=sq. Since

, l-r-(s)X). Using induction, condition i) mus

>ly, and hence, n£l^(t,) , lp(s)asti, ly(s)
ssly(t.)-r

* it

I pi (s^pi (t.). Also, by the tree substitution

rformed at tree address u, to construct t^, adds

:e node labeled by p previously labeled by J>. He

[t2)=l:r-(s)-l , lp (t2)
aslp (s) + l , and pi (t2)*pi (s)

: then, Ip(t2)»n+1, 1^(t2)=Lg(s)-(n+l), and
i it

(t2)=spi (t .) All that is l e f t to show is that

K W t J . But since l^-(t1)-n>0, l?r(t ,)-(n+l) >0 ,
—" JL 1 JL L - 2 . x —

Page

ima 4•4.2; Given three ranked alphabets i, (jj, and

ch that P^piCi) and P A $ = 0, and a tree

ere m=max{r(f) | f€i\/l}, then for any n>lr(t),

*(t)6pin(t) and

oof; Using lemma 4*4.1, for any tree t.€pi (t),

(t^^O and pi (t.^pi (t). Since ly(t1>=0, it mu

the case that t,€Tpyjj(X)• By inspection of th

finition of pi , clearly pi (t.)*t.« But then

*(t)€pin(t), and |pin(t)|M. To show that

i (t)!38!, assume there exists a tree t^€pi (t) su

at t fpi (t). Using lemma 4.4.1, lv"(t2)
saO and

(t2)=pi (t). Since t^pi (t), and pi (t2>=pi (t

ere must exist a node u€dom(t«) such that t^(u)€i

t this is impossible since l~*(t9)
ss0. Hence is mu

the case that |pin(t)|=l.

mma 4 »4«3: Given three ranked alphabets i, $, and

ch that r api(i) and PAi:!S0, and any tree ti

ere m«max{r(f) | f €iVI> , then for any n M), if

€pi n(t 1), then pi"1(

roof: By induction on n.

tse case; t2€pi (t .) . By the definition of pi ,

L°(t1)-{t1>. Hence, t2~
tl* A l s o > since t i €

L - 1(t 1)-t 1. Hence, pi""1 (t2>»t 1.

iductive s t ep : t 2 € p i n + (t L) . By the d e f i n i t i o n

L , there are two p o s s i b i l i t i e s :

ise 1: t o € p i n (t .) and for a l l u€dom(to) , t (u)£E.

r i v i a l . By induct ion, pi* (t 2) « t . .

ise 2: t^^stu <- p i (s (u)) (s / u l , . • • , s / u q)] where

3pi (t .) , u€dom(s), s(u)6^., and r(s(u))= sq. By

iduction, pi (s) « t , « By inspect ion of the defin

: pi , c l ear ly

Having completed the above terminology, NT/T

igmented grammars can be formally introduced* Gi

ree grammar G * (J»ifP»S), a production F(lt)->t€P

C/T segmented if and only if either

i) For all u€(dom(t)-var(t)) , t(u)€<B

ii) t(6)€i and (dom(t)-var(t))={6}

i other words, condition (i) states that every no

>t labeled by a variable is labeled with a

Dnterminal, and condition (ii) states that the ro

Page

beled with a terminal symbol and each of its

mediate descendants are labeled by variables,

milarly, a tree grammar G=(<jj ,i,P, S) is NT/T segme

and only if for every p€P, p is NT/T segmented.

Example 4.4.1: Let G,«(J- >S,P, , S) and G^-d^,^.,!1

such that

lx - {S,F} where r(S)=0 and r(F)=l;

1. « {a,f} where r(a)=0 and r(f) = l;

P. = {S->F , F -> f },
1 I I / \

a x x x

l 2 = {S,F,a,!} where r(S)=r(a)=0, r(F)=l, anc

r(!)=2; and

P_ = {S -> F , F -> f , a -> a ,
I I / \
a x x x

? -> f }.
/ \ / \

x y x y

Note that while L0I(G,) "
 Loi^ G2^' Gl i s n o t N T y

segmented (because of the production S -> F),
I
a

while G. is NT/T segmented.

Page

It is natural question to ask if there is an

orithm to convert a tree grammar G. into a new tr

mmar G~ such that G2 is NT/T segmented and

(G.)*! (G«)« The answer is yes as is shown by t

lowing definition and lemmas.

Given a context-free tree grammar G »(<g ,i, P . , S

P=»pi(I) such that PA3J=0, let G2«(i2,1, P2,S) be

segmented grammar of £ , denoted NT/T(G,), wher

ii) P2 - {pi(f)(!t)->f(5?) | f€S}

V{F(*)->pi*(t) i

Example 4,4,2: Let G. and G^ be defined as in

example 4.4.1, Then, G« is the NT/T segmented

grammar of G, where p-ia,^}, pi(a)*a, and pi(f)*

ma 4,4,4: Given any two tree grammars G. and G^

t Gj-dj.S.P^S) and G2»NT/T(G1), G2 is NT/T

men ted.

of: According to the definition of P2, there are

sible forms of productions:

£ 1: pi(f)(x)->f (3f) where f€i. For the tree

arly f(lf)(6)»f€l and (dom(f (it))-var(f (*)))

ce pi(f)(x)->f (If) is NT/T segmented.

case 2: F(l?)->pi* (t) such that F(x)->t€P]L. By

definition of pi , pi (t)€T| \/p(X m). By the

definition of G~ > l^liVP* and hence, for all

u€(dom(pi*(t))-var(pi*(t))), pi*(t)(u

Therefore, every production p€P2 is NT/T segmen

hence G~ is NT/T segmented.

Lemma 4*4.5: Given any two tree grammars G. and

where G «(J ,I,P.,S) and G2=NT/T(G), any tree

t^sfu <- t(s1,...,sq)]€T^Vgj V p (X m) where

m=max{r(f) I f€^V$ 1 } a n d t € T w © ^X *̂ then for

n>0, and any tree t «s[u <- t/(s19.«.9s)] such— 2 1 q

t/€pin(t), t 2=>* t r

Proof; By induction on n.

base case: n=0 - Trivial,

inductive step: Let t' be any tree in pin (t)

the definition of pi , two possibilities aris

case 1: t'€pi (t). By induction, clearly t o =

case 2: t'=s'[v <- pi(s'(v))(s'/vl,...,s'/vq')

s'€pin(t), v€dom(s'), s'(v)€i, and r(s'(v))=q'.

definition of G£ , pi(s ' (v)) (*)->s ' (v) (5?)€P2 . C

s [u <- s ' [v <-

= > G 2

Fa:

~ s'[v <~

8 s[u <- s'(s,,«.«,s)]. Since s'€pin(t), by

Induction, s[u <- s'(s1f...,s)]
 :=:>~

1 q G9
*

;[u <- t(slf • . . ,8^l-tj. Hence t^ = > G

4.4.6: Given any two tree grammars G. and G

- — */here G. -((jL , i , P- , S) and GO=NT/T(G1) , i f S ==>„ t
1 1 1 <L 1 O X G .

* i

5 = > t .

G 2

?roof: By induction on n.

)ase case: n*0 - Trivial.
Inductive step i Assume S ^r>n t. = = > n to where01 G1 1 GL 2

• * s[u <- Y{a^9••m 9s)], t2 - s[u <- t(s,,...,s,

a*r(F), and F(*)->t€P1 . By induction, S = > _ t,

* 2

:he definition of G2, F(lt)->pi (t)€P2 and hence

s[u <- F(s1f«««9s)] — > n s[u <- pi (t)(s1,...,s

I
5y lemma 4.4.2, s[u <- pi (t)(s.,...,s)] •

l m
3[u <- to(s.,...,s)] where to«pi (t)€piq(t) for

J i m J
l»ly(t)£|dom(t)|. By lemma 4.4.5,

3[u <- t^Cs. , . . . ,s)] = > r s[u <- t(s, , . . . ,s)] .
J 1 m \x ry 1 m

lence S = > t0 .

Lemma 4.4.7: Given any two tree grammars G. and G

j , S) and G2-NT/TCGJ), any tree

m«max{r(f) | felVijVT} and

€TrwsLp(t)*n, then there exists a unique tree

Pag

uch that

t€pin(t')

ii) t'-pi^Ct)

iii) For all u€dom(t) if t(u)€l, then t'(u)-t(

roof: By induction on n.

ase case: lp(t)«0 - Trivial. t'=t.

iductive step t Assume the hypothesis is true for

Cn. We want to show that for any t such that

p(t)«n+l, the existence of a unique t' such that

' - pi" (t). Since lp(t)>0, there exists a u€dor

uch that t(u)€p. Let s€i be the symbol such thai

i(s)=t(u). Furthermore, let t" be the tree such

1) dom(t")=dom(t)

2) for all v€dom(t"), if v-u, then tft(v)=s,

otherwise tf'(v) = t(v).

Learly, lp(t") an. Hence, by induction, there exj

lique tree t'€T^w* (X) such that tfl€pin(t/),
2.V SB | m

'-pi""1(tll)f and for all v€dom(t), if t'(v)€S, the

f(v) = t'(v). Hence t' (u) = tlf (u)=*s (u) . By the

^finition of pi ,

stlf[u <- pi(s(u)) (s/ul , • . . , s/uq)] , where q^rCsCu)

Page

d hence t€pi (f) . By lemma 4.4.3, clearly

nditions 1) and 2) are met. For all v€dom(ttf), i

(v)61, then t"(v)»t'(v), and condition 3) is met.

anna 4.4.8; Given any two tree grammars G, and Go

ere G =(<g ,][, P. , S) and G^NT/KG,) , any two trees

>t:2€TI\/I VP (Xm) w h e r e ta=max{r(f) | felV^VT},

==>^ t2, then there exists trees t3>t4^T>;\/m (x

,n2€N, such that t 1€pi
nl(t 3), t 2€pi

n2(t 4), and

oof: By induction on n.

se case: n^O. Hence, t ^ t * . By lemma 4.4.7, tt

ists a unique tree t'»pi~ (pi q(t)) where l p (t l) «

t t« 3t, at and n.^n^^q. CLearly t^ : = > G t,, and

nee the conditions are met.

ductive step: Assume t. Tpf* n tj ^f^c t 2 * U s i r

) b e t h e trees such tduction, let t3>t4€TN"\/m (x

n n€pi nl(t 3), t 2€pi
n2(t 4), and t3 = > * t4. By the

finition of an 01 derivation, there must exist a

Tivi1vr (xm) such t h a t

^stu <- F(lt) (s/ul , . . . ,s/uq)] and

= s[u <- t'Cs/ul, . . . ,s/uq)] where q«r(F), F(lc)->t'

d for all proper prefixes v of u, s(v)<8<j!o* Accoi

the definition of G^, there are two possibility

Page

se 1 :

t

Pi"

1 OI>G, = > n

01 G,

Pi pi
-1

r and F(lf)->t' is of the form pi (f) (lf)->f (if) whe

— n'
i.. Since t|as[u <- f(s/ul,...,s/uq)]€pi l(t~) an

spection of the definition of pi 1 , clearly we

=s[u <- pi(f)(s/ul,...,s/uq)]€pi l"

€pi nl + 1(t.), t9€pi
n2(tA) and t~ = :

Hence

se 2 :

t
1 0I>G,

pi pi

= >
01 G,

-1

0I>G
1

*
OT>G

Pi

1

= pi (t) where F(lf)->t€P. By lemma 4.4.7, there

ists a unique tree s'3pi (s) such that

«s'[u <- t(s'/ul,•••,s'/uq)] where for all i, l<i

d s//ui = pi"" (s/ui). Clearly, by the definition c

rivation, ti-s'tu <- F(s ' /u, , . • . , s ' /uq)] :=:> ~

Hence

t,. By inspection of the definit

:'*pi (t.). But then, by lemma

for some n.>0, Hence the conditic

[u <- t(s'/ul,...,s'/uq)]=t

l, 3 G.
— 1

pi , clearly
4.7, tj€pi

Page

the lemma are met.

eorem 4.4.1: Given any two tree grammars G1 and G

ere Gj-CJx.i.Pj,S) and G J - N T / K G J) , ^ (G j)-LQI("G

oof; By the definition of a tree language, L (G)

*
e set of a l l trees t€T~ such that S TTT>̂ t . By

Jl U 1 CJT
* *

mma 4.4.6, we know that if S :rr>n t, then S = : > -
U 1 U . G

nee LQJCGJ^) £ L(G 2). By theorem 4.1.1,

G 2)*L O I(G 2). Hence I*0I(G1) £
 Loi^ G2^ # O n t h e o t

nd, if S =r>^ t, where t€T-r-, then by lemma 4.4.8

ere exists trees t, , t o ^ - w . (X) such that
1 I -̂ Vjfi, tn

pi nl(t 1), t€pin2(t2), and t1 = > * t2. But p f ^

d pi (t)»t since t€T^-. Thu3 S^t. and t*t2. HemI(G 2) £ LCGj). Using theorem 4.1.1, LCG^ * LQI(

nee 1-OI(G2) £
 L o i ^ G l ^ Therefore I^QJCG^ - I-0I(C

5 n - Normal Forms

A tree grammar is in n - normal form if the nv

nodes labeled by terminal and nonterminal symbol

curring on the right-hand side of each productior

es not exceed n. Of interest here, is to show tY

y tree grammar G. can effectively be transformed

equivalent context-free tree grammar G^ (under e

Paj

lerivation) such that G? is in 2-normal form.

Ln order to show this , some terminology has to be

>resented.

Given a ranked alphabet i, and n^O, let

T—(X) T—(X)
)ver̂ r : 2 i. m -> 2 i m be a function such t'

JL,n

:or any set P£T-r-(X),

)verr (P) » {t | t€P and l>-(t)>n}. In other wor

Ls the set of trees with more than n nodes labele

Example 4.5.1: Let 1. • {a,f ,g} where r(a)=0, r

and rCg)38! . Then,

overr ^ ({ a , g , f , f , f })
^'3 I / \ / \ / \

a a a g a a g

I I
a a

- { f , f }.
/ \ / \
g a a g

In order to use overr to test if a set of

productions is in n-normal form, one must abstrac

right hand sides of the productions. Given a tre

grammar G=(|,i,P,S), let rhs .: 2P -> 2TiVl^Xm^ b(

function such that given any subset P'C P,

Page

s(P') = {t | F(*)->t6P'}.

ample 4«5.2: Let Gj-Ci ,5Ef P, S) such that

1 » {S,F} where r(S)=O and r(F)=l;

5L - {a,f} where r(a)*O and r(f)-l; and

P• - {S -> F , F -> f , F -> x }.
I I I I
a x F x

I
a

Then, rhs(P) - { F , f , x }
I I
a F

and rhs({S -> F , F -> x}) - { F , x }.

I I I
ax a

Combining the two previously defined functions

e can formally define what it means to be in n-nc

rnu Given a tree grammar G=(i,i, P,S), G is in

normal form, for some nM), if and only if

err.,- (rhs(P))=s0. In other words, the right-ha

des of all productions in P are labeled by at mos

nterminal and terminal symbols.

Example 4*5.3; Let G. be defined as in example

4.5.2. Then G. is in 3-normal form but not 2-nc

form since

o v e rIvi 2
(rhs(p)) = { f

F
I
a

Having defined the meaning of a tree grami

in n-normal form, the next step is to show how

grammar in n-normal form can be converted to 2-

form. Rather than accomplish this transformat

one steps it is done via a series of transform

such that each transformation reduces the size

production, from n-normal form, to (n-l)-norma

In this transformation, it is important to be

pick out the leftmost subtree, of the root, wh

not a variable. Having located that node, the

will combine the root and the leftmost immedia

descendant node of the root, not labeled with

variable, into a single node. Hence, if the p

production was in n-normal form, the transform

production is in (n-l)-normal forra. To assist

transformation, the following definitions are

Definition 4.5.1: Given a ranked alphabet]E, a

t€Trr-(X) where l̂ -(t)>2 and some i€IT such that
JL m JL +

Page

i) i€dom(t) and t(i)€l

ii) for all j, Kj<i, t(j)0l

»n i is the the leftmost nonvariable descendant J(J

Li 2JL t^le root, denoted as ls(t)«

Example 4.5.4: Let 3L • {a,f,g} where r(a)=0, r(f

and rCg)*!. Then

ls(f) * 1, ls(f) - 2, ls(g) - lf

/ \ / \ I
g a x g a

I I
a a

and ls(g) is not defined since 1^(g) = 1•

! ^ I
x x

Einitlon 4.5.2: Given a tree grammar G=(I,i,P,S),

eduction F(#)->t€P such that 1^\yp(t)>2, then the

iuced nonterminal of Ĵ , denoted as NT(t), is a ne

phabet symbol T such that

i)

ii) r(T) « r(t(6))+r(t(ls(t)))-l

other words, NT(t) is a new nonterminal which wi

used to replace the root and node ls(t) of the

oduction's right-hand side with a single node lab

th T*

Pa;

)efinition 4.5.3: Given a context-free tree gramm;

J*(Jti»PfS), a production F(3c)->t€P such that

t)>2, the simplified right hand side o_f F(x)

lenoted as S (G , F(lc)->t) , i s the tree

/here i « l s (t) , j = r (t (I s (t))) , and q=*r(NT(t)), Thi

Nonterminal expansion of F(x>)->t, denoted

I (G,F(lt) ->t) , i s the tree whose graph i s the se

>airs { (6 , t (6)) , (l s (t) , t (l s (t))) } V

[(l > x 1) I K i < l s (t) } V

[(l s (t) - j , x l s (t) + j - 1) I l < j < r (t (l s (t))) } V

Example 4.5.5: Let G. be defined as in example

4.5.2.

Clearly F -> f is a production such that
I I
x F

I
a

LT\/in (f) > 2 . Let NT(f) - T where r (T) = l .

F F
I I
a a

Then, S . (G. , F -> f) - T
r S I I I

x F a
I
a

Page 127

ENT(G1 '] ->*
x F

I
a

aving defined the above, the method to transform

grammar to 2-normal form can be introduced. One

note that the transformation is an iterative

s where on each iteration, the transformation

tes a tree grammar which is closer to 2-normal

and the iteration process terminates after a

number of iterations.

iven a tree grammar G.-(JL ,J>,, P., S-) in n-normal

for some n>2, and any production F(lc)->t€P1 such

,n-l (r h s (Pl)) > l e t

reduced grammar of (5. using F(l£)->t» denoted

dn(G1 ,F(lc)->t) , such that:

S U c h t h a t

r(S2)«r(S1)«0 and T-NT(t).

V

F(*)->Srhs(GlfF{*)->t),

Example 4.5*6: Let G, be defined as in

example 4«5«2. Then,

G? » reduced^CG. ,. F -> f) is the

II
x F

I

a

tree grammar such that

I 2 - {S2,S,F,T} where r(S2>*r(S)=0 and i

2 = { a , f } w h e r e r (a) s s O a n d r (f) « l ; a n d

P 9 = { S 9 - > S , S - > F , F - > T ,
I I I
xx a

T - > f , F - > x } .
I I I
x F x

I
x

To show that this transformation conve

grammar to an equivalent tree grammar, the

four lemmas are presented?

Lemma 4 , 5 * 1 ; Given a t r e e grammar G^CjJL , i ,

n -normal form, fo r any n>2, a p r o d u c t i o n F(

such t h a t t€overr -» , - _ (r h s C P .)) , and

G ^reduced (G.,F(x)->t), then
Z n l

Pag

The proof of the above lemma is left as an

xercise for the reader.

emma 4.5.2: Given a tree grammar G = (f ,!.>¥* ,S.)
• ' 1 1 1 1

-normal form, for any k>2, a production F(l?)->t€P

uch that t€over^-w- . (rhs(P.)), and

2»reducedk(G1,F(l?)->t), if St = > * t ^ then

^ t l #

roof: By Induction on n.

ase case: S. =?>• t, . By the definition of Go ,
1 " 1 U l KM - 1 Z

learly S2 = > G / Sx * t ^

nductive step: Assume S, ^?>r, t, = > n t0 where
' ' ' 1l" 1 U i. V7« 1 U l b j Z

^stu <- G(s1,,..,s)], t2 = s[u <- t'Cs^.-.jS)]

hat G(*-)-—>t'€P, and rCO^q. By induction, clear!

0 = > * t,. If G(3c)->t^F(l?)->t, then by the
L Ul (J« 1

efinition of Go , G(l?')->t' €PO. But then t, = > „

Z " Z 1 U1 (J^

n the other hand if G(lf)->t' =F(*)->t, then by leu

2
.5.1, t^slu <- G(s1,...fs)] ^f>G
[u <- t(slf...,8q)]-t2. Hence S 2 = > Q t2.

•emma 4.5.3: Given a tree grammar Gj"(3L ,i fPj, S.)

-normal form, for some k>2, a production F(!?)->t<

uch that t€over^,.-. , (rhs(P.)),

;2 = reduced, (G, ,F(3?)->t) , and any two trees

Pag

roof: By induction on n.

ase case: na0 - Trivial.

iductive step t Assume t. = > G t~ 7?Y>Q
 to

a ==v> to using G(3?)->t'. Inspecting the defini
3 U l Vj« Z

E G«, there are two cases depending on whether or

ise 1: G(l?)->t/€P1 . Hence to-s[u <- G(s 1 9... 9s
— — 1 j i q

=>Gi 8[u <- t'(8 l f... fs q)]-t 2. Since t2€

id G6J,, clearly to^T^wj (x)• Hence, by inducti
1

L 0T >G 1
 t 2 *

ase 2: G(lf)->t' jfiP • By the definition of Go , th

re three possibilities:

G(*)->t' « s
2""

>Sl

ii)

iii) G(*)->t' - T(3?)->ENT(GlfF(3?)->t) where

T-NT(t).

)wever, since t o€T— w- (X), clearly only conditic
z .zv SB -I m

Li) can apply. Furthermore, since T$$, clearly

^ *̂ an(* ^ e n c e it: tnust be the case that

1
I F P G 1 C4 ̂ P G J C3 ff>G2

 C2' By insP"tion of

Lght hand sides of the productions in P9, for

:currences of T, it must be the case that t, TTf^

sing F(*)->S r h g(G l fF(*)->t). But then

Pa

s[u <- F(s l f...,e q>]

[u <-

s[u <-

8)] - s[u <- t(8 l 9.. 9 fs

where u€dom(t4), i*ls(t), j=r(ls(t)), and q'=*t(t(

Since to€T-r-w- (X), clearly t.ST^,- (X) and hen
1 * l

by induction^ t1 ^y> G t,. Also, using F(lf)->t€P

t 4 « s [u <- F (s 1 , . . . ,s q)]
 :5Y> G s[u <- t (s 1 > . . . , s q

Hence t x = > ^ t ^

Lemma 4.5.4; Given a tree grammar G.^CJI >i.,P1 >S.

n-normal form, for any n>2, a production F(lt)

such that t6overr-ws f(rhs(P t)) f and
1

G ^reduced (G , F(lt)->t) , then L (G) - L (G).

Proof; By the definition of a tree language,

*
L ^ T C G .) - \t 1 S. =T>>, t and t€T-r-} • By lemma 4tO i l 1 O I G - 2.

if St T-T^,, t where t€T^-, then So
 :Ki:>r. t. Hence

LnT(G.) ^ L n T(G^). On the other hand, for any t^

such that S^ wj^n t, One wants to show that

* 2

Si ^r>n t- Clearly, since SO->S1 is the only

production in G« with S^ on its left hand side,

it
S 7ry>,, S. —-•> t. By lemma 4.5.3, since
2 01 G2 1 01 G2^

Sl ^T>G tj Sl ^1^*0 t# B u t thetl L0I^ G2^ - L0I^C

Hence L (G^ - L 0 I (G 2) .

Page

The following lemma shows that each transformat

uces the number of productions which are in n-noi

m but not (n-l)-normal form.

ma 4.5.5: Given a tree grammar G.»($. ,i,P, , S.) ir

ormal form, for any n>2, such that there exists s

duction F(l?)->t€P such that

n - l ! ^ ' a n d

etiVi2,n-l
("rh8(P2))l + U

of: By inspecting the definitions,

rSV$2,n-l
(rhs(P2))

v

ce for all t6rhs(P),

82=IVi1V{S2,T}, clearly

rivi 2,n-i
(r h s (pr { F (3 t)- > t })) =

rsT\/» 1 (rhsCP,)) - { t } . Since G, i s in n-normal

m, for any t r e e t ' 6 o v e r r w - - (r h s C P .)) ,

.- (t')*n. Hence, for the production F(l?)->t,

l~ (t)»n. By inspection of F(lc)~>Srhs (Gx ,F (x)->t

/(D ^Srh (Gi >F^)"*>t:)) s s n"" 1 > since the labeled node

e been reduced by one. Similarly,

/ 5 (T(«)->ENT(GlfF(3?)->t))-2> and l ^ j (S2>-1. 1

Page

;G1,F(l?)->t)})=0. Hence o v e r ^ - n_1(rhs(P2)) =

:lV$ 2,n-l
(r h 8 (Pl))- { t }' °r

ltSVl 1.n-l
(t h i< Pl)) |- | o v e tSVI 2.n-l

< r h 8 < P2)) l + l

Using the above lemmas, one can show that there

Lnite sequence of transformations such that a tre

amar, in n-normal form, can be reduced to 2-norma

a. This is shown by the following theorem:

>rem 4»5«1; Given a tree grammar G =($,J>.,Pn,Sn)

>rmal form, for any n>2, there exists a finite

lence of tree grammars GniG.9.**9G such that G

[n-l)-normal form where:

O G, - (i,,l,P,,S.) for all i, 0<i<q;

ii) G± - reducedn(GJL_1 ,p ± - 1) where P i. 1
€ P

i^ 1
 i s

production of the form FCx)->t such that

t€overrw- (rhs(P)) for all i, Ki<

Lli) L 0 I(G 1) - L 0 I(G 1. 1)
 f ° r all i, l<l<q; and

iv) q -

Pag

roof; By induction on q.

ise step i q = 0 • By the definition of n-normal

)ns, G* is in (n-l)-norraal form since

iductive step: Assume q = k+1 for some k>0. By

•5.4, there exists a tree grammar

L - reducedn(G0,F(!t)->t) , where F(l?)->t€P0 and

^ s u c h t h a t L0I (G0 } = L0I(

r lemma 4.5.5, |over^ y

»nce, if q is finite, then by induction, there ex

finite sequence of tree grammars G,,...,G such

>nditions i) through iv) of the theorem are met.

len the sequence of tree grammars, for the k+1 ca

s simply GQ,GJ,.«.,G • By inspection of the

sfinition of over, overr-w* 1(rhs(Pn)) C Pn. E

le definition of a tree grammar Pn is finite. He

ist be finite and hence G^G.,...^ exists meeti

le conditions of the theorem.

>rollary: Given a context-free tree grammar

=($n,i,P0,So) in n-normal form, for any n>2, the

cists a finite sequence of context-free tree grami

.,.i.,G , such that G / in in 2-normal form and f

Ll i, Ki£q', L0I(G±) =
 Loi<Gi-l)'

Pa<

t.6 Derivation-renaming Grammars

The objects of study, in this section, are t

grammars containing productions for which the rig1

land side of some production is a tree where the

Is labeled with a nonterminal symbol, and all oth

lodes in the tree are labeled with variables. Mo

formally, given a tree grammar Ĝ CJI ,i,P, S) , let t

>f trees with just the root labeled by a nontermi

ienoted SN(f), be the set {t | t€T*(X) and l*(t)

lence, a production F(lc)->t€P is derivation renam

ind only if t<3SN(<§). Similarly, a tree grammar G

ierivation renaming grammar if and only if there

i production p such that p is derivation renaming

tfote that a production F(3?)->t is called derivati

renaming, since if F(lt)->t is used in a derivatio

step, the net effect is to rename the nonterminal

Labelling a given node, of the derived tree, with

another nonterminal symbol (and possibly trim off

and/or duplicate some of it's subtrees).

Example 4.6.1: Let G.^Cf ,5L,P , S) such that

1 •- {S,G,F} where r(S)»0 and r(G)*r(F) = l;

1. - {a,f} where r(a)=*0 and r(f)-l; and

{ S -> G , G -> F , F -> f}•
I I I I I
a x x x a

Then, G. is derivation renaming since

G -> F is derivation renaming.
I I
x x

The intent of this section is to show t

derivation renaming tree grammar G, can be t

to a tree grammar G~ such that G~ is derivat

renaming free and L 0 T (G,)
=sL0T (G^) • One shou

that the notion of eliminating derivation re

productions parallels the notion of eliminat

"chain-rules" in string grammars (see Harris

Bar-Hillel, Perles, and Shamir[61]) where an

set of nonterminals is created such that eac

nonterminal in the set can be reached by a c

Like chain rules in string grammars, th

transformation uses an inductive set of nont

where each nonterminal in the set can be rea

chain-rule. Given a tree grammar G-(i,i,P,S

nonterminals F€(j>, let I_, = {t | F(xO = > t.
r n Ul 1

:=p> ... TFY> £ f°r a H

t,€SN(l)}.

Page

To find each I effectively, let I be inducti

fined as follows:

i) Let I-, . * ft I t€SN($) and F(3c)->t€P}

ii) For any n>l, let I- ,. - I_ V {t i t€Sfl
— r , tlT 1 r , n

and there exists a tree t'€I-, such that
i? n,n

t' ==> t using some production G(3?)->s€P w

ice P and $ are finite, it is clear that for ever

L, and every F€$, 1^ can be constructed. By th
i? , n

iuctive definition of I_, , clearly
F,n

£ 1v 9 £ ••• £ SN(jJ$). Hence, for each F€<|, th

Lsts a least k« such that

ii) For all n > kF, I? ̂ - i,

ice, for any j>l, I- . . - 1^ , . One would lik

3W that in fact I_, . • !„, which is shown by the
F,kF F

llowing three lemmas.

ana 4,6,1; Given any tree grammar Ĝ CJI ,2, P, S) , an

1, any F€$, I p n C Ip.

P a j

Proof; By induction on n,

>ase case: Let t€I_ , • By the definition of !_,

:here exists a production F(x")->t€P where t€SN(|)

:hen F(xO ==> t and hence, I- 1 C !„.
U 1 r , 1 —• r

Inductive step: Let t€I .. By the definition

> e i t h e r t € IF,n ° r t € (IF .n+l^F n> ' I f
>y i n d u c t i o n , t € I r (. I f t € (I t ? . t - I w) , t h e n by

F F,n+1 F , n
iefinition, there exists a t €1-, and t 7?f> t u

where s,t€SN(|)o By induction we know

[F,n 5. XF^

such that for all i, l<i<n, t.€I . But then, by

Iefinition, tei-. Hence, I- ,. C I-.
r r , n*r 1 "~- r

Lemma 4.6>2: Given any tree grammar G=(J,i,P,S),

Proof: Assume t €1 such that t ^1 . . By the
"™——— " n r n r , iC-p,

iefinition of !„, F(lf) ==> t. ==> ... ==> t wher
r Ul 1 U 1 Ul n

aach i, l<i<n, t.€SN(i). Since t, is obtained in

ieyivation step, it must be the case that F(lt)->t

ind hence t-€I . More generally, for any j, 1<
1 r ,1

t .€1^ , and t. must be of the form G(x,,...,x') w
3 * > J J L ^
3«I, q^rCG), and xj , . . . f x ^ « r (p) . If t̂ = >

the definition of a derivation, there must exist

production G("x)->s€P such that t . =s (x' , • • • ,x") •

Assume s # S N (i) . C l e a r l y lywj jC s (x ' , . • . , x ')) ^ 1 whj

Pag

contradiction since t €SN((j>) . Hence s€SN(|).

hen by definition, t. ,€!_ .• Also, since k i
J T 1 r , n*r 1 r

east value such that for all n>k-, !„ = !« ^ . , ,
—- r r , n r , n*T" l

learly Ip jC Ip fc .

emma 4«6.3; Given any tree grammar G=(<8,i, P , S) , a

roof: This follows directly from lemmas 4.6.1 anc

.6.2.

The next step is to use I- to convert a tree
r

rammar G. to an equivalent tree grammar G« (undei

I derivation) which removes productions of the fc

(lt)->t where t€SN($).

Given a tree grammar G.= ($,i, P ,S), let
1 1

9s(Iji)^o)S), called the derivation renaming free

rammar of G, and denoted drf(G-), such that
2 i 1 V {F(*)->t

rhere t'^Y>t using G(x')->s€P1 and si8SN(S)}

rhere for each F€f, I- is defined using the tree
r

;rammar G. •

Example 4.6*2 : Let G.»(f,i, P. ,S) such that

$ - {S,F,G,H} where r(s)=0, r(F)-l, and r(G)*r<

i • {a,f} where r(a)=80 and r(f)«l; and

P =• { S - > F , F - > G , G - > H ,
1 II / \ / \ / \

a x x x x y y x

H -> F , H -> f } .
/ \ I / \ I

x y x x y x

Then, I - 0, I - { G , H , F },
S F / \ / \ I

X XX XX

I . = { H , F , G , H } and
G / \ I / \ / \

y x y y y y y

I - { F , G , H } .
H I / \ / A

XX XX X

Furthermore, G^^drfCG.) is the tree grammar

G2=(1,!,P2,S) where

P2 - { S -> F , H -> f , F -> f, G -> f

I / \ I I I / \ I
a x y x x xx y y

The next theorem and two lemmas show that

two tree grammars G. and G~ such that G~

LOI(G1> - L0I(G2>-

Lemma 4.6.4; Given a tree grammar G »(J,i,Plf

, and t2€Tp if tj_ ==>J

tl

>roof; By induction on n.

ase case: n^o. Trivial.

nductive step; t^ ̂ y> G £3 ^jy>Q t2 where

x = s[u <- PCSj, ... fs)] , t2 = s[u <- t(s]L , . • . ,s)] ,

(i?)->t€P1 and r(F)=
sq. Depending on whether or nc

(x')->t€P^, there are two cases:

ase 1: F(l?)->t€Po. Hence t. ==>„ to. By indue

3 tf>G2
 C2 and henCe fcl ff>G2 '2'

ase 2: F(3?)->tf8P2. Hence, by the definition of

€SN(<$). Since t2€T*C,
 it: must be the case that

1 ff>G1
 t3 ff>G1

 fc4 ̂ T>G1 ••' ff
>G1

 t ff> *
y>£ t2 where

i) j+m+1 - n where j>0,

ii) for all i, Ki<j, t ± + 2 = > G t i + 3 using s

production of the form G(l?)->t/€Pl such t

t'€SN(J)f

iii) t
1 + 2 O T > G t1+3 u s i n ^ some production

H(x)->tff€P1 where tfl*SN(J).

y the definition of I p, t.+2€IF* Hence, F(2?)->t"

ut then t1
 :5Y>Q t-+3* Since ra~n-(j+l), clearly

y induction t , . o ^r>^ to. Hence t. =>-, to.J+J 01 Go I 1 01 Go I

Lemma 4.6.5: Given a tree grammar G.

G2-drf(Cl), if S = > ^ t , then S ^ ^

Proof: By induction on n.

base step: n*0. Trivial.

i n d u c t i v e s t e p : S =>> t . = > t o where
1 1 1 *- U i (J« 1 U l Lr j L

t1«s[u <- F(s1 , • . . ,s)] , t2 = s[u <- tC s ^ . .

r(F)ssq, and F(x')->t€P2. By induction, S =

Depending of whether or not F(lc)->t€P , th

cases:

case 1: F('x)->t€P1. Clearly tĵ ̂ > G t2 a

is 1

case 2: F(lf)->ti8P1 . By the definition of

must exist a t/€I« such that t' 7rr>.o t us

G(lt)->s€P1 . By the definition of I_,, it m
1 r

case that F<*) ==> tj ==> tj = > ...

But then t^stu <- F(s t , • . . , s^)] ^ > G

s[u <- t'(Sj , . . . ,s)] ̂ f>G s[u <- tCs^..

Hence S = > ^ 4 .

Theorem 4.6.1; Given a tree grammar G=(35,.

G^drfCGj), then LOI^
G1 ̂ =sL0I^G2^ *

Proof: This follows directly from the defi

tree language, and lemmas 4.6.4 and 4.6.5.

Finally, to verify that the conversion of G

}~» using G =drf(G-), produces a tree grammar whi<

tot derivation renaming is the following lemma:

,emma 4.6.6: Given a tree grammar G»(3j ji^P* fS) ai
—————— • . x. i

J^^drfCG-), then Q is not a derivation renaming

grammar.

>roof: Assume G~ is a derivation renaming grammar

lence, there exists a production F(x')->t€P2 such

:6SN((j>). By the definition of P2> F(3t)->t€P1 onl;

:€(P1-{H(*)->t
/<8P1 I t'€SN(5)}) which is impossib

lence F(x")->t$P. and it must be the case that the

sxists a t'€IF such that t' ==> t using some prod

and s, t$SN(jjJJ) • But t€SN(J) which is a

contradiction* Hence G^ is not a derivation rena

grammar.

* «7 Erasing Grammars

This section investigates the types of "eras

:hat can exist in tree grammars. One form of era

jccurs when a production is an epsilon rule (i.e.

lonterminal or terminal symbols occur on the righ

side of the production). A second, more subtle,

>f erasing occurs in "nonconservative" tree gramm

\ tree grammar is considered nonconservative if t

exists a production p€P where a variable "x" o

the left hand side of the production p but not

right hand side. Furthermore, one would like

transformation which would remove these forms

erasing. Unfortunately, the author has not di

any transformations which will remove either f

"erasing" from tree grammars, and this problem

open.

Definition 4.7.1: Given a tree grammar G=((5,.i,,

production F(l£)->t€P is an epsilon rule if 1̂ -Xi
^L V

In other words, the right hand side must be a

tree labeled by some variable x€X,. The tree

*s epsilon free if and only if there does not

production p€P such that p is an epsilon rule.

Example 4.7.1: Let G =($,S,P,S) be a tree g

such that

| » { S , F } w h e r e r (S) = 0 a n d r (F) = l ;

2 « { a , f } w h e r e r (a) * 0 a n d r (f) « l ; a n d

P - { S - > F , F - > f , F - > x } .
II II
ax F x

I
x

Gi i s n o t epsilon free since

F -> x
I

Page

s an epsilon rule. Furthermore, when

S = > F ==> a

:he node labeled with the nonterminal F is "erasei

nition 4.7.2: Given a tree grammar Ga(l,l,P,S), <

luction F(lt)->t€P is considered conservative if ai

r if for all x€{x. , • . .,x /-c,\}, there exists a tre<

ress u€dom(t) such that t(u)=x. In other words, «

Lables which occur on the left hand side of a

luction also occur on the right hand side,

larly, the tree grammar G is Conservative if and

r if for every production p€P, p is conservative.

