NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Parsing Method for Context-free

Tree Languages
Karl Max Schi npf

A DISSERTATICN
in

Conmputer and Information Science

ented to the Graduate Faculties of the University of Penns}
artial Fulfillment of the Requirements for the Degree of Dc
osophy.

1982

rvisor of Dissertation

uat e G oup Chai rperson

ABSTRACT
A parsing method for context-free tree languages
Karl Max Schimpf
Jean H. Gallier

Tree structures (or hierarchies) are commonly used by
ntists. For example, data bases,' theorem proving, ¢
riptions of abstract data types use tree structures,
ertation presents a new, more general form of. tree
hing which allows one to test if a given tree fits a pa

of pattern. In particular, it presents a new form
maton called a tree pushdown automaton, shows that the «c.
uages recognized by tree pushdown automata is identical
s of context-free (outside~in) tree languages, and pre:
er constructor for the tree pushdown automaton whi
truct a deterministic parser (called the BUTLR(0O) parser)
lass of the context-free tree languages. Furthermore, th
onstructing the BUTLR(0) parser mimics LR(O) techniq;

ext-free string grammars by lifting these techniques up t
e, the BUTLR(0) parser is constructed by building a bottom
maton, called the characteristic automaton, to recognize
characteristic trees". The characteristic - automaton
erted to a tree pushdown automaton by augment:
acteristic automaton with internal memory in the form of

the addition of stack-like operations on these trees.

COPYRIGHT

KARL M SCHIMPF

1982

Acknowledgements

I wish to express my gratitude to Jean H. Gé]
for this dissertation, for introducing me into the
Languages, for his guidance and advice throughout
this manuscript, and for providing me with continuc
Jean has been the ideal thesis advisor. He was pat
optimistic, helpful, and full of ideas. I thank hi

advisor, but as a friend and a colleague.

I would also like to thank my committee; Pete
chairman of the committee, Aravind Joshi, and Saul
constructive criticism and suggestions. In partict
especially indebted to Saul Gorn for his careful re

manuscript and his suggestions on possible applicat

I also thank the audience of my first colloqu:
strength and courage to attend (even if they felt 1t

their faces behind "Groucho Marx" eye glasses).

Finally, I would like to thank all my friends,

Kathy McKeown, Kathy McCoy, Sitaram Lanka, Eric Maj

ambers of the Northwest Corridor Athletic Association, for
iing unwavering interest in my work even if they did not hs

test inkling of what I was doing.

iv

—
3
o

[\
.
o

e o 8 o o e © & o o o o
e o o o
~Non B~ wN -

PO WPOOVPOOVOIANUN T WN -

RNV NINON ONODNNDN NN
« o
« o o

w
° o .

o
.

.
3

°
°
&S WON -

.
.

B D W e e e
SN -

WWWWWwWwwwwwww

oS
o

S~
W -

Table of Contents

INTRODUCTION - « o o o o o o o o ¢ o o @

PRELIMINARY NOTATION . . « ¢« &« « &« o« »

SEES o o o 4 o ¢ o o o s o 6 o o e o @
Relations =« o« o o o ¢ o o o 4 5 s s
Functions =« ¢ o o o o ¢ o o o o o o =
Strings o« o ¢ ¢« ¢ ¢ 4 e o 6 e e e e .
Natural Numbers . « ¢« « ¢ o ¢ o o o &
Ranked Alphabets . « . « + « « .+ 5 , .
TEIMS =« o o o s o o s o o o o o o o

TEEES o« o o o o s o s s o o o o s 5 »
Tree Domains « « « o o o o o o o o &
2. - Trees « o o e o o ® o e o o

Trees With Variables e e s e e e o
Subtrees .« « ¢« ¢ s e s 4 s s, s s
Tree Replacement « « « o ¢ ¢ o o o &
Tree ggmp081tlon e e o o o o o e o o
The N m-way Tree Composition . . .

IIRPARSERS e @ 8 e s o ¢ o s s o o ¢ o o

Context~free Grammars .« « « o s o o o
Derivations .« ¢« ¢ & & « o+ . . s
Language Generated By Context—free Gr:
Reduced String Grammars « .
Right-linear Grammars »

Finite-state Automata . ¢ ¢ o« o ¢ «

Pushdown Automata o« ¢ « o o o ¢ o o &

LR(0) PArsSers « o o o o o o o o o o o
LR(0) Parsing Tables « « o ¢ & o« + &
LR(0) Characteristic Automaton . . .
Constructing LR(0) Parsing Tables .
Converting LR Parsers To PDAs . . .

CONTEXT-FREE TREE LANGUAGES
Context—-free Tree Grammars And Tree Lan;

Augmented Tree Grammars .« « « ¢ o o o
Redundant Tree GrammarsS .« « o o o o o

—=—oNdouy S

LR R
- O

NT/T Segmented Grammars « « o+ « o o o s o
n - Normal FOTmMS « ¢ o o « o o ¢ o o o o o« o
Derivation-renaming Grammars « « o« ¢ o o o &
Erasing Grammars « « o« « o o « o o ¢ o o o o
Reduced Tree Grammars e« o« « o o o o o o o o
Weak Chomsky Normal Form « « « o o o o o o o

Leaf-=linear Tree Grammars o+ o« « « « « o o =
Root=linear Tree Grammars o o« o o o o o o o

TREE PUSEDO“N AUTOHATA L] . . L] L L] L] L] . L] L] .

Tree Pushdown Automata « « « ¢ o o o o o o &
Stateless Tree Pushdown Automata « « ¢ o o o
Equivalence To Tree Grammars « « o« o o o o o
Converting Tree Grammars Into STPDAs . . .
Converting STPDAs To TPDAS « o o o o o o &
Converting TPDAs To Tree Grammars .+ « .
Comparing Classes Of Tree Languages . . .

THE BUTLR(0) PARSER « « ¢ « « .

BUTLR(0) Parsing Tables =« « o« o o o o o o o
The BUTLR(0) Characteristic Automaton . . .
Constructing BUTLR(0) Parsing Tables
Conjectures On Determinism « « « . . .« . . .

THE MACRO LANGUAGES — AN APPLICATION
Simulating LR(0) Parsers Using BUTLR(O) Pars
The Macro Languages « ¢ « o s o« s 2 5 & o+ 5
Parsing The Macro Languages =« « o o o o o &

CONCLUSION « ¢ « « o o o o o o o o o « « o o 4
Summary Of Research .« « o« o ¢ o ¢ o o o o o

Open Questions « « o« o o o ¢ o ¢ o ¢ o o o o
Future Research .« ¢ « ¢ o o o 5 o 5 5 5 5

9 00 INDEX © o o o o o o

10.0 BIBLIOGRAPHY

vii

Chapter I

INTRODUCTION

Tree rewriting systems have been in existence fo
» some time. Among the most common and simplest
.cations of tree rewriting systems is the
1x-directed translation for context-free striné
1ages used in compilers (see Aho and Ullman[72,79
ies[71]). However, tree rewriting systems have
used in many other types of applications. For
ince, tree.rewriting systems have been used to

| formula manipulating systems such as program
1ization (see LaLonde and Rivieres[81]),'formula
 ification (see Huet[80], Huet and Oppen[80], or

1[{73]), and theorem proving (see Buchi[60], Buchi

and El got[58], or Elgot[61]). They are also us
abst.ract interpreters for recursive schenmes (s*
Courcel |l e[76, 81] ,' Fri edman| 7.7a, 77b], Gallier[8(
Ni vat[75])« Yet another application of tree.re
.systems is to define abstract data types using
equi val ence classes of trees (GQuttag and

Horowi t z[76, 78], Wand[77], or Ml ner[78]).

Associ ated with tHese tree rewiting syst(
the interesting problem of recognizing if the
particul ar tree under consideration meets any c
"tree patterns" used by the rewite system and,
tree matches one of these patterns, the rewite
performs the actions associated with the "mat'el
pattern.” Viewing this problem as a parsing prc
formal | anguage theory, the process of testing
input tree matches any of the specified patten
viewed as performng a parse of ‘the i nput tree
the topic of interest in this thesis), and the
of performng actions if a match is found can 1

as performng a transducti on.

In particular, this thesis is an indepth
investigation into the devel opment of a new fai
pattern matcher (or parser) for a common class

patterns known as context-free tree granmars.

vhasis is specifically directed toward the
erministic form of the parser, and a parser
lerator which will construct a deterministic pars
~ a large subclass of the context—-free tree
1guages. To obtain these goals, this thesis pres
1ew form of a tree automaton, called a tree pushd
-omaton (a tree automaton augmented with internal

10ry consisting of a sequence of trees).

Both the tree pushdown automaton and the parse
1erator for the tree pushdown automaton are inspi
»m LR-techniques (Knuth{68], Harrison[78], and Le
1 Papadimitriou[81]), and are original. The
lerlying concept behind the new model and the par
1terator is to lift LR(O) parsing techniques for
rings up to trees, in order to recognize a large
yclass of the context-free tree languages using a

terministic machine.

A secondary goal is to modify the tree pushdow
tomaton to recognize the class of macro (or index
ring languages. That is, to take the newly devel
ce pushdown automaton which recognizes context-fr
e languages and apply this new parsing model to
rings (using the fact that the yields of trees in

ntext-free tree language corresponds to a macro

language, see Fischer[68,69]). The results of t
application should produce a parser whose.determ
form has the power to recognize a larger subclas
the string languages than fhe'class recognized b
deterministic LR(k) parsers since the‘parsing

construction method that developed the tree push
automaton is a generalization of the LR(k) parsi

techniques.

Before describing the type of tree pushdown
automaton used in this thesis, it is impoftant t
understand what are the main issues involved.
issue is the class of context—-free tree language
new model will be geared to accept. TUnlike
context-free string languages, there are two dis
classes of tree languages that can be generated
context-free tree grammars (as opposed to one fo
context~-free string languages). The difference
to the existence of two different forms of deriv
(or rewrite) modes, known as inside-out and outs
and each derivation mode generates a different ¢t

language (see Englefriedt and Schmidt[77,78]).

Pag

A second issue about the new model is the type
e automaton used. The two most common types of t
omata are Eop—down and bottom—up tree automata wh
~-down automata scan the input tree from the root
frontier (leaves) while bottom=up tree automata
n the input tree from the frontier to the root (s
tcher and Wright[68], Doner[70], and Magidor and
an{69]). At first glance, this consideration may
appear to be important since it has been shown 't
deterministic top-down and bottom=up tree automat
h recognize tree languages in the class of regula
e languages (Brainerd[69], Thatcher[73]). Howeve
object of this research is to develop a parser
structor to generate a deterministic parser for :
ge subclass of the context-free tree laﬁguages ar
is a well known fact that the class of regular tu
guages 1s identical to the class of tree language
epted by deterministic bottom-up tree automata
atcher[73]) while the class of tree languages
epted by deterministic top-down tree automata is
per subset of the class of regular tree languages
atcher[73]). Hence, in the drive for determinisn

choice of tree automata may play an important r«

The third issue is what the interﬁal memory
be used for. Typically, either the memory of th
parsing model is used to keep track of the porti
the input already scanned or, it is used to dete
what the unscanned portion of the input must loo
in order for the input to be legal. To clarify
difference between the two different types of us
the internal memory, consider the pushdown auton
which comes in LL(1l) (see Lewis and Stearns([68]
Rnuth[71]) and LR(1l) flavors (along with many ot
flavors). Both the LL(l) and the LR(l) parsers
pushdown automata. However, the internal memory

used for very different purposes.

In a LL(l) parser, the stack is used to sim
derivation in a top-down fashion. The parse sta
initializing the stack to contain the start symt
Then, the LL(1l) parser simulates the sequence of
derivation steps that generates the input string
other words, at any point in timé, the unscanned
portion of the input string is legal if and only
string the stack represents will derive (or rewt
the remaining portion of the input string. Thert
the LL(1l) parser uses the stack to describe what
unscanned portion of the input string must look

order for the input string to be legal.

Page

In a LR(l) parser, the stack is used to simhlate

ration in reverse, or bottom-up fashion. At any
in time, the stack of the LR(1l) parser repreéen

'ing o such that the string o derives the porti

le input étring already scanned by the LR(1l) pars

he string o is legal if and only if the start

»1 derives the string o . Hence, the stack is us

rgscribe what it has already seen.

Summarizing the above issues, there appears to b

plausible models of the tree pushdown automaton
» eight models are based on three major
lderations and each consideration has two natural
:es. These considerations are: (1) Thé class of
}anguages accepted by the model (inside-~out or
.de=in); (2) The type of tree automaton used
-down or bottom—=up); and (3) What the internal
'y is used for (to describe the scanned portion o
: or, to describe the unscanned portion of the

).

The model of tree pushdown automata presented in
dissertation is based on a bottom-up tree

naton, the internal memory is used to describe th

scanned portion of the input in the same manner
LR(0) parser, and is geared to recognize the cla

outside-in tree languages.

In terms of current research, only the surf
been scratched when it comes to solving the'prob
parsing context-free tree languages. Most resea
focused its attention to (very) small subsets of
context—-free tree languages such as regular tree
languages (see Buchi and Wright[60], Doner[70],
Eilenberg and Wright[67], Magidor and Moran[69],
Thatcher[73], and Thatcher and Wright[68]) and t
ad junct grammars (see Joshi, Levy and Takahashil
Some research has used forms of ﬁree grammars cl
related to context-free tree grammars such as re
schemes (see Courcelle[76,81], Friedman[77a,77b]
Gallier([80,81], and Nivat[75]). However, the em
of the research in this area has focused on the
properties of such languages as opposed to the

development of acceptors and transducers.

The only directly related research in this
has been done by Guessarian[81l], which has taken
straightforward approach to the problem. Guessa
has developed a version of the tree pushdown aut

different than the one presented in this thesis,

Pag

a top-down tree automaton, which uses internal
ory to state what should appear on the remaining
canned portion of the input tree, and also
ognizes the class of outside-in context—-free tree
guages. This model of treé pushdown automata
responds very closely to that of LL(0) parsers fo

text—-free string languages.

The major drawback of Guessarian’s model is tha
class of tree languages recognized by the
erministic version of the tree pushdown automaton
ears to be rather small. The reasons for this cl
twofold: First, it uses a top-down tree automat
its finite-state control which, as mentioned
lier, is already known to be less powerful than t
erministic bottom-up tree automaton. Secondly, t
el appears to be a generalization of the LL(O)
ser for strings (in terms of its memory usage).
well known that the class of string languages
ognized by LR(k) parsers is a superclass of the
ing languages recognized by LL(k) parsers. Hence
may assume that a generalization of the LL(O0)
ser lifted to trees is not as powerful as a

eralization of the LR(0) parser lifted to trees.

Chapter 2 of this thesis provides the termi
used throughout the remainder of the thesis. Th
includes the definitions of sets, relations, fun

strings, ranked alphabets, terms, and trees.

Chapter 3 reviews LR(0) parsing techniques.
purpose of this chapter is to provide insight in
use of the LR(0) parser and the construction of
LR(0) parser generator. This chaptefs also sets
background on the ideas and notions which will b
in the construction of the tree pushdown automat

the tree pushdown parser generator.

Chapter 4 introduces countext-free tree gram
and context—-free tree languages. It presents th
definition of a context-free tree grammar, and s
how a context-free tree language is generated fr
given contextffree tree grammar via a series of
derivation (or rewrite) steps. This includes
"presenting the two types of derivation médes kno
inside-out and outside-in, which will generate
inside-out and outside-in context-free tree lang
The chapter also studies several properties of
context—-free tree grammars as well as transformas
on these grammars to modify a context—free tree

such that certain undesired properties are remov

articular, one of the goals of these transformat
s to introduce a standard form of context-free tr

rammars called "weak Chonmsky normal forni.

Chapter 5 presents the main object of study,
ew nodel of the tree pushdown automaton. Besi des
resenting the definition of the model, this chapt
hows that for the nondeterm nistic version of the
ushdown aut omaton, the class of tree | anguages
ecogni zed by the nodel is identical to the class

utside-in context-free tree | anguages.

Chapter 6 takes the nodel of the tree pushdov
utomaton introduced in chapter 5, and presents a
arser. generator (called the BUTLR(O) parser genet
hich will automatically generate a tree pushdown
utomaton from a context-free tree grammar. The p
onstructor is based on the notions of LR(0) parsi
ifted up to trees, and produces a determnistic t
ushdown automaton for a subclass of the outside-i

ontext-free tree | anguages.

Chapter 7 takes the BUTLR(O) paréer generato
ttenpts to apply this new type of parser generate
he class of macro string |anguages. The chapter
egins by showing how a context-free string granmme

e lifted to a tree granmar such that the generate

BUTLR(0) parser wili simulate an LR(0) parser (¢
showing that indeed the BUTLR(0) parser is a
generalization of thevLR(O) parser). It also
introduces the definition of macro string gramms
macro string languages. The chapter concludes t
showing a possible method of using the BUTLR(O)
generator to construct a new parsing modei such
will simulate a LR(0) parser whenever the gramm:
is a context—-free string gr#mmar, but more gener
the sense that it is also able to also parse anjy
language. Furthermore, it is conjectured by the
that the deterministic version of this new model
recognize a superclass of the string languages

‘recognized by deterministic LR(0O) parsers.

Chapter 8, the conclusion, provides a brief
summary of the results of this thesis, open ques
and provides a brief summary of the direction tt

author sees future research heading.

Chapter II

PRELIMINARY NOTATION

This chapter presents the notation and terminolog
in the remainder of this dissertation. The

'pts of sets, relations, functions, and strings
'nted below can be found in most elementary
matical textbooks (for further details on these
s, see Arbib, Kfoury, and Moll[81] or

ier[76]).

2.1 Sets

A set is a collection of objects. (In this
thesis, the type of sets that will frequently be
consideration are alphabets and languages. A se
enumerated by either listing all its members enc
_by braces ({a,b,c} for example) or, more general
denoted {x | P(x)} where P(x) is a proposition
describing the elements in the set. The set the
contains no elements is called the empty set anc

denoted #. The cardinality of a set A, denoted

the number of elements in A. A set A is finite

is finite, otherwise A is infinite. Furthermore

is used to denote that "a" is a member of the sc¢
while afA is used to denote.that "a" is not a me

the set A.

Two sets A and B are identical (denoted A=l
and only if both A and B have the same elements.
A is a subset of the set B (denoted A C B) if ar
if every element in A is also in B. Furthermore

set A is a proper subset (denoted A C B) if A C

A#B.

Page 15

e union of two sets A and B (denoted AVB) is
consisting of all elements that are members of

set. The intersection of two sets A and B

d AAB) is the set consisting of all members of

and B. The difference of two sets A and B

d A-B) is the set consisting of all members of A

re not members of B. The powerset of a set A

d ZA) is the set 2A = {B | B C A}. Furthermore,
a language and B is any subset of ZA, then B 1is

tly called a class of languages.

e product of two sets A and B (denoted A x B) is
of all ordered pairs (a,b) such that a€A and
wo ordered pairs (a,b) and (c,d) are regarded as
f and only if a=c and b=d. Furthermore, a
over a single set A (i.e. A x A) will

tly be denoted as Az.

n-tuple of objects from a set A (denoted

A)) is inductively defined as follows:
tupleO(A) = A

tuplel(A) = {(a) | a€A}

iii) tuplei+l(A) = {(al,...,ai+1) |
(al,...,ai)Gtuplei(A),

a €A}

i+1
for all 121

)ne should note that condition (i) of the definit
ionstandard. Typically, tupleo(A)=¢, However, t
3implify notation later on in this thesis, the
1onstandard representation will be used. Let tup
lenote the infinite union of the sets tuplei(A) f
.>0.

’«2 Relations

A binary relation (or simply a relation) 1is

:riple (A,R,B) where A and B are sets and R is a
»f the product A x B. Given any a€A and any b€B,
related to b (denoted a R b) if and only if (a,b)

3imilarly, a is not related to b (denoted a R b)

»nly if (a,b)#R. The domain of the relation (A,R
lenoted dom(R), is the set {a | a6A, Jb€B, and (:
ind the range of (A,R,B), denoted range(R), is th
b | b€B, Ja€A, and (a,b)€R}. The relation (A,R,
:otal if A=dom(R). Also, given any relation (A,R

let R C A x B denote the relation (A,R,B).

Page

Let R C A x A be a relation. R is reflexive if

x for all x€A, R is transitive 1if for all x,y,z€

y and y R z implies x R z, and R is antisymmetri

‘or all x,y6A, x Ry and y R x implies that x=y.

The transitive closure of a relation R CAx A

10ted R+) is the set of ordered pairs such that
+
i) if (a,b)ER, (a,b)8R
v + A +
ii) if (a,b)eR and (b,c)€R, then (a,c)€R

Lii) nothing else

The transitive reflexive closure of a relation

*
A x A (denoted R) is the set of ordered pairs

- R"V{(a,a) | asA}.

A partial ordering is any relation < C A x A su

t { is reflexive, antisymmetric, and transitive.
relation £ is considered total if and only 1if fo
X,y6A, either x R y or y R x. Furthermore, give

partial ordering < C A x A, the strict ordering

ation < C A x A is defined by the set of ordered

rs {(a,b) | a < b and a#b}.

Page

Functions

A relation F C A x B is a partial function if a

y if for all a€6A and all c¢c,d€B, if a F ¢ and a F
n c=d. A function is total if in addition dom(F)
thermore, a partial function is said to have fini
ain if and oanly if |dom(F)| is finite. For

ational convenience, a function F C A x B will be
oted as F : A -> B. Furthermore, if a€dom(F) and

b, then b will be denoted as F(a).

Let F : A -> B be any function. F is injective
only if for all x,y€A such that x#y, £(x)#£f(y).
sur jective if and only if for all y€B, there exis
x€A such that y=F(x). Furthermore, F is bijectiv

and only 1if F is both injective and surjective.

Strings

Let > be any alphabet. The set of strings
— —k
noted >) is the free monoid (X ,°*,€) generated t

alphabet > where "*" is concatenation (or

taposition) and € is the identity denoting the en
ing (see Lentin and Schutzenberger[67]).

—t —%
thermore, let > denote the set > ={€}.

Page

The length of a string anS* (denoted length(ac
string’s length as a sequence of alphabet symbol
-hermore, for any string (nei*, ™ denotes the s
;isting of the concatenation of n sequences of th

lng o .
- %
Let > be any alphabet and m,p,eez « Then,
i) if (n'9=p, then o« 1is a prefix of p

i1) 1if o +6=p and 8#E, then o is a

proper prefix of 3
tii) 4if a:=9'p, then p is a suffix of

iv) 1if oc=8-3 and 8#&, then P is a

proper suffix of o

»: In the literature, a string prefix (or suffix)

»times called the head (or tail) of the string.

Natural Nunbers

The set of natural numbers {0,1,2,...} is denot
| and the set of positive integers is denoted as

ce N+=N"{O}o

Pa

N
The function max : 2 -> N takes a finite set
itural numbers and returns the maxi mal natural nui

i the set.
: N
The function sum : 2 ->N takes a finite set

itural nunmbers and returns the sura of the el ement

ie setes

.6 Ranked Al phabets

A ranked al phabet (sonetinmes called a stratif

r graded al phabet) is a set-]:> together with a rani

inction r : 1. -> N Every synbol f in7 has arit;
lere n=r(f). Synbols ini. are called function syi.

iere the arity denotes the nunmber of parameters (
rgunments) the function has. Synbols with arity z

re also called constants«

.7 Ternms

A termis the structure that a macro granmmar
len generating strings in the corresponding macro
i nguage (see Fischer[68] and Fischer[69]). Let 2
i al phabet, | be a ranked al phabet, and Xn-{xl, .

itiote a set of n vari abl es. The set 1 ternms def

7 J®°* i> denoted tern(jiS,i.), is a set of strings

lat tern(l,1) CSVIV{" (", " "Y1} VX where

Pag

ax{r(F) | F€Q} and term(®,>) is inductively defi

follows:
i) eeterm(y,)
ii) if xGXA, then x€term(J,>)
iii) if a€>, then a6term(J,>)
iv) if F€) where r(F)=0, then FGterm(Q,E)
v) 1if F€J where r(F)=m>0 and a:l,...,a:meterm
then F(a:l,...,cnm)etetm(ﬁ,S)
vi) 1if <n,p€tern(§,5), then <n°p€term(§,5)
vii) néthing else

‘thermore, each string o €term(J,X) is called a t

Let > be an alphabet, § a ranked alphabet, and

em($,>) be the set of terms defined by § and >.

ren any m~tuple of terms (ocl,...,ocm) in

plem(tern(ﬁ,z)), and a term g in term(3,>), the

ring substitution of (cnl,...,cnm) into the strin

1oted p[cnl,...,cnm], is the string subst(Pj wher

1iction subst : tern(ﬁ,i) -> term(ﬁ,S) is recursiv

fFined as follows:

i)
ii)
iii)
iv)
v)

vi)

subst(&)=¢€

subst(xi'e) = a:i'subst(e) where xiex
subst(xi'e) = xi‘subst(e) where idm
subst(a*®) = a*subst(®) where a€>

subst(F+*8) = Fesubst(®) where F€Q and

subst(F(el,...,em)°9) =
F(subst(el),...,subst(em))-subst(e) W

and r(F)=m>0

In other words, every occurrence of the variab

1<{i<m, occurring in the string g is simultaneo

replaced by the string o

10

Example 2.7.1: Let >={a,b,c} and §={F} where r

Then, xaF(xa,yF(xb,ya,zc)b,zc)bl[ax,by,cx] =

axaF(axa,byF(axb,bya,cxc)b,cxec)db.

Page 2
Trees
Tree Domains -

A tree domain D (Gorn[62],Gorn[65]) is a nonempty

f strings over the set of positive integers N+

fying the following two conditions:

i) for every string u in D, every prefix v of u

is also in D

i) for every string v in D and every integer i i
N+, if the string v*i is in D, then for every
j in N+ such that 1{j<i the string v*j is als

in D.

Essentially, a tree domain is used to provide an
ssing scheme which uniquely identifies each node
n a tree. This is achieved by letting the root ¢
ree have the tree address represented by the empi
g. The tree addresses of all other nodes in the
are propagated down from the root where for any
with a tree address u, its ith immediate

ndant has the tree address u°i,

One of the propérties of tree domains is
several total orderings can be defined. 1In pa
this thesis will use two of these orderings, t
lexicographic ordering and the postfix lexicog
ordering of tree domains. That is, given a tr

D, the prefix lexicographic ordering of the tr

D is the relation < C D x D such that for any

addresses u,v€D, u { v if and only if either
i) u is a prefix of v

ii) there exists a prefix w of u such tha

v=wjz, i,j€N+, and 1i<j

Similarly, given a tree domain D, a postfix

lexicographic ordering of the tree domain D is

relation < C D x D such that for any two tree

u,v€D, u < v if and only if either
i) u is a suffix of v

ii) there exists a prefix w of u such tha

v=wjz, i,j€N+, and i<j

2 2 - Trees -

A >-tree (or tree for short) is a function

D -> 3 such that
i) D is a tree domain

ii) 2 is a ranked alphabet

Page

.ii) for every u in D, if n=l{i€N+ | u*i€b} |, th

n=r(t(u)) which is the arity of the symbol

labeling the node u

is, a S-tree is a mathematical representation o

» where each node in the tree is labeled with a

tion symbol in >. The symbol labeling each

- have an arity which agrees with the number

node

of

diate descendants the node has, and the immediat

endants correspond to the parameters of the

tion symbol.

aple 2.8.1: The tree

lefined by the function t : D => > such that

1,b,c} where r(a)=2, r(b)=0, and r(ec)=3, and

the

tree domain D is the set D={€,1,2,2°1,2+2,2°*3}

represents the tree structure

/ 1\
21 22 23

The elements of the tree domain are calle

addresses. A node 1s defined as a pair (u,v)é€

where u is a tree address in D and v=t(u). A
(u,v) is a leaf if r(v)=0, otherwise (u,v) is

internal node. The node with the tree address

corresponding to the empty string is the root
tree. Furthermore, let (u,v) and (w,y) be any
nodes in the tree. Then, (u,v) is a descendan
(w,y) if w is a proper prefix of u, and (u,v)

ancestor of (w,y) if w is a proper suffix of u

Let t : D => X be any tree. The tree dom
the tree will be denoted as dom(t). The set o
nodes, denoted leaf(t), will be the set
leaf(t) = {(u,v) | (u,v)6t, r(v)=0}. The dept
tree t, denoted depth(t), is defined by the va
depth(t)=max{length(u) | u€dom(t)}. Furthermo
any ranked alphabet E, let the set of all fini

S-trees be denoted as TE'

It should be noted that the definitions of a
3ing tree domains have existed for quite some tim

' te back to Gorn[62,65,67].

8.3 Trees With Variables -

£ Xn denote any set of n variables where
.= {xl,...,xn}. Ad joining Xn to the set of cons
1\ a ranked alphabet > (i.e. giving each variable

ink of zero), one obtains the set Tz(xn) of trees

iriables in Xn.

cample 2.8.2: Let >={a,b,c} where r(a)=2, r(b)=0,

‘c)=3. Then the tree

3 a tree in TS(XZ)'

Let m be a constant in N and t be any tree in

E(Xm). If 0 C >, the set of nodes labeled using
ymbols in @, denoted lﬁ(t), is the set

E(t) = {u | (u,v)€t, ve€J}. The set of all nodes
ibeled by variable symbols, denoted var(t), is th

air(t) = {u | (u,v)e€t, VGXm}. Furthermore, the se

all nodes labeled by constant symbols in E, d
const(t), is the set
const(t) = {u | (u,v)€t, VGE, r(v)=0}. Note

leaf(t) = const(t)Vvar(t).

Note: For convenience of notation, the variab
Xos Xgs and X, will frequently be denoted as

and w respectively.

2.8.4 Subtrees -

Given a tree t and a tree address u in d.

subtree rooted at u in t, denoted t/u, is the

defined by the fﬁnction consisting of the set
ordered pairs

{(vyt(u*v)) | u-vedom(t)}.
In other words, it is the subtree of t, start

tree address u.

Example 2.8.3: Let t be the following tree:

Then,

Page

[i\
b b b
t/22 " t/23 - b, and

11
—
~
N
=

1

I
b b

aa 2«8.1 G ven any ranked al phabet i, any mM) , -an

2 t€Ty(X,), and any uv€dom(t), (t/u)/v « t/u'v

>t Assume (w,f)€t/u*v. By the definition of
trees, f»t(u®vw) and u*vwedom(t) . Assune
E)$(t/u)/v. By the definition of subtrees, eithe
jdom(t/u) or (t/u)(Vw)~rf. Simlarly, either.
ewbdom(t) or t(u*vw)~f. But this is a
tradiction. Hence (t/u)/v <C t/u’v. O the other
1, assune (w,f)3(t/u)/v. By the definition of
trees, vw€dom(t/u) and (t/u) (vw) =f. Simlarly,
ewedom(t) and t(ufvw)*f. Assume (w, f)"t/u»v. B
definition of subtrees, either u*vw#dom(t) or
svw) M, But this inpossible. Hence

uy/v £ t/u»v, or t/u*v « (t/u)l/v.

2.8.5 Tree Replacement -

Given a tree t a tree address u i

1’

a tree t the replacement of the tree t

2’
subtree tl/u, denoted tl[u<-t2], is the

the function consisting of the set of or
{(v,tl(v)) | v€dom(t1), u 1s not a pr
Vi{(urv,t,(v)) | vedom(t,)}.

In other words, the tree t, is truncated

1

address u and the tree t2 is inserted in

Example 2.8.4: Let t, and t, be defined

1 2
t, = a t, = a
Lo 2
b c b b
/ 1\
P b b
Then, t,[2<~-t,] = a
! 25
b a
!/ \
b b

2.8.6 Tree Compositiomn -

Let m be a constant in N and > be a
alphabet. Given any n—~tuple of trees (t
tuplen(TS(Xm)), and a tree t in Tz(xn),

composition (or tree addition) of the fu

the functions t through t, is the tree defined 1

function consisting of the set of ordered pairs
{(u,e(u)) | uels(e)} V
{(u’xi) | (u’xi)et) i>n} V

{(u-v,ti(v)) | u€var(t), t(u)=x 1<iln}.

i’
In other words, all occurrences of the variable >
the tree t, are simultaneously replaced by the t1

Let the composition of t and (tl,...,tn) be denot

t(.tl,oo-,tn)o

Example 2.8.5:

Let t = a , t, = a , and t, = b.
!/ \

X
WAREA

Lemma 2.8.2: Given any ranked alphabet X, any m>0

p>0, any tree cepz(xm), and any two m—-tuples of t
(tl""’tm) in tuplem(TS(Xm)) and (Sl""’sm) in
tuplem(TE(xp)), t(tl,-c',tm)(sl,o-o,sm) =

t(tl(sl,...,sm),...,tm(sl,...,sm))

Proof: Assume t(tl,...,tm)(sl,...,sm) #

t(tl(sl,Q..,sm),...,tm(sl,...,sm)). By ins
tree composition, there must exist a u€dom(
vedom(ti) for some i, 1<{i{m, and u*ve€dom(t(

such that t(u)=x ti(v)=xj, and

i)
t(tl(sl,...,sm),...,tm(sl,...,sm))/u°v # sj
definition of tree composition and subtrees
t(tl(sl,...,sm),...,tm(sl,...,sm))/u = ti(s
Similarly, ti(sl,...,sm)/v = Sj' But then,
2.8.1’ t(tl(Sl,-..,Sm),...,tm(sl,...,Sm))/u
which is a contradiction. Hence
t(tl,'oo,tm)(sl,occ,sm) =

t(tl(si,...,sm),...,tm(sl,...,sm)) is true.

2.8.7 The Nth m-way Tree Composition -

Let m,p be constants in N and > be a r
alphabet. Given any two m—-tuples of trees
in tuplem(TS(Xp)) and (tl,...,tm) in t:uplem

- let the Eth m-way tree composition of (tl,.

(sl,...,sm), denoted [(t1’°"’tm)(sl""’sm

recursively defined as follows:

i) [(tl,...

i) for all 1i>0,

(e, 0Ct,,..

tm[(tl,...,tm)(sl,...

le 2.8.6:

=a , t, = f
2

/\ !

X y y

1

[(t,,t))(s;,8,)1°

[Ct),t) (s ,8,)1"

[(ty,t 2)<s1.sz>1

[(t1’

’tm)(sl""

’Sm)]

;,tm)(sl,...

.,tm)(s

s)1t
.sm)]i)

=(S

.l,ooc

Chapter IIIL

LR PARSERS

This chapter reviews a construction me;hod
build deterministic bottom=up parsers for a lar
subclass of the context-free (string) grammars.
parsers are called LR parsers because they scan
input from left to right and construct a rightm
derivation in reverse. Furthermore, it is a we
fact that of all the deterministic string parse
class of LR parsers recognize the largest class

context-free languages (see Knuth[68]).

2/

ogically, an LR parser consists of two parts, a
routine and a parsing table (see figure 3.1.1).
rsing tables are dependent on the given

t-free grammar, énd must be constructed, while
iver routine is the same for the type of LR
used. Furthermore, the construction method for
ng the parsing tables is dependent on the type of
ser one 1is interested in using, and there are

1l different types of LR parsers to chose from

, LR(k), SLR(1l), and LALR(1) to name a fe&).

hat this chapter will only concentrate on the
parser construction method (For further

ation on the different types of LR parsers, and
corresponding construction methods, see

68], DeRemmer[69][71]([72], Harrisoa[781,
77al[77b], Anderson, Eve, and Horning[72],

kis and Ripley[77], LalLonde, Lee, and

g[71], Geller and Harrison[77], Schimpf[81],

[79], and Harrison and Havel[73]).

he purpose of this chapter is not to provide

us definitions and proofs about the LR(0)

uction method. Instead, the intent is to provide
t and background into the method of constructing
parsers which will be 1lifted to tree grammars in

ding chapters. Hence, only pertinent definition:

| table | parsi
string grammar -->| |=-=>

| generator | table

+ .

a) generating the parsing tables

b) operation of LR parser

Figure 3.1.1: Layout of an LR parser

and tﬁeorems will be given. Furthermore, in ge
proofs will not be provided unless they provide

or construction methods in building LR(0) parse

However, before describing the LR(0) parse
chapter begins by presenting background about
context-free grammars, finite-state automata, :

pushdown automata.

Pa;

1 Contéxt-free Grammars

A context-free grammar (or simply string gram

is a quadruple G = (§,>,P,S) where

® is a finite alphabet of nonterminal symbols

Mi

is a finite alphabet of terminal symbols,

P is a finite set of pairs.(A,p) € 0 x (EVS)*

called productions, and

S€Q is a nonterminal called the start symbol.

production (A,p) will be denoted as A->3. Also,
11 be assumed that all string grammars are augme
1at is, there is a production of the form S->S’€P

1lled the start production where S,S°€Q0 and S doe

ccur in any other production in P.

For notational convenience, upper case letter
L1l be used to denote nonterminal symbols, lower
atters to denote terminal symbols, underlined upp
ase letters to denote grammar symbols (i.e. symb
n either § or 5), lower case.greek letters to den
trings of grammar symbols (strings in (QVS)*), ar
he symbol & will be reserved to denote the empty

tring.

Pa;

sample 3«1.1: A string gramma which generates st

E the form a b]['l is G «(3,>,,P,S) where
§ = (s,4}; |
T« {a,b}: and
P = {S->A A >6, A >aAb}.

)te: S >A is the start production.

.1.1 Derivations -

G ven a string grammar G((J5> P, S), let the

| e-step derivation (or rewite) relation

=> C (WVi)* x (fVI)* be defined by the set of pa

{(ocAJ oc63) | AES: oc,3>QX Q7Y : and A peer
i other words, given any string ocA3 and the prod
->6, the nonterm nal A can be replaced by the str
. Let == and => denote the transitive and the

ransitive reflexive closures of => respectively.

From the above relation, the one-step rightno
arivation relation can be defined which inplies a
rdering on the rewmite steps. That is, the one-s

ightmost derivation relation = £ (fV1) * x (V>

s defined by the set of pairs
. . . . —
{(ocAj3, oc8i3) | ocAj}=>ocgJ and pe€x }.
n other words, == is the one-step derivation app

K
o the rightmost nonterm nal occurring in the stri

* _
a:AP. Let =§> and =§> denote the transitive and

transitive reflexive closures of =§> respectivel

Example 3.1.2: Let G2=(§,S,P,S) be a string gram

where

)

> = {a,b}; and

{s,A,B,C};

P = {S->C, C=->ACB, C->E&, A->a, B->b}.
Then, aaCBB => aaBB using C->& and aaCBB =§> aa
using the productions C->&, A->a, and B->b. Als
aaCBB =§>'aaCBb while aaCBB =f> aaBB since C 1is
rightmost nonterminal in aaCBB. Also, like G1 i

example 3.3.1, the language generated by G2 is s

of the form anbn.

3.1.2 Language Generated By Context—-free Gramma

Given a string grammar G=(§,S,P,S), the str
language generated by G, denoted L(G), is the se
terminal strings derivable from the start symbol
That is,

_* <*

L(G) = {p | s=>p, pex}
Note: It can be shown that the order in which t
derivation steps are applied (i.e. the choice o

nonterminal to rewrite next) has no effect on th

julting string produced. Hence the language L(G)

t11d have been alternatively defined by the set
% <%

L(G) = {P | S——R->?, ?62.}

‘thermore, any string of grammar symbols derivabl

)m the start symbol S, under a rightmost derivati

a sentential form. That is, any string a€(JVX)

*
sentential form if and only if <n€{p | S:§>P}.

imple 3.1.3: Let G, be the string grammar defined

2
mple 3.1.2. The language generated by G2 is the

L(G) = {a"™b" | n>0}.

> example, a derivation which generates the strin
tbbb is as follows:

S =§> c —§> ACB —§> ACb —E>

AACBb =§> AACbHD —§> AAACBbLD —i>

AAACbHDD —§> AAAbDBD —ﬁ> AAabbb —§>

Aaabbb :§> aaabbb

.«3 Reduced String Grammars -

A string grammar G=(3,X,P,S) is reduced if and
ly if for every production A->oc€P, there exists
* *
rivation such that S —§>6Ap —f> ecnp —§> 8@ where
— % . ok
‘PV>) and 8,?62 « In other words, for every

>duction p there exists a terminal string Sp, in

Page

uage generated by G, such that the production p
in the derivation producing the string Sp (i.e.

unnecessary productions are removed).

rem 3.l.1: (see Bar-Hillel, Perles and Shamir[61]

Harrison[78]) Given any string grammar
E,S,PI,S), one can construct a reduced string
mar G2=(§,§,PZ,S) such that P, C P, and
)=L(G2).

ple 3.1.4: Let G3=(Q,S,P3,S) be a string grammar

‘e
E = {S, A’ B, C’ D, E};

. = {a,b,c}; and

-> a,

-> aacbb,
-> E,
-> EcE}.