Example 4,7.2: Let G2*(|,2,P,S) such that

) - {S,F} where r(S)=0 and r(F)»3;

[- { a , b , f } w h e r e r (a O « r (b) a n d r (f) * 2 ; a n d

> - { S - > F , F - > f , F - > y } .
/ l \ / l \ / \ / l \

a a a x y z x z x y z

J2 is nonconservative since the rules

F ~> f and F - > y
/ l \ / \ / l \

x y z x z x y z

ire not conservative. The rule

F -> y
/l\

x y z

s also an epsilon rule and hence G. is neither

epsilon free nor conservative

4.8 Reduced Tree Grammars

This section investigates tree grammars wh

unnecessary productions in them. Tree grammars

contain productions that can not be applied to

sentential form, or tree grammars which contain

productions that will not derive terminal trees

tree grammars which contain both types of produ

are the objects of study in this section. When

tree grammar does not contain productions in ei

these forms, the grammar is said to be reduced,

a tree grammar G is considered reduced if and o

for every production p€P, there exists a deriva
*

such that S ~ > t. = > t~ where t. = > t- usin
*

production p, and t- ^y> t where t€L (G). In

words, the production p is used in some derivat

tree in the tree language generated by the tree

G.

A natural question to ask is if one can ta

tree grammar G, which is not reduced, eliminate

productions not used in any derivation, and pro

tree grammar G~ where the tree language generat

is identical to the tree language generated by

Page

[fortunately, the author has not discovered any

:fective method which will eliminate the unnecess;

roductions. The reason of failure is due to the

roblem introduced by "erasing" of noncoaservative

rammars. Hence, the problem of transforming tree

rammars into reduced tree grammars will be left oi

However, as shown below, this section does pr<

i effective transformation to produce a weakly re

ree grammar, A tree grammar G=($,2, P,S) is consi

>akly reduced if and only if for every production

lere exists a derivation such that S = > t. and

. 7Jy> t~ using the production p. In other words,

rery production p, there exists some sentential f

ich that the production p can be applied to it in

[derivation.

One should note that the methods used here ar

lalogous to those used by Harrison[78] to produce

educed string grammars. From a given string gram

irrison inductively builds a set W which contains

at of nonterminals which are derivable from the s

/mbol and will derive terminal strings. Then, us

, the productions eliminated are those which cont

Dnterminal that is not in W.

As mentioned above, one problem with tree

which does not occur in the string case is that

must concern oneself about potential "erasing11

introduced by nonconservative tree grammars. F

instance, in a nonconservative tree grammar, on

have a derivation of the form S ^rj> t, ==> t̂

i) t. » s[u<-F(s*,...,s)] where r(F)=sm,

F(l?)->t€P, and for some i, l<,i<m,

s1-s.[u<-G(s^,«,«,s')] where r(G)-q.

ii) t- * s[u<t(s. , . • . , s)] where for all w

Hence, by rewriting with the production F(!f)->t

nonterminal G (in the subtree s.) is erased.' T

classify when the nonconservative form of erasi

occurs, let D«, for all F€(g, be the set

,for all v€dom(t) t(v)^x.}.
1

To reduce a tree grammar G, a set R of

nonterminals is built which contains every nont

which can be rewritten in some sentential form.

R - {F€$ | S = > tl and ^ = > t2 using some

production F(lc)->t€P}. To compute R effectivel

inductively defined as follows:

Pag

i) let R° - {S | S->t€P}

i i) for any n M , l e t Rn * R11"1 V {H€<| | F€Rn"

F(lt)->t€P, u€dom(t), t(u)»H,

v€N+, vi is a prefix of u, and if

then

ince both <j> and P are finite, for every n^O, Rn c

onstructed. By definition, clearly R JC R £ •••

ence, there exists a least k <J <jj | such that for al

Me, R • R . Furthermore the following four le

khow that the inductively created set R is identi

o the set R«

emma 4 . 8 * 1 ; Given any t r e e grammar G^Cf , i . , P , S) , a

>0, Rn C R.

roof: By induction on n,

ase, cases:

1. R **0. Clearly, since there does not exis

production of the form S->t€P, there does

exist a start production. Hence, no

sentential forms can be derived and R =R«

2. {S}=R°. By the definition of R° , S->

then S = > t using S->t. Hence S€R.

inductive step: Let H€Rn • By definition, €

H€Rn or H€(Rn"hl-Rn) . If H€Rn, then by inducti

On the other hand, if H€(R n + 1-R n), then by def

there exists an F€Rn, F(ie)->t6P, t(u)=H, H(lt)-

and for all prefixes vi of u, if t(u)=G€<5, the

By induction, S r̂y> t, -jry> t~ where

t1
sss[v<-F(s1 , • . • 98)] , t 9-s[v<-t(s l t...,s)],1 1 m L 1 m

and t(u)=H. Clearly, for all ancestors of t(u

t(u) is labeled with a nonterminal, there exis

production G(l?)->s/6P where for some w€dom(s/)

s/(w)ssx. where ui is a prefix of v. But then

exists some derivation such that s[u<-t(s.,.•,

s [u<-tlf (s ,,.••, s)] where for some w€dom(tfl),
1 m

and for all proper prefixes y of w, tff(y)€i.

one can perform a rewrite on H and hence H€R.

Lemma 4*8.2: Given any tree grammar G^CJ,^.,?

S ^Y> n s[u<-F(s1,...,sm)] = > s[u<-t(s1,•..;

roof; By induction on n.

ase case: n»0 - trivial.

nductive step: S =?> s[u<-F(s,,..., s)] ==>
1 ' ' *• 0 1 1 m 0 1

[u<-t (s - , . . . ,s)] where r(F)=sm and n>l. By the
i . m *—

efinition of an 10 derivation, the derivation mus

f the form S ==>nl ^ = > t2 = >
n 2 t3 ==> t4 wher

1 = s[v<-H(s^,...,s')], r(H)=q, t2 = s[v<-t'(s^,...,s>t'€P, t'(w)=»F,

==sn9 ^
01>

n2 t", t"(z)-F, for all i, Ki<m,

fI(s' . . . ,s'))]] , and n1+n2«n-l. By induction, H€

or all proper prefixes yi of w in dom(t'), if

/(y)saG€i, clearly there must have existed a produ

(l?)->s/€P such that for some d€dom(s') s'(d)ssx .

he i^Dn. Hence, by definition, H€Rn.

emma 4.8,3: Given any tree grammar G^d ,i, P, S) , E

kroof; Assume F€R such that F#R . By definition c

here exists a derivation such that S = > t. = >

here t =s[u<-F(s,,..., s)] and t^^s[u<-t(s,,..•, s

y lemma 4.8.2, F€Rn. Clearly Rn £ R since for e

>k, Rn - Rn+1. Hence R C Rk.

Lemma 4.8.4: Given any tree grammar Ĝ Cfjj ,i,P

Proof; This follows directly form lemmas 4.8

4.8.3.

Example 4.8.1: Let Ĝ Cjjj ,5L,P , S) such that

1 « {S,F,G,H} where r(S)=0, r(F)=r(G)»l,

][- {a,f} where r(a)=*0 and r(f)-l;

P = {S->F, F->f, G->F, H -
I I I I I / \
G x x x x x y

Then, R°«{S}, R1-{S,F,G}, and R*{S,F,G}

Using R, the transformation of a nonredi

grammar G. to a weakly reduced tree grammar <

defined. Given a tree grammar G- =(<§ ,i, P , S)

G^^C^,1,P2,S) be the weakly reduced tree grai

(denoted wr(G1>) such that P2 = (P1

where R is defined on G-•

Example 4.8.2: Let G. be defined as in ex,

and G =wr(G.). Then

Page

->F, F->f, G->F}
I I I I I
G x x x x

The following theorem and lemma show that for a

> grammar Gj, ̂ x ^) * L^CwrCGj)) .

: Given any two tree grammars G, and

re GJ-CJ.S.PJ.S) and G^wr (GL)-(J ,1, P2 , S) , if

PG t then S Wl ̂
3f: By induction on n.

L c a s e : n*0« Trivial.

ictive step: S ̂ y>G t, 7rf>G t«. By induction,

=> t, • Furthermore, if t. =?>r, t0 using

)->t€P., then by the definition of R, F€R. But

i, by the definition of P2, F(l?)->t€P2. Hence

arem 4>8>1: Given any two tree grammars

Cl,I,P1,S), and G2=wr(G1)-(i,I,P2,S),

CG1> - L0I(G2>-

Proof: By the definition of a tree language,
*

L (G) = {t€T~ | S ==> t}. By lemma 4.8.5, i

S = > * t, then S = > * t. Hence L ^ C G ^ C L(

On the other hand, since Po C P., if S =p> t
L — 1 01 CJ0

•k

S :5f>G t and hence ^0I(G2) » L^CG^. There!

LOI(G1> = L0I(G2>-

For convenience, the remainder of this tl

assume that all tree grammars are weakly reduc

if it is not explicitly stated.

4.9 Weak Chomsky Normal Form

In a tree grammar, there is no "a priori1

the size of a right-hand side of a production,

can be simplified if these right hand sides ai

such that the number of terminal and nontermii

symbols occurring in the tree, are bounded by

two. This section presents one form of this t

tree grammar, as well as the method to transfc

tree grammar into this form.

Pa

A tree grammar G=(<jj ,i, P , S) is in weak Chomsk

normal form if and only if for each production p€

is in one of the following three forms:

i) FCx)->t where for all u€(dom(t)-var(t)),

t(u)€jj), and l*(t)»2;

ii) F(*)->f(xJ,...,x') where f€i, q=r(f), a*

all i,

iii) F(#)->x' where x'€Xr(F)

(Note: The notion of weak Chomsky normal form

originates from the definition of Chomsky normal

for context-free string grammars, see Chomsky[59]

In other words, the tree grammar G has the folio*

properties:

i) NT/T segmented,

ii) 2 - normal form, and

iii) derivation-renaming free.

Also, note that "erasing" in either form (via eps

rules or nonconservative productions) still exist

Example 4.9.1; Let ^ = (3^ ,>.,? l, Sĵ) and

G-=(J_,2,P7>S_) be tree grammars such that

ix •- {S1,S2,F,a,f} where r(S1>=0, r(S2>=0,

r(a)=O, and r(f)«2;

1. = {a,f} where r(a)=O and r(f) = 2;

P = { S ->S , S ->F , F->F ,
I I I I
a x ?

/ \
x x

F->x , f -> f , a->a};
I / \ / \
x x y x y

| = {S,,F} where r(S2>=0 and r(F)-l; and

P2 = { S ->F , F->F , F-
I I I I
a x f x

/ \
X X

Then, G, is in weak Chomsky normal form whi

not •

To show that one can convert any tree gra

into a tree grammar G^ such that G^ is in weak

normal form, we will use the above properties.

However, first one must show that these proper

sufficient in showing that a tree grammar is i

Chomsky normal form.

Page

nma 4.9.1: Given a tree grammar G=(f,i,P,S) such

is

i) NT/T segmented,

ii) 2 - normal form, and

iii) derivation-renaming free,

en G is in weak Chomsky normal form.

oof: Assume G is not in weak Chomsky normal form.

en there exists a production F(x*)->t€P such that

ither

1). for all v€(dom(t)-var(t)) t(u)€<j> and l«(t)

2) t*f(x',.•.,x') where q*r(f) and for all i,
1 q

3) F(*)->x/ where x'€X /t?.

nee G is NT/T segmented either

a) for all u€(dom(t)-var(t)) t(u)€(jj

b) t(6)€l and (dom(t)-var(t))={£}.

nee, the only way that F("x)-> t can not be in we*

tomsky normal form is if for all u€(dom(t)-var(t)]

u)^i, l,(t)>0, and l*(t)^2. Since G is in 2-nori

form, clearly l^(t)^2. Hence, it must be the

l*(t)=l. Since G is derivation-renaming free,

- {t | t€Tgj(XA) and l-.(t)»l}f which is a contr

Hence, G is in weak Chomsky normal form.

The method to transform any tree grammar

weak Chomsky normal form is as follows:

i) Let G? be the NT/T segmented grammar

ii) Let G~9***,G be tree grammars such t

in 2-normal form and for each G., 3£

Gi
ss(ii,i,Pi,Si) where G ^ r e d u c e d ^ G ^

for some n>2, Pt ,^P ,, and p. , is

form F(!?)->t such that

iii) G ^ =drf(G) where G ,, is in weak Chq-rl q . q-t-1

normal form.

To show that these transformations are co

the following three lemmas and theorem are pre

Lemma 4.9.2: Given any tree grammar G =(f-,i,P

where G. is NT/T segmented and in n-normal for

production F(!?)->t€P1 such that

t € o v e rlVl n-l^ r h s^ Pl^' a n d G
2
= s r e d u c e d

t/
gl >F

Pa;

:hen G is also NT/T segmented.

»roof; Assume G? is not NT/T segmented. Then, th"

exists a production G(l?)->s€P9 such that neither

i) For all u€(dom(s)-var(s)),s(u)€L.

ii) s(e)€i and (dora(s)-var(s))

Jy the definition of G2, P2»(P1-{F(lf)->t)}) V {S2

?(*)->S . (G. ,F(1f)->t), T(it)->EM_(G1 ,F(jf)->t)} whrhs 1 NT 1

O N T (t) . Since G, is NT/T segmented, clearly

;(lT)->s«5P1 . Clearly, by the definition of NT/T

segmented, S2->S]L is NT/T segmented. Similarly,

?(^)->t€P1 and G. is NT/T segmented, both

?(#)->S , (Gt ,F(lf)->t) and T(#)->EXTfT,(G1 , F(ie)->t)rhs 1 NT 1

sTT/T segmented. But then G(l?)->s must be NT/T

segmented which is a contradiction. Therefore G^

tfT/T segmented.

Lemma 4.9.3: Given any two tree grammars G- and G

G,"(ijijP,,S) is NT/T segmented and

(G1)
as(i,i,P2,S) , then G2 is NT/T segmented.

Proof: Assume G. is not NT/T segmented. Then the

exists a production H(l?)~>t€P2 such that neither

Pa

i) for all u€(dom(t)-var(t)), t(u)€(

ii) t(e)€l and (dom(t)-var(t)) = {6}.

Since G. is NT/T segmented, it must be the case t

I(lf)->t<8P1. Hence, by the definition of drfCG^,

aust be the case that for some t €I U such that H(
:

n H
:1 ff> tim> ••* W Cn and *n W * U S i n g G(1?)

* h e r e t , . . . , t €SN($) and s#SN(j$) . But t h e n

: n
s G (x | , . . • , x ') w h e r e q = r (G) and x ' . • . , x / € X A .

]1early, (dom(s)-var(s))=(dom(t)-var(t)). Depend

>s, there are two cases:

:ase 1: For all u€(dom(s)-var(s)), s(u)€|. Clea

Eor all u€(dom(t)-var(t)) , t(u)€<$ which is a

:ontradiction.

:ase 2: s(e)€i and (dom(s)-var(s))*{e}. Clearly

s(e)sst(e) which is a contradiction,

lence G~ is NT/T segmented.

uemna 4.9.4: Given any two tree grammar G. and G~

:hat G,*(!,i, P, ,S) is in n-normal form and

}=drf (Gj)3IC<j>,.>.,P2 > S) , then G« is in n-normal fon

Proof: Assume G9 is not in n—normal form. Then t

exists a production F(l?)->t€Po such that lr-v/-(t)>

2 JL v m
Since G. is in n-normal form, F("x)->tiSP1 . Hence,

aust be the case that for some t €I«, that F(l?) =F
m F 01

Pai

=> t2 = > ..• ==> tm and tm = > t using G(*)->s<

/here t ,t2,...,t €SN($) and s#SN($). But then

: *G(x j , • • • ,x') and t*s(xC,•.•,s') where q=sr(F) a

ĉ , . . . ,x'€XA. Clearly 1 ^ -(t)a8l^\/gC s) • However

since-G. is in n-normal form and G(l?)->s€P1 , 1"T1 1 2

/hich is a contradiction. Therefore G^ is in n-n

form.

Cheorem 4.9.1; Given a tree grammar G*(<jj ,i,P , S) ,

:here exists an algorithm to generate a tree grami

juch that L0-(G) * L0].(G') and G' is in weak Chom

lormal form.

>roof: By theorem 4.4.1,. there exists a tree grami

;uch that G is the NT/T segmented grammar of G. .

a0-(G,) * L Q T(G). By theorem 4.5.1, there exists

finite sequence of tree grammars G-,...,G such t

i) G± - (ii,I,Pi,Sj[) for all i, Ki<q;

ii) for each i, Ki<^q, there exists an n>2 s

that G -reduced (G ^ o P ^ . i) where Pi-pi€P

a production of the form F("x)->t and

iii) for all i, Ki<q, L
O i

(G
i
) = LOI(Gi-l);

iv) G is in 2-normal form.

By lemma 4.9.2, for all i, Ki<q, G± is also NT/

segmented. Let G'*drf(G). By theorem 4.6.1,

L0I(G') - LQI(G). By lemmas 4.9.3 and 4.9.4, G

also NT/T segmented and 2-normal. Since G' is K

segmented, 2-normal, and derivation-renaming fre

lemma 4.9.1 states that G' is in weak Chomsky nc

form.

4.10 Leaf-linear Tree Grammars

This section presents a restricted form of

grammars known as leaf-linear tree grammars. Tin

grammars are called leaf-linear because nontermi

can only occur as leaves on the right-hand side

productions in the tree grammar. In other words

tree grammar is leaf-linear if and only if the i

every nonterminal is zero. Furthermore, since t

of all nonterminals is zero, there are no variat

leaf-linear tree grammars.

The main reason that leaf-linear tree gramma

>f interest is that the class of tree languages

generated by leaf-linear tree grammars is identic;

:he class of regular tree languages (see Brainerd

>r Doner[70])# One should note that this result <

Leaf-linear tree grammars corresponds to the resu

ibout left-linear context-free string grammars (i

:he class of left-linear string grammars is ident

:o the class of regular string languages, see

iar-Hillel and Shamir[60]),

It is a well known fact that the class of re

:ree languages is strictly contained within the c

>f context-free tree languages (see Rounds[70]) T

result can easily be shown by the use of a pumpin

Lemma for regular trees based on the pumping lemm,

>resented by Rabin and Scott[59] (see Thatcher[73

Che .following theorem presents (without proof) a

>f the pumping lemma based on the assumption that

:ree language is generated by a tree grammar.

Cheorem 4.10.1: Given any tree grammar G=s(f,i,P,S

li(G) is regular, then for any tree t€L(G) such th

iepth(t)>sum{depth(s) | F(l?)->s€P}, there exists

t .,t2€T^(X1) and tô T-r- such that | var(t.) | = I var(t

Iepth(t2)>0, t = t1(t2(t3)), and for all n X),

t1[(t2)(t3)]
U€L(G).

Example 4«10«1: Let G=($,i,P,S) be a tree gram

that

$ » {S,F} where r(S)=O and r(F)=l;

1 - {a,f,g} where r(a)=O, r(f)-l, and r(g)=

P - {S->F, F->F, F-> g }
I I I I / \
a x f x x x

Then, L(G) is not a regular tree language, Th

the definition of a tree language, all trees i

are in the form

\ !
•
e

v 1
V_f

1
a

g
/ \

f
1
•
e

•

1
f
1
a

where n>0

Assume L(G) is a regular tree language. Hence

theorem 4.10.1, for any k>4 such that t€L(G) a

depth(t)=k, the theorem must apply* Consideri

possible values for t-,t^ and t«, there are 4

case 1 :

let t.=:

But then t.Kt-Xt-)]
1 2 3

n^k-1

g

which is not in L(G).

case 2 :

-k-1

let f-~where
/ \

k-1. n,

and n.+r

and

But then [(t2)(

which is not in L(G)

case 3:

Let t;

k-1

where n~>0 and n,+n»+n»s=k-l

But then

n*

k-1

which is not in L(G).

Page

then t,[(t9)(t.)]1 2 3

ch is not in L(G)•

ce, by theorem 4.10.1, L(G) is not a regular tree

guage.

orem 4,10.2: The class of regular tree languages

roper subset of the context-free tree languages.

of: Since the class of regular tree languages is

ntical to the class of tree languages generated t

f-linear tree grammars, there exists a leaf-linea

e grammar to generate any regular tree language.

1

Hence, since every leaf-linear tree grammar is <

grammar, the class of regular tree languages is

contained in the class of context-free tree lan$

From example 4.10.1, clearly there exists a

context-free tree language which is not regular.

Therefore, the class of regular tree languages j

proper subset of the class of context-free tree

languages.

4.11 Root-linear Tree Grammars

This section presents a restricted form of

grammars known as root-linear tree grammars.

Root-linear tree grammars are called roo.t-lineai

because nonterminals occurring on the right-hanc

of productions can only occur at the root. A

production F(lx)->t is root-linear if and only ii

lg.(t) = O, or l-(t) = l and t(S)€(j>. Similarly, a ti

grammar G*((j> ,i, P, S) is root-linear if and only j

every production p€P, p is root-linear.

A well known result is that the class of st

languages generated by right-linear string gramn

identical to the class of regular string languag

which is identical to the class of string langu*

generated by left-linear string grammars. Hence

Page

jht assume that the same results apply to leaf-li

1 root-linear tree grammars and hence, both gener

;ular tree languages. However, this is not the c

The tree language generated by a root-linear t

immar is called a coregular tree language and the

aainder of this section presents several results

3ut that the class of coregular tree languages (s

iold and Dauchet[76])• Theorem 4.11*1 shows that

ass of coregular tree languages is not contained

e class of regular tree languages. Theorem 4.11.

ssents a pumping lemma for coregular tree languag

ich can be used to test if a tree language is not

regular tree langua'ge. The section concludes wit

eorem 4.11.3 which uses the pumping lemma to show

at the class of coregular tree languages is a pro

bset of the class of context-free tree languages.

eorem 4.11.1; The class of coregular tree languag

not contained in the class of regular tree

nguages.

oof; Example 4.10.1 presents a root-linear tree

ammar and shows that the language generated by th

ot-linear tree grammar is not a regular tree

nguage. Hence, the class of coregular tree langu

Paj

:annot be in the class of regular tree languages.

The next lemma and theorem present a new res

*hich is believed to be the first known form of a

jumping lemma for the class of coregular tree Ian;

[one should note that Arnold and Dauchet[76] also

present a pumping lemma for coregular tree langua;

lowever, thier result is on language duplication

xnrelated to the lemma presented here).

Lemma 4.11.1: Given a root-linear tree grammar

*=($ >2,P, S) , any nonterminal H€<|> where r(H)=m, an

sequence of trees &.,•••,s €Ty, if H(s.,...,s) —

?(t.,...,t) where r(F)=q, then there exists a se

& • • • * t

q
>f trees t',.••,t'€Ty(X) such that t -t'(s- ,.•. ,

tor all i, Ki<q.

Proof; By induction on n.

pase case: n*0• Trivial. Let

Lnductive step : F (p .,..•, p) = > H(s.,...,s) =
"iBi>~~~~~~i~~a~'~~ii™~ -——-——— l m l q

iCCtj, . • . ,tfc) where r(F)=m, r(H)«q, and r(K)=k. B

Induction, there exists a sequence of trees

t",...,t"€TY(X) such that s «t"(p. ,.. . ,p) and s

Pag

or all i, l<.i<.q« BY definition of the last derî w

tep, there exists a production of the form H(l?)->

here j3(6)»K and H(s,,...,s) =z> j3(Sj,...,s) »

(tj, •..,(:.)• For all i, Ki<k, let t^ji/i (s l , . . •

ince G is root-linear, clearly, t.€T-r- for all i,

By substituting the values for s, through

(t l
1
f(p 1,... , P m) , •••, tJJ(plf . . . f p m)) for all

Hence, by lemma 2.8.2, for all i, l<i<>,

heorem 4,11,2 - The pumping lemma for coregular t

anguages: Given any root-linear tree grammar

= (3>,5L,P,S) ; any t€L(G) such that

epth(t)>sum{depth(s) I F(lt)->s€P}; there exists

i) some nonterminal F€j where r(F)*m,

i i) a t r e e t ' €TTT(X) ,
2. m

i i i) a s e q u e n c e of t r e e s t . , . . . , t €Tr-(X) , anc
1 m 2. m

iv) a sequence of trees s-,...,s €T-r-

uch that

a) t-t' [(tx , .". . ,ttn)(s1, . . . ,sm)]
 l

b) for all nM) t' [(1 1 , . • . , t^) (s 1 , . . . , s^)]
]

c) t ' [(t l f . . . , t m) (s L , . . . , s m)] ° +

t ' [(t l f . . . >
t
m) (

s
1 > - • • >

s
m) l

l

d) for all n>0 S ==> F[(t.,...,t)(s l t— 1 m 1

Proof; Since depth(t)>sum{depth(s) | F(lc)->s€P}

must be the case that some production is used m<

once, and the production will increase the deptl

tree generated* That is, it must be the case tl

S = > n i F(slf...',s) = >
n 2 F(s;,...,s') = > n 3

1 m > 1 m

t'(s^,•..,s^) - t where F € j , f o r a l l i , l < i < 3 , i

and t h e r e e x i s t s a k, l<k<m, such t h a t

d e p t h (s) < d e p t h (s ') and f o r some u € v a r (t ') , t ' (i

By lemma 4 . 1 1 . 1 , t h e r e e x i s t t r e e s t j , . « . , t su<

s ' = t . (s . , . . . , s) f o r a l l i , K i < m . By d e f i n i t e
i l l m — —

t ' [(t 1 > . . . , t i i) (8 1 s j] * t ' (S j , . . . , s m) and

t (s.,...,s))• But then t'(t.(s.,..., s) ,
m 1 m 1 1 m

tm(81>.i.fsm)) = t'(s^,...,s^). Clearly t'C

^ t'(sJ,..M8^) since t' (sj , . . . , s^)/u-s^f

t'(s.)*««,s)/u=sv, and depth(s,)<depth(s').

the above information, one can conclude that

1) S = > * F(s. ,...,s)
1 m

2) F(l?) = > + F(t. ,...,tm

1 m

3) F(l?) = > * t'(x. ,...,x)
I m

4) t /[(t 1,..-,t m)(s 1,...,s m)]°

t'[(t. 9 • •.9t)(s. , . . . ,s)]x tn l m

5) t - t ' [(t , t) (s p . . . , s)] 1 w h e r e
1 m l m

s l > # # # » s m € T 2 a n d t ' > t : l 9 * # * ̂ m 6 1 ^ ^ #

o show the remaining portions of the theorem, let

nductive hypothesis be that for any n M),

' t(t. f...,t X s - , . ..,s)]n€L(G) and S = > *
i m i m

[(tj,««*9t)(s,,.«.,s)] • Then, by using proof

nduction, the following cases exist:

ase case: n*0. By condition (1), S = >

(s 1 9««.,s) . By condition (3) FCs.^.^.s) = >
l m i m

' (s , , . . . ^)• Hence t #(s. y.«« 98)€L(G). By the

efinition of the n m-way composition, F(s. 9««« 9

[(t- , . . • ,t X s - , . . . ,s)] and t'(s ,...,s) -
l m l m l m

/ [(t t) (s s)]

nductive step: n>0• By induction, S = >

[(t 1 9««« 9t)(s1,»««,s)] • By condition (2),
1 m l m

lit, ,»««,t)Qs 1 ,«»«,s)J ^
1 m l m

(tx , . . . ,tm) [(tj^ , . . . ,tm) (Sĵ , . . . ,sm)]
n . By lemma 2

tm'[(tĵ , • . . »tm) (Sj , e « . ,sm)])• By inspection o

definition of the n+1 m-way composition, cle

F[(tlf...,t)(slf...,s)] n + 1 . By condition (31 m 1 m

F[(tx , . . . ,tm) (Sj f . • . ,8^)]
n = >

t'[(t,,o••,t)(s,,e««,s)] • By inspection

previous construction, clearly

t'[(t1,...,tm)(s1,...,sm)]
n+1€T^, Hence, by t

definition of the tree language generated by G

Theorem 4«11.3: The class of coregular tree la

is a proper subset of the class of context-fre

languages.

Proof: Since every root-linear tree grammar is

grammar, clearly the class of coregular tree 1

is contained in the class of context-free tree

languages. To show that there exists a tree 1

which is not a coregular tree language, consid

tree grammar G = ($,5, P,S) such that

| = {S,F} where r(S)=0 and r(A)=l;

1 - {a,f,g} where r(a)=0 and r (f)=*r (g) = l;

Page

P - {S->A, A->x, A->f}
II II
ax x A

I
g

tree language generated by G is the set of trees

form

where n>(K

n

lume L(G) is a coregular tree language. Then by

torem 4.11.2, for any t€L(G) where depth(t)>5, th<

;t exist trees 11 , t^ , t3€T^(X]L) where depth(t2)>0,

1I(t2)(t3)] , tx> t 1 [(t J (t J] ° * t 1 [(t 9) (t J] 1 , and

^, t1[(t2)(t3)]
tl€L(G). Let t€L(G) where

>th(t)s«2k+l for any k>2. Then, there are 5 cases

isider in choosing trees t., t«, and t^.

case 1 :

nl

where n.+n^+n^-k and n2>0. But then t.Kt^

have n1+n«<k nodes labeled by f followed by

labeled by g. Hence, t x [(t2) (t3)] °iSL(G) .

case 2;

t
2

where n.+n^^n^+n,=k and n«+n^>0« But then ii

Page

2
t~)(t~)] , there will exist n.+n~ nodes labeled. 1

followed by n~ nodes labeled by g, followed by n9

is labeled by f, followed by n~+n, nodes labeled 1

2
CLearly, the only way that fci I (t-)(t-)] €L(G) is

ler n «0 or n =0. Assume n «0. Then, there wouL

: nodes labeled by f followed by n«+n3+n,>k nodes

sled by g. Hence n^^O. By a similar argument,

). Therefore t x [(12) (t3)]
 2f8L(G) .

3:

re n 1+n 2=k and n 2>0. However, t 1[(t 2)(t 3>]

[t«)(t^)] and hence this case does not apply,

where n . + n . + n ^ k and n«>0« But then t.[(t 2)(

have k nodes labeled by f, followed by n.+n^<

labeled by g. Hence t [((t 3)]

C3 € TS

where n^+n^-k and n«>0« However,

t [(t) (t)] and hence this case cannot appl

fore, by theorem 4.11.2, G must not be a coreguh

language. Furthermore, since G is a tree grammai

ly the class of coregular tree languages is a

\r subset of the class of context-free tree

tages.

Chapter V

TREE PUSHDOWN AUTOMATA

This chapter presents a new model of a tre<

pushdown automaton, the (nondeterministic) bottc

tree automaton with tree pushdown stores (a TP]

short). The TPDA operates like a standard bott<

tree automaton, except that there is an internal

which consists of a finite sequence of tree pusi

stores (or simply tree stacks). TPDAs correspoi

the standard (string) pushdown automata, in the

manner that bottom-up tree automata correspond 1

(string) finite automata. In other words, each

stack is treated in the same manner as the stacl

pushdown automaton,' in that a TPDA can only rea<

Page 1?

oot of each tree stack, and nodes can be added

ed) or deleted (popped) at the roots of the tree

, «

Section one begins by presenting a TPDA using

ard conventions. Section two presents a

ified form of the TPDA where the current state,

iated with each read-head, always labels the root

ie corresponding tree stack. Hence, no explicit

ence of the states is needed and a "stateless"

pushdown automaton (a STPDA for short) is

• duced. The chapter concludes by showing that th«

i of tree languages generated by tree grammars

> an 01 derivation, the class of tree languages

ted by TPDAs, and the class of tree languages

•ted by STPDAs, are identical.

Tree Pushdown Automata

This section provides the definition of the tree

[own automaton (the TPDA). A tree pushdown

laton is a bottom-up tree automaton augmented witl

stacks, and the basic organization of a TPDA is

i in figure 5.1.1.

current states:
+-—+ + 4.
I s . I s 9 I . • . I
H—4T-H ^ - H :—H

input ti

tree stacks:

Figure 5• 1 • 1 : Tree pushdown automata

Note: For each read-head u., there is exact
corresponding current-state s., and one tree
p

Before describing a TPDA however, conside

following informal description of a bottom-up

automaton (for a more formal description of a

tree automaton, see Buchi and Wright[60], Eile

Wright[67], Doner[70], Thatcher and Wright[68]

and Moran[69], Brainerd[69], and Thatcher[73])

bottom-up tree automaton Aa(S,o,sn,Q) consists

of states S, a transition map 0 : tuples(S) ->

initial state s^, and a set of final states Q.

this discussion, consider the input tree t (to

shown in f i g u r e 5 . I . 2

Figure 5.1*2

Sample input t r e e t us ing ranked alphabet
/here r(a)=»0 and r (b) = 2

{a,

A bottom-up tree automaton scans an input tree

n its leaves, up to the root, verifying that the

at tree matches the pattern of the tree language.

Dther words, the leaves of the input tree t are

sidered as the starting points when scanning the

it tree t. Hence, below each leaf, a read-head (

cer) is located, and the current state associated

ti each read-head is the initial state s~. The

tial configuration of the bottom-up tree automato

graphically depicted in figure 5.I.3.

Reading (or scanning) the node immediatel

read-head (i.e. a leaf) will cause the corres

read-head to be advanced up to cover that node

instance, the results of using the transition

s1€o(sft,a), applied (sequentially) to each of

leftmost leaves in t, is shown in figure

5.1.4a - 5.1.4c. Note that the three leftmost

read-heads are now covering the corresponding

and that the states have been updated to s«.

Figure 5.1.3

Initial configuration of a bottom-up tree a
where dJ denotes a read-head.

Reading an internal node requires that re

cover each of its immediate descendants, and t

corresponding states match the definition of t

transition map o. For instance, if s2€o((s.,s

s^€o((s.,s^),b), then figures 5.1.5a - 5.1.5b

Pag<

Figure 5,1.4a

Configuration of bottom-up automaton after readi
node 11 using transition Sj€o(sQ,a)

Figure 5 • 1 *4b

Configuration of bottom-up automaton after readi
node 121 using transition s,€o(sn,a)

>rresponding updates of the bottom-up tree automa

>te that in the process of advancing the read-hea

rer the nodes labeled with a "b", the read-heads

>cated at each of its immediate descendants are nn

ito one.

Figure 5.1.4c

Configuration of bottom-up automaton after readi
node 122 using transition s,€o(sQ,a)

ra[: s

Figure 5.1.5a

Configuration of bottom-up automaton after readi
node 12 using transition s2^o((s. , s.),b)

Figure 5.1.5b

Configuration of bottom-up automaton after readin
lode 1 using transition s.j€o ((s ̂ , s^) > b)

The process of advancing and merging read-headi

lording to the transition map o, continues until

;her there is no more legal moves, or the acceptii

idition is met. An accepting condition occurs

inever the read-heads have been advanced to the r-

,e. there is only one read-head which covers the

>t) and its corresponding state is in the set of

lal states Q.

In a tree pushdown automaton, the bottom-up tr<

:omaton is augmented with internal memory. The f

the internal memory is a sequence of trees (each

le is called a tree stack), and each read-head ha

ictly one tree stack. Each tree stack is a tree

cined by a ranked alphabet p called the stack

alphabet• The stack alphabet does not have to i

distinct from the input alphabet i. Furthermor<

reserved constant J_ denoting the empty tree sta<

contained in P •

Intuitively, each tree stack is used to re]

the tree structure its corresponding read-head 1

scanned. In other words, when a TPDA is constn

accept a tree language generated by a tree grami

the idea is to maintain each tree stack such th;

tree stack is a subtree of some legal sentential

Furthermore, whenever the tree stack matches th<

right-hand side of some production p in the tre<

grammar G, the inverse operation of a derivatioi

will be performed on the tree stack using the

production p. Therefore, the general idea of ti

constructed TPDA is to have the read-heads advai

toward the root of the input tree, transform th<

stacks using the inverse operation of a derivat

step, until there is a single read-head at the

the input tree and its corresponding tree stack

one-node tree labeled by the start symbol of th<

grammar G.

Pag<

Having provided insight into the notion of a

:ack in a TPDA, a formal definition of a TPDA can

Lven.

>finition 5.1.1: A TPDA is a 7-tuple

- (S,I,p,&,so,i,Q) where

S is a finite set of states;

I is a finite ranked alphabet of input symbols;

p is finite ranked alphabet of stack symbols;

£ : ({sQ} x I)

V (tuples(S) x 1)

V ((S x Tp(x m) x tuples(p)) x {6}) -> 2
S

is a function called the transition map wher

m^maxfrCj}) | j$€p}, and o has finite domain;

sQ€S is the initial state;

J_€p is a reserved constant denoting the

empty tree stack; and

Q £ S is the set of final states.

The transition map o is defined such that all

ifinitions are one of the following two forms:

Shift—moves (read-moves):

i) (q,F)€&(s0$a) where q€S, F€T ,

r(a)=r(F)=0

ii) (q,F)€&((qlf...fqm)ff) where f€€i,

m=r(f)=r(F)>0, and q , q]L , q2 , . . • , qmS

Reduce-move (tree stack update only):

q1,t,(F1,^•,Fm)),6) where

t€T p(X m), FL,.oo,Fm€r, and q

To emphasize that (F.,...,F) is a look-back r

in the tree stack t, &((q ,t,(F ,...,F)),8) *

denoted as &((q ,t [[F ,.*.,F]]),6).
1 1 m

An instantaneous description (ID for shor

provides a "snapshot" description of a TPDA be

moves. An ID consists of a pair

(a,t)€2S X N X T p x Ty where t is the input

a is a set of triples of the form (q,u,p) wher

the tree address of a node covered by a read-In

its corresponding state, and p is the tree sta

associated with that read head. Also, if u is

with a zero, it denotes the position immediate

the leaf at tree address u (i.e. corresponds

starting position of a read-head). The initis

configuration of a TPDA is the ID

Page

(sn,u0,|) | u€leaf(t)},t) where t is the input tt

d the accepting configuration is an ID of the for

(q,§,J_)},t) where q€Q is a final state.

For example, let D^C S ,5L, p , b , 0 ,J[,Q) be a TPDA

ere:

S = {0,1,2,3};

i » {a,b} where rCa)*© and r(b)-2;

P - {F,a,b} where r(a)=*0 and r(b)»r(F)-2; and

Q = {2,3}.

If the input tree t is the tree shown in figui

1.1, then the initial ID is the instantaneous

scription

igure 5.1.6 shows a graphical representation of t

itial ID id,). The two possible accepting

stantaneous descriptions are id^ « ({ (2 , § ,J_) } , t)

3 = ({(3 ,£,J[) , t) which are graphically depicted j

gures 5.1.7a and 5.1.7b. Finally, an example of

stantaneous description which is neither an init]

accepting ID is

, = ({(l,ll,a),(2,12,F(a,b(a,a))),(0,2,|)},t) wh:

depicted in figure 5.1.8.

Graphical representation of an initial insta
description where | [denotes the position c
read-head and "tO,!" represents the correspc
state and tree state, respectively, associat
the corresponding read-head.

Figure 5.1.7a: Possible accepting instantane
description

Page

tSJ :3,J_

igure 5.1.7b: Possible accepting instantaneous
escription

Ial :1 ,a

a
E3:O,J[

: 2,

Figure 5.1.8

ample legal instantaneous description which is
either an initial or accepting instantaneous
ascription.

The computation relation I- £ ID x ID describes

manner in which the TPDA functions. Given two

tantaneous descriptions id- and id., id., h id~

ad as f fid1 yields id2
l f) if and only if one of the

following three condit ions are met:

(i)

ldj = ({ (s Q , u 0 , i) } V b , t)

id ? - ({ (q ,u ,F)} \ / b , t)

where b€2S X N x TT , u€dom(t), a= t (u) ,

r(a)=r(F)=O, and (q ,F)€^ (s Q , a) •

In other words, this type of move corresp

shift-move (or read-move) across the leaf u.

operation causes the read-head to be advanced

the leaf u, the state is updated to q, and the

tree stack is replaced by the one node tree st

labeled by F. All other read-heads, and their

and tree stacks, referenced by b, are unaltere

Graphically, this type of move is depicted in

5-1.9.

(ii)

i d j » ({ (q ± , u i f p 1) I K i < m } V b , t)

i d 2 - ({ (q , u , F (P l , . . . , p m) } V b , t)

where b€2S X N X V , u€dom(t), t (u)=f€ l

r (f) = r(F)=m>0, ui€dom(t) for a l l i , Kij<m

Page 1

fore:

a
a

: ter:

Figure 5.1.9

shift-move over a leaf where (q , F) 6 o (S Q , a) . Not*
ily the read-head which is being updated has been
town.

This type of move corresponds to a shift-move OA

nternal (non-leaf) node u. Beforehand, there an

-heads located at each of its immediate

endants, and the corresponding states, associatec

i each read head, match those defined by the

tsition map 6 (i.e. q.,q~,•••,q). After the mo^

•erformed, the read-heads are merged together int<

single read-head covering the node u, the s

updated to q, and the tree stacks are merge

by composing them together with a new root

F. As with the previous form of a shift-mc

other read-heads, and their corresponding s

tree stacks, referenced by b are unaltered,

of move is depicted in figure 5.1.10

before:

da b

after: Uj : q

•'X
F i g u r e 5 . 1 . 1 0

A shift-move over an internal node where
(q,P)6d((qlfq2),f)•

Pag<

.ii)

id1 = ({(q1,ufp(t1,...,tm))}Vb,t)

id2 = ({(q2,u,F(tl tB))}Vb,t)

S x N x T
where b€2 P, m»r(F), any sequence of

trees t^.-.jt^Tp such that for all i,

ti(g)=F±, and (q2fP)«i((qlfp [[Fj , . • . , F^]]) , 6)

This type of computation is a reduce-iove whe

iading takes place. Only the tree stack is modif

id the corresponding state is updated. Note that

latching" takes place on the tree stack j}(t,,...,

> verify that it is in the proper form to reduce.

:her words, for every occurrence of a variable x.

, the corresponding subtree of the tree stack mus

itch the tree t . Furthermore, this move require

lat for each tree t., ljĈ i<̂ m, the root of the tree

ist be labeled with the stack symbol F.• If a le

squence of trees t19««9t is found, which meets t
i m

jnditions, the tree stack is replaced with the tr

[tp.t.t) and the state is updated to q2«

raphically, figure 5.1.11 depicts a reduce-move o

lis form. Also note that if for some i, l_<ij<tn, t

ariable x. does not occur in p, then any tree t.,

lose root is labeled with the symbol F., can be c

L.e. a countable infinity of tree sequences t.,.

Lll satisfy the matching condition, thereby causi

infinite nondeterrainism).

b e f o r e : LfJ : q, , G

a b g b c

c d a g e

a

a f t e r : H j : q9 , F

a b g c

c d a

Figure 5 . 1 . 1 1

A reduce-move where (q 0 , F)€o((q - , G [[g ,

x b y

x y

(Note: The above transformation would be ill

the transformation was defined by

(q2,F)«6((qlf G [[g, g]]),e)

x D y

/ \

x y

since, for the tree t^-c, the root is not la

the symbol f)

Pag

An input tree t is accepted by a TPDA D if an

*
nly if there exists a computation ido I- id-, whe

is the transitive reflexive closure of I- , idc

he initial instantaneous description for the inpu

ree t, and id_ is an accepting instantaneous

escription of the form ({ (q , 6 ,J_) } , t) where q is a

inal state in Q. In other words, the accepting

ondition is both final state and empty tree stack

et N(D) be the set of all trees accepted by a TPE

ence,

(D) ={(t€T^ |

idg - ({(sQ,u0,J_) | u€leaf(t)},t),

idp » ({(q,6,0,0,

q€Q, and idg I- * idp}.

xample 5.1.1; Let D » (S,]E,P ,O,J_,Q) be a TPDA su

hat

S = {0,1,2,3,4};

1 = {a,f,g} where r(a)*0, r(F)»l, and r(G)»2;

T - {a,f,g,F,J[} where r(a) = r(i>-0,

r(f)-r(F)-lf and r(g)-2;

Q « {0}; and

o is defined by the following table where for e

input pair (a,b), the rows represent possible A

of a and the columns represent possible values

Furthermore, empty table entries represent

setSo

I

1 {

1

1
+—

a

(l , a)

f

i

1 { (2 , f)

1

1

1 {
—+—

g

(3 , g)

1

1

} 1
—+

(1)

(1 , 1)

(3 , g [[a]]) I | | |
/ \ I I I I

x x | I I |

(3 , g [[f]]) | I I I
/ \ I I I I

x x I I I I

(2) | I { (2 , f) } | I
+ + + +

(2 , 2) | I I { (3 , g) } |
+ j. + +

(4 , F [[a]]) | | | |
I I I I I
f i l l !
I I I I I
x | ! I I

+ + + +
(4 , F [[f]]) | I I

I I I I
f I I I
I I I I

x | I I

(4 , F [[]]) | I I
I I I I

a | I I

Page

Che language accepted by D is the set of trees of

:he form

/
f

I
f
I
a

For example, the tree g is
/ \

where n>0

f
1
f
1
a

f
1
f
1
a

accepted as follows:

({(0,1110,|),(0,2110,|)}, g) ^
/ \

f f

I I
f f

1 I
a a

({(1,111,a),(0,2110,J,)}, g) I-
/ \

f f

I I
f f

I I
a a

({ (2 , 1 1 , f) , (0 , 2 1 1 0 , I) } , g)
I / \
a f f

I I
f f
I I
a a

;) , (0 , 2 1 1 0 , 1) } , g) 1-

f
I
f
I
a

\
f
I
f
I

a

I
f
I

a

/ \
f
I
f

I
f
I
a

/

f
I
f
I
a

({ (2 , 1 , f) , (2 , 2 1 , f) } , g) t -

({ (2 , l , f) , (2 , 2 , f) } , g)
I I / \
f f f f
I I I I
a a f f

I I
a a

({ (3 , 6 , g) } ,
/ \

f f f
I I I
f f f

g)
\

f
I
f

F) } , g

i / \
f f f
i i i
f f f
i i i
a a a
F) } , g

I / \
f f f

I I I
a f f

1 I
a a
, g

I / \
a f f

I I
f f

I I
a a

|)}, g
/ \

f f

I I
f f

I I
a a

which is the accepting condition.

The meaning of determinism for a TPDA is if

is only one possible move (or transition) define

each read-head in every legal instantaneous

description. In other words, a TPDA D is determ

if and only if

i) For all input pairs (a,b), |o(a,b)| <

ii) All states used in reduce-ioves are n

in shift-moves. That is, if

(q2,F)€6((qlft [[F x , . . . , T?m]]) , 6) , ther

not used in a shift-move.

iii) If (q2,F)€&((qi,j3 [[F1,...,Fm]]),£) wfc

r(F)=sm, then for all i, l£i<.m> there

u€dom(j3) such that p(u)=x..

In other words, condition (i) guarantees that

no shift-shift conflicts, condition (ii) guara

that there are no shift-reduce conflicts, and

conditions (i) and (iii) guarantees that there

reduce-reduce conflicts. Also, condition (iii

that every reduce-move must be defined on a

conservative rule.

5.2 Stateless Tree Pushdown Automata

Quite often, a TPDA will be defined such

set of states S will be the same as the set of

stack symbols p. Furthermore, the current st

associated with every read-head will always be

symbol labelling the root of the tree stack,

there is no need to explicitly include the set

Page

ates S in the definition of a TPDA. Whenever thi

e case, a TPDA can be simplified to a Stateless t

shdown automaton (denoted STPDA) defined by the

tuple D » (2,P,&,J_) where

1 is a finite ranked alphabet of input symbols;

p is a finite ranked alphabet of stack symbols;

i : (UJxl)

V (tuples(D x S)

V (Tr(Xm) x tuples(D) x {6}) -> 2 P

is a function called the transition map where

m-max{ r(j}) | j3€P } > and o has finite domain;

J_€p is a reserved constant denoting the

empty tree stack*

Furthermore, the transition map o is simplify

om the TPDA such that all definitions are one of

llowing two forms:

ift-moves:

i) F€&(J_,a) where a€i, F€p , and r(a)=r(F)=0

ii) F€i((qlf...fa),£) where f€l, F€p ,

r(f)»r(F)=m>0, and q1,...,q

Reduce-move;

,...,Fm)),6) where F€p , m=r(F)

r (X m) > and Fl'---' Fm
As before, to emphasize the look-back nature c

(F1,.,.,Fm), &((tf(Flf...,Fm))f6) will be dene

The instantaneous description of â STPDA

SID) is a pair (a,t)€2N x T p x T^ where t is

tree, and a is a set of pairs (u,p) where u is

address of a node covered by a read-head, and

tree stack associated with that read-head. AJ

initial configuration becomes the SID

({(uO,X) | u€leaf(t)},t)-

The computation relation 1- £ SID x SID :

such that id- I- id^ if and only if one of thi

following three conditions hold:

i) idx = ({(uO,J_)}Vb,t)

id. = ({(u,F)}Vb,t)
L *

where b€2N X T p , u

r(a) = r(F)=0, and F€&(j_,a)

*

where b€2N X T p , u€dom(t), t(u)=a€i

Page 207

l< i<a}Vb, t)

i d - = ({ (u , F (p . p m)) } V b , t)
*• * l m

where b€2N X T p , u€dom(t), t (u) = f € i , F€p ,

r(f)=r(F)»m>0, ui€dom(t) for a l l i , Ki<m, and

F € o ((q . , . . . , q) , f) such that for a l l i , KKm,

p i (6) = q i *

idj = ({ (u , p (t 1 , . . . , t m)) } V b , t)

i d , = ({ (u , F (t . , . . . , t) } V b , t)
* m

N x T
where b€2 f j F€p , r(F)=m, any sequence of
trees t 1 tffl€Tp such that for a l l i , Ki<m,

t i (6) = F i , and F€^(p [[Fj , . . . , Fm]] , 6) .

the computations for a STPDA are identical to

a TPDA, with the exception that the explicit

s to states have been removed. Graphical

of each of these three types of moves are

in figures 5.2.1 - 5.2.3

lly, an input tree t is accepted by a STPDA if

*
if there is a computation id h id_ where

b r

e initial SID for the input tree t, and id is

rm ({ (6 ,J_) } , t) . More formally, the tree

accepted by £ STPDA £ (denoted N(D)) is the

Pa

before :

after:

Figure 5.2.1

A shift-move over a leaf where F€o(|,a). Note:
only the read-head which is being updated has t
shown.

Page 209

? A
a g e

I

: F

a b g

x \ '
c d a

F i g u r e 5 « 2 , 3

:e-move where F€o(G [[g , c]]) , e) .

x b y

A
x y

The above transformation would be i l legal if

insformation was defined by

VeU G [[g ,g]]) , e)

x b y

x y

for the tree t =c, the root is not labeled by

ibol f)

before :

after: LfJ : F

a b b f

/ \ / \
c d a b

Figure 5.2.2

A shift-move over an internal node where
F€6((q1,q2),f)•

(D)

idg = ({(uO,J_) | u€leaf(t)},t),

idp = ({<§,!),t),

and idc I- * id_}.

xample 5,2*1; Let D be the TPDA defined in exampl

.1.1. By converting the set of states S such tha

orresponds to J_, 1 corresponds to a, 2 correspond

, 3 corresponds to g, and 4 corresponds to F, the

f states S can be mapped bijectively to p . Henc

an be simplified to a STPDA D' such that

' = (i,p,o,J_) where i and p are defined as befoi

is defined as follows:

Page 211

1

(a)

>,a)

[[a]]

c

Kf 11

c

(f)

: f , f)

•

i

i

i

i
i
i
i

i
i
i

i

i
•

a

{ a }
•
1

1
i

1

1
1
1
i

1
1
1

1

1

f

{ f }

{ f >

1
•
1

1

1
1
1

wm — 4 - — -

1
1
1

1

1

g

{ g }

{ g }

•
1
I

1

1
1
1

1
1
1
•

1
1
1

1

1

6

{ F }

{ F }

I
I
I
I
+

[[]] I
I
I

1
1
1
1
1

1
1
1
1
1

1
1
1

1

1

1
U _ ~ _ — _ — — — —-J

1

{ F }

{ F }

ample, the tree g is
/ \

f
I
a

f
I
f
I
a

ad as follows:

({ (m o , i) , (2 1 1 0 , _ L)

/

1
f
1
a

S
\

)

1
f
1
a

({ (1 1 1 , a) , (2 1 1 0 , |) } , g) h
/ \

f
I

f

({ (1 1 , f) , (2 1 1 0 , |) } , g
I / \
a f f

I I
f f
I I
a a

({ (l , f) , (2 1 1 0 , |) } , g)
I / \
f f f
I I I
a f f

I I
a a

f
I

a

) f-

g
/ \

)

f
I
a

f
I
f
I

a

({ (l , f) , (2 1 , f) } , g)
I I / \
f a f f
I I I
a f f

Page 21

f) , (2 , f) } , g
I I / \
f f f f
I I I I
a a f f

g) } , g)
\ / \

f f f
I I I
f f f
I I I

F) } , g) ^
i / \
f f f
i i i
f f f
i i i
a a a

F) } , g) \-
I / \
f f f
I I I
a f f

I I
a a

F) } , g) I-
I / \
a f f

I I
f f
I I
a a

g
/ \

f f

I I
f f

I I
a a

which is an accepting condition.

Like a TPDA, a STPDA is deterministic if

if

i) for all input pairs (a,b), |6(a,b)| <

ii) If F€&(t [[Fx, •• . ,Fm]] ,6) where r(F)=n

G=t(t-,...,t)(6) for any sequence of
1 m

t1,...,tm€Tp where ti(6)=Fi for all

then G is not used in a shift move.

iii) if F€&(j3 [[F1,...,Fm]],6) where r(F)-n

for all i, l<i<m, there exists a u€dc

that j}(u)=xi.

In other words, there are no shift-shift, shii

or reduce-reduce conflicts.

Page 2

Equivalence To Tree Grammars

The purpose of this section is to provide proofs

how that the class of tree languages generated by

grammars (under an 01 derivation), the class of

languages accepted by TPDAs, and the class of tr

uages accepted by STPDAs are identical. These

Its are shown in four steps. Section 5.3.1 shows

every tree grammar (in weak Chomsky normal form)

be converted to some STPDA. Section 5.3.2 shows

every STPDA can be converted to some TPDA. To

lete the circle, section 5.3.3 shows that every

can be converted to some tree grammar. Finally,

ion 5.3.4 uses these results to show that the thi

ses of tree languages are identical.

However, before showing these results, this

ions starts by introducing an ordering on the

utation relation (in the same manner as done witl

erivations in chapter 3). The notions of a

utation with a postfix lower bound u and a

utation under a postfix ordering, are introduced,

hermore, it will be shown that any computation c*

onverted to a computation under a postfix orderii

To simplify the notation, let an updated

of a computation id. \- id9 (denoted URH(id

be a triple of the form (q,u,p)€S x N x Tp w

id]L,id2€ID; idx I- id2; and idx,id2 are in <

following three forms:

i) idj = ({(sQ,u0,i)}Vb,t) and

id2 = ({(q,u,F)}Vb,t)

where r(t(u))=0 and p = F

ii) idj = ({(q1,uifp1) I Ki<m}Vb ft) and

id2 = ({(q,u,F(Pl,,..,pm)}Vb,t)

where r(t(u))=m>0 and p=F(p1,...,p)
l m

iii) idj = ({(q/,u,p(t1,..-,tm))}Vb,t) an

id2 = ({(q,u,F(tlf.r.,tm))}Vb,t)

where m=r(F) and p=F(t ,,,,,t)

A computation with postfix lower bound 11

TPDA) is the relation hu : ID x ID, in which -<

computation can be performed in either the sut

or in some subtree to the "right" of t/u. Let

id-,id^ be two instantaneous descriptions, id-

if and only if idj h id2, URH(id1 h id2)=(q

some (q,v,p)€S x N x Tp , and u_<v where the r

is the postfix ordering.

Page

Similarly, a computation under â postfix orderi

m y computation such that the updated read-heads

i computation step are sorted by a postfix orderi

Dther words, given the computation

idt I- id2 I- ... J- idn for any n>l,

i) for each i, Ki<i,

URH(idi U id i + 1) - (qi,ujL,pi) for some

(q i , u i , p i) € S x N x Tp

i i) f o r a l l i , K i < m , f o r a l l j , i< j<m, u , < u .

— — — — !—. j
where <̂ is the postfix ordering,

a id I- id^ I- ... I- id is a computation und<

tfix ordering. Whenever a computation id- \- id2

h id is a computation under a postfix orderin

will be denoted as id, h1 ido h1 • • . h1 id .

1 z n

Using these definitions, it is possible to show

t computations can be commuted (to some extent)

never they are applied to independent subtrees,

s is shown by the following lemma.

ma 5.3.1: Given a TPDA D=(S ,2, p , 6 , sQ ,J_, Q) , any t

tantaneous descriptions id.,id^,id^€ID, for any

*, any nM), if idL I-U n id2 I- id3 where

(id^ I- ±d^) = (q,v,p) for some (q,v,p)€S x M x

and v<u (under a postfix ordering), then there

an instantaneous description id' such that

idx I- id^ I-U n id3 where URH(id1 \- id2>=(q,

Proof; By induction.

base case; id. \- ido* Trivial.

inductive step: idj l-u id2 P* n id3 \- id4 su

URHCidj J- id2) = (q2,u2,p2), URH(id3 I- ld4)-(.

and u^<u£u2. By induction, id. l-u id2 I- id'

such that URH(id2 I- id^) = (q4 , u4 , p4) . By the

definition of I- ,

id2 = (bj V b2 , t)

id^ = ({(q4,u4,p4)} V b2 , t)

where b. is one of the following forms:

i) {(s0,u40,J_)} where r(t(u4))-0

ii) {(qj,u4i,p4) | l<i<n} where r(t(u4))-

iii) {(q4,u4,p4)}.

By the definition of I-U,

idj - (bl V b3 V b4 , t)

id2 = (bj V {(q2,u2,p2)} V b4 , t)

where {(q2>u2,p2)} V b4 = b2, and

b^ is one of the following three forms:

Page

i) {(sQ,u20,_L)} where r(t(u2>) = 0

ii) {(q2,u2i,p2) I Kij<m} where r(t(u2))=m>0

iii) {(q2,u2,P2)}.

nee u,<uo, and u, is not a prefix of u o, clearly

U ±d'2 = ({ (q4 ,u4 ,p4)

nee

^ where 2

n id

mma 5.3.2; Given a TPDA D=(S,2, P,6,s , | ,Q), any
——— — — — — — — {J —

stantaneous descriptions idlfid^€ID, id1 I- id

d only if ±dl I-1 n

oof: By induction.

se cases: n^O and n=l. Both are trivial.

ductive step: assume id. 1- id« I- n id« where n;

d URH(id1 I- id 2)=(q 2,u 2 >p 2). By induction,

1 t- id2 I-1 id4 t-1 n""1 id3 where

H(id^ I- id ,)~(q , ,u, , p ,) • Depending on whether c

t u,^u^, there are two cases:

se 1 i \i~Ku, . By the definition of I- , clearly

1 ^ i d2 ^ n i d 3 '

i± 1± U 4 < U 2 * By l e m m a 5.3.1, id I- id' KU id4

at URH(id1 I- idp = (q4,u4,p4) and

H(id2 ^ id 4)=(q 2,u 2,p 2). By the definition of

early idt K1 id2
 1 n

2
, . , ,1 n+1 . ,erefore id. h id_.

To show that the other direction, assume

idj I-1 n + 1 id2. Clearly, by the definition o1

must be the case that id I- id-.

The same reasoning, as above, can be usec

STPDAs. The notions of a computation with pos

lower bound u, as well as a computation under

ordering are introduced*

Let an updated read-head of â computatior

id h id for a STPDA (denoted URH(id I- id

pair of the form (u,p)€N x Tp where id1,id2€

id. I- id9; and id-,id9 are in one of the fo!

three forms:

i) idx = ({(uO,i)} V b, t) and

id2 - ({(u,F)} V b, t) where p=F

ii) idj - ({(ui,Pi) 1 l<i<ni} V b, t) and

id2 - ({(u,F(Pl,.,.,pm))} V b, t)

r(t(u))-m>0 and p"F(p. , • • • yp)
1 m

wh

iii) id, - ({(u,3(t1 ,.•• ,t))} V b, t) an
1 » 1 m

id2 - ({(u,F(tx,...,tm))} V b, t) wh

r(F)-m and p = F(t.,•.., t).
1 m

Page 221

computation with postfix lower bound 11 for a

s the relation I-U £ SID x SID defined such that

two stateless instantaneous descriptions

€SID, idx l-u id 2 if and only if id 1 I- id 2 and

I- id 2) = (v,p) for some (v,p)€N x T p where u<,v

postfix ordering relation £•

milarly, a computation under £ postfix ordering

TPDA is defined such that for any computation

id 2 I- ..• I- id n, if

for all i, K i < n , URH(id. I- id..,)«(u.,p.)

for some u,€N and some p.€Tp

for all i, l<i<n, for all j , ilj£n, u ±<u

where <̂ is the postfix ordering relation

d. k id^ I- • . • I- id is a computation under

ix ordering. Also, whenever a computation id

I- I- id is a computation under a postfix

Lg, it will be denoted as id. I- id^ I- . •• l-

ing these definitions, the following lemmas are

:ed.

Pa;

emma 5.3.3: Given a STPDA D=(i, P , o , J_) , any thre*

stateless instantaneous descriptions id.,id^,id«€

:or any u€N*, any n>0, if idx t-U n id2 \- id3 whe

JRH(id2 I- id3) = (v,p) for some (v,p)€N x Tp and

[under a postfix ordering), then there exists a

stateless instantaneous description id' such that

JRH(id1 I- id£)=(v,p).

Proof; Analogous to lemma 5.1.1.

Lemma 5.3.4; Given a STPDA D=(S, P , o ,Ĵ) , any two

stateless instantaneous descriptions id.,id

Ldj I- n id2 if and only if idL I-1 n id2*

Proof: Analogous to lemma 5.3.2.

Since every computation can be converted to

computation under a postfix ordering, the remaind

this thesis will assume that all computations wil

jtnder a postfix ordering.

Page

\.l Converting Tree Grammars Into STPDAs -

This section shows that every tree grammar G c<

converted to a STPDA D such that ^ (G) = N(D).

>a used in this conversion resembles the conversi<

»d to convert a string grammar in Chomsky Normal]

a PDA where the moves of the PDA simulate deriva

sps and hence, the PDA accepts a string oc if and

it can simulate the derivation that produced the

ring oc (see Harrison[78], Lewis & Papadimitriou[*

lutzenberger[63], Chomsky[62], and Evey[63]).

/ever, due to the nature of the definition of a T

•e. a bottom-up parser instead of a top-down par

i method presented in this section simulates the

7erse of derivation steps and hence, simulates

rivations in reverse.

As mentioned above, the idea used in the

iversion of a tree grammar to a TPDA is to have e

iuce-move act as the inverse operation of an 01

rivation-step. Hence, the set of stack symbols i

* set of nonterminals in the tree grammar,

rthermore, the conversion maintains the property

r every read-head, if the subtree the read-head

inned is replaced by the tree stack associated wi

at read-head, and the input tree is in the tree

language generated by the tree grammar, the resi

tree is a sentential form. However, in order t<

nonconservative productions, the set of product:

also added to the set of stack symbols where a

production is an intermediate stack symbol used

simulation of derivation steps.

Definition 5.3.1: Given a tree grammar G=((|j,]E,P

weak Chomsky normal form, let the corresponding

D=(!,p ,&,i) where

P = 1 V P V { 1 } where JJ&<|i, r(J_)=O, and for each

production F(x)->t€P, r(F(lT)->t)=r (t (6)) ; ai

o is defined by the following four conditions:

(1) J

This condition states that if the input tree is

derivable from the start production, then the ii

tree should be accepted.

(2) if p = F(!c)->a€P where a€JE and r(a)=0, then

a)

b) for every tuple (G.,...,G)€tuple

r(F)-m, F€&(p [[Gj, ...,Gm]],6)

This condition simulates a derivation step of tl

F(t1,...,t) = > a using the production F(x")->a<
1 m 01

Page :

»rse of the derivation is simulated using two

>utation moves as follows: First, a leaf of the

it tree labeled by the terminal symbol "a" is rea

lg a read-move where the tree stack gets updated

one node tree labeled with the production F("x)->

lg the transition (F(5?)->a)€6(_L, a) • Then, the on

i tree stack is updated to the tree stack

, ,...,t) by performing a reduction using the

isition F€£((F(lO->a) [[G.,...,G]],6) where for a
1 m

Ki<m, ti(6)=Gi (see figure 5.3.1). One should n

t if F(lt)->a is a conservative production, the ab

:ess could have been done in a single transition.

*ver, instead of making separate conditions for

servative and nonconservative productions, both w

lied using two computation moves.

: F~>a

(i) The corresponding computation for tht

derivation step F=>a where F->a€P is a

conservative production.

a h ["al : F(lf)->a I- [a] :
c=p g A

(ii) The corresponding computation for tl

derivation step F(t.,«..,t)==>a where F<

is a nonconservative production.

Figure 5#3«1; simulation of a

derivation step using the production

(3) if p«F(*)->f(xJ,...fx')€P where f€i, r(f)=

r(F)=m, and for all i, K ij< q, x'€X , then

a) for each (G ,...fG)€tuple

p€i((Glf...,6),f)

b) for each (G-,...,G)€tuple

This condition simulates a derivation step of

F(tlf...ftm) = > f(t^,...,t') using the produ<

Page 22

>f(xj x') where r(f)=q and for all i, Ki<q,

=x ., then t'=t.. Like the previous condition, th

ation step is simulated by performing two

tation moves. First, the node labeled by f is

using the read-move defined by the transition

->f(xjf...fx'))€&((G1,...,G),f) where for all i,

, t'(6)=G.. Then, the second step uses a

e-move to introduce each tree

lf...,t }-{t',...,t'} due to the fact that the
1 m l q

ction F(Tf)->f (x', . . . • ,x') may not be conservative

ermutes these trees to the tuple (t,,«..,t) (see

e 5*3.2 below).

^
(F(s>->fu; %•

A • • • A
/t,\ t \

Figure 5.3.2: Simulation of the derivati

F(ti5...,t) = > f(t' ...,t') where f(t!1 m 1 q 1

= > f (Sj, . . . f 8) .

(4) if F(lt)->t€P where r(F)=m and t€T-(X), t
J) m

all tuples (G ,.•* ,G)€tuple

This condition simulates a derivation step of

F(t.,...,t) ===> t(t,,...,t) where t is a tr1 m 01 l m

by nonterminals and variables. The derivatic

simulated with a single reduce-move and is de

figure 5.3.3.

n : t(A , ... , A > I-

_\
u ... /t

Page

Figure 5.3.3: Simulation of the derivation step

) anF(t ,...,t) = > t(t.,...,t) wherel m l m m

iple 5.3.1; Let G=(|,i,P,S) where

i - {S,F,a,f,g} where r(S)=r(a)=0,

r(F)=r(f)=l, and r(g)=2;

>- - {a,f,g} where r(a) = 0, r(f)-l,

and r(g)=2; and

? is the set of productions

V
S -> F

: a -> a

P 2 :

P 5 :

F
1
1

X

f
1

X

- >

- >

F
|
1

1
X

f
1

X

F -> g
I / \
X X X

i -> g
\ / \
y x y

te: the tree grammar G generates the same tree

>uage as in example 5«1«1)« The corresponding

DA, as defined in definition 5.3.1, is D-(i,p,i,

P a j

*here 6 i s d e f i n e d as f o l l o w s :

Us [i]]f6> = m

&(J_,a) = { p 4 }

& (P 4 [[]] , e) - { 2 }

, f) - £ ((g) , f) = { p 5 }

p s [[S]] , 6) = ^ (p - t [F]] , 6) - Up* [[a]] , 6)
I I I

x

: p s [[f]] , 6) - 6 (p - K g]] , 6) - { f
I I I
x x x

S) , g) - £ ((S , F) , g) = ^ (

i ((S , f) , g) - & ((S , g) , g)

& ((F , F) , g) = . . .

Up, [[S , S]] , 6) = Up, t [S , F]] , g) = Up, [[S , a]] ,
I \ I X I X

x y x y x y

- U P , U S , ?]] , 6) = . . . = U P , [[g , g]] , 6) = {
/ X / X

x y x y x

U* [[1 1 , 6) = { S }

F [[S]] , 6) = Uv IIP]] , £) - . . . - U? [[g 1 1 , 6)
I I I
t t i

I I I
x x x

Page

> (g [[S]] , 6) = o (g [[F]] , g)
/ \ / \

C X X X

o (g [[g]] , 6) = {
/ \

XX

example, the d e r i v a t i o n
5 I P * ffP * Z?P ^ ffp ^

a f f f { f
I I I I I

A A A A A

a a a a a

\ 0 I / \ 0 I / \ 0 I / \

i i i i i i i i
A A A A

a a a a a a a a
simulated by the STPDA D as f o l l o w s :

C { (1 1 0 , |) , (2 1 0 , |) } , g) J- 2

/ \
f f
I I
a a

({ (1 1 0 , |) , (2 1 , a) } , g) I- 2

/ \
f f
I I
a a

({ (1 1 0 , |) , (2 , f) } , g) \
I / \
a f f

I I
a a

({ (1 1 , a) , (2 , f) } , g) \-
I / \
a f f

I I
a a

({ (1 , !) ,
I
a

f) } , g
I / \
a f f

I I

<{(e, g)}, g) I-
/ \ / \

! f f f
I I I I
a a a a

({(e, F)}, g) I-
I / \
! f f

i ' '
a a a

({(e, F)}, g) \-
I / \
a f f

I I
a a

({(e, S)}, g) \-
I \

f f
I I
a a

({(e,|)}, g)
/ \

f f
I I
a a

Lemma 5,3.5, lemma 5.3.6, and theorem 5.3.

(below) show that for any tree grammar G in WCN

the corresponding STPDA D defined by definition

N(D) = L n T(G). Lemma 5.3.5 shows that for any

t.€T* where t, ^Y> t̂ € TV, then for any tree

such that 8»s[u<-t2]f id. I- id^ where id, is

initial instantaneous description for the tree

the updated read-head of the last computation i

Pag

u,t.). Lemma 5.3.6 shows the converse of lemma 5

y showing that for any computation id- I- id~ wV

d- is the initial instantaneous description and t

ast computation produces the updated read-head (t
*

oY> S/U where s is the input tree. Finally, tin

•3.1 uses the results of these two lemmas to shov

esired result that N(D) - LQI(G).

emma 5.3.5; Given a tree grammar G=(f,i,P,S) in v

homsky normal form and the corresponding STPDA

=*(][,P,o,|) as defined in definition 5.3.1; any

€2N X T p ; any three trees t1,t2,t3€T^ such tha

«t3[u<-t2] for some u€dom(tj; any F€| where r(

nd F(l?)->t€P; any sequence of trees s.,...,s €T,

nd any n>0; if FCs^...^^) = > tCs^...^^) =j)

hen ({(uvO,i) | v€leaf (t2) } Vb , 11) h*

roof; By induction on n.

ase case: F(si»•'•>s
m^ KT>

 t2* B y inspection oi

efinition of G, F(3t)->t2€P where t2(6)=a€i and r<

y definition 5.3.1, p€&(j_,a) and

€^(p [[s1(6)>...,sm(6)]],6) where m-r(F). Hence

{(uO,i)}Vb,t1) t- ({(u,p)}Vb,t1) I-

{(u,F(Si,...,s))l m

Pa

i n d u c t i v e s t e p : F (s . , . . . , s) T T 7 > t (S , , . . . , S) 7—111 • ————— ^ m u J L 1 m u j

where n M . Depending on the form of F(l?)->t€P, t

are two cases:

case 1: t€T-g(Xm). By definition 5.3.1,

F€&(t [[81(S)->...>8m(6)]],£), and hence,

({(u,^(s1,...,sm))}Vb,t1) I- F(s1,...,sm))}Vb,t]

By induction, ({(uvO,J_) I v€leaf (t2) } Vb , t x) I- *

({(u,t(Sl,...,s))}Vb,t 1).1 m 1

case 2: t=f(x',...,x') where f€i, r(f)=q>0, and

a l l i , l < i < q , x i € X
m * F o r a 1 1 i f 1<L±<LCI > l e t s ^ s ,

x ^ - x . . B y d e f i n i t i o n 5 . 3 . 1 , p € & (s J (6) , . . . , s ' (6))

a n d F € & (p (x ^ , . . . , x ') [[s x (6) , . . . , s ^ C S)]] , 6) . H e n c

t- ({(ulP(s1,...f8fl))}Vb>t1). Clearly, by the

definition of ==>, for all j, Kj<q, s^ ^f>nj t

where 0<n.j<n. Hence, by induction, for all j, l<

({(uivj,0,J[) I j£i£q, v±€leaf(t2/i)}

V{(ui,sp i Ki<j}Vb,t 1) h *

({(uivi0,i) I j<ij<q, v1€leaf(t2/i)}

V{(ui,sp 1

Lemma 5.3.6: Given a tree grammar G=($,i,P,S) in

Chomsky normal form and its corresponding STPDA

D=(S, P ,^,J_) as defined in definition 5.3.1; any
*

N x T
b€2 P; any three trees t1,t2,t3 such that

t =t^ [u<-t2] for some u6doia(t J ; any F€$ where 1

Page

y s e q u e n c e of trees s 1 9 . « 9 9 s € T ^ ; and any n > 0 ;
1 Til vJ2

(uvO,J_) | v€leaf(t2)}Vbft1) I-
 n

(u,F(s1,.*.,sm))}Vb,t1), then FCs^.^s^) => t

oof; By induction on n.

se case: idn - ({(uO,I) } Vb,t.) t- 2

(u,F(s1 , . . . ,s))}Vb,t1) where to(g)=a€iand r(a) =l m l Z

inspection of definition 5.3.1, clearly F(lt)->a.

nee, F(Sl,...,sm) ==> t2.

ductive step: id- I- id? I- id^ where

i) | v€leaf(t2)}Vb,t1),

3 - ({(u,F(s1 , . • . jS^))} Vb, tj) , and n>̂ 2 . Dependi

the last computation performed, there are two ca

se 1: F€&(t [[s1 (6) , . . • , s (6)]],6) where t^T^Cx— — l m I m

d id2 - ({(u,t(s1,. . . ,sm))} Vb, t). By definition

3.1, it must be the case that F(!?)->t€P. Hence

S l ' # # * > S m ^ :of:> t ^ s l » * * # * s
m) *

 S i n c e t (s 1 , . . . , s m) 4

s19«.«9s) TTT> t̂ by induction.

se 2: F^(p(x;,..,,xM [[s (6) , . . . , s (6)]],6) whe_ _ l q l m

F(*)->f(xj,...,x')t f€2, r(f)=q>0, r(F)=m, and

,...,x'€X . For all i, Ki<q, all j, Kj<m, let
q m — — — —

»s . if x'-x.. By definition 5.3.1,

^((8^(6),...,s'(6)),f) which is the only way that

computable. That is, idx I-11"1 id^ \- id2 ^ i

ere id4 = ({(ui,s^) | K K q J V b ^ ^ and
({(u,p(s' ...,s'))} Vb, tj). From lemma 5.3.3

Pag

or each j , K j < q , ({ (u i v ^ , !) | j < i i q , v 1 € l e a f (t 2

' { (u l . s p I K i < j } V b , t l) I- n j

{ (u iv i 0 ,J_) | j < i £ q , V i € l e a f (t 2 / i) } V

(u i , s p | l<p i<_j}Vb,t1) where 0 < n . < n - l . Hence, b;

nduct ion , for a l l i , K i < q , s ' ==> t _ / i . Theref
— — 1 U JL Z

(s 1 > . . . , s m) ==> f (s ^ , . . . , s ^) = > f (t 2 / l

=> f (t 2 / l , t 2 / 2 , S 2 , • • . , s^) = > . . . = >

(t 2 / l » t 2 / 2 , . . . , t 2 / q) » t 2 .

heorem 5.3.1: Given any tree grammar G=($,>., P , S)

eak Chomsky normal form and the corresponding STI?

=(i,r,&,l) as defined in definition 5.3.1,

QI(G) = N(D).

roof: By the definition of a tree language,

(G) « {t I S = > t where t€Ty} . Let t€Ty be a

ree such that S ==> t. By lemma 5.3.5,

d
0
 = (KuO,i) | u€leaf(t)},t) I- * ({(6,S)},t). I

efinition 5.3.1, J_€o(S,6), and hence

{(6,S)},t) I- ({(6,X)},t) = idj. By definition,

(D) = {t€T^ | idg = ({(uO,l) | u€leaf(t)},t),

dF - ({(6,i)},t), and ids l-*ldp}. Clearly idQ j

nitial configuration and id. is a final configure

or D. Hence, t€N(D) and L (G) £ N(D). On the c

and, let t€T^ be any tree such that

d
0
 = (KuO,i) | u€leaf(t)},t) h* ({(6,i>},t) = j

y definition 5.3.1, clearly it must be the case t

Page 237

{(6,S)},t) I- idj. By lemma 5.3.6, S = > t.

nT(G) and N(D) C L n T(G). Therefore
0 X mmmm U X

N(D).

nverting STPDAs To TPDAs -

section shows that every STPDA D. can be

to some TPDA D2 such that N(D,) - N(D2>. The

in this conversion is to duplicate the symbol

at the root of the tree stack for its

ding current state.

n 5.3.2: Given a STPDA D,-(i, P,&, ,I), let the
"*"" — — — — — — — j[_ Ĵ —•

ding TPDA D2 = (p,!,r,&2,!,J_,{J_}) such that &2

d as follows:

if FCo^X.a) where a€]E, F€p , and r(a)=r(F)-0,

then (F,F)€o2(J_,a)

if P€i1((q1,...,qm)ff) where f€l, F€T ,

r(f)»r(F)=m>0, and q.,...,q 6p , then

(F,F)€o2((qi,...,qm),f)

iii) if F€&1(t [[Fĵ , . . . ,Fffl]] ,6) where F€T ,

F1,...,Fm€r, and t(6)f8Xm,

iv) if F€^1(t [[F ,...,F]],6) where F€p ,

F l ' - " > F m € r » a n d t<S)=xi

Ki<m, then (F ,F)€&, ((F, , t [[F,,...,F
— — Z I 1 13

Example 5.3,2; Let D ^ C S , p , ̂ 9±) be defined a

example 5.2.I. Then, the corresponding TPDA,

defined in definition 5.3.2, is D =(p ,5L, JH , &2

where c>9 is defined by the following table:

Page 239

a f g 6

i I {(a,a)} I I | |
-l~mmmmmmmmjjmitmmmam_m tr — ^, — «• — — M — — -4-riMM — — — — am — -•» I™.— — — — 1• —I — — — U

(a) | I { (f , f) } | I I

I I { (g , g) > I I

I I I I
I I I I { (F , F) } |
I I I I I

I I I I
I I I { (F , F) } |

I I I I

I { (f , f) > I I I

I I { (g , g) } I I

I I I I I
I I I I { (F , F) } |
I I I I I
I I I I I
+ + + + +

[[f]]) I I I I I
I I I I I
I I I I { (F , F) } |
I I I I I
I I I I I
+ + + + +

I t 11) I I I I I
I I I I {<!>_!_)} l
I I I I I
+ - _ • _ . , . — — _ „ - _ - — . . I.M. — — — — — — ^ „• ! . - — ^ J M 1 - - M , I _ J . I. . ^ •— - , - - I II— — — — — - | - — — — -j- — » ^ — — — —- — —. ̂ ^ ^ — — . ^ «« ̂ «» <a_ - p

ie following lemma and theorem show that every

jan be converted to a TPDA. The proofs are

and straightforward and have been omitted.