HOOD®EPOO
[}
\Y4
o
-

language generated by G3 is the set
(65) = {a"" | n>0}.

reduced string grammar of G3 is the string gramm:

‘Q,S,P4,S) where

WP OO0n
i
v

Note: The production D -> aacbb has been remo
the nonterminal D is not reachable from the st
symbol and the productions C--> E and E -> EcE
been removed since the nonterminal E can not d

—%
terminal string in > .

3.1.4 Right—-linear Grammars -

A string grammar G=(J,>,P,S) is right-1lin
and only if every production p€P is of the for
where A€7, <nei*, and BEeQV{€}. That is, if a
produétion's right-hand side contains a nonter
the nonterminal must be the last symbol occurr
the right-hand side. A string grammar G=(3,>,

strict right—-linear if and only if every produ

is of the form A->aB where A€D, a€>V{€}, and
That is, a string grammar is strict right-1line
right hand side of a production is either the
string, a single terminal symbol, a single non
symbol, or a single terminal symbol followed t

single nonterminal symbol.

tample 3.1.5: Let G5=(§,S,P,S) where
@ = {s,A,B};
> = {a,b}; and

P = {S->A, A->E, A->aB, B->b, B->bA}.

1en; G. 1s a strict right-linear string grammar a

5
:nerates the language L(GS) = {ac® | o =ab, n>0}.

1e following results about right-linear grammars
1sily be shown.

r1eorem 3.1.2 Given any right-linear string gramma

1ere exists a strict right—-linear string grammar

ich that L(G1)=L(G2).

neorem 3.1l.3: The class of right-linear string

rammars is identical to the class of regular

inguages.

roof: See Harrison[78] or Bar-Hillel and Shamir([6

.2 PFinite—-state Automata

This section presents a brief review of
inite-state automata (For more information on
inite-state automata see Harrison[78], Eilenberg|
abin and Scott[59], and Salomaal[69,73]). Logical
inite-state autométon (FSA for short) consists of

nput tape and finite-state control (see figure 3.

vhere the input tape is read from left to right,

scanning the input tape just once.
+

| |

| |

| state |

| |

| |

+

Figure 3.2.1: Layout of a finite state automat

More formally, a finite-state automaton is a
juintuple M=(S,K,8,qO,Q) where

> is a finite alphabet of input symbols,

K is a finite set of states,
§ : K x CV{e}) => 2K is a function called the

transition map,

€K is the start state, and

40
Q-C K is a set of final states.

An instantaneous description (ID for short)

ovides a "snapshot" description of the FSA betwee
ves defined by the transition map S. That is, ar

-3
stantaneous description is a pair (q,oc) € K x X

ere q is the current state of the FSA, and a is

ring left to scan. The initial configuration of
A is the instantaneous description (qo,a:) where

e input string to parse.

The computation relation F C ID x ID describ

e manner in which the FSA operates. That is, gix
A M=(S,K,8,q0,Q) and two instantaneous descriptic

1 and idz, 1d1] id2 if and only if 1dl = (ql,a

d id2 = (q2,<n) where a€>V{€} and q2€8(q1,a). I

her words, each move is a shift-move (or read-mov

ere the read head on the input tape is advanced,

ross the string "a", and the state is updated to

A finite-state automaton M accepts (or parses,
ring oo if there is a computation which will reac
d of the input string oc, and the corresponding
rrent state of the computation is a final state.

at is, the language accepted by a finite-state

tomaton M, denoted L(M), is the set
% *
L(M) = {oc€2 | (qy,c) F (q;,€), q€Q}

*
ere bk is the transitive reflexive closure of F

A FSA M=(3,K,6,q,,Q) is deterministi

if for each q€K and a€>, either
1) §(q,a)=p and §(q,€)=0,
11) &(q,a) is a singleton set and &(
111) 6(q,a)=p and §(q,€) is a singlet

In other words, a FSA M is deterministic

instantaneous description id the automa

l’

defined such that there is at most one le

instantaneous description (i.e. if id1 F

id2 is unique).

Example 3.2.1: Let M1=(E,K,8,0,{2}) where

> = {a,b};

K = {0,1,2}; and

8 is defined by the following table wh
input pair (c,d), the rows represent v
the columns_represent values of d. Fu

empty table entries represent null set

a b e
fm———— tmm—— pm———- +
0 1 {1} | I {2} 1
tm——— fm———— tmm——— +
1 I {2} 1 |
tm———— tmm——— fm———— +
2 | | | {0} 1

Page

Not e: The transition map 6 can also be gr aphi cal

depicted as follows:

where the final state (i.e. state 2) is enclosed

a double circle.

The | anguage accepted by Nk is the set
L(M) - {w! | weab, nX>}
For exanple, the string "ababab" is accepted as
foll ows:
(0, ababab) K (I, babab) h (2, abab)
f- (0,abab) I- (I,bab) I- (2, ab)
[- (0,ab) I- (lI,b) t- (2,6)
which is the accepting condition. Al so note that
is not determ nistic since 6(0,6)=S{2}, and

4(0sa)-{I}.

While there are many results known about
Lite-state automata, the remmining portion of thi*

ition presents only those facts which apply to LR

*Si ng.

[heorem 3.2.1: (see Harrison[78], Eilenbergl[74],

alomaa[73]) The class of (string) languages acce
)y finite~-state automata and the class of regular

'string) languages are identical.

[heorem 3.2.2: For every right-linear string gram

3=(§,>,P,S), there exists a FSA M such that L(G)=

>roof: By theorem 3.1.3, the language generated b
ight=linear string grammar is regular. 'By theor
}.2.1, the class of regular languages is identica
:he class of languages accepted by FSA. Hence, t

rust exists some FSA M such that L(G)=L(M).

While the last theorem does not provide a
:dnstructive proof, one can easily build a FSA M
-hat L(G)=L(M). That is, using theorem 3.1.3 whi
states that for the right-linear string grammar
3=(§,>,P,S) there exists a strict right-linear st
yrammar G’=(§,3,P’,8), let M=(3,8V{F},§,s,{F}) wi
'$0 and § is defined such that for each productio

»EP ',

Pag

i) 1if p=A->E, then FGS(A,E)

11) 1if p=A->a where a€3, then F€5(A,a)

iii) if p=A->B where B€J, then BGS(A,E)

iv) 1if p=A->aB where a6> and B&€J, then B€S(A,E

:ample 3.2.2: Let G1=(Q,$,P,S) where

T = {s,A,B};

> = {a,b}; and

P = {S->A, A->E, A->aB, B->b, B-D>bA}.
len, the corresponding FSA is M2=(E,QV{F},8,S,{F}
lere the transition map S is graphically depicted

'1lows:

Theorem 3.2.3: (Rabin and Scott[59] and Harrisor

For every FSA M=(S,K,S,qO,Q), one can construct
deterministic FSA M’=(S,K’,S',q0',Q') such that
L(M)=L(M’) and M’ does not contain any epsilon =

(i.e. for all q€K’, 8'(q,€)=¢).

The idea used to construct the FSA M’ is tc
simﬁltaneously follow every possible computatior
by having each state q'€K’ be a set of states 1in
where q° is reachable by M’ if and only if for a
q€q’, q is reachable in M. The construction met
given by algorithm 3.2.1 (see below) and contain
procedures. The function "closure" takes a stat
q‘€K’, and returns the set of all states, reacha
from states in q°, without reading any more inpvu
performs epsilon closure on M). The procedure "
is the main routine. It starts by defining qé F:
epsilon closure of the start state 9, in M (i.e.
set of all states q€K such that (qo,a:) F? (q,&

Then, using the function "GOTO", it takes each =

Page

” already built, and determines the transitions
1 q, as follows:

‘or each a€2, if there exists qeq1 such that
1'€$(q,a), then there is a unique transition in M
such that S'(ql,a)=q2 where q, is the epsilon
:losure of the set {q’ | q'GS(q,a), q€q1}.

> the graph defining the transition map &' is bui
set of final states F’ is defined such that for
ry. state q'€K’, if there exists a stéte q€q’ such
t q€8F, then q'€F’.

>rithm 3.2.1: A method for constructing

13 deterministic finite automaton.

1it: a FSA M=(§,K,S,qo,F) (possibly nondeéterminist
put: a deterministic FSA M'=(S,K',8’,q6,F'i where
loes not contain any epsilon moves,

hod: The three procedures below, initiated

by calling ITEMS(M);

redure ITEMS(M);
begin
for all input pairs (a,b)8Kkx(ZV{€})

let 8'(a,b)=¢;

a9 = closure({qo});

K* := {qy};

repeat

for each set q1€K', and each inp

a€> such that q2=GOT0(q1,a) a

do

K’ := K’ V {qz};
S’(ql,a) 1= {qz};
od;

until no more sets of states can be

F' := 0;

for each q €K’ do

f there exists a q€q’ such that

then F’ := F’ V{q"}
fi;
od;
'9.39.;
Function GOTO(ql,a);

begin
q2 s = {q' | q'Gs(q,a), qeql};

return closure (qz);

end;

Function closure(q);
begin
8§ T q;
while there exists a state p€s such that
q'GS(p,E) and q'#s do
s := s V {q'};
od;

return s;

end;

Example 3.2.3: Consider the FSA M2 created in ex:

3.2.2. Using the above algorithm, the created

deterministic FSA is the FSA M3=(E,K’,8’,q6,Q') v
> = {a,b};
K = {{S,A,F},{B},{A,F}};
qp = {S,A,F};

Q = {{s,A,F},{A,F}}; and

8', the tranéition map, 1s defined by the fol.:

graph:

a

a T~

@
b

Theorem 3.2.4: For every right-linear stri

G=(9,>,P,S) there exists a FSA M such that

and M does not contain any epsilon-moves.

Proof: First, using theorem 3.2.2, one can
M’ such that L(M’)=L(G). Then, using theo
one can construct a deterministic FSA M su
L(M)=L(M’)=L(G) and M does not contain any

epsilon-moves.

Finally, one can define the relations
the sequence of states visited in a FSA, a
corresponding input string parsed. This i

the "spelling" and is defined as follows:

Definition 3.2.1: Given a FSA M=(K,E,8,q0,'
—%

*
spelling : K => 2‘2 be a function recursi

such that for any string of states S Sgeee

i) spelling(€) = ¢
ii) spelling(sl) = {€}

iii) spelling(sl...sn) = ¢ if n>2, and
does not exist a symbol a€> such

sz=$(sl,a) or spelling(sz...sn)=¢

spelling(sl...sn) = {ap | pespelling(sz...sn),

52€£(sl,a)} otherwise.

shdown Automata

is section presents a brief review of pushdown
a (PDAs for short). One should note that the

f the PDA presented in this section is not.

d. Instead, the model is purpose¥y definedrto
resemble the type of pushdown automata used by

arsers (for a more formal descriptibn of PDAs,
rison[78], Oettinger[61], and Lewis and

itrioul81]).

gically, a pushdown automaton consists of an
ape, finite-state control, and internal memory
form of a stack (see figure 3.3.1). Like
state automata, the input tape is réad from left
t, and scanned just once. The stack is definéd
st-in first-out structure in which only the top
can be read. Furthermore, elements can only be
pushed) or deleted (popped) from the top of the
and these modifications are bounded (i.e. only
e sequence may be pushed or popped at a time).
venience, the stack will be defined as a string

ols where | is a reserved symbol denoting the

enpty stack, concatenation is the
operator which perfornms a push, and the top of t
stack is assuned to be the rightnost synbol in t

string.

Y Sy S - ———

+-->(lnput tape. . .
| +

Fodm e ———— +

| finite

| state |

-L control |

—-———-———--—————

Iaad<0fswmmsl<

q—-—————-n—--———-

[

Figure 3.3.1: Layout of a Pushdown automatc

Definition 3«3.1.: A pushdown automaton (PDA) is
quadrupl e D~i7 p, 6,3) where

i is a finite al phabet of input synbols;

P is a finite al phabet of stack synbols;
6: (PxI1) V(P"x {6}) -> 2!

Is a function called the fransifion gap w

has finite domai n; and
J€p is a reserved constant denoting
the enmpty tree stack.

{
The transition map o is defined such that all

Page
initions are one of the following two forms:

ft-move:

AGS(B,a) where A,BE€" and aé€>

uce—move:

BAG&(B&,E) where BE€[", A€ V{€}, and ocer‘*

An instantaneous description of a pushdown

omaton (ID for short), provides a "snapshot"
cription of the pushdown automaton between moves.
t is, an instantaneous description is a pair
c) € P* X E* where g is the current stack and c
string left to scan on the input tape. The init
figuration of a PDA is the instantaneous descript

oc) where oo 1is the input string to parse.

The computation relation F C ID x ID describe:

manner in which a pushdown automaton functions.

t is, given a PDA D=(E,T‘,S,l) and two instantane
9 id1 - id2 if and only if
the two following conditions hold:

criptions id1 and id

i) id1 = (pB,a<n) - (pBA,a:) = id, where A€6

2
—%
IBSP*, and oc 62

ii) id1 = (pBe,a:) = (pBA,a:) = id2 wher

* —%
BA€S(B0,E), per™, and we> .

In other wor&s, condition (i) is a shift-
read-move) while condition (ii) is a reduce-mo
stack-update move). Note that a shift-move ca
read-head to be advanced one symbol on the inp
and the symbol A is pushed onto the stack. On
other hand, the reduce-move leaves the read-he
input tape stationary, removes (pops) the stri
the stack pBO®, and adds (pushes) the symbol A
new top of stack resulting in the stack pBA.
Furthermore, after removing the string 8 from
stack, the new top of the stack is consulted t
that it is labeled with the symbol B (i.e. pe

stack look=back of one symbol).

Acceptance, in a computation, occurs if t
computation reaches an instantaneous descripti
the end of the input string is reached and has

stack. That is, the language accepted by a P

denoted N(D), is the set
N(D) = {c€5 | (L,o) F (1,8}

%
where F is the transitive reflexive closure o

Page 59

DA is considered deterministic if and only if

:y.instantaneous description id if there is an

1’
ineous description id2 such that id1 F idz,

is unique. That is, a PDA is deterministic if

r if either
for all a8> and BE[, IS(B,a)Iil

for all BE and «€l”, 16(Bec,8) <1,
Furthermore, if S(Ba:,E) is a singleton set,
then for any string 9192=BG: where 91#8,

18¢e,,€) 1=0.

for all a€>, BE™, and € ", if |8(B,a)|=1 the

§(ocB,€)=¢ and 1f [§(cB,E)|=1 then §(B,a)=p

, condition (i) guarantees that there is only
sible shift move that is applicable (i.e.

2es that there can not be a shift/shift

), condition (ii) guarantees that there is only
sible reduce move that is applicable (i.e.

2es that there can not be a reduce/reduce

), and condition (iii) guarantees that if a

yve is applicéble, then there is not a reduce

at is applicable and vice versa (i.e.

2es that there can not be a shift/reduce

=) .

Example 3.3.1: Let Dl=(S,F‘,S,l) be a PD:

> = {a,b};

i~ ={l,a,b,A,S8}; and

8 is defined by the following table w
input pair (oc,p), the rows represent
the columns represent values of 3. F

empty table entries represent null se

a b €

P — fommm—a Fm—————— +

I 1 {a} | I {1A} |
o R e +

a | f{a} | I {aA} |
R — S SR fpmmm e +

A | 1 {b} | |
om————— R S R +
aaAb | | | {aA} |
S - ¥ S fommmaae +
laAb | | | {1A} |
. S — e ————— +

1A | [I {1S} |
. - - +

1S | ! Lo
fom————— S SR Fo—Teae +

The language accepted by D1 is the set
N(Dl) = {anbn | n>0}. For example, the
is accepted as follows:
(1,aaabbb) + (Jla,aabbb) F
(laa,abbb) F (Jaaa,bbb) F
(laaaA,bbb) F (JaaaAb,bb) F
(laaA,bb) F (JaaAb,b) F
(laA,b) F+ (JaAb,E) F

(1A,€) F (IS,€) F (1,€)

Page

h is an accepting condition. Also, D1 is not
rministic since there is a shift/reduce coﬂflict

een'g(L,a) and g(L,E).

The main result about PDAs used by LR(O) parsers
hat the class of languages accepted by
eterministic PDAs is precisely the class of
ext-free languages which is stated by the followi

rem:

rem 3.3.1: (Chomsky[62], Schutzenberger(63], or

[63]) The class of string languages generated by
ng grammars is identical to the class of string

uages accepted by PDAs.

LR(0) Parsers

An LR(0O) parser is a PDA which is Qresented in &
htly different format. That is, the transition
tion § is implicitly defined by a set of parsing
es generated from some given string grammar. In
, the LR(0) parsing tables are a "compressed"
esentation of the transition map §. Hence, a LR(
er can be viewed as consisting of two parts, a
er routine and a set of parsing tables generated

the string grammar given (see figure 3.4.1).

-———-———-————_-——

Figure 3.4.1: Organization of an LR(O) p

In generating the LR(0) parser, from a g
string grammar G, the tables are built so tha
éarser traces a rightmost derivation in rever
is accomplished by essentially scanning the s
bottom to top, between each move, to determin
. sentential forms, if any, could exist with th
prefix defined by the stack. It turns out th
can be done using a FSA (called the character
automaton) which parses the stack to recogniz
string prefix the stack matches. Furthermore
not necessary to read the stack from bottom t
every move. Rather, by encoding the elemeﬁts
stack to'uniquely determine both the string p

parsed and the states of the characteristic a

Page

‘top of the stack will.always be a symbol which
1tifies what state the characteristic automaton
ld be in if éhe étack was scanned from bottom to
, Thus, the LR(O0) pafser can determine all the
>rmation it needs to know by only inspecting the

the stack and the next input symbol.

This section beginsiby presenting the LR(0) par
rerms of its parsing tables. It continues in
tion 3.4.2 by presenting how the LR(0)
raéteristic automaton is built. Section 3.4.3°
sents how the LR(0) parser is generated from the
racteristic automaton. Finally, section 3.4.4
cludes this section by presenting how a LR(0) par

be trahsformed into a PDA as defined in section

.1 LR(O) Parsing Tables -

The LR(0) parser is a machine which has string
ait, uses a stack, and three parsing tables. The
ck is a string of "states" which implicitly holds
ormation on both the string of grammar symbols
ognized and the states of the characteristic

omaton used to parse the stack. More formally, a

)) parser M is a 6-tuple M=(G, K, shift, reduce,

Pag

to, start) where

G = (E,S,P,S) is the string grammar defining
the LR(0) parser;

K is a finite set of parser states;

shift : K x > =-> KV{error} is a function defiﬁir

the parsing shift table;

reduce : K => 2P is a function defining

the parsing reduce table;

goto ¢ K x § -> KV{error} is a function definin;g
the parsing goto table; and

start€K is the initial state and defines

the empty stack symbol.

An LR(0O) parser is considered well defined if

ly if the LR(O0) parser is deterministic‘(i.e. no
ving any shift/reduce or reduce/reduce conflicts)
other words, an LR(0O) parser is well defined if

ly if
i) for all k€K, |reduce(k)|<1

11) for all k€K, for all a€S, if shift(k,a)e€k,

then reduce(k)=¢.

Page 6

As stated earlier, an LR(O) parser is just a
rent presentation of a deterninistic PDA. Hence,

stant aneous description of an LR(0) parser

ted ID) is the same as for ‘a PDA. That is, an
nt aneous descriptions is a pair (j3,00)€K x X
p is the current stack and oc is the string left
an on the input tape. The initial configuration
e pair (start, oc) where oc is the string to parse

The decision relation k.: ID x ID of an LR(0)
_ a)

r M(G»(l,i,P,S), K "shrft, réeduce, goto, start)
m nes the next nove made by the LR(0) parser M
is, given two instantaneous descriptions id! and
xd, hg id, if and only if

i) 1drCjJk~aoc) and idy»(ji k™, oc) where

shift(kl,a)=k2

i) id*"CGiqQ oc) and i d*Cpqgggj”™, oc) where

reduce(qqg) ={A->6} and goto(qq A) «0qy

1) 1d*CpgQkj . . .k, oc) and Id*i~ghghgcc) where
n>l; ki, ..., kn€K, reduce(k, ~{A->8},

| ength(e)=«n, and goto(qq, A='q;

Pag

iv) idl=(startq0,§) and id2=(start,6) where

reduce(qo)={s->s’}e

other words, condition (i)‘is a shift-move,
rdition (ii) is a reduce-move on an epsilon rule,
1dition (iii) is a reduce-move on a non-epsilon r
1 condition (iv) is a reduce-move on the start

bduction causing acceptance.

Acceptance of a string o only occurs if the
cision relation reaches an instantaneous descript

the form (start,€). That is, the language accep

a well defined LR(0) parser M, denoted N(M), is

»
% *
N(M) = {c€> | (start,oc) l-d (start, &)}

*
are }h is the transitive reflexive closure of ‘H'

ample 3.4.1: Let M = (G,K,shift,reduce,goto,l) wh
G = (§,>,P,S) such that ‘

T = {s,A};

S = {a,b}; and

P = {S=->A, A->ab, A->aAb};
K = {1,2,3,4,5,6}; and

shift,reduce and goto are defined by the followi

tables:

Las-

shift reduce goto
a b A
tom—pm——t tmmmmmm + +-==t
11 31 | 2 | S->A | 1 1 2 |
Fm—mpm——t Femmmm + s
3131 4| 4 | A->ab | 31 5 |
t=——t———t tmmmmm + +-==t
51 | 6 | 6 | A->aAdb |
tm——t———t tmmm————— +

language acéepted by the LR(0) parser M is the se
(M) = {a"™" | n>1}

example, the string "aaabbb". is accepted as

ows :

l,aaabbb) ‘h (13,aabbb) F, (133,abbb)

d
-, (1333,bbb) k, (13334,bb) k, (1335,bb)
-, (13356,b) k, (135,b) k, (1356,€)

4 (12,8) ‘H (1,€) which is the accepting conditi

One should note that there is a relationship
een the set of states on the stack of the LR(O0)
er and the corresponding grammar that the LR(0)
er is based on. This relationship is known as tt

lling" as is defined as follows:

Given an LR(0) parser M=(G=(3,>,P,S), K, shif

— %
*
educe, goto, start), let spelling : K —>2(§V2)

e a function recursively defined such that for ar

tring of states s,s ...snGKn

172

i)

ii)

iii)

P
spelling(&) = gspelling(start) = ¢
spelling(sl...sn) = @ if n>2 and either

a) there does not exist a symbol a€> such
shift(sl,a)=s2 and there does not exist

symbol A€J such that 5oto(sl,A)=s2

b) spelling(sz...sn) =9

spelling(s,...s_) = {agd | B€spelling(s,«..:
1 n 2

a€>, and s €shift(s ,a)} V

2
{ap 1 pespelling(sz...sn), A€, and

SZSgoto(sl,A)} otherwise

LR(0) Characteristic Automaton -

An LR(0) parser M is constructed based on a g

tring grammar G=(J,>,P,S). In generating M, the

onstruction method tries to maintain the property

*
hat for any input string 8o, if (€,8a) l‘d (B, @

ne of the following two conditions hold:

if 8ac is a string generated by G, then

% —*
S—T{.> '3& —ﬁ> 9 ac

—*
1) there exists a string o €2 such that

* ’ _*> ,
S—-R-> |30c —ﬁ' 8 ac

te: While in a LR(0) parser the stack is a stri
states, this discussion assumes that the stack

2ferenced corresponds to the "spelling" of the

ring of states which is a string of grammar

rmbols.

-her words, the construction method tries to

ain the property that every instantaneous

ription corresponds to some legal sentential form

. tion (i) states that this will be the case

»ver the input string is legal while condition (i

28 that even 1If the input is illegal, there exist

ring 8oc “€L(G) such that if 6oc’ was the input, t

Instantaneous description would correspond to a

. sentential form (i.e. the scanned input string

1 legal suffix oo’ such that 8o "€L(G)).

Another way of looking at the above condition is
the construction method for the LR(0) parser wil
1 a PDA where every reduce-move will be defined t
>rm the inverse of some derivation step and the
rse of every derivation step will be defined by
reduce-move. Hence, for any sentential form <np

— —%
acn?G(QV}) » 962 , and any production A->3 in P

Lf the current instantaneous des‘cription is the p
(cp,8), one wants to create a reduce-move such t
(ocp,8) !-d (ocA,8). To accomplish this, one must
vay of recognizing all possible stack configurati
vhich a reduce~-move should be defined (i.e. when
reverse of a derivation step should be performed)
learly, from above, the set of all such stack

%
ronfigurations is the set {oc|3 | S:Ii')mAe“—‘ﬁ)ocpe}

string ocp in this set is called a characteristic
string. Let CSG denote the set of all characteri
strings. That is, given a string grammar G,

*
ZSG = {ocﬁ] S—R>ocAe-—R->oc,’36}.

It is an important result that given a strin
yrammar G=(J,>,P,S), the set of characteristic st
ZSG is generated by a strict right-linear string

yrammar (see Knuth[68]). The method used, for

onstructing the strict right-linear grammar GC i

reate a new set of nonterminals, where each

1onterminal is a "marked production". That is, a

narked production is a pair (A->ax ,i) where A->

sroduction 'in P and 0{i{length(oc) is a marker wi
rhe production A=>oc. A marked production (A->cc
e denoted as (A—)Pl.pz) where .62V70, cx:=pl,'32, ar
[=1ength(pl). Also, let mp(P) denote the set of

narked productions defined by the set of producti

Using marked productions, the conversion can

2asily be defined as follows:

Definition 3.4.1: (Geller and Harrison[77],

jarrison[78]) Given the string grammar G=(3,>,P,S
its corresponding characteristic grammar CG be th
string ‘grammar CG=(mp(P)VS',EV$,P',S') where P’

the set of productions defined as follows:
i) for all S=>ax€P, S'=->(S=>.cc)€P’

ii) for any A6€J, geﬁv}_', and oc,iSS(QVS)* suc

(A‘)&._&P)Gmp(P), (A')&._}_(_P)->_)£(A“>G:_)_(_.P

— %
iii) for any A,B€J, B->3€P, and o« ,06(JV2) =

that (A=>oc .BO)Emp(P), (A-D>c Be)—)(B->.|’3

- '
iv) For any A€J0 and a«€(@V>) such that

(A-> e .)€mp(P), (A-Dac.)=DE

lheorem 3.4.1: Given any string grammar G, and it

rorresponding characteristic grammar CG as define

lefinition 3.4.1, L(CG)=CSG.

ixample 3.4.1: Let G=(Q,E,P,S) be a string gramma

vhere

I = {S’A};
> = {a,b}; and

P = {S->A, A->E, A->aAb}.
Clearly, L(G) = {anbn | n>0} and the set of
characteristic strings is the 'set

CSG = {G,A}V{anAb | n>1}. Furthermore, the

right-linear grammar C, defined by definition

G
the string grammar CG=(mp(P)V{S'},§V§;P',S')

contains the productions

S'=>(S8=>.A)
(S=>.A)=>(A->.8)
(A=>.8)->E
(S=>.A)=>(A=>.aAb)
(S=>.A)=>DA(S=>A.)
(S=>A>)=->¢
(A->.aAb)=->a(A->a.Ab)
(A->a.Ab)=>(A=>.aAb)
(A->a.Ab)->(A->.8)
(A->a.Ab)=->A(A->aA.b)
(A=>aA.b)=->b(A->aAb.)

For example, a derivation in G is
S -——R-> A T> aAb -—§-> aaAbb —R-> aaaAbbb
and hence "aaaAb" is a characteristic string.

corresponding derivation in C which generat

Gb
characteristic string "aaaAb", is as follows:
§° x> (8=>.A) => (A->.aAb) =
a(A—}a.Ab) =§> a(A=->.aAb) =§>
aa(A->a.Ab) =§> aa(A->.aAb) =§>
aaa(A->a.Ab) :§> aaaA(A->aA.b) :%>

aaaAb(A->aAb.) =§> aaaAb

Using the results'of theorem 3.2.4, one ca
the characteristic grammar CG and create a
deterministic FSA CG to accept the set of
characteristic strings. However, rather than g
through the three different conversions separat

(i.e. construction the string grammar C buil

G’
nondeterministic FSA M from CG’ and building tt
deterministic FSA CG from M), these three conve
can be combined into a single algorithm as foll

Algorithm 3.4.1: Method to construct an LR(O)

characteristic automaton
Input: a string grammar G=(3,>,P,S)
Output: a Deterministic FSA CG=(E,K,S,qO,F)
" without epsilon rules.
Method: The three procedures below, initiated
by calling ITEMS(G);
Procedure ITEMS(G);
begin
For all input pairs (a,b) € K x (2V{€}),
let S(a,b)=¢;
qp := closure({(S=>.0c) | S=>c€P});
K := {q4};

repeat

or each set of marked productic

and each grammar synbol XE(8\
such that J=GOTOQ(Il, X) and Jj

K 1« KV {J};

&1, X)) = {J};
ad;

;

until no more sets of marked produc
can be added to K
F = 0;
For each €K <fE
if there exists a marked product
of the form (A->o0c.)d
then F := F V {1}
it?
ad;
end;
Eunctiaon GOTO(I, X) ;
begin
J = {(A->ocX*p) | (A >oc.xp)er}
return closure(Jd);

end

e

Page

tion closure(I);
egin
J = I1;
while there exists a marked production
of the form (A->oc .BB)€I such that

B->0€P and (B->.0)¢8J

J = J V {(B=>.0)};

aple 3.4.2: Let G=(3,>,P,S) be a string grammar

o
) = {S,A};
» = {a,b}; and
» = {S=>A, A->ab, A->aAb}.
1, the deterministic FSA CG to accept the set of
racteristic string CS, is the FSA CG=(E,K,S,qO,Q)
re .
> = {a,b};
¢ = {{(S=>.A), (A->.ab), (A->.aAdb)},
{(s=>A.)},
{(A->a.b), (A->a.Ab), (A->.ab), A->.aAdb)},
{(A->ab.)},

{(A->aA.b)},

{(A->aAb.)}};
3, = {(S=>.4),(A->.ab),(A->.aAb)};
Q = {{(s->A.)},

{(A->aAb.)},

{(A->ab.)}}; and

8 is defined by the following graph:

A
(s=>.4)
(A—)liilyf
a

A")aob)

3.4.3 Constructing LR(0) Parsing Tables -

This section presents how to construct an
parser from the characteristic automaton. The
construction does not always construct a well g
LR(0) parser (i.e. it may produce a nondetermi
PDA). However, for a subset of the string gran
known as "LR(0) grammars", it is guaranteed to

a well defined LR(0) parser.

Pa

The process of conversion is straightforward

resented by the following Algorithm:

Lgorithm 3.4.2: Constructing an LR(0) parser

1put: a string grammar G=(J,>,P,S) and its
corresponding characteristic automaton

cc=(E,K,S,qO,F)

atput: an LR(0) parser

M=(G,C,shift,reduce,goto,start)

athod: Let K={Il,I ,...,In} be the set of sets of

2
arked productions from the characteristic automat

~

>« Then C={1,2,...,n} where state i corresponds

ne set of marked productions I let start=k whe

i.
=99 is the start state of the characteristic
itomaton CG. The three parsing tables are define

»llows:

pift table:

For all i€C, all productions A->oac€P, and all a
(A—>§.ae)€li where 3a®=a and Ij€$(Ii,a), then
shift(i,a)=j. Otherwise shift(i,a)=error.

educe table:

For all states 1€C, reduce(i)={A->axc | (A=-Dcac.)

goto table:

For all i€C, all productions A->oac€P, and al
A->|3.BSGIi where pBefa: and IjSS(Ii,B), ther

goto(i,B)=j. Otherwise goto(i,a)=error.

Example 3.4.3: Let G=(§,>,P,S) and CG=(S;K,8,q0

defined in example 3.4.2. Then, using.algorith
the constructed LR(0) parser is

M=(G,C,shift,reduce,goto,l) where

c={1,2,3,4,5,6} such that
Iz={(s‘>AO)}’
I3={(A->aob), (A‘)a.Ab), (A->oab), (A—>oa
1,={(A->ab.)},
IS={(A—>aA.b)}, and
6={(A->aAb.)};

and the three parsing tables are defined as

shift reduce goto
a b A
Fmmmtm——t . tmm—————— + +-——t
11 3 | | 2 | S->A | 1 1 2 |
tm——t———t tmm—————a + +-==t
31 31 4 4 | A->ab | 31 5 1
s it fmmm————- + +-—-=+
5 | 1 6 | 6 | A->aAd |
+o——t———t fo—m - +

Note that this corresponds to the LR(0) pars

presented in example 3.4.1.

Page

As mentioned earlier, the above algorithm does
essarily guarantee to produce a well defined LR(O
ser. Rather, it only guarantees a well defined
0) parser if the given string grammar is an LR(0)
mmar. That is; a string grammar G=(3,>,P,S) is
0) if and only if for anyvtwo derivations S =%> (

PO and § => «’A’@’ = «’p’e’, if «p is a

oc’p', then ac=a’, |3=|3’, and A=A’.

.4 Converting LR Parsers To PDAs -

As mentioned throughout this section, an LR(O0)
ser is nothing more than a PDA while a well defir
0) parser is a deterministic PDA. To show this,
s section provides an algorithm which will conver

0) parser into a PDA.

The conversion is done by constructing the

nsition map 8 such that the computation relation
ulates the decision function }h. The algorithm -

omplish this is as follows:

Algorithm 3.4.3: Converting an LR(0O) parser

into a PDA

input: An LR(0) parser

M=(G=(9,>,P,S),K,shift,reduce,goto,start) a

"spelling" function of its corresponding

characteristic automaton.

output: a PDA D=(S,K,S,start)

Method: The procedure below which constructs

the function S.

procedure convert(M,spelling);

begin
for all input pairs (a,b) do

initialize S(a;b)=¢.

od;

Page .

for all states k€K do

for all a€> do

if shift(i,a)=j

then s(i,a)={j}

£t

o
(=9

for all productions A->€€reduce(k) do

for all q such that goto(k,A)=q do
§(x,8) := §(k,€)V{kq}

od
od

for all productions A=->occ€reduce(k)

such that A#S and length(o)>l do

for all ql,qzeK such that goto(ql,A)=q

do
for all pkex ®™8ER(®) gych thar
spelling(Bk)=cc do
§Ca,pk,8) := §(Cq,pk,E) V {q,q,}
od
od

Pa

for all productions S->S’€reduce(k) do

S(startk,E) := g(startk,ﬁ) V {start}

xample 3.4.4: Let M=(G,C,shift,reduce,goto,l) be

R(0) parser defined in example 3.4.3. Then the
orresponding PDA D=(§,C,S,l), defined by algoritt
«4.3, has its transition function defined by the

ollowing table:

a b €
Fommm e m +
11 31 | |
it ettt T R +
12 | I | 1]
tommmpmm e +
3131 41 I
Fmmmpmmmpmm +
134 | | 1 12 |
tommmtmm +
334 | | 1 35 |
tommmtm e +
5 1 I I |
tommmpmm e m +
1356 | | | 12 |
s Bt Retatatater +
3356 | I | 35 1|
i e Kt +

Chapter 1V

CONTEXT- FREE TREE LANGUAGES

A tree |l anguage is sinply sonme subset of the set
1 finite trees (i.e. Ey for the ranked al phabet

Except for trivial cases, é tree | anguage is an
ite set. Even though such sets may be infinite,

ould like to have finite means for defining them

uch nethod is a generative device called a

ar. A grammar is a set of rules which defines
tree in a tree | anguage. O interest here is the
of tree |anguages which are genéerated by

xt-free tree grammars, called the class of

xt-free tree |anguages.

This chapter begins by presenting the défr
of a context-free tree grammar, and by showing |
tree language is generated from a given context-
tree grammar via a series of derivation (or rew:
steps. This includes presenting the two types
restricted forms of derivations, known as outsi
and inside—out. The remainder of the chapter s
properties of context-free tree grammars, as we.
transformations on some of these grammars which
the grammar such that certain undesired propert
removed; One goal is to provide a standard for:
context—-free tree grammars which are said to be
Chomsky normal form. Another goal is to descril
distinct forms of tree grammars, known as root :
linear tree grémmars, which generate distinct
subclasses of tree languages called regular and

coregular tree languages.

4.1 Context-free Tree Grammars And Tree Langua;

This section defines the set of trees (or
language) generated by a tree grammar. The gen
process can be characterized as a series of suc
tree rewrites (or one—step derivations) until a
which is only labeled with terminal symbols is

generated. This section provides the definitio

.ree grammar, followed by an overview of the gene

)rocesse.

A context-free tree grammar (or tree grammar

short) is a quadruple (E,E,P,Fl) where

®? = {F,,F,,...,F_} is a finite ranked alphabet
1°°2 n

nonterminal function symbols (where the ari

each Fi’ 1£i{n, is denoted as ai),

2> = {f1 f2""’fm} is a finite ranked alphabet

terminal. function symbols,

F, is a designated symbol in @ called the

start symboi and

P is a finite set of pairs of trees of the for

(Fy 5 t),

for any i, 1{i<n, and t is a finite tree in

ZV—(X)o

Each pair (Fi , t) 6 P is called a production
/I ~\ :
* o o x
1 a;
Note that under tree composition ,

X

g =’g(x1,...,xn)

re gGEVQ and n=r(g). For convenience of notatic
:1,...,xn) will be denoted in vector form as g(X)
yductions will be denoted as Fi(?)—>t where
L(?),t)GP. In general, upper case letters such a
5,Hyeee will be used to denote nonterminal symbo
lle lower case letters such as f,g,h,... will be
:d to denote terminal symbols. Depending oﬁ the
1text, G will also be used to denote a tree gramm
thermore, unless otherwise defined, one can assu

it A = max{a, | ai=r(Fi) and FiGQ}.

i

Having defined a tree grammar, the next step i
ine a rewrite step. Given a tree grammar

:@,E,P,Fl), a one~step derivation (or rewrite) is

‘ined by the relation =§> 2_Vm(x) x TZVQ(X)
Llows:
For any two trees tysty €T2V (X) ty —E>G t, if

only if t1=s[v <~ F(sl,...,sq)] and

t2=s(v <~ t(sl,...,sq)] where r(F)=q,
s’sl"°"sq€T5Vﬁ(xA)’ v8dom(s), and F(X)->t is
production in P.

other words, the subtree F(sl,...,sq), of the tr
, is rewritten (or replaced) with the tree
51,...,sq) using the production F(X)->t. When th

1itext of G is clearly known, =§> will simply be

G

1oted as =>.

Pa

Equipped with the meaning of a one-step
2rivation, one is able to define precisely the se
ees generated from a tree grammar. Let G=(§,>,P
> a tree grammar and bl""’ba be a sequence of

) 1
2rminal trees in TE' A sentential form is any tr

* *
:Tzvﬁ such that Fl(bl""’bal) => t where =—>

1e transitive reflexive closure of =), Furtherm

1e tree language generated by the tree grammar G,

2noted L(G,Fl(bl,‘...,ba)), is the set of all

1
sntential forms t such that tGTS. Hence,
, %
\G,Fl(bl,noo,bal)) = {t l Fl(bl.oco,bal) _“> t a
;TS}'

xample 4.l.1: Let G1=(§,5,P,F) such that

@ = {F} where r(F)=1,
S = {f,a} where r(f)=1 and r(a)=0, and
P = { "> X Py "> }o

F F f
| | |
X X F
|
X

Then, L(G,F(a)) = {a, f,
|

Also, a sample derivation which derives

R = Hh— h

is as follows:

[

O — = — +h

==

m —
N =] = Hh — Fh
D — Fh— Fh

It should be noted that the situation regar
derivations is not as simple as in the case of s
grammars. Unlike in string grammars, one-step
derivations are not commutative in the sense the
t == t2 using F(ﬁ)->sl, and t2 => ty

it is not necessarily the case that there exists

using G(

2 such that £ ==> t, using G(x)—)s2 and ty =),

using F(?)-)sl. To show this, consider the foll

example:

Pag

ample 4.1.2: Let G2=(Q,E,P,S) be a tree grammar s

at:
® = {S,F,G} where r(S)=0 and r(F)=r(G)=1;
> = {a,g)} where r(a)=0 and r(g)=1; and
P = {S=->F , F->a , G=>g}
| | | I
G X X X
|
a
Clearly, F =—> F using G->g and F => a using F-
| | I I I |
G g X X g X
| | |
a a a

On the other hand, when the order of the derivat

steps 1is reversed,

F => a using F->a and it is now

I 1

G X

|

a

impossible to perform a rewrite using G->g.