Lemma 5,3,7; Given a STPDA D = (_>, p , i , |) and

corresponding TPDA D2 = (P ,2, P , & 2 ,JL,i, (i>) as <

definition 5.3.2; any three trees t-,t^,t^^Tr

that t=t«[u<-t9] for some u6dom(tQ); any b-€

any b2€2
r" x N x T P ; any p€Tp ; and any n>C

{(uvO,J_) | v€leaf(t 2)}Vb 1,t 1) t- n ({ u , p) l

and only if ({(i.uvO.X) | v61eaf (t^} V b 2) I- n

({(p(6),u,p)}Vb2,t1).

Theorem 5.3.2; Given a STPDA D =(S,P,&,,I) an

corresponding TPDA D£ = (p ,1, P , ̂ 2 .!•!• {±}) as i

definition 5.3.2, N(D1)=N(D2).

5.3.3 Converting TPDAs To Tree Grammars -

This section shows that every TPDA D can

converted to a tree grammar G such that N(D) =

The idea used in this section resembles the me

to show that a PDA D can be converted to a sti

grammar G such that N(D) « L(G) where the nont

of the grammar encode information about the

instantaneous descriptions and the productions

how instantaneous descriptions are updated by

computation relation (see Harrison!78], Lewis

Papadimitriou[81], Schutzenberger[63], and Eve

Page 241

transform a TPDA into a tree grammar the method

to capture the changes on instantaneous

ions caused by a computation using the set of

nals. To accomplish this, a nonterminal

of three components. For any computation

d2 where URH(id. I- id2)=*(q , u , p) , the state q

current stack root p(6) of the updated

d (q,u,p) at tree address u are encoded in the

nding nonterminal to define the first two

tSt The third component of the nonterminal is

look-back references which is a tuple

ng previous instantaneous descriptions that

e existed in order for the current

neous description to exist. In particular, the

instantaneous descriptions encoded are the

ociated with the immediate descendants of the

node u. Furthermore, the third component is a

pairs consisting of the state and root of the

ck associated with each of the immediate

nts of that node (i.e. the same idea as the

o components of the nonterminal except they

e first two components of each of its immediate

nts) .

Page

Another way of viewing this transformation is

e nonterminals trace the history of how an

stantaneous description is reached. Loosely

eaking, a nonterminal (q,F,((q, ,F.),..•, (q ,F)))
11 mm

ates the following: Beforehand, there were m

ad-heads where each read-head i, lOL<m, had state

d tree stack s associated with it such that the

tree stack s. was labeled with the stack symbol

ter several computations, the m read-heads have t

rged together where the current state associated

e merged read-heads is the state q and the associ
ee stack is F(s.,...,s).1 m

To assist in the conversion of the TPDA into a

ee grammar, the definition below defines the func

e" where "lelf takes a tree t and returns a set of

ees (labeled by nonterminals) where each tree is

story of a computation which might have produced

ee stack t(s.,*««,s). Furthermore, each tree st1 m

can be arbitrarily chosen since the function lfle

ly uses the root of the tree stack s..

finition 5,3,3; Given a TPDA D=(K,2, P , &,qQ,J_,Q) ,

: K x Tp(xm) x tuplem(K x P)

(K x p x tuples(K x p))

p

T
M > 2

Page

the lookahead expansion function recursively defi

h that

le(q,t,((qi,F),...,(q F))) » t(6) if
1 1 m iu

{(q,t(g),((p1,G1),...,(pn,Gn)))(t1,.,.,tn) I

r(t(6))*n, ((plfG1),...f(pn,Gn))€tuplen(K x T

for all i, lOXn, if t(i)€X , then

(P1>G1)-(q .,F) where t(i)*x , otherwise Gj,=t

and t1€le(pi,t/i,((q1,F1),.,.,(qm,Fm)))}

otherwise.

In other words, the function lfle" is used to

cribe a long sequence of computation moves. The

putation being described started with an

tantaneous description where p of its read-heads

state q and the tree stack s. associated with i

some i, l^i^j such that the root of tree stack

F , and after a long sequence of computation move

p read-heads were merged into a single read-heac

re the resulting associated state and tree stack

nd t(s.,...,s) respectively. Hence, given that

ulting instantaneous description has a read-head

ated at tree address u, the function takes the

following three arguments: The state q associ

the read-head at u, the tree t where t(s.,•••,

the tree stack associated with the read-head a

the tuple ((q, ,F) , • . . , (q ,F)) where for all

s.(6)=F. and the state associated with the tre

s, is q.• Using the arguments, the function]

a set of trees labeled with nonterminals where

tree traces a possible history of how the tree

t(s.,.,«,s) was generated from the original s

tree stacks. In other words, it guesses the

intermediate states that the TPDA must have gc

through in order to produce the tree stack t(s

from the sequence of tree stacks s.,...,s •

Example; Let D=(K,5, P,o,qQ,Q) be a TPDA where

and a,f,F,g€P where r(a)=0, r(f)=2, r(F)=l, a

Then,

le(l,a,((2,f))) - {(l,a,0)},

le(l, 8 ,((2,a),(l,f))) = {(1, g , ((2,a),(
/ \ / \

x y x y

le(l, g ,((2,a),(l,f))) = {(1, g , ((l,f),(
/ \ / \

y x y x

d led, f ,((2,a)))
/ \

x F
I
f
I
x

,
\
,(
I

,(
I
x
,(
\
,(
I

,(
I
x
,(
\
,(

I

iltlon 5.3.4; Given a TPDA D=(K,i, p ,o , qQ ,J_,Q) , le

orresponding tree grammar G»(|,i,P,B) be defined

q€K, F€p , r(F)=m, and

((q1,F1),..,,(qm,Fm))€tuplem(K x p)} V

r((q,F,((q. ,F.),..•, (q ,F))))=m and r(B

and P is constructed as follows:

i) B -> (q,|,0) for all q€Q

ii) if (q,F)€&(qo,a), then (q,F,0) -> a € P

iii) if (q,F)€^((q1,...,q),f) then for ever
1 m

sequence of stack symbols F.,.««fF €p ,

(q,F, ((q1,F1) , . . . , (qm,Fm)))(lt)->f (It) €

iv) if (q2fF)€&((qirt [[F x , . • • , Fm]]) , 6) , the

every sequence of states p,»•••»? €K, e
1 tn

->t/ €

Note: Productions built by condition (i) essen

state that the goal is to go from an initial

instantaneous description to a final instantar

description. Productions built by condition (

that if the updated read-head was produced by

leaf, then the previous instantaneous descript

the current instantaneous description was prod

was an initial description and terminates the

Page 247

putation. Productions built from condition

tate that if a read-move was performed on an

1 node, the resulting updated read-head came

instantaneous description in a single move and

ated read-head should be broken down into the

tions of the m read-heads that were merged into

the read-move. Finally, productions built from

on (iv) state that if the updated read-head was

d by a reduce-move, the sequence of computations

by the pop on the tree stack must be guessed,

produces a production for each possible guess.

mma 5.3.9, lemma 5.3.10, and theorem 5.3.3

show that for any TPDA D and the corresponding

ammar G defined by definition 5.3.4,

L 0 T(G). Lemma 5.3.9 shows that for any

tion id]L hn id2 where idL is an initial

aneous description on the tree t and the last

tion produces the updated read-head

s.,...^)), there exists a tree
1 m

,F(s.,**.,s),0) such that t' ==> t/u. Lemma

shows the converse of lemma 5.3.9. It shows

r any tree t' €le(q , t" , 0) , if t' 7ry>n t€T"C, then

tree s€T-^ such that s = s[u<-t], id. I- id« where

the initial instantaneous description and the

dated read-head of the last computation is (q,u,t

nally, theorem 5.3.3 uses the results of these t̂

mmas to show the desired result that N(D)=L (G),

mma 5.3.9: Given a TPDA D=(K,2, P,&,qn, I ,Q) and t

rresponding tree grammar G=((B,i,P,B) as defined i

finition 5.3.3; any b€2K X N X T p ; any three

,t2,t3€T^ such that t.^t-[u<-t] for some u€dom(t

iy sequence of trees sl , . . . , s^Tp ; any n>0; if

(qo,uO,i) | u€leaf(t2)}Vb,t1) h n

(q,u,F(s-,...s))}Vb,t-), then there exists a tr

€le(q,F(s1 , . . . ,s),0) such that t" = > t~.

oof: By induction.

se case; ({(qQ,u0,X) I u«leaf(t2)}Vb, tj) h

(q,ufF)}Vbft1) where t2(6)=a€l and r(a)=0. By

:finition 5.3.3, (q,F,0)->a€P. Hence (q,F,0) ==>

Lductive step; id h id^ h id^ where

1=({(q0,u0,l) | u€leaf(t2)}Vb,t1) and

i3a({(qfUfF(s1,••.,s^))} Vbftj)• Depending on the

ist computation performed, there are two cases:

ise 1: ido-({(q4fuifs.) I Ki<m}Vb,t) where

[,F)€^((q1,...,qm),f) and r(F)=m. By definition <

, clearly for each j, l^j<m,

, V±€leaf(t2/i)} V

Page

m, vi€leaf(t2/i)}

: { (q i , u i , J [) | K i O j W b . t j) where 0<n <n . By

duction, for all 1, l£i<m, there exists trees

€le(q.,s.,0) such that t' ==> t,/i. By definiti

3.3,

,F,((q1,s1 (6)) , . . . ,

nee, (q , F , (((g

t l ' * * * ' t m) : 5T > f < t 2 / 1 » t 2 » t 3 ' * '* » t m) M> '" M>

t 2 / l , t 2 / 2 , . . . , t 2 / m) = t 2 .

s e 2 : i d - = ({ (q ' , u , t (s . , . . . , s)) } V b , t .) where— — z 1 m 1

, F) € o ((q ' , t I l 8 1 (6) , . . . t s m (6)]]) , 6) . By i n d u c t i o r

e r e e x i s t s a s e t of s t a t e s p. , . . . ,p €K such t h a t

ii) for each i, l<i<m, s^€le(pi,s±,0)

in) t»(s;,...,s;) ==> t2.

definition 5.3.3,

,F,((p1,s1(6)),...,(pm,sm(6))))(!f)->t"€P. Hence

= >

oTT>

mma 5>3>10; Given any TPDA D=(K,S, P , o , qQ ,J_, Q) an

rresponding tree grammar Gsa(J,i,P,B) as defined :

finition 5*3.3; any b€2K x N x T p ; any three

>t2|t3€T'> such that t. =t3 [u<-t2] for some u€dom(i

any tree t€Tp ; any q€K; any tree t ' € l e (q , t ,

n>0; i f t ' = > n t 2 , then

({(qo ,uvO,X) | v € l e a f (t 2) } V b , t 1) I- *

({ (q , u , t) } V b , t 1) .

Proof: By induction on n.

base case; (q,F,0) ==> a where (q,F)€o(q~ ,a)

(q,F,0)->a€P. Clearly, ({ (qQ ,u0 ,J_) } Vb , 11) I-

({(q,u,F)Vb,t1).

•n-4» 1

inductive step: t' z^f> t~. depending on t

derivation step, there are two cases (either e

production produced from a shift-move on an ir

node, or a production produced from a reduce-n

case U_ (q,F,((qi,sL(6)),...,(qm,sm(g))))(s^

=> f(s[,...,s;> = > n t2 where

-> f (x 1 , . . • , x ^)

i i) (q,F)€&((q , . . . , q) , f)
1 m

i i i) s ;61e(q. , t / i , 0) for a l l i , Ki<m

By the d e f i n i t i o n of ==>, c l e a r l y , for a l l i ,

s ' ==> i t - / i where 0<n.<jn. Hence, by inductj

each j , Kj<m, ({ (qQ , u i V i 0 ,_) | jj<i<m, v i € l e a i

V ({ (q j ^ . u i . t / i) | K i < j } V b , t 1) f- *

({ (q o , u i v i O , X) | j<i<.m, v i € l e a f (t 2 / i) } V

Page

[,ui,t/i) I Ki<j}Vb,t 1). Also, since

(q1,...,qm),f), clearly

Ki_<m}Vb,t1)

;q,u,F(t/l,...,t/m))}Vb,t1) where F(t/1,...,t/m)=

> t'(s[s^) ==>n t2 where

i) t/€le(q1,j3,((p1,s1 (6)) , . . . , (pm,sm)))

ii) for each i, l<i<m, s^€le(pi>t/i,0)

ill) (q;J!,F)€o((q1,p [[s l (6) , . . . , sm<6)]]),£).

induction, ({ (qQ ,uvO ,J_) | v€leaf (t2) } Vb, tj) k

[q. ,u,3(t/1,...,t/m))}Vb, t.). From above, clear]

[q2,u,F(t/l,...,t/m))}Vb,t1) where F(t/1,...,t/m}

iorem 5.3.3: Given any TPDA D=(K,i, p ,qQ ,J_,Q) and

rresponding tree grammar G=($,i.,P ,B) as defined i

Einition 5.3.3, LQI(G) - N(D).

aof; By the definition of L n T(G),

E(G) » {t€Ty I B = > * t } . By the definition of N(

D) = {t€T^ | ids = ({(qo,uO,i) | u€leaf(t)},t),

p - ({(q,6,i)},t), q€Q, and idg I- * idp} . Let t€

any tree such that B QY> t. By the definition o

>, and definition 5.3.3, there must exist a q€Q s

*
that B = > (q,l,0) = > t. Clearly

{(q»J_>0)} = le(q,J_,0). Hence, by lemma 5.3.11

({(qo,u,i) | u€leaf(t)},t) k* ({ (q , 6 ,JL> } , t) .

then, t€N(D) and hence L (G) £ N(D). On the

hand, let t€Ty be any tree such that t€N(D).

definition, ({(q0>u0,J_) | utileaf(t)},t) I-

({ (q,S,_O} , t) for some q€Q. By lemma 5.3.10,

exists a tree t' €le(q ,J[, 0) such that t' = > t

definition of le, t'=(q,JL,0). By definition 5

B = > (q,i,0). Hence t€LQI(G) and N(D) £ LQI(

Therefore LQI(G)-N(D).

5.3.4 Comparing Classes Of Tree Languages -

This section uses the three previous sect

theorem 4.9.1 from chapter four, to show that

of tree grammars, TPDAs, and STPDAs, are ident

For convenience of notation, let the clas

languages generated by free grammars under an

derivation, the class of tree languages genera

tree grammars in weak Chomsky normal form unde

derivation, the class of tree languages accept

TPDAs, and the class of tree languages accepte

STPDAs be denoted as C T G > C W C N F, CTp])A, and Cg

Page 25

ctively.

em

z_ By theorem 4.9.1, C T G £ C W C N F . By theorem

> CWCNF £ CSTPDA* B y t h e o r e m 5«3-2>

A £ CTPDA* B y t h e o r e m 5'3'3> C
TPDA ^

 CTG* H e n C €

CWCNF = CSTPDA = CTPDA.

Chapter VI

THE BUTLR(O) PARSER

This chapter presents a new construction m<

build deterministic bottom-up tree parsers for i

subclass of the context-free tree languages. Tl

of parser presented is a BUTLR(O) parser (a tre<

which parses trees bottom-up by lifting LR(0) p;

techniques for strings). Logically, the contro

BUTLR(O) parser can be viewed as consisting of

parts, a driver routine and three parsing table

figure 6.1.1). In constructing the BUTLR(O) pa

the parsing tables are dependent on the given t

grammar, and must be constructed, while the dri

routine remains the same for all tree grammars.

Page 2

I table | parsing
tree grammar — > | |-->

I generator | tables

a) generating the parsing tables

input tree

b) operation of BUTLR parser

Figure 6.1.1 : Layout of BUTLR parser

A BUTLR(O) parser is a different presentation of

STPDA. The transition function & of the BUTLR(O)

er is implicitly defined by a set of parsing tab]

rated from the given tree grammar. Furthermore,

e parsing tables can be viewed as a "compressed"

esentation of the transition map o.

In generating the BUTLR(O) parser, from a {

tree grammar, the tables are built to simulate <

derivation in reverse. Hence, the object of th«

construction method is to attempt to maintain ti

property that every tree stack corresponds to a

of some legal sentential form. This is done by

building a bottom-up tree automaton (called the

characteristic automaton) which parses each tre<

to recognize which sentential form each tree st;

could be a subtree of. Like an LR(0) parser, 01

BUTLR(O) characteristic automaton is built, the

BUTLR(O) parser can be constructed directly froi

characteristic automaton.

This chapter begins by presenting the BUTLI

parser in terms of its parsing tables and an exi

a BUTLR(O) parser. The chapter continues in se<

6.2 by presenting "characteristic trees11 and th-

corresponding characteristic automaton to parse

trees. The chapter concludes with section 6.3 i

presents the algorithm to convert the BUTLR(O)

characteristic automaton into a BUTLR(O) parser

the correctness of the BUTLR(O) parser construe

method, and presents some conjectures as to whe:

construction method will produce a deterministi<

BUTLR(O) parser.

Page

BUTLR(O) Parsing Tables

A BUTLR(O) parser is a machine which has a tre<

nit, uses tree stacks as internal memory, and usei

:ee parsing tables to define the transition funct:

>e figure 6.1.1). More formally, a BUTLR(O) parsi

a sextuple M=(G, K, shift, reduce, goto, start)

ire:

G * (<§,i,P,S) is the tree grammar defining

the BUTLR(O) parser;

K is a finite ranked alphabet of parser states;

shift : tuples(K) x j[-> KV{error} is a function

defining the parsing shift table;
p

reduce : K -> 2 is a function

defining the parsing reduce table;

goto : tuples(K) x (§ -> KV {error} is a function

defining the parsing goto table; and

start€K is the initial state and denotes

t^e emPty tree stack.

As mentioned above, a BUTLR(O) parser is just

Eferent presentation of a STPDA. Hence, an

stantaneous description of a BUTLR(O) parser (den

}) is the same as for a STPDA. An instantaneous
*
N x Tscription consists of a pair (a,t)€2 K x TT-

sre t is the input tree and a is a set of pairs (

Page

ire u is the tree address of a node covered by a

Ld-head and p is the corresponding tree stack

jociated with that read-head. Likewise, the init:

lfiguration of a BUTLR(O) parser i s the instantam

scription ({(uO,start) 1 u€ lea f (t) } , t) where t is

le to parse.

The decision relation h, C SID x SID of a BUTL
d —

:ser M=(G=((j) ,i.,P , S) , K, shift, reduce , goto , star

the computation relation for the BUTLR(O) parser

i determines the next move of the BUTLR(O) parser

/ever, before describing this relation, let me

iroduce a help function
T (X)sleton : Tr-ys(X) ->2 K m which generates a set

»es where each tree can be viewed as a possible

Ld-card match to a production's right-hand side.

ren any tree t€Tyy»(X),

skeleton(t) = {sST^CX) | dom(t)=dom(s),
K. m

t(u)»s(u) if u€var(t), and

r(t(u))=r(s(u)) for all u€dom(t)}

Note: This function is used to perform the

corresponding operation on a STPDA, as the opera

of popping n symbols from the stack in a LR(0)

parser when reducing on a production A.-> oc where

length(oc)=n.

Pag<

[a m p l e 6 . 1 . 1 : L e t G^C <j) , i , P , S) b e a t r e e g r a m m a r s i

Lat

3> - { S , F } w h e r e r (S) = O a n d r (F) = * l ;

1 - { a , f , g } w h e r e r (a) = O , r (f) - l , a n d r (g) = 2 ; «

P = { S - > F , F - > F , F - > g } •
II II / \
ax f x x x

I
x

i r t h e r m o r e , assume t h a t t h e s e t o f p a r s e r s t a t e s 1

' f i n e d such t h a t K = { 1 , 2 , 3 , 4 , 5 , 6 } where r (l) = r (2) = i

; 3) = r (4) = r (6) = l , and r (5) = 2 . Then, by the above

i f i n i t i o n ,

s k e l e t o n (F) - { 3 , 3 , 4 , 4 , 6 , 6 } ,
I I I I I I I
a 1 2 1 2 1 2

s k e l e t o n (F) = { 3 , 3 , 3 , 4 , 4 , 4 , 5 , 5 ,
I I I I I I I I I
f 3 4 6 3 4 6 3 4
1 I I I I I I I I
X X X X X X X X X

and skeleton(g) • { 5 }.
/ \ / \

XX XX

Having defined the function "skeleton", the

jcision relation is defined as follows: Given an

istantaneous descriptions id. and id^, id1 K id«

nd only if one of the following conditions hold

i) id = ({(uO,start} Vb,t) and
1 *

id2 = ({(u,q)} Vb,t) where b€2
N X TK

u€dom(t), t(u)=a€i, r(a)=r(q)=O, and

shift(start, a) = q.

ii) ±dl = ({(ui fp 1) I K i < m } V b , t) and

id2 = ({(u,q(P l,...,p m))} Vb,t) where

b € 2 N X TK, u€dora(t), t(u)=f€i, q€K,

r(f)-r(q)-m>0, for all i, K i < i , ui€d

q4, and q==shift ((q 1 , . . • , q) , f)

1 ————— JL m

iii) id1 = ({(u,jJ(t l f...,t m)}Vb,t) and

id2 = ({(u,q(t 1,...,t i a))}Vb,t) where

b€2 N X TK, q€K, F€$, F^S, r(q)-r(F)»

sequence of trees t,,. ..,t €TT, such t
1 I is.

all i, Ki<m, ti(6)-q1,

F(-3t)->s€reduce(3(t1 , . .. ,t)(§)),

p€skeleton(s), and if r(F)=0, then

goto(start,F)=q, otherwise

goto((q ,... ,q) ,F)=q
l in

iv) i-^ = ({(6,j3),t) and id2 = ({(6 > Start

where S->s€reduce(j3(6))> and j}€skelet

In other words, condition (i) is a shift-move

leaf of the input tree, condition (ii) is a sh

over an internal node, condition (iii) is a re

Page 21

I on the production F(lf)->s, and condition (iv) ii

luce-move on the start production S -> s. Note

condition (iii) is not as complicated as it looki

»ver the function reduce, defined by the state

.ling the root of the tree stack, has the

iction F(lf)->s as one of its elements, and trees

lgh t can be found to match occurrences of its
m

ibles where only the skeleton of s must match the

j3 and all occurrances of tree t. corresponding t

:ions of x. are identical, then a reduction can b

>rmed. Should a reduction be performed, the symb

used to reunite the trees tt through t and is

1 m

rmined by using the goto function on the roots of

:rees t.,«««,t and the nonterminal F.

By the above definition, one should also note th

iifference between the computation relation I- fo

PDA, and the computation relation K for a BUTLR(

*r is that the reduce-move defined by an entry in

reduce parsing table and the goto parsing table

le a set of possible computations using I- • Henc

reduce and goto tables are a compressed

asentation of a set of reduce-moves in a STPDA.

Pag

A BUTLR(O) parser is considered well def ined

nd only if the BUTLR(O) parser is deterministic (

s conservative and does not contain any shift/red

r reduce/reduce conflicts). In other words, a

UTLR(O) parser is well defined if and only if

i) G is conservative

ii) for all k€K, jreduce(k)|<1

iii) for all f€][where r(f)=n, for all tuples

(kx,...,kn)€tuples(K), if

shift((k1,...,kn),f)€K, then for all i, 1

reduce(k.)=0«

iv) For all a€i where r(a)=0, for all states

if shift(k,a)€K, then reduce(k)=0.

ote that condition (i) protects against infinite

ondeterminism embedded in the definition of a

educe-move, condition (ii) guarantees that there

ot be any reduce/reduce conflicts, conditions (ij

uarantees that there will not be shift/reduce cot

n a terminal symbol with rank>0, and condition (J

uarantees that there will not be a shift/reduce

onflict with a constant terminal symbol.

Page

Acceptance of an input tree t occurs if and on

the BUTLR(O) parser can reach the root of the ir

ee and have an empty tree stack. More formally,

ee language accepted by ji BUTLR(O) parser M, dene

M), is the set

N(M) - {tei-r; I ({(uO,start) | u€leaf(t)},t)

I-* ({(6,start)},t)}

ere K is the transitive reflexive closure of K
d d

ample 6,1.2; Let G=(l,i,P,S) be the tree grammar

fined in example 6.1.1. The language generated t

trees of the form

where n>0

e BUTLR(O) parser M to recognize G is the tuple

(G> K> shift, reduce, goto, 1) such that

K = {1,2,3,4,5,6} where r(l)«r(2)«0,

r(3)-r(4)-r(6)-l, and r(5)=2; and

shift, reduce, and goto are defined by the foll<

tables where blank (or omitted) entries represei

error values:

shift reduce

a f g
+ + + +

1 1 2 ! I I
H + + +

(2) | | 4 | |

(2 , 2)

(2 , 4)

(4 , 2)

(4 , 4)

(4)

| 5 |
+ +
| 5 |
+ +
| 5 |
+ +
| 5 |

: S->F >i
i i
a I

:*•-> g > i
i / \ i
XX X I

: F->F }i
I I I
x f |

I I
x I

(2

(4

For example, the tree t - g is accepted
/ \

f f
I I
f f
I I
a a

({(1110, 1), (2110, 1)}, t) K,

({(111, 2), (2110, 1)}, t) t-d

({(11, 4), (2110, 1)}, t) K

({(1, 4), (2110,1)}, t) K
!
4
I
2

({(1, 4), (211, 2)}, t) h,

4

Page

I, 4), (21, 4)}, t) K
I I
4 2
I
2

1, 4), (2, 4)}, t) \-d

4 4

1 I
2 2

5, 5)}, t) k
/ \ d

4 4

I I
4 4
1 I
2 2

6, 6)}, t) k
I
4
I
4

6, 6)}, t) K
I
4
I
2

6, 3)}, t) K
I
2

8, 1)}, t) which is the accepting condition.

ilarly, the tree t = g is rejected as follows:
/ \

f a
I
a

({(110, 1), (20, 1)}, t) l-d

({(11, 2), (20, 1)}, t) ^

({(1, 4), (20, 1)}, t) k
I
2

({(1, 4), (2, 2)}, t)
I
2

The parse fails at this point since there are

legal moves, and none of the above instantaneo

descriptions is an accepting condition. Furth

the BUTLR(O) parser is well defined (i.e. is

deterministic)•

6.2 The BUTLR(O) Characteristic Automaton

As stated earlier, a BUTLR(O) parser M is

generated using a construction method which li

techniques used in LR(0) parsers. Therefore,

to find a way to generate M, the new construct

method should try to maintain the property tha

input tree t, if the subtree t/u is scanned by

BUTLR(O) parser, and its corresponding tree st

represents some tree s T̂-r-w-«, then the followi

conditions should hold:

Page 267

if t€L(G), then S = > tn[u<-s] ==> t

*
there exists a tree t €TN- such that S ===>

t"[u<-s] = > t'.

r words, the construction method should maintain

perty that every tree stack, in an instantaneous

tion, corresponds to the subtree of some legal

ial form* Condition (i) states that this will

case whenever the input is legal while condition

ates that even if the input tree is illegal,

till exists some tree t' such that the tree

is a legal subtree of the corresponding legal

ial form.

other way of viewing the above condition is that

struction method should produce a BUTLR(O)

where every reduce-move will be defined to

the inverse of some 01 derivation step, and the

of every possible 01 derivation step is defined

reduce-move. Hence, for any sentential form

t.,...,t)] and any production F(lt)->s€P, if the
l m

instantaneous description contains the tree

(t.,...,t), the construction method should
1 m

a reduce-move such that the tree stack

.,t) will be updated to F(t,,...,t). Tom 1 m

ish this, one must have a way of recognizing all

possible stack configurations in which a reduce

should be defined (i.e. when the reverse of an

derivation step should be performed). The set

stack configurations for which a reduce-move sh

defined is the set {sCt.,...^) | S = >

t[u<-F(t. , . . . ,t)] = > t[u<-s(t , . . . ,t
l m u JL i m

Ea

s(t-,...,t) in the set is called a characteris

and the set will be denoted as CT^.

If one is able to lift LR(0) parsing techn

verbatim, one would expect the set CT to be re

However, this is not the case as shown by the f

theorem:

Theorem 6.2.1: The class of languages defined b

characteristic trees of tree grammars is not co

in the class of regular tree languages.

Proof : Let G = ((j) ,i, P , S) be a tree grammar s.t.

$ = {S,F} where r(S)=0 and r(F)-l;

I = {a,f,g} where r(a)=0, r(f)-l, and r(g)=2

P = {S->F , F->F , F-> g }.
I I I I / \
a x f xx x

I
x

By definition, any tree t€CT_ is in one of the
Car

following two forms:

Page

where n>0

where n>0.

Clearly, by theorem 4.10.1 which presents the

ping lemma for regular tree languages, there exis

ufficiently large n such that trees of the second

n can not be regular. Hence CTn can not be regul

Having failed to lift up to characteristic tree

corresponding fact that characteristic strings a

ular in LR(0) parsers, a natural question to ask

t class of tree languages the characteristic tree

Is into. It turns out that the class of

racteristic trees generated by tree grammars is

tained in the class of co-regular tree languages.

To show this fact, the following pages present

construction method which takes any tree gramn

produces a root-linear tree grammar Cr which g

the set of characteristic trees CTP.

Like an LR(0) parser, the method used to

Cp is to create a new set of nonterminals usir

"production slices" where a production slice i

generalization of the concept of a marked prod

Given a tree grammar G=($,i,P , S) , a produ

slice is any pair (F(lc)-> t, U)€P x 2 N such th<3

following four conditions hold:

i) F(x)->t€P

ii) U £ dom(t)V{uO | u€const(t)}

iii) for all u€U, there does not exist a \

that v is a proper prefix of u

iv) for all u€(var(t)V{uO | u€const(t)})

exists a v€U such that v is a prefix

Furthermore, let ps(P) be the set of all prodt

slices defined on the set of productions P.]

words,

ps(P) = {(p,U) | (p,U) is a production slic

Page 27

le 6.2.1; Let G = ($,][, P , S) be defined as in exampl

Then,

(P) = {(S->F,{10}), (S->F,{1}), (S->F,{6}),
I I I
a a a

II II II
X f X f X f

I I I
X X X

(F - > g , { 1 , 2 }) , (F - > g , { § }) } .
I / \ I / \

X X X X X X

The above production slices can be graphically

ted as follows (where the dots represent marked

ions) :

F
1
a
•

F

1
f
1
•
X

g

S

F

1
X

\
•

X

- > F
1
•
a

- > F
1

f

1
X

F - >
1

X /

X

S

F -

1
X

g
f

- >

>
F

I
f

1
X

\
X

In using production slices as nonterminals,

several patterns of reference reoccur in the fol

pages. To simplify the burden of having to expr

these patterns at each time, the following three

definitions are presented:

Definition 6.2,1: For any tree grammar G=((jj,̂ .,P,
*

N
the function initn : T>-W»(XA) -> 2 be defined

G 2.V3> A

that for any tree t€T^v,-(X) ,

init^(t) = var(t)V{uO | u€const(t)}.

Example 6.2.2: Let G be defined as in example 6

Then,

initp(F) = {10}, initr(F) = {11}, and
G I G I

a f

initp(g) = {1,2}.
G/ \
x x

Definition 6,2.2: Let vn : 2 N x N* -> N be a ft

called the variable name selector and defined su

for any U€2 N , u€N , vn(U,u)=|V| where

V = {v€U | v<u, 3fw€N s.t. wO = v} and <_ is the p

lexicographical ordering for tree addresses.

Page

The variable name selector takes a set of lfdoi

*om a production slice and a particular "dot11 u ii

id returns the variable name that u represents.]

istance, if vn(U,u)=i, then the "dot" u represent!

triable x.• Note that a "dot" u does not correspi

> any variable if the "dot" u occurs below a leaf

ibeled by a constant.

cample 6.2.3: Let U»{l-l«0, 1 • 2 , 1 • 3 , 1 • 4 • 0 , 2-l*0

•2, 2*3, 3^0}. Then, by the above definition,

i(U,l*l«0)»0, vn(U,l*2)=l, vn(U,l*3)=2, vn(U,l-4«i

i(U,2*l-0)=2, vn(U,2*2)=3, vn(U,2-3)=4, vn(U,3*0)

id vn(U,2)=2.

*
•MT

>finition 6.2.3: Let vs : 2 -> N be a function

illed the variable size index and defined such th
*

>r any U€2 N , vs(U) = {u€U | ^w€N* s.t. wO=u}.

Like the variable name selector, the variable

idex takes a set of "dots11 U from a production si

le value returned is the number of variables the

lots" of U represent. Since it is not necessaril

ise that all "dots" represent variables (i.e. so

the dots may occur below leaves labeled

typically the variable size index of a s

same as the cardinality of the set.

Example 6.2.4: Let U be defined as in ex,

Then vs(U)=4.

Having provided the above helping f

root-linear tree grammar Ĉ , is defined a

Definition 6.2*4: Given any tree grammar

G-CJJ.I^PJ.SJ) let CG=(12,I2,P2,S2) be

characteristic grammar of G where

ijL = S2Vps(P) where r(S2)=0 and for e

production slice (p,U), r((p,U))ssv

12 - liVlj; and

P« is constructed as follows:

i) for every production of the for

S2->N€P2 where N-(S1«->t, initG(t

ii) for every nonterminal N€(jj • of t

>t,{§}), N(x)->x€P2

Page 275

for every n o n t e r m i n a l N €<jj9 of t he form

(F (x) - > t ,UV{uO}) such t h a t r (t (u)) = 0 ,

vs(UV{uO}) = i + n , and vn(UV {uO} , u)=*i ,

w h e r e

N 2 =(F(l?) -> t ,UV{u})

for every nonterminal N.€i2 °*

(F(*)->t,UV {ul , . . . ,um}) such that

r(t(u))=m>0, vs(U)ai+n and

vn(UV{ul,...,um},ul)=i+l,

t(u)(x

where N2=(F(x)->t,UV(u})

for every nonterminal N-6ffî of the form

(F(£)->t,UV {uO}) such that u€dom(t),

t(u)=G€|1, r(G)=0, G->s€P1 and vs(U)=k,

N1(xt ,.•.,x.)->N0€P0 where N0 = (G->s,initn(s))

for every nonterminal N.€ffî of the form

(F("£)->t ,UV{ul , . • . ,um}) such that u€dom(t),

, r(G)ssm, vn(UV {ul , • • . ,um} ,ul)

and vs (UV {ul , . • . ,um})=k, for each G(l?)->s€P ,

NJCXJ,.•.,xk)->N2(x^,...,x')€P2 where

N2 = (G(l?)->s,V) , V=initG(s), vs(V)=q, and for

all v€V such that v€var(s), if s(v)=x. for

some j, l̂ .Ĵ .m> an(* vn(V,v)=p, the

vii) nothing else.

Note that condition (ii) states that

in a production slice have been moved to t

production slice (i.e. the root), then tt

tree is a characteristic tree. Condition

the dot below the leaf u (in the productic

over the constant labeling the leaf. Con<3

moves m dots immediately below the node u

production slice) up over the internal nod

t(u). Condition (v) simulates all possibl

derivation steps on a nonterminal labeling

condition (vi) simulates all possible 01 d

steps on a nonterminal labeling an interns

Example 6.2.5: Let G be defined as in exan

Then C =($',1' ,P',S') such that

IB' - {S'} V ps(P) where ps(P) is the s

shown in example 6.2.1;

]>' = {S,F,a,b,c}; and

P' is defined by the following products

S ' -

I F
x |

f
I
x

I g
X / \

X X

I
a

- > x

- > x

F |
I x
a

Page 27

II
X f

II
X .

f
I

II
X .

f

I F
X |

f

F-> g) (x , y) -> (F - > .) (g
I / \ I g / \
x . . x / \ x y

XX XX

I I I
x f

x I

x) -> (F-> g)
I I / \
• X • •
a xx

II II
X . X f

f I
I
X X

II I / \
X • X • •

f XX
I
X

By the definition of G,

a f f f f
I I I I
a f f f

I I I
a a a

Hence, g is a characteristic tree.
/ \

f f
I I
f f

Page :

corresponding derivation in C_ that generates thi
(jr

re characteristic tree is as follows:

==> (S->F) ==> (S->F)(a) ==> (F
I I I I
a . x f

} I > (F - > F) (f) Q I > (F - > F) (f) 0 I > (F ^ ^

x . a x f a x . f
f 1 f I
I . l a

X X X

= > (F - > g > (f , f) = > (F - > .) (g :
} I I / \ I I 0 I I g / \

x . . f f x / \ f f
x x | | x x I I

a a f f
I I
a a

5 1 / \
f f
I I
f f
I I
a a

Having introduced some notation, the following

na shows that

: F - > f) (a , a) ==> (F-> .) (f)
I / \ 0 I | f / \
x . F x / \ a F

x | x F |
f I f
I f I

In other words, one can move the "dots11 up on a

production slice, and the corresponding nodes th

dots move over become terminal symbols in the de

tree.

Lemma 6*2.1; Given any tree grammar G=((jL 9^L. ,P ,

its corresponding characteristic grammar

Cp=(io,20»
po»so)i a ny n>0; any two terminals NG I I I I — *

such that F(l?)->t€P1, U€2 N , u€dom(t),

N1 = (F(x)->t,UV{u}), and N2 = (F(x)->t, UV V} where

V £ {uw | w€N } and n=max{length(w) | uw€V}; th

t'»{(w,f) | (uw,f)€t; 3v6V such that uw is a p:

prefix of v} V {(w,x.) I uw€dom(t), uw€V, and

vn(V,w)=i}; and any sequence of trees t,,...,t

such that m=vs(UVV), then N0(t1f...,t) ~>r
L l m u j. * n

m, vs(V) = p, and vn(UV {u} , u)

Proof; By induction on n.

base case: n=0 - Trivial.

inductive step: N =(F(x)->t,UV{u}) and______________ ——»_«»——. ^

N 2 = (F(x)->t,UVV) where V £ {uw | w€N*} and

n+l=max{length(w) 1 uw€V}. Depending on the ari

t(u), there are two cases:

Page

se 1: V={uO} where t(u)=a€2 Vj, and r(t(u))=O.

e definition of Cn> No(x,,...,x.,) ->
\J L l ltq

(x1,...,x.,a,xi+1,...,x)€P2 where vs(UV{uO})=:

d vn(UV{u},u)-l+l. Hence N2 (t ̂ , . . . , t) = >

(t^, • • • >̂ -£>a>̂ j[-|.̂ > • •• »^ i+q ' *

se 2: r(t(u))=p>(K By the definition of C_,

(X1'***»Xi+p+q) - >

ere vs(U)=i+q, vn(UV {ul , . . . ,up},ul)=i+l, and

= (F(lf)->t,UV{ul , . . . ,up}). Hence

(t t t ^ t t , . . . , t ± + p + q) = >

r all j, Kj£p, t^-t'(t±+1 , . . . ,t)/j. By

duction, for all j, l£j<p,

(*)->t,DVvjVwj)(t1,...,t1, tj,...,t^ ,

3f> (F(*)->t,DVVj+1VWj+1)

1,...,t1, tl ,...,tp , t 1 + p + 1,...,t i + p + q) wher

={v€V | uk is a proper prefix of v,

{uk | l<k<j}, p.=vs(W V V .) , and for all k, l<k<

/k if

t. , otherwise.

Before continuing, let me introduce the fo

def inition:

Definition 6.2,5: Given any tree grammar

G=(liAi>Pi>S,) and its characteristic grammar

nonterminal N€f? of the f

(F(x)->t ,U),* the production s l i c e s u p e r t r e e , de

pss(N) , is the t r e e defined by the se t of pa i r s

{(w,f) | (w , f)€ t ; 3v€U s . t . w is proper pref

V {(w,x.) | w€U, 3fv€N s . t . vO=w, and vn(U,w]

Example 6 .2 .6 : Let G and C_ be defined as in ea

6 . 2 . 5 . Then

pss(S->F) = F pss(S->F) » F pss (S-> .) = u
I I I I F
a a . x |
• a a

p s s (F - > F) = F p s s (F - > F) = F p s s (F - > .) = x

i
X

1
f
1

X

1
f
1

X

1
X

1

f
1
a

1
X

1
X

F
1
f
I
a

pss(F-> g) = g pss(F-> .)
I / \ / \ I g
x x y x / \

XX XX

Note; The following fact is important and is us

succeeding proofs. For any nonterminal N€(jj? of

form (F("x)->t > inito(t)) , for any sequence of ti
Vjr

s 1 , . . . , s , t - , . . . , t €Txr w h e r e r (F) = p a n d
l pi q 2^2

Page

init_(t))=q, and for all v€var(t), if

;init n(t),v)=i, t(v)=x,, and t = s . , then t (s l f . . .
<* j J- J *

>ss(N)(t 1,...ft) .

The next lemma presents a slight extension of

ima 6 • 1 • 1 and states that given any production si

the form N=(F(lc)-> t, initQ(t)) , N(l?) = > pss(N)Cx

maa 6.2,2; Given any tree grammar G = (f , i 1 , P , S)

3 characteristic grammar CQSS($2 »^2 * P2 * S2 ̂ ; a n y

^terminal N€<jL of the form (F(l?)->t ,U) where

Lnit^Ct); and any sequence of trees t19..»,t €T-r-b l m 2.

jre vs(U)=m, N(t1,...,tm) ==>Q pss(N)(tl,...,tm)

G

aof; By 1 emma 6.1.1, N(t1,...,t) TT̂ V>

(l?)->t,{6})(t/(t1,...,tm)) where t'-{(w,f) | (w,f

r€U s.t. w is a proper prefix of v} V

w,x.) | w€dom(t), w€U, vn(U,u)=i}. By inspection

early t'=pss(N). Hence (F(lt)->t, {6}) (t' (t , . . . , t

(F(*)->tt{8})(pss(N)(t.,...,t)). By definition
I m

, (F(x)->t,{e})(x)->x€P2. Hence

«)->t,{6})(pss(t. ,...,t)) ==> pss(N)(t. ,. .. ,t

Having presented the above two lemmas,

shows that for any tree t€CTri> t€L(Cri).

Lemma 6.2.3: Given a tree grammar ĜCjijL ji. ,

its characteristic grammar C =(]L ,io ,Po,So)

s[u<-F(t ,...,t)] ==> s[u<-t(t ,...,t)]1 m u 1 b I m

r(F)=m, then

i } S2 # > C t (tl"--' tm)

G

ii) S2 ==>c (F(*)->t,V)(t^,...,t^) wh
G

V=initn(t), q=vs(V), and for all v

there does not exist a w€N where

vn(V,v)=i, t(t1,.,.,tm)/v=t^.

Proof: By induction on n,

base case: S, = > o t. By definition of Cn

So->(S ->t,inito(t))€PO. Hence, using lemm

= > c (Sl->t,initG(t)) ==>* pss(t) = t.
G G

inductive step: S- ===•>„ s [u<-F(t,,..., t
_ M M _ — — . 1 o JL Ci I m

s[u<-t(t, , . . . , t)]• By the definition of =

must exist a derivation such that S, =>!!
1 0 JL Or

s[u<-F(t1,••.,t)] where q'=r(G), there exi

such that vw=u and t'(s',••.,s',)/w=F(t,,••
1 q I

for all proper prefixes y of u, t(y)€i.1« B

Page

==>* (G(*)->t',V)(s. , . . . , 8) where V«init_(t'),
01 C o 1 q G

G
[V)ssq, and for all z€V such that there does not e

where yO-z, and if vn(V,z)=i, then

= t'(s',...,s',)/z• By lemma 6.1.1,
i q

(*)->t' ,V)(s. ,.-. ,s) = > * (G(*)->f ,WV{wl,. ..,x
i q u I <s „

1 , . . , , s i , t1,...,tm,
 8

i + p + 1 » - - - »
8
1 + p + k) where

{v€V | w is not a prefix of v}, vs(W)=p, i+p+k=q,

(WV{wl,...,wm},wl)»i+l. By the definition of Cn

->t ,WV{wl f...,wm})(x l f... >

(*)->tfY)(x;,...,x') where Y=init n(t), d=vs(Y), f
Id G

1 b€Y where there does not exist a c€N such that

= b, if t(b)=sx. and vn(Y,b)=p, then x/ssx., .• Henc
J P i +J

->t' ,WV{wl , . . . ,wm}) (sl , . . . ,sjL, tj , . . . ,tm>

>t.Y)(tJ f... ftJ) whe
G

r a l l k , K k < d , i f x / ^ x . , . , t h e n t ' ^ t . . By lemma

2.2, (F(*)->t,Y)(tJ,...,tJ) ̂ =>*
G

s(F(*)->t >Y)(tj,... , t ^) . By inspection of the

finition a production slice supertree, clearly

To show inclusion in the reverse direction (i

Lat for all t€L(C o), t€CT o is not as easy. The m<

G G

'oblem is that for any derivation in C,,, one must

> with the derivation in G where it is not the cai

iat every derivation step in C corresponds to a

sequence of derivation steps in G. To aide in

controlling this problem, one would like to ha

method of picking out which derivation steps i

correspond to derivation steps in G. The foil

definitions provide this assistance by stating

productions in C will correspond to derivatio

in G.

Definition 6,2,6; Given any tree grammar

G*(J, fi, fP, ,S.) and its characteristic grammar

C^^Clo>2O,P0,So),
 a rewrite production p is an

production p€P such that p is of the form

N.(x. ,•••,x,) -> No(x',.•.,x') where either1 1 K. _. l. q

i) Nx is of the form (F(lf)->t ,UV {u}) su

u€dom(t), t(u)=G€(jj , r(G)=0, and

vs(UV {uO})=k; and N is of the form

(G(x)->s,V) such that V=init.(s), and

ii) Nj is of the form (F(*)->t ,UV {ul , . . .

such that u€dom(t), t(u)=G€|., r(G)=n

G(*)->s€P1 ,

is of the form (G(lO->s,V) where V=ir

vs(V)=q, and for all v€V such that v€

if s(v)=sx. for some j, l^jj^m, and vn(

then x'=x
P

Paj

furthermore, let rewrite(P) denote the set of all

>roductions p€P such that p is a rewrite products

Example 6 «2«7: Let G and C be defined as in exam

>,2.5. Then rewrite(P2) contains the following f

>roductions:

I I
x f

I

F)(x) -> (F-> g
I I / \
• X • •

a xx

II II
X X f

f I
I
X X

F->F)(x) -> (F-> g
II I / \
X • X • •

f XX
I

Having defined which productions meet the de

conditions, one can explicitly state which deriva

steps use the rewrite productions, and this is

presented by the following definition:

Definition 6.2.1; Given any tree grammar

Ga(5. ,5.+ ,P, , S.) and its characteristic grammar

C«s(i0>ioj
po>so)> a characteristic derivation s
Q

denoted — > , is an 10 derivation step such that

tl — > t-2 if and only if

ii) t. and t~ are of the form

t. = s[u<-F(s.,.•.,s)] and1 1 m

t. = s[u<-t(s ,•••,s)] whereZ 1 m

F(x)->t€rewrite(P2).

Similarly, a noncharacteristic derivation step

— > , is an 01 derivation step such that t, — >

and only if t. — > t» and t. =F> t0.
1 0 I CG

Lemma 6.2.4 (below) shows that by only pet

noncharacteristic derivations, the derivation u

performed on production slices defined on a sin

production, and that each noncharacteristic der

step moves "dots" up in the production slice.

Lemma 6.2.4: Given any tree grammar G=((jj 1 ,li ,P,

its characteristic grammar C =((jL ,io ,PO , So) ; a

any two nonterminals N-,N?€$2 of the form

Page

->t,U) and N =(G("x)->s, V) where vs(U)=p and

V)=q; any sequence of trees

if N 1(t 1,««.,t) — >
1 1 p

s.,...,s) then

ii) for all v€V, there exists a u€U such that

a prefix of u

iii) for all u€UAV such that there does not exj

*
a v€N where vO = u, t =s . where vn(U,u) = i a

vn(V,u)=j

iv) for all v€V-(UAV), SjL-t' (t , . . . , t .+fe) wl

vn(V,v)=i, Y={w I vw€U},

t' - {(w,f) I (vw,f)€t, 3u€U s.t. vw is ,

prefix of u} V {(w,x) ! vw€dom(t), vw€U,

vn(Y,w)=h}, vn(U,v)=j and vs(Y)=k

oof: By induction on n.

L£ c a s e : n = 0, trivial.

ductive step: N.(t!f...,t') — > n No(tlf...,t) -

(s.,*««,s) . By induction,

i) Nj - (F(*)->t,U) and N2 = (F(x)->t,V)

F(*)->t6P1

ii) for all v€V, there exists a u€U such

a prefix of u

iii) for all u€UAV such that there does n

a v€N where vO=u, t'-t. where vn(U,i

vn(V,u)=j

iv) for all v€V-(UAV), t± - t'(t' x , . . .

where vn(V,v)=i, Y={w | vw€U}, t'={(*

(vw,f)€t; 3u€U s.t. vw is a proper

u} V {(w,xh) ! vw€dom(t), vw€Y, vn(Y

vn(UV{v})=j, and vs(Y)=k.

By inspection of the definition of C , there a

two applicable forms of productions which will

noncharacteristic derivation:

case 1; N2 = (F(x)->t, WV { uO }) and

N3 = (F(ie)->t,WV{u}) where V=WV{uO}, r(t(u)) =

vs(WV{uO}) = i + j, vn(WV{u},u) = i+l, and N ^ x ^ . ,

-> N3(x1 , . • . ,xjL, t(u), x i + 1 , . . . ,x i +) • Hence

N2(t1,,..,t) > N 3(t L, . . . ,ti,t(u) , t ± + 1 , . . . ,t

Clearly, condition (i) of the lemma is met. I

V=WV{uO} and u is a prefix of uO, clearly for

v€WV{u}, there exists a u€U such that v is a

Page

Hence condition (ii) of the lemma is met. By

ipection of the definition of set intersection,

(WV {u})=UAV, and hence by the induction applied

•lier, condition (iii) of the lemma is met. Sinc<

: all v€W-{UAW) and s± ={(6,t(u))}=t', clearly

idition (iv) is met.

;e 2: N9 = (F(#)->t, WV {ul , . . • ,um}) and

= (F(!c)->t ,WV{u}) where V = WV { ul , . . . ,um} ,

:(u))=m>0, vs(W)-i+j, vn(WV {ul , . . . ,um} , ul)

l'*#' >Xi+m+i ""̂ ^3 Xl ' * * * ' Xi * ^

- H e n c e N2 (tl'---> t

l f . . . f t 1 > t(u)(

»arly condition (i) of the lemma is met. Since

?V {ul,•••,um} and u is a prefix of ul, clearly fc

L v€WV {ul,...,um} there exists a u€U such that v

>refix of u. Hence condition (ii) of the lemma i

:. Also, UA(WV {u})=UAV, and hence by the

luction applied earlier, condition (iii) of the 1

met. Therefore, the only condition left to show

it 8 1 + 1-t'(tJ + 1 >... ftJ + m) where

hl = t(u)(t l , . . . ,t . + m) , and vn(WV{u} ,u) = i+l is

ready known. Let Y={w | uw€U}. CLearly, from th

iuctive step applied earlier, for all h, l£.h<ra> t

t/(t^ + 1,...,t^+k)/h where vn(WV {u},u) = j , t' = {(w,i

*r,f)€t, 3v€U s.t. uw is a prefix of v} V {(w,x

uw€dom(t)> uw€U, vn(Y,w)=c}, vn(u,v)=j, and vs(

But then s ± + 1 = t(u)(t'(t' , ,t'))/l, ..•

t'(t^+lf...,t^+k)/m) = t'(t^+1,...ftj+k). Henc

condition (iv) of the lemma is met.

By separating derivations into characteris

noncharacteristic derivations, the following le

shows that for any tree t€L(Cn), t€CTri.

Lemma 6*2*5: Given any tree grammar G=($1 ,i~ ,P.

its characteristic grammar CQ"S^2 *̂ "2 * P2 * S2 ̂ ; a

any nonterminal NQ=(S1->tQ,initQ(tQ))€$2; any

of nonterminals N-,...N €l« such that for all i

N.=(F.(*)->t.,U) for some production F.(#)->t.-

l N i C t i , i t i , « £ > - >
N2(t2,l ' ^ . . j 5 ~ > P 2 '•• — > Nn (ta,I'**"

— > p n N'(t' ,...,t' ,) = > t' wheren n.,1 n,m 01 C.n d

i) t'€TT

ii) for all i, 0<i<n, N'
—— —• l

Pag

iii) for all , CKi<. n, p >0

iv) for all i, 0^^.n> ra=r(N.) and m'=r(N')

v) for all i, 0<i<n, all j, Kj<,m , all k,

vi) there are exactly n characteristic deriva

steps

hen there exists a derivation in G such that S. =

[u<-Fn(s1,•..,s)] ^f>Q s[u<-tn(s1,...,sn)] where

roof; By induction on n<

ase case; n=0. Hence S2 = > NQ — > p 0

O(tO,l>--->tO,m^)
) W t#- B y i n s P e ^ i o n of the

efinition of C_, the last derivation step must be

he form N'(x)->x where N' is of the form

F(!?)->t,{6}), By lemma 6.2.4, NQ-(S1->tQ , {6}) ar

^>P0 N^(tQ) ==> tQ - t'. Clearly S1->tQ€P1 and I

1 ^ P G
 t0 #

nductive step: For any n>l, So ==> Nn — > p 0

0 0 , l 0 , m ^ l l > l l , m 1

^> N (t 1f...ft) — >Pn N'(t#
 1,-..,t

/ ,) =n n,l* ' n,m n n,l' * n,m 0.

y inspection of the definition of Cn, the last

erivation step must have been of the form N'(x)-'
n

Pa

fhere N' is of the form (F (x*)->t ,{§}). By the
n

lefinition of — >, N =(F (x)->t ,U) where

J =init-(t) . By lemma 6.2.4, N (t ,,...,t)
n G n J ' n n,1' ' n,m
9' (pss(N)(t , , . . . ,t) = >
n * n n, 1 ' ' n,m 01

D S S (N)(t 1 f...,t) = t' where N'=(F (x)->t ,n n , l n,m n n n

Similarly, N =(F ,(x)->t .,U ,) where
n— i n— l n— l n— l

NT
J =init.(t .) and N ,(t . .,...,t .) ==
n-1 G n-1 n-1 n-1, 1* ' n-l,m

' m
9" (pss(N) (t ,...,t)) = >
n—1 n—1 n—1 , 1 n—l,m . 01

)ss(N ,)(t . t,...,t .) where N' , =
n-1 n-1,1* * n-l,m_ n-1

(Fn 1(l?)->t u;) and N" ,=(Fn (it)->t ,,{6})
n—1 n—1 n—1 n—1 n—1 n—1

Induction, there exists a derivation such that S

p=r(F -) and

t -(s,,...,s)• From lemma 6.2.4, N' , -
n-1 1J P ' n - 1

CF . (^)->t t ,11' ,) where for all w€U' , , there
^ n-1 n-1* n-1 n-1'

i y€U _, such that w is a prefix of y. By the

Q
definition of — > either

i) u' - W V {ul,...,uq}

ii) U' , = W V {uO}
n— 1

and t(u) = F . Clearly, for all w€U such that
n n

tf€var(t) , if t (w)=x. and vn(U,w)=p, then t
n n j n, p

tn_1(s1,...,s)/uj. Also, s[v<-t n_ 1(s 1,...,s)]

3 [v < - t n - l (s l " - " S p) [u<-F n(t n_ 1(s 1,...,s p)/ul,

Pag

ii<-tn(tn-1(s1,...,s

tiere r(F)=sq« Hence t (t .(s-,...^)/ul, •••,

,(s,,«««,s)/uq))€CTr(< On the other hand, by
n — 1 1 p (J

nspection of the definition of a production slice

upertree, pss(N)(t ,...,t) =
n n j l n, m

n (t n _ 1 (s 1 , . . . , S p) / u l , ..., t n - 1 (s 1 3)/uq))*t

ence t€CT-.

Having shown in lemma 6.2.3 that for all t€CT

6L(C O), and in lemma 6.2.5 that for all t€L(Co),

GCT^, the following two theorems states the desir

esults, namely that L(C_)ssCTr, and that the class

haracteristic trees is contained in the class of

oregular tree languages.

heorem 6.2.1: Given any tree grammar G=(jj) ,i ,P ,

nd its characteristic grammar C^Cf^,i« ,P«,S^),

(CG) = CTG.

roof: By definition, CTn = {t(t1f...,t) | S = > r

[u<-F(t. ,...,t)] ==>r s[u<-t(t.,t)]} and L(
l n u l \j l n

t € T I ' S2 ̂ C t}* Let t (t l » *• * » t n) € C T G be an)

2 G

n the set CT^. Hence, there exists a derivation

he form S1 = > G s [u<-F(t L , . . . , tn>] ==> G

s[u<-t(t.,..., t)] for some production F(lc)->t

lemma 6.2.3, So = > n t(t.,...,t). Hencez ui u. i n
G

t(t.,...,t)€L(C^) and CTO C L(C«). On the otI n G G— G

let t'€L(C,J be any tree in the set L(C O). H€
G G

there must exist a derivation such that S^ Try'

By the definition of C_, and ==>, the derivati
G 01

be of the form § ==> s.—> s — > s^ — >

... > s5 > s& ^f>c t' . By lemma 6.2.5,
G *

must exist a derivation of the form S1 — >
1 U 1 G

s[u<-F(tx , . . . ,tn)] = > s[u<-t(tlf . . . ,tn)] whei

t(t,,...,t)=t/. Hence t'€CTp and L(CP) C CTIn G G — C

Therefore CTn = L(C_).
G G

Theorem 6.2.2: The class of characteristic tr*

contained in the class of coregular tree langi

Proof: Let G^d, ,1, ,P. ,S,) by any tree grammai

Cns(io)lo>^o>So) ^ e the characteristic grammaiG L Z Z i.

By theorem 6.2.1, L(C^) = CTri. By inspection oi
G G

definition of Cn, clearly Cn is root-linear.
G G

is contained in the class of coregular tree 1*

Page

While the preceeding result has shown that the

3S of characteristic trees is contained in the cl

coregular tree languages, there was no descriptio

the form of deterministic automata needed to

Dgnize the class of characteristic trees,

thermore, there is no known construction method

ih guarantees to produce a deterministic automato

recognize tree languages in the class of coregula

a languages.

At this point, there appears to be two options

tinuing to lift LR(0) parsing techniques. One

ion is to invent a new construction method which

1 guarantee to produce a deterministic automaton

set of characteristic trees. The other option i

relax the constraints of only accepting

racteristic trees such that the relaxation

rantees that the construction method will produce

erministic automaton. The former method was

empted with little success. Therefore, the latte

hod was chosen. In fact, the constraints were

axed such that a bottom-up tree automaton could b

It, and then the result of Rabin and Scott[59] co

used (this theorem states that every bottom-up tr

omaton can be converted into a deterministic

tom-up tree automaton).

One of the reasons for presenting the const

method to build a characteristic grammar is that

construction method provides insight as to why a

bottom-up tree automaton can not be built to rec

the set of characteristic trees. The definition

production slice implicitly implies context betw

subtrees (i.e. each "dot" in a production slice

requires the corresponding context of the other

the production slice). Hence, in designing the

construction method which will build the charact

automaton, the method will attempt to capture tb

"essence" of the production slices, used to defi

characteristic grammar, without requiring the co

used by production slices. In doing so, one sho

note that the construction method will build an

automaton which will recognize a superset of the

language generated by the characteristic grammar

also allow illegal stack configurations to be ac

by the characteristic automaton).

The relaxation is to go back to using marke

productions instead of production slices. Given

grammar G=((jj ,i, P, S) , a marked production is a pa

(F(x)->t,u)€P x N* where F(lc)->t€P is a producti

u€dom(t) V{uO | u€const(t)} is a marker denoting

relative position of a read-head in recognizing

Page 29

ction. Furthermore, let mp(P) be the set of all

ble marked productions defined by the set of

ctions P.

le 6.2.8: Let G=(<I> ,][,P , S) be the tree grammar

ed in example 6.1.1. Then

(P) = {(S->F,10), (S->F,1), (S->F,S),

1
X

1
a

1 '
f
1

X

1
X

1
a

1 '
f
1
X

1
X

1
a

1
f
1

X

(F - > g , 1) , (F - > g , 2) , (F - > g , 6) }

I / \ I / \ I / \
X X X X X X X X X

arked productions can be graphically depicted as

ws :

-> F S -:
I
a

-> F F -;
I I
f X

I

F -:

X X

F
1

a

F
1

f

1
X

g
/ \

X .
X

s -;

F -0
1

X

F - ;
I

X

> •

F
i
1
a

>

F
1
f
1
X

> #

g
/ \

X X

Using marked productions instead of produ

slices, the new construction method will creat

characteristic automaton in such a manner as t

the productions presented in definition 6.2.4

possible. The nondeterministic version of the

characteristic automaton is defined as follows

Definition 6.2.8: Given a tree grammar G=((j>,i,

the bottom-up tree automaton NCG=(iVI, C , o , S,{]

nondeterministic version of the characteri

automaton where

C = mp(P) V {S,F} is the set of states, am

o is defined as follows:

i) for all productions F(x')->t€P, for all

u€const(t) , (F(!t)->t ,uO)€&(S,S)

ii) for all productions F(lc)->t€P,

Fe£((F(*)->tf6),6)

iii) for all productions F(lf)->t€P, for all

u€const(t), (F(lf)->t,u)€i((F(ie)->t,uO) ,

iv) for all productions F("x)->t€P, for each

such that r(t(u))=m>0,

(F(x)->t,u)€^((k1,...,km),t(u)) where f

Ui<m, ki=(F(x)->t,ui)

Page

v) for all productions F(#)->t€P, for each

ui€dom(t) such that t(u)=3G€<B, r(G)*m, and K

for each production of the form G("£)->s€P, f

each v€var(s) such that s(v)=sx.,

(Gd?)->s,v)€&((F(lf)->t,ui),g)

/i) nothing else

ample 6.2.9: Let G be the tree grammar defined in

ample 6 • 1 • 1 • Then, the nondeterministic version

e characteristic automaton is the bottom-up tree

tomaton NCG*(]EV$,C ,& , S , {F}) where

C - mp(P) V {S,F} such that

S -> F will be denoted as s.,
I
a

S -> F will be deno t e d as s ? f

I

s

F
1
X

->

->

•

F
1
a

•
F
|
f
1

will

will

be

be

denoted

denoted

as s~ ,

as s,,

F -> F will be denoted as S-,
I I
x •

f

X

F -> F will be denoted as s.,
i i 6

X f

I

F -> . will be denoted as s7,
! g
x / \

X X

F -> g will be denoted as sQ, and
i / \ 8

x • x
X

F -> g will be denoted as sQ; and
i / \
x x «

X

6 is defined by the following table.

Page 3<

a f g 6

I { s , } I

3 , I { S 9 } I I
X - L . JLm

s 2 I I I
.+

! ~) I
+

I I I

I I I
+ + +_
I I { s 5 } I

' 5 > :

S 4 '
+

I
-+-

I I I { F }

I I { F }
•+
I

3 q) I I { s 7 } I

Pag

ote that 6 can be graphically depicted as follows

/ \

I I I I

As mentioned earlier, it has been shown by

hatcher[73] that by using the construction of Rab

nd Scott[59], every bottom-up tree automaton

=(2,C,o,qQ,F) can be converted to a deterministic

ottom-up tree automaton M'-(i,C'o',q',F') such th

(M)=N(M'). Algorithm 6.2.1 (see below) presents

onstruction method to build M' and consists of tin

ain procedure "ITEMS", and two functions "closure

GOTO". The basic idea used by the algorithm is t

onstruct a bottom-up tree automaton M' where M'

Pag

imultaneously follows every possible computation

y having each state q'€C' be a set of states in C

here q' is reachable in M', for an input tree t,

nd only if for all q€q', q is reachable in M usin

n terms of the algorithm, function "closure" perf

psilon-closure by taking a state q'43C' and return

he set of all states reachable from states in q'

ithout reading any more input. Procedure "ITEMS"

he main routine and starts by defining q' as the

psilon-closure of the start state q~ in M. Then,

sing the function "GOTO", it takes each n-tuple

<li »•••»<!)€tuple (C) already built, and determir

he transitions as follows:

For each f€±. where r(f)»n, if for all i, Ki<n,

there exists a q €q such that q€o((q ^••,qn)j

then there is a unique transition in M' such tl

&'((<li t • • • »<1)>f)ssq/ where q' is the epsilon-cl

of the set {q | q€6((q ,,,.,q n),f), q €qJL>.

nee the graph defining the transition map o is bi

he set of final states F' is defined such that f<

very state q'SC', if there exists a state q€q' s\

hat q€F, then q'6F'.

Pag

algorithm 6»2#1: A method to construct a determini

bottom-up tree automaton.

nput; a bottom-up tree automaton M^Ci,C,o,qn,F)

utput; a deterministic bottom-up tree automaton

M'-(i,C' ,o' ,q' ,F') where M' does not contain ar

epsilon moves.

lethod: The three procedures below, initiated

by calling ITEMS(M);

rocedure ITEMS(M);

begin

for all input pairs (a,b)€tuples(C) x (]ZV{6

initialize &'(a,b) to 0;

q^ := closure({qQ});

C :- {qj};

repeat

for each a€i such that r(a)=0 do

for each set q,€C' dja

±f_ q2«GOTO(q1 ,a) and q2^0

then

C :- C V{q2};

£*(qlfa) :« {q2};

fi

od

Page

for each f€i such that r(f)=»n>0 chs

for each n-tuple (q.,.*.,q)€tuple (C) dj

if. GOTO((qlf ...fqn)ff)-q

where q^0

then

C := C V {q};

&' ((qj , • • . ,qn) ,f) :=* {q};

fi

od

od

until no more sets of states

can be added to C';

F' := 0;

for each q'€C' dj3

if there exists a q€q' such that q€F

then F' :- F' Viq'}

fi

od.

nd;

Function GOTO(z,f);

begin

ij[r(f)«O

then

q" :- U ' I q'€&(q,f), q€z}

else

q" :- {q' i q'€^((qj, . . . ,q;>,f)

where r(f)=sn, z is of the

(q-,...,q), and for all

<i€«i>
fi

return closure(q")

end

Function closure(k);

begin

s :«• k;

while there exists a state q€s such that

q'€^(q,g) and q'gs

d£

s := s V {q'}

od

return s;

end

Page

nple 6.2.10; Let NCG be the bottom-up t ree automa

Lned in example 6 .2 .9 . Algorithm 6.2.1 wi l l

s t ruct the de te rmin is t i c bottom-up t ree automaton

' - (2 , C ' f 6 ' , q £ f F ') where

2' » {{S, S->F}, {S->F, F->F, F-> g , F-> g }
I I I I I / \ I / \
a . x f x . x x x

a | x x

F->F, F->F, F-> g , F-> g
I I I I I / \ I / \

x . x f x . x x x .
f I x x

I g I F
x / \ x |

X X f

{S, S->F};

a

F - { { S - > . } , {F-> . } , { F - > . } } ; and
F | g | F
I x / \ x |
a x x £

I
x

a is defined by the following graph:

Page

Combining definition 6.2.8 and algorithm 6.2.1,

BUTLR(O) characteristic automaton CG can be buil

the tree grammar G. The previous method started

structing the nondeterministic version of the

racteristic automaton NCG using definition 6.2.8.

n, NCG is made deterministic using algorithm 6.2.

ducing the BUTLR(O) characteristic automaton CG.

Page

iver, rather that going through the two step

:ess, definition 6.2.8 and algorithm 6.2.1 can be

Dined into a single algorithm as follows:

irithm 6.2.2; Method to construct a BUTLR(O)

characteristic automaton.

at; a tree grammar G^CJjjSjP , S)

put: a deterministic bottom-up tree automaton

SG-CiVi >C,o,q0,F) without eps i lon-ru les .

lod: The three procedures below, initiated

by calling ITEMS(G);

:edure ITEMS(G);

begin

for all input pairs

(a,b)€tuples(C)) x i

initialize &(a,b) :« 0;

qQ :» closure({(F(x)->t,uO)

, u€const(t)};

C :» {qQ};

repeat

for each grammar symbol a€iVI

such that r(a)=sO do

for each set of marked productions I

i£ J=*GOTO(I,a) and

then

C :» C V {J};

&(I,a) := {J};

fi

£d

od

for each grammar symbol

such that r(f)=n>0 do

for each n-tuple (I-,•••,!) in

tuples(mp(P)) d£

if J = GOTO((I1 , . • . ,1),f) and

then

C :- C V {J};

i((I1,...,In),f) :- {J};

fl

£d

od

until no more sets of marked productions

can be added to C;

Page

F := 0;

for each set of marked productions I€C cl£

if there exists a marked production of the

form (F(lc)->t,g)€I

then F := F V {1}

f±_

£d

end

iction GOTO(z,f);

begin

i£ r(f)~0

then

J :« {(

(F(l?)->t,uO)€2, t(u)*f};

else

J :» {(F(ie)->t,u) | t(u)»f, r(t(u))=n,

z is of the form (!.,•••,!) an

for all i, l<i<m, (F(lt)->t ,u

fi

return closure(J)

end;

function closure(I);

begin

J :- I;

while there exists a marked production

form (F(lc)->t,ui)€J such that i6

dlo

for each G(lc)->s€P do

for each v€var(s) such that

s(v)=xi, and (G(xO->s,v)f$J

1°

J :« J V {(G(S)->s,v)};

od;

od

od.

return J

end;

Example 6,2,11: Let G^Cl,i,P,S) be the tree

defined in example 6.2.K Then, using algor

the BUTLR(O) characteristic automaton is the

tree automaton CG^Ci,C,6,q^,F) where

->F, F->F, F-> g , F->
I I I I / \ I /
• x f x • x x x
a | x

. } , {F->F, F->F, F-> g , F-> g)
F I I I I I / \ I / \
I x . x f x . x x x
a £ I x x

I g IF
x / \ x |

XX f

qQ - {S

a

. } , {F-> . } , { F - > . } } ; and
F i g I F
I x / \ x |
a x x £

o is defined by the following graph:

Page

, F->F, Y-> g
I I I / \

2 that the only difference between CG and NCG',

sented in example 6*2.10, is that the start state

tains a different set of states (i.e. the start

te of NCG' contains the state S which is not in C

reason for this is that in creating NCG, a speci

rt state S is added to give the nondeterministic

Dmaton a single start state. However, when the

Page

ph is made deterministic, the need for this state

oved and hence, algorithm 6.2.2 removes the state

This section concludes by showing that the abov

struction method is a strict relaxation on the

straint of only accepting the set of characterist

es. In other words, to show that for any

racteristic tree t€CT^, the characteristic automa

will accept t, which is shown by the following le

two theorems. One should also note that lemma

•6 shows the close correlation between the use of

ked productions and production slices.

ma 6.2.6; Given any tree grammar 6«(J, fi, fP| fS.),

characteristic grammar c
G
3S(i2 »^2

 >P2 * S2^ * a n d i t £

racteristic automaton CG^CiVl, C ,o , qQ ,F) ; any n>̂

nonterminal N€$2 where N is of the form (F(lt)->t

vs(U)»m; any sequence of trees t.,...,t €Tr- ;
l m 2*2

e t'€TNr- such that for any subset Z C {1,2,...,m]
^2 "~

re |Z|»q, for all i€Z there exists a w €dom(t') s

t t'*t' [wJLui<-ti] , vn(U,ui)=»i, and uj[€U; any

, if S2 > N(t1,...,tm) >c

G G
(N)(t1,...,t) * t', then there exist states

...,I €C such that ({(w.u.v40,qA) | i€Z,
m i l l u

Heaf(t1)>Vb,t') I-* (.{(w±xxi,Ii) I

Pag<

roof: By induction on n.

ise case: whenever n53!, clearly the above condit

re vacuously true.

lductive step: S = > n N. (t; ,... ,t') = >

>(t.f«««9t)• Depending on the production used

le last derivation step, there are 4 cases:

ise 1 - condition (iii) of definition 6.2.4:

?(*)->tfWV{u0})(t1>...ftj> t4J-o>...ft^) = >

?(x)->t,WV{u})(t1,. . ..,tn) where

[t(u))=0, U»WV{u}, vs(U)»n2> and vn(U ,u)=* j+l. By

jfinition of the conditions of the lemma, there e

set Z £ {1,2, . . M n j such that |Z|*q and for all

lere exists a w.€dom(t) such that t'^t'[w u.<-t,]

lere u €U and vn(U,u)=i. If j+l€Z, then by

iduction, there exists states I1,...,I €C such t

I n2
>r all i€Z, (F(3t)->t,ui)€Ii and ({(wiuivi0, qQ)]

[€leaf(ti)}Vb,t') h* ({(*±u±,I±) | i€Z, ifj+1,

?(lt)->t,ui)€Ii} V {(w j + 1u j + 10,q 0)}Vb,t
/). By th

instruction of CG, clearly (F(!c)->t ,uO)€qQ. By

ispection of the function GOTO, there exists an I

ich that (F(x)->t,u)€I . + 1 and I .+ 1€^(qQ,t(u)). H

i€Z, ^ j + 1 , (F(*)->tfui)€I1} V

?(x)->t,ui)€Ij,}Vb,t'). On the other hand, if j+1

Page

in by induction there exists states !.,..•,I €C

it for all i€Z, (F(l£)->t > u
i>

€ I
i
 a n d

wiuivi0,q()) | i€Z, vi€leaf(ti)}Vb,t
/) h*

L£ 2. - condition (iv) of definition 6.2«4:

>tj> • • • f t . , t , ^ j / l , « « « , t , ^ ^ / p , ^ * i + 2 > * * * > ^ n — ^

;tlf...9t) where KL *(F(lc)->t, WV {ul , . . . ,up}) ,

*(F(5?)->t,WV{u}), vs(WV{u})»n2, vn(W\/ {u} , u)

1 r(t(u))a8p. By definition of the conditions of

ima, there exists a set Z £ {192y•••9n2) such tha

|=q and for all i€Z, there exists a wt€dom(t) sue

it t'-t'[w ui<-t±] where u.€WV{u} and

;wV{u} ,ui)»i. If j+l€Z, then by induction there

Lsts states I.9««*9I 9I'9.««9I
/€C such that for

1> (F(lf)->t,u.)€I4 and for all i, Ki<p,

^, and ({(wiuivi0,q0) | i€Z,

31eaf(ti)}Vb,t
/) h* ({(w1u1,Ii) | i€Z,

} V {(
A A

[?)->t ,ui)€I^} Vb, t') . By inspection of the funct

CO in the construction of CG, there exists an I

:h that GOTO(IJ,...,I'),t(u))-I.+1 and

(*)->tfu)€Ij+1. Hence, I j+1€&((Ij[, • . . ,r) 9 t(u))

[w u ,IjL) | i€Z, i^j + 1, (F(lf)->t >ui)€Ii> V

) | Ki<p, (F(lt)->t,ui)€i;}Vb,t/) h

i€Z, (F(xv)->t,ui)€Ii}Vb,t'). On the

other hand, if j + HSZ, then by induction there ex

states I.,...,! £C such that for all i€Z,

(F(3c)->t ,u.)€I. and ({ (w . u . v . 0 , qo) | i€Z,
1 1 1 1 1 U

v±€leaf (ti)} Vb,t') h* ({(»w u l fl ±) I i€Z,

(F(3t)->t,ui)€Ii}Vb,t
/).

case 3_ - condition (v) of definition 6.2.4:

N,(t' ...,t') = > No where r(No)-0. Since thei
I 1 nx 2 2

no parameters for N« , the conditions of the lemn

vacuously true.

case 4 - condition (vi) of definition 6.2.4:

NjCt' ...,t') = > N9(t,,...,t) where
II nl l l n2

N1 = (F(*)->t,WV{ul, . ..,up}), t(u)»G€|1 where r(G

vn(WV{ul,...,up},ul)=j+l, N2=(G(*)->s,V) where

V^initgCs), vs(V)sn2, and for all v€V such that

v€var(s), if s(v)=x. for some k, 1 <_kj£p, and vn(M

then t =t'. By definition of the conditions of
q p

lemma, for some subset Z jC { 1, 2 , • • • ,n^ } , for all

there exists a w 6dom(t) such that t'3t'[w.u.<-t

where u.€V and vnCVjU.)53!. By induction (applie

many times as there are duplications of variable

occurring in the tree s) there exists states

I1,...,I €C such that for all i€Z, (F(lf)->t, uk)«

where s(ui)=xk, and ({(w
i
u
i
v
i°»q Q) ' i € Z>

v^leafCt^lVbjt') h ({(w.u.,1.) I i€Z,

Pag-

?'(lf)->t ,uk)€Ik> s(ui)»xk}Vb,t'). By inspection c

le construction of CG, every state is closed usin

inction "closure". By inspection of the function

:losure", clearly for all i€Z, (G(lf)->t ,ui)€Ifc wh

?(l?)->uk)€Ik and s C u ^ - x ^ For all i€Z, let I^-I-

lere s(ui)»xk* But then ({ (w ^ ^ , ^) | i€Z,

?(#)->t,uk)€Ik, s(ui)»xk}Vb,t
/) = ({(wj[ui,

l eorem 6 . 2 . 3 ; Given any t r e e grammar Ĝ Cjjjj , i . , P , S)

ts c h a r a c t e r i s t i c au tomaton C G » (i V I , C f i , qQ , F) , i f

3CTG, t h e n t€N(CG) . That i s , CTG £ N(CG).

r o o f ; By theorem 6 . 2 . 1 , L(C^)»CTr, where

I " ($ I tuLi fPi »S.) i s t h e c h a r a c t e r i s t i c grammar of
J i i i i

jnce, for any tree t€CT^, there exists a derivati

z>n N(t) = > / , t where N is of the form
C G C G

. By lemma 6.2.6,

((uO,qo) | u€leaf(t)},t) H*

((8,1) | (F(l?)->t,{6})€I},t). By the definition

3, F-{I€C | (F(lt)->t,{6})€I}. Therefore t€N(CG).

lie or em 6.2.4: Given any tree grammar G, its set o

tiaracteristic trees CTr, and its characteristic

utomaton CG, it is not necessarily the case that

r,, = N(CG).