X X

Hence, the order in which derivation steps are
plied affects the resulting derived tree (i.e.
rivation steps are not independent of one anothei:
is has been shown by Englefriedt and Schmidt[77,]
rthermore; this result indicates that any proof

owing results between two different derivations 1

consider every possible ordering of derivation
To simplify proofs, one would like to have a m
derivation (i.e. prior knowledge about actual
orderings of derivations that will occur) whic
reduce the number of potential derivatioﬁ orde
must counsider, even at the cost of restricting
class of tree languages allowed. Thus, one sh
consider what modes of derivation one will all
least restrictive is not to specify any deriva
(i.e. unrestricted as above). However, the c
practice is to ﬁut a partial ordering on the d
steps by using either an outside-~in (OI) or an
inside-out (IO) derivation mode. Intuitively,
modes of derivation correspond to call by name

by value respectively.

An I0 one-step derivation (denoted ?§>G)

one-step derivation which is applied to an inn
ﬁonterminal occurring in a subtree. It can be
to any subtree whose root is labeled witﬁ a no
symbol and none of its other nodes are labeled
nonterminal symbol. Note that an I0 derivatio
applied to any subtree meeting the above condi

More formally, the %%)G relation is defined as

For any two trees tl’tZGTEVE(xA)’ t! To’c

only if t1 > t2 such that

Page
) £, = s[u <- F(Sl"°"sn)]
) £, = slu <-‘t‘sl,...,sn)]-

L) F(R)=>t is a production in P where r(F)=n, an

r) for all VSN: such that u’vedom(tl), where N:
denotes the set of nonempty strings of positi

integers, tl(u°v)6§.

2 that conditions i) through iii) are just the
litions of a one-~step derivation while condition

:he added condition for an IO derivation.

Similarly, an OI one-step derivation (denoted

;) is a one-step derivation applied to an outermo
-erminal symbol. It can be applied to any node
2led with a nonterminal symbol such that none of
2stor nodes are labeled with a nonterminal symbol
2 an I0 derivation, an 0Ol one-step derivation may
lLied to any subtree meeting the above condition.

> formally, the relation ==>_, 1is defined as follo

01°G
for any two trees t,,t GTZVQ(X), t OI>G tz if .
nly 1if t, == t, such that

i) t, =s[u< F(s;,...,s)]

ii) ty - s[u <- tGCsj,...,Sn]
iii) F(*)->t is a production in P where r(F)
iv) for all prefixes v of u, when v/u, t.l(v

Again, as in an 10 one-step derivation, condit
through i1i1) are just the conditions for a one
derivation while condition iv) is the added co
for an 01 derivation. Furthernore, whenever G
fixed, v>, and It5>, wll sinply be denoted as

| 33> espect ively.

To clarify the differences between unrest
.10, and 01 derivations (i.e. =>, == and =

' 10 01
consi der the follow ng exanple:

Exarrple 4.1*3. Let G=(|,i, P,S) be a tree granm
t hat

1 » {SFG where r(S»0 and r(F)-r(Qg-1I;

2 « {f,g,a} where r(f)«r(g)»2 and r(a)«l;

P- {S>, > , G> , G>x}
I/ \ 1 /7 \ 1
G X X X X X X X
|
a

The set of all possible 10 derivations is a

foll ows:

Page

= -0 —

VA
o
—

Y.

~
Y4

~
Y L]
o

L]
B —
N\

o

(=]
o —0 — o
N\

o

—
N

the set of all possible OI

)n the other hand,

lerivations is as follows:

a a

a

a a

a

\ /NN
aaaa

a

/
a

the set of all possible (unrestr

Also,

is as follows:

a a

a

P
80
~ ~
Y «
N~
L]
__/
O —d
-~
Y4
~
«
i
O —d
-
Y4
~
:/ O —d
BH—-—0 —d
ﬂ—/ .
(7]

y => F => £ => f{ = f
I !\ / \ / \
G G G G g g g
I I I I/ N /N /N
‘a a a a aa aaaa
3 => F => £ => §{ = f
I / \ / \ / \
G G G G g a g
[N A /- \
a a a a a a a a
3 =—> F => £ => f = £
I / \ / \ / \
G G G G a g a
I | | | / \
a a a a a a
3 => F => £ => f => £
| !\ / \ !\
G G G G a a a
| I | |
a a a a
5 => F => F = f
I I / \
G g g 8
I !/ \ /' \/ \
a a a a aa a
5 => F => F => f§
I | !\
G a a a
| -
a

Note that under an I0 derivation, it is impossi

generate the trees

ch can be generated by an OI derivation.

Pag

rthermore, at least for this example, the seﬁ of
ees generated under an OI derivation is the séme
der the unrestricted case. It turns out that the
sults are true in general, and are stated explici
theorem 4.1.1. Before stating these results
wever, the definition of a tree language must be

tended to allow the derivation mode to be specifi

For notational convénience, the transitive
osures of the different derivation modes are defi
follows. The transitive closure of =),

> are denoted as ==>+, ?§>+, and §?>+ respectivel

?%>, ar

N\

ile the transitive reflexive closures of —>, 10’

* %
> , and =>

*
d 6T> are denoted as =) , o1

sl
o

spectively.

To extend the notion of a tree language under
ther 0I, IO, or unrestricted derivations, one muc
so generalize the definition of sentential forms,
ven a tree grammar G=(§,E,P,Fl), a derivation
lation =§>* where R€{I0,0I,u}, and a sequence of
ees bl""’balgTS’ a sentential form is any'tfee
such that Fl(b1’°°"ba1) =?>* t. Furthermo

-

2V
' *

e tree language generated by G using —§> , denote

(G’Fl(bl"°"ba)), is the set
| 1

*
| Fl(bl""’bal) _§> t and tGTE}. Having

Pa

rneralized these definitions, the following resul
iglefriedt and Schmidt[77,78] is presented withou

roof:

teorem 4.1.1: Given a tree grammar G=(Q,5,P,Fl) a
2:quence of trees b,,...,b €T-, the tree language
1 a, 2
snerated from the three different derivation rela

re related as follows:

LIO(G’Fl(bl""’bal))
c LOI(G,Fl(bl,;..,bal))
= Lu(G,Fl(bl,..:,bal)).
The remainder of this thesis will mainly deal
[derivations, since the class of tree languages
z:nerated by unrestricted derivations and the clas
2nerated by OIL dérivations are identical. The re
> focus on O0I derivations, as mentioned earlier,
1at they introduce restrictions which reduce the
imber of cases that need be considered in proofs.
1fortunately, the restrictions only correspond to
artial ordering, and hence the remainder of this
action introduces an unconventional form of a OI
ne~step derivation such that a total srdering can
ssumed. That is, the notion of an OI derivation

lower bound u, as well as an OI derivation under

refix lexicographic ordering on tree domains are

introduced. Furthermore, it will be shown tha
tree language generated by an OI derivation un
prefix lexicographic ordering for tree address

equal to that generated by an OI derivation.

An OI one-step derivation with lower boun

(denoted =5>G) is an OI one-step derivation wh
be appliéd'at any tree address v where ulv. G
tree grammar G=(§,E,P,Fl), the =&>G relation i
as follows:
: - =4
For any two trees tl’t2€$2V§(xA)’ t >G t

only if tl 3?) t2 and

i) t]_ = S!:V <_ F(Sl,co.,sn)],

ii) t.2 = gl[v &~ t(sl,...,sn)],
iii) F(RX)=->t is an production in P where r(F

iv) u £ Q

Similarly, an OI one-step derivation unde

prefix lexicographic ordering on tree domains

:£>G) is an OI derivation applied to the

lexicographically smallest tree address labele

nonterminal. The =&>G relation is defined as

L
For any two trees tl’tzeTEVQ(xA)’ t ——>G t

only if tl €?> t2 and

Page
.) tl = S[\l <-.F(Sl,‘..’sn)]
L) tz = S[u <_ C(Sl,...,sn)]'
) .F(f)->t_is a production in P where r(F)=n, an

r) for all v<u, tl(v)ﬁm-

For convenience, whenever the context of G is

i, =g>G and =é>G will be denoted as ==> and =£>

>ectively.

In order to show that one can commute derivatio
least to some extent) when they are applied to

:pendent subtrees, the following lemma is present

a 4.1.1: Given a tree grammar G1 = (Q,E,P,Fl), a

=u,n = t

e trees tl’tZ’tBGTEVQ(xA)’ if tl t2 51 3

re t2 = S[V <" F(Sl,...,sq)], '
= s[v &= t(sl,...,sq)], r(F)=q, and v<u, then the
=50

sts a tree tZGTEVQ(xA) such that t %?) t2

1
= g’ [v <~ t(sl,...,sq)].

re t. = s’[v &= F(sl,...,sq)] and

Pag

roof: By induction on n.

ase case: t1 5T> t3. Trivial.
° ﬂ "'__'l& n —— P
nductive step: ty > t, > ty OI> t, such the

1 s[lw <~ F(sl,...,sq)], t, = s[w <~ t(sl,...,s

C

3 S'[V = G(Si,-oo,S;,)]’

s = s'lv <= t'(si,...,s'q,)], r(F)=q, r(G)=q’, ar

—_— , A\n
{u{w. By induction, tz 5T> t3 ==> t,
2 s"[v <~ G(si,...,sé,)] and

such that

4

3

?>, v cannot be a prefix of w. But then, from tt

s"[v <~ t'(si,...,sé,)]. By the definition

efinition of tree substitution, there exists a tz
uch that

= t"[v <~ G(si,...,s’,)][w {~- F(sl,...;sq)],

1 q
2 = t"[V <""' G(Si,...,s;,)][W <"’ t(Sl,-.-,Sq)], ar

4

3 = t [V <"' t (Sl,...,sq,)][w <- t(sl,ooo,sq)]o

|

he definition of 6?),

= 11} - ’ s - . _
1 ‘t [v < G(sl,...,sq,)][w < F(sl,...,sq)] o1

"[V <- t'(Si,...,S;,)][W <- F(Sl,...,aq)] = téo

he definition of ==,

‘é = t"[v (=~ t'(si,.,.,s&.)][w - F(sl,...,sq)] p—

"[v <~ t’(si,...,s&,)][w <~ t(sl,...,sq)] =t

30

: —_ , u,n+l
herefore t1 OI> t2 > 4*

_Pag(

Using this result, one can show that every 01
jrivation (to a termnal tree) can be co_nverte'd t<
L derivation under a prefix |exicographic orderin;j

; shown by the follow ng |enmm:

LVI_"?_ 4,1,2: Gven a tree grammar G-.CJjijPjF.), a
JO trees t, and ty such that t; GlyyJi(fA) " 77
: t]. '-g'-—f)n tzg then fc: _l>n tzc

roof; By induction on n.

ise cases: n*0 and n«l« Both are trivial.

iductive step: t 5 0 afn t* where nM,

L *s[u <- F(sl>..#,¢f)]f tr - s[u <- t(s|f..«fsq
id F(lIt)->t6P. Dependi ng on whether or not there
cists a node w |abeled by a nonterm nal such that
\ere are two cases:

ise 1. there does not exists a w in domCt;) such
Cu and t.(Wel. °' then t; = t,* By inductio
) f—l>” t,. Therefore tj :,\>n+1 tj .

ise " there exists a win don(tl) such that w<u
L,(W)€j. " Let v€don(tj_) be the least tree address
lat for all y'€dom(t), where tl_(y’)€i, Vj<ye By
»finition of /:i>> clearly v is not a prefix of u.
len it nust be the case that E =’\>m‘$,01:>‘ B'of
lere mtp=n, MO, th, * s'[v <- G(s'l,.,,8' q/)],

5 T S'[V <- t'(s/\f...f8/\)] , Q' ((I’(G), G(X‘)-—)tGP,

Ps

is the least tree address such that v<y and for &

y'€dom(t1) such that tl(y')GE, y_<_y;° By lemma 4.

—_— =X, = g" - ’ ’
t OI> te > tg where tl s"[v < G(sl,...,s c
—

and t6 = g"[v <~ t'(si,...,s&,)]. But then t1
By induction, te =£?n t,. Hence £ =£>n+l ty.

Using this result, it is easy to show that 't
tree language generated by an OI derivation is ec
the language generated by an OI derivation under

prefix lexicographic ordering. In other words, ¢

any tree grammar G=(§,E,P,Fl) the tree language v

an OI derivation under prefix lexicographic order

tree domains, denoted L1 (G,F.(b,,ss.,b_)) where
~ 01 171 a,

b ,...,b €T is the set

1 2’
*
{t 1 Fl(bl""’ba) =—]‘> t where t€T

<} .
1 2

Theorem 4.1.2: Given a tree grammar G=(§,§,P,Fl)

any set of trees bl,...,baleTS,

1
(G, F (b, ,bal)) = Ly(G,F (b ,... ,bal)).

Proof: Inspecting the definition of =é>, it is c]
L * *
that if S => t, then S %?) t. Hence,
1
I((;,Fl(bl,...,bal)) 9 LOI(G,Fl(bl,...,bal)). (
*
other hand, 1if § €?> t, where t€6T<, then by lemm:

2
*
S =£> t. Thus

Page

, 1

‘G’Fl(bl""’b 1)) (9 LOI(G’Fl(bl""’bal))? and
1

e LOI(G,Fl(bl,oo-,bal)) - LOI(G,Fl(bl,ooo,bal))o

a

Using the above theorem, and theorem 4.1.1, it
ar that the tree language generated using an
astricted derivation is identical to the tree
guage generated using an OI derivation under a
Eix lexicogfaphic ordering. For the remainder of
s thesis, all proofs will use Ol derivations unde
fix lexicographic ordering on tree domains. Henc
never an 0I derivation is used in a proof (i.e.
ation g%)) it will be implicitly assumed that in
t it is an OI derivation under a prefix

icographic ordering.

Example 4.1.4: Using the tree grammar G3 in examp
4.1.3, the set of all OI derivations under a pref

lexicographic ordering is as follows:

s =Ly F =y f == f =
I !\ !/ \ / \
G G G g G g g
I I I/ \ 1N TN
a a a a aa a aa a
S =;> F =£> f =£> £ =é> f
I / \ / \ !\
G G G g G g a
| | I/ \ !/ \
a a a a aa a a

s =k g =ty ¢ = ¢ =Ly ¢

| !/ \ / \ / \

G G G a G a g

! N | /\

B a a a a a a

s =by p =t ¢ =Ly ¢ =k ¢

| / \ !/ \ !/ \

G G G a G a a

| L |

a a a a

Note that the set of trees generated
as the set generated under an OI derivati
Furthermore, the total number of possible
is reduced, indicating the point alluded
That is, the number of cases needed to co
proof should be reduced, since there are

derivations for any given tree language.

4.2 Augmented Tree Grammars

One of the problems with tree langua
general, is that they are parameterized (
supply a sequence of trees bl""’bal alo
tree grammar). It would be more convenie
arity of the start symbol could be reduce
hence no parameters would be necessary.
that this is possible by augmenting the t

with a new start symbol with arity zero.

the augmentation will maintain the tree 1

1erated. Given a tree grammar G -(Ql,z P a

1’ 1)

juence of trees bl""’b €T an augmented tree

2.’
immar G,, denoted aug(Gl,(bl,...,bal)), is thg tu

=(§2,§,P2,S) where

9, = QIV{S} where SﬁQIVS; and

P2 = PIV{S—>F1(b1,...,ba1)}.

other words, the augmented tree grammar G2 is th
2e grammar G1 with an added auxiliary start
3duétion. Furthermore, the auxiliary start

oduction is not based on any "outside" parameters

.e., the tree grammar is totally defined).

A natural assumption is to believe that the ab
ansformation does not alter the tree language
nerated. This is shown to be true by the followi

eorem:

eorem 4.2.1: Given a tree grammar G1=(§1,§,P1,F1)

t of trees bl""’ba €TS, and

1
=au5(Gl,(b1,;..,bal)), then
I(Gl’Fl(bl"°"ba1)) = LOI(GZ’S)'

oof: Left as an exercise for the reader. .

Pag

Since every tree gfammar can be augmented wit
ffecting the tree language generated, the remainc
his thesis will.assume that all tree grammars are
ugmented. Furthermoré, since the start symbol has
rity zero, LOI(G’S)’ LIO(G,S), and Lu(G,S) will t
enoted as LOI(G), LIO(G)’ and L(G) respectively

=(9,2,P,S).

.3 Redundant Tree Grammars

A production p is redundant if p is of the "fc

(®)->F(®). Similarly, a tree grammar G1=(§,E,Pl,

edundant if there exists a production p€P1 such t
s redundant. In other words, whenever t1 ﬁ?) tz

(?)-)F(Y), t,=t | Hence, there is no need for tt

1 "2°
roduction F(X)=>F(X). The nonredundant tree gran

£ G, denoted nr(Gl), is a tree grammar G2=(§,§,E

here P2 = P1 - {F(f)—)F(X)GPl}.

Like augmented tree grammars, redundant tree
rammars can be converted to nonredundant tree gre
nd the transformation does not alter the tree lar
enerated. Without proof, this fact is stated by

ollowing theorem:

Theorem 4.3.1: Given a tree grammar G1=(§»2,P

1!

G =nr(G1), L = L

2 01¢C¢y) 01(G)-

The remainder of this thesis will assume t
tree grammars are not redundant. Furthermore,
transformation presented in the remainder of tt
thesis introduces a redundant tree grammar, the
implicitly assumed that the actual tree gramman
generated is the nonredundant version of the t1

grammar generated.

4.4 NT/T Segmented Grammars

NT/T segmented grammars are tree grammars
that each production’s right-hand side is eithe
labeied using nonterminal symbols, or terminal
but not both. Furthermore, if the right-hand :
production is labeled by terminal symbols, ther
is only one terminal symbol in the tree. Howex
order to present.NT/T segmented grammars forma:
new terminology which allows transforming term:

symbols to nonterminal symbols must be introduc

Page
let > and [© be two ranked alphabets_such that
1) AT =90

ii) 121 = (1T
iii) There exists a bijective function pi : X -
iv) For all a€> r(a) = r(pi(a))

en, pi is a renaming function of 2 using [, deno

M=pi(X). 1In general, renaming will be used to
eate a new unique nonterminal symbol for each

rminal symbol in the tree grammar.

Extending the renaming function pi, if E, D, -

e three ranked alphabets such that [=pi(X) and
= *

ND = 6, let pi : TSVQVP(XHI) -> Tr Vﬁ(xm) where

= max{r(f) | fGSVf1}, be a function such that gi-

y tree tGTSVﬁVI—‘ (Xm) :

1) dom(pi (t)) = dom(t)

* _
ii) PFor all u€dom(pi (t)), if t(u)€X, then
pi*(t)(u) = pi(t(u)), otherwise

pi*(t)(U) = t(u).
t pi® TEVQ(xm) -> ZTEVQ\H"(Xm) be a function

cursively defined such that given any tree

Page
1) piCe) = {t}

ii) pii+1(t) = {sepii(t)
| Fu€dom(t) such that t(u)ex}
V {slu <= pi(s(u))(s/ul,...,8/uq)]
| s€pii(t), u€dom(s), s(u)ex,

| ~and r(s(u))=q} for any i>0.

—1 . - =
thermore, let pi : Tzvgv‘—w(xm) -> TZVQ(xm) be

ction such that given any tree CGTSVE\H"(xm)’
1) dom(pi”l(t)) = dom(t)

ii) For all u€dom(t), if t(u)€i" such that
pi(f)=t(u) for some £f8>, then pi-l(t)(u)=f,

otherwise pi~t(t)(u)=t(u).

other words, pi*(t) is the tree t where all nodesc
eled by > are renamed by their corresponding symt
™. If 1S(t)$n, then pin(t) is the set {pi*(t)}.
erwise, pin(t) is the set of trees obtained from
sible conversions of n nodes labeled by terminal
bols in X, to nonterminal symbols in |{*. Finally
en any tree tepin(t') where "'GTSVE(XA)’

1(t)=t’. In other words, to some extent pi-l is
erse function of pin and pi*. These results are

wn by the following lemmas.

Pag

enma 4*4, 1: G ven three ranked al phabets i} (jj, ar

uch that r= pi(2), PAi =0, any n>0, and any tr
IGTEVI()%) where m= max{r(f) | f€ Vfi}, then for

n
ree t ~pi(t))

i) if nartp, then Ip(ty) =n,
1:(:2_) = 1E(t1)-n, and pi*(tz)-pi*(tl)

ii) if n>~(ty), then lp(ty) = 13_—(t1), lz(tz
and t""pi *(t.)

roof s by induction on n.

ase case; n * 0* Trivial. By the definition of
io(t.l) - {tr}' Hence, it nust be the case that i
2Epi °(ty), to-tj. By the definition of pi(l),
*AX - 0, and we were given that f Af * O« Hence
ince i T2\ /i At tpAt2n T °* Furthernore, it ti
e the case that n <° - "’_‘_tl’\ since n = 0. Finally,
A(ty). - 1AQj) and pi (tz) - pi (tj) since tj - t

nductive step: Assune the hypothesis is true foi

<Jl for some n. W want to show that the lemma is
or any t~Spi 11+1(t1)' According to the definitior

i“+1, there are two possibilities:

ase 1. t"€pi rl(ti) and there does not exist a

€dom(t,) such that to(u)€r. dearly, I>(ty) - O.

Page

S(tl)’ then by induction on condition 1), li(ﬁz)l
ch contradicts that 1E(c2)=0' Hence, nZlE(tl).

.S(tl), by induction using condition 1), l:(t2)=0
(t2)=1§(t1)f and t2=pi*(t2)=pi*(t1) in which case
isfies condition 1i) for the n+l case. Finally,
'S(tl)’ by induction on condition ii), lr‘(t2)=15<

* *
t2)=0, and t_=pi (t2)=pi (tl). Hence, for any t

Epin+1

2
(tl)’ when t2€pin(t1), condition 1ii) is

isfied for the n+l case.

e 2: t2=s[u <= pi(s(u))(s/ul,...,s/uq)] where

>in(t1), u€dom(s), s(u)6>, and r(s(u))=q. Since

1) 6>, 15(8)>0' Using induction, condition i) mus

)1y, and hence, nSlE(tl), lr(s)=n, 1E(s)=lz(t1)-t
* *

| pi (s)=pi (tl). Also, by the tree substitution

-formed at tree address u, to construct tz, adds

e node labeled by [previously labeled by >. He

t,)=15(s)=1, 1 (t,)=1n(s)+1, and pi*(ty)=pi*(s)

- then, 1T‘(t2)’“+1’ 1S(t2)=Ls(s)-(n+l), and

¢ *

(t2)=pi (tl) All that is left to show is that

lili(tl)' But since li(tl)-n>0’ 1§(tl)—(n+1)20,

\t1)2n+l.

Page

mma 4.4.2: Given three ranked alphabets >, @, and

ch that [T=pi(32) and "AJ=0, and a tree t€T—,,=(X

2V
ere m=max{r(f) | £€2V@}, then for any nzlz(t),

*(e)epi®(t) and 1pi™(t)(=1.

oof: Using lemma 4.4.1, for any tree t €pin(t),

1
* *
(t1)=0 and pi (t1)=pi (t). Since l§(t1)=0, it mu
the case that tleTr“VQ(xm)' By inspection of th
* *
finition of pi , clearly pi (t1)=t1. But then
%
(t)€pin(t), and Ipin(t)IZI. To show that
1n(t)|=l, assume there exists a tree t2€pin(t) su
*
at tz#pi (t). Using lemma 4.4.1, 1$(t2)=0 and
% * * * *
(t2)=pi (t). Since tz#pi (t), and pi (t2)=pi (t
ere must exist a node uedom(tz) such that tz(u)es

t this is impossible since lsxt2)=0. Hence is mu

the case that lpin(t)|=1.

mma 4.4.3: Given three ranked alphabets >, @, and

ch that [“=pi(X) and "A®=0, and any tree t eTng

ere m=max{r(f) | £6XV3}, then for any nd0, if

n -1
€pi (tl), then pi (t2)=t1.

-oof: By induction on n.

1se case: t Gpio(tl). By the definition of pio,

2
0

i (tl) {tl}. Hence, tz tl' Also, since tlegzvm(
-1 -1

L (t1)=t1. Hence, pi (t2),t
1

1.
(tl)' By the definition

1ductive step: t2€pin+
ln+l, there are two possibilities:

1se 1: t2€pin(tl) and for all uedom(tz), t(u)é>.
rivial. By induction, pi-l(t2)=t1.

1se 2: t2=s[u <- pi(s(u))(s/ul,...,s/uq)] where
Spin(tl), u€dom(s), s(u)€>, and r(s(u))=q. By
1duc£ion, pi-l(s)=t1. By inspection of the defin

pi-l, clearly

L'l(c2)=c1[u <= sCu)(t /ul,een,t /ug)]=t .

Having completed the above terminology, NT/T
:gmented grammars can be formally introduced. Gi

ree grammar G = (§,>,P,S), a production F(®)->t€P

[/T segmented if and only if either
i) For all u€(dom(t)-var(t)), t(u)e€d
ii) t(€)€X and (dom(t)=-var(t))={€}

1» other words, condition (i) states that every no
>t labeled by a variable is labeled with a -

>nterminal, and condition (ii) states that the ro

Page

beled with a terminal symbol and each of its

mediate descendants are labeled by variables.

milarly, a tree grammar G=(8,>,P,S) is NT/T segme
and only if for every p€P, p ié NT/T segmented.

Example 4.4.1: Let G1=(§1,S,P1,S) and G2=(§2,E,P

such that
Ql = {S,F} where r(S)=0 and r(F)=1;
5> = {a,f} where r(a)=0 and r(f)=1;

P

{S=>F , F => £ },
! [/ \

a X X X

1

QZ = {S,F,a,f} where r(S)=r(a)=0, r(F)=1, anc

P, = {s->F , F > £, 3a->a,
! I !/ \
a X X X
2 ->f}.
/N /\
X y x ¥y

Note that while L_._(G.) = LOI(GZ), G, is not NTy

011 1

segmented (because of the production - S => F),
|

a

while G2 is NT/T segmented.

Page

It is natural question to ask if there is an
orithm to convert a tree grammar G1 into a new tr
mmar G2 such that G2 is NT/T segmented and

(G1)=L (GZ)' The answer is yes as 1is shown by t

oI

lowing definition and lemmas.

Given a context-free tree grammar G1=(§1,§,P1,S
“=pi(X) such that [“Ag=0, let G2=(§2,S,P2,S) be

T segmented grammar of G

10 denoted NT/T(GI), wher

1) 9, = ler‘
11) P, = {pi(£)(R)->F(R) | fe€3}

2
V{F(R)=>pi (t) | F(R)->tep)}

Example 4.4.2: Let G1 and G2 be defined as in

example 4.4.1. Then, G2 is the NT/T segmented

where ["={3,%}, pi(a)=3a, and pi(f)=

grammar of G1

ma 4.4.4: Given any two tree grammars G1 and G2 :

t G1=(Q1,2,PI,S) and G2=NT/T(G1), G2 is NT/T

mented.

of: According to the definition of P2, there are

sible forms of productions:

e 1: pi(£)(X)->£(X) where f€2. TFor the tree f(3
arly £(®)(8)=f6> and (dom(f(R))-var(f(R)))={8&}.

ce pl(£)(X)->f(RX) is NT/T segmented.

.
case 2: F(®)->pi (t) such that F(X)->téEP By

l.
* *
definition of pi , pi (C)GTQ Vrﬂ(xm). By the
1
definition of G,, §2=§1Vf‘, and hence, for all

ug(dom(pi (£))-var(pi (£))), pi*(c)(u>e§2.

Therefore, every production pGP2 is NT/T segmer

hence G2 is NT/T segmented.

Lemma 4.4.5: Given any two tree grammars Gl anc

=NT/T(G1), any tree

where GI=(Q1,2,P1,S) and G2

t =s[u <= t(sl,...,s)]G?ZVQ Vra(xm) where

mn=max{r(f) | erVQ } and cGTzVQl

=gs[u <~ t (sl,...,sq)] suct

(X), then for

n>0, and any tree tz

‘gpi® —_*

t €pi (t), tz——>G t).
2

Proof: By induction on n.

base case: n=0 - Trivial.

inductive step: Let t’ be any tree in pin+1(t)

the definition of pin+l, two possibilities aris

case 1: t'Gpin(t). By induction, clearly t,=

case 2: t'=s’[v <~ pi(sf(v))(s’/vl,...,s’/vq’)
s'Gpin(t), v€dom(s’), s'(v)Gz, and r(s’(v))=q’.

definition of G pi(s'(v))(f)—)s'(v)(?)ePz. ¢

2,
t2=
s[u <~ s’ [v <= pi(s'(v))(s'/vl,...,s'/vq')](s1

=>
G,y

s [u <= s’ [v <~ s'(v)(s'/vl,...,s’/vq')](sl,...,sq
= g[u <- s’(sl,...,sq)]. Since s’Gpin(t), by

’ B
.nduction, s[u <~ s (sl,...,sq)] —-—->G2

*
3 [u <~ t(sl,...,sq)]atl. Hence ty —-——>G2 t .

.emma 4.4.6: Given any two tree grammars G, and G

1
shere G1=(§1,E,91,S) and G,=NT/T(G,), if S §§>th
%
> ——->G2 t.
’roof: By induction on n.
base case: n=0 - Trivial.
.lnductive step: Assume S €?>gltl ==>G1 t, where

= slu <- F(sl,...,sm)], t, = s[u <~ t(sl,...,s

*

1 By induction, S —~>G2 t1
*

F(R)=->pi (t)GP2 and hence

v=r(F), and F(R)=->tEP

-he definition of G2,
*

3 [u <~ F(sl,...,sm)] = s[u <~ pi (t)(sl,...,s

3y lemma 4.4.2, s[u <~ pi (t)(sl,...,sm)] =

*
3 {u <~ t3(sl,...,sm)] where t_ =pi (t)epiq(t) for

3
1=12(t)$|dom(t)l. By lemma 4.4.5,

%*
3[“ <- t3(81,...,sm)] =>G2 S[u <" t(sl,ooo,sm)]-
*
lence S ==> Gz tz.

Lemma 4.4.7: Given any two tree grammars G1 and G

=NT/T(G1), any tree

there G1=(§1,2,P1,S) and G,

t3'172\/§1\/'ﬂ(xm) where m=max{r(f) | fe}—vﬁlvr‘} anc

lr(t)=n, then there exists a unique tree t GTSVE

Pag
ach that
1) tepi®™(t’)
ii) t'=p1'1(t)
iii) For all u6dom(t) if t(u)GS, then>t’(u)=t(
roof : By induction on n.

1se case: llﬂ(t)=0 - Trivial. t’=t.

1ductive step: Assume the hypothesis is true for

{n. We want to show that for any t such that

P(t)=n+1, the existence of a unique t’ such that

4 _1
pi "(t). Since 1P(t)>0’ there exists a u€dos
ich that t(u)8[". Let s€> be the symbol such tha

i(s)=t(u). Furthermore, let t" be the tree such
1) dom(t")=dom(t)

2) for all v€dom(t"), if v=u, then t"(v)=s,

otherwise t"(v)=t(v).

learly, 1r~(t")=n. Hence, by induction, there ex:
’ — " .l ’
1ique tree t G?zvﬁl(xm) such that t"€pi (t’),
'=pi-1(t"), and for all vé€dom(t), if t'(v)Gz, the
'(v)=t’(v). Hence t’(u)=t"(u)=s(u). By the
n+l

2finition of pi .

=t"[u <= pi(s(u))(s/ul,...,s8/uq)], where q=r(s(u)

Page

d hence t€pin+1(t'). By lemma 4.4}3, clearly

nditions 1) and 2) are met. For all v€dom(t"), i

(v)€>, then t"(v)=t’(v), and condition 3) is met.

mma 4.4.8: Given any two tree grammars G1 and G2

ere G1=(§1,S,P1,S) and G2=NT/T(G1), any two trees

, t GT:VE V'-t(xm) where m=max{r(f) | fGEV§ VP},

OI>G2 90 then there exists trees t,,t, €T (X

,nZGN, such that t

3VE,

€pi 1(t3), t,€pi 2(t4), and

1 2

oof: By induction on n.

se case: n=0. Hence, t1=t2,

ists a unique tree t'=pi-1(piq(t)) where lr(t1)=

By lemma 4.4.7, tt

*
t t3=t4=t and n,=n,=q. CLearly t3 —_>G1t4’ and

nce the conditions are met.

ductive step: Assume t, =—> t OI>G t

1 01 G2 2 2°
(x) be the trees such t

Usir

duction, let tq,t4€?le1

*
€pi 1(t3), t2€pi 2(t), and t3 —>G1t4.

finition of an OI derivation, there must exist a

By the

T}_-Vﬁlvl—s (Xm) such that

=sfu <~ F(¥)(s/ul,...,8/uq)] and

=gs[u <~ t’(s/ul,...,8/uq)] where q=r(F), F(X)->t
d for all proper prefixes v of u, s(v)GQZ. Acco

the definition of G2, there are two possibilitie

Page

se 12
n
t = t: == t

1 01”6, 1 01°G,

\\ - -

oi 1 - 1 bi 1
\ -

*3 or’g, t4

" and F(R)=->t’ is of the form pi(f)(?)-)f(?) whe
>. Since ti=s[u =~ f(s/ul,...,s/uq)]epinl(t3) ar
spection of the definition of pin1+1, clearly we

=s[u <~ pi(f)(s/ul,...,s/uq)]epin1+1(t3). Hence

.ni+l1 n —_ %
épi 1 (t3), t,€pi 2(t4) and ty ——>G1t4.
L B3
, —n
t => =
1 0ol G2 1 01 G2 2
pi-l pi—l pi_l
’ e— ——>*
3 or¢, 3 or¢, %4

=pi*(t) where F(®)->t€P. By lemma 4.4.7, there
ists a unique tree(s'=pi-1(s) such that

=3’[u <~ t(s’/ul,...,s8"/uq)] where for all i, 1<i
d s'/ui=pi-1(s/ui). Clearly, by the definition «

rivation, t;=8"[u <~ F(s'/u,,4..,8"/uq)] =>
3 1 G1
[u <~ t(s'/ul,...,s'/uq)]=t3. Hence
*
——>G1 ty ——>Gl t,. By inspection of the definit
pinl, clearly t§=pi_1(t1). But then, by lemma

4.7, t epin(té) for some nIZO, Hence the conditic

1

Page

the lemma are met.

eorem 4.4.1: Given any two tree grammars G1 and G

=NT/T(G1), LOI(G1)=L

ere G1=(QI,E;P1,S) and G (G

2 0oL

oof: By the definition of a tree language, L._(G)

0I
%
e set of all trees tGTE such that S 5T>G t. By
*
mma ?.4.6, we know that 1f S OI>Gl t, then S ——>G

nce LOI(Gl) c L(Gz). By theorem 4.1.1,
G2)=LOI(G2). Hence LOI(GI) c LOI(GZ)' On the ot

nd, if S ——> t, where t€T—

501G then by lemma 4.4.8

2’

2
ere exists trees tst, € ZVQI(Xm) such that
_* -1

pi l(cl), t€pi 2(t2), and t, —-—>G1 ty,. But pi (
dApi-I(t)=t since t€Ty. Thus S=t, and t=t,. Her
I(GZ) C L(G1)° Using theorem 4.1.1, L(Gl) = LOI<
nce LOI(GZ) C LOI(GI)' Therefore LOI(GI) LOI(C
5 n - Normal Forms

A tree grammar is in n - normal form if the ntu

nodes labeled by terminal and nonterminal symbol
curring on the right-hand side of each productior
es not exceed n. Of interest here, is to show th
y tree grammar G1 can effectively be transformed

equivalent context—-free tree grammar G2 (under -

Paj

lerivation) such that G, is in 2-norma form. Ho:
Ln order to dow this, some terminology has to be

>resented.

G ven a ranked al phabet i, and n*"O, |et
yverry 2T €D -5 €% be a function such t

.or any set PET-Ir(Xa),
Jvert (P) » {t | t€P and I>-(t)>n}. In other wor
Ls the set of trees with nore than n nodes | abele

Z.

Exanple 4.5.1: Let 1. « {a,f,g} where r(a)=0, r

and rCg)38 . Then,

overr ’\é{a,g, f , f ., f 1)
N I/ \ /7 \ [/ \

a a ag aa g

| I

a a

- { f , f }.
/ \ / \

In order to use overr to test if a set of
productions is in n-normal form one nust abstrac
ri ght hand sides of the productions. Gven a tre
grammar G=(|,i,P,S), let rhs .: 27 -> 2TivI ~*m b(

function such that given any subset P C P,

Page
s(P’) = {t | F(R)->tepr’}.

ample 4.5.2: Let G1=(Q,S,P,S) such that

D = {S,F} where r(S)=0 and r(F)=1;

> = {a,f} where r(a)=0 and r(f)=1; and

P={S=>F,F=>f,F=>x1}.
| | | |
a X F X
|
a
Then, rhs(P) = { F , £ , x }
| |
a F
|
a
and rhs({S =-> F , F => x}) = { F , x }.
| | |
a X a

Combining the two previously defined function:s
e can formally define what it means to be in n-nc

rm. Given a tree grammar G=(3,>,P,S), G is i

normal form, for some n>»0, if and onlj if
e?EVQ,n(rhS(P))=¢' In other words, the right-ha
des of all productions in P are labeled by at mos
nterminal and terminal symbols.

Exanpie 4.5.3: Let G1 be defined as in example

4.5.2. Then G1 is in 3-normal form but not 2-nc

form since

overSVﬁ,z(rhs(P)) = { f }.

o — g —

Having defined the meaning of a tree gram
in n-normal form, the next step is to show how
grammar in n-normal form can be converted to 2
form. Rather than accomplish this transformat
one step, it is done via a series of transform
such that each transformation reduces the size
production, from n-normal fofm, to (n=-l)-norma
In this transformation, it is important to be
pick out the leftmost subtree, of the root, wh
not a variable. Having located that node, the
will combine the root and the leftmost immedia
descendant node of the root, not labeled with
variable, into a single node. Hence, if the p
production was in n-normal form, the transform
production is in (n-1l)-normal form. To assist
transformation, the following definitions are

Definition 4.5.1: Given a ranked alphabet >, a

CGTS(xm) where 15(t)>2 and some i€N+ such that

Page
i) i€dom(t) and t(i)ex
11) for all j, 1<j<i, t(j)e>

»n 1 is the the leftmost nonvariable descendant C

1) of the root, denoted as 1ls(t).

Example 4.5.4: Let > = {a,f,g} where r(a)=0, r(f

and r(g)=1. Then

1s(£) =1, 1s(£) =2, 1s(g) =1,
!/ \ !/ \ |
g a X g a
| |
a a

and 1s(g) is not defined since lz(g) =1.
| I

X X

ﬁinition.k.S.Z: Given a tree grammar G=(J,>,P,S),

yduction F(R®)=>t€P such that lsvrﬁ(t)>2, then the

luced nonterminal of t, denoted as NT(t), is a ne

>habet symbol T such that

1) TEIVD

i1) r(T) = r(t(&€))+r(t(1ls(t)))-1

other words, NT(t) is a new nonterminal which wi
used to replace the root and node 1s(t) of the
oduction’s right-hand side with a single node 1lab

th T.