Proof: Assume that it is the case that for any t

grammar G, CT̂ , = N(CG). Consider the tree gramm
Car

shown in example 6 • 2 • 119 and its characteristic

automaton CG. By theorem 6.2.3, CTO C N(CG). B
Car —

inspection of the created characteristic automat

clearly g(f(f(a)),f(a))€N(CG). However, as show

theorem 6.2.1, g(f(f(a)),f(a))£CTP• Hence CTP C
Car KJ

Therefore the set of characteristic trees CT,, is
CJ

identical to the set of trees accepted by

characteristic automaton CG, producing a contrad

Note; The result of theorem 6.2.4 is not surpris

since not all coregular languages are accepted b

bottom-up automata.

6.3 Constructing BUTLR(O) Parsing Tables

This section presents a method to construct

BUTLR(O) parser from the BUTLR(O) characteristic

automaton, and shows the correctness of the algo

which creates the BUTLR(O) parser. The construe

methods does not always construct a well defined

BUTLR(O) parser. However, the produced BUTLR(O)

always accepts the same tree language as the tre

language generated by the given tree grammar, ev

though the parser might be nondeterministic.

Page

The method to convert the characteristic auton

to a BUTLR(O) parser is straight forward and is g

the following algorithm:

gorithm 6.3.1: Constructing a BUTLR(O) parser

put; a tree grammar G^djijPjS) and its

characteristic automaton CG^CiVflj,C, o,qQ,F)

tput; a BUTLR(O) parser

M^CGiK, shift, reduce

thod: Let O { I- , I*, • • • , I } be the set of sets of

rked productions from the characteristic automate

Then, K»{1,2,•••,n} where state i corresponds

e set of marked productions I., and startak wher<

*qn is the start state of the characteristic

tomaton CG« The rank of state i is determined b]

ansition map o of the characteristic automaton.

"r(f) where f€iV$ ar*<* I.€o(ztf.)
i

for some z€tuples(C)} otherwise.

irthermore, the three parsing tables are construci

i follows:

Pa)

shift table;

i) for all states k€K, all productions F(!?)-

for all u€dom(t), if t(u)-a€i where r(a)s

(F(x)->t,u)€Ik, and I.€&(Ik>a), then

shif t(k,a)=*j

ii) for all n-tuples of states

(k.,«*«,k)€tuples(K), all productions

F(x)->t€P, for all u€dom(t), if t(u)=f€l

r(f)=n>0, (F(x)->t,ui)€I, for all i, K:

(±

and 1,€6((I, ,...,1,),f), then
3 fcl n

shlft((k, , . .. >kfi),a)-j

iii) all other entries, not defined by (i) an<

(ii), are defined as error

reduce table:

for all states k€K,

reduce(k)~{(F(x)->t

;oto table:

i) for all states k€K, all productions F(x>

for all u€dom(t), if t(u)=A€ffi where r(A)

(F(x)->t,u)€Ik, and I.€^(Ik,A), then

goto(k,A)=j

Page

ii) for all n-tuples of states

(k.,«««,k)€tuples(K), all productions

F(x)->t€P, for all u€dom(t), if t(u)=F€$ wh

r(F)»n>0, (F(5f)->t,ui)€I, for all i, Ki<n
ki

and I.«&((I. ,.*.,I,),F), then
3 *1 n

iii) all other entries, not defined by (i) and

(ii), are defined as error

aple 6»3.1; Let G»($,]E,P, S) and its characteristi

oraaton CGa8(i, C ,o, q^ ,F) be defined as in example

•11* Using algorithm 6«3.1, the constructed

LR(0) parser is M»(G,K,shift,reduce,goto,start)

re

K « {1,2,3,4,5,6} where r(l)=r(2)»0,

r(3)»r(4)*r(6)*l, and r(5)=2; and

I9 = {S->F, F->F, F-> g , F-> g }
2 I I I / \ I / \

• X f . X X X •

a I x x

F
I
a

F->F, F->F, F-> g , F-> g
I I I I I / \ I / \
X • X f X • X X X •

f | X X

I

{F-> . }, and
i g
x / \

X X

f
I
x

and the shift, reduce, and goto functions

defined by the following tables:

are

shift

(2)

(2 , 2)

(2 , 4)

(4 , 2)

1 4

| 5 |
+ +
| 5 |

| I | 5 |
+ + + -h

(4 , 4) | | 1 5 1
+ + + +

(4) I 1 4 1 |

reduce

(2)

(4)

F

3

6

te that the BUTLR(O) parser M corresponds to the

Page 32

(0) parser presented in example 6.1.2.

The remainder of this section provides the

sary proofs in order to show that for any BUTLR(C

r M generated from a tree grammar G, the tree

age accepted by the BUTLR(O) parser M is identica

e tree language generated from the tree grammar C

result is shown in the following manner. First,

ne with TPDAs and STPDAs, lemmas 6.3.1 and 6.3.2

that every computation, using the decision

ion K , can be converted to a computation under ia

ix ordering* Then, lemma 6*3*3 shows the

lation between derivation steps using the tree

ar G, and the computation moves in the BUTLR(O)

r* Lemma 6*3*4 shows the relationship between

stack symbols and grammar symbols (known as the

ling" of the states). Using the definition of

ling11, lemma 6.3.5 shows that the spelling of

tree stack will derive the corresponding portior

e input tree already scanned. Finally, Theorem

concludes this section by using the above result

ow the desired result that the tree language

ted by the BUTLR(O) M is identical to the tree

age generated by the tree grammar G.

In order to define a computation under a

ordering, some terminology has to be introduce

an updated read-head of a computation idt K i

BUTLR(O) parser (denoted URHCidj \~d id2>) be a

the form (u,p)€N x T where id- and id0 are

K. JL Z

instantaneous descriptions in SID, id, K id?*

id.yid^ are in one of the following forms:

i) id- - ({(uO,start)}Vb,t) and
L '' '

id2 - ({(u,k)}\/b,t) where r(k)=0 and

ii) idx = ({(ui,p±) | Ki£m}Vb,t) and

id2 » ({(u,k(p 1 >... fp m))}Vb >t) where

and

iii) idx = ({(u fp(t 1 §... ft m)}Vb >t) and

±dl - ({(u,k(t1,...,tm))}Vb,t) where

and p^kCtj , . . <, ,tm) .

A computation with postfix lower bound \i

BUTLR(O) parser is the relation h£ £ SID x SID

such that for any two instantaneous descriptio

and id2, idj l-£ id2 if and only if idx h id

URH(idx t-d id2)*(v,p) for some (v,p)€N* x T R w

(lf<̂ f is the postfix lexicographical ordering f

addresses).

Page

Similarly, a computation under £ postfix order

r a BUTLR(O) parser is defined such that for any

aputation id, K ido K ••• K id , if1 a Z a a n

i) for all i, l<i<n, URH(idj[h i d
i + 1)"(u± t P ±

where (ui>pi)€N x TR

ii) for all i, l<i<n, for all j, i<j<n, u±<u

where £ is the postfix lexicographical

ordering for tree addresses

in, id. K id« K ••• K id is a computation ur

postfix ordering. Also, whenever a computation

. K ido !-,••• K id is a computation under aL a 2 a a n

3tfix ordering, it will be denoted as id. K id2

hi id , or simply id- £ n""1 id .a n l a n

Using these definitions, the following lemmas

ssented.

nrna 6.3,1: Given a BUTLR(O) parser

CG,K,shift,reduce,goto,start); any three

stantaneous descriptions id-,id^,id^€SID, for any

»*; any n>0; if id, h£ n ido K id. where
—• I d Z a J

H(id2 J-d id3)»(v,p) for some (v,p)€N x TR and v<

ider a postfix lexicographical ordering for tree

dresses), then there exists an instantaneous

scription id^ such that id. K idl K id^ where

URH(id1 h

Proof: Analogous to lemma 5.3.I.

Lemma 6.3.2; Given a BUTLR(O) parser

Ms(G,K,shift,reduce,goto,start), any two insta

descriptions id1,id9€SID, id. K id~ if and o

id, l-i n id9.id z

Proof; Analogous to lemma 5«3.2«

Since every computation can be converted

computation under a postfix ordering, the rema

this thesis will assume that all computations

under a postfix ordering unless explicitly sta

otherwise.

To show that the construction of the BUTL

parser is correct, lemma 6«3#3 (below) starts

showing that for any tree t in the tree langua

generated by a tree grammar G, t is also accep

its corresponding BUTLR(O) parser M. In other

it shows the correlation between performing n

derivation steps in G and the corresponding mo

by the BUTLR(O) parser M.

Page

la 6.3,3: Given any tree grammar G=((j> ,][,P , S) , its

racteristic automaton CG»(5LV1> , C ,6 , q0 ,F) where

[j ,.•.,! }, and its BUTLR(O) parser

;,Kt shift,reduce,goto,start) where K-{l,**.,c};

1 x TK; any t€T^; any n>0; any F1(*)->t1€P wh

L)»m; if

= > G

s[u<-t2(s1>..•,sm)[z<-t1/v(s1,.••,sm)]]

s[u<-t2(slf•.•,sm)[z<-t2/z(s1,...tSm)]] =

s[u<-t2(s1,••.,8^)] ^f>Q t where

a) tt/v =^>,, to/z (note that v is related
1 Ul G L

z in the sense that once the supertree

v is rewritten using an 01 derivation t

remove all nonterminals occurring as

ancestors to the node v, the result of

rewrites is that the tree t,/v now occu

at tree address z)

b) for all w€dom(tj-var(t2), uw€dom(t) an

t2(w)«t(uw),

c) for all w€dom(t') such that w is

of z, w€dom(tj and t2(w)=t'(w)

ii) there exists trees s', ••• , s'€Tv such
1 m. Jx

all i, l<i<m, s'±
€i? I p€skeleton(s±) ,

where for all w€var(t.) such that t.(

then there exists a tree s'€skeleton(t./v) sue

for all w6dom(t1/v), (F. (lt)->t. , vw)€I , , ,
1 1 1 S v S ^ 9 « « «

and ({(uzwO, start) | zw€const(tj} V

{(uzw,sp I zw€var(t2), t2(zw)^} Vb, t)

Proof: By induction on the pair (n,depth(t1/v)

the lexicographical ordering "Of where (a,b)£(

and only if either a£c, or a=c and b<d•

base case; n=0 and depth(t,/v)ss0 • Hence r(t,

and tj(v) can not be a nonterminal• Depending

whether the one node tree is labeled by a vari

terminal constant, there are two cases:

case 1: t1 (v)=x for some i, Ki<m. By defin

x,€skeleton(t./v). Hence ({(uz , s') } Vb , t) K
i i i d

se 21 t.(v)=sa€i where r(a) = O. By inspection of

nstruction of the characteristic automaton CG,

(!t)->t,vO)€Istart»qo and GOTO(I s t a r t , a)«I ̂ where

d (F(3?)->t,v)€I .. Hence I.€&(I ^ a) . By
J J start

spection of the construction of the BUTLR(O) pars

j«shift(start,a). Therefore ({(uzO,start)}V ,b,

ductive step: (0,0)<(n,depth(t*/v). Depending c

e symbol labeling t.(v), there are three cases:

se 1: t1(v)»G€j where r(G)»0. By the definitioi

01 derivation, it must be the case that the

it

rivation is of the form S =v> s [u<-F. (s .,•••, s]
0 1 G l i m

:>Q 8 [u < - t 1 (3 1 , . . . , 8 m)] = = > G

u < - t 2 (s 1 s m) [z < - t 1 / v (s 1 , . . . , s m)]] -

u<-t2(s1,. •• ,sm) [z<-t2/z]] = > G s[u<-t2(s1,. .. ,st

F>_ t for some production G->t/€P. By induction,

(uzwO, start) I zw€const(t^) } Vb , t) hd

(uz,s')}Vb, t) where s'€skeleton(t') and for all

idom(t'), (G->t',w)€I ,, x. By the construction <

Le BUTLR(O) parser M, G->t/€reduce(I //Cs) since

r->t',6)€I //e\« Furthermore, by the constructioi

i, (F(lf)->t,vO)6Igtart and i(I, U r t,0)-I k where

Pag

F(l?)->t, v)€Ik. By the construction of M,

agoto(start,G). Therefore, by the definition of

{(uz,s')}Vb,t) hd ({(uz,k)}Vb,t).

stse 2; t1(v)=
sf€i where r(f)=p>0o By induction,

LI i, l<i<p, ({(uzjwO,start) | i<.j<J>, zjw€const(t

{(uzjw,s^) i i£jip, zjw€var(t2), t2(zjw)=xd> V

(uzj,sl
j
f(s^.,.>s^)) I Kj<i}Vb,t) h*

{(uzjwO,start) i i<j<J>, zjw€const(t£)} V

, zjw€var(t2), t2(zjw)=xd> V

(u z j , s f ! (s : , . • • . , s ')) | K j < i } V b , t) where for a l l

8dom(t./vi), (F (i?)->t1 ,viw)6I „, , «'^/>»^•
i i i s. v s .) • t •) s

m / \ W ;

LI i, L<i<p, let k -a1.1 (s ' • . . , s ') (6) . By inspect

E the construction of the characteristic automato

,--.,I k),f) where (Fj (lT)->t , v)€Ifc and

1 P
Cl , . . » , I k) , f) « By i n s p e c t i o n of the

1 P
construction of the BUTLR(O) parser M,
= s h i f t ((k 1 , • . . , k) , f) . Therefore

urthermore, by inspection of the definition of

keleton, clearly k(s" ,.•. ,s'l)€skeleton(t1/v) and
1 p 1

11 w€dom(t./v),

F (!t)->t ,vw)€I. llf . ,v ,%{ , M

Page '

* 3: t (v)«G€l where r(G)«p>(K By the definitioi

in 01 derivation, it must be the case that the

.vation is of the form S 7rF>G s [u<-F. (s. ,. . . ,s)]

t < ()] >

==>G

:-t^(s1,...>sm)[z<-t2/z(s1,...,sm)]] = > G

l-t^s. 8)] ̂ r>^ t for some production
z l m u l (J

>->t'€P, Let var(t'>{w][,,..)w } where |var(t')|

for all i, Ki<q, all j, Kj<q, w.<w. where < is

prefix lexicographical ordering of tree addresse

ihermore, for all j, 1<LJ</1> l e t i^88^ where

7)**x.. Then, by the definition of an 01
j K-

Lvation, it must be the case that the derivation

:he form S = > G s [u<-F1 (sx ,... , sj] =>Q

Page

2

= > G
n 2

S m)]

w < - t i / v i q (8 l » * * " 8 m) 1 1 1 f f >

q

w

u < - t 2 (8 l f . . . , s ^)] QY> G t where 11^112+. . . + n = n - l

r a l l i , K i < q , f o r a l l y€dom(t' f .) s u c h t h a t y i

e f i x of z w , y € d o m (t 2 / z) and t 2 (z y) = t £ i (y) . Hen

induction, for all i, 1OK/1 >

(uzz wO,start) | i£j<q, zz w€const(tj} V

uzzw w,s^) I i<.j<,q, zzw w€var(t2), t2(zzw w)

uzzw ,sj(sj>...>8^)) I Kj<i, t'(wj)«xk} V

uzwO,start) | Kj<q, zw€const(t9),

a prefix y of w s.t. y^z }Vb,t) K
Wj

(uzz wO>start) | i<jj<q, zz w€const(tj} V
Wj Wj

uzz w,s') I i<j£q, zz w€var(tj, t?(zz w)
W , Q """" A A
w t'Cw^-Xj^} V

uzwO»start) I 1£ j j<q, zw€const(tj,

a prefix y of w s«t. y=z }\/b,t) where for all

var(t') where t'(w)=x, , sl*€skeleton(t./vk) and fc

1 y€dom(t./vk), (F(j?)->t,vky)€I „, , -'\f-\-
k 1 ' * * * ' m ^

Page

. i, 1OL<j>, such that there does not exist a

ar(t') such that t'(w)=x , let s"€Ty be any tree

:h that s"€skeleton(t ,/vi) and for all y€dom(tj/v:

(l?)->t1 ,viy)€I „, , e ' W ^ V Furthermore, fo:

i l > # # # > m
• *•» ̂ i P * l e t k i"

8J(8jf«tSi)(S)« By inspects

the definition of the characteristic automaton C(

try state in C is closed using the function

.osure"* By inspection of the definition of the

iction "closure", for all i, 1 OL£p > for all y€var

:h that t'(y)»x , (G(lT)->t' ,y)€I . Hence, by

luction, ({(uzwO, start) | l<.i£q, zw€const(tj, ^

»fix y of w such that yaz } V
W i *

izzw ,8^(8^ s^) | Ki<.q , t ' (w i) -x k }Vb,t) \rd

u z , s ' (s I
1 ' (8 j , . . . , 8 ^) , . . . , 8 j (s ^ , . . . , s ^)) } V b , t) whe

3skeleton(t') and for a l l y€dom(t'),

8 V , S J V , S J , . . . , s m ; > • • • , s i s ^ j . . . » 3 m ^ M y

: k - s ' C s V C s ' . . . , s ') , . . . , s " (s ' . . . , s ')) (6) . By t
I X m p i m

i s t r u c t i o n of the BUTLR(O) parser M,

E)->t ^ r e d u c e d .) . By the c o n s t r u c t i o n of the

i r a c t e r i s t i c automaton, o ((I k >•• •>^ k) > G) » I , , wh
1 P

(x)->t1,v)€Ik, and GOTO((Ik ,---,I k),G)»Ik,.
1 P

ice, by the construction of the BUTLR(O) parser M

:o((k19..*9k),G)«k/. Therefore— i p

m p

K

meeting the conditions of the lemma.

In order to show that any tree accepted b

BUTLR(O) parser is generated by the correspond

grammar, the relationship between the states o

BUTLR(O) parser, and the grammar symbols of th

corresponding tree grammar, must first be esta

In other words, one must know what tree of gra

symbols a tree stack corresponds to© Like in

parsing, the link between grammar symbols and

done using the notion called the "spelling", a

defined by the following definition:

Definition 6.3.1; Given any tree grammar G*($,

its characteristic automaton CG=(]EV$, C ,o , qn , F

O{Ij,..«,I }, and its BUTLR(O) parser

M=(G,K,shift,reduce,goto,start) where K-{1,..«

the relation spelling £ K x (2V3!) be defined \

for any k€K, any f€iVi, k spelling f if and 01

either

i) kastart and f=S where S is the start

the tree grammar G

Page 339

r(f)*O and I.e&Cq^f)

€Kr(f)*m>0 and there exists states k.,...,k

such that Ik€^((Ife ,..,,1.),f)
1 m

e next lemma present a crucial result by showing

e relation spelling is a total function.

«3»4; Given any tree grammar G=($,2,P , S) , its

eristic automaton CG»(iVI > C ,6 ,qQ ,F) , and its

) parser M-(G»K, shift,reduce,goto,start), the

n spelling is a total function.

Assume that spelling is not a function. Then,

there exists a k€K such that there does not

exist an f€iV$ where k spelling f.

there exists a k€K such that for some two

symbols f,g€5V$ where f^g, k spelling f, and

k spelling g.

the first case has to be false since by the

ction of the set of states C, qQ€C, and I|€C

there is a transition, defined on some grammar

to the state I,• Hence, in order for the

relation spelling not to be a function, it mus

case that there exists a state k€K such that k

f and k spelling g where f^g. By inspection o

definition of spelling, there are 4 cases:

case 1 i ^ir^^n* f38^, and g;*S« By inspection o

definition of the initial state q~ , there exis

marked production of the form (F(5c)->t ,vO)€qQ

v€const(t)« By inspection of the definition o

spelling, either

a) Ik€&(qQ,g) where r(g)=0

b) there exists states k.,«.«,k €K where
I m

and Ike6((Ik ,...,!,),g)
1 m

By inspection of the construction of the trans

o9 there can not be a marked production of the

(F(lO->t,vO)€Ik. But this is a contradiction.

case 2: r(f)=sm>0 and r(g)=n>(K From k spelli

there exists states k.,.,,^ €K such that

Iv f^f1^)> f)* From k spelling g, the
1 m

states k'9...9k'€K such that I,€^((I , , • . • , I ,
X n K. ix • K

1 n
inspection of the construction of state I, , it

the case that closure({(H(x)->t,u) 1 t(u)=f,

for all i, Ki<m, (H(ie)->t, ui)€I, }) -
ki

closure({(H(x)->t,u) | t(u)=g, for all i, K i <

Page

?)->t,ui)€I ,}). But then it must be the case th
V

which is a contradiction.

I 2l r(f)m>0 and r(g)»O. From k spelling f, the

5ts states k.,...fk €K such that

K (I k ,...,Ifc),f). From k spelling g, Ifc€6(q ,g
1 m

Inspection of the construction of state I, , it mu

the case that closure({(H(3?)->t ,u) | t(u) = f,

all i, Ki<m, (H(3t)->t ,ui)€Ifc }) *

3ure({(H(!t)->t,u) I t(u)«g, (H(l?)->t ,uO)€qQ}) . B

i it must be the case that f^g which is a

tradiction.

L !LL r(f)»r(g)»0 and I, ̂ q^. From k spelling f,

i(qQ,f) while from k spelling g, I k€&(q Q fg). Hen

aust be the case that closure({(H(3c)->t ,u) | t(u)

?)->tfu0)€q0}) - closure({(H(lt)->t,u) | t(u)»g,

£)->t,uO)€q }). But then it must be the case tha

which is a contradiction.

refore the relation spelling is a total function.

Lemma 6.3.5 (below) shows that the spelling of

a stack will derive the portion of the input tree

med by its corresponding read-head.

Pa

Lemma 6.3,5: Given any tree grammar G=((jj ,i, P , S) ,

characteristic automaton CG^djVS, C , o , q~ , F) where

:>{I|,«..,I }, and its BUTLR(O) parser

fla(G,K,shift,reduce,goto,start) where K>{l,«..,c}
*

N x Ta M ; any b€2 K; any three trees t 1,t 2,t 3€T

that t 1=t 3[u<-t 2]; if

({(uwO,start) | w€leaf(t 2)}Vb,t 1) h* ({(u,oc)}Vb

then

i) s = > t 2 where s«{(w, spelling (k)) | (w,k

ii) if oc (6)^start, then for all w€dom(oc) ,

(FCx)->t ,v)€I f N, then for all vz€dom(oc (w;

(F(l?)->t,vz)€I , N and if vzfSvar(t), toc \ wz,;

spelling(oc(wz))«t(vz)

Proof; By induction on n.
base case: n sl. Hence ({(uO)start)}Vb >t 1) K

({(u,k)} Vb,t.) where t2(6) = a€i such that r(a)=0 i

k«shift(start,a), By the definition of shift,

Ifc€o(q0,a). Hence s«{(8,spelling(k))}«a and a ==

By the construction of the states in the characte

automaton, all marked productions in I, are in on

the following two forms:

Page

i) (F(*)->t,v) where t(v)=a

ii) (F(*)->t,v) where v€var(t) and t(v)»x± foi

some i, Ki<r(F)

L both cases, {§}»{w | vw€dom(t)}. Hence, for al!

r€dom(t), clearly (F(lf)->t, v)€I,. v. Furthermore

le first case, clearly tCvj^spellingCkCS)). Henci

>th conditions of the lemma are met*

iductive step; id. K ido h ido where
1 4 ' l a z j

[^ ({ (u w O , s t a r t) | w € l e a f (t ^) } Vb, t^) and

I 3 » ({ (u , k (s ' . • . , s ')) } V b , t .) where r(k)*m. Depeti

i the l a s t computation performed, there are three

i s e s :

^ jj_ i d 2 - ({ (u i , s p I K i ^ m l V b j t j) where

' s h i f t C k - , . . . , k) , f) , t o (6) = f € i , r(f)*m, and for
— — l m L

> Ki<m, s ' (S) 3 a k. . Clear ly , from lemma 6 . 3 . 2 , fo

, l£i_<m, ({ (u jwO,s tar t) | i<.j£m, j w € l e a f (t 2) } V

: u j , s p | K j < i } V b , t 1) Hd
ni ({ (u jwO > 8 tar t) |

» € l e a f (t 2) } V { (u j . s ^) | K j j C D V b . t ^ where 0<n i

»nce, by induction, for all i, l<.i<jn, s. -gy> t^/i

lere s±**{ (w, spell ing(j)) | (w,j)€s^}, and for all

3dom(s;), if (F(l?)->t, v)€I ,(., then for all
1 S . v Wy

z € d o m (t) , (F(x')->t ,vz)€I ,(v and if vzfSvar(t),
s . v. wz)

pelling(sj| (wz))«t(vz) . By the definition of shif

, . . . , I) , f) « C l e a r l y s - f (s . , . . . , s
1 m

{(w,spelling(j)) | (w,j)€k(s',••.,s')} and s =
x m L

By construction of the states in the character

automaton CG, all marked productions in I, are

of the following two forms:

i) (F(lf)->t,v) where t(v) = f

ii) (F(f)->t,v) where v€var(t) and t(v)=»x

some i, l<i<r(F)

In the first case, clearly

(F(lf)->t ,v)€Ikf , ,vfg.. By the construe
1' * m

the state Ifc€C, Ik=closure({(H(*)->t
fl,w) | t"(

a l l i , Kij<m, (H(x)->t",vi)€I f c }) . But then,

previous induction, for a l l vz€dom(t),

(F (*) - > t , v z) € I w , *'\(.\ a n d

1 m
s p e l l i n g (k (s t , * *•,s^)(z))at(vz)o I n t h e s e c o n

since t(v)ssx. , it must be the case that for al

vw€dom(t), (P «) —>t >vw)€I. , , e ^ ^ ^ - H e

J. m
conditions of the lemma are met.

c a s e 2 ; i d 2 « ({ (u , j 3 (s j , . . . , sffl)) } V b , 1 1) where

, r(G)-m,

k = g o t o ((k . , . . . , k) , G) w h e r e k = s ; (6) f o r a l l i
————— i m i i

and j 3 € s k e l e t o n (t ") • By i n d u c t i o n , s ' = > t « v

s ' = { (w , s p e l l i n g (j)) | (w f j) € p (s j f . . . f s ^) } f an<3

Pag<

)dom(3(s' . . , s ')) , i f (F (*) - > t , v) e i - , , , .
• 1 m pt, s - , • • • , s ;

len for a l l vz€dom(t) , (F (l t) - > t , v z) € I . (, ,
| H S 1 ' # # . , s m

id i f vzjSvar(t) , then

> e l l i n g (j ? (s ' , . . . , s ') (w z)) « t (v z) « Let

» { (w , £ £ e l l i n £ (j)) | (w , j) € s ^ } . Then

.early (G(lf)->t lf, 6)€I~, / 'Wfc^ since a redm
p^s]L,. • . , s m M e ;

is performed. But then, since for all w€dom(tfl),

and
p (s - , • • • >sm

^ . . . , s ^) (w)) = t f f (w) , s # - t l f . T h e r e f o r e

: s l) - - -) S m) W* t f l (s i » - - - » 8
m) f f > t 2 . By t h e

>nstruction of the states of the characterist ic

ltomaton CG, a l l marked productions in I, arie in

: the following two forms:

i) (F(lf)->t,v) where t(v)«G

i i) (F(*)->t ,v) where v€var(t) and t(v)«x fo

some i , Ki<r(F)

i the f i r s t case, clearly

->t 9 v)€I. f , ' w c \ * BY the construction
K.V s , , • • . , s) \ c)

le state Ifc€C, i f c»closure({(H(*)->t ' ,v) | t /(v)»G

LI i , Ki<m, (H(x)->t ' ,v i)€I , }) • But then, for

s€dom(t), (F(lt)->t ,vz)€L , , ,,, v and
Kv,S 1,«.«, S) \Z)

1 m
pelling(k(s^,...,s/)(z))sat(vz). In the second ca
Lnce t(v)=sx., it must be the case that for all

Pa;

rw€dom(t), (F(*)->t, vw)€Iw , flM/ r Hence
K V S - . > • • • * S

m ' ^ W '

:onditions of the lemma are met.

rase 3; u=*6, id3«({(8,start)} , t ^ , and

Ld2-({(69p)}9t1) where S->t€reduce(j3(8)) and

J€skeleton(t). By induction, s' = > t~ where

3*«{(w,spelling(j)) | (w,j)€j3}, and for all w€dom

Lf (F(?)->t',v)€I3(wv, then for all vz€dom(t'),

:F(!c)->t' ,vz)€Io, . and if vz#var(t'), thenpCwz;

spelling (j3(wz))^t(vz). Clearly, (S->t, 8)€l3(g) s

reduction was performed. But then, since for all

*€dom(t), (S->t,w)€I3,v and spelling(^(w))«t(w),

Since, by definition, spelling(start)-S and S->t€

clearly S = > t * s' ==> t2 meeting the condition

Hhe lemma.

Having provided the above proofs, the follow

theorem puts these results together by showing th

tree language accepted by a BUTLR(O) parser is

Ldentical to the tree language generated by its

corresponding tree grammar.

rheorem 6.3« 1; Given a tree grammar G=(J ,i.,P , S) ,

characteristic automaton CG=(iVl, C ,o , qQ ,F) , and i

BUTLR(O) parser M=(G,K,shift,reduce,goto,start),

Page

G) - N(M).

oof: By the definition of a tree language generat

a tree grammar G, L(G) • {t€T-r- | S ==> t}. By t

finition of the tree language accepted by a BUTLB

rser M, N(M) - {t€T7r | ({(uO,start) I u€leaf(t)},
JL ——————

({(S,start)},t)} . Let t€L(G) be any tree in L((

nee S => t. By the definition of an 01 derivati

ere exists a production of the form S->s€P such t

•=> s ^?> t • By lemma 6.3.3,

(uO,start) | u€leaf(t)},t) h* ({(6,s/)},t) where

€skeleton(s) and for all w€s, (S->s,w)€I ,(v. I

en, since S->s€jreduce(s ' (6)) , ({(6,s')},t) hj

(6,£t£££)} ,t). Hence t€N(M) and L(G) £ N(M). Or

her hand, assume that t€N(M) is any tree in N(M)«

nee ({(uO,start) | u€leaf(t){,t) hd ({(6,start)},

lemma 6.3.5, S => t. Hence t€L(G) and N(M) C I

erefore L(G)»N(M).

4 Conjectures On Determinism

Like a LR(0) parser generator, the BUTLR(O) pi

nerator does not necessarily guarantee to produce

11 defined BUTLR(O) parser. It is conjectured b]

thor that the BUTLR(O) parser generator will proc

well defined BUTLR(O) parser if the given tree

grammar is a BUOI(O) grammar. A tree grammar

G=(<H,2,P,S) is considered BUOI(O) if and only ij

1) G is conservative and reduced.

*

2) For any two derivations S = >

tl[u<-F1(s1,...,sm)] ==> t1[u<-t(s1,..

and S ==>* tJ[«'<-Fj(.J....,.;)] = >
tj[u'<-t'(s',..•fs')], if there exists1 1 m

v€dom(t') such that

t'(sJ,..Ms')/v=t(s.,.,.,s), then v^S

Fl s Fl > SiaSSi f o r a 1 1 if il1!111* a n d

t1[u<-t(s1, .•Msni)]*tj[u
/<-t'(Sp...,si

In other words, condition (i) guards against in:

nondeterminism, and condition (iii) states that

reduce-move must be uniquely identified by a

characteristic tree.

Chapter VII

THE MACRO LANGUAGES - AN APPLICATION

The preceeding chapters presented a new model o:

i pushdown automata and a construction method to

.d a deterministic parser for a subclass of the

:ext-free tree languages. This chapter investiga

.nteresting application: a parsing technique for

»s of string languages more general than the

:ext-free string languages. That is, this chapte

.oits the fact that the class of string languages

lined as sets of yields of all trees in a

:ext-free tree language is the class of (01)

:o-languages, which is identical to the class of

ixed (string) languages, (see Fischer[68][69]).

Hence, by modifying the BUTLR(O) parser to acce

strings instead of trees, this chapter presents

parsing method using the BUTLR(O) parser to con

new parser which will recognize string language

class of macro languages, as well as construct

deterministic parsers for a subclass of the mac

languages (which is a superset of the determini

context-free string languages).

The method used to build a parser for a ma

language is as follows: First, the macro gramm

converted to a tree grammar G~. Then, using th

BUTLR(O) construction method, a BUTLR(O) parser

built to accept the tree language generated by

Finally, the constructed BUTLR(O) parsing table

used to define the BUTLR^CO) parser which tests

string is in the macro language generated by G.

However, instead of using tree instantaneous

descriptions and the decision relation associat

the BUTLR(O) parser, the BUTLRW(O) parser has i

form of instantaneous descriptions and decision

relation to describe moves made by the BUTLR^(0

parser.

Page

One should note that the purpose of this chapte

to provide the motivation behind the development

BUTLR(O) parser, and to lay down the groundwork

ure research in formulating parsing methods to pa

ro languages. For these reasons, this chapter do

provide proofs for any of the theorems or

jectures. Furthermore, the construction methods

jectures presented in this chapter are new ideas

author's, are based on previous experience with

ferent forms of automata and the relationships

ween these different forms of automata, and have

n completely worked out as yet. Hence portions o

s chapter may be sketchy at best.

The chapter begins with section 7.1 by presenti

ethod of using the BUTLR(O) parser construction

hod to build a parser which simulates a LR(0) pai

the class of context-free string languages,

tion 7.2 introduces the definition of macro gramn

macro languages, and provides a brief review of

ic. The chapter concludes with section 7.3 by

ending the method used in section 7.1 to simulate

ted stack automaton (see Aho[68]) instead of a PI

defines the BUTLR^(O) parser which accepts strir

guages in the class of macro languages.

7.1 Simulating LR(O) Parsers Using BUTLR(O) Pai

This section presents a method of using the

BUTLR(O) parser to simulate an LR(0) parser. Tl

concept used is to simulate strings using "flat1

where concatenation is explicitly expressed. Ir

words, it takes a context-free string grammar G-

converts G. into a tree grammar G« such that eve

sentential form of G2 is a "flat" tree which re{

the corresponding sentential form in G1. Hence,

strings will be explicitly incorporated into the

grammar used to generate the BUTLR(O) parser anc

exists an isomorphism between the sentential foi

generated by the string grammar G- and sententic

generated by the tree grammar G~.

Back in chapter 3, pushdown automata were

presented. In that chapter, both the input and

stack of the PDA were presented as a string of s

Furthermore, the stack used J_ as a reserved symt

represent the empty stack, concatenation as the

operator used to perform a push, the top of the

was assumed to be the rightmost symbol in the st

and the LR(0) parser simulated a rightmost deri\

Page 35

To lift the above notions to a tree structure, th

sentation of strings must be lifted to trees* A

al assumption is to "explicitly" express the

tenation operator used in generating the string,

xample, the string "aAbBc" could be represented b

r

/ \ or / \
c a

/ \ / \
B A

/ \ / \
b b

/ \ / \
A B

\ / \
a c

J[represents the empty string.

Assume the method to convert string grammars to

grammars uses the tree representation on the left

e). Let G be the string grammar Ĝ CJB ,i,P, S) wher

A,B,C}; !»{a,b}; and P={S->C, A->a, B->b, C->AB

B}. Following the above idea, the corresponding

grammar would contain the following tree

ctions:

S -> • A -> • B -> •
/ \ / \ / \

J_ c J_ a J_ b

C -> • C -> •
/ \ / \

B • B
/ \ / \
I A c

/ \
I A

Also, the string "ab" is derived using th

grammar G as follows:

S = > C = > AB ==> Ab =|> ab

The corresponding derivation using the tr

is:

I c i • i i
~ / \ ~ / \ ~ / \

• B • • •
/ \ / \ / \ / \ / \
I A i A | b | • | b

~ / \~
I a

By inspecting the two derivations at

differences between them, two problems wi

representation are visibly clear. One pr

the sentential forms generated using tree

have not maintained the property that eve

form is a "flat" tree representing the co

sentential form in the string grammar. A.

is that the nonterminals label leaves and

rivation (for which the BUTLR(O) parser is based <

is not necessarily correspond to a rightmost

rivation which violates the constraints of an LR((

rser (for example, the above form of tree product:

}o allow a leftmost derivation).

One should note that both of the above problem!