Pa

definition 4.5.3: Given a context—-free tree gramm

3=(0,>,P,S), a production F(®)->t€P such that

LSVQ(t)>2’ the simplified right hand side of F(X)

lenoted as SrhS(G,F(x)->t), is the tree
T(t)(t/l,eea,t/i=1,t/i°l, 0o, t/i*j,t/i+l,cc.,t/q
vhere i=1s(t), j=r(t(ls(t))), and q=r(NT(t)). Th

ionterminal expansion of F(X)->t, denoted

sNT(G,F(i)—>t), is the tree whose graph is the se
vairs {(&,t(€)),(1s(t),t(ls(t)))} V

((1,%x,) | 1<i<1s(t)} V

[(1s(t)°j,xls(t)+j_1) | 1<3<r(t(1s(t)))} V

(13X g (e)+r(e(ls(t))) | 1< (e(€))}

Example 4.5.5: Let G1 be defined as in example
4.5.2,

Clearly F =>
I

f is a production such that

|
X F

|

a

LEVﬁ(f) > 2. Let NT(£) = T where r(T)=1.

D - -
o — g —

Then, Sr s(G

"Page 127

m — i — rh
X — o — bh

aving defined the above, the method to transform
grémmar to 2-normal form can be introduced. One
note that the transformation is an iterative

s where on each iteration, the transformation

tes a tree grammar which is closer to 2-normal

and the iteration process terminates after a

number of iterations.

iven a tree grammar Gl=(Q1,E,Pl,Sl) in n-normal

for some n>2, and any production F(?)-)tGP1 such
€over§vﬁl’n_l(rhs(Pl)), let G2=(Q2,2,P2,Sz) be

reduced grammar of G, using F(RX)->t, denoted

1
dn(Gl,F(f)->t), such that:

)]52=§§1V{sz,'r} such that sz,wﬁlvi, S,#T
r(Sz)ﬂr(Sl)=0 and T=NT(t).

) Py = (B -{F(@)->t}) V {5,->S,

F(R)=>S_, (G, F(X)->t), T(X)->E (G ,F(¥)->t)

Example 4.5.6: Let G, be defined as in

1
example 4.5.2. Then;

G2 = reduced3(G1 N f -> f) is the
b4 F
|
a

tree grammar such that

QZ = {SZ,S,F,T} where r(Sz)=r(S)=0 and 1
> = {a,f} where r(a)=0 and r(f)=1; and
Pz = {S2 ->S ,S$S~->F , F~->T1T

| ! |
X X a

To show that this transformation conve
grammar to an equivalent tree grammar, the

four lemmas are presented:

Lemma 4.5.1: Given a tree grammar Gl=(Q1,z,

n-normal form, for any n>2, a production F(

h that té€ =\, =
suc a oveP2Vngn-1

G2=reducedn(G1,F(?)—>t), then

(rhs(Pl)), and

F(X) (GI,F(sc‘)->t) = t.

=> S
oI G2 rhs oI G2

Pag
The proof of the above lemma is left as an

xercise for the reader.

emma 4.5.2: Given a tree grammar G1=(Q1,§,P1,S)

1
-normal form, for any k>2, a production F(X)=>t€F

uch that téover—

2V§1,k-l(rhs(Pl))’ and
—n
2=reducedk(Gl,F(?)—>t), if S, 6T>Gl ty> then
*
2 9176, ‘1°

roof: By Induction on n.

—0
ase case: 51.6T>G1 tl. By the definition of G2,
learly 82 ==>G, S1 = tl'
—n —_
nductive step: Assume S1 5T>G1 t1 5T>G1 t, where

1=s[u & G(sl,...,sq)], t2=s[u <{~- t'(sl,...,sq)]

hat G(!t)»-)t’GP1 and r(G)=q. By induction, clear]

* -y ’
9 3f>G2 t,. If G(X)=>t #F(RX)~->t, then by the
efinition of GZ’ G(R)->t GPZ' But then tl €?>G2
n the other hand if G(R)=->t =F(R)->t, then by len
2

05.1’ t].:S[u <- G(Sl,...,sq)] :0_:'I‘>G2

__*
2 017G, ©

[u <~ t(sl,...,sq)]=t2. Hence S)

2‘

emma 4.5.3: Given a tree grammar G1=(§1,E,P1,Sl)
~normal form, for some k>2, a production F(R)=-Dt¢
uch that t€oveq§vﬁl’k
:2=reducedk(G1,F(?)—>t), and any two trees

_,(rhs(®)),

—_n —_*
(XA), if t 6’1—>G tys then t '6"I'>G t

L, st €T
172 2 1

SVE1 2

Pag

roof: By induction on n.

13se case: n=0 - Trivial.
. —_n —_
1ductive step: Assume t1 5T>G2 t3 6T>G2 t, such
3 5T>G2 ty using G(®)->t’. Inspecting the defini
¥ GZ’ there are two cases depending on whether or
(?)-)t'GPl.
1se 1: G(R)=->t €P1. Hence t3=s[u <= G(sl,...,sq
f)Gl sfu <~ t (Sl""’sq)]=t2' Since tzeTzvﬁl(xn
1d GGQI, clearly t3€T5V§1(Xm). Hence, by induct]
*
 917¢, t2°

1 : “
1se 2: G(?)->t’GP1. By the definition of G,, th

re three possibilities:

]

i) G(X)->t Sz—>S1

ii) G(X)->t’

F(?)-)Srhs(GI,F(f)->t)

iii) G(R)=->t’

T(?)-)ENT(Gl,F(?)->t) where

T=NT(t).

rwever, since t2€T (Xm), clearly only conditic

SVE,
ii) can apply. Furthermore, since TﬁQl, clearly

36']3:2VQ1(Xm), and hence it must be the case that

n=-1 —
==> t, == t, =/ t,.
] O1 G2 4 01 G2 3 oI G2 2

ight hand sides of the producfions in P

By inspection of

99 for

ccurrences of T, it must be the case that t4 5T>G

sing F(?)-)Srhs(Gl,F(f)~>t). But then

Pa

t, = sfu <- F(sit...,eq>] ﬁ>G2 |

s[u<- T{(t/l,eea,tfi=1,t/di1, 0o, tfied,t/itl,

..;,t/Iq')(sl,--.,sq)]=t3, ta 0=~I->G2

s[u<- t(B)(t/l,eee,t/i=1,t(t/1*1, 0u,t/i"4),c/14

...,th’)(s1 8q)] - s[u <- t(8|9..9fsq)} = t

where u€dom(t,), i*lIs(t), j=r(ls(t)), and q =*t(t(

Since t£€T-r-» (X), clearly t.ST*, - (X) and hen
1 * |

by induction® t, AI>GI ta Also, using F(If)->t€F
ta«s[u <- F(S1, . ..,Sq)] ""5'Y>Gl s[u <= t(Si1s...,8,

Hence t_X o1’ A A

Lemma 4.5.4: G ven a tree granmar GfC]I >i'.',P1 >S.lJ

1
n-normal form for any n>2, a production FIt)=>t¢

such that te6overr- s i(rhs(Py))s and
. 1
Gs"reduced .(G., F(It)->t) , then La= (G) - L.-(G).
Proof; By the definition of a tree | anguage,
*
N L Y - LY — - _- °
LHCS) \t 1 S.l Oi['>G,_1 t and t€|’£.} By | emma 4t
* *
if S T, t where t€T-, then S, K'>. t. Hence
1
Lnt(G'1) NLypr(GM). On the other hand, for any t”

*
such that S W['U"\Q t, One wants to show that
. Ve w,

*
Si ’\F>n1 t- Clearly, since So->S; is the only

production in G(é with S* on its left hand side,
it .
82 szz S1 =<7 Gz"t' By lemma 4.5.3, since
%*

— . —
S| ,\-I—>G2 ti§| AlA*Olt# But thetl Lo AG2n . §0|/\C

Hence LOI(G" - Lo (G2).

Page

The following lemma shows that each transformat
uces the number of productions which are in n-nort

m but not (n=1)-normal form.

ma 4.5.5: Given a tree grammar G1=(§1,E,P1,Sl) ir
ormal form, for any n>2, such that there exists ¢

duction F(?)-)tGP1 such that

verEVQI n_l(rhs(Pl)), and G,=reduced (G ,F(X)->t

n |over— (rhs(Pl))I =

2VE, ,n-1

erEVQZ,n-I(rhS(PZ))I + 1.

of: By inspecting the definitions,

rSVQZ,n—l(rhS(PZ)) =
rSVﬁz’n_l(rhSCP -{F(T:‘)—.>t)})) \Y
rEVﬁz,n—l({SZ’ rhs G F(R)=>8), B (G, F(R)=>e)})

ce for all t€rhs(P), CGTSVQl(XA)’ and
§2=SVEIV{SZ,T}, clearly
(rhs(Pl—{F(?)—>t}))

rEVQl n_l(rhs(Pl))-{t}.‘ Since G, is in n-normal

m, for any tree t‘’€overc (rhs(Pl)),

SVE,,n-
/ﬁl(t')=n. Hence, for the production F(®)->t,
/ml(t)=n. By inspection of F(?)-)Srhs(GI,F(?)->t

/Ez(srhs(cl,F(?)->t))=n-1, since the labeled node
e been reduced by one. Similarly,
/QZ(T(X)_>ENT(G1’F(x)->t))=2’ and IZVQZ(S)y=1l. 1

n over:vmz’n_l({sz,srhs(cl,F(f)-)t),

:GI,F(?)->t)})=¢. Hence over

Page

SVE,,n-1(hs(Fy)) =

:EVQZ,n-l(rhS(Pl))-{t}’ or

’rivml,n—l(ﬁ“swl))|=|°Ver§'V§2,n—1(rhs(P2))| + 1

Using the above lemmas, one can show that there

inite sequence of transformations such that a tre

amar,

1o

>rem 4.5.1: Given a tree grammar GO=(QO,E,P0,S

in n-normal form, can be reduced to 2-norma

This is shown by the following theorem:

)

0

>rmal form, for any n>2, there exists a finite

1ence of tree grammars G

O’Gl"'°’Gq such that Gq

(n=1)-normal form where:

i)

ii)

tii)

iv)

G, = (3,,%,pP;,8,) for all i, 0<i<q;

G, = reducedn(Gi

1) where pi_leP is

-1°Pi-1 i-1
production of the form F(X)-=>t such that

t8overc

2V§i_1,n-1(rhs(Pi-l)) for all i, 1<i:

L..(G,)

01(6y) = Lpy(C

1_1) for all i, 1<{i<q; and

q = |over5vﬁo’n_l(rhs(PO))|.

Pag

roof: By induction on q.

1se step: q = 0. By the definition of n-normal

yrms, G0 is in (n-1l)-normal form since

'erSVEO,n"'l

1ductive step: Assume q = k+l for some k>0. By

(rhs(Po))=¢.

5.4, there exists a tree grammar

= reducedn(Go,F(f)->t), where F(X)->t€P, and

] 0

;overEOVQO,n-I(rhS(PO))’ such that L__(G L

01¢G0? = Lo

7 lemma 4.5.5, |overzlvgl,n_1(rhs(Pl))| = q-1.
2nce, if q is finite, then by induction, there ex
finite sequence of tree grammars Gl""’cq such
ynditions i) through iv) of the theorem are met.
1en the sequence of tree grammars, for the k+1l ca
3 simply GO’GI"°"Gq' By inspection of the
:finition of over, ovegzvmo’n_l(rhs(PO)) C Py. E
1e definition of a tree grammar P, is finite. He

0

ist be finite and hence G,,G,,¢..,G exists meeti
0’71 q

1e conditions of the theoren.

»rollary: Given a context-free tree grammar

)=(§0,S,PO,SO) in n-normal form, for any n>2, the
tists a finite sequence of context-free tree gram
)"°"Gq' such that Gq' in in 2-normal form and £

11 4, 1<i<q", Ly (6.) = Ly (G, ().

Pa
t«6 Derivation-renaming Grammars

The objects of study, in this section, are t
jrammars containing productions for which the rig
1and side of some production is a tree where the
s labeled with a nonterminal symbol, and all oth
10des in the tree are labeled with variables. Mo
‘ormally, given a tree grammar G=(Q,E,P,S), let t
)f trees with just the root labeled by a nontermi
lenoted SN(J), be the set {t | tSTQ(Xm) and 1§(t)

lence, a production F(X)~->t€P is derivation renam

ind only if t€SN(@). Similarly, a tree grammar G

lerivation renaming grammar if and only if there

3 production p such that p is derivation renaming
lote that a production F(RX)->t is called derivati
renaming, since if F(®)->t is used in a derivatio
step, the net effect is to rename the nonterminal
labelling a given node, of the derived tree, with
another nonterminal symbol (and possibly trim.off

and/or duplicate some of it’s subtrees).

Example 4.6.1: Let Gl=(§,§,P,S) such that

®? = {s,G,F} where r(S)=0 and r(G)=r(F)=1;

3 = {a,f} where r(a)=0 and r(f)=1; and

F -> f}o
I I
X a

P={S->G, G=>F
I I
X X

Then, G1 is derivation renaming since

G -> F is derivation renaming.
| | ’

X X

The intent of this section is to show t
derivation renaming tree grammar Gl can be t

to a tree grammar G2 such that G2 is derivat
renaming free and LOI(G1)=LOI(G2). One shou
that the notion of eliminating derivation re
product}ons parallels the notion of eliminat
"chain-rules" in string grammars (see Harris
Bar-Hillel, Perles, and Shamir[61]) where an

set of nonterminals is created such that eac

nonterminal in the set can be reached by a c

Like chain rules in string grammars, th
transformation uses an inductive set of nont
where each nonterminal in the set can be rea
chain-rule. Given a tree grammar G=(§,>,P,S

nonterminals F€Q, let IF = {tn | F(X) 6T> t1

%%) e %%) tn for all n>1, and for all i,

tieSN(ﬁ)}.

Page

To find each IF effectively, let IF be inducti

ined as follows:

i) Let IF L= {t | t8SN(J) and F(X)-D>t€P}

ii) For any n>l, let I = IF n V {t | te€s
bl

F,n+l
and there exists a tree t'GIF n such that
b

4

t’ 33> t using some production G(R)->s€P w

s€SN(P)}

1ce P and § are finite, it is clear that for ever

l, and every F&0, I, , can be constructed. By th
]

luctive definition of IF n’ clearly

C1I C ««o C SN(J). Hence, for each F€J, th
1 = "F,2 = =

lsts a least kF such that
1) kg < 1SN(D) |

ii) For all n > ke, T I

F,n _ ~F,n+l°

1ice, for any j>1, I One would 1lik

=1 .
Fokp+] Fokg

ow that in fact I = I_, which is shown by the
F,kF F

llowing three lemmas.

mma 4.6.1: Given any tree grammar G=(J,>,P,S), an

1, any F&3, IF,n C Ip.

Pa

>roof: By induction on n.

>ase case: Let t€Il By the definition of If

F,1° s
-here exists a production F(X)->t€P where t€SN(J)

-hen F(X) %?) t and hence, 1 cI

F.
By the definition

F,1
Lnductive step: Let té€l

F,n+1°

[either t€IF a °F te(I I). If t€l
b}

F,n+1° F,n+l ~F,n

>y induction, tGIF. If tS(IF’ _IF,n)’ then by

n+1

lefinition, there exists a t_€I and t_ => t u
n F,n n OI

3(X)=>s€P where s,t€SN(P). By induction we know

[F,n c IF’ and hence F(X) €?> t 5%> ty 5T> e

such that for all i, 1<i<m, tiGIF. But then, by

lefinition, tGIF. Hence, IF,n+1 CcI

0

F-

Lemma 4.6.2: Given any tree grammar G=(3,>,P,S),

€@, I_ C I .

F F,kp

Proof: Assume tneIF such that t €1 By the

n F,kF'

lefinition of I F(X) §?> t §?> cee §?> t wher

F,
sach 1, 1<i<n, ¢t

1

€SN(D). Since t, is obtained in

i 1

leyivation step, it must be the case that F(X)->t

and hence tISIF’l.

tjGIF,j and tj must be of the fqrm G(xi,...,x&) w

More generally, for any j, 1<

() IF 55 BT Fi+

rhe definition of a derivation, there must exist

3€0, q=r(G), and xi,...,x(’lex

broduction G(X)=>s€P such that t =s(xi,...,x&).

j+1
Assume sESN(P). Clearly 1SV§(s(x1,...,xq))#l wh

Pag

contradiction since tj+ €SN(@). Hence s€SN(D).

1

hen by definition, Also, since kF]

Ei+18%F n+1e

east value such that for all nZkF, I =T

F,n "F,n+l’

learly I ¢ IF,kF'

emma 4.6.3: Given any tree grammar’G=(§,§,P,S), :

eq, IF,kF=IF.

roof: This follows directly from lemmas 4.6.1 anc

0602.

The next step 1s to use IF to convert a tree
rammar G1 to an equivalent tree grammar G2 (unde:
I derivation) which removes productions of the f«

(®)->t where t€SN(J).

Given a tree grammar Gl=(Q,E,P1,S), let

12=(§,$,P2,S), called the derivation renaming fre

rammar of G. and denoted drf(Gl), such that

1

5 = (PI—{F(??)—N;GP1 | t€SN(P)} V {F(R)->t | t’e€I

here t’%%)t using G(?)—)sGP1 and s#SN(D)}

here for each F€@, I

F is defined using the tree

rammar Gl'

Example 4.6.2: Let G1=(Q,E,P1,S) such that

® = {s,F,G,H} where r(s)=0, r(F)=1, and r(G)=r

> = {a,f} where r(a)=0 and r(f)=1; and

H ->F, H ->1f }.
/ \ | /\ |
X Yy X X X
Then, I -0 1 -{ G , H , F}
S F / \ / o\ |
X XX XX
l.={H ,F, G , H } and
G !\ | / o\ / \
y X y 'y yy Yy
l_-{F, G , H }
H | I\ A
XX XX X

Furthernmore, G'drfCGy) is the tree grammar
G=(1,!,P,, 9 vvhere

P2 - { S->F, H->f, F->f, G ->f

I/ \ N

a x y X X X X y y

The next theorem and two | emms show that

two tree grammars GL1 and G;. such that G~2=drf(G

Lol (e1> - Lol (C2>-

Lemma 4.6.4; Gven a tree grammar GI»(J,T,PHS

=drf(G,), tIGTEVE(xA)’ and t,€Tp .if ti_ g7

>*
prird .
oI G2 2

'roof: By

ase case

nductive

Pag

induction on n.
: n=o. Trivial.

P— —_—
step: tl -é-i-)G t3 6:—[->G tz where

1=s[u (=
(R)=->ter
(X)=->tep

ase 1:

ii)

iii)

y the de
ut then

y induct

1 1
F(Sl""’sq)]’ t2=s[u {=- t(sl,...,sq)],

1 and r(F)=q. Depending on whether or nc
9 there are two cases:

F(R)->t€pP Hence t, =—= t3. By induc

2 1 0I G2

*
t2 and hence t1 5T>G2 tz.

F(?)-)tﬁPé. Hence, by the definition of

Since tZGTE’ it must be the case that

t3 3?>c1 ty 5?>G1 oo 5?>Gl €542 %?>cl t

where
j+m+1 = n where j>O0,

for all i, 1<i<j, tiso %%)Gl ti+3 using s

production of the form G(?)—>t'€P1 such t

t’€sSN(D),

€j+2 §?>c1 ty+3

H(X)->t"€P where t"gsN(]).

using some production

finition of I, €I. Hence, F(X)->t"

t5+2

t 6T>G2 tj+3' Since m=n-(j+1), clearly
* *
ion tj+3 6T>G tz. Hence t, 6T>G tz.

2 2

Lemma 4.6.5: Given a tree grammar G _=(0,>,

1
G.=drf (G, if sA--—>n hen § =>.
2=drE(Cy), o17c,’ t"em S 5r0¢ *

Proof: By induction on n.
base step: n=0. Trivial.

—_— —_—
inductive step: S 6T>G2 t1 6T>G2 t, where

t,=s[u <~ F(sl,...,sq)], t2=s[u <- t(s

1,.'
By induction, S

1

r(F)=q, and F(R)-Dt€P z

2.
Depending of whether or not F(?)-)tGPl, th
cases:
case 1: F(x)—)tGPl. Clearly t %%>G1t2 a

case 2: F(?)—>t€P1. By the definition of

must exist a t GIF such that t '6T>G t us

1
1° BY the definition of IF’

case that F(RX) %?)Gl t1 %?)Gl t2 €?>Gl oo

%
But then t1=s[u <- F(Sl’.o"sq)] 6_1‘>G1

sfu <~ ¢t (sl,...,sq)] €?>G1 s[u <~ t(s

G(R)->s€P it m

1,00

*
Hence S 6T>G1 t2.

Theorem 4.6.1: Given a tree grammar G1=(Q;

G2=drf(G1), then LOI(G1)=LOI(G2).

Proof: This follows directly from the defi

tree language, and lemmas 4.6.4 and 4.6.5.

Finally, to verify that the conversion of Gi
;2, using G2=drf(G1), produces a tree grammar whi

1ot derivation renaming is the following lemma:

.emma 4.6.6: Given a tree grammar Gla(Q,S,Pi,S) a

=drf(G1), then G, is not a derivation renaming

P

yrammar.

2

’roof: Assume G2 is a derivation renaming grammar
lence, there exists a production F('f)—)tGP2 such

:8SN(®). By the definition of P F(X)->t€P, onl

2° 1
:G(Pl-{n(x)->c’¢1’1 | t’€SN(J)}) which is impossib

lence F(i‘)->t6P1 and it must be the case that the

:xists a t'GIF such that t’ %?) t using some prod

3(R)->s€P, and s,t#SN(J). But t€SN(JP) which is a

1
rontradiction. Hence G2 is not a derivation rena

jrammar.

te7 Erasing Grammars

This section investigates the types of "eras
-hat can exist in tree grammars. One form of era
yccurs when a production is an epsilon rule (i.e.
1onterminal or terminal symbols occur on the righ
side of the production). A second, more subtle,
»f erasing occurs in "nonconservative" tree gramm

A\ tree grammar is considered nonconservative if t

exists a production p€P where a variable "x" o
the left hand side of the production p but not
right hand side. Furthermore, one would like
transformation which would remove thesé forms
erasing. Unfortunately, the author has not di
any transformations which will remove either £
"erasing" from tree grammars, and this problem
open.

Definition 4.7.1: Given a tree grammar G=(3,>,

production F(X)=>t€P is an epsilon rule if 15V

In other words, the right hand side must be a

tree labeled by some variable XGXA. The tree

is epsilon free if and only if there does not

production p€P such that p is an epsilon rule.

Example 4.7.1: Let G1=(Q,E,P,S) be a tree g

such that

® = {S,F} where r(S)=0 and r(F)=1;

> = {a,f} where r(a)=0 and f(f)=1; and

P={S~->F , F
I I
a X

"> Y F "> X}.

f
| |
F X
|
X

G1 is not epsilon free since

Page

.s an epsilon rule. Furthermore, when

S =>F => a

» —

he node labeled with the nonterminal F is "erase

nition 4.7.2: Given a tree grammar G=(8,>,P,S),

luction F(R)=-Dt€P is considered conservative if a:

r 1f for all xe{xl,...,xr(F)}, there exists a tre
‘ess u€dom(t) such that t(u)=x. In other words,
_.ables which occur on the left hand side of a
luction also occur on the right hand side.

.larly, the tree grammar G is Conservative if and

r 1f for every production p€P, p is conservative.

ixample 4.7.2: Let G2=(Q,E,P,S) such that

j = {S,F} where r(S)=0 and r(F)=3;

. = {a,b,f} where r(a0=r(b) and r(f)=2; and

»={S=->F , F => f , F =>191}.
/1N N /N N

,aaaxyz X Z XYy 2

}2 is nonconservative since the rules
F =-> f and F ->vy
/1N /\ /1\

Xy z X z Xy z

ire not conservative. The rule

.8 also an epsilon rule and hence G1 is neither

epsilon free nor conservative.

4.8 Reduced Tree Grammars

This section investigates tree grammars wh
unnecessary productions in them. Tree grammars
contalin productions that can not be applied to
sentential form, or tree grammars which contain
productions that will not derive terminal trees
tree grammars which contain both types of produ
"are the objects of study in this section. When
tree grammar does not contain productions in ei
these forms, the grammar is said to be reduced.
a tree grammar G is considered reduced if and o
for every production p€P, there exists a deriva
such that S ==>* > t, where t, ==> t_, usin

o1’ ©1 o1’ %2 1 o’ ©2
%
production p, and t2-5T> t where tGLOI(G). In
words, the production p is used in some derivat
tree in the tree lénguage generated by the tree

G.

A natural question to ask is if one can ta

tree grammar G, which is not reduced, eliminate

1
productions not used in any derivation, and pro
tree grammar G2 where the tree language generat

is identical to the tree language generated by

Pag

1fortunately, the author has not discovered any

‘fective method which will eliminate the unnecess
‘oductions. The reason of failure is due to the
‘oblem introduced by "erasing" of nonconservative
:amm#fs. Hence, the probiem of transforming tree

ammars into reduced tree grammars will be left o

However, as shown below, this section does pr
1 effective transformation to produce a weakly re
‘ee grammar. A tree grammar G=(J,X,P,S) is consi

2akly reduced if and only if for every production

*
1ere exists a derivation such that S 6?) tl and
l 6?) t2 using the production p. In other words,
7rery production p, there exists some sentential f

1ich that the production p can be applied to it in

[derivation.

One should note that the methods used here ar
1alogous to those used by Harrison[78] to produce
aduced string grammars. From a given string gram
arrison inductively builds a set W which contains
2t of nonterminals which are derivable from the s
ymbol and will derive terminal strings. Then, us
, the productions eliminated are‘those which cont

onterminal that is not in W.

'As mentioned above, one problem with tree
which does not occur in the string case is ghat
must concern oneself about potential "erasing"
introducéd by nonconservative tree grammars. F
instance, in a nonconservative tree grammar, on

*
have a derivation of the form S 6T> tl 5T> t2

i) t, = s[u<-F(sl,...,sm)] where r(F)=n,
F(fj-)tGP, and for some i, 1<i<m,

si=si[u<—G(sl,...,sq)] where r(G)=q.

ii) t, = s[u(t(sl,...,sm)] where for all w
t(w)a‘xi

Hence, by rewriting with the production F(X)->t
nonterminal G (in the subtree Si) is erased. T
classify when the nonconservative form of erasi

occurs, let D for all FE€Q, be the set

F’

DF = {i | F(®)->teP,for all v€dom(t) t(v)#xi}.

To reduce a tree grammar G, a set R of
nonterminals is built which contains every nont
which can be rewritten in some sentential form.

. - . * -
R = {Fe€® | S ﬁ) tl and tl O—I-> tz
production F(X)->t€P}. To compute R effectivel

using some

inductively defined as follows:

Pag
i) let R - {S | S>t€P}

ii) for any nM, let R" * R™' VvV {He&d | FeR™
F(1t)->t€P, u€dom(t), t(u)»H H(®)=>t’&P,
VENT, vi is a prefix of u, and if t(v)=G¢

t hen iQDG}

ince both $ and P are finite, for every n"O R c
onstructed. By definition, clearly ROJE:F% £ oo
ence, there exists a least k<J{ | such that for al
Me, R . Ff+1. Furthermore the followi ng four |e

k

how that the inducfively created set R is identi

0 the set R

enma 4.8*1; Given any tree grammar G"Cf,i.,P,S), a

>0, R" C R.
roof: By induction on n,

asSe, CASECS.L.

1. RP**O. Clearly, since there does ndt exi s

production of the form S->t€P, there does
exist a start production. Hence, no

sentential fornms can be derived and R°=R<

2. {S}=R0. By the definition of RO, S=>

then S%?) t using S->t. Hence S€R.

inductive step: Let H€Rn+1. By definition, e

n+l_

HER™ or HE(R R"). If HER™, then by induct:

n+1_Rn)’ then by def

On the other hand, if HE€(R

there exists an FSRn, F(RX)=->teP, t(u)=H, H(X)-

and for all prefixes vi of u, if t(u)=G€JP, the
. *

By induction, S 5T> t1 6T> ty where

t1=s[v<-F(sl,...,sm)], t =s[v<-t(sl,...,sm)],

2
and t(u)=H. Clearly, for all ancestors of t(t
t(u) is labeled with a nonterminal, there exic
production G(X)->s’€6P where for some w€dom(s’)

s’(w)=x, where ui is a prefix of v. But then

i
exists some derivation such that s[u<-t(sl,...
s[u(-t"(sl,...,sm)] where for some w€dom(t"),

and for all proper prefixes y of w, t"(y)e€X.

one can perform a rewrite on H and hence H€R.

Lemma 4.8.2: Given any tree grammar G=(J,>,P,¢

S %%)n s[u(—F(sl,...,sﬁ)] %%) s[u<--t(sl,...;s11

Fer".

L ag
roof: By induction on n.
ase case: n=0 - trivial.

—n —
nductive step: S TP s[u<-F(s ,...,8)] 57

[u<-t(sl,f..,sm)] where r(F)=m and n>l. By the
efinition of an IO derivation, the derivation mus

—n - —n R
f the form S 6T> 1 t 6T> t, => 2 t, => t4 wher

1 2 0I 3 01
1=s[v<—H(si,...,s;)], r(H)=q, t2=s[v<-t'(si,...,s
(X)=->t’€P, t’(w)=F, t3=s[v<-t"(si,...,s:l)],
’ g-—-f>“2 t", t"(z)=F, for all i, 1<i<m,
iat"(si’...,s(’l)/Zi’
4=s[v<—t"(si,...,sé)[z<-t(t""/zl(si,...,sé), e,
"(si,...,s;))]], and n1+n2=n-l. By induction, HE€

or all proper prefixes yi of w in dom(t’), if
’(y)=G8Q, clearly there must have existed a prodt
(X)->s’€P such that for some d€dom(s’) s'(d)=xi.

he iﬁDG. Hence, by definition, HER™.

emma 4.8.3: Given any tree grammar G=(9,>,P,S), I

roof: Assume F€R such that FQRk. By definition «

—_— J—
here exists a derivation such that S 6T> t1 5f>

here t1=s[u<-F(sl,...,sm)] and t2=s[u<-t(sl,...ﬁ

y lemma 4.8.2, FeRr". Clearly rR" c Rk since for :

2k, R" = Rn+1. Hence R C Rk.

Lemma 4.8.4: Given any tree grammar G=(0,>,P

Proof: This follows directly form lemmas 4.8

4.8.3.

Example 4.8.1: Let G1=(§,§,P,S) such that

9 = {S,F,G,H} where r(S)=0, r(F)=r(G)=1,
S = {a,f} where r(a)=0 and r(f)=1;
P = , G=>F, H ->a}.

{S=>F, F=>f
| I | 1 I/ \
G X X X X XY
I
a

Then, Ro={S}, Rl={S,F,G}, and R={S,F,G}.

Using R, the transformation of a nonred
grammar G1 to a weakly reduced tree grammar
defined. Given a tree grammar Gl=(§,S,P1,S)

G2=(§,§,P2,8) be the weakly reduced tree gra

(denoted wr(Gl)) such that P2=(P1-{F(i)—>t€P

where R is defined on Gl'

Example 4.8.2: Let G1 be defined as in ex

and G2=wr(Gl). Then

Page

The following theorem and lemma show that for a

> grammar G L (Gl) = LOI(wr(Gl)).

1’ 701

2a 4.8.5: Given any two tree grammars G1 and G2

re G1=(Q,§,P1,S) and G2=wr(G1)=(Q,§,P2,S), if

*

*
f>G1 t then S 6T>G2 te.

»f: By induction on n.
2 case: n=0. Trivial.

—n —_—
ictive step: S 6T>G1 t 6T>G1 tye By induction,

-\ —_—
f>G2 Ly Furthermore, if t1 5T>G1 t,
)->t€P1, then by the definition of R, FE€R. But

1, by the definition of P

using

9 F(?)->t6P2. Hence

brem 4.8.1: Given any two tree grammars

(§:59P1)S)a and G =wr(G1)=(§,S,P2,S),

2
(G;) = L,;(Gy).

-

Proof: By the definition of a tree language,

LOI(G) = {tSTS | S §?>* t}. By lemma 4.8.5, :
S 6?)21 t, then S %?>22 t. Hence LOI<G1) f L(
On the other hand, since P2 c Pl’ if s €?>G2 1
S §T>Z t and hence LOI(GZ) = LOI(GI)' There!

1
Lop(6;) = Lgy(6y).

For convenience, the remainder of this tl
assume that all tree grammars are weakly reduc

if it is not explicitly stated.

4.9 Weak Chomsky Normal Form

In a tree grammar, there is no "a priori'
the size of a right-hand side of a produétion.
can be simplified if these right hand sides ai
such that the number of terminal and nontermir
symbols occurring in the tree, are bounded by
two. This section presents one form of this |
tree grammar, as well as the method to transf

tree grammar into this form.

Pa

A tree grammar G=(3,>,P,S) is in weak Chomsk

normal form if and only if for each production pé¢€

is in one of the following three forms:

i) F(RX)->t where for all u€(dom(t)-var(t)),

t(u)6®, and lﬁ(t)=2;

ii) F(?)—)f(xi,...,x;) where f€>, q=r(f), ar
all i, 1<£i<q, xiexr(F);

iii) F(R®)=->x’ where x GXr(F)

(Note: The notion of weak Chomsky normal form
originates from the definition of Chomsky normal

for context-free string grammars, see Chomsky[59]

In other words, the tree grammar G has the folloy

properties:
i) NT/T segmented,
ii) 2 - normal form, and
iii) derivation-renaming free.

Also, note that "erasing" in either form (via ep:

rules or nonconservative productions) still exis!

Example 4.9.1: Let Gl=(§l,E,P1,Sl) and

G2=(Q2,E,P2,Sz) be tree grammars such that

3, = {5,,8,,F,4,f} where r(s;)=0, r(s,)=0,
r(a)=0, and r(f)=2;

> = {a,f} where r(a)=0 and r(f)=2;

Py = { sz->s1 R Sl—>F , F=>F ,
| [|
a x ¢t
/ \
X X
F->x , T -> £, a->a};
| /N 7\
X X y X y
Qz = {SZ,F} where r(Sz)=0 and r(F)=1; and
P, = { §,=>F , F->F , F->x}.
| | | |
a x f X
!/ \

X X

Then, G1 is in weak Chomsky normal form whi

not.

To show that one can convert'any tree gra

2 such that G2 is in weak

normal form, we will use the above properties.

into a tree grammar G

However, first one must show that these proper
sufficient in showing that a tree grammar is 1

Chomsky normal form.

Page

mma 4.9.1: Given a tree grammar G=(Q,S,P,S) such

is
i) NT/T segmented,
ii) 2 - normal form, and
iii) derivation-renaming free,
en G is in ﬁeak Chomsky normal form.

oof: Assume G is not in weak Chomsky normal form.

en there exists a production F(X)->t€P such that

ither
1). for all v€(dom(t)-var(t)) t(u)€d and lﬁ(t)

2) t=f(xi,.;.,k&) where q=r(f) and for all i,

1<icas %0K, (g,

3) F(?)=->x’ where x'GXr(F)

nce G is NT/T segmented either
a) for all u€(dom(t)=-var(t)) t(u)ed
b) t(€)6X and (dom(t)-var(t))={€}.

nce, the only way that F(X)-> t can not be in we:
omsky normal form is if for all u€(dom(t)-var(t)

.u)GQ, lﬁ(t)>0, and lm(t)#z. Since G is in 2-nort

form, clearly 1-(t)<2. Hence, it must be the

Q
lﬁ(t)=1. Since G is derivation-renaming free,

= {t | tGTQ(XA) and 1Q(t)=1}’ which is a contr

Hence, G is in weak Chomsky normal form.

The method to transform any tree grammar

weak Chomsky normal form is as follows:

i) Let G2 be the NT/T segmented grammar

ii) Let G3,...,Gq be tree grammars such t

in 2-normal form and for each G 3<i

i’
Gi=(Qi,2,Pi,Si) where Gi=reducedn(Gi_

for some n>2, €P and P is

Pi—1®%Fi-12 1

form F(®)->t such that

teoverEVQi_l,n-l(rhs(Pi-l))'

iii) G =drf(Gq) where G is in weak Ch

q+1 q+l

normal form.

To show that these transformations are co

the following three lemmas and theorem are pre

Lemma 4.9.2: Given any tree grammar G1=(§1,§,P

where G1 is NT/T segmented and in n~normal for

production F(i’c‘)—)tGP1 such that

t6over— 1(rhs(Pl)), and G2=reducedn(gl,F

2V§1,n-

Pa;
: hen G2 is also NT/T segmented.

»roof; Assunme G, is not NT/T segmented. Then, th"

exi sts é‘production G 1?)->s€Py such that neither
i) For all u€(dom(s)-var(s)),s(u)§_|z.
ii) s(e)€i and (dora(s)-var(s))={&}.

Jy the definition of Gy, Py»(P:-{F(If)->t)}) V {S
2(*)->S g (G, F(1F)->t), T(it)->Ew (G, F(jf)->t)} wh
ONT(t). Since G is NI/T segmented, clearly
;(IT)->s«5P;, . Clearly, by the definition of NT/T
segmented, S,->S;. is NI/T segmented. Simlarly,
?(")->t€P. and G, is NT/T segnented, both
?2(#)->S 4o (G, F(1f)->t) and T(#)->Eq (G, F(ie)->t)
sTI/T segmented. But then Ql?)->s nust be NT/T
segnmented which is a cqntradiction. Therefore G

tf T/ Tsegment ed.

Lemma 4.9.3: Gven any two tree grammars C-:-1 and C

shere G "(ij] Tj P’;’ S) is NT/T segmented and

3,#drf (Gy) **(i ,1,P,,S), then G is NI/T segmented.

Proof: Assune GZ is not NT/T segnented. Then the

exi sts a production H(lI?)~>t€P, such that neither

Pa
i) for all u€(dom(t)-var(t)), t(u)€d
i1) t(e)€X and (dom(t)-var(t))={€}.

3ince G1 is NT/T segmented, it must be the case t

{(?)->t¢P1. Hence, by the definition of drf(Gl),
qrust be the case that for some tnGIH such that H(
1 g?) t, %?) oo 6T> t, and t, %?) t using G(X)
there tl,...,tHGSN(Q) and s#SN(P). But then

A.
2learly, (dom(s)=var(s))=(dom(t)-var(t)). Depend

:n=G(x1,...,xq) where q=r(G) and xl,...,xq€x

3(R)->s, there are two cases:

case 1: For all u€(dom(s)-var(s)), s(u)€d. Clea

for all u€(dom(t)-var(t)), t(u)€]d which is a
ontradiction.

2ase 2: s(e)€> and (dom(s)-var(s))={e}. ‘Clearly
s(e)=t(e) which is a contradiction.

lence G2 is NT/T segmented.

.emma 4.9.4: Given any two tree grammar G1 and G2

-hat G1=(Q,S,P1,S) is in n-normal form and

}2=drf(G1)=(§,S,P2,S), then G2 is in n-normal for

Proof: Assume G2 is not in n-normal form. Then t

2xists a production F(?)—)tSP2 such that 1SV§(t)'

Since Gl is in n-normal form, F(?)->C6Pl. Hence,

nust be the case that for some tmGIF that F(x)-af

Pa;

f%> ty %?) eee §?> th and t %T) t gsing G(X)=>s!
/here tl,tz,...,tmGSN(Q) and s#SN(J). But then
m-G(xi,...,x&) and tés(xi,...,s&) where q=r(F) a

Clearly IEVE(t)=l§V§(S)' However

:1’ LN .,xqexA.
since G1 is in n-normal form and G(?)-)sGPl, lEVE

thich is a contradiction. Therefore G2 is in n=-n

‘orme.

'heorem 4.9.1: Given a tree grammar G=(§,>,P,S),

here exists an algorithm to generate a tree gram
such that LOI(G) = LOI(G') and G’ is in weak Chom

1ormal form.

>roof: By theorem 4.4.1, there exists a tree gram

such that G1 is the NT/T segmented grammar of G1

JOI(GI) = LOI(G)' By theorem 4.5.1, there exists

‘inite sequence of tree grammars G,,...,G_ such t
1 q

i) 6, = (8,;,2,p;,8,) for all i, 1<i<q;

ii) for each i, 1<i{q, there exists an n>2 s

that G =reducedn(G

1) where pi—leP

1-1°Pi-1

a production of the form F(X)->t and

t€over—, ,=
2VQ1-1 ,n-l(rhs(Pi_l))’

iii) for all i, 1<i{q, LOI(Gi) = (G

Lop(Gy_1)s

iv) Gq is in 2-normal form.