»m from a common cause* In a string grammar a

iterminal A is a placeholder which represents a s

strings (of any length) while on the other hand,

ler to maintain the "flat11 structure of the gener

»es, the conversion method assumes that any strin

xerated from A will be a single terminal symbol w

LI replace the node labelled by A. Clearly, such

sumption is wrong* Hence, the conversion should

icatenate the string occurring to the left of the

iterminal A, and the string derivable from A, unt

» structure of the string derivable from A is kno

To resolve this problem, the conversion method

iified such that the rank of every nonterminal is

Lsed from being a constant to having an arity of

are the nonterminal's parameter represents the st

it will occur to the left of the nonterminal. Le

- s t r^ n8 t o tree conversion be accomplished using

iction lift : (i V D -> Tywjw / . \ (xi) where for &

oc€(i.Vl) » lift(oc) is recursively defined as f

i) lift(8) • x where £ is the empty string

ii) lift(3a) - • where 3a=oc and a€i
/ \

lift(3) a

i i i) l i f t (j3A) » A where pA=oc and A€<fi
I

lift(3)

Example 7.1.1: Let G=(f,i,P,S) where

| - {S, A, B, C};

1 = {a, b}; and

P » {S->C, C->AB, C->ACB, A->a, B->b}. Then,

lift(6) = x

lift(ab) - •
/ \

b
/ \

x a

lift(C) - C
I
x

lift(AB) » A and
I
B
I
x

lift(aAb) = •
/ \

A b
I

Pa

Using the function lift, the corresponding t

grammar of £ string grammar G^d,^,?, S) , denoted

is the tree grammar TG »($' ,][' ,P' , S) where
G

f - 5 where r(S)-0 and for all F€($-{S}), r(i

5' - 1V{«,1} where r(«) = 2, r(j_)=O,

and for all a€i, r(a)=0; and

P' is a set of productions where

i) if S->oc€P, then S->lif t(oc) (J_)€P'

ii) if A->oc€P where A?*S, then A(x)->lif t(oc)<

iii) nothing else

Example 7.1.2; Let G be the string grammar define

example 7.1.1. The corresponding tree grammar oi

the tree grammar TGG=(<5' ,2' ,P' , S) where

P' - {S -> C , C -> B , C -> B ,
I I I I I
J_ x A x C

I I
x A

A -> • , B -> • }.
I / \ I / \
x x a x x b

Furthermore, for the derivation

S = > C = > ACB ==> ACb = > AABb ==)

AAbb ==> Aabb ==> aabbK K

the corresponding d e r i v a t i o n in TGp i s

I I / \ / \
J_ C C b B b

I I I
A A A
I I I
i i A

I
i

Ff> , \ W f\ W f\
b b b

/ \ / \ / \
A b b b
I / \ / \
A A a a
I I / \
I I l a

Note in the above example that for e

form oc derived using G, the correspondin

TGn produces the tree lift(oc)(|)• Hence

between the string grammar and the tree g

maintained. Furthermore, since in tree p

each nonterminal occurs as a descendant o

nonterminals which occurred to the right

nonterminal in the string case, an 01 der

correspond to a rightmost derivation.

Page

One should note that the inverse operation of t

:tion lift can also be defined. Given a string

amar G*(J ,^.,P, S) and its corresponding tree gramm

•(!'»S' ,P',S), let the function

Ld : T^T'Vjij'C^) "> (i V D * be recursively defined

ti that

i) yield(x) = 6

i) yield(j_) = 6

i) yield(a) - a where a€i

7) yield(.)
/ \

v) yield(A) - yield(t.)«A where a
I

re t. and t^ are trees in T p w j /

mple 7.1.3: Let G and TG_ be defined as in exampl

.2, then

yield(C) - C ,
I

yield(B) » AB , and
I
A
I
x

yield(•) - aAb
/ \

A b

/ \
x a

The next theorem and three lemmas show (wit

proof) the fact that the yields of trees in TG-

string language generated by Go

Lemma 7 • 1«1: Given any string grammar Ga(|,l,P,S

its tree grammar TG =(<5' ,][' ,P' , S) , any string
Cjr

oc€(lVi)*, oc=yield(lift(oc))»yield(lift(oc) (J_)

Lemma 7.1.2; Given any string grammar G=(f,2,P,S

its tree grammar TGG=»(<jj' ,1' ,P' , S) , if S ==>
n oc ,

S ==>n lift(oc)(j_) and oc =yield(lif t(oc) (_)) .

Lemma 7.1.3; Given any string grammar G=(f,i,P,£

its tree grammar TGG=(i' ,1' ,P' , S) , if S = > n t,

s ==>
n yield(t) and t-lift(yleld(t))(|).

Theorem 7.1.1: Given any string grammar Ĝ jjj ,.>.,!

its corresponding tree grammar TG =(<5' ,2/ ,P' , S) ,
Car

L(G)={yield(t) |

Page

Having converted the string grammar G to the t

immar TGQ, the BUTLRg(0) parser (the BUTLR(O) pan

>lied to string grammars) can be built. A BUTLR <
b

:ser is a septuple

;G,TGP,K,shift,reduce ,goto,start) where

Ĝ Cfj) ,i,P, S) is the string grammar defining

the BUTLRg(O) parser;

TG -($',5/fP'fS) is the corresponding

tree grammar used to define the BUTLR(O) pars

tables;

K is a finite ranked alphabet of parser states;

shift : tuples(K) x 1' -> K V {error}

is a function defining the

parsing shift table;
P'reduce : K -> 2 is a function defining

the parsing reduce table;

goto : tuples(K) x $' -> K V {error}

is a function defining the parsing

goto table; and

start€K is the initial state.

rthermore, the BUTLR (0) parser is constructed us

>orithm 6.3.1. That is, let

«(TG^,K,shift,reduce,goto,start) be the BUTLR(O)

rser built by algorithm 6.3.1. Then, the BUTLR(0

fines the set of states K, the initial state star

the three parsing functions shift, reduce, and

the BUTLRg(O) parser M, and M is deterministic

only if M' is deterministic.

The instantaneous description of a BUTLR

parser is quite different from the instantaneoi

description for the BUTLR(O) parser. The inpu

structure is a string (not a tree), the input :

scanned from left to right as opposed to scann

tree from the leaves to the root, and the inte

memory is a single tree stack. An instantaneoi

description of a BUTLRg(0) parser (denoted IDS

pair (t,oc)€T x i where t is the current (tr<

and oc is the string left to scan on the input

The initial configuration is the pair

(shift(start, |), oc) where oc is the string to]

The decision relation 1-̂ C IDS x IDS of a
d —

BUTLR (0) parser M«(G,TG ,K,shift,reduce,goto, i

determines the next move made by the BUTLRq(0)

M. Given two instantaneous descriptions id1 a
id. h® ido if and only if

Id L

Page

i) idx - (t,a-oc) and id2 = (k2(t , ^) , oc) whe

k1»shift(start>a) and k2»shift((t(£)>kl),*

ii) idx - (j3(t),oc) and id2 - (k(t),oc) where .

A(lf)->s6reduce(j3(t)(S)) , A^S, p€skeleton(s

and goto((t(6)),A)»k

iii) idx « (p,6) and id2 - (start^g) where

»{S->s} and p€skeleton(s)

other words, in terms of an LR(0) parser, condit

) is a shift-move over the input symbol "a",

idition (ii) is a reduce-move on the production A

»re lift(6)aas defines the corresponding tree

>duction A(x)->s, and condition (iii) is a

luce-move on the start production S->6 causing

:eptance where lif t(6) (J[)=ss defines the correspon

irt tree production S->s.

Like an LR(0) parser, acceptance of the string

Ly occurs if the decision relation causes a serie

/es which converts the initial instantaneous

3cription into the instantaneous description

tart,6)• Hence, the language accepted by £ BUTLR

rser M, denoted N(M), is the set
*

4) - {oc€i* | (shift (start, |) , oc) h? (start, g)}
it d

is the transitive reflexive closure of I-, •
a

Example 7.1.4; Let G=(|,i,P,S) be a string gr

where

I - {S,A};

]E • {a,b}; and

P - {S->A, A->ab, A->aAb};

Then D-(G,K,shift,reduce,goto,1) is an LR(0)

where

K - {1,2,3,4,5,6} and

shift, reduce, and goto are defined by

the following tables:

shift reduce goto

a b A

1 | 3 | 1 2 | S->A | 1 I 2 I

3 | 3 I 4 | 4 | A->ab 1 3 | 5 |

5 1 16 1 6 | A->aAb |
+ + + -h +

Furthermore, TG =(<§' ,i' ,P" ,S) where

$' • $ where r(S)=0 and r(A)«l;

1' - lV{i,*} where r(JL)-r(a)«r(b)-0,

and r(•)*2; and

P - {S -> A , A -> • , A -> • }
I I / \ I / \
I x • b x A b

/ \ 1
x a

/ \
x a

The constructed BUTLRo(0) parser M, defined b

Pag

UTLR(O) parser M*«(TG^,K,shift,reduce,goto,1) , is
VST ' ' 'mmmm~m*m ' • • • • _ • • _ _ > <mSmmmmmm

"(G.TG-.K,shift,reduce,goto, 1) where

K - {1,2,3,4,5,6,7,8,9} such that

r(l)-r(2)«r(3)»r(4)=0, r(5)=r(8)=l, and

r(6)»r(7)-r(9)»2; and

shift, reduce, and goto are defined by

the following tables:

2,3)

6,3)

6,4)

8,4)

shift

e a b •
_ L . _ _ _ _ 1 _ _ i . - i - i

1 I 2 | 3 | 4 | |
+ + + -j. +

| | | 6 |

6

7

9

goto

A

2 I 5 |

6 | 8 |

reduce

he language accepted by the LR(0) parser D and t\

UTLRC(O) parser M is the set of strings {a b | r

or example, the string "aaabbb" is accepted by tt

R(0) parser D as follows:

(1,aaabbb) h^ (13,aabbb) ^ (133,abbb) hd

(1333,bbb) K (13334,bb) K (1335,bb) K
a a a

(13356,b) K (135,b) K (1356,6) K
a d a

(12,6) \-d (1,6)

Similarly, the corresponding computation using t

BUTLRg(O) parser M is as follows:

(2 , aaabbb) £
a

(6 , aabbb) K
/ \ d

2 3
(6 , abbb) *-*
/ \ d

6 3
/ \

2 3
(6 , bbb) K?
/ \ d

6 3
/ \

6 3
/ \
2 3

(7 , bb) hs.
I \ d

6 4
/ \

6 3
/ \

6 3
/ \

2 3

(8 , bb) I-J

6
/ \

6 3
/ \

Page 367

8 4
I
6

/ \
3

\
3

, b)

\

(9 , 6)
/ \

4

\
3

rom the above example, one can notice several

rities between the LR(0) parser D and the

(0) parser M. One similarity is that the string

b" is accepted by both the LR(0) parser D and the

(0) parser M by performing 10 computation moves,

r similarity is that whenever the LR(0) parser D

med a shift-move, the BUTLRg(0) parser M also

med a shift-move. The same is also true for

-moves. Also, both the LR(0) parser D and the

BUTLR (0) parser M is deterministic. By lookin

deeper similarities, one notices the similariti

between the two forms of internal memory. Afte

computation move, the spelling of the stack of

LR(0) parser D corresponds to the yield of the

of the tree stack of the BUTLRo(0) parser M. T

n sn

if (l,oc) K (3,8) and (2,oc) K (t,e), thena r a

spelling(j3)=*yield(spelling(t)).

It is the firm belief of the author that t

results are true in general, and the following

conjectures present these beliefs:

Conjecture 7.1.1: Given a string grammar G, the

parser M.«(G,K.,shift.,reduce.,goto.,start.), a

BUTLRg(O) parser

M2^(G,TGc,K2,shift2,reduce2,goto2,start2), then

a) (start, oc) K n (j3,6) if and only if
n

(shift;(start,I),oc) ^ (t,6) where

spelling(j3)*«yield(spelling(t)) and

Iift(spelling(j3))(l)*spelling(t).

b) Hl is deterministic if and only if

deterministic

c) L(G) - NCMj) = N(M2)

Conjecture 7>1»2: Given a string grammar G, the

BUTLRC(O) parser can be extended to a BUTLRe(k)

(a parser with k symbols of lookahead on the inp

tape). Furthermore, the conditions of conjectur

apply to the comparison between the LR(k) parser

the BUTLRg(k) parser.

7.2 The Macro Languages

This section presents the definition of a n

grammar and how a macro (string) language is gen

from a given macro grammar (see Fischer[68][69])

with most grammars, the generation process is pe

via a series of derivation steps. Furthermore,

tree grammars, macro grammars also have two rest

forms of derivations called outside-in and insid

derivations and both modes of derivation will be

presented.

Informally, a macro grammar is a gene

string grammars where the notion of a macr

from programming languages. In other wordi

nonterminals is a ranked alphabet where no:

with arity greater than zero get parameter

manner as tree grammars. The occurrences <

on the right-hand side of a production cor

placeholder into which the corresponding a

the production is substituted for the occu

variable. Hence, in some sense, macro grai

quite similar to tree grammars. The diffe

that while a macro production is performin

rewrite step, the structure it is manipula

string instead of a tree.

Definition 7.2.1: A macro grammar is a qua

(I,I,P,S) where

| is a finite ranked alphabet of

nonterminal symbols;

2 is a finite alphabet of terminal symb

S€F is a designated symbol in (jj called

start symbol where r(S)=0; and

P is a finite set of pairs of the form
2

(F(x ,...,x),oc)€term(l,i) where F

Pa

Note; Each pair (F(x.,...,x) , oc)€P is called a

production. Furthermore, for any production

(F(x.,...,x),oc)€P, if x€XA occurs in the string1 m A

then x€X (i.e. the only variables which can occm

the right-hand side of a production are those whi

occur on the left-hand side of the production).

For convenience of notation, the string

F(Xj,...,x) where r(F)=sm will be denoted in vect

form as F(l?). Productions will be denoted as F(H

where (F(lt), oc)€P. In general, upper case letter

as F,6,H,..« will be used to denote nonterminal

symbols while lower case letters such as a,b,c,.«

will be used to denote terminal symbols. Further

greek symbols will be used to denote terms. Depe

on the context, G will also be used to denote a n

grammar. Finally, unless otherwise specified, or

assume that A*max{r(F) | F€$}.

Example 7.2.1: The macro grammar which generates

strings of the form {anbncn | n>l} is the macro £

G«($ 95L 9P 9S) where

1 - {S,F} such that r(S)»0 and r(F)=3;

i • {a,b,c}; and

P - {S->F(a,b,c), F(x,y,z)->xyz,

F(x,y,z)->F(xa,yb,zc)}

A macro language is generated from a ma-

by performing a series of derivation (or rew

steps. Given a macro grammar G=(<| ,i,P , S) , 1*

one-step derivation (or rewrite) relation

— -— 2=z> <C tem(i,I) be defined as the set of pa

oc , oc 1, . . . , ocm,j3,e€term(<5,:D , and F(t)->e-

In other words, given any string oc*F(oc1,..

string F(oc.,•••,<£) is rewritten (or repla

string 6[oc«,...,oc] using the production

F(x1,...,xm)->e.

Equipped with the meaning of a one-step

derivation, one is able to define the set of

generated from a macro grammar. Given a mac

G=(i,i, P,S), a sentential form is any string

oc€term(<D ,i) such that S = > oc where = >
* u u

transitive reflexive closure of = > . Furthe

string language generated by ja macro grammar

L(G), is the set of all sentential forms oc

oc€i • Hence

L(G)»{oc€l* | S ==>* oc}.

Pa

Example 7 .2.2; Let G be the macro language define

example 7.2.1. A sample derivation which generat

string "aaabbbccc11 is as follows:

S = > F(a,b,c) = > F(aa,bb,cc) = >

F(aaa,bbb,ccc) = > aaabbbccc

As mentioned earlier, the situation regarditi

derivation modes for macro grammars is as intrica

the derivation modes for tree grammars. One-step

derivations are not commutative in the sense that

oc = > oc using F,(a?)->p. and oc 2
 =::> oc ~ using

>p2, it is not necessarily the case that th

exists a term oc ' such that oc , = > oc 1 using F9(

and oc ' = > oc 3 using F1(x')->p1. To show this, c

the following example:

Example 7.2.3: Let G*(J,i,P,S) be a macro grammar

that

1 * {S,F,G} where R(S)»0 and r(F)»r(G)»l;

i « {a}; and

P » {S->F(G(a)), F(x)->a, G(x)

Clearly F(G(a)) = > F(a) using G(x)->x and F(a) =

using F(x)->a. On the other hand, when the order

the derivation steps is reversed, F(G(a)) :=::> a u

F(x)->a and it is now impossible to perform a rev

using G(x)->x.

Hence, the order in which derivation steps a

applied affects the resulting derived string (i.e

derivation steps are not necessarily independent

another). This result has been shown by

Fischer[68][69]• Like tree grammars, there are t

modes of derivations (besides the unrestricted ca

which are commonly used and are known as inside-c

(10) or outside-in (01) derivation modes.

An JU) one-step derivation (denoted y7f>) is a

one-step derivation applied to an innermost nonte

occurring in the string. In other words, the

derivation step can be applied to any subterm

F(oc .,..., oc) where no nonterminals occur in an\
l m

terms oc . through oc . More formally, the yj=> re

is defined as follows:

For any two terms oc . , oc 2€term(§,i) , oc - = > <

only if oc , — > oc 2

i) ocj = ocF(p1, ... ,pm)e

ii) oc2 = oc£[j31,...,j3m]e

Page

.i) F(l£)->&€P where r(F)=m

.v) for all i, Ki<m, 3,€(5VXA)*

:e that conditions (i) through (iii) are just the

iditions of a one-step derivation while condition

r) is the added condition of an 10 derivation.

Similarly, an 01 one-step derivation (denoted :

a one-step derivation applied to a top-level

iterminal in a term. In other words, it can be

)lied to any nonterminal which is not embedded wi

>ther nonterminal. More formally, the relation =

defined as follows:

for any two terms oc . , oc J t e n d ,][) , oc . = > oc 2

only if oc. = > oc 2 and

i) ocj * ocFCjJj,. .. ,j3m)e

Li) oc2 * oci[p1,.,.>p||l]e

Li) F(x)->^€P where r(F)»m

Lv) cc ,e€term(l,l)

lin, as in an 10 one-step derivation, conditions

rough (iii) are just the conditions for a one-ste

rivation while condition (iv) is the added condit

r an 01 derivation.

To clarify the difference between unrestrii

10, and 01 derivations (i.e. = > , =?>, and 77y>

consider the following examples

Example 7.2.4: Let 6a(39^.9PfS) be a macro gramm<

that

$ - {S,F,G} where r(S)«O and r(F)*r(G)=l;

i « {a}; and

P = (S->F(G(a)), F(x)->xx> G(x)->xx, G(x)->x

The set of all possible 10 derivations is as foi

S TE> F< G(a>) f^> F< a a> ff> aaaa

S = > F(G(a)) = > F(a) = > aa

On the other hand, the set of all possible 01

derivations is as follows:

S ==> F(G(a)) ==> G(a)G(a) = > aaG(a) = > aai

S = > F(G(a)) ==> G(a)G(a) ==> aaG(a) = > aa;

S = > F(G(a)) = > G(a)G(a) = > aG(a) ==> aaa

S ==> F(G(a)) = > G(a)G(a) ==> aG(a) = > aa

S = > F(G(a)) ==> G(a)G(a) ==> G(a)aa = > aa.

S ==> F(G(a)) = > G(a)G(a) ==> G(a)aa = > aa;

S = > F(G(a)) = > G(a)G(a) = > G(a)a ==> aaa

S = > F(G(a)) ==> G(a)G(a) = > G(a)a ==> aa

Also, the set of all possible (unrestricted)

derivations is as follows:

S = > F(G(a)) = > G(a)G(a) = > aaG(a) = > aa.

Pag

S = > F(G(a)) = > G(a)G(a) = > aaG(a) = > aaa

S = > F(G(a)) =^> G(a)G(a) = > aG(a) = > aaa

S = > F(G(a)) = > G(a)G(a) = > aG(a) = > aa

S = > F(G(a)) = > G(a)G(a) = > G(a)aa = > aaaa

S = > F(G(a)) = > G(a)G(a) = > G(a)aa :=> aaa

S = > F(G(a)) = > G(a)G(a) = > G(a)a = > aaa

S = > F(G(a)) = > G(a)G(a) = > G(a)a = > aa

S = > F(G(a)) = > F(aa) = > aaaa

S =^> F(G(a)) = > F(a) = > aa

Note that in the above example that using an

erivation mode the language generated is {aa,aaaa

hile using either an 01 or unrestricted derivatic

ode the language generated is {aa,aaa,aaaa}• As

ight expect, it turns out that the results about

0, 01, and unrestricted modes of derivation for t

anguages are also true for macro grammars. Howe\

efore stating these results the definition of a n

anguage must be extended to allow the derivation

o be specified.

For notational convenience, the transitive

losures of the different derivation modes are del

s follows. The transitive closure of = > , = > , i

=?> are denoted as : => , = > , and ==> respective

while the transitive reflexive closures of — >

. * * *
and r̂y> are denoted as — > , y-r-> , and — >

respectively.

To extend the notion of a macro language

either an 10, 01, or unrestricted derivation n

must also generalize the definition of sentent

forms. Given a macro grammar G*(5,S,P,S) and

derivation relation ==> where M€{I0,0I,u}, a s

*

form is any term oc such that S ==> oc • Fun

the string language generated by G using ===>,
1 v v ^ ^ M.

L M(G), is the set {oc€l* | S = > * oc} •

Having generalized these definitions, th(

following result of Fischer[68][69] is preseni

without proof:

Theorem 7*2.1: Given a macro grammar 6*(ifi.fP

macro languages generated by the three differi

of derivation are related as follows:

L I 0 (G) £ Loi< G) = Lu (G>

Note: The remainder of this chapter will only

01 derivations.

Page

The object of this chapter is to apply the

fTLR(O) parser to string languages and attempt to

roduce as much determinism as is possible. Follow

tis notion, the methods used to make LR(0) parser;

iterministic should also be applied to macro

mguages. To this end, the notion of a rightmost

privation must also be introduced. Given a macro

rammar G^Cf,i,P,S), the one-step rightmost deriva

ilation = > C ten(| }l) is defined as follows:

For any two terms oc , , oc «€terii(i ,i) , oc , = > oc

only if oc . =p> oc ̂ and

i) oc

ii) oc

Lii) F(!t)->&eP where r(F)=m

iv)

i other words, —=̂ > is the one-step derivation app

> the rightmost top-level nonterminal. Furthermo

it :==:> and --=•> denote the transitive and transi
K K

aflexive closures of —> respectively.

Pa

Example 7.2,5: Let G be the macro grammar defined

example 7.2.4» The set of all possible rightmost

lerivations is as follows:

S = > F(G(a)) = > G(a)G(a) = > G(a)aa = > aaaa

S = > F(G(a)) = > G(a)G(a) = > G(a)aa = > aaa

S = > F(G(a)) ==> G(a)G(a) = > G(a)a ==> aaa

S = > F(G(a)) = > G(a)G(a) = > G(a)a = > a

As with 10 and 01 derivation modes, in order

extend the notion of a macro language under a rig

ierivation, the definition of sentential forms mu

igain be generalized* Given a macro grammar

'S(I>5!>]?> S) and the derivation relation ==>, a
K

sentential form is any term oc such that S —=r> a

furthermore, the string language generated by G u

==>, denoted L^T(G), is the set {oc€i I S ==>* a

Having generalized the above definitions, th

Following result is conjectured:

Conjecture 7«2«1: Given a macro grammar G,

-JjCG) « LQI(G) - L(G).

Page :

Parsing The Macro Languages

This section presents a new type of parser to

>gnize string languages in the class of 01 macro

>uages, the BUTLRM(0) parser (the BUTLR(O) parser

Lied to macro languages). The BUTLRM(O) parser i

structed using the construction method for the

-,R(0) parser and is a generalization of the

jRgCO) parser presented in section 7.1.

The method used to build the BUTLRM(O) parser i

follows: First, the macro grammar 6. is converte

i tree grammar G? using a generalization of the

:tion "lift" defined in section 7.1. Then, using

BUTLR(O) construction method, a BUTLR(O) parser

juilt to accept the tree language generated by G9

illy, the parsing tables of the BUTLR(O) parser M

used to define the BUTLR^CO) parser M where the

»rnal memory simulates a nested stack automaton

3ented by Aho[69].

A nested stack automaton is a parser invented b

to parse the class of indexed languages (which i

itical to the class of 01 macro languages, see

:her[68][69])• The parser is a nondeterministic

-down parsing method where the moves of the neste

zk automaton simulate the derivation which produc

I

the input string. While the nested stack autonu

quite interesting in itself, the important cone*

in this thesis is its form of internal memory, <

nested stack*

A nested stack is a recursively defined ob;

based on the notion of a stack. Like a stack, 1

are only two operators which update the stack,

operators are the push (adds an element to the t

the stack) and the pop (deletes an element from

of the stack). However, unlike the typical defj

of a stack, an element on the stack can either 1

stack symbol or a nested stack (and hence, a

recursively defined object).

The way in which the nested stack is used i

nested stack automaton to parse macro languages

simulate a PDA whenever possible. The top-level

is used to parse the top-level strings (strings

embedded by nonterminals with arity greater thai

Hence, whenever the macro grammar is also a strj

grammar, the nested stack is just a stack and tl

nested stack automaton simulates a PDA. Howevei

nonterminal occurs in the top-level string, and

nonzero arity, a nested stack is created for eac

its parameters. Then, each of the parameters ai

Pag<

reated like a top-level string and are parsed usii

le same method as with the top-level string (and

»nce, uses the recursive nature of the nested sta<

To use the nested stack in the construction o:

FTLR^(O) parser, the function "lift" has to be

ineralized such that a macro grammar is converted

ree grammar which will simulate a nested stack in

: a stack (as was done in section 7.1). In other

>rds, the arity of each nonterminal will be raise*

le where the added parameter of the nonterminal

"presents the string that will occur to the left

le nonterminal. A stack will be used to parse th

>p-level string under the assumptions used by an

irser (i.e. under the same assumptions used by t

JTLR (0) parser). Whenever a nonterminal with ar

>pears in the string, a nested stack will be crea

>r each parameter of the nonterminal and each nes

rack will be treated like a top level string. In

:her words, each nested stack will be parsed unde

^sumptions used by a LR(0) parser. Furthermore,

Lfferentiate between the top-level stack and a ne

tack two empty stack symbols will be used. The s

|lf will be used as the empty stack symbol for the

3p-level stack while the symbol "6" will be used

le empty stack symbol for all nested stacks.

Given a macro grammar G=(f,i,P, S) , let th

function lift : term(i.I) -> T^,-,..,. P,(X4

where $'=$ such that for all F€$' where F/S, t

of F is one larger than its corresponding rank

and lift is recursively defined as follows:

(i) lift(S) =• xx where 6 is the empty string

(ii) lift(3*x.) = • where x.€X.i f N i A

lift(p) x±+1

(iii) lift(3«a) = • where a€i
/ \

lift(3) a

(iv) lift(p'F) - F where F€$ and r(F)»0
I

lift(3)

(v) lift(3.F(3.,... ,3)) » F

lift(3) liftCBjXe) ... lift(

where F€5 and r(F)=m>0

Example 7.3.1; Let G be the string grammar def

example 7.1.1. Then,

lift(6) - x

lift(C) = C

lift(AB) = A and
I
B
I

Page 385

t(aAb) - •
/ \

A b

/ \
x a

er words, the function "lift" is a generalization

function "lift" presented in section 7.1 and

for string grammars the resulting trees will be

me.

e 7«3.2; Let 6 be the macro grammar in example

Then,

t(F(a,b,c))

x

and

6 a 6 b 6 c

t(F(x]La,x2b,x3c))

a • b

6 x^ 6 x

t(aF(F(a,b,c),b,c) - F

g b g c

g a g b g c

Using the function lift, the method to co

macro grammar to a tree grammar can be defined

a macro grammar G=*($> ,i.,P , S) , let the correspon

grammar of the macro grammar G (denoted TGr) b

tree grammar TG *(<§' »^' ,P' , S) where

J' • J where r(S)=0 and for all other

nonterminals F€3>' , the rank of F is one

than the rank of F in <j>;

S' -SV{-,!,6} where r(l)-r(6)-0f r(-)=2,

and for all a€i, r(a)=0; and

P' is a set of productions where

i) if S->oc€P, then S->lif t (oc) (\)W

ii) if A->oc€P where A^S and r(A)=»0, then

A(x)->lift(oc)€P'

iii) if A(x.,...fx)->oc€P where r(F)=m>0, t1 m

A(x1>...,xm+1)->lift(oc)€P
/

iv) nothing else

Example 7,3.3; Let Ĝ Cjj) ,5L,P , S) be the macro gr

such that

I = {S,F} where r(S)=0 and R(F)=3,

i - {a,b,c,d}, and

P = {S -> F(ad,bd,cd),

Page

F(x,y,z) -> F(axd,byd,czd),

F(x,y,z) -> xdydzd}.

language generated by G is the set

{andn+1bndn+1cndn+1 | n>l>.

i the macro grammar G is converted to the tree

amar TG-, the generated tree productions are as
Car

F - >

/7\\
c y z w

F - >

K y z w

^
X

/
•

/ \

6

/
•

-

/
•

\

a

•
\

•
\

d

y
/

6

d

\

/
•

/ \
•

\
b

•
\

d

z
/

6

•
/

•
\

c

/ \

w

/ \

/ \
w

/ \

/ \
x y

thermore, for the derivation

S ==> F(ad,bd,cd) ==> F(aadd,bbdd,ccdd) ==>

F(aaaddd,bbbddd,cccddd) = > aaaddddbbbddddc
K

the corresponding derivation in TGO is

§ a 6 b 6 c

01' F

/ \ / \
6 a • d

/ \
• •

/ \ / \
6 a • d

/ \
6 a

/ \ / \
6 b • d

/ \
• •

/ \ / \
6 b • d

/ \
6 b

/ \ / \

6 c • d
\

/ \ / \
6 c • d

/ \
6 c

r>

Page

/ \

/ \ / \ / \ / \
d <v d 6 c

I \# J \ J
I \ I \ I \ I \ I \

6 b • d 8 c • d
/ \ / \

6 c
/ \ / \ / \

a »v d 6 b • d

•' X -
' \ / \

a • d
/ \

8 a

e: The tree derived by TGn in the above derivatio

resents the nested stack J_#L.#d #L, • d • Ly • d where L

ough LQ are nested stacks as follows:

8-a'd

6*b*d

6«c«L9'd

One should note that the inverse mapping of

function lift can also be defined* Given a mact

grammar G=(5,2,P,S) and its corresponding tree g

TG =(!>' ,5L' ,P' ,S) , let the function
Car

yield : T^'\/S'<X
A) "> ter«(<g,l), where

A=max{r(F) | F€$'}, be recursively defined as fo

i) yieldCxj) = yield(j_) - yield(6) = 6

ii) yield(a) - a where a€i

iii) yield(x. + 1) « x. where x.+1€X. and

iv) yield(•) - yield(t,) • yield(t0)
/ \ 1 2

v) yield(F) - t.*F where F€$'
I

vi) yield(F) = t »F(yield(t,),...,yield

1 m+1

where F€(j>' and t p - M

Page

ample 7.3.4; Let G and TG be defined as in examp

3.3, then

) • F(a,b,c) and

6 a 6 b £ c

aF(F(a,b,c),b,c)

6 a 6 b 6 c

The next theorem and three lemmas state (withe

oof) that the set of yields of trees in TGQ is tt

cro language generated by the macro grammar G«

mma 7.3.1; Given any macro grammar G«(<$,.i.,P, S) at

s tree grammar TG *(<jj' ,i' ,P' , S) , any string
Car

€ter»(i,l), oc*yield(lift(oc)) * yield(lif t(oc) (J

mma 7.3.2; Given any macro grammar Ga(|,l,P,S) ai

s tree grammar TG *($' ,][' ,P' , S) , if S ==>n oc , tl
G K

n= > n lift(oc)(X) and oc=yield(lift(oc)(J_)).

Lemma 7.3.3: Given any macro grammar G=(j| ,i,P,

its tree grammar TGG=(<B' ,5/ ,P' , S) , if S = > n t

S ==>n yield(t) and t=-lif t(yield(t) (J_)) .

Theorem 7.3,1; Given any macro grammar

its tree grammar TG =(<jj' ,!' ,P' , S) ,

L 0 I (G) =

Having converted the macro grammar G to t

grammar TG^, the BUTLR^(O) parser (the BUTLR(C

applied to the macro grammars) can be built.

BUTLRm,(0) parser is a septuplerl

Ms*(G,TGn tK, shift, reduce » goto , start) where

G * (I,i,P,S) is the macro grammar defining

the BUTLR(O) parser;

TG- • (I'tS'fP'fS) is the corresponding

tree grammar used to define the BUTLR(O)

tables;

K is a finite ranked alphabet of parser sta

shift % tuples(K) x 2' -> KV{error}

is a function defining the parsing shift
P'reduce : K -> 2 is a function defining

the parsing reduce table;

Pag

goto : tuples(K) x $' -> KV{error}

is a function defining the parsing

goto table; and

start€K is the initial state;

urthermore, the BUTLR-,(0) parser is constructed u

Igorithm 6.3.1. Let

*=»(TGC,K, shift, reduce, go to, start) be the BUTLR(O)

arser built by algorithm 6.3.1. Then, the BUTLR(

arser M' defines the set of states K, the initial

tate start, and the three parsing functions shift

educe, and goto of the BUTLRM(0) parser M.

The instantaneous description of the BUTLRM(C

arser is quite different from the instantaneous

escriptions for the BUTLR(O) parser. The input

tructure is a string (not a tree) and is scanned

eft to right (as opposed to scanning the tree frc

eaves to the root). Furthermore, the internal me

s a string of tree stacks where each element in t

tring is a tree stack representing a nested stacl*

he tree stacks in the string are ordered in a

eft-to-right order according to the relative nest

f the nested stack the tree stack is representing

ther words, the string of tree stacks is a list c

ested stacks where the first element in the list

he top-level stack and all other elements are net

stacks which have not yet been added (pushed)

top-level stack. More formally, an instantane

description of a BUTLR^(O) parser (denoted ID^

pair (oc,j3)€ITK x i where oc is a string of ti

and p is the remaining portion of the input st

has not been read. The initial configuration

pair (k,p) where k«shif t(start, 1) and j3 is the

to parse.

The decision relation 1-™ C IDM x IDM of i
d —

parser M=s(G,TGr,,shift,reduce,goto,start) detex

next move made by the BUTLRM(0) parser M. Glv

instantaneous descriptions id- and id^, id- I-1

and only if one of the following six conditior

(i) idx = (oc-t,a*p) and id2 - (oc -k2(t ,k][) ,

k =shift(start,a) and k^^shift((t(6),

In other words, this condition is a shift-move

to the innermost (rightmost) nested stack whei

symbol a is read and the corresponding state V

pushed onto the innermost (rightmost) nested s

(ii) idj - (oc•t(t1,...,tm),p) and

id = (oc *k(t. , . . . ,t),3) where
Z l m •

t(t1,...,tm)(6)),

Page

;keleton(s), and goto((t̂ (6),...,^(8)),P)-k

:e that this condition is a reduce-move applied t<

i innermost (rightmost) nested stack using the ma<

>duction F(#)->6 where lift(6)»s defines the

rresponding tree production F("x)->s«

Li) idx * (oc,a*p) and id2 = (oc •k(k1 ,k2) , p) wher<

•shift (start ,£), k9
ssshift(start ,a) , and

Ls condition creates a new one-node nested stack

Lth the single element representing the stack "6a

i adds the new nested stack as the innermost

Lghtmost) nested stack (note: This type of move

called a create-move).

r) idx »(oc •t1*t2,p) and id2 - (oc *k(11, t2) , p) wh

ihHt((t 1(6) lt 2(6)) >Q

Ls condition takes the innermost (rightmost) nest

ick t~ and pushes (adds) the nested stack t« onto

} of the next innermost nested stack t. (note t T

E>e of move will be called a merge-move) •

) idx - (oc*t,p) and id2 - (oc •k2(k]L , t) , p) where

»shift(start,6) and k -shift((k-,t(6)),•)

Page

other words, this condition takes the innermost

sted stack t and pushes (adds) the nested stack t

to a new empty nested stack creating a new nested

ack of one element where the element is the neste

ack t (note: This type of move will be called an

bed-move)•

i) id- « (t,6) and id,, « (start,6) where

>s€reduce(t(6)) and t€skeleton(s)

te that this condition is a reduce-iove on the

p-level nested stack using the start (macro)

oduction S->6 where lif t (6) (J_) = s defines the

rresponding start (tree) production S->s, and is

cause acceptance of the input string.

A BUTLR^(O) parser is considered deterministic

d only if for every instantaneous description id

ere exists an id2 such that id. ^ id2, then id2

ique. In other words, a BUTLIL,(0) parser

(G,TG^,K,shift,reduce,goto,start) is deterministi

d only if

i) The BUTLR(O) parser

, start) is

deterministic*

ii) There are not shift/shift, shift/reduce

shift/create, shift/embed, shift/merge,

reduce/reduce, reduce/create, ••• ,

merge/merge conflicts.

Example 7.3.5: Let G and TG be the macro gramma

the corresponding tree grammar defined in exampl

7.3*3. Then M-CGjTG^,K,shift,reduce.goto,start)

BUTLR-.(0) parser such that

K «• {1,2,...,27} where

r(l) - r(2) » ... - r(7) - 0,

r(3) - r(4) * ... - r(16)

» r(18) - r(19) » ... - r(23)

- r(25) » r(26) - r(27) » 2,

and r(17) - r(24) - 3; and

shift, reduce, and goto are defined by the fc

tables:

shift

_ e a b c d
4—-4 4 + + 4 +—._+

1! | 2 | 3 | 4 | 5 | 6 | 7 |
+. 4 4 + 4 4 4 4

(3 . 4) I 8 I I I I I I I
4 4 4 4 4 4 4 4

(3 . 5) I 9 I I I I I I I
4 4 + 4 4 + + 4

(3 . 6) I 1 0 | I I I I I I
4. 4 + 4 4 4 4 +

(8 . 7) I 1 1 1 I I I I I I
4 4 4 4 4 4 4 +

(9,7) I 12| I I I I I I
+ + + + + + + +

(10,7) I 13! I I I I I I
+ + + + + +-«-+ +

(8,11) I 14! I I I I I 1
+-«— + + + 4. + + +

(2.11) I 15! I I I I I I
+ + + + + + + +

(9.12) I 16| I I I I I I
+ + + + + + + +

(10,13) I 18| I I I I I I
+ + + + + + + +

(14,7) I 19| I I I I 1 I
4 4 4 4 4 4 4 4

(15,7) I 20| I I I I I I
4 4 4 4 4 4 4 4

(16,7) I 21| I I I 1 I !
4—-4 4 4—-4—...4 4 ,4

(18,7) I 22| I I ! ! I I
4—,-4 4 4 4 4 4 4

(8,19) I 14| I I I I I I
4 4 4 4 4 4 4 4

(2,19) I 15! I ! I I I I
4 4 4 4 4 4 4 4

(20,12) I 23| I I I I I I
4 4 4 4 4 4 4 4

(9,21) I 16| I I I I I I
4 4 4 4 4 4 4 4

(20.21) I 23| I I I I I I
4 4 4 4 4 4 4 4

(10.22) I 181 1 I I ' I ! !
4 4 ,4 4 4 4 4 4

(continued on next page)

P a g e

(2 3 , 7) | 2 5 | I

; 2 5 , 1 3) | 2 6 | |

[2 5 , 2 2) | 2 6 | |

(2 6 , 7) | 2 7 | |

g o t o

F

[2 , 1 1 , 1 2 , 1 3) | 1 7 |

[2 , 1 9 , 2 1 , 2 2) | 2 4 |
JLmmm mm mm I .

reduce

I S ->

17 | / \ / \ / \
d • d • d

/ \ / \ / \
6 a 6 a 6 a

I F - > F

I x y z w x

24 I
/ \ / \ / \

d d d
/ \ / \ / \
• y • z • w |

/ \ / \ / \ i
6 a 6 b 6 c |

F -> |
/ \

x y z w • d

27 |
\

/ \
z

/ \
d

/ \
x y

The language accepted by the BUTLRM(O) parser

set of strings

{a nd n + 1b nd n + 1c nd n + 1 | n>l}

and by inspection of the tables above, clearlj

deterministic* For example, the string

"aadddbbdddccddd11 is accepted by the BUTLRM(0)

follows:

, aadddbbdddccddd) »-"?
a

• 8 , adddbbdddccddd) I-*
/ \ d

3 4

• 8 • 8 , dddbbdddccddd) l-°
/ \ / \ d

3 4 3 4

• 8 • 11 , ddbbdddccddd)
I \ I \

3 4 8 7
/ \

3 4

• 14 , ddbbdddccddd) I-™
/ \ d

8 11
/ \ / \

3 4 8 7
/ \

3 4

• 19 , dbbdddccddd) I-?
/ \ d

14 7
/ \

8 11
\ / \
4 8 7

/ \
3 4

(15 , dbbdddccddd)
/ \

2 19
/ \

14 7
/ \

8 11
/ \ / \

3 4 8 7
/ \

3 4

(20 , bbdddccddd) f-™
/ \ d

15 7
/ \

2 19
/ \

14 7
/ \

8 11
/ \ / \

3 4 8 7
/ \

3 4

4
(20 • 9 , bdddccddd) h™

/ \ / \ d

15 7 3 5
/ \

2 19
/ \

14 7
/ \

8 11
/ \ / \

3 4 8 7
/ \

3 4

Page 40

2
20 • 21 , dccddd) K

/ \ / \ d

5 7 16 7
\ / \
19 9 12

/ \ / \ / \
14 7 3 5 9 7

\ / \
11 3 5

/ \
4 8 7

/ \
3 4

7
25 , ccddd) M?