By lemma 4.9.2, for all i, 1<ilq, G, is also NT/

i
segmented. Let G'=dff(Gq). By theorem 4.6.1,

LOI(G) = LOI(Gq). By lemmas 4.9.3 and 4.9.4, C
also NT/T segmented and 2-normal. Since G’ is 1
segmented, 2-normal, and derivation-renaming fre

lemma 4.9.1 states that G’ is in weak Chomsky nc

form.

4.10 Leaf-linear Tree Grammars

This section presents a restricted form of
grammars known as leaf-linear tree grammars. Tt
grammars are called leaf-linear because nontermi
can only occur as leaves on the right-hand side
productions in the tree grammar. In other words

tree grammar is leaf-linear if and only 1if the 1

every nonterminal is zero. Furthermore, since 't
of all nonterminals is zero, there are no variatl

leaf-linear tree grammars.

The main reason that leaf-linear tree gramma
€ interesg is that the class of tree languages
renerated by leaf-linear tree grammars is identic
he class of regular tree languages (see Brainerd
»r Doner[70]). One should note that this result
.eaf-linear tree gramm;rs corresponds to the resu
\bout left-linear context-free string grammars (i
:he class of left-linear string grammars is ident
.0 the class of regular string languages, see

lar-Hillel and Shamir[60]).

It is a well known fact that the class of re
:ree languages is strictly containeg within the ¢
»f context-free tree languages (see Rounds[70]) T
result can easily be shown by the use of a pumpin
lemma for regular trees based on the pumping lemm
yresented by Rabin and Scott[59] (see Thatcher[73
'he following theorem presents (without proof) a
»f the pumping lemma based on the assumption that

-ree language is generated by a tree grammar.

fheorem 4.10.1: Given any tree grammar G=(J,>,P,S
,(G) is regular, then for any tree t€L(G) such th
lepth(t)>sum{depth(s) | F(X)->s€P}, there exists
:l’tZGTS(xl) and t3€TE such that Ivar(t1)|=|var(t
iepth(t2)>0, t=t1(t2(t3)), and for all n}O0,

n
£, [(t,)(ty)1"6L(E).

Example 4.10.1: Let G=(§,>,P,S) be a tree granm

that
9 = {S,F} where r(S)=0 and r(F)=1;
> = {a,f,g} where r(a)=0, r(£f)=1, and r(g)=
P = {S->F, F=>F, F-> g }
R T I I AN
a x f x x X
|
X

Then, L(G) is not a regular tree language. Th
the definition of a tree language, all trees i

are in the form

8
/N

n where nZO

W = Fh— o o
W = Fh — o o

Assume L(G) is a regular tree language. Hence
theorem 4.10.1, for any k>4 such that t€L(G) a

depth(t)=k, the theorem must apply. Consideri

,t, and t there are 4

possible values for t 2 39

1

case 1:

let t1=x, t2 = g, t3 = fawhere n2>0 and n1+r
/ \ I
f f .
P e
n . * \k-1 |
1.. f
| | |
£ f a
| |
X a
But then t, [(t.)(t)]0 =g
1 2 3
/ 0\
£ f
| |
n1<k-1 . * k-1
| |
f f
| |
a a
which is not in L(G). -
case 2:
let t1=x, tz = /g{ t3 = f.where n2>0 and n1+:
|
f f .
G -
k-1 . *\n |
.‘If
| | |
£ f a
] |
a X

0
But then tl[(tZ)(t3)] =g

/ \
f £
| |
k=1¢ ° n1<k-1
| |
£ f
| |
a a
which is not in L(G).
case 3:
Let t; =g , t, =fy, tg = f
Lo ! 3
f f ° °
| | *\n, * yng
n . * VYk~1 | |
1- . f f
| | | |
£ £ X a
| |
b4 a
where n2>0 and n1+n2+n3=k—1.
But then t [(t,)(t,)]1° = g
1 2 3
/ \
f £
|]
n1+n3<k—1 : : k-1
| |
f £
| |
a a

which is not in L(G).

Page

t, =g, t, = fu, t, = f
1 2 3
/\ | |
f f . .
bl L[t s
k—_lo * \n l ‘
o . 1 f f
| I | I
£ f X a
| 1 :
a X

re n2>0 and n1+n2+n3=k—1.

then tl[(tz)(t3)]o 7 g \

n +n3<k-1

D = Fh~— o o ¢ — I
N = rh = o ¢ ¢ — I

ch is not in L(G).

ce, by theorem 4.10.1, L(G) is not a regular tree

guage.

orem 4.10.2: The class of regular tree languages

roper subset of the context-free tree languages.

of: Since the class of regular tree languages 1is
ntical to the class of tree languages generated t
f-linear tree grammars, there exists a leaf-line:

e grammar to generate any regular tree language.

Hence, since every leaf-linear tree grammar is <
grammar, the class of regular tree languages is
contained in the class of context-free tree |an$
From exanple 4.10.1, clearly there exists a

context-free tree |anguage which is not regular.
Therefore, the class of regular tree |anguages |
proper subset of the class of context-free tree

| anguages.

4. 11 Root -l i near Tree Granmmmars

This section presents a restricted form of
grammars known as root-linear tree grammars.
Root-linear tree grammars are éalled roo.t-1|ineai
because nonterm nals occurring on the right-hanc
of productions can only occur at the root. A

production F(IX)->t is root-linear if and only ii

Ig.(t)zo, or Ii(t)zl and t(S)€(j::$. Sirrilér_ly, ati

grammar G((j2,7, P, S is root-linear if and only j

every prpduction'p€P, p is root-linear. .

A well known result is that the class of st
| anguages generated by right-linear string granm
identical to the class of regular string |anguag
which is identical to the class of string |angu*

generated by left-linear string grammars. Hence

Page

tht assume that the same results apply to leaf-1li
1 root-linear tree grammars and hence, both gener

sular tree languages. However, this is not the c

The tree language generated by a root-linear t

ammar i1s called a coregular tree language and the

nainder of this section presents several results

but that the class of coregular tree languages (s
10ld and Dauchet[76]). Theorem 4.11.1 shows that
ass of coregular tree languages is not contained

e class of regular tree languages. Theoteﬁ 4.11.
esents a pumping lemma for coregular tree languag
ich can be used to test if a tree language 1is not
regular tree language. The section concludes wit
eorem 4.11.3 which uses the pumping lemma to show
at the class of coregular tree languages is a pro

bset of the class of context-free tree languages.

eorem 4.11.1: The ciass of coregular tree languag

not contained in the class of regular tree

nguages.

oof: Example 4.10.1 presents a root-linear tree
ammar and shows that the language generated by th
ot-linear tree grammar is not a regular tree

nguage. Hence, the class of coregular tree langu

Pa

rannot be in the class of regular tree languages.

The next lemma and theorem present a new res
thich is believed to be the first known form of a
>umping lemma for the class of coregular tree lan
‘one should note that Arnold and Dauchet[76] also
>resent a pumping lemma for coregular tree langua
lowever, thier result is on language duplication

inrelated to the lemma presented here).

.emma 4.11.1: Given a root-linear tree grammar

;=(0,>,P,S), any nonterminal H€J where r(H)=m, an
sequence of trees sl,...,smGTz, if H(sl,...,sm) =
?(tl,...,tq) where r(F)=q, then there exists a se
»f trees tl"“’tquE(xq) such that t1=ti(sl,...,

“or all i, 1<i{q.
Proof: By induction on n.

rase case: n=0. Trivial. Let

(ti,-o.,t(’l)=(xl,tao,xq).

—_n
inductive step: F(pl,...,pm) ==> H(Sl""’sq) =
((tl,...,tk) where r(F)=m, r(H)=q, and r(K)=k. B
induction, there exists a sequence of trees

t;,...,tSGTS(Xq) such that si=t;(pl,...,pm) and s

- Pag

or all i, 1£{iq. By definition of the last derix
tep, there exists a production of the form H(R®)->
hére p(€)=K and H(sl,...,sq) = p(sl,...,sm) =

(tl,...,tk). For all i, 1<i<lk, let ti=p/i(sl,..
ince G is root-linear, clearly, t,8T— for all i,

i 72

{ik. By substituting the values for s, through

1
i=P/i(t’i(p1,ooo,pm), e o 0y t;(pl,ooo’pm)) for all

£i<k. Hence, by lemma 2.8.2, for all i, 1<i[<k,

i’P/i(t'f.-o-stg)(Pl,---:Pm)-

heorem 4.11.2 - The pumping lemma for coregular |

anguages: Given any root-linear tree grammar
=(9,>,P,S); any t€L(G) such that

epth(t)>sum{depth(s) | F(¥)~>s€P}; there ex;sts
i) some nonterminal F€J where r(F)=m,
ii) a tree t'GTS(Xm),
iii) a sequence of trees tl,...,tmGTz(Xm), an
iv) a sequence of trees sl,...,smGT—

2

uch that

p : 1
a) t=t [(tl,...,tm)(sl,...,sm)]

)

b) for all n>0 t'[(tl,...,tm)(sl,...,sm)]

’ O
S I (I S O I S

. 1
’t [(tl""’tm)(sl"°"sm)]

*
d) for all n>0 S => F[(t,,eee,t)(s, 4.
- 1 m 1

Proof: Since depth(t)>sum{depth(s) | F(X)->s€P}

must be the case that some production is used m

once, and the production will increase the dept

tree generated. That is, it must be the case t
—n —_—n , Y —

S "_"> 1 F(Sl,ooa,sm) "'—"> 2 F(Sl’--.,sm) _> 3

t'(si,...,s;) = t where F€J, for all i, 1<i<3,

and there exists a k, 1<{k<m, such that

depth(sk)<depth(s£) and for some u8var(t’), t’(

By lemma 4.11.1, there exist trees tl,...,tm su

Si=ti(sl""’sm) for all i, 1<idm. By definiti
4 0 4

t [(tl,...,tm)(sl,...,sm)] =t (sl,...,sm) and
’ 1 p

t [(tl,...,tm)(sl,...,sm)] =t (tl(sl,...,sm),

tm(sl,...,sm)). But then t'(tl(sl,...,sm), .oy

tm(sl,.a.,sm)) =t (slf...,sm). Clearly t (Sl’

t'(si,..ﬁ,s;) since t'(si,e..,s;)/u=s',

t (sl,...,sm)/u=sk, and depth(sk)<depth(sk). R

the above information, one can conclude that

*
1) § = F(sl,...,sm)

G
2) F(R) = F(cl,...,tm)

3) F(R) => £ (X e nesX)

, 0
4) eIt ,eee,t I(s yeee,s)]0 #

’, 1
t [(tl,...,tm)(sl,...,sm)]

5) t = t'[(tl,...,tm)(sl,...,sm)]l where

Sl,...,SmSTE and t',tl,...,tmeTE(Xm)-

o show the remaining portions of the theorem, let
nductive hypothesis be that for any n)>O0,

LCt s enest I ,nnnys)1"6L(C) and 5 =7
[(tl,...,tm)(sl,...,sm)]n. Then, by using proof

nduction, the following cases exist:

ase case: n=0. By condition (1), S ==>*
(sl,...,sm). By condition (3) F(Sl""’sm) ==>f
'(sl,...,sm). Hence t'(sl,.f.,sm)GL(G). By the
efinifion of the nth m~way composition, F(sl,.}.,
[(t)sennst)(s seee,s)10 and £7°Cs \unn,s) =

’[(tl,...,tm)(sl,...,sm)]o.

*
nductive step: n>0., By induction, S =)

[(tl,...,tm)(sl,...,sm)]n. By condition (2),

n ____ +
[(tl,...,tm)(sl,...,sm)] ==

n .
(tl,...,tm)[(tl,...,tm)(sl,...,sm)] . By lemma :

F(tl,...,tm)[(tl,...,tm)(sl,...,sm)]n =

FCE [CE ,eeest M08 5ene,s)17, oo,
tm[(tl,...,tm)(sl,..;,sm)]n). By inspection c
definition of the n+1th m-way composition, cle
FCe [Ct ,enest D08 ,eee,s)17, 0ts,

e [Ce ,eeest)8 ,eee,s)1 =

n+1l
F[(tl,...,tm)(sl,...,sm)] « By condition (3
| +1 __ +
F[(tl,ooo,tm)(sl,-oo,sm)]n ""—’>
P +1
t [(t1’°°"tm)(sl’°"’sm)]n . By inspection

previous construction, clearly

’, +
t [(tl,ooo’tm)(sl,ooo,sm)]n IGTEQ Hence, by t

definition of the tree language generated by G

n+1l

£ 0(E suees€)(s 5een,s)17 TEL(G) .

Theorem 4.11.3: The class of coregular tree la

is a proper subset of the class of context-fre

languages.

Proof: Since every root-linear tree grammar is
grammar, clearly the class of coregular tree 1
is contained in the class of context-free tree
languages. To show that there exists a tree 1
which is not a coregular tree language, consid
tree grammar G=(J,>,P,S) such that

® = {S,F} where r(S)=0 and r(A)=1;

> = {a,f,g} where r(a)=0 and r(f)=r(g)=1;

Page

P = {S=->A, A->x, A->f}.
| | |

a X X

I
A
|
8
|
X

tree language generated by G is the set of trees

form .

£

|

. n
|

f

| where nZO.
g

|

. n
|

g

]

a

ume L(G) is a coregular tree language. Then by
orem 4.11.2, for any t€L(G) where depth(t)>5, the
lF exist trees tl’tZ’tBGTE(xl) where depth(t2)>0,
LD e 1Y, £ 10e) (65010 # £, 1¢e,) (5010, and
. >0, tl[(;z)(t3)]n€L(G). Let t€L(G) where
yth(t)=2k+1l for any k>2. Then, ghere are 5 cases

1sider in choosing trees tl, tZ’ and t3.

case 1:

W —rh o o

where n,+n,+n

1

have n,+n

1 73

2

3

M o— rh e

= f
|
L™
£
l
g
l
- Sk
[

g
l
Ta

=k and nz)O. But then t1[(t2)(

<k nodes labeled by f followed by !

labeled by g. Hence, tll(tz)(t3)]OGL(G)-

case 2:

Fh

t1=

W= Fh— o o

where n1+n

2

=n,+n
3

4

= f
2
|
: n2
|
f
|
g
|
L (73
|
g
|
x
=k and n,+n,>0..

2

3

i
o — 09

B —0Q — o o

But then i1

Page

jtz)(ts)]z, there will exist n.n-, nodes | abel ed. 1
foll owed by n3 nodes |abeled by g, followed by N
is labeled by f, followed by n3+nw nodes | abeled 1
CLearly, the only way that ' L(t-%(t-%] 2§€L(G) is
| er nz«O or n3:0. Assume n2«0. Then, there woul
nodes | abeled by f followed by |}«+q3+qi>k nodes
sled by g. Hence n’_"‘O. By a simlar argunént,

). Therefore t,[(1) (t3)]2f8L(G) .

: 3
'f tz'f t3€TE
. (™M .M
| 1)
f f
| |
x B
t
. k
[
2
[
a
re ni+n,=k and n,>0. However , tl[(tz)(t3>]0 =

[t‘«)(t")]1 and hence this case does not apply,.

t1=f t, = 8 ty = 8
I I I
e N’ .("3
£ g g
I I I
g X a
|
(™M
I
g
I
X

where n1+n2+n3=k and n2>0. But then tl[(tz)(

have k nodes labeled by f, followed by n,+n,<

1 73
labeled by g. Hence t1[(t2)(t3)]0¢L(G).

case 5:
tl = fl tz = ? t3€TE
: k : n2
f 8
| |
g a
|
!
|
g
|
b4

where n1+n2=k and n2>0. However, tl[(tz)(tB)

cl[(tz)(t3)]1 and hence this case cannot appl]

fore, by theorem 4.11.2, G must not be a coregul:
language. Furthermore, since G is a tree gramma:
'ly the class of coregular tree languages 1is a

r subset of the class of context-free tree

ages.

Chapter V

TREE PUSHDOWN AUTOMATA

This chapter presents a new model of a tre
pushdown automaton, the (nondeterministic) bott
tree automaton with tree pushdown stores (a TP
short). The TPDA operates like a standard bott:
tree automaton, except that there is an interna
which consists of a finite sequence of tree pus]
stores (or simply tree stacks). TPDAs correépm
the standard (string) pushdown automata, in the
manner that bottom—up tree automata correspond
(string) finite automata. In other words, each
stack is treated in the same manner as the stac!

pushdown automaton, in that a TPDA can only rea

Page 1°¢

oot of each tree stack, and nodes can be added

ed) or deleted (popped) at the roots of the tree

Section one begins by presenting a TPDA using
ard conventions. Section two presents a
ified form of the TPDA where the current state,
iated with each read-head, always labels the roo!
e corresponding tree stack. Hence, no explicit
ence of the states is needed and a "stateless"
pushdown automaton (a STPDA for short) is
duced. The chapter concludes by showing that th
of tree languages generated by tree grammars
 an 01 derivation, the clasé of tree languages
ted by TPDAs, and the class of tree languages

ted by STPDAs, are identical.

Tree Pushdown Automata

This section provides the definition of the tree
own automaton (the TPDA). A tree pushdown

laton is a bottom-up tree automaton augmented wit]
stacks, and the basic organization of a TPDA is

L in figute 5.1.1.

current stateé:
R tatalak T LR t-=—=t

|s | s | eoo | S i input ¢t
Sl B L T ey b

State t:::::wm—zy%1=J;rt
- —

Control

tree stacks:

Figure 5.1.1 : Tree pushdown automata

Note: For each read-head U there is exact
corresponding current-state Sy and one tree
pi'

Before describing a TPDA however, conside
following informal description of a bottom-up
automaton (for'a more formal description of a
tree automaton, see Buchi and Wright[60], Eile
Wright([67], Doner[70]; Thatcher and Wright[68]
and Moran[69], Brainerd[69], and Thatcher[73])
bottom=up tree automaton A=(S,$,SO,Q) consists
of states S, a transition map 8 : tuples(S) =>
initial state S0 and a set of final states Q.

this discussion, consider the input tree t (to

») shown in figure 5.1.2.

Figure 5.1.2

lample input tree t using ranked alphabet S = {a,
there r(a)=0 and r(b)=2

A béttom~up tree automaton scans an input tree
n its leaves, up to the root, verifying that the
1t tree matches the pattern of the tree language.
>ther words, the leaves of the input tree t are
sidered aé the starting points when scanning the
it tree t. Hence, below each leaf, a read-head (
cer) is located, and the current state associated
h each read-head is the initial state Sg* The

tial configuration of the bottom-up tree automato

praphically depicted in figure 5.1.3.

Reading (or scanning) the node immediatel
read-head (i.e. a leaf) will cause the corres
read-head to be advanced up to cover that node
instance, the results of using the transition
SIGS(SO,a), applied (sequentially) to each of
leftmost leaves in t, is shown in figure
5.1.4a - 5.1.4c. Note that the three leftmost
read-heads are now covering the corresponding

and that the states have been updated to Sy

a .
J:sy 1
Figure 5.1.3

Initial configuration of a bottom—up tree a
where []J denotes a read-head.

Reading an intérnal node requires that re
cover each of its immediate descendants, and t
corresponding states match the definition of t
transition map §. For instance, if 3268((31,5

5368((81,82),b), then figures 5.1.5a - 5.1.5b

Pag

/ \
/ T~ SR

DSO
Figure 5.1.4a

Configuration of bottom-up aytomaton after readi
node 11 using transition s,® (so,a)

\
/“\ 5s,
1 \

Figure 5.1.4b

'b

Configuration of bottom—-up automaton after readi
node 121 using transition s, (so,a)

yrresponding updates of the bottom—up tree automa
yte that in the process of advancing the read-hea

rer the nodes labeled with a "b", the read-~heads

Pag

>cated at' each of its i medi ate descendants are nn

ito one.
b\
b/ a
/ \ :s,
:Sl /b .
[E]:s, @El:s,

Figure 5.1.4c

Cbnflguratlon of bottomup au}onaton after readi
node 122 wusing transition S €0(sQ a)

\

/\
Ial: sy ,///////,
Figure- 5.1.5a

Configuration of bottomup aytonaton after readi
node 12 using transition son((s S), b)

Figure 5.1.5b

Configuration of bottom=up gutomaton after readin
rode 1 using transition s3€ ((81’52)’b)

The process of advancing and merging read-head
ording to the transition map S, continues until
-her there is no more legal moves, or the accepti
1dition is met. An accepting condition occurs
:never the read-heads have been advanced to the r
e. there is only one read-head which covers the
)t) and its corresponding state is in the set of

1al states Q.

In a tree pushdown automaton, the bottom=-up tr
-omaton is augmented with internal memory. The f
the internal memory is a sequence of trees (each
e 18 called a tree stack), and each read-head ha

ictly one tree stack. Each tree stack is a tree

"ined by a ranked alphabet [° called the stack

alphabet. The stack alphabet does not have to
distinct from the input alphabet >. Furthermor.
reserved constant | denoting the empty tree sta

contained in .

Intuitively, each tree stack is used to re
the tree structure its corresponding read-head
scanned. In other words, when a TPDA is constr
accept a tree language generated by a trée gram
the idea is to maintain each tree stack such th
tree stack is a subtree of some legal sententia
Furthermore, whenever the tree stack matches th
right-hand side of some production p in the tre
grammar G, the inverse operation of a derivatio
will be performed on the trée stack using the
production p. Therefore, the general idea of t
constructed TPDA is to have the read-heads adva
toward the root of the input tree, transform th
stacks using the inverse operation of a derivat
step, until there is a singlé read-head at the
the input tree and its corresponding tree stack
one-node tree labeled by the start symbol of th

grammar G.

Pag

Having provided insight into the notion of a

—ack in a TPDA, a formal definition of a TPDA can

. vene.

sfinition 5.1.1: A TPDA is a 7-tuple

= 8 so,l, Q) where
S is a finite set of states;

> is a finite ranked alphabet of input symbols;

—
|

is finite ranked alphabet of stack symbols;

8 : ({so} X)
' V (tuples(S) x)

V ((S x T(X,) x tuples(T)) x (&}) -> 2°

is a function called the transition map wher

m=max{r(p) | per‘}, and & has finite domain;

€S is the initial state;

50
lGP is a reserved constant denoting the

empty tree stack; and

Q C S8 is the set of final states.

The transition map 8 is defined such that all

afinitions are one of the following two forms:

Shift-moves (read-moves):

1) (q,F)GS(sO,a) where q€S, Fe€I", a€>, a

r(a)=r(F)=0

11) (q,F)66((q;,+vv,q,),f) where £663, Fe

m=r(£)=r(F)>0, and q,ql,qz,...,qmes

Reduce-move (tree stack update only):

(qZ’F)eg((qut)(F1’¢ (3] ,Fm))’e) where FGI_‘ N
tGTf‘(xm)’ Fl,...,Fmer‘, and q;,q,€S.
To emphasize that (Fl""’Fm) is a look=back 1
in the tree stack t, S((ql,t,(Fl,...,Fm)),E) »

denoted as 8((q1,t HFI,...,Fm]]),E).

An instantaneous description (ID for shot

provides a "snapshot" description of a TPDA be
moves. An ID consists of a pair

(a,t)gzs x N x Tr‘ x TS where t is the input

a is a set of triples of the form (q,u,p) whel
the tree éddress of a node covered by a read-t
its corresponding state, and p is the tree stz
associated with that read head. Also, if u ic
with a zero, it denotes the position immediate
the leaf at tree address u (i.e. corresponds

starting position of a read-head). The initi:

configuration of a TPDA is the ID

Page

(So’“O’L) | u€leaf(t)},t) where t is the input tt
d the accepting configuration is an ID of the for

(q,€,1)},t) where q€Q is a final state.

For example, let D=(S,E,r‘,8,0,L,Q) be a TPDA

ere:

s = {0,1,2,3};

> = {a,b} where r(a)=0 and r(b)=2;

™ = {F,a,b} where r(a)=0 and r(b)=r(F)=2; and

Q = {2,3}.

If the input tree t is the tree shown in figui
1.1, then the initial ID is the instantaneous
scription
1= ({¢(0,110,1),(¢(0,1210,1),(0,1220,1),(0,2,1)},¢t.
igure 5.1.6 shows a graphical representation of
itial ID idl). The two possible accepting
stantaneous descriptions are id2 = ({(2,&,1)},t)
4= ({(3,€,1),t) which are graphically depicﬁed
gures 5.1.7a and 5.1.7b. Finally, an example of
stantaneous description which is neither an init
" accepting ID is
4 = ({(1,11,a),(2,12,F(a,b(a,a))),(0,2,1)},t) wh

depicted in figure 5.1.8.

Figure 5.1.6

Graphical representation of an initial insta
description where] denotes the position c
read-head and ":0,]" represents the correspc
state and tree state, respectively, associat
the corresponding read-head.

/ T
/ T~

Figure 5.1.7a: Possible accepting instantane
description

a

Page

7 T,

igure 5.1.7b: PossiBle'accepting instantaneous
escription

b

v
AN

x/// \\ a \\b
a//\\

Figure 5.1.8

ample legal instantaneous description which is
aither an initial or accepting instantaneous
agcription.

The computation relation C ID x ID describes
manner in which the TPDA functioans. Given two

,s id, F id,

ad as "id1 yields 1d2") if and only if one of the

tantaneous descriptions idl and id

following three conditions are met:

(1) |
: idl = ({(SO,UO,_I_)}Vb,t)
idz = ({(q’u,F)}Vb,t)
: *
where bg25 ¥ N X TP, u€dom(t), a=t(u),

r(a)=r(F)=0, and (q,F)GS(sO,a).

In other words, this type of move corresp
shift-move (or read-move) across the leaf u.
operation causes the read-head to be advanced
the leaf u, the state is updated to q, and the
tree stack is replaced by the one node tree st
labeled by F. All other read-heads, and their
and tree stacks, referenced by b, are unaltere
Graphically, this type of move is depicted in

5.1.9'

(ii)
idl = ({(qi,uj-,Pi) | lﬁ_i_ﬂm}Vb,t)
1d2 = ({(q,U,Fipl,---,Pm)}Vb;t)
where bGZS *x N x TP, u€dom(t), t(u)=£fe>

r(£)=r(F)=mn>0, ui€dom(t) for all i, 1<i<m

.(q’F)eg((qlxqz)"‘qu)’f)°

Page 1

7 \

a
a 18551 / \\\

er /b\a
mq/ \
/ \

Figure 5.1.9

shift-move over a |eaf where (q,F)6c§(SQ, a). Not*
ily the read-head which is being updated has been

t own.

This type of move corresponds to a shift:move OA
nternal (non-leaf) node u. Beforehand, there an
-heads located at each of its immediate

endants, and the corresponding states, associatec
i each read head, match those defined by the
tsition map 6 (i.e. qi,qz,---,qm). After the mo’

erformed, the read-heads are merged together int<

single read-head covering the node u, the s
updated to q, and the tree stacks are merge
by composing them together with a new root
F. As with the previous form of a shift-mc
other read-heads, and their corresponding ¢
tree stacks, referenced by b are unaltered.

of move is depicted in figure 5.1.10

befoyf \

Ei_'ltql,b [E]:qz , £

d/ \\d d/ \\b
after: T : , F
a//\\ b : b/// \\\\f
c// \\d a// \\\b

Figure 5.1.10

A shifg-move over an internal node where
(q,F)G ((quqz),f)-

Pag:

ii)
1d, = ({€a;,u,3(t ,eee,t)}VD, 1)
;dz = ({(qz,u,z(tl,...,tm))}Vb,t)
where bGZS x N x TF, m=r(F), any sequence of

trees tl,...,tmGTrg such that for all i, 1<i<n

t,(8)=F,, and (q,,F)66C(q,,p UF ,...,F_1),E)

This type of computation is a reduce-move whe
2ading takes place. Only the tree stack is modif
1d the corresponding state is updated. Note that
1atching"” takes place on the tree stack p(tl,...,
y verify that it is in the proper form to reduce.
-her words? for every occurrence of a variable X,
, the corresponding subtree of the tfee stack mus

itch the tree ti' Furthermore, this move require

1at for each tree t 1<{im, the root of the tree

i,

1st be labeled with the stack symbol F If a le

i°
aquence of trees tl,..,tm is found, which meets t
>nditions, the tree stack 1is replaced with the tr
[tl,...tm) and the state is updated to P

raphically, figure 5.1.11 depicts a reduce-move o
1is form. Also note that if for some 1, 1<ilm, t

ariable Xy does not occur in p, then any tree ti’

108e root is labeled with the symbol F can be c

i’
L.e. a countable infinity of tree sequences tl”

111 satisfy the matching condition, thereby causi

infinite nondeterminism).

before: £l : q, ,y G
N\ I
a b g b c
7\ L /N
c d a c
|
a
after: 0 - qy > F
a/\b g/\c
VAN l
c d a
Figure 5.1.11
A reduce-move where (qz,F)GS((ql, G (s,
X b y
/ \
x y

(Note: The above transformation would be ill

the transformation was defined by
(a,,F)66((a;> G [s,g1),e)
X y
/\
X y

since, for the tree t2=c, the root is not 1la

the symbol f)

Pag

An input tree t is accepted by a TPDA D if an
*
nly if there exists a computation 1dS - idF whe

is the transitive reflexive closure of F , id:
he initial instantaneous description for the inpu
ree t, and idF is anAaccepting instantaneous
escription of the form ({(q,€,])},t) where q is a
inal state in Q. 1In other words, the accepting
ondition is both final state and empty tree stack
et N(D) be the set of all trees accepted by a TPI
ence,
(D) ={(t&Ts |

ids = ({(so,uO,L) | u€leaf(t)},t),

id, = ({(q,&,1),t),

*
q6Q, and 1dS - idF}.

xample 5.1.1: Let D = (S,E,F‘,O,L,Q) be a TPDA su

hat
S = {0,1,2,3,4};
> = {a,f,g} where r(a)=0, r(F)=1, and r(G)=2;
r = {a,f,g,F,|} where r(a)=r(])=0,

r(£)=r(F)=1, and r(g)=2;

Q = {0}; and
8 is defined by the following table where for :
input pair (a,b), the rows represent possible

of a and the columns represent possible values

Furthermore, empty table entries represent

setso

g

f
T T s

a

{(1,a)}

T el ST R

01
(1)
(1,1)

{(2,£)}

e s ST T

{(3,8)}

T T TR S

(fa 111

(3, g

I {(

|

T T e T T T

(£ 1)1

|
|

\

/

X

X

(3, g

e et ST

{(

\

/

X

X

{(2,£)} 1

T T

(2)
(2,2)

{(3,8)}

T s ST

!
) hnad |
!]
+———+
1]
| l
1 |
! !
! 1
[} 1
! 1
1]
|]
+———+
] !
! !
[})
] |
| |
] !
| !
| 1
1 I
+———
1 !
! |
] !
] 1
!]
! 1
] |
! |
1 1
+———+
~~
B —
~
N

Page

he language accepted by D is the set of trees of

~he form

n where n>0

D — Fh— o o

|
£
|
a

for example, the tree g 1is

/ \

D — Fh —
D — Fh — Hh

accepted as follows:

({(0,1110,1),(0,2110,1)}, g) F

® — Fh— Hh
S~
B — Fh— Fh

({(1,111,a),(0,2110,1)1}, g) F
/ \

N — Fh— rh
O — Fh — Fh

({(2,11,£f),(0,2110,1)1},

a

({(2,1,£),(0,2110,1)},

f
|
a

({(2,1,£),(1,211,a)},

£
I
a

({(2,1,£),(2,21,£)},

({(2,1,£),(2,2,£)},

£
|
a

f
|
a

a

f
I
a

m — +h— Fn

B — Fh— Fh

O — Fh — Fh

O — Hh —

® — Fh— Fh

D — rh—

g

B — rh—

O — Fh — M

W = Fh — Fh

W — rh—

({(4,€,F)), ,) k

[/ \
foof f
i i
fooof f
i i
a a a
({(4,E,F)}, g) F
| [\
fooof f
(. I
a f f
1 I
(((s,e,/)1 & 4 &)
| [\
a f f
I I
f f
I I
a a
({(O’E’-I-)}, g)
I
f f
| |
f f
| |
a a

which is the accepting condition.

The neaning of determinismfor a TPDA is if
is only one possible nove (or transition) define
each read-head in every |egal instantaneous
descri ption. In other words, a TPDA D is determ

if and only if

i) For all input pairs (a,b), l&(a,b)l <

ii) All states used in reduce-moves are r
in shift-moves. That is, if
(a,,F)€6((a,,t [F .. ,F 11),€), ther

not used in a shift-move.

111) If (q,,F)€8((qy,p [[F), .0 F 1D ,8) wh
r(F)=m, then for all i, 1<i<m, there

u€dom(p) such that p(u)=xi.

In other words, condition (i) guarantees that
no shift-shift conflicts, condition (ii) guar:
that there are no shift-reduce conflicts, and
conditions (i) and (iii) guarantees that therc
reduce~-reduce conflicts. Also, condition (iiij
that every reduce-move must be defined on a

conservative rule.

5.2 Stateless Tree Pushdown Automata

Quite often, a TPDA will be defined such
set of states S will be the same as the set of
stack symbols ['. Furthermore, the current st
associated with every read-head will always be

symbol labelling the root of the tree stack.

there is no need to explicitly include the set

Page

ates S in the definition of a TPDA. Whenever thi
e case, a TPDA can be simplified to a Stateless t

shdown automaton (denoted STPDA) defined by the

tuple D = (S,F,S,L) where

is a finite ranked alphabet of input symbols;

>
[T is a finite ranked alphabet of stack symbols;
§ ¢ 1y x D

V (tuples(T") x 2)

V (Tn(Xp) x tuples(T)) x {€}) -> 2|

is a function called the transition map where

m=max{r(p) l peP}, and 8 has finite domain;
lsr‘ is a reserved constant denoting the

empty tree stack.

Furthermore, the transition map S is simplifie
om the TPDA such that all definitions are one of

llowing two forms:

ift-moves:

i) FGS(L,a) where aGS, F€l", and r(a)=r(F)=0

11) 7e8((q ,+..,a),f) where f63, Fel",

r(£)=r(F)=m>0, and ql,...,quF

Reduce-move:

FGS((t,(Fl,...,Fm)),E) where F€[°, m=r(F)
teTi""(Xm), and Fl,ooo,Fmer‘Q
As before, to emphasize the look-back nature
(FlheeesP), S((c,(Fl,...,Fm)),E) will be den

§ce [F e, F 11,8).

The instantaneous description of a STPDA

*

SID) is a pair (a,t)€2N X Tr‘ x Ty where t is
tree, and a is a set of pairs (u,p) where u i:
address of a node covered by a read-head, and
tree stack associated with that read-head. A

initial configuration becomes the SID

({(u0,1) | u€leaf(t)},t).

The computation relation F C SID x SID

such that id1 id, if and only if one of th

2
following three conditions hold:

1) id; = ({(u0,1)}Vb,t)
1d, = ({Ca,F)}Vb,t)
*
where b€2N X Tr‘, u€dom(t), t(u)=a€d

r(a)=r(F)=0, and F€§(1,a)

Page 207

id

= ((Cui,p) | 1<i<m}Vb,€)

1dy = ({(a,F(p ,eeesp))}VB,0)

where pa2¥ X Tr‘, uedom(t), t(u)=fe>, Fe€[",
r(£)=r(F)=m>0, ui€dom(t) for all i, 1<{i<m, and
FGS((ql,...,qm),f) such that for all i, 1<i<lm,

pi(e)=qi'

id, = ({Cu,B(t 000yt))IVD,t)
idz = ({(u;‘F(tlj"”tm)}vb’t)
where b€2N X TT‘, Fe€[", r(F)=m, any sequence of

trees tl,...,tmGTr~ such that for all i, 1<i<m,

t,(6)=F,, and Fe8(3 UF ,...,F_11,6).

the computations for a STPDA are identical to
a TPDA, with the exception that the explicit
s to states have been removed. Graphical

of each of these three types of moves are

in figureS 5'2.1 - 50203

1lly, an input tree t is accepted by a STPDA if
*

if there is a computation ids - idF where

e initial SID for the input tree t, and idF is

rm ({(€,]1)},t). More formally, the tree

before:

after:

a

Figure 5.2.1

A shift-move over a leaf where F€8(L,a). Note:
only the read-head which is being updated has t
shown.

Page 209

M| G
a// \\b g////L\\\\c
7\ I/ \
c d a g c
1
[: F
<N 7\
a b g c
c// \\d L

Figure 5.2.3

e-move where FGS(G llg,c 11),e).
7
X b y
\.
/N

The above transformation would be illegal if

insformation was defined by

reS(¢ g,z 11),e)

x R\ y
X y
for the tree ty=¢c, the root is not labeled by

bol f)

Pag

before: £~

[E1:q,,b bl : f
/ / \\
c d a b

|

after: (£
: /)~{\b yd AN
VAR /N

Figure 5.2.2

A zhift-move over an internal node where
F€e ((qlsqz)’f)o

(D) = {(teT< |

2
ids = ({(uo’l_) | ueleaf<t)}9t)s
idp = ({(&,1),t),
*
and 1dS - 1dF}'

xample 5.2.1: Let D be the TPDA defined in exampl

«.le1le By converting the set of states S such the
orresponds to |, 1 corresponds to a, 2 corresponc
, 3 corresponds to g, and 4 corresponds to F, the
f states S can be mapped bijectively to |'. Henc
an be simplified to a STPDA D’ such that

‘o= (E,F,S,L) where > and |° are defined as befo

is defined as follows:

Page 211

1

1
e

{a} 1

4
(a)

>.a)

1

1
pommm et e — -}

{f}

1

1
B e ittt S s

{9}

1

1

——— ——— — ¢
] 1]
3 1]
) I t
—~] —~ 1 t
Ty Lt
aad] - 1]
] 1 1
] | i
111.".111.".1.“.
? 1 1
) 1)
[} |]
' 1]
' o
t R
' 1
: I
i 1
; T
1 1
! | 1
1 1 1
! AN
' I
1 '
1 1 f
111\"-111-‘”1:".
\ o
i 1
! 1]
t 1 !
] 1]
\ ot
' Vo
) 1
1 1]
——— e m — = 4
— = ~
© — Z
= ~
(&] (&]

{9} 1

1 1
e T S

1)

{F}

!
1
[
1
I

1
1
1
1
1

— o — ——

4+

Ll BTt ST T S R

A

{1}
[

|
1
|
T T T e T T T

o o o 1 ot il = e e e
1
1
1

+
|
|
|

g

ample, the tree

ad as follows:

({(1110,1),(2110,1)},

({(111,a),(2110, 1)},

O — Fh— Fh

({(11,£),(2110,1)}, /
|

a

N — Fh — Fh

({(1,£),(2110,1)}, /
I

f
I
a

O — Fh—

({(1,£),(211,a)}, / 8
|

f f
| |
a £
|
a
({(1,£),(21,£)}, 8
| | /
f a f
| |
a f

O — Fh— Fh
~

D — rh— Fh

g

O — Fh— Fh

D =— Fh —

W — Fh— Fh

W — Fh— Fh

)

Page 21

£),(2,£)},

Yo =Yg = @
-
~

Y — Yy —
—_ -
—_— " —

({(&,1)1}, g)
/ \

D — Hh— t+h
N = Fh — Fh

which is an accepting condition.

Like a TPDA, a STPDA is deterministic if

if
i) for all input pairs (a,b), l&(a,b)l <

11) 1f Fe8(t [F ,...,F_11,€) where r(F)=r
G=t(t1,...,tm)(E) for any sequence o
tl,...,tmGTra where ti(E)=F1 for all

then G is not used in a shift move.

111) 1f Fe6(p UF ,...,F_1,€) where r(F)=r
for all i, 1<{idm, there exists a u€d

that ﬁ(u)=xi.

In other words, there are no shift-shift, shi:

or reduce~reduce conflicts.

Page 2
Equivalence To Tree Grammars

The purpose of this section is to provide proofs
how that the class of tree languages generated by
grammars (under an OI derivation), the class of
languages accepted by TPDAs, and the class of tr1

uages accepted by STPDAs are identical. These
lts are shown in four steps. Section 5.3.1 shows
every tree grammar (in weak Chomsky normal form)
be converted to some STPDA. Section 5.3.2 shows
every STPDA can be converted to some TPDA. To
lete the circle, section 5.3.3 shows that every
can be converted to some tree grammar. Finally,
ion 5.3.4 uses these results to show that the thi

ses of tree languages are identical.