/ \ d

23 7
/ \

20 21
/ \ / \

7 16 7
\ / \
19 9 12

/ \ / \ / \
14 7 3 5 9 7

\ / \
11 3 5

/ \
8 7

/ \
3 4

(27 , g) J-
/ \

26 7
/ \

25 22
/ \ / \

23 7 18 7
/ \ / \

20 21 10 13
/ \ / \ / \ / \

15 7 16 7 3 6 10 7
/ \ / \ / \

2 19 9 12 3 6
/ \ / \ / \
14 7 3 5 9 7

/ \ / \
8 11 3 5

/ \ / \
3 4 8 7

/ \
3 4

m

, 6)

3 4 8 7 3 5 9 7 3 6 10 7

, m

2 11 12 13
/ \ / \ / \

8 7 9 7 10 7
/ \ / \ / \

3 4 3 5 3 6

(start,6)

Page

Like the BUTLR (0) parser, there are several

ijectures the author has about this model and are

Llows t

ajecture 7»3«1: Given a macro grammar G and the

^CO) parser M*(G, TG,, ,K, shift, reduce , goto , start
M. (j ' — — — v •

ajecture 7.3«2: Given a macro grammar G, the

rLRM(0) parser can be extended to a BUTLRM(k) par

parser with k symbols of lookahead on the input

pe) •

njecture 7*3.3: Given a string grammar G, the LR(

rser M.^CG^,, shift., reduce, ̂ oto,, start,) , and t

TLRM(0) parser

= (G,TGG>K2 ,shif t^^educe^ ̂ goto^ , s tart^) , then

a) (start, oc) hj11 (p,6) if and only if
n

(shif t^C start, I) , oc) I-™ (t,e) where

)) and

llft(spelling(p))(|)»spelling(t)

b) M. is deterministic if and only if

deterministic

c)

Conjecture 7,3,4: Given a string grammar G, th

BUTLR (0) parser can be extended to a BUTLR (k

(a parser with k symbols of lookahead on the i

tape)* Furthermore, the conditions of conject

apply to the comparison between the LR(k) pars

the BUTLRM(k) parser.

Conjecture 7,3,5: The class of string language

recognized by the class of deterministic LR(k)

languages is a subclass of the class of langua

recognized by the class of deterministic BUTLR

parsers. Furthermore, the inclusion is proper

While this chapter has presented a new pa

model for the class of macro languages and the

deterministic model is quite powerful, it may

the most powerful form of a parsing model for

of macro languages. One may have wondered why

- , n,n+l.,n,n+l n,n+l V 1 1 ,
language { a d b d c d I n M } was chosen

example instead of the string language {a nb nc n

Page 4

reason for this is that the second case will

uce a nondeterministic BUTLR^(O) parser and the

e is that the BUTLRM(0) parser does not take

ntage of the context of the tree stacks occurrinj

he left of the tree stack being updated. In othe

,s} whenever a new nested stack is created, the

ext of all other outer nested stacks is lost,

e, a possible way to increase determinism is to

fy the BUTLR(O) construction method to use left

ext in the same manner that the LR(0) parsing

Lod does in simulating a bottom-up tree automaton

*e the stack is a list of current states associate

i read-heads occurring to the left of the read-he<

Lg updated, and the update is based on the content

he stack.

Chapter VIII

CONCLUSION

Chapter two presented the notation and ten

used in this thesis. Chapter three presented

context-free (string) languages and a summary o

LR(0) parsing techniques. Chapter four present

context-free tree languages and several results

context-free tree languages which are based on

known results about context-free (string) gramm

Chapter five presented the tree pushdown automa

which accepts the class of context-free tree la

and chapter six presented a construction method

build a deterministic tree pushdown automaton (

BUTLR(O) parser) for a subclass of the context-

408

:ree languages. Finally, chapter seven presented

application of the BUTLR(O) parser to parse strinj

.anguages in the class of 01 macro languages. Th

chapter provides a summary of the major results o:

lissertation in terms of its contribution to compi

jcience, as well as open questions and possible fi

research on the topics covered in this thesis.

1.1 Summary Of Research

The crux of this dissertation is to present

>arsing model to recognize the class of context-f

:ree languages using a new parsing model which is

)ottom-up tree automaton augmented with internal i

consisting of a finite sequence of trees (called

stacks). This new form of automaton is called a

>ushdown automaton. Furthermore, the tree pushdo

lutomaton corresponds to the standard (string) pu

automaton in the same manner that the bottom-up t

lutomaton corresponds to the (string) finite auto

lence, like the pushdown automaton, the tree push

lutomaton can only access the tree stack through

root, and nodes can only be pushed (added) or pop

[deleted) at the root of a tree stack.

The goal of this dissertation is to develo

types of parser constructors. The first type o

constructor is a constructor to build a determi

tree pushdown automaton which has the power to

recognize a subclass of the context-free tree

languages, and is based on the notions used by

parser. The second type of parser constructor

parser constructor which takes the first parser

constructor and applies its construction method

strings in order to obtain a new parser constru

which would have the power to recognize the mac

(string) languages (which is more general than

class of context-free string languages on which

LR(0) parser is based on). One should note tha

first type of parser constructor is the major g

this thesis while the second is to provide an

application of the first.

The ideas and inspiration used throughout

thesis was to mimic and generalize the construe

methods used by LR(k) parser constructors, and

so, develop a new, more powerful parsing techni

this end, the methods of the LR(k) parser const

are lifted to a more powerful form of languages

as context-free tree languages, and the develop

a construction method which creates a determini

Pag

arser for a subclass of the context-free tree

anguages.

The major results of this dissertation in ter

t meeting the above goals are threefold: (1) The

lass of tree languages generated by context-free

anguages is identical with the class of tree lang

ecognized by tree pushdown automata; (2) The the

f LR-parsing (shift-reduce parser constructors fo

ontext-free string languages) extends to context-

ree languages. More specifically, the natural

eneralization of the LR(0) parser constructor is

UTLR(O) parser constructor which generates a clas

arsers that recognizes the class of context-free

anguages and builds a deterministic parser for a

ubclass of the context-free tree languages; and

he author conjectures that the BDTLR(O) parser ca

sed to build a parser to recognize macro (string)

anguages (the BUTLR.,(0) parser) and the construct

ethod constructs a deterministic parser for a sut

f the macro languages. Furthermore, the class of

tring languages recognized by the deterministic

UTLRM(k) parser should be a proper superclass of

lass of string languages recognized by determinis

R(k) parsers.

The key to both the BUTLR(O) parser and th<

BUTLRM(O) parser is the characteristic automatoi

the LR(0) parser, the BUTLR(O) parser directly :

from its characteristic automaton. The charact<

automaton of the BUTLR(O) parser is an automatoi

to recognize deterministically a set of charact*

trees, which are well defined subtrees of the

sentential forms generated by a tree grammar.

Furthermore, the construction of the character!!

automaton is based on the fact that the set of

characteristic trees can be generated by a root*

tree grammar and hence, the set of characterise

correspond to a co-regular tree language.

To summarize the major results of this

dissertation in terms of the construction of thi

BUTLR(O) parser, and the tree pushdown automatoi

the BUTLR(O) parser is based on, the following :

results is presented:

1) The power of the tree pushdown automat

the same as the power of a context-fre<

grammar (see theorem 5.9.1). In other

the class of tree languages accepted b;

pushdown automata is identical to the <

(01) context-free tree languages.

Page 413

In general, the set of characteristic trees

generated by context-free tree grammar is not

a regular tree language (see theorem 6.2.1).

Given a context-free tree grammar G, a

root-linear tree grammar G' can be constructed

such that the tree language generated by G' is

identical to the set of characteristic trees

of G (see theorem 6.2.2). As a consequence,

the set of characteristic trees generated by a

context-free tree grammar is a co-regular tree

language.

The class of co-regular tree languages is a

proper subset of the class of context-free

tree languages (see theorem 4*11.3). Hence,

recognizing characteristic trees should be

simpler than recognizing context-free tree

languages.

The construction method of the characteristic

automaton for a context-free tree grammar G

produces a bottom-up tree automaton M such

that M recognizes every characteristic tree

generated by G. However, it is not

necessarily the case that the set of trees

recognized by the characteristic automaton M

is identical to the set of characteris

trees (see theorems 6.2.3 and 6.2.4).

6) A BUTLR(O) parser M, constructed from

context-free tree grammar G, recognize

exactly the tree language generated by

Furthermore, for a subclass of the

context-free tree languages, the const

BUTLR(O) parser is deterministic (see

6.3.1).

Furthermore, while producing the above res

about tree pushdown automata and the BUTLR(O)

construction method, the following related resu

also been shown:

1) Given a tree grammar G, the tree langu

generated under an 01 derivation mode

identical to the tree language generat

a prefix lexicographical ordering deri

mode (i.e. a leftmost 01 derivation,

theorem 4 • 1 •2)•

Page 41

I) Like context-free (string) grammars, given a

context-free tree grammar G, one can

effectively construct a context-free tree

grammar G' such that the tree languages

generated by G and G' are identical, and G' i

in 2-normal form (see theorem 4.5.1). In

other words, the right-hand side of every

production in G' contains at most a total of

nonterminal or terminal symbols.

J) Like context-free (string) grammars, given a

context-free tree grammar G, one can

effectively construct a context-free tree

grammar G' such that the tree languages

generated by G and G' are identical, and G' i

in "weak Chomsky normal form" (see theorem

4.9.1). In other words, the tree grammar G'

is in 2-normal form where the right-hand side

of every production in G' contains either

i) 2 nonterminal symbols and variables

ii) a single terminal symbol and variables

iii) a one node tree labeled by a vari

4) A "pumping lemma11 for the class of co

tree languages (see theorem 4.11.2).

lemma can be uses to show that a part

tree language is not in the class of

co-regular tree languages.

8,2 Open Questions

While working on the above topics, severa

topics and concepts have been brought up for w

solution has been found* These topics represe

questions in this field of study (and related

and can be broken down into two types of quest

This first type of open questions are those fo

the author has conjectured answers to the ques

but has not found a proof of the result, and a

presented by the following list:

1) The class of tree grammars for which

deterministic BUTLR(O) parser will be

constructed is the class of BUOI(O) t

grammars (where BUOI(O) corresponds t

meaning of LR(0) grammars for context

string languages, see section 6.4).

Page 417

i Given a macro grammar G, the string language

generated under an 01 derivation mode is

identical to the string language generated

under a rightmost 01 derivation mode (see

conjecture 7.2*1).

I Given a macro grammar G and the BUTLR (0)

parser M generated by G, the string language

recognized by the BUTLRM(0) parser M is

identical to the string language generated by

the macro grammar G under an 01 derivation

mode (see conjecture 7«3«1)«

) The BUTLR (0) parser constructor can be

extended to a BUTLR^(k) parser constructor (a

parser with k symbols of lookahead on the

input tape, see conjecture 7«3«2)«

) Given a context-free (string) grammar G, the

BUTLRM(0) parser M generated by G, and the

LR(0) parser D generated by G:

i) The set of possible moves that can be made

by the BUTLRW(O) parser M is identical to

the set of possible moves that can be made

by the LR(0) parser D (i,e* the BUTLRM(0)

parser M simulates the LR(0) parser D) .

ii) THe BUTLRM(O) parser M is determin:M

and only if the LR(0) parser D is

deterministic.

iii) The string language generated by ti

string grammar G is identical to ti

string language recognized by the

BUTLRM(O) parser M, which is ident:

the string language recognized by

LR(0) parser D.

(see conjecture 7.3.3)

6) The conditions of 5 (above) also apply

comparisons between the BUTLRM(k) pars<

the LR(k) parser.

7) The class of string languages recognizi

the class of deterministic LR(k) parse

subclass of the class of string languaj

recognized by the class of determinist

BUTLRM(k) parsers. Furthermore, the i

is proper.

The second type of open question are those that

brought up by the author, but for which the aut

cannot even make a conjecture. to the question

Page <

1) Can epsilon rules (productions with just a

single variable on the right-hand side) be

removed from context-free tree languages (s<

section 4.7)?

2) Is there an effective method of converting

nonconservative tree grammars (i.e. tree

grammars which contain a production where a

variable occurs on the left-hand side of th

production but not the right) into

conservative tree grammars (see section 4.7

3) Can a tree grammar be reduced? That is, gi

any tree grammar G, can the tree grammar G

converted to a tree grammar G/ such that th

tree language generated by G and G' are

identical, and every production in G' is us

in the generation of some tree in the tree

language generated by G (see section 4.8).

4) Does there exist a pumping lemma for the cl

of context-free tree languages?

5) Does there exist a parsing model which

recognizes exactly the class of co-regular

tree languages? Furthermore, does there ex

a parser constructor for this model such th

the construction will guarantee to pro<

deterministic parser for the class of

co-regular tree languages (see section

6) Can the definition of the tree pushdowi

automaton be converted to use unificat:

instead of "simple" tree matching and 1

remove the restriction that the tree pi

automaton will not (by default) be

nondeterministic whenever the tree grai

which generated the tree pushdown autoi

nonconservative.

8.3 Future Research

Future research in this area could follow i

different directions. At one end of the spectri

research could continue along the theoretical v<

investigating other parsing models to recognize

languages as well as possible generalizations (<

restrictions) on the type of tree grammar used,

to the other end of the spectrum, research couL

continue by investigating the application side,

how the tree pushdown automaton (and the BUTLR(<

parser constructor) can be applied to macro (st

languages. The following paragraphs state some

Page

:hor's continuing interests in this area in both

iory and application*

One research goal is to investigate

leralizations of the BUTLR(O) parser constructor

ier to increase the class of tree languages

cognized deterministically• For example, the not

a lookahead should be introduced to produce a

FLR(k) parser which should reduce nondeterminism.

5 should note that this includes two different ty

lookahead where the meaning of K symbols of

>kahead is dependent on whether or not the input

iguage will be a string or tree language. In the

ring case, the k symbols of lookahead corresponds

> next k leaves (or symbols on the input) while i

i tree case, the k symbols of lookahead correspon

the next k immediate ancestors of the node. Lik

trsing techniques, other possible modifications to

/estigated are construction methods which lift th

Lions of SLR(l) and LALR(l) parser constructors (

lemmer[69,71,72], Anderson, Eve, and Horning[72],

Londe, Lee, and Horning[71]) to trees in order to

aduce "smaller11 deterministic parsers for a subcl

the tree languages recognized by the class of

terministic BUTLR(k) parsers. Still other possib

iifications to the BUTLR(k) parser constructor to

investigated are state minimization methods lik

of compatibility for LR(k) parsers introduced b

Pager[77a,77b] which will produce an equivalent

to that of a BUTLR(k) parser, but requires less

and hence, less machinery*

Another mode of research will be to invest

other types of tree representations (besides th

graphical representation of Gorn trees used in

thesis) and the corresponding effects on the ma

needed. For example, one possibility is to lin

tree structures by using some type of total ord

the nodes of the input tree (postorder for exam

Intuitively, such an ordering should simplify t

model from a tree pushdown automaton to a neste

automaton (a finite-state automaton augmented w

internal memory which is a self-stacking pushdo

stack, see Aho[69])#

Yet another goal of future research is to

investigate some of the other eight possible fo

tree pushdown automata (as mentioned in the

introduction). In particular, there is another

of the tree pushdown automaton envisioned by th

which will accept the class of 10 context-free

languages (which is a different class of tree 1

Pag<

lan the class of 01 context-free tree languages, \

iglefriedt and Schmidt[77,78])• The model consis

top-down tree automaton that uses a single tree i

> remember the structure of the scanned portion o

lput tree. Like a BUTLR(O) parser, there is also

ivisioned parser constructor which also resembles

l(k) parser constructors and should construct a

sterministic model for a large subclass of the 10

>ntext-free tree languages*

As with the BUTLR(O) parser, the envisioned

instructor starts by building a deterministic top

ltomaton to recognize characteristic trees* From

ltomaton, the shift, reduce, and goto tables dire

reated and define the generated parser* However,

ilike the BUTLR(O) parser, included in the defini

z shift-moves and reduce-moves is the existence o

parallel11 action where the action is applied to a_

ibtrees of the input tree which must represent th

ime tree (or value as an 10 derivation mode impli

Ls parameters)*

Another possibility is to study some relaxati

a the definition of context-free tree languages,

he effects these alterations have on the parsing

sdels* In particular, the type of relaxation to

investigated is the removal of the restriction 1

every production F(x,,...,x)~>t, only variable*

through x can occur in the tree t. That is, t<

introduce the notion of "local" variables is to

introduced into productions which will allow th<

specification of a tree language using a tree gi

which only partially describes the structure of

trees in the language (unlike context-free tree

grammars which totally specify the tree language

Questions of interest are both in the interpret*

these "local" variables, and how the eight poss:

forms of tree pushdown automata can be modified

handle such types of language specification.

Another goal is to investigate the BUTLRX.((

parser in more detail than was done in this the*

This includes investigating generalizations or

modifications to both the BUTLR(O) and BUTLR^

constructors in order to increase the class of i

languages that will be recognized by determinisi

BUTLR^CO) parsers. In particular, to investigai

to add left-to-right context such that every mo^

by the BUTLRM(0) parser is based on all the inf<

gained so far (which is currently lost whenever

nested stack is created).

Page 425

second area of application, besides parsing the

[string) languages, is along the lines of

ig an automatic compiler constructor. That is,

ress both the syntax and semantics of the

iv using two types of rewrite systems, and from

rewrite systems construct automatically the

jr. The first rewrite system would be a string

r describing the syntax which would be used to

:he input and produce a parse tree as is

*ly done with LR parsers. The second rewrite

would be a tree grammar defining a tree

icer where the tree transducer would be used to

t the parse tree of the input into the

Lcally equivalent tree in the object language.

i conclusion, the area appears to be very rich in

ih possibilities for the forseable future. The

believes that the parsing models introduced in

lesis will result in practical models, sometime

future, which will be used by the computer

a community.

INDEX

Aho, 2, 183, 351, 381, 422
Alphabet, 14
Ancestor, 26
Anderson, 35, 422
Antisymmetric, 17
Arbib, 13
Arity, 20
Arnold, 169-170
Augmented tree grammar, 105

Bar-hillel, 41, 43, 136, 163
Bijective, 18
Bottom-up tree automata, 181
Brainerd, 4, 163, 183
Buchi, 2, 8, 183
Butlr (0) parser, 392
Butlrm(0) parser, 361
Butlr?0) characteristic automaton,

311
Butlr(O) parser, 257
decision relation, 258-259
determinism, 262
instantaneous description, 257
language accepted, 263
well defined, 262

Characteristic derivation step,
288

Characteristic grammar, 274
Characteristic tree, 268
Chomsky, 61, 155, 223
Class, 15
Concatenation, 18
Conservative grammar, 145
Conservative production, 145
Context-free grammar, 37
derivation, 38
language generated, 39
reduced, 40
right-linear, 42
rightmost derivation, 38
sentential form, 40

Context-free tree grammar, 85
io derivation, 90

language generated
oi derivation, 91
one-step derivation
sentential form, 8

Courcelle, 2, 8

Dauchet, 169-170
Depth, 26
Dereramer, 35, 422
Derivation-renaming

135
Derivation-renaming

135
Descendant, 26
Doner, 4, 8, 163, 18
Druseikis, 35

Eilenberg, 8, 43, 47
Elgot, 2
Emtpy tree stack, 18
Englefriedt, 4, 89,
Epsilon-free, 144
Epsilon-rule, 144
Eve, 35, 422
Evey, 61, 223, 240

Finite state automat
computation relati
determinism, 46
instantaneous desc
language accepted,

Fischer, 4, 20, 349,
378, 381

Friedman, 2, 8
Function, 18

finite domain, 18
partial, 18
total, 18

Gallier, 2, 8
Geller, 35, 71
Gorn, 23, 27
Gries, 2
Guessarian, 8

:ag, 2

rison, 3, 35, 41, 43, 47,
), 55, 71, 136, 147, 223, 240
si, 35
ling, 35, 422
>witz, 2
:, 2

sctive, 18
>rnal node, 26
•rsection, 15
lerivation, 90

\i, 8

iry, 13
:h, 3, 6, 34-35, 70

>nde, 2, 35, 422
juage, 14
:, 26
: nodes, 26
, 35, 422
:in, 18

r> 8
Ls, 3, 6, 55, 223, 240
)) parser, 64
laracteristic string, 70
amputation relation, 65
istantaneous description, 64
mguage accepted, 66
-11 defined, 64

ro grammar, 370
3 derivation, 374
anguage generated, 372, 378,
380
L derivation, 375
ae-step derivation, 372
Lghtmost derivation, 379
Ldor, 4, 8, 183
<ed production, 299
, 20
ier, 2
1, 13
an, 4, 8, 183

N-normal form, 123
N-tuple, 15
Natural numbers, 19
Nested stack automaton, 381
Nivat, 2, 8
Node, 26
Noncharacteristic derivatio

288
Nonredundant tree grammars,
Nt/t segmented grammars, 11
Nt/t segmented productions,
Nth m-way tree composition,

Oettinger, 55
Oi derivation, 91
Oppen, 2
Ordered pair, 15

Pager, 35, 422
Papadimitriou, 3, 55, 223,
Partial ordering, 17

strict, 17
total, 17

Perles, 41, 136
Positive integers, 19
Powerset, 15
Prather, 13
Product, 15
Production slice, 270
Production slice supertree,
Purdom, 35
Pushdown automata, 56

computation relation, 57
determinism, 59
instantaneous description
language accepted, 58

Rabin, 43, 50, 163, 297
Rank function, 20
Ranked alphabet, 20

constants, 20
function sybmols, 20

Reduced tree grammar, 146
Redundant tree grammars, 1C
Reflexive, 17
Relation, 16

antisymmetric, 17
domain, 16

range, 16
reflexive, 17
total, 16
transitive, 17
transitive closure, 17
transitive reflexive closure,

17
Renaming function, 108
Rewrite production, 286
Ripley, 35
Rivieres, 2
Root, 26
Rosen, 2
Rounds, 163

Salomaa, 43, 47
Schimpf, 35
Schmidt, 4, 89, 97
Schutzenberger, 18, 61, 223, 240
Scott, 43, 50, 163, 297
Set, 14
cardinality, 14
difference, 15
empty, 14
equality, 14
finite, 14
infinite, 14
intersection, 15
membership, 14
powerset, 15
union, 15

Shamir, 41, 43, 136, 163
Skeleton - definition, 258
Stack alphabet

trees, 188
Stateless tree pushdown automata,
205
computation relation, 206
determinism, 214
instantaneous description, 206
language accepted, 207

Stearns, 6
String, 18
empty, 18
length, 19
prefix, 19
suffix, 19

String grammar, 37

String substitution,
Subset, 14
proper, 14

Subtree, 28
Sum, 20
Surjective, 18

Takahashi, 8
Terms, 20
Thatcher, 4-5, 8, 18
Transitive, 17
Transitive closure,
Transitive reflexive
Tree, 25
Tree address, 26
Tree composition, 3C
Tree domain, 23

postfix lexicograp
24

prefix lexicograpl
24

Tree pushdown automs
computation relati
determinism, 203
instantaneous desc
language accepted,

Tree replacement, 3(
Tree stack, 188
Trees with variables
Tuples, 16

Ullman, 2
Union, 15

Variable name select
Variable size index.

Wand, 2
Weakly reduced, 147
Wright, 4, 8, 183

Page 41

BIBLIOGRAPHY

A. V, [1969] - Nested Stack Automata. JACM,
>1. 16, no. 3, July 1969, pp. 383-406

A. V. and Ullman, J. D. [1972] - The Theory -
irsing, Translation, and Compiling. Internation.

Computer Mathematics 3, p.149-155

A. V. and Ullman, J. D. [1979] - Principles -
>mpiler design. Addison-Wesley Publishing C<
wading Mass.

:b, Bowen, Martin Chaney, Micheal Fay,
lomas Pennello, and Rachel Radin [1976]
ranslator writing system for the Burroughs B570
iformation Sciences, UC Santa Cruz, Santa Cruz, C

:son, T.; Eve, J.; and Horning, J. [1973] -
rficient LR(1) parsers, Acta Informatica 2,
>-39

>, M. A., Kfoury, A. J., and Moll, R. N. [198
basis for theoretical computer science, Spring
jrlag, New York, 1981

Ld, A. and Dauchet, M. [76] - Un theoreme de
lplication pour les forets algebriques, JCSS, v
J, #3 (October 1976), p.223-244

lillel Y.; Perles, M.; and Shamir, E. [1961] -
i formal properties of simple phrase-structu
rammars, Zeitschrift fur Phoneti
srachwissenschaft, und Kommunikationsforshung, 1
.143-177

lillel, Y. and Shamir, E. [1960] - Finite-state
inguages: formal representations and adequa
roblems, The Bulletin of the Research Council
3real, 8F, p.155-166

f9 G.; Levy, J. [1978] - Minimal and Optimal
smputation of recursive programs. JACM vol 26,
, p. 148-175, January 1978

Brainerd, W. S. [1969] - Tree generating regu
systems, Informationand Control 14, 217-231

Brosgol, B. M. [1974] - Deterministic transla
grammars, PhD Thesis, Technical report #
Center for Research In Computing Technology,
University, Cambridge Mass

Buchi, J. R. [1960] - Weak second order arith
and finite automata, Zeit. Math. Log
Grundlagen. Math. 6, p. 66-92

Buchi, J. R. and Elgot, C. C. [1958] - Deci
problems of weak second-order arithmetics an
automata. Abstract 553-112, Notices Amer
Soc. 5, 834

Buchi, J. R. and Wright, J. Bo [1960] -
Mathematical theory of automata. Notes on
presented by J« R. Buchi and J. B.
Communication Sciences 403, Fall 1960, Unive
Michigan, Ann Arbor, Michagan

Chomsky, N. [1956] - Three models for the
descriptions of Languages, IRE Transacti
Information Theory 2, #3, p.113-124

Chomsky, N. [1959] - On certain formal propert
grammars, Information and Control, 2, p.137-

Chomsky, N. [1962] -Context-free grammars and
pushdown storage, MIT Research Lab of Ele
Quarterly Progress Report 65

Chomsky, N. and Miller, G. A. [1958] - Finit
languages, Information and control, 1, p.91-

Courcelle, B. [1976] - Completeness results fo
equivalence of recursive schemes. *J[.
System Sci._12(2), p.179-197

Courcelle, B. [1981] - A representation of tre
languages, I and II, ^heor. Comput. Sci.\

Page 4

eikis, F. and Ripley, G. D. [77] - Extended
LR(k) parsers for error recovery and repair, Dep
f Computer Science, Univ. of Arizona, Tuscan Az •

mer, F. [69] - Practical translators for LR(k)
anguages, Ph.D. thesis, Dept. of Electric
ngineering, M.I.T., Cambridge, Mass.

mer, F. L. [71] - Simple LR(k) grammars. Comm.
CM 14, p. 453-460

mer, F. [82] - XPL distribution tape containing
ALR translator writing system. Computer a
nformation Sciences, UC Santa Cruz, CA.

r, J. E. [70] - Tree acceptors and some of the!
pplications, J. Comput. System Sci. (JCSS) 4

ey, P. J. [74] - Formal Languages and
ecursion Schemes, PhD dissertation, Harva
niversity, Cambridge Massachusetts.

e, J., Parchmann, R., and Specht, J. [79]
zilard languages of 10 - grammars, Information a
ontrol 40, no.3, pp. 319-331

nberg, S. [74] - Automata, Languages, and
achines, Vol. A, Academic Press, New York

nberg, S. and Wright, J. B. [67] - Automata ir
eneral algebras, Information and Control 11:
.452-470

t, C. C. [61] - Decision problems of finite
utomaton design and related arithmetics. Trar
mer. Math. Soc. 98, p.21-51

Ifriet, J. [80] - Some open questions and
ecent results on tree transducers and ti
anguages, Memorandum nr. 293, Technisc
ogeschool twente, Enschede, Netherlands

Ifriet, J. [80] - Some open questions and
ecent results on tree transducers and ti
anguages, in Formal Language Theory (R. Be
ditor), Academic Press

Engelfriet, J. [81] - Tree transducers and
syntax-directed semantics, Memorandum nr
Technische Hogeschool twente, Enschede, Net

Englefiet, J. [75] - Bottom-up and Top-down t
transformations - a comparison, Technical U
twente, Enschede, Netherlands

Engelfriet, J.; Schmidt, E. M. [77] - 10 an
*^L0 °^ computer and system sciences_l 5, p

Engelfriet, J*; Schmidt, E. M. [78] - 10 an
^̂ J. of computer and system sciences_16, p

Evey, R. J. [63] - The theory and applicatio
pushdown store machines, PhD. Thesis and
Report, Mathematical Linguistics and
Translation Project, Harvard University, NS

Fischer, M. J. [68] - Grammars with macro-li
productions. Doctoral Dissertation,
University, Cambridge Mass.

Fischer, M. J. [1969] - Grammars with macro-
productions. 9th Symposium on switch
automata theory.

Friedman, E. P. [76] - The inclusion problem
simple languages, *Theor. Comput. S
p.279-316

Friedman, E. P. [77a] - Equivalence Problems
Deterministic Context-Free Languages and
Recursion Schemes, ĵJ. Comput. System Sci
344-359

Friedman, E. P. [77b] - Simple Context-Free
Languages and Free Monadic Recursion Scheme
Systems Theory_ll, p. 9-28

Gallier, J. H. [80] - Deterministic Finite A
with Recursive Calls and DPDA's (detailed a
technical report #MS-CIS-80-36, Dept.
University of Pennsylvania

Page

lier, J. H. - DPDA'S in "Atomic Normal
Form11 and applications to equivalence proble
Theoretical Computer Science 14, North-Holl
Publishing Co*, 155-186

ler, M. M. and Harrison, M. A. [77]
- Characteristic parsing: A framework for produc
compact deterministic parsers I., JCSS 14, p*265-

sburg, S [66] - The mathematical theory of
context-free languages, McGraw-Hill Book Co,,
York

sburg, S* and Greibach, S* A. [66] -
Deterministic context-free languages, Informat
and Control 9, p.620-649

n, S* [1962] - Processors for infinite codes of
Shannon - Fano type, ^.Proceedings of the Sympos
on Mathematical theory of Automata\

n, S* [1962] - Symbolic Languages in i
cessing
Proceedings of the Symposium organized and edited
the International Computation Centre Rome, Ms
26-31, Gordon and Breach Science Publishers, N*Y,

n, S. [1965] - Explicit Definitions and Linguist
Dominoes, Systems and Computer Science\j_ John I
and Satoru Takasu Eds*

n, S. [1967] - Handling the growth by definitior
mechanical languages, Spring Joint Compi
Conference, 1967

es, D* [71] - Compiler construction for digital
computers, John Wiley and Sons, New York (1971)

ssarian, !• [81] - On pushdown tree automata*
Proceedings of 6th CAAP (Genoa, lecture notes
computer science, Springer-Verlag) 1981

tag, J*, Horowitz, E*, and Musser, D* [76]
- Abstract data types and software validation,
report 76-48, University of California, Los Angel

p.

Guttag, J., Horowitz, E., and Musser, D. [78]
- Abstract data types and software validation
21, #12, p.1048-1064

Haines, L. H. [65] - Generation of Recognition
Formal Languages, PhD Thesis, MIT (1965)

Harrison, M. A. [78] - Introduction to formal
language theory, Addison-Wesley Publishin
Reading Mass. 1978

Harrison, M. A. and Havel, I. M. [73] - On a
of deterministic grammars, in Automata, Lan
and Programming (M. Nivat ed.), p.4
North-Holland Publishing Co., Amsterdam (1973

Hoffman, M. and 0%Donnell, M. J. [82] - Patte
matching in trees, JACM 29, #1, p.68-95

Hopcroft, J. E. and Ullman, J. D. [69] - Fon
languages and their relation to au
Addison-Wesley Pusblishing Co. (1969)

Huet, G. [80] - Confluent Reductions: Abstract
propoerties and applications to term re
systems. JACM, vol 27, no 4, October 1980

Huet, G.; Oppen, D. C. [80] - Equations and r
rules, A survey. "Formal Languages: Persp
and open problems". Editor, Ron Book, A
Press, 1980

Joshi, A. K.; Levy, L. S. [77] - Constraints
structural descriptions : local transform
SIAM *£• of Computation^ vol 6, no2, June 1

Joshi, A. K.; Levy, L. S.; Takahashi M. [75
Tree Adjunct Grammars, *£. of Computer and
Sciences^ Vol 10, #1 Febuary 1975

Knuth, D. E. [65] - On the translation of lang
from left to right. Information and Control
607-638

Page

th, D, E. [68] - Semantics of Context-free
Languages. "Mathematical Systems Theory\, vol#2,
2 (1968) ~

th, D. E. [71] - Top-down Syntac Analysis,
Acta Informatica 1, #2, p.79-110

stensen, B. B.; Madsen, 0. L. [81] - Methods
Computing LALR(k) lookahead. ACM transactions
programming languages and systems, Vol 3, No
January 1981

onde, W. R»; Lee, E. S#; and Horning, J.
]

An LALR(k) parser generator, Proc. I
congress71, North Holland, Amsterdam, p.#151-153

onde, W. R. and Rivieres, J. D, [81] - Handli
operator precedence in arithmetic expressions vi
tree transformations* ACM Transactions
Programming Languages and Systems, Vol 3,
January 1981, p,83-103

tin, A* and Schutzenberger, M. P. [67] - A
combinatorial problem in the theory of free mono!
Combinatorial Mathematics and its Applications,
128-144 (1967)

is, H. R.; Papadimitriou, C. H. [81] - Elemeti
of the theory of computation, Prentice Ha
Englewood Cliffs, N.J. 1981

is II, P# M. and Stearns, R. E. [68]
- Syntax-directed Transduction, JACM 15,
p.465-488

idor, M. and Moran, G. [69] - Finite automata
over finite trees, Technical Report 30, Het
University, Isreal

lhorn, K» [79] - Parsing Macro Grammars
top down, Information and Controo 40, no.l,
123-143

Page

lner, R. A* [78] - A theory of type polymorphis
in programming, JCSS 17, #3 (December 19
p.345-375

vat, M. [75] - On the interpretation of recursiv
polyadic program schemes, Symposia Mathematica
Academic Press, N.T.f 225-281 (1975)

ttinger, A. G. [61] - Automatic Syntactic Analy
and the Pushdown Store, Proceedings of Symposia
Applied Mathematics (vol 12), American Mathemat
Society, Providence, R.I. (1961)

ger, D. [77a] - A practical general method for
constructing LR(k) parsers. Acta Informatica 7,
249-268 (1977)

ger, D. [77b] - The lane tracing algorithm for
constructing LR(k) parsers and was of enhancing
efficeincy. Information Sciences 12, p.#l
(1977)

ather,R. E. [76] - Descrete mathematical struct
for computer science, Hougton Mifflin Co., Bo
1976

rdom, P.; Brown, C. A. [79] - Parsing extended
LR(k) Grammars, Technical report #87, comp
science dept., University of Indiana. 1979

rdom, P.; Brown, C. A. [80] - Semantic Routine
and LR(k) Parsers, Acta Informatica, (1980)

bin, M. 0. and Scott, D. [59] - Finite automat
and their decision problems. IBM Journal
Research and Development, 3, p.114-125 (1959)

bin, M. 0. [68] - Decidability of second order
theories and automata on infinite trees.
Research Rept. RC#2012. IBM Yorktown Heights,
(1968)

sen, B. K. [73] - Tree-manipulating systems and
Church-Rosser Theorems. JACM 20, 160-188 (1973)

Page

nds, W. C. [69] - Context-free grammars on tree
IEEE annual Symp. Switching and Automata Theo
10th, Oct. 1969, pp 143-148

nds, W. C. [70] - Mappings and grammars on tree
J. Math System Theory 4, #3, pp. 257-287

omaa, A. [69] - Theory of Automata,
Pergamon Press, New York (1969)

omaa, A. [73] - Formal Languages, Academic Press
New York (1973)

impf, K. M. [81] - Construction Methods of LR
Parsers, master's thesis, technical rep
#MS-CIS-80-40, Dept. of CIS, University
Pennsylvania, 1981

utzenberger, M. P. [63] - On context-free
languages and pushdown automata, Information
Control 6, p.246-264

tcher, J, W. [67] - Characterizing derivation
trees of context-free grammars through
generalization of finite automata theory. JCSS
316-332 (1967)

tcher, J. W. [73] - Tree automata: An informal
survey, in Currents in the Theory of Computing
V. Aho ed.) Prentice-Hall series in automa
computation, Prentice-Hall Inc., Englewood Clif
N.J. P.143-172 (1973)

tcher, J. W. and Wright, J. B. [68]
- Generalized finite automata theory with
application to a decision problem of second oi
logic, J. Math. Systems Theory 2 (1968)

d M. [77] - Algebraic theories and tree rewritir
systems, Technical rept. 66, Dept. of Compt
Science, Indiana University, Bloomington Ind.