However, before showing these results, this

ions starts by introducing an ordering on the
utation relation (in the same manner as done witl
erivations in chapter 3). The notions of a
utation with a postfix lower bound u and a
utation under a postfix ordering, are introduced,
hermore, it will be shown that any computation c:

onverted to a computation under a postfix orderi:

To simplify the notation, let an updated

o

f a computation idl - id2 (denoted URH(id1

*
be a triple of the form (q,u,p)€S x N x Tr‘ W

idl,idZGID; id1 - idz; and idl,id2 are in «

following three forms:

1) id ({(éO,uO,_l_)}Vb,t) and

1

idZ = ({(q,qu)}vb’t)

where r(t(u))=0 and p=F

ii) idl = ({(qi,Ui,Pi) | lﬁiﬁm}Vb,t) and
idz = ({(Q.U,F(Pl,--',Pm)}Vb,t)

where r(t(u))=m>0 and p=F(pl,...,pm)

iii) idl = ({(Q',U,P(tl,---,tm))}vb,t) an
idz = ({(q,u,F(tl,---,tm))}Vb,t)

where m=r(F) and p=F(t1,...,tm)

A computation with postfix lower bound u

TPDA) is the relation F' : ID x ID, in which
computation can be performed in either the sul
or in some subtree to the "right" of t/u. Let

1d1,1d2 be two instantaneous descriptions, id]

if and only if 1d1 - 1d2, URH(idl [id2)=(q

*
some (q,v,p)€S x N x Tr‘, and ulv where the r

is the postfix ordering.

Page

Similarly, a computation under a postfix orderi

any computation such that the updated read-heads
1 computation step are sorted by a postfix orderi
>ther words, given the computation

idl - id2 ... - idn for any n)>l,

i) for each i, 1<i<m,
URH(idi - idi+1) = (qi,ui,pi) for some

*
(qi’“i’Pi)GS x N x Ti-‘

ii) for all i, 1<ilm, for all j, i<j<m, u1_<_uj

where < is the postfix ordering,

n id1 - 1d2 Fo... I 1dn is a computation und

tfix ordering. Whenever a computation id1 - id2

) idn is a computation under a postfix orderir

will be denoted as 1d1 l--1 id2 l} cee l--1 idn.

Using these definitions, it is possible to show
t computations can be commuted (to some extent)
never they are applied to independent subtrees.

s is shown by the following lemma.

ma 5.3.1: Given a TPDA D=(S,§,T‘,8,sO,L,Q), any t

tantaneous descriptions idl,idz,id3€ID, for any

X
, any n>0, if id, K ™ 1d_ F id, where

1 2 3

*
(id, * id3) = (q,v,p) for some (q,v,p)€S x N x

2

and v<u (under a postfix ordering), then there

an instantaneous description idé such that
’ u n ’y =
id1 k- id2 = id3 where URH(id1 5 idz) (q,

Proof: By induction.

base case: idl - :I.d2. Trivial.

inductive step: id1 F id2 prn id3 = id4 su

URH(id;, F 1d,)=(q,,u,,p,), URH(id, F 1id,)=(

u ’
and u4<ugu2. By induction, id1 - id2 - id3
such that URH(1d2 L id3)=(q4,u4,p4). By the
definition of Ik ,

id2= (b1 V b, , t)

1d§ = ({(Q4’u4’p4)} V b2 ’ t)

where b1 is one of the following forms:

i) {(so,u40,l)} where r(t(u4))=0
ii) {(qz,u4i,plj;) | 1{idm} where r(t(u4))=
111) {(q,,u,,p,)}.

By the definition of l-u,

idl-—-(blvbBVbA’t)

2 - (bl V {(QZ,UZ;PZ)} V b4 ’ t)

id
where {(qz,uz,pz)} V b4 = b2’ and

b3 is one of the following three forms:

Page
i) {(Squz0, L)} where r(t(uz>) =0

1) {(dk uzi,pd) | Kij<m} where r(t(uy))=mp0

1) {(2uz P}

nee u, <u,, and u, is not a prefix of u,, clearly
, Fo1dg F o id” wheretd » = ({(ds,us, Pa)}Vb,aVD,

’ u ;
nee» 1d, k 1d; F " id,.

mma 5.3.2; Gven a TPDA D=(S, 2, P, 6,(3 -1, Q) , any

st ant aneous descri ptions id|_fi d’_€l D, {inlj |- B id2
d only if id'. |-t n id,.

oof : By induction.

se cases: n*"O and n=l. Both are trivial.
ductive step: assune id.1 1- id<§_ [-" id<§ where n;
d URH(id; I- id;)=(gz2, Uz-p2). By induction,

1 t- idy 1-Yidg t-*™"! jd; where

H(id’:l- id,4)~(qa,u4,p},)- Dependi ng on whet her c
t ud"u:‘, there are two cases:

se 1i \izKy . By the definition of I--, clearly

1 N id2 A N id3.

i+ 1 Y4<Vzx B lemma 5 3.1 id - id 5K ids

at URH(id; I- idp=(qs, Ug, ps) and
H(id> ~ ids)=(qg2, Us, p2). By the definition of

early ide K' idy H " id,.

2
gLy

erefore id. .
L ¥

To show that the other direction, assume

idl I--l n+l idz. Clearly, by the definition o
must be the case that id1 - ntl idz.

The same reasoning, as above, can be usec
STPDAs. The notions of a computation with pos:
lower bound u, as well as a computation under

ordering are introduced.

Let an updated read-head of a computatior

id1 F id2 for a STPDA (denoted URH(id1 id

*
pair of the form (u,p)EN x Tr‘ where 1d;,1d,€

id1 - idz; and idl,id2 are in one of the fo

three forms:

i) id

L = ({(u0,1)} V b, t) and

id2 ({(u,F)} V b, t) where p=F

ii) id

]

2 = ({(uyF(PI""’Pm))} V b, t) wh

id

r(t(u))=m>0 and p=F(p1,...,pm)

iii) id

1 ({(usp(tla"'atm))} \ b, t) an

id2 ({(u,F(tl,...,tm))} V b, t) wh

r(F)=m and p=F(t1,...,tm).

Page 221

computation with postfix lower bound u for a

s the relation K C SID x SID defined such that
two stateless instantaneous descriptions

€sID, id, R id, if and only if id, F id, and
- 1d2)=(v,p) for some (v,p)GN* X Tr‘ where ulv

postfix ordering relation (.

milarly, a computation under a postfix ordering

TPDA is defined such that for any computation

idz | idn, if

for all i, 1<i<nm, URH(idi - idi+1)=(ui’pi)

for some uiGN and some piGTP

for all i, 1<in, for all j, i<{j<n, uiiuj

where { is the postfix ordering relation

d, k id, | id is a computation under

'ix ordering. Also, whenever a computation id1

| - idn is a computation under a postfix

g, it will be denoted as id, K id, Koo, &

ing these definitions, the following lemmas are

ed.

Pa

.emma 5.3.3: Given a STPDA D=(§,r‘,8,l), any thre

stateless instantaneous descriptions idl,idz,id3€

1 pron id2 - id3 whe

*
JRH(id2 L id3)=(v,p) for some (v,p)EN x Tr‘ and

*
‘or any u€N , any n>0, if id

‘under a postfix ordering), then there exists a

4

2 such that

stateless instantaneous description id

JRH(id, F idé)=(v,P).

1

>roof: Analogous to lemma 5.1.1.

Lemma 5.3.4: Given a STPDA D=(E,r‘,$,l), any two

stateless instantaneous descriptions idl,idZGSID,
n 1 n
Ld1 - id2 if and only 1if idl - idz.

Proof: Analogous to lemma 5.3.2.

Since every computation can be converted to
~omputation under a postfix ordering, the remaind
-his thesis will assume that all computations wil

inder a postfix ordering.

Page
el Converting Tree Grammars Into STPDAs -

This section shows that every tree grammar G c
converted to a STPDA D such that LOI(G) = N(D).
ra used in this conversion resembles the conversi
:d to convert a string grammar in Chomsky Normal
a PDA where the moves of the PDA simulate deriva
:ps and hence, the PDA accepts a string o if and
it can simulate the derivation that produced the
'ing oc (see Harrison[78], Lewis & Papadimitrioul
lutzenberger[63], Chomsky[62], and Evey[63]).
jever, due to the nature of the definition of a T
,e. a bottom-up parser instead of a top-down par
> method presented in this section simulates the
7erse of derivation steps and hence, simulates

rivations in reverse.

As mentioned above, the idea used in the
\wversion of a tree grammar to a TPDA is to have e
luce-move act as the inverse operation of an OI
rivation-step. Hence, the set of stack symbols i
> set of nonterminals in the tree grammar.
rthermore, the conversion maintains the property
r every read—head, if the subtree the read-head
anned is replaced by the tree stack associated wi

a1t read—-head, and the input tree is in the tree

language generated by the tree grammar, the res
tree is a sentential form. However, in order t
nonconservative productions, the set of product
also added to the set of stack symbols where a

production is an intermediate stack symbol used

simulation of derivation steps.

Definition 5.3.1: Given a tree grammar G=(J,>,P

weak Chomsky normal form, let the corresponding
D=(E,r‘,8,i) where
" = 3VPV{l} where |69, r(])=0, and for each

production F(®)->t€P, r(F(R)->t)=r(t(€)); a

8 is defined by the following four conditions:

(1) 16b¢s wn,e
This condition states that if the input tree is
derivable from the start production, then the i

tree should be accepted.
(2) if p=F(RX)->a€P where a€> and r(a)=0, then
a) p€3(|_,a)

b) for every tuple (Gl,...,Gm)Gtuplem(ﬁ)‘

r(F)=m, Feb(p [(G ,+..,6_11,€)

This condition simulates a derivation step of t

F(tl,...,tm) %?) a using the production F(X)->a

Page

rse of the derivation is simulated using two
yutation moves as follows: First, a leaf of the
1t tree labeled by the terminal symbol "a" is rea
1g a read-move where the tree stack gets updated
one node tree labeled with the production F(X)->
1g the transition (F(f)-)a)GS(L,a). Then, the on
» tree stack is updated to the tree stack
L,...,tm) by performing a reduction using the
1sition FGS((F(?)—)a) HGI,...,Gm]],E) where for a
|{ilm, ti(E)'—'G1 (see figure 5.3.1). One should n
- if F(R)->a is a conservative production, the ab
ress could have been done in a single transition.
2ver, instead of making separate conditions for

servative and nonconservative productions, both w

iled using two computation moves.

a F [@]: F->a F fal: F
jm |

(1) The corresponding computation for th
derivation step F—>a where F->a€P is a

conservative production.

a o [al: F(R)->a F [al:
: 8 e
t,

(ii) The corresponding computation for tI
derivation step F(tl,...,tm)==>a where F!

is a nonconservative production.

Figure 5.3.1: simulation of a

derivation step using the production F(X]

(3) if p=F(?)->f(xi,...,x;)€P where fGE, r(f):

r(F)=m, and for all i, 1<i<q, xiGXm, then

a) for each (Gl,...,Gq)Gtupleq(Q),

PGS((G1,~-O,Gq),f)

b) for each (Gl,...,Gm)Gtuplem(ﬁ),

FeS(p(x]seee,x)) [6),..0,C 11,€)

This condition simulates a derivation step of

F(tl"'°’tm) => f(ti,...,t;) using the produ

>f(Xj. x'q) where r(f)=q and for all i, Ki<gq,
=xJ., t hen ti‘ztj. Li ke the previous condition, th
ation step is simulated by perform ng two

tati on noves. First, the node labeled by f is
using the read-nove defined by the transition
->f(xjf...fx'q))€&((Gl,...,Gq),f) where for all i,
: ti'(6)=(3i. Then, the second step uses a

e-nove to introduce each tree

Elf""t }n{}té due to the fact that the
ction F(Tf)->f (x'-, . . .+ ,x") may not be conservati ve
ermutes these trees to the tuple (t,;«. .,t g (see

e 5*3.2 bel ow).

Figure 5.3.2: Simulation of the derivati

F(tl,...,tm) == f(t1’°°°’tq) where f(tl

*
=> f(Sl,oo-,sq)o

(4) if F(X)->t€P where r(F)=m and CGTE(Xm)’ t
all tuples (Gl,...,Gm)Gtuplem(Q),
Feb(e (16, ---,6_11,8).
This condition simulates a derivation step of
F(tl,...,tm) 6?) t(tl,...,tm) where t is a tr
by nonterminals and variables. The derivatic
simulated with a single reduce-move and is de

figure 5.3.3.

Page

s \

Figure 5.3.3: Simulation of the derivation step

F(tl,...,tm) => t(tl,...,tm) where tGTQ(Xm) an

*
t(tl,...,tm)--_-> s,

aple 5.3.1: Let G=(3,>,P,S) where

} = {s,F,3,,8) where r(S)=r(i)=0,
r(F)=r(f)=1, and r(g)=2;

» = {a,f,g} where r(a)=0, r(f)=1,
and r(g)=2; and

> is the set of productions

p,: S -> F P, F => F P F->g
L L2 A A
a X t X x X
1
X
p,: a =-> a pe: E -> f P g -> g
b A A
X X x y X y

re: the tree grammar G generates the same tree
ruage as in example 5.1.1). The corresponding

JA, as defined in definition 5.3.1, is D=(S,rf,gt

Pa

vhere S is defined as follows:

§¢s wm,e) = (1}

§C1,a) = {p,}

§Cp, LN,e) = (3}

§cesr, ey = §amy, ey = S,
= Sy,) = 5K, 1) = (o)

§pg s 1,8) = bCpg UF11,8) = §Cpg [la 11,8)
I | I

X X X

= S Ut 1,8 = bCp B N,E) = { £}
I I

N o—

X X
8((3,8))g) = 8((S)F))g) = S((Saa))g)
= §C(s,t),8) = §((s,8),8) = §C(F,s),8)
= §CF, P ,8) = .. =60, B),8) = (pg)

§Cp, IS, 11,€) = &Cp, IS,F1,E) = SCp, US,511,
/8 A /8
X y X y X y
= §Cp, US,211,€) = «u. = &Cp, UE,8 11,€) = {
/8 /8
X y X y X

SCPUN,E) = {S}
|

a

§CP 1s 11,€) = SCF (IF 1I,8) .= 8§(FEN,E)
|

M-y —
X o— r—
N o—

Page

(8 1S 11,€8) = §C& UF11,6€) .= (B UEN,e) = |
/N I\ I\

< X X X X X

example, the derivation

-~

3 ==> F => F == g == g =—=
01 | o1 | (o] ¢ / o\ 0l / A\ oI
a t £ £ t t
| U U
5 a a a a
A AR L AR L AN
f t f ? f f f f
| I N [
a a a a a a a a

simulated by the STPDA D as follows:

({(110,1) , (210,1)}, 8) k2

({(110,1) , (21,8)}, g) F?2

/\
£ f

a a

({(110,1) , (2,8)}, g) F
I /\

({(e,

({Ce, s)}, /g) F

({Ce, 1)} &)

Lemma 5.3.5, lemma 5.3.6, and theorem 5.3.

(below) show that for any tree grammar G in WCN

the corresponding STPDA D defined

N(D) = L..(G). Lemma 5.3.5 shows

01
%
CIGTI where Cl 6T> t2 € TE’ then
*
such that s=s[u<—t2], id1 = 1d2

initial instantaneous description

the updated read-head of the last

by definition
that for any
for any tree
where id1 is

for the tree

computation i

Pag

u,tl). Lemma 5.3.6 shows the converse of lemma ¢

n
1 - id2 wl

d1 is the initial instantaneous description and t

y showing that for any computation id

ast computation produces the updated read-head (v
*

%?) s/u where s is the input tree. Finally, tt

«3.1 uses the results of these two lemmas to shov

esired result that N(D) = LOI(G).

emma 5.3.5: Given a tree grammar G=(§,§,P,S) in v

homsky normal form and the corresponding STPDA

=(E,F,S,L) as defined in definition 5.3.1; any
*

g2V % Tr; any three trees t;,t,,t3€TY such tha

1=t3[u<-t2] for some u€dom(t3); any F€J where rf
nd F(X)->t€P; any sequence of trees sl,...,smGTg
—_— .
nd any n>0; if F(Sl""’sm) 3T> t(sl,...,sm) oT
*
hen ({(uv0,]) | v€leaf(t2)}Vb,t1) -

{(u;F(Sla°":Sm))}vbatl)-

roof: By induction on n.

ase case: F(sl,...,sm) %?) tye By inspection o
efinition of G, F(?)—)tzeP where t2(6)=a€S and r
y definition 5.3.1, pGS(L,a) and

6b(p [1s;(&),...,s () 1,€) where m=r(F). Hence
{(uo,L)}Vb,tl) - ({(u,P)}Vb.tl) F

{(u’F(Sl"°'asm))}vb)tl)-

inductive step: F(sl,...,sm) 5T> t(sl,...,sm) =

where n>l. Depending on the form of F(X)->t€P, t
are two cases:

case 1: teTQ(Xm)' By definition 5.3.1,

Fef(t s, (€),...,5_(€) 11,€), and hence,
({(u,p(sl,...,sm))}Vb,tl) - F(sl,...,sm))}Vb,t:
By induction, ({(uv0,]) | leeaf(tz)}Vb,tl) F*
({(u,t(sl,...,sm))}Vb,tl).

case 2: t=f(xi,...,x;) where f€>, r(f)=q>0, and
all i, 1<i<q, xiexm. For all i, 1<i{q, let si=s_
x1=xj. By definition 5.3.1, pss(si(E),...,s&(S)}
and FGS(p(xi,...,x;) Hsl(E),...,sm(E) 11,€). Henc
({Cut,8]) 1 1CiaIVh,e) b ({Cu,pCs]yeenys)) I\
- ({(u,F(sl,...,sm))}Vb,tl). Clearly, by the
definition of Z=>, for all j, 1<j<a, s} ﬁ)nj t
where 0<nj$n. Hence, by induction, for all j, 1%
({(uiviO,l) | j<i<q, vieleaf(tzli)}

V{Cui,s]) 1 1<i<3}Vb,e) L

({(uiviO,L) | j<ilq, vieleaf(tzli)}

Vi{(ui,si) | 1<i<3}IVhb,t).

Lemma 5.3.6: Given a tree grammar G=(9,>,P,S) in

Chomsky normal form and its corresponding STPDA

D=(S,P,8,L) as defined in definition 5.3.1; any

*
b€2N X Tr‘; any three trees tj,ty,t3 such that

t1=t3[u<—t2] for some uSdom(t3); any F€0 where 1

Page

y sequence of trees Sig.«g9S £€T"; and any n>0;
1 Til v

(wQJ) | vEleaf(t,)}Vbety) I-" ,
(u,F(s1,.*..sm)}Vb, ty), then FCsA.7s?) &b ¢

oof; By induction on n.

se case: id, - ({(uQ 1)} Vb, t.) t-?

(u,F(sy, .. .,s))}Vb, t1) where tz(g):a€'i"and r(a) =
inspection of definition 5.3.1, clearly F(t)->a.
nee, F(si,...,Sm &> t2.

ductive step: id, I-" id, I- id* where

y = ({Cav0,i) | vE€leaf(t2)}Vb, ty),

3- ({(u,F(s1, .*.]SY))}Vb,tj), and 2. Dependi
the |ast con‘putation. performed, there are tv\o ca
se 1. FE&(t [[s]|(6) SR, (6)]11,6) where t"I'I"‘Cxrr
did, - ({(u,t(sy,...,Smw)}tVb,t). By definition
3.1, it nust be the case that F(!?)->t€P. Hence

S| EESmA T A Sy kFas yw Since (g 5) 4
s_lg«.«gsm) Jr> ti\ by i nduction.

se 20 FA(p(x;, .., xWIIs (f) ..., 5.(6) 11,6) whe
F(*)->f(xj,...,x(i)t f€2, r(f)=9>0, r(F)=m and

,X"€X . For all i, Ki<q, all j, Kj<m et
g m — —

»s3 if x-x. By definition 5.3.1,
AC(8M(6),...,5%6)),f) which is the only way that
conputable. That is, id, [-™% id* \- id, ~ i

;rs I(({j? ((é(w)s I))}KVKbq :[]JV)bA_AFrgrrr]]dl enmma 5.3.3

Pag

or each j, 1<£j<q, ({(uiviO,l) I j<i<q, vieleaf(t2
{(ui,s]) | 1Li<3IVb,e) k7
{(uiviO,l) | j<i<q, vieleaf(tzli)} V

(ui,si) | liigj}Vb,tl) where 0<njin-l. Hence, b

*
nduction, for all i, 1<ilq, s > tz/i. Theref

i or

’ -——-* 4 C

(Sl,-oo,sm) '(Tf> f(Sl,...,Sq) ‘0—'I‘> f(tz/l,sz,-oo,h
* , , % %
'i'> f(tz/l,t2/2,53,no-,sq) "O—I—> o e @ ﬁ>

(t2/l,t2/2,...,t2/q) = t,.

heorem 5.3.1: Given any tree grammar G=(3,>,P,S)

eak Chomsky normal form and the corresponding STF
=(S,r‘,8,l) as defined in definition 5.3.1,

OI(G) = N(D).

roof: By the definition of a tree language,

OI(G) = {t | S %%>* t where tGTS}. Let t€T— be &

2

%
ree such that S %?) t. By lemma 5.3.5,

dy = ({(u0,1) | uéleaf(£)},t) k' ({(E,5)},6). |
efinition 5.3.1, LGS(S,&), and hence

{(E,9)},t) F ({(E,1)},t) = 1d,.
(D) = {teT5 | idg = ({(u0,1) | u€leaf(t)},t),
dp = ({(€,1)},t), and idg - *idF}. Clearly id

By definition,

0
nitial configuration and 1d1 is a final configur:

or D. Hence, t€N(D) and LOI(G) C N(D). On the

and, let tGTS be any tree such that

dy = ({(u0,1) | uéleaf(t)},e) k° ({(§,1)},t) =

y definition 5.3.1, clearly it must be the case

Page 237

%
{(E,s)},t) F idl. By lemma 5.3.6, S 6?) t.
OI(G) and N(D) C LOI(G)' Therefore

N(D).

nverting STPDAs To TPDAs -

section shows that every STPDA D1 can be

to some TPDA D, such that N(Dl) = N(Dz). The

2
in this conversion is to duplicate the symbol
at the root of the tree stack for its

ding current state.

n 5.3.2: Given a STPDA D1=(S,P,81,L), let the
ding TPDA D2=(T‘,S,r‘,82,L,i,{L}) such that 82

d as follows:

if FGSI(L,a) where a€>, F€[", and r(a)=r(F)=0,

then (F,F)ng(L,a)

1f Feél((ql,...,qm),f) where £€3, Fel",
r(£)=r(F)=m>0, and ql,...,qmer‘, then

(F,7)68,((ay,s-neray),)

11i) if Feél(c ((F,,..,F_11,€) where F&T",
teTl—\(Xm), Fl,...,FmGI—‘, and t(E)ﬁXm,

(F,F)65,((t(&),t [[F),...,F_1),€)

iv) if F€81(c [(F,,...,F_11,€) where Fel,
teTr\(Xm), Fi,ee.,F €, and t(E)=x1

1<i¢m, then (F,F)€6,((F ,t [[F ,...,F,

Example 5.3.2: Let D1=(2_,l-‘,81,i) be defined a

example 5.2.1. Then, the corresponding TPDA,

defined in definition 5.3.2, is D2=(T‘,S,|—‘,Sz

where Sz is defined by the following table:

Page 239

it e e A it 2

{(a,a)}

et e e 3

(a)

{(£,£)}

|
et T s STt S

{(g,8)}

i T

(la 11

a,a)

!
{(F,F)} 1
!

| |
I I
| |
B i T s+

I

|

|
-+

b ————

(£ 1)1

e T T L

{(F,F)}

{C£,£)} | I I
s T e T

(£)
£,£)

{(g,8)}

T T LT P

|
|
|
i e s ST TS

I IDN

1e following lemma and theorem show that every

The proofs are

ran be converted to a TPDA.

and straightforward and have been omitted.

Lemma 5.3.7: Given a STPDA D1=(E,T‘,51,L) and
corresponding TPDA D2=(r‘,z,r',$2,L,L,{i}) as

definition 5.3.2; any three trees tl,tz,t3€T<

that t, =t [u<-t_] for some u€dom(t,); any b,

17531975 3 1

any bzezr‘ x N x Ty apy PET; and any nd(
n

{Cuv0,]) | v€1eaf(t2)}Vbl,tl) f ({u,P)}Vb1

and only if ({(Jl,uv0,]) | leeaf(tz)}Vbz) T

({(BCE),u,p)}Vb,, e).

Theorem 5.3.2: Given a STPDA D1=(§,r‘,$1,l) an

corresponding TPDA D2=(f‘,5,r‘,82,L,l,{l}) as

definition 5.3.2, N(D1)=N(D2).

5.3.3 Converting TPDAs To Tree Grammars -

This section shows that every TPDA D can
converted to a tree grammar G such that N(D) -
The idea used in this section resembles the me
to show that a PDA D can be converted to a sti
grammar G such that N(D) = L(G) where the nont
of the grammar encode information about the
instantaneous descriptioné and the productions
how instantaneous descriptions are updated by
computation relation (see Harrison[78], Lewis

Papadimitriou[81], Schutzenberger[63], and Eve

Page 241

transform a TPDA into a tree grammar the method
to capture the changes on instantaneous
ions caused by a computation using the set of
nals. To accomplish this, a nonterminal
of three components. For any computation
d2 where URH(id1 - id2)=(q,u,p), the state q
current stack root p(€) of the updated
d (q,u,p) at tree address u are encoded in the
nding nonterminal to define the first two
ts. The third component of the nonterminal is
look-back references which is a tuple
ng previous instantaneous descriptions that
e existed in order for the current
neous description to exist. In particular, the
1nstantane§us descriptions encoded are the
ociated with the immediate descendants of the
node u. Furthermore, the third component is a
pairs consisting of the state and root of the
ck associated with each of the immediate
nts of that node (i.e. the same idea as the
o components of the nonterminal except they
e first two components of each of its immediate

nts).

Page

Another way of viewing this transformation is
e nonterminals trace the history of how an
stantaneous description is reached. Loosely
eaking, a nonterminal (q’F’((ql’Fl)’""(qm’Fm)))
ates the following: Beforehand, there were m
ad-heads where each read-head i, 1<{i<m, had state
d tree stack s, associated with it such that the

i
tree stack sy was labeled with the stack symbol
ter several computations, the m read-heads have t
rged together where the current state associated

e merged read-heads is the state q and the associ

ee stack 1is F(Sl""’sm)'

To assist in the conversion of the TPDA into a
ee grammar, the definition below defines the func
e" where "le" takes a tree t and returns a set of
ees (labeled by nonterminals) where each tree is
story of a computation which might have produced
ee stack t(sl,...,sm). Furthermore, each tree st

can be arbitrarily chosen since the function "le

ly uses the root of the tree stack Sy

finition 5.3.3: Given a TPDA D=(K,E,r‘,8,q0,L,Q),

: K x TT‘(xm) x tuple (K x)

oy o (K x T x tuples(k x))(Xn)

Page

the | ookahead expansion function recursively defi

h that

Ie(q’t’((qj_!F&)*"'!(qm’Fig)) »t(6) i f t(e)exm,

le(q’ts((ql’F1)9°"s(qmnFm))) = _
{(qat(g),((pl,Gl),---1(pn1Gn)))(t11-,-,tn) I

r(t(6))*n, ((piiGi),...1(Pn Gi))Etuple (K x T
for all i, 1 OXn, if t(i)€Xm, t hen

(P1>Gl)-(qj,Fj) wher e t(i)*xj, ot herw se q,_zt
and -t €l e(pi,t/i,((ds, Fa),.,.,(dm Fm)))}

ot herw se.

In other words, the function'fle" is used to
cribe a long sequence of conputation noves. The
put ati on being described started with an
t ant aneous description where p of its read-heads

state 9 and the tree stack S, associated with i

sone i, |”™i”~j such that the root of tree stack
Fi’ and after a |long sequence of conmputation nove

p read-heads were nmerged into a single read-heac
re the resulting associated state and tree stack
nd t(sl,...,sm) respectively. Hence, given that

ulting instantaneous description has a read-head

ated at tree address u, the function takes the

following three arguments: The state q assoc]
the read-head at u, the tree t where t(sl,...
the tree stack associated with the read-head :
the tuple ((ql’Fl)""’(qm’Fm)) where for all
si(E)=Fi and the state associated with the tre
Sy is 9. Using the arguments, the function !
a set of trees labeled with nonterminals where
tree traces a possible history of how the tree
t(sl,...,sm) was generated from the original
tree stacks. In other words, it guesses the

intermediate states that the TPDA must have g«
through in order to produce the tree stack t(:

from the sequence of tree stacks S,,¢ee,8 .
1 m

Example: Let D=(K,§,f‘,8,q0,Q) be a TPDA where
and a,f,F,g€l" where r(a)=0, r(f)=2, r(F)=1, a
Then,
le(1,a,((2,£))) = {(1,a,8)},
le(l, g ,((2,a),(1,£))) {(1, g , ((2,a),
/\ !\
X y X y

le(l, g ,((2,a),(1,£))) {1, g , ((1,£),
/\ /\

y X y b

Page 2!

d le(l, £ ,((2,a))) =
!/ \

X

W — Fh—

{ (1,£,((2,2),(1,F))) ,
x/ (l,F}((l,f)))
(l,f,é(Z,a)))

o
(1,5,((2,a){(1,F))) ,
X (1,F,((2,£)))
(2,f,é(2,a)))

x
(1,£,((2,a),(2,F))) ,
x/ (2,F}((1,f)))
(l,f,é(Z,a)))

x
(1,£,((2,a),(2,F))) }
x/ (2,F}((2,f)))
(Z,f,%(Z,a)))

X

ition 5.3.4: Given a TPDA D=(K,S,T‘,£,q0,L,Q), le

orresponding tree grammar G=(9,>,P,B) be defined

T = {(q,F,((q;,F)yeee,(q ,F J)) |
q€K, F€, r(F)=m, and
(Cqy»F;)yece,(q ,F))€tuple (K x [)} V
r((q,F,((q;,F),ee0,(q ,F))))=m and r(E

and P is constructed as follows:
i) B -> (q,1,0) for all q€Q
i1) if (q,F)eS(qO,a), then (q,F,9) -> a € I

iii) if (q,F)GS((ql,...,qm),f) then for even
sequence of stack symbols Fl,...,FmGP,

(an’((ql »Fl),°°"(qmsFm)))(i‘)">f(f) €

iv) if (qz,F)SS((ql,t HFI,...,Fm]]),E), the
every sequence of states pl,...,pmGK, €
t'ele(ql,t,((pl,Fl),...,(pm,Fm))),

(g9, F, ((p1sF)yeee,(p b, F)))(X)-D>t" €1

Note: Productions built by condition (i) esser
state that the goal is to go from an initial

instantaneous description to a final instantar
description. Productions built by condition (
that if the updated read-head was produced by
leaf, then the previous instantaneous descript
the current instantaneous description was proc

was an initial description and terminates the

Page 247

putation. Productions built from condition

tate that if a read-move was performed on an

1 node, the resulting updated read-head came
instantaneous description in a single move and

ated read-head should be broken down into the
tions of the m read-heads that were merged into
the read-move. Finally, productions built from

on (iv) state that if the updated read-head was

d by a reduce-move, the sequence of computations
by the pop on the tree stack must be guessed,

produces a production for each possible guess.

nma 5.3.9, lemma 5.3.10, and theorem 5.3.3
show that for any TPDA D and the corresponding
ammar G defined by definition 5.3.4,
LOI(G)' Lemma 5.3.9 shows that for any
tion id1 R id2 where id1 is an initial
aneous description on the tree t and the last
tion produces the updated read-head
sl,...,sm)), there exists a tree
,F(sl,...,sm),¢) such that t’ %%) t/u. Lemma
shows the converse of lemma 5.3.9. It shows
r any tree t’'€le(q,t",®), if t’ ﬁ)n tGTE, then
tree s€T— such that s=s[u<-t], id If id, where

2 1 2
the initial instantaneous description and the

dated read-head of the last computation is (q,u,!
nally, theorem 5.3.3 uses the results of these ¢t

mmas to show the desired result that N(D)=L__(G).

01

mma 5.3.9: Given a TPDA D=(K,E,r‘,£,q0,L,Q) and t

rresponding tree grammar G=(3,>,P,B) as defined :

*
finition 5.3.3; any b€2K x N x TP; any three

’tz’tBGTE such that t1=t3[u<—t2] for some u€dom(H

iy sequence of trees Sl""’smeTr‘; any n>0; if
(ay,u0,1) | u€leaf(t,)}Vb,t,) F n
(q,u,F(sl,...sm))}Vb,tl), then there exists a tr

*
ele(q,F(sl,...,sm),¢) such that t’ %%) tye

‘'oof: By induction.
.se case: ({(qo,uO,l)] ueleaf(tz)}Vb,tl) F
(q,u,F)}Vb,tl) where t2(€)=a65 and r(a)=0. By

.finition 5.3.3, (q,F,P)=->a€P. Hence (q,F,H) 5T

.ductive step: idl F R id2 - id3 where

1=({Cqp,u0,1) | u€leaf(t,)}Vb,t,) and

l3=({(q,u,F(sl,...,sm))}Vb,tl). Depending on the
st computation performed, there are two cases:
se 1: id2=({(qi,ui,si) | 1{i<m}Vb,t) where
[,F)GS((ql,...,qm),f) and r(F)=m. By definition «
L, clearly for each j, 1<j<m,

(q4,uiv,0,1) | iidm, V €leaf(t,/1i)} V

(qq,ui,sy) | 1I<GIVD,) R 7y

Page

(qo,uivio,l) | j<ilm, vieleaf(tz/i)}

ACqg,ui,1) 1 1<i<3}Vb,t) where 0<n <n. By
duction, for all i, 1<{i<m, there exists trees
Gle(qi,si,¢) such that ti §T>* tz/i. By definit:
3.3,
,F,((ql,sl(E)),...,(qm,sm(E)))(?)->f(x1,...,xm)Gl
nce, (q,F,((ql,sl(E)),...,(qm,sm(é)))(ti,...,t;)
ti,...,t;) g§> f(t2/l,ti,t§,...,t;) %§> .o 5f>
tz/l,t2/2,...,t2/m) =ty
se 2: id2 = ({(q',u,t(sl,...,sm))}Vb,tl) where

,P)eb((q’,¢t [ls,(&),.e0,s_(€) 11),€). By inductio

ere exists a set of states pl,...,pmeK such that

1) t"6le(q’,t,((p,,5;(E)),eun,(p_,s_(€))))

ii) for each i, 1<i<m, siGle(pi,si,¢)

" ’ ’ —_
iii) t (Sl""’sm) OI> t2'

definition 5.3.3,
Fo((pyrs,(€)),enn,(p s (€))))(X)->t"€P. Hence
,F,((Pl:sl(e)),'-'s(PmaSm(e))))(Sigono,S;) ﬁ>

*
(Sl’o'o,sm) b—i‘) tzo

mma 5.3.10: Given any TPDA D=(K,S,r‘,8,qO,L,Q) ar

rresponding tree grammar G=(§,E,P,B) as defined

*
finition 5.3.3; any bGZK x N x TT‘; any three

,tz,t3GT§ such that t1=t3[u<—t2] for somé u€dom(

any tree t€Tr‘; any q€K; any tree t’'€le(q,t,

>t t2, then

n>0; if t o1
*

({(qq,uv0,1) | v€leaf(t,)}Vb,t) k

({(q,u,8)}Vb,e).

Proof: By induction on n.

base case: (q,F,9) 57> a where (q,F)GS(qO,a)

(q,F,0)->a€P, Clearly, ({(qo,uO,L)}Vb,tl) -

({(q,u,F)Vb,t,).

n+1

inductive step: t° 6T> ty. depending on |

derivation step, there are two cases (either :
production produced from a shift-move on an i1
node, or a production produced from a reduce-rt
case 1: (q,F,((q;,8,(8)),...,(q 5 (€))))(s].

%%) f(si,...,s;) %%)n t, where

1) (4,F,((ay,8,(E)), e, (a5, (€))))(H)

-> f(xl,aoo,xm)
ii) (q,F)GS((ql,...,qm),f)
iii) siele(qi,t/i,¢) for all i, 1<i<m.

By the definition of §?>, clearly, for all i,

s —\n .
s] OI> i t2/i where O(nign. Hence, by induct:

each j, 1<j<m, ({(qo,uiviO,L) | j<ilm, vi€lea1
*
V ({(q,ui,t/1) | 1<i<3}Vb,t)) F

({(qO’UiViO’l) | j<i$m, Vieleaf(tzli)} V

Page

[1,ui,t/i) I Ki<j}Vb,t;). Also, since

)68 (qs, ..., qm.), clearly

q,ul,t/1) | Ki_<ntVb,t;) ¥
;q,u,F(i/I,...,t/m))}Vb,tl) where F(t/1,...,t/m=

J 2_3_ (qsty((Pl951(8)),ooos(Pmssm(&)_)))(Bi,---.

>t'(s[. s%) Gp>" to where
i) t'€le(q:, i3, ((p1,51(6)), .. (PmSm))
ii) for each i, l<i<m s €le(pist/i,O0)
i11) (g,) E((aup [[51(6) , . . ., 5u<6) 11), £).

i nduction, ({(qq,uvO,J) | v€leaf (t,)} Vb, tj) k*
[q.l,u,l3(t/1,...,t/m.))}Vb,tl.). From above, clear]
gy a8, B(E/1,0e,t/m))}VD,E) F

[g2, U, F(t/1,...,t/m)}Vb, ti) where F(t/1,...,t/m

iorem 5.3.3: Gven any TPDA D=(K,i, p,qo,J_,Q and

rrespondi ng tree gramar G=($','i.':P,B) as defined i

Einition 5.3.3, Lq(G) - N(D).

aof; By the definition of L,1(G),

(G » {t€T_)£I Bgf*t}. By the definition of N(
D) = {t€T* | ids = ({(Q9o, U0, i) | u€leaf(t)}, t),

p - ({(g,6,i)},t), q€Q and idg |- * idp}. Let t€
any tree such that B QY> t. By the definition o

> and definition 5.3.3, there nust exist a g€Q s

that B %f) (q,1,90) §?>* t. Clearly

{(q,1,0)} = le(q,]l,H). Hence, by lemma 5.3.1l
({Cag,u,1) | u6leaf(e)},t) k ({(a,&,1)},6).
then, t€N(D) and hence LOI(G) C N(D). On tﬁe
hand, let tGTE be any tree such that t€N(D).
definition, ({(q,,u0,1) | u€leaf(t)},t) F *
({(q,&,1)},t) for some q€Q. By lemma 5.3.10,

*
>t

exists a tree t’€le(q,],8) such that t’ FF

definition of le, t’=(q,|,#). By definition 5

B ST (q,1,6). Hence tSLOI(G) and N(D) C L__(

oI
Therefore LOI(G)=N(D).

5.3.4 Comparing Classes Of Tree Languages -

This section uses the three previous sect
theorem 4.9.1 from chapter four, to show that

of tree grammars, TPDAs, and STPDAs, are ident

For convenience of notation, let the clas
languages generated by tree grammars under an
derivation, the class of tree languages generas
tree grammars in weak Chomsky normal form unde
derivation, the class of tree languages accept
TPDAs, and the class of tree languages accepte
STPDAs be denoted as C C

C and CS

TG> “WCNF’ “TPDA’

Page 2°
ctively.

em 5.3.4: Cpo = Cyeonr = Crepa = CsTepac

: By theorem 4.9.1, C cc By theorem

TG WCNF*®

, C c By theorem 5.3.2,

WCNF

A & Crppac

Cucnr = Cstppa = CrepA.

Csrppa®

By theorem 5.3.3, C cCC

tppa & Crge Henes

Chapter VI

THE BUTLR(O) PARSER

This chapter presents a new construction m
build deterministic bottom—-up tree parsers for
subclass of the context-free tree languages. T
of parser presented is a BUTLR(O0) parser (a tre
which parses trees bottom-up by lifting LR(O0) p
techniques for strings). Logically, the contro
BUTLR(0) parser can be viewed as consisting of
parts, a driver routine and three parsing table
figure 6.1.1). In constructing the BUTLR(0) pa
the parsing tables are dependent on the given t
grammar, and must be constructed, while the dri

routine remains the same for all tree grammars.

2994

Page 2

] table | parsing
tree grammar -->| |==>
| generator | tables

a) generating the parsing tables

input tree

—

tree stacks:

b) operation of BUTLR parser

Figure 6.1.1 : Layout of BUTLR parser

A BUTLR(O) parser is a different presentation of
STPDA. The transition function & of the BUTLR(O)
er is implicitly defined by a set of parsing tabl
rated from the given tree grammar. Furthermore,
e parsing tables can be viewed as a "compressed"

esentation of the transition map 8.

In generating the BUTLR(O) parser, from a
tree grammar, the tables are built to simulate
derivation in reverse. Hence, the object of th
construction method is to attempt to maintain t
property that every tree stack corresponds to a
of some legal sentential form. This is done by
building a bottom=-up tree automaton (called the
characteristic automaton) which parses each tre
"to recognize which sentential form each tree st
could be a subtree of. Like an LR(0) parser, o
BUTLR(O) characteristic automaton is built, the
BUTLR(0) parser can be constructed directly fro

characteristic automaton.

This chapter begins by presenting the BUTL
parser in terms of its parsing tables and an ex
a BUTLR(O0) parser. The chapter continues in se
6.2 by presenting "characteristic trees" and th
corresponding characteristic automaton to parse
trees. The chapter concludes with section 6.3
presents the algorithm to convert the BUTLR(O)
characteristic automaton into a BUTLR(O) parser
the correctness of the BUTLR(0) parser construc
method, and presents some conjectures as to whe
construction method will produce a deterministi

BUTLR(O) parser.

Page

BUTLR(0) Parsing Tables

A BUTLR(O0) parser is a machine which has a tre
'ut, uses tree stacks as internal memory, and use
‘ee parsing tables to define the transition funct
e figure 6.1.1). More formally, a BUTLR(0) pars

a sextuple M=(G, K, shift, reduce, goto, start)

re:
G = (§,>,P,S) is the tree grammar defining
the BUTLR(0O) parser;
K is a finite ranked alphabet of parser states;
shift : tuples(K) x 2 -> KV{error} is a functior

defining the parsing shift table;

reduce : K => 2P is a function

defining the parsing reduce table;

goto : tuples(XK) x @ -> KV{error} is a function

defining the parsing goto table; and

start€K is the initial state and denotes

the empty tree stack.

As mentioned above, a BUTLR(O) parser is just
fferent presentation of a STPDA. Hence, an
stantaneous description of a BUTLR(O0) parser (den

)) is the same as for a STPDA. An instantaneous

scription consists of a pair (a,t)GZN X TK X TE

sre t 1s the input tree and a is a set of pairs (

Page

»re u is the tree address of a node covered by a
td-head and p is the corresponding tree stack
sociated with that read-head. Likewige, the init
tfiguration of a BUTLR(0) parser is the instantan
scription ({(uO,start) | u€leaf(t)},t) where t is

2e to parse.

The decision relation Ph C SID x SID of a BUTL

-ser M=(G=(9,>,P,S), K, shift, reduce, goto, star

the computation relation for the BUTLR(O) parser
] determines the next move of the BUTLR(0) parser
7tever, before describing this relation, let me
:roduce a help function

(x)

»leton : (X)y =>2 K which generates a set

Svi
2es where each tree can be viewed as a possible
ld=-card match to a production’s right-hand side.
ren any tree tGT Q(X),

skeleton(t) = {sGTK(Xm) | dom(t)=dom(s),
t(u)=s(u) if uévar(t), and

r(t(u))=r(s(u)) for all u€dom(t)}

Note: This function is used to perform the
corresponding operation on a STPDA, as the opera
of popping n symbols from the stack in a LR(O0)
parser when reducing on a production A->oc where

length(oc)=n.

Pag<

[ample 6.1.1: Let G"C}i),—i,P,S) be a tree grammar si

Lat

3-> - {S,F} where I’(S):O and r(F):*I;

1 - {a,f,g} where r(a)=0, r(f)-I, and r(g)=2; K
P={sSs->F , F->F , F-> g 1}

I I [\

ax f X X X

I
X

irthermore, assume that the set of parser states 1

.fined such that K={1,2,3,4,5,6} where r(l)=r(2)=i

;3)=r(4)=r(6)=I1, and r(5)=2. Then, by the above
ifinition,
skeleton(F) -{3,3,4,4,6,61},
| | | I I | |
a 1 2 1 2 1 2
skeleton(F) ={3,3,3,4 , 4, 4 5 5,
I | I I I I | I I
f 3 4 6 3 4 6 3 4
1 I I I I I I I |
X X X X X X X X X

and skeleton(g) - { 5 }.

[\ [\
XX XX
Havi ng defined the function "skeleton", the
jcision relation is defined as foll ows: G ven an
i stant aneous descriptions i d.1 and id”, id; Ié i d<2

nd only if one of the follow ng conditions hold

i) id ({(u0,start}Vb,t) and

1 *

id ({(u,q)}Vb,t) where be2d * Tg

2
uedom(t), t(u)=ae>, r(a)=r(q)=0, and

shift(start,a)=q.

ii) id1 = ({(ui,pi) | 1{i<m}Vb,t) and
id, = ({(u,q(pl,---,pm))}Vb,t) where
be2¥ * T, uedom(t), t(u)=fe3, qex,

r(£f)=r(q)=m>0, for all i, 1<i<m, ui€d

pi(E)=qi, and q=shift((q1,...,qm),f)

111) 1d; = ({(u,B(t;,+ee,t)}Vb,t) and
14, = ({(u,q(cl,...,t@))yvb,c) where
be2¥ ¥ Tk, qex, Fed, F#S, r(q)=r(F)-

sequence of trees t,,...,t_ €T such t
1 m

K
all i, 1<i<m, ti(8)=qi,
F(Y)-)sereduce(p(tl,...,tm)(é)),
peskeleton(s), and if r(F)=0, then
goto(start,F)=q, otherwise

goto((ql,...,qm),F)=q

iv) 141 = ({(&,3),t) and id2 = ({(€,start

where S->s€reduce(p(€)), and p€skelet

In other words, condition (i) is a shift-move
leaf of the input tree, condition (ii) is a st

over an internal node, condition (iii) is a re

Page 2

| on the production F(®)->s, and condition (iv) i
luce-move on the start production S -> s. Note
condition (iii) is not as complicated as it look
:ver the function reduce, defined by the state
.1ling the root of the tree stack, has the

iction F(®X)->s as one of its elements, and trees
1gh tm éan be found to match occurrences of its
1tbles where only the skeleton of s must match the

p and all occurrances of tree t, corresponding t

i

:ions of x, are identical, then a reduction can b
yrmed. Should a reduction be performed, the symb
used to reunite the trees t1 through tm and is

‘mined by using the goto function on the roots of

-rees tl,...,tm and the nonterminal F.

By the above definition, one should also note th
lifference between the computation relation F fo
>DA, and the computation relation ‘H for a BUTLR(
>r 1is that the reduce-move defined by an entry in
reduce parsing table and the goto parsing table
1e a set of possible computations using F . Henc
ceduce and goto tables are a compressed

ssentation of a set of reduce-moves in a STPDA.

Pag

A BUTLR(0) parser is considered well defined

nd only if the BUTLR(O) parser 1is deterministic (¢
s conservative and does not contain any shift/rec
r reduce/reduce conflicts). 1In other words, a

UTLR(O0) parser is well defined if and only if
i) G is conservative
ii) for all keéK, |reduce(k) |l

iii) for all £f6> where r(f)=n, for all tuples
(kl,...,kn)etuples(K), if
shift((kl,...,kn),f)GK, then for all i, 1

reduce(ki)=¢.

iv) For all a€> where r(a)=0, for all states

if shift(k,a)€K, then reduce(k)=0.

ote that condition (i) protects against infinite
ondeterminism embedded in the definition of a
educe-move, condition (ii) guarantees that there
ot be any reduce/reduce conflicts, conditions (i
uarantees that there will not be shift/reduce cor
n a terminal symbol with rank>0, and coundition (]
uarantees that there will not be a shift/reduce

onflict with a constant terminal symbol.

Page

Acceptance of an input tree t occurs if and or
the BUTLR(O0) parser can reach the root of the ir
ee and have an empty tree stack. More formally,

ee language accepted by a BUTLR(0) parser M, denc

M), is the set

N(M) = {tSTE | ({(u0,start) | u€leaf(t)},t)

F, ({(&,stare)},e))

*
ere ‘H is the transitive reflexive closure of 'H

ample 6.1.2: Let G=(§,>,P,S) be the tree grammar

fined in example 6.1.1. The language generated |

trees of the form

g
/ \
£ f
| |
n . . n where n>0
] |
f f
| |
a a

e BUTLR(O0) parser M to recognize G is the tuple

(G, K, shift, reduce, goto, 1) such that

K= {1,2,3,4,5,6} where r(1l)=r(2)=0,
r(3)=r(4)=r(6)=1, and r(5)=2; and

shift, reduce, and goto are defined by the foll

tables where blank (or omitted) entries represe

error values:

shift reduce

a f g
tommmpmmmtmmmt fommm———— +
11 2 I | 3 1{ S=>F }1I (2
tomm b et I |
(2) 1 1 4 | | I a | (4
R s ek o pomm— +
(2,2) | | I 5 | 5 1{F=> g }I
te——t=——t=——t I AR N
(2,4) | I I 51 I x x x|
fmmmpmmmp et fmmm————— +
(4,2) | ! 51 6 |{ F=>F }|
t-——t=——t-——t | | | |
(4,4) | I I 51 | x £ |
tommmpm et | |1
(4) | I 4 | | | x|
tmm e mm—t tmmmm———— +
For example, the tree t =g is accepted
/\
f £
| |
f f
| |
a a

({(1110, 1), (2110, 1)}, t) lh
({111, 2), (2110, D)}, ©) k,

({(r1, 4), (2110, 1)}, t) Fk

| d
2
({(1, 4), (2110,1)}, ©) kK
|
4
|
2
({(1, &), (211, D}, ©) K

4
|
4
|
2

Page

b 2L), 0k

4
|
4 2
|
2

N — -
N — -

e,)}, ©) K

€, 6)}, t) F

€, 3)}, t) F

€, 1)}, t) which is the accepting condition.

ilarly, the tree t = g 1is rejected as follows:

!/ \
£ a

a

({(110, 1), (20, 1)}, t) Iy
({(11, 2), (20, 1)}, t) ~
({(1, ‘|1), (20, 1)}, t) Kk
2
({(1, 4|r), (2, 2)}, t)
2

The parse fails at this point since there are
| egal noves, and none of the above i nstantanec
descriptions is an accepting condition. Furth
the BUTLR(O parser is well defined (i.e. is

determnistic)e

6.2 The BUTLR(O Characteristic Autonmaton

As stated earlier, a BUTLR(O parser Mis
generated using a construction nethod which [i
techni ques used in LR(0) parsers. Therefore,
to find a way to generate M the new construct
met hod should try to nmaintain the property tha
input tree t, if the subtree t/u is scanned by
BUTLR(O parser, and its corresponding tree st
represents sone tree S"T—r}_vyﬁ, then the follow

condi ti ons should hol d:

Page 267

* *
——— ” - —
if t€L(G), then S 6f> t"[u<-s] 3T> t

there exists a tree t GTE such that S 3T>

e luc-s] =

r words, the construction method should maintain
perty that every tree stack, in an instantaneous
tion, corresponds to the subtree of some legal
ial form. Condition (i) states that this will
case whenever the input is legal while condition
ates that even if the input tree is illegal,
till exists some tree t’ such that the tree

is a legal subtree of the corresponding legal

ial form.

other way of viewing the above condition is that
struction method should produce a BUTLR(O)
where every reduce-move will be defined to

the inverse of some OI derivation step, and the
of every possible O0I derivation step is defined
reduce-move. Hence, for any sentential form
tl,...,tm)] and any production F(R®)->s€P, if the
instantaneous description contains the tree
(tl,...,tm), the construction method should

a reduce-move such that the tree stack

.,tm) will be updated to F(tl,...,tm). To

ish this, one must have a way of recognizing all

possible stack configurations in which a reduce

should be defined (i.e. when the reverse of an

derivation step should be performed). The set

stack configurations for which a reduce-move sh
*

defined is the set {s(tl,...,tm) | S 5T>

t[u(—F(tl,...,tm)] ﬁ) t[u<-s(t1,...,tm)]}. Ea

s(tl,...,tm) in the sét is called a characterig

and the set will be denoted as CTG.

If one is able to 1lift LR(0) parsing techn
verbatim, one would expect the set CTG to be re
However, this 1is not the case as shown by the f

theorem:

Theorem 6.2.1: The class of languages defined b

characteristic trees of tree grammars is not co

in the class of regular tree languages.

Proof: Let G=($,>,P,S) be a tree grammar s.t.

® = {S,F} where r(S)=0 and r(F)=1;
S = {a,f,g} where r(a)=0, r(f)=1, and r(g)=2
P = {S->F , F=>F , F-> g }.
I I I L/ 0\
a X f X X X
|
X

By definition, any tree tGCTG is in one of the

following two forms:

Page

(i) F
|
f
|
. n where n>0
|
f
|
a
(i1) g
/ \
f f
| |
n . R n where n>0.
! |
f f
| |
a a

Clearly, by theorem 4.10.1 which presents the
ping lemma for regular tree languages, there exis
ufficiently large n such that trees of the second

n can not be regular. Hence CTG can not be regul

Having failed to 1ift up to characteristic tree
corresponding fact that characteristic strings a
ular in LR(0) parsers, a natural question to ask
t class of tree languages the characteristic tree
ls into. It turns out that the class of
racteristic trees generated by tree grammars is

tained in the class of co-regular tree languages.

To show this fact, the following pages present
construction method which takes any tree gramn

produces a root-linear tree grammar C, which g

G

the set of characteristic trees CTG.

Like an LR(0) parser, the method used to
CG is to create a new set of nonterminals usir

"production slices" where a production slice i

generalization of the concept of a marked proc

Given a tree grammar G=(J,>,P,S), a produ
*
slice is any pair (F(X)->t,U)€P x 2N such the

following four conditions hold:
1) F(®)->te€P
ii) U ¢ dom(t)V{u0 | u€const(t)}

iii) for all u€U, there does not exist a +

that v is a proper prefix of u

iv) for all u€(var(t)V{u0 | u€const(t)})

exists a v€U such that v is a prefix

Furthermore, let ps(P) be the set of all prodt
slices defined on the set of productions P.]
words,

ps(P) = {(p,U) | (p,U) is a production slic

Page 27

le 6.2.1: Let G=(J,>,P,S) be defined as in exampl
. Then,

(P) = {(S~>F’{10})’ (S->F’{1}): (S->F,{E}),
| | |
a a a

(F_>F,{11})9 (F->F9{l})9 (F->F’{§}))
| | I | | i

x f x £ x f
| | |
X X X
(F-> g){1;2})’ (F-> g ,{E})}.
I/ N\ I/ \
X X X X X X

The above production slices can be graphically

ted as follows (where the dots represent marked

ions):
-> F S -> F s -> .
| | F
a . |
. a a
-> F F -> F F =-> .
| | | | F
£ b:4 . X |
| £ £
. |]
b4 X X
-> g F -> .
/ \ I 8
. . X / \

In using production slices as nonterminals,
several patterns of reference reoccur in the fol
pages. To simplify the burden of having to expr
these patterns at each time, the following three

definitions are presented:

Definition 6.2.1: For any tree grammar G=(J,>,P,
*

. . _ - N
the function initG : ?ZVQ(XA) > 2 be defined

that for any tree teTSVﬁ(xA)’

initG(t) = var(t)V{u0 | u€const(t)}.

Example 6.2.2: Let G be defined as in example 6.

Then,
init,(F) = {10}, init (F) = {11}, and
| |
a f
l
X
init,(g) = {1,2}.
!\
X X

*
*
Definition 6.2.2: Let vn : 2N x N -> N be a fu

called the variable name selector and defined su
*

*
for any U€2N , uéN , vn(U,u)=|V| where

*
V = {veU | v u, Jw€N s.t. wO=v} and < is the p

lexicographical ordering for tree addresses.

Pag

The variable name selector takes a set of "do
'om a production slice and a particular "dot" u i
1d returns the variable name that u represents.
1stance, if vn(U,u)=1i, then the "dot" u represent
riable x;. Note that a "dot" u does not corresp

) any variable if the "dot"™ u occurs below a leaf

L beled by a constant.

ctample 6.2.3: Let U={1°1°0, 1°2,1°3, 1°4°0, 2°1°0

2, 2*3, 3+*0}. Then, by the above definition,
1 (U,1°1°0)=0, vn(U,1+2)=1, vn(U,1°3)=2, vn(U,l*4"
1 (U,2°1°0)=2, vn(U,2°2)=3, vn(U,2°*3)=4, vn(U,3°0)

1d vn(U,2)=2,

*

»finition 6.2.3: Let vs : ZN -> N be a function

11led the variable size index and defined such th
*

*
T any U€2N , vs(U) = {u€U | FweN s.t. wO=u}.

Like the variable name selector, the variable
1dex takes a set of "dots" U from a production sl
1e value returned is the number of variables the
lots" of U represent. Since it is not necessaril

1se that all "dots" represent variables (i.e. so

the dots may occur below | eaves | abel ed
typically the variable size index of a s

sane as the cardinality of the set.

Exanple 6.2.4. Let U be defined as in ex,

Then vs(U) =4.

Havi ng provided the above helping f

root-linear tree grammar C, is defined a

Definition 6.2*4: G ven any tree grammr

G-CJJ.17PJ.SJ) let C=(1y 12, P2, S) be

characteristic granmar of G where

jj} = S_ZVps(P) wher e r(S_z) =0 and for e
production slice (p,U), r((p,VU)*>v
1, - 1iVlj; and

P<£< is constructed as foll ows:

i) for every production of the for

S,- >NEP, where N-(Si«->t, initg(t

ii) for every nonterninal I\ﬁjj:i of t

(F(X)->t,{8}), N(x)->X€P;

Page

for every nonterminal Nleﬁz of the form
(F(R)=->t,UV{u0}) such that r(t(u))=0,
vs(UV {u0})=i+n, and vn(UV{uO},u)=1i,

Nl(xl,...,x)y =>

i+n

YEP., where

Nz(xl,-oo,xi,t(u),x 2

1+1°°° " % i4n
N,=(F(R)=>t,UV {u})

for every nonterminal Nleﬁz of the form
(F(R)->t,UV{ul,...,um}) such that
r(t(u))=m>0, vs(U)=i+n and
vn(UV{ul,.c.,um},ul)=1i+1,

Nl(xl,ovo,x) '-> Nz(xl,ooc,x

i+n+m i?

ECu)(xy g seeenXyan)s Xy oo X040 6P

where N2=(F(f)—>t,UV{u})

2

for every nonterminal Nleﬁ2 of the form
(F(R)->t,UV{u0}) such that u€dom(t),

t(u)=Geml, r(G)=0, G->s€P, and vs(U)=k,

1

Nl(xl g e ,Xk)->N2€P2

for every nonterminal Nleﬁz of the form

275

where N2=(G—>s,initG(s))

(F(2)->t,UV{ul,...,um}) such that u€dom(t),

t(u)=G€Q1, r(G)=m, vn(UV{ul,.e.,um},ul)=1i+1,

and vs(UV{ul,...,um})=k, for each G(R)->s€P

Nl(xl,...,xk)->N2(x1,...,xq)€P2 where

l’

N2=(G(?)->S,V), V=initG(s), vs(V)=q, and for

all v€V such that v€var(s), if s(v)=xj for

some j, 1{j<m, and vn(V,v)=p, the

vii) nothing else.

Note that condition (ii) states that
in a production slice have been moved to
production slice (i.e. the root), then tt
tree is a characteristic tree. Condition
the dot below the leaf u (in the productic
over the constant labeling the leaf. Conc
moves m dots immediately below the node u
production slice) up over the intermal noc
t(u). Condition (v) simulates all possib]
derivation steps on a nonterminal labeling
condition (vi) simulates all possible 0I <

steps on a nonterminal labeling an intern:

Example 6.2.5: Let G be defined as in exan

Then CG=(§',5',P',S') such that

0" = {S’} V ps(P) where ps(P) is the s

shown in example 6.2.1;
>’ = {s,F,a,b,c}; and

P’ is defined by the following product]

S’ => (S=>F)

(S">0)(X)
F

X

(F=>.)(x)
| F

x |
£
|
X

(F=->.)(x)
I 8
x / \
X X
(S=->F)(x)

|
a

(S=>F)(x)
|

.

a

(F->F) (x)
1 |
x f

X

(F=->F)(x)

|
a

->

(s=>F)(a)
|

a

(S")o)(F)
F |
] X
a

(F=>F)(£f)
|

Page 27

(F=> g)(x,y) =-> (F-> .)(g)
I/ \ I g /A
X . . x / \ x y
X X X X

(S=>F)(x) => (F=->F)(x)
I I
x f
X |

X

(S=>F)(x) => (F=> g)(x,x)
| I/ \
® X L]
a X X

(F=->F)(x) -> (F->F)(x)
! | | |

X . x f
£ |
|
X X

(F=>F)(x) -> (F-> g\)(x,x)}.
| ! |

X . X
f

X

HRoe

X

By the definition of G,

I

O —

S > > >

2l
[}

o
-
B — rh— Hh—

o
-
W — Hh—

"”
\
o

W — Hh — rh
N — rh— Fh

Hence, g is a characteristic tree.

Page

corresponding derivation in C_, that generates th

G

re characteristic tree is as follows:

M (s—>};‘) 5 (S->1;*)(a) 37> (I;‘->I;‘>(a>
a . x f
. a |
x

§%> (T—>T)(f) €?> (T-)T)(?) 6?) (f—)f)(f)

a x f a X . f
| f |
. | a
b4 X

T—f> (F-> g)(f,f) ﬁ> (F=> .+)C g)

| !/ \ 11 | g / \

X . . f f X / \ f £

X x | | X x| |

a a f £

| |

a a

AR

£ f
| |
f f
| |
a a

Having introduced some notation, the following
na shows that

*
F-> £)(a,a) o7 (F=> .)C £)
/N I £ /\
X .
X

— Hh —
b
- Hh — o
) — rh = 'z

In other words, one can move the "dots" up on a
production slice, and the corresponding nodes th
dots move over become terminal symbols in the de

tree.

Lemma 6.2.1: Given any tree grammar G=(§1,§1,P1,

its corresponding characteristic grammar
CG=(Q2,22,P2,SZ); any nZOi any two terminals N

such that F(RX)->t&P U€2N , u€dom(t),

1’
N1=(F(?)—>t,UV{u}), and N2=(F(?)->t,UVV} where

V C {uw | WGN*} and n=max{length(w) | uw€V}; th
t’={(w,f) | (uw,f)€t; =Jv€V such that uw is a p
prefix of v} V {(w,xi) | uw€dom(t), uw€V, and

vn(V,w)=1i}; and any sequence of trees tl""’tm

*
such that m=vs(UVV), then Nz(tl""’tm) 6f>CG
)

Nl(tl,...,ti,t (ti+1,...,ti+p

i+p+q=m, vs(V)=p, and vn(UV{u},u)=1i+1.

ti+p+1"“’ i+p+q

Proof: By induction on n.
base case: n=0 - Trivial.

inductive step: N1=(F(f)—>t,UV{u}) and

%
N2=(F(?)->t,UVV) where V C {uw | w€N } and
n+l=max{length(w) | uw€V}. Depending on the ari

t(u), there are two cases:

Page

se 1: V={u0} where t(u)=a€§1V_(T)1 and r(t(u))=0.

e definition of Coo N2(x1 ->

,...,Xi+q)

(xl,...,xi,a,xi+1,...,xi+q)€P2 where vs(UV {u0})=

d vo(UV{u},u)=1i+1. Hence NZ(t1’°"’ti+q) 6?)

(tl,...,ti,a,ti+1,...,ti+q).

se 2: r(t(u))=p>0. By the definition of Cg,

) =>

(Xl,'oo,xi+p+q

(xl""’xi’t(u)(xi+1""’x1+p)’xi+p+1’""xi+p+q)

ere vs(U)=i+q, vn(UV{ul,...,up},ul)=i+1, and

=(F(®)->t,UV{ul,...,up}). Hence

(tl,...,ti,tl,...,tp,ti+p+1,...,ti+p+q) g%)

(tl,...,ti,t (ti+1,...,ti+p),ti+p+1,...,ti+p+q) W

r all j, 1<j<p, t3=t'(t)/ j. By

1+1’..Q’ti+p
duction, for all j, 1<j<p,

h|

pj’

_*

q) 3-1—> (F(R) >t,UVVj+1VWj+1)
j+1

Py+1
={ve€V | uk is a proper prefix of v, j<k<p},

ki
(Y)">t,UVVjVWj)(t1,...,ti, tseeest

+p+1’°’°’ti+p+
tj+1

preecatys B Theeest , t) whert

i+p+l""’ti+p+q

={uk | 1<k<j}, pj=vs(WjVVj), and for all k, 1<k<

t'(ti+l,...,ti+p)/k if k<j

ti+k otherwise.

Before continuing, let me introduce the fc

def inition:

Definition 6.2,5: G ven any tree granmar

Gz(lilA'i_fPifS,L) and its characteristic grammar
CG=(§2.22,P2,52), any nonterminal Néf?_ of the f
(F(X)->t,U),* the production slice supertree, de
pss(N), is the tree defined by the set of pairs
{(w,f) | (w,f)€t; 3v€U s.t. w is proper pref

*
vV {(w,x.) | weU, 3fv€éN s.t. vO=w, and vn(U,w]

Example 6.2.6: Let G and Cu— be defined as in ec

6.2.5. Then

pss(S->F) = F pss(S->F) » F pss(S->.) = U
(| (| F
a a . X |
. a a
pss(F->F) = F pss(F->F) . = F pss(F->.) = X
i1 1 1 1 1 1 F
X f f X . X X 1
1 1 f f
. X 1 I
X a a
pss(F-> g) = g pss(F->) = x
AR /\ | g
X ° X y X / o\
XX XX

Note; The following fact is inportant and is us
succeedi ng proofs. For any nonterm nal Ngjj. of
form (F("X)->t >inity(t)), for any sequence of ti

\Vir

s},...,s t-,'...,tqé‘Tx&A2 where r(F)=p and

Page

LinitG(t))=q, and for all ve€var(t), if

and t,=s,

:initG(t),v)=i, t(v)=xj, 1785 then t(sl,...

>ss(N)(t1,...,tq).

The next lemma presents a slight extension of
ma 6.1.1 and states that given any production sl

the form N=(F(?)—>t,initc(t)), N(X) 6%> pss(N) (R

mma 6.2.2: Given any tree grammar G=(§l,zl,Pl,Sl)
3 characteristic grammar CG=(§2,§2,P2,SZ); any
1terminal NGEZ of the form (F(RX)->t,U) where
LnitG(t); and any sequence of trees tl,...,tmGT—

2

*
2re vs(U)=m, N(t1’°"’tm) 3T>CG pss(N)(tl,...,tm)

bof: By lemma 6.1.1, N(tl,...,tm) %%)
(?)—)t,{&})(t'(tl,...,tm)) where t'={(w,f) | (w,f
60 s.t. w is a proper prefix of v} V

w,xi) | wédom(t), we€U, vn(U,u)=i}. By inspection
carly t’ =pss(N). Hence (F(?)->t,{E})(t'(t1,...,t
(F(?)->t,{€})(pss(N)(tl,...,tm)). By definition
> (F(?)->t,{e})(x)—>x€P2. Hence

(?)—)t,{ﬁ})(pss(tl,...,tm)) §?> pss(N)(tl,...,tm)

Having presented the above two lemmas,

shows that for any tree t€CT t€L(CG).

G,

Lemma 6.2.3: Given a tree grammar G=(§1,El,

its characteristic grammar CG=(QZ,22,P2,82)

s[u<—F(tl,...,tm)] s[u<-t(t1,...,tm)]

o1’G
r(F)=m, then

*
i) Sz _0‘T>CG t(tl’-o.,tm)
* - 4 4

G
V=initG(t), q=vs(V), and for all v

*
there does not exist a w€N where

vn(V,v)=1, t(tl,...,tm)/v=t£.

Proof: By induction on n.

base case: Sl 6T>G t. By definition of CG

Sz->(Sl->t,initG(t))€P2. Hence, using lemm

*
6’f>CG (Sl_>t’ln1tG(t)) ﬁ)cc

pss(t) = t.

__.n+l1
OI>G

s[u<-t(t1,...,tm)]. By the definition of

inductive step: S1 s[u<—F(t1,...,t

m

oll

. —n
must exist a derivation such that S1 5f>G

s [v<-G(sl,...,sq,)] 3?>G s’ [v<~t (sl,...,s
s[u<—F(t1,...,tm)] where q“=r(G), there exi
such that vw=u and t'(si,...,s;,)/w=F(t1,..

for all proper prefixes y of u, t(y)€§1. B

Page

0I CG

(V)=q, and for all z€V such that there does not e

==>* (G(f)—>t’,V)(sl,...,sq) where V=initG(t’),

*
yEN where yO=z, and if van(V,z)=1i, then
=t'(si,ooo,sc’l,)/z~ By lemma 6-1.1,

’ e—— * - - 4
(X)")t ,V)(Sl,oco,sq) 'O—f>CG (G(X) >t ,WV{WI,...,!

190154 Eyseeest s Si+p+1""’si+p+k) where
{ve€Vv | w is not a prefix of v}, vs(W)=p, i+p+k=q,

(WW{wl,...,wm},wl)=i+1., By the definition of CG

(?)—)t,WV{wl,...,wm})(xl,...,x) =>

i+k+m
(?)—)t,Y)(xi,...,xé) where Y=initG(t), d=vs(Y), £

1 b8Y where there does not exist a c€N such that

=b, if t(b)=xj and vn(Y¥,b)=p, then xp=xi+j° Henc

(?)—>t,,WV{Wl’-o.,Wm}) (Sl,ooo,si, tl,onc,tm’

+p+1""’si+p+k) %%)CG (F(x)-)t,Y)(tl,...,td) whe

r all k, 1<k<d, if xk=x1+j’ then tk=tj. By lemms

2.2, (F(?)-)t,Y)(ti,...,té)

%

01 CG

s(F(?)->t,Y)(ti,...,té). By inspection of the
finition a production slice supertree, clearly

‘s(F(?)—>t,Y)(ti,...,té) = t(tl,...,tm).

To show inclusion in the reverse direction (i

tat for all tGL(CG), t€CT ., is not as easy. The m:

G

‘oblem is that for any derivation in CG’ one must
y with the derivation in G where it is not the ca

1at every derivation step in C, corresponds to a

G

sequence oflderivat{on steps in G. To aide ir
controlling this problem, one would like to he
method of picking out which derivation steps i
correspond to derivation steps in G. The foll
definitions provide this assistance by stating

productions in C_, will correspond to derivatic

G
in G.

Definition 6.2.6: Given any tree grammar

G=(§1,51,P1,Sl) and its characteristic grammar

CG=(Q2,22,P2,32), a rewrite production p is ar

production p€P_, such that p is of the form

2
Nl(xl""’xk) -> Nz(xi,...,xé) where either

i) Nl'is of the form (F(RX)->t,UV{u}) su

u€dom(t), t(u)=G€§1, r(G)=0, and

vs(UV{u0})=k; and N2 is of the form

(G(RX)->s,V) such that V=1nitG(s), anc

ii) N1 is of the form (F(X)->t,UV{ul,...

such that u€dom(t), t(u)=G€§1, r(G)=n

G(R)->s€P vn(UV{ul,...,um},ul)=1i+1

1’
is of the form (G(®)->s,V) where V=ir
vs(V)=q, and for all v€V such that v¢

if s(v)=xj for some j, 1{j<m, and vn(

then Xp=xi+j

Pa

'urthermore, let rewrite(P) denote the set of all

yroductions p€P such that p is a rewrite producti

ixample 6.2.7: Let G and CG be defined as in exam

)e2.5. Then rewrite(Pz) contains the following f
>roductions:

(S=>F)(x) => (F=->F)(x)
| |]

. x f
a |
X

(S=>F)(x) -> (F-> g)(x,x)
I I / \
. X . .
a X X

(F=>F)(x) => (F=->F)(x)
| | | |

X x f
|
X

W — rhe

(F=>F)(x) => (F=> g)(x,x)
o I !/ \

X . X . .

rh
]
]

b

Having defined which productions meet the de
conditions, one can explicitly state which deriva
steps use the rewrite productions, and this is

presented by the following definition:

Definition 6.2.7: Given any tree grammar

(Q > 1,S) and its characteristic grammar

=(Q2, 2 2,S), a characteristic derivation ¢

denoted =£>, is an IO derivation step such that

£, => t, if and only if

1
i) t, 370c¢. b
G
ii) t1 and tz are of the form
£, = s[u<—F(sl,...,sm)] and
ty, = s[u<—t(sl,...,sm)] where

F(ﬁ)—)tSrewrite(Pz).

Similarly, a noncharacteristic derivation step,

§§>’ is an OI derivation step such that t:1 §£>

and only if t, 6¥>CG t, and t =¥> t

2.

Lemma 6.2.4 (below) shows that by only pet
noncharacteristic derivations, the derivation n
performed on production slices defined on a sir
production, and that each noncharacteristic der

step moves "dots" up in the production slice.

Lemma 6.2.4: Given any tree grammar G=(§1,§1 P,

its characteristic grammar CG=(92,22,P2,82); E

any two nonterminals NI,NZGQ2 of the form

Page

:(F(®)->t,U) and N2=(G(?)—>S,V) where vs(U)=p and

V)=q; any sequence of trees

NC . n
,-oo,tpeT_ ; if Nl(tl,noo,tp) _>

,OOO’S ’t
q 2-2

1
\sl,...,sq) then

i) FR)->t = G(R)->s

ii) for all v€V, there exists a u€U such that

a prefix of u

iii) for all u€UAV such that there does not ex:

*
a v6N where vO=u, ti=sj where vn(U,u)=1i a

vn(V,u)=j

iv) for all ve€V-(UAV), si=t'(

va(V,v)=1i, Y={w | vwe€U},

tj+1,-to,tj+k) Wl

t’ = {(w,f) | (vw,f)€t, JueéU s.t. vw is
prefix of u} V {(w,xh) | vw€dom(t), vwe€U,

van(Y,w)=h}, vn(U,v)=j and vs(Y)=k
pof: By induction on n.

se case: n = 0, trivial,

L

. ’ , NC. . n
ductive Step. Nl(tl,'..’tm) ‘_‘> Nz(tl,oo-,tp)

(Sl’°'°’sq)' By induction,

i) N - (F(*)->t,U) and N, = (F(R)->t,V)

F(*)->t 6P,

i) for all V€V, there exists a u€U such

a prefix of u

iii) for all u€UAV such that there does n

a VEN where vO=u, t et:I where vn(U,i

i
vn(V, u)=j

iv) for all v€V-(UAV), t, - t'(t’ Jo o
where vn(V,v)=i, Y={w | vw€U}, t'={(*
(vw, f)£€t; 3u€U s.t. vw is a proper
up V {(w, xn) ! vwE€dom(t), vweyY, vn(Y

vn(UV{v})=j, and vs(Y)=k.

By inspection of the definition of C., there a
two applicable fornms of productions which wll
noncharacteristic derivation:

case 1, N, = (F(xy->t, W{uO}) and

Ns = (F(ie)->t, W{u}) where V=WV{uO}, r(t(u)) =
vs(W{uO}) =i +j, vn(W/{u},u)=i+l, and N_"xf‘.,

-> Na(X1, . *. ,Xj, t(U), Xisr, ... ,xij)- Hence

Nz(tl,,..,tp) J"-‘M>N3(t|_,...,ti,t(U),tJ_r+1,...,t
Clearly, condition (i) of the lemma is met. |
V=W{uO} and u is a prefix of uO, clearly for

VEW/{u}, there exists a u€U such that v is a

Page

Hence condition (ii) of the lemma is met. By
pection of the definition of set intersection,
(WV{u})=UAV, and hence by the induction applied
‘lier, condition (iii) of the lemma is met. Sinc
- all veWw-{UAW) and si={(E,t(u))}=t’, clearly
1 dition (iv) is met.

N, = (F(2)->t,WV{ul,...,um}) and

2
= (F(R)->t,WV{u}) where V=WV {ul,...,um},

&

- (u))=m>0, vs(W)=i+j, va(WV{ul,...,um},ul)=i+1, 3

:xl,ooo,x) -> N3(X1,...,Xi, t(u)(X

i+1°° 2%y

HEC,

i+m+j
)GPZ' Hence Nz(tl""’t

)

m+12° 2 X itm+ i+m+')
J J

:tl,...,ti, t(u)(t

i+1°° " 2 Ci4n Citat+1’ 0 Cidmt

sarly condition (i) of the lemma is met. Since
VV{ul,...,um} and u is a prefix of ul, clearly fc
| v€WV {ul,...,um} there exists a u€U such that v
yrefix of u. Hence condition (ii) of the lemma i
-« Also, UA(WV{u})=UAV, and hence by the
luction applied earlier, condition (iii) of the 1
met. Therefore, the only condition left to show
t’(

1 t) where

k1=t(u)(tj+1""’tj+m)’ and va(WV{u},u)=i+1 is
ready known. Let Y={w | uw€U}. CLearly, from th

luctive step applied earlier, for all h, 1<{h<m, ¢t

t'(t3+1,...,t3+k)/h where van(WV{u},u)=3j, t ' ={(w,!

7,£)€t, Jv€U s.t. uw is a prefix of v} V {(w,xC

uw€dom(t), uw€U, vn(Y,w)=c}, vn(u,v)=j, and vs(

But then s = t(u)(t’(t

i+1 J+1,oaco,tj+k))/l, LI)

t'(t j+1,...,t +k)/m) =t (t 1""’t3+k)' Henc

condition (iv) of the lemma is met.

By separating derivations into characteris
noncharacteristic derivations, the following 1le

shows that for any tree t€L(CG), t€CTG

Lemma 6.2.5: Given any tree grammar G=(§l,§2,P
its characteristic grammar CG=(§2,22,P2,32); a

any nonterminal N0=(Sl->t0,initc(t0))GQZ; any

of nonterminals Nl""Nn€§2 such that for all i

N1=(Fi(2)—>ti,Ui) for some production Fi(?)->ti

BE>Po Ng (e =

2’&) NO 1,000’t0 m(,)) _‘>
Nﬂ P , £
Nl(tl,l""’tl,ml) =>"1 N/ (tl 1,...,tl,mi) >
NC —C
N (t l,coo.’tz,mz) "—"> 2 LI _> Nn(tn’l,noo,
NG, p .
> n N’ (t 1,...,t) OI CG t’ where
i) t’€T<
22

ii) for all i, 0£i<n, Nieﬁz

Pag
1i1) for all , 0<i<n, p,>0
iv) for all i, 0<i&n, mi=r(Ni) and mi=r(Ni)

v) for all i, 0{ifn, all j, 15j£mi, all k,

t! €T

1¢ksmy, ¢ 1,x%Ts

i’j, 2

vi) there are exactly n characteristic derive

steps

hen there exists a derivation in G such that S1 %

[u<_Fn(Sl""’Sp)] €?>G s[u<—tn(sl,...,sn)j where

,ooo,tn’m
n

ss(Nn)(tn’1) = tn(sl,...,sp) = t’,

roof: By induction on n.

ase case: n=0. Hence S, —> N §§>p0

2 0

6(t6’1,...,t6,m,)'§%> t’. By inspection of the
0

efinition of CG’ the last derivation step must be

’

he form Né(x)-)x where NO is of the form

F(X)->t,{€}). By lemma 6.2.4, N6=(Sl—>t0,{€}) ar

(g p —_ o -
—>"0 No(to) 6T> ty =t Clearly 8, >t

0€P1 and 1

1 ot’¢ For

nductive step: For any n>l, S EE>p0

e . —C NG, p
0(to’l,...,to,m(,)) > Nl(t1,1’°"’t1,m1) > 51
C

N..C. p ’ ’ ’ —_—
> Nn(tn,l""’tn,mn) > n Nn(tn,l""’tn,m;) 5

y inspection of the definition of CG, the last

erivation step must have been of the form N;(x)—l

ﬁ)N

2 0

Pa

Jhere N; is of the form (F(X)->t,{€}). By the
lefinition of =£>, N =(F_(®)=->t_,U_) where
n n n’ " n

Jn=1n1tG(tn). By lemma 6.2.4, Nn(tn,l"'°’tn,mn)

vn(pss(Nn)(tn’l,...,tn’mn) 3?)
?ss(Nn)(tn,l,ucv,tn’mn) = t Where Nn=(Fn(x)—>tn,

=(F__,(®)->¢t U _;) where

Similarly, Nn n-1°'Yq

-1

Jn_1=in1tG(tn_l) and Nn-l(t

’ ’ ’ M *
\] (t tn,m') —"‘>

N
e o o t b
n=-1,1" ’ n—l,mn_l)
‘n-1" "n-1°"°°"

)) T
n-1 0 OI

) where Nn-l =

(B)->t__,{ED

”
-1 (Pss(N) (e) seeent 1o

pss(Nn_l)(t l,...,t

n-1, n-1,m
n-1

=\ ’ " =

(Fn_l(x) >t U _1) and NY

n=-1’"n (F

n-1

induction, there exists a derivation such that S1

5[V<-Fn_1(sl,...,sp)] == s[v<-tn_1(sl,...,sp)]

oL’ G
>=r(F__,) and pSS(Nn-l)(tn-l,l""’tn-l,mn_l) =
tn-l(sl""’sp)' From lemma 6.2.4, N;_l
(Fn_l(f)—>tn_l,U;_l) where for all w€U;_1, there

3 y€Un_l such that w is a prefix of y. By the

Jefinition of =£> either

i) U;_l =WV {ul,...,uq}
ii) Un-l = W V {u0}
and t(u) = Fn' Clearly, for all w€Un such that

vevar(tn), if tn(w)=xj and vn(U,w)=p, then tn,p =

tn_l(sl,'.o,sp)/ujo AlSO, S[v<—tn_1(sl,ooo,sp)]

3[V<_tn_1(sl,ooo,sp) [u(*Fn(tn_l(Sl,...,Sp)/ul, .

Pag

1(sl,...,sp)/uq)]] => s[v<—tn_1(sl,...,sp)

n- 0I" G

L1<"tn(tn_l(sl,...,Sp)/ul, e o0y tn_l(sl,ooa,sp)/uq
here r(Fn)=q. Hence tn(tn_l(sl,...,sp)/ul, ey

n_l(sl,...,sp)/uq))€CTG. On the other hand, by

nspection of the definition of a production slice
upertree, pSS(Nn)(tn,l"'°’tn) =

sy
(t

n
n' “n-1 (s)evess) ug))=t

(sl,...,sp)/ul, cees o

ence t'GCTG.

Having shown in lemma 6.2.3 that for all t€CT
GL(CG), and in lemma 6.2.5 that for all tGL(CG),

€CT the following two theorems states the desir

G)

esults, namely that L(CG)=CTG and that the class

haracteristic trees is contained in the class of

oregular tree languages.

heorem 6.2.1: Given any tree grammar G=(§1,§1,P1,
nd its characteristic grammar CG=(Q2,22,P2,82),

(cG) = CT..

*
roof: By definition, CTG = {t(tl""’tn) | S 6T>C

[u(-F(tl,...,tn)] %?)G s[u<-t(tl,...,tn)]} and L(

*
teTSZ s, 5T>CG t}. Let t(t,,...,t)ECT, be anj

n the set CTG. Hence, there exists a derivation

%
he form S1 BY>G s[u(-F(tl,...,tn)] 6T>G

s[u(—t(tl,...,tn)] for some production F(R)=>t

*
lemma 6.2.3, S2 5T>CG t(tl,...,tn). Hence

t(t1’°"’tn)€L(CG) and CTG c L(CG). On the of
let t'GL(CG) be any tree in the set L(CG). He

*
there must exist a derivation such that Sz'gf)

By the definition of CG’ and %?), the derivat:
* *
be of the form S, => s §£> Sy =£> sS4 §£>

2 oI CG 1
—C NC * —_ ’
= Sg > S¢ 5T>CG t’. By lemma 6.2.5

must exist a derivation of the form S

==
1 017G

s[u<-F(t1,...,tn)] 6?) s[u<-t(t1,...,tn)] whe:

t(tl,...,tn)=t . Hence t €CTG and L(CG) c CT,

Therefore CTG = L(CG).

Theorem 6.2.2: The class of characteristic tre

contained in the class of coregular tree lang:

Proof: Let G=(§I,EI,P1,81) by any tree gramma:

CG=(QZ,22,P2,SZ) be the characteristic gramma:

By theorem 6.2.1, L(CG)=CT By inspection o!

G‘

definition of CG’ clearly CG is root-linear.

is contained in the class of coregular tree 1.

Page

While the preceeding result has shown that the
35s of characteristic trees is contained in the cl
coregular tree languages, there was no descriptio
the form of deterministic automata needed to
ognize the class of characteristic trees.
thermore, there is no known construction method
ch guarantees to produce a deterministic automato
recognize tree languages in the class of coregula

2 languages.

At this point, there appears to be two options
tinuing to 1lift LR(O) parsing techniques. One
ion is to invent a new construction method which
1l guarantee to produce a deterministic automaton

set of characteristic trees. The other option i
relax the constraints of only accepting
racteristic trees such that the relaxation
rantees that the construction method will produce
erministic automaton. The former method was
empted with little succeés. Therefore, the latte
hod was chosen. In fact, the constraints were
axed such that a bottom—up tree automaton could b
1t, and then the result of Rabin and Scott[59] co
used (this theorem states that every bottom—up tr
omaton can be converted into a deterministic

tom-up tree automaton).

One of the reasons for presenting the const
method to build a characteristic grammar is that
construction method provides insight as to why a
bottom~up tree automaton can not be built to rec
the set of characteristic trees. The definition
production slice implicitly implies context betw
subtrees (i.e. each "dot" in a production slice
requires the corresponding context of the other
the production slice). Hence, in designing the
construction method which will build the charact
automaton, the method will attempt to capture tt
"essence" of the production slices, used to defi
characteristic grammar, without requiring the cc
used by production slices. In doing so, one shc
note that the construction method will build an
automaton which will recognize a superset of the
language generated by the characteristic grammar
also allow illegal stack configurations to be ac

by the characteristic automaton).

The relaxation is to go back to using marke
productions instead of production slices. Giver

grammar G=(Q,E,P,S), a marked production is a pe

%
(F(X)->t,u)€P x N where F(X)-Dt€P is a producti
u€dom(t)V{u0 | u€const(t)} is a marker denoting

relative position of a read-head in recognizing

Page 2€

ction. Furthernore, let nmp(P) be the set of all
bl e marked productions defined by the set of

ctions P.

le 6.2.8: Let G{d%,][,P, S) be the tree grammar
ed in exanple 6.1.1. Then

(P) = {(S->F,10), (S->F, 1), (S->F,9),

1 1 1
a a a

(F->F 11), (F=>F 1), (F=>F,§&),

1 1 1 1 1 1
x f x f x f
1 1 1
X X X
(F-> g 1) (F-> g 2) (F-> g ,6)}
| [\ | /\ | [\
X X X X X X X X X

arked productions can be graphically depicted as

WS :
-> F S -»> F >
| 1 STF
a . ‘1
- a a
->F F-:>»F F 0.
| | 1 1 F
. X 1
f X f f
i 1 1
X X X
-> g F-2 g F -> =
/A 1 I\ | g
. X X X X [\

Using marked productions instead of produ
slices, the new construction method will creat
characteristic automaton in such a manner as t
the productions presented in definition 6.2.4
possible. The nondeterministic version of the

characteristic automaton is defined as follows

Definition 6.2.8: Given a tree grammar G=(3,>,

the bottom—-up tree automaton NCG=(EV§,C,8,S,{

the nondeterministic version of the characteri

automaton where
C = mp(P) V {S,F} is the set of states, an

S is defined as follows:

i) for all productions F(X)->t€P, for all

u€const(t), (F(R)->t,u0)ed(s,€)

ii) for all productions F(RX)->Dt€P,

FeS((F(R)->t,€),€)

iii) for all productions F(R)->t€P, for all

u€const(t), (F(R)=->t,u)68b((F(R)->t,u0),

iv) for all productions F(X)->t€P, for each
such that r(t(u))=m>0,
(F(?)—)t,u)€8((kl,...,km),t(u)) where f

1<i<m, k, =(F(X)->t,ui)

Page

v) for all productions F(R)->t€P, for each
ui€dom(t) such that t(u)=G€J, r(G)=m, and 1<
for each production of the form G(R)->s€P, f
each v8var(s) such that s(v)=xi,

(6(R)=>s,v)8S ((F(R)=>t,ui),€)

7i) nothing else

ample 6.2.9: Let G be the tree grammar defined in

ample 6.1.1. Then, the nondeterministic version
e characteristic automaton is the bottom—-up tree
tomaton NCGS(EVE,C,S,S,{F}) where
C = mp(P) V {S,F} such that

S => F will be denoted as s

|
a

will be denoted as s

D e —

will be denoted as

B o— e

will be denoted as

»
s i I

S is

->

defined by the

will be denoted as s

will be denoted as s

5’

6’

denoted as S45

denoted as Sgs and

denoted as s and

9’

following table.

Page 3

F

€

4
B T S e T

f

a

1}

e e B e T

{s

S

|

R e e E T

{s,} 1
4mn?

51

6°58°59}

T e TR AP

{s

)

3}

LT T s ST T T T T A S

{s

)

2
s

| | {r} | |
it e e T T S

3

}

- S W

{s

6)

3

6’88’89}

e S N S SRR

{s

S5
;5)

4}

e T . s

| | I {s

| | {F} | |
T ST T T

! I {F} I I
e T s E T &

Sy
87

}

Y A S S

{s

;9)

Pag

ote that 8 can be graphically depicted as follows

F

As mentioned earlier, it has been shown by
hatcher[73] that by using the construction of Rat
nd Scott[59], every bottom-up tree automaton
=(§,C,$,q0,F) can be converted to a deterministic
ottom-up tree automaton M'=(S,C'8’,q6,F’) such tt
(M)=N(M"). Algorithm 6.2.1 (see below) presents
onstruction method to build M’ and consists of tt
ain procedure "ITEMS", and two functions "closure
GOTO". The basic idea used by the algorithm is t

onstruct a bottom-up tree automaton M’ where M’

Pag

imultaneously follows every possible computation
y having each state q“€C° be a set of states in (
here q° 1is reachable in M’, for an input tree t,
nd only if for all q€q‘’, q is reachable in M usir
n terms of the algorithm, function "closure" perf
psilon=-closure by taking a state q“€C° and retur:
he set of all states reachable from states in q’
ithout reading any more input. Procedure "ITEMS'
he main routine and starts by defining qé as the
psilon-closure of the start state 1, in M. Then,
sing the function "GOTO", it takes each n-tuple
ql,...,qn)etuplen(c') already built, and determirs
he transitions as follows:
For each f6> where r(f)=n, if for all i, 1<i<n.
there exists a inqi such that qGS((ql,...,qn),
then there is a unique transition in M’ such tI
8’((q1,...,qn),f)=q' where q’ 1s the epsilon-c!:
of the set {q | qGS((ql,-..,qn),f), qieqi}.
nce the graph defining the transition map 8 is b
he set of final states F’ is defined such that fo
very state q'€C’°, if there exists a state q€q’ s

hat q8F, then q’6F’.

Pag

lgorithm 6.2.1: A method to construct a determinj

bottom-up tree automaton.
nput: a bottom-up tree automaton M=(E,C,$,qo,F)
utput: a deterministic bottom-up tree automaton
M'=(S,C',S',q6,F') where M’ does not contain ar
epsilon ﬁoves.
ethod: The three procedures below, initiated
by calling ITEMS(M);

rocedure ITEMS(M);

begin

for all input pairs (a,b)6tuples(C) x (SV{€&
initialize 8’(a,b) to 0;

q6 t= closure({qo});

c’” := {q)};

for each a€> such that r(a)=0 do

for each set q1€C' do

f q2=G0T0(q1,a) and q2#¢
then
€’ :=C" V{qy};
8’(q1.a) 1= {qz};
fi

Page -

for each f€ such that r(f)=»n>0 chs
or each n-tuple (ql,.*.,q!2€tuple 4(3 dj

if. GOTO((qif...tqn)¢f)-q

where g0
t hen
C := C V {qg;

&'((qjl..'vqn)!f) :*{Q},

until no nmore sets of states

can be added to C;
F =0
for each q'€C' d3

if there exists a q€q' such that q€F
then FF - F Vigq'} ‘

Function GOTO(z,f);

begin
if r(£)=0
then
q" := {q’ | q'GS(q,f), q€z}
else
q" = {q’ | q’es((qi.--o,q;),f)
where r(f)=n, z is of the
(qy5+++59,), and for all
q;€aq,}
fi

return closure(q")

end

Function closure(k);
begin
s := k3
while there exists a state q€s such that

q'GS(q,E) and q’¢#s

s := s V {q’}

return s;

end

Page

nple 6.2.10: Let NCG be the bottom-up tree automa

ined in example 6.2.9. Algorithm 6.2.1 will
struct the deterministic bottom-up tree automaton

'=(i,C',$’,q6,F’) where

2 = {{s, S=->F}, {S->F, F=>F, F=-> g , F=> g }
| | | | | !/ \ | / \
a . x f x . X X X .
. a | X b 4
X
{s->.}, {F=>F, F=>F, F=> g , F=> g },
F | | | | | !/ \ | / \
| x . x £ x . X X X .
a f | b 4 X
| .
x b4

F = {{S=->.}, {F~> . }, {F=>.}}; and
F | g | F
| X / \ X

|
a X X £
|
X

(is defined by the following graph:

Page

a
{Ss,S=>F} {s->F, F=>F, F-> g ,
| | | | | / \
a . x f x . X
. a | b 4
X
8] 82 1 L)

Combining definition 6.2.8 and algorithm 6.2.1,

BUTLR(O0) characteristic automaton CG can be buil
the tree grammar G. The previous method started
structing the nondeterministic version of the
racteristic automaton NCG using definition 6.2.8.
n, NCG is made deterministic using algorithm 6.2.

ducing the BUTLR(0) characteristic automaton CG.

Page

sver, rather that going through the two step
cess, definition 6.2.8 and algorithm 6.2.1 can be

>ined into a single algorithm as follows:

yrithm 6.2.2: Method to construct a BUTLR(O0)

haracteristic automaton.

it: a tree grammar 6=(3,>,P,S)

put: a deterministic bottom-up tree automaton
3G=(SV§,C,8,qo,F) without epsilon-rules.
nod: The three procedures below, initiated

by calling ITEMS(G);

redure ITEMS(G);

begin
for all input pairs

(a,b)8tuples(C)) x (ZV{€})

initialize S(a,b) N 'H

qp := closure({(F(X)=->t,ul) |

F(X)->t€P, u€const(t)};

C := {qo};

repeat
for each grammar symbol a€X>V{

such that r(a)=0 do
for each set of marked productions I
if J=GOTO(I,a) and J#¢
then
C :=C V {J};

§¢1,a) := {J};

od

for each grammar symbol f€3V>

such that r(£f)=n>0 do

for each n-tuple (Il"°°’In) in
tuples(mp(P)) do
if J=GOTO((I ,...,I),f) and J#§
then
C :=Cc V {J};

8((11,...,1n),f) 1= {J};

until no more sets of marked productions

can be added to C;

Page

F := §;

for each set of marked productions I€C do

if there exists a marked production of the
form (F(RX)->t,€)€l
then F := F V {1}

£

1iction GOTO(z,f);

begin
if r(£)=0
then
J = {(F(X)=>t,u) |
(F(®)->t,u0)8z, t(u)=f};
else
J = {(F(X)=>t,u) | t(u)=f, r(t(u))=n,
z is of the form (I ,...,I) an
for all i, 1<im, (F(®)=->t,ui)e
£1

return closure(J)

end;

function closure(Il);
begin
J = 1;
while there exists a marked production
form (F(R)=->Dt,ui)€J such that i€
t(u)=G€ld do

for each G(®)->s€P do

for each v€var(s) such that

s(v)=xi, and (G(X)=>s,v)E]
do

J = J V {(G(X)=>s,v)};

od
return J

end;

Example 6.2.11: Let G=(§,S,P,S) be the tree

defined in example 6.2.1. Then, using algor

the BUTLR(O0) characteristic automaton is the
tree automaton CG=(E,C,$,q0,F) where

c = {{s=>F}, {S=>F, F=D>F, F=> g , F
| | | | | !/ \ | /
a o x f x . X X
. a | b4

{8=>.}, {F->F, F->F, F> g , F->
F I I | I I / \ |
I X . x f x X X
a ?Z | X
x X
{F=> .+ }, {F=D.}};
| g IF
X / \ X |
X X {
X

6 is defined by the follow ng graph:

Page

2 that the only difference between CG and NCG’,

sented in example 6.2.10, is that the start state
tains a different set of states (i.e. the start
te of NCG’ contains the state S which is not in C
reason for this is that in creating NCG, a speci
rt state S is added to give the nondeterministic

omaton a single start state. However, when the

Page

ph is made deterministic, the need for this state

oved and hence, algorithm 6.2.2 removes the state

This section concludes by showing that the abox
struction method is a strict relaxation on the
straint of only accepting the set of characterist
es. In other words, to show that for any
racteristic tree tGCTG, the characteristic autome
will accept t, which is shown by the following 1le

two theprems. One should also note that lemma
.6 shows the close correlation between the use of

ked productions and production slices.

ma 6.2.6: Given any tree grammar G=(§1,51,P1,Sl),
characteristic grammar CG=(Q2,22,P2,SZ), and it:
racteristic automaton CG=CEV§,C,8,qO,F); any n>
nonterminal N€§2 where N is of the form (F(X)->t

vs(U)=m; any sequence of trees t ,...,tmGT— H

1 22

e t'GT: such that for any subset 2 C {1,2,...,m]
2

re |Z|=q, for all i€Z there exists a wiedom(t')s

t t'=t’[wiui<-t1], vn(U,ui)=i, and u,6U; any

*
N x C; if S

i
—n _*
2 ——>C N(tl,ooo,tm) —'>CG

G
(N)(tl,...,tm) = t’, then there exist states

...,ImGC such that ({(wiuivio,qo) | i€z,

leaf(t,)}Vb,t") i ({(wyu,,I,) | 16z,

Pag
?(f)->t,u1)€Ii}Vb,t').

roof: By induction on n.
1se case: whenever n=1, clearly the above condit
re vacuously true.

—_ , ’ —_—
\ductive step: S =—> Nl(tl,...,tnl) -

>(t1""’tn). Depending on the production used
: 2
1e last derivation step, there are 4 cases:

1se 1 - condition (iii) of definition 6.2.4:

.-‘(?)->t,WV{u0})(t1,...,t t.) =>
b

=t/u,

j, tj+2’...’

?(i‘)-—>t,wV{u})(t1,. e ,tnz) where tj+1

‘t(u))=0, U=WV {u}, vs(U)=n2, and vn(U,u)=j+1. By
2finition of the conditions of the lemma, there e
set 2 C {1,2,...,n2} such that |Z|=q and for all

1ere exists a wiGdom(t) such that t'=t'[wiui<-ti]

1ere uiGU and vn(U,ui)=i. If j+1€Z, then by

1duction, there exists states Il”"’In €C such t

2
r all i€Z, (F(x)—)t,ui)GIi and ({(wiuivio,qo)]

Sleaf(t)}Vb,t’) F ({(wyu,,I,) | 162, 14j+l,

Ii
?(f)-)t,ui)eli} \Y {(wj+1uj+10,q0)}Vb,c'). By th
ynstruction of CG, clearly (F(?)—)t,uO)er. By

1spection of the function GOTO, there exists an I

ich that (F(X)->t,u)€l and 1j+le£(qo,t(u)). i

j+1

((wu,,T)'| 162, 1#3+1, (F(¥)->t,u)€ } V

[wj+1uj ,qo)}Vb t’) Fk ({(w uy i) | i€z,

F(?)—)t,ui)eli}Vb,t'). On the other hand, if j+I

Page

'n by induction there exists states Il""’In €C
2

't for all i€z, (F(?)-)t,ui)GI1 and

| , *

,wiuiviO,qo) | i€z, viGIeaf(ti)}Vb,t) k

ﬁwiui,Ii) | 16z, (F(Y)-)t,ui)GIi}Vb,t').

e 2 - condition (iv) of definition 6.2.4:

/l,ooo,t

==>

[tl,...,tj, tj+1 j+1/p’ tj+2,...,tn2
:tl,...,tnz) where N1=(F(?)->t,WV{ul,...,up}),
(F(R)=>t,WV{u}), vs(WV{u})=n,, va(WV{u},u)=j+l1,
| r(t(u))=p. By definition of the conditions of
mma, there exists a set Z C {1,2,...,n2} such ;ha
=q and for all i€Z, there exists a wiedom(t) suc
\ t t'ft’[wiui<-ti] where uiGWV{u} and
[WV{u},ui)=1. I1f j+1€Z, then by induction there
 sts states Il,...,Inz,Ii,...,IBGC such that for
. (F(?)-)t,ui)eli and for all i, 1<i<p,
[?)-)t,ui)GI;, and ({(wiuivio,qo) | 16z,

leaf(t)}Vb,t') F ({(wyu,,I,) | 162, 143+1,
[2)->t,ui)€Ii} \Y) {(wj+1ui,11) | 1<i<p,
[?)-)t,ui)GIi}Vb,t'). By inspeétion of the funct

[O in the construction of CG, there exists an 1

j+
-h that GOTO(Ii,...,I;),t(u))=Ij+1 and
(R)->t,u)61,, . Hence, Ij+1€$((li,...,I;),t(u))
[wiui,Ii) | i€z, i#j+1, (F(?)—)t,ui)eli} V
P ip18ger i I1) 1 1SECP, (F(R)->E,ui)@I }Vh,e%) F

[wiui,Ii) | i€z, (F(§)~>t,u1)€Ii}Vb,t'). On the

other hand, if j+1€Z, then by induction there e3
states I.,...,I_ €C such that for all i€Z,
1 n

2
(F(i’)-)t,ui)eli and ({(wiuivio,qo) | i€z,
*
viGleaf(ti)}Vb,t') F ({(,wiui,Ii) | 1€z,

(F(?)-)t,ui)eli}Vb,t').

case 3 - condition (v) of definition 6.2.4:
Nl(ti’°°"t;1) =y N, where r(N2)=0. Since ther

no parameters for N the conditions of the lemn

2)

vacuously true.

case 4 - condition (vi) of definition 6.2.4:
Nl(ti""’tél) => NZ(t1’°"’tn2) where
N1=(F(3t)->t,wV{u1,...,up}), t(u)=ce?§1 where r(G
va(WV{ul,.c.,up},ul)=j3+1, N2=(G(¥)->S,V) where
V=initG(s), vs(V)=n2, and for all véV such that
vevar(s), if s(v)=xk for some k, 1<k<p, and vn(1
then tq=t;. By definition of the conditions of
lemma, for some subset Z C {1,2,...,n2}, for all
there exists a w,68dom(t) such that t'=t'[wiui<-t

i

where uiGV and vn(V,ui)=i. By induction (applie

many times as there are duplications of variable
occurring in the tree s) there exists states
Il,...,IPGC such that for all i€z, (F(X)-=->t,uk)¢

where s(ui)=x and ({(w,u,v O,qo) | i€z,

k? ii'i
*
vieleaf(ti)}Vb,t) ({(wiui,Ik) | i€z,

Pag

?(?)—)t,uk)elk, s(ui)=xk}Vb,t'). By inspection «
1e construction of CG, every state is closed usin
inction "closure". By inspection of the function
~losure", clearly for all i€z, (G(i‘)-)t,ui)elk wh

For all i€z, let I =1

s‘(!t)-)uk)GIk and s(ui)ax 1

k.
1ere s(ui)=xk. But then ({(wiui’Ik) | i€z,
?(Y)-)t,uk)GIk, S(ui)=xk}Vb.t') = ({(wiui,I;) |

2(?)->s,ui)€Ii}Vb,t’).

1eorem 6.2.3: Given any tree grammar G=(Q,S,P,S)
s characteristic automaton CG=(EVQ,C,8,qO,F), i1

S5CT then té6N(CG). That is, CT

o’ € N(CG).

G

roof: By theorem 6.2.1, L(CG)=C'1'G where
,=(§1,21,P1,Sl) is the characteristic grammar of

ance, for any tree t€CT there exists a derivati

G’

3
=> N(t) ==>C t where N is of the form

Ce G
F(R®)->t,{€}). By lemma 6.2.6,
((u0,q,) | uBleaf(t)},t) iy
((€,I) | (F(X)->t,{€})€I},t). By the definition

3, F={16C | (F(RX)->t,{€})E€I}. Therefore tE&N(CG).

heorem 6.2.4: Given any tree grammar G, its set o

haracteristic trees CT and its characteristic

G’

itomaton CG, it is not necessarily the case that

I, = N(CG).

Proof: Assune that it is the case that for any t

grammar G CI", = N(CG). Consider the tree gramm
Cr

shown in exanple 6+ 2+ 119 and its characteristic

automaton CG By theorem6.2.3, CTo C N(CG . E
G —

inspection of the created characteristic automat
clearly g(f(f(a)),f(a))€ENCG. However, as show
theorem 6.2.1, g(f(f(a)),f(a))£ECTee Hence CTp C

(@15 KJ

Therefore the set of characteristic trees CI,, is
(W]

identical to the set of trees accepted by

characteristic automaton CG producing a contrad

Note; The result of theorem 6.2.4 is not surpris
since not all coregular |anguages are accepted b

bott om up aut omat a.

6.3 Constructing BUTLR(O Parsing Tables

This section presents a nethod to construct
BUTLR(O) parser fromthe BUTLR(O characteristic
aut omat on, and shows the correctness of the al go
whi ch creates the BUTLR(O) parser. The construe
nmet hods does not always construct a well defined
BUTLR(O parser. However, the produced BUTLR(O
al ways accepts the sanme tree |anguage as the tre
| anguage generated by the given tree grammar, ev

t hough the parser m ght be nondeterm nistic.

Page

The method to convert the characteristic auton
to a BUTLR(O0) parser is straight forward and is g

the following algorithm:

gorithm 6.3.1: Constructing a BUTLR(O0) parser

put: a tree grammar G=(§,>,P,S) and its
characteristic automaton CG=(SV§,C,£,q0,F)
tput: a BUTLR(0) parser

M=(G,K,shift,reduce,goto,start)

thod: Let C={Il,12,...,1n} be the set of sets of
rked productions from the characteristic automat
+ Then, K={1,2,...,n} where state i corresponds

e set of marked productions I and start=k wher:

i)
=4 is the start state of the characteristic
tomaton CG. The rank of state i is determined b;

ansition map S of the characteristic automaton.
0 if i=start

r(f) where £f€2VJ and Iieg(z,f)
for some z€tuples(C)} otherwise.
rthermore, the three parsing tables are construc

 follows:

Pa

3hift table:

i)

ii)

iii)

for all states k€K, all productions F(X)
for all u€dom(t), if t(u)=a€> where r(a)

(F(X)=->t,u)€l and IjGS(Ik,a), then

k,
shift(k,a)=j

for all n—-tuples of states
(kl,...,kn)etuples(K), all productions
F(X)->t€P, for all uédom(t), if t(u)=fe€>

r(£)=n>0, (F(X)->t,ui)e€l for all 1, 1<

kg

and IjGS((Ik sever Ly),£), then
1 n

shift((kl,...,kn),a)=j

all other entries, not defined by (i) an

(ii), are defined as error

reduce table:

for all states k€K,

reduce(k)={(F(X)=->t | (F(?)->t,6)€lk}

joto table:

1)

for all states k€K, all productions F(X)
for all u€dom(t), if t(u)=A€0 where r(A)
(F(X)=>t,u)€I , and Ijeé(lk,A), then

goto(k,A)=]j

ii)

ii1)

Page

for all n-tuples of states
(kl,...,kn)etuples(K), all productions
F(X)->t€P, for all u€dom(t), if t(u)=F€J wh
r(F)=nd>0, (F(i’)—)t,ui)GIk for all i, 1<i<n
i

and 1,66¢((I, ,...,I,),F), then

3 kl kn
gOtO((kl,. e o ’kn)’F)zj
all other entries, not defined by (i) and

(ii), are defined as error

mple 6.3.1: Let G=(3,2,P,S) and its characteristi

oma ton CG=(§,C,$,q0,F) be defined as in example

.11

Using algorithm 6.3.1, the constructed

LR(0) parser is M=(G,K,shift,reduce,goto,start)

re

R = {1,2,3,4,5,6} where r(1l)=r(2)=0,

r(3)=r(4)=r(6)=1, and r(5)=2; and

5

= {S">F}s

= {8§->F, F->F, F-> g , F=> g },
| o / \ | !/ \
. x £ . X X X .
a | X b4
x

and the

defined

(2) 1
(2,2) |
(2,4) |
(4,2) |
(4,4) 1|

(4) 1

F
|
a
{F=->F, F=>F, F=> g , F=> g },
R !/ \ | / \
x . x £ x . X X X .
£ | X X
| .
X X
{F=> . }, and
| g
X / \
b4 X
{F=>.}:
| F
x |
£
|
b4

shift, reduce, and goto functions are

by the following tables:

shift

[
Hh

- -

3

reduce

goto

F
tm——t
(2) 1 3|
et
(4) 1 6 |
+==—t

te that the BUTLR(0) parser M corresponds to the

Page 3:

(0) parser presented in example 6.1.2.

The remainder of this section provides the
sary proofs in order to show that for any BUTLR(C
r M generated from a tree grammar G, the tree
age accepted by the BUTLR(0) parser M is identice
e tree language generated from the tree grammar (
result is shown in the following manner. First,
ne with TPDAs and STPDAs, lemmas 6.3.1 and 6.3.2
that every computation, using the decision
ion fh, can be converted to a computation under .
ix ordering. Then, lemma 6.3.3 shows the
lation between derivation steps using the tree
ar G, and the computation moves in the BUTLR(O0)
r. Lemma 6.3.4 shows the relationship between
stack symbols and grammar symbols (known as the
ling" of the states). Using the definition of
ling", lemma 6.3.5 shows that the spelling of
tree stack will derive the corresponding portio:
e input tree already scanned. Finally, Theorem
concludes this section by using the above resul!
ow the desired result that the tree language
ted by the BUTLR(0) M is identical to the tree

age generated by the tree grammar G.

In order to define a computation under a
ordering, some terminology has to be introduce

an updated read-head of a computation id1 Ih i

BUTLR(O) parser (denoted URH(id IH idz)) be a

1

*
the form (u,p)eEN x T, where id1 and id, are

K 2

instantaneous descriptions in SID, id1 lh idz,

idl,id2 are in one of the following forms:

i) id1 = ({(u0,start)}Vb,t) and
id2 = ({(u,k)}VDb,t) where r(k)=0 and
ii) id1 = ({(ui,pi) | 1<i<m}Vb,t) and

id, ({(u,k(pl,---.Pm))}Vb,t) where

and p=k(p1,...,pm)

iii) 1d

1 ({(u,p(tl,ooo,tm)}Vb,t) and

id

({(u,k(tl,---,tm))}Vb,t) where

and p=k(t1,...,tm).

A computation with postfix lower bound u

BUTLR(0) parser is the relation k; C SID x SII
such that for any two instantaneous descriptio

and id,, id 1-:1‘ id, if and only if id

2 1 1
*
URH(id1 IH 1d2)=(v,p) for some (v,p)6N x T

'H 1d2

KW

("<" is the postfix lexicographical ordering f

addresses).

Page

Similarly, a computation under a postfix order

- a BUTLR(O) parser is defined such that for any

iputation id1 ‘h ida, k,, id

2 M if

n’

i) for all i, 1<i<n, URH(idi }H id1+1)=(ui,pi

*
where (ui,pi)eﬂ X TK

ii) for all i, 1<£i<n, for all j, i<j<nmn, ui_<_uj
where { is the postfix lexicographical

ordering for tree addresses

2n, id1 lﬁ id2 'H .o ih id is a computation ur
)ostfix ordering. Also, whenever a computation

k., 1id, bk, ... - :Ldn is a computation under a

| 'd "2 d d

stfix ordering, it will be denoted as 1d1 l% id2
1 1l n-1 '

. lh idn, or simply id1 Ph idn.

Using these definitions, the following lemmas

asented.

nma 6.3.1: Given a BUTLR(O) parser

(G,K,shift,reduce,goto,start); any three

stantaneous descriptions 1d1,1d2,1d3€SID, for any

* u n
N ; any n>0; if id1 lh id2 'h id3 where

*
Fh id3)=(V,p) for some (v,p)EN x T, and v«

H(1id K

2

nder a postfix lexicographical ordering for tree

dresses), then there exists an instantaneous

’ v un
scription id2 such that id1 'H id2 lh id, where

URH(i d: h 1d5)=(v,p).

Proof: Anal ogous to lemma 5.3.1.

Lemma 6.3.2; Gven a BUTLR(O) parser

M (G, K, shift,reduce, goto,start), any two insta

descriptions idy,ide€SID, id K" idy if and c
. .
|di,dl-| |dgz.

Proof; Anal ogous to |lemm 5«3. 2«

Since every conmputation can be converted
conmput ati on under a postfix ordering, the rem
this thesis will assune that all conputations
under a postfix ordering unless explicitly sta

ot herw se.

To show that the construction of the BUTL
parser is correct, |lemm 6«3#3 (below) starts
showing that for any tree t in the tree |angua
generated by a tree grammar G t is also accep
its correspondi ng BUTLR(O) parser M I n other
it shows the correlation between performng n
derivation steps in G and the correspondi ng no

by the BUTLR(O) parser M

Page

1a 6.3.3: Given any tree grammar G=(3,>,P,S), its
racteristic automaton CG=(EV§,C,S,q0,F) where
[1,...,Ic}, and its BUTLR(O) parser

b

;,K,shift,reduce,goto,start) where K={1,...,c};

*
I x TK; any tGTS; any n>0; any Fl(?)—>t1€P wh

l)=m; if

*
1) S 6'—I'>G S[u(*Fl(sl,...,Sm)] ‘6—I‘>G

*
s[u(-tl(sl,...,sm)] %?)G

s[u(-té(sl,...,sm)[z<-t1/v(81,---»3m>]] %%>

slu<=t3(s,,ceu,8)[2<=t,/2(8, 00,8)]] %%>

*
s[u<—t2(sl,...,sm)] ETDG t where

a) t1/v %%)G tZ/z (note that v is related
z in the sense that once the supertree
v is rewritten using an OI derivation t
remove all nonterminals occurring as
ancestors to the node v, the result of

rewrites i1s that the tree tllv now occu

at tree address z)

b) for all w€dom(t2)—var(t2), uw8dom(t) an

tz(w)=t(uw),

c) for all w€dom(té) such that w is

of z, w€dom(t2) and tz(w)=t2(w)

ii) ‘there exists trees si,...,s>K such
all i, 1<ilm, s;e{p | peskeleton(si),
where for all vaar(tl) such that tl(

(Fl('i’)->t:1,w)61ki

then there exists a tree s'€ske1eton(t1/v) suc
for all deom(tl/v), (Fl(?)->t1,vw)€Is,(si’...
and ({(uzwO,start) | szconst(tz)} V

’ _ *
{(uzw,si) | wavar(tz), tz(zw)—xi}Vb,t) 'H

({(uz,s'(si,...,s;))}Vb,t).

Proof: By induction on the pair (n,depth(tllv)
the lexicographical ordering "K" where (a,b)<(

and only if either alc, or a=c and b<d.

base case: n=0 and depth(tl/v)=0. Hence r(t1

and tl(v) can not be a nonterminal. Depending
whether the one node tree is labeled by a vari

terminal constant, there are two cases:

case 1: tl(v)=x for some i, 1<{i<m. By defin

i

xieskeleton(tllv). Hence ({(uz,si)}Vb,t) lﬁ

({(uZ,Xi(Si,o--,SI;))}Vb,t).

se 2: tl(v)=a€E where r(a)=0. By inspection of

nstruction of the characteristic automaton CG,

(x)-)t,vO)GIstartaq0 and GOTO(Istart’a)=Ij where
d (F(?)-)t,v)GIj. Hence Ijeg(lstart’a)' By

spection of the construction of the BUTLR(O) par:
j=shift(start,a). Therefore ({(uzO,start)}V,b,

({(uz,3)}Vb,t).

ductive step: (0,0)<(n,depth(t1/v). Depending «¢

e symbol labeling tl(v), there are three cases:

se 1: tl(v)=G€Q where r(G)=0. By the definitio:

- OI derivation, it must be the case that the

*
rivation is of the form § 6T>G s[u<-F1(sl,...,s

:>G 8[u<-t1(81,..a,8m)] B‘E>G

u<-té(sl,...,sm)[z<—t1/v(sl,...,sm)]] =

m

ul-t (sl,...,s Y[z<-G]] = OI G

u<‘t2(sl,...,sm)[z<-t]] .6—]-5>G

u(—té(s seees8 Y[z<~¢t /z]]

-1
OI G s[u(—tz(sl,...,a

?)G t for some production G->t’€P. By induction,

(uzw0,start) | zwéconst(t,)}Vb,t) H

(uz,s’)}Vb,t) where s’ €skeleton(t’) and for all
dom(t’), (G—)t',w)GIS,(w). By the construction
e BUTLR(0) parser M, G->t'€reduce(18,(e)) since
:—>t',€)€IS,(é). Furthermore, by the constructio

and S(I

'y (F(i’)-)t,vO)GIstart

start,G)=Ik where

Pag

F(?)—}t,v)GIk. By the construction of M,
=goto(start,G). Therefore, by the definition of

{(uz,s’)}Vb,t) k ({(uz,k)}Vb,t).

1se 23 tl(v)=f€5 where r(£)=p>0. By induction,

11 1, 1<ilp, ({(uzjwO,start) | i<j<p, zjw€const(t
{Cuzjw,s3) | 1<3<p, zjwévar(t,), t,(zjw)=x,} V

(uz3,8%(s],000580)) 1 1ICEIVD,E))

{(uzjwO,start) | i<j<p, zjw€const(t2)} V
(uzjw,s3) | 1<j<p, zjwevar(t,), tz(sz)=xd} V
(uzj,sg(si,....,s;)) | 1£j<i}Vb,t) where for all

Sdom(t,/vi), (FI(Y)->t1,viw)€Isg(si,...,s;)(W)'

11 i, 1<i<p, let k,=sV(s’,...,s8’)(E€). By inspect
_— i "1 1 m
E the construction of the characteristic automato

keS((Ikl,...,Ikp),f) where (F (®)->t ,v)€I, and
=GOTO((L, ,.ev, T

1 P
onstruction of the BUTLR(0) parser M,

),£). By inspection of the

=321££((k1,...,kp),f). Therefore
{(uzi,s;(si,...,s;)) | 1<ilp}Vb,t) }h
{(uz,k(s?(si,...,s;),...,s;(si,...,s;)))}Vb,t).
arthermore, by inspection of the definition of
keleton, clearly k(sY,...,s;)Gskeleton(tI/v) and
11 w€dom(t1/v),

F (?)->t VW)GI " Vs r " ’ rd
1 1° k(sl(sl,...,sm),...,sp(sl,...,sm))

Page

: tl(v)=G€§ where r(G)=p>0. By the definitio;

n 0I derivation, it must be the case that the
*
vation is of the form S 5T>G s[u<-F1(sl,...,sm)]

%*
; S[u(‘tl(sl,.oo,sm)] BT>G

:-té(sl,...,Sm)[z<"t1/V(Sl,a-o,Sm)]] =
I-té(sl,...,sm)[z<-G(t1/vl(sl,...,sm),
,,tl/vp(sl,...,sm))]] %?)G

:-té(sl,-..,Sm)[z<-t'(t1/V1(Sl,...,Sm),

"tI/VP(sl""’Sm))]] %%)g-l

*
:-té(sl,too,sm)[Z<"t2/2(sl,..o,sm)]] —6—'I‘>G

*
.-tz(sl,...,sm)] 5T>G t for some production
->t’€P. Let var(t')-{wl,...,wq} where |var(t’)|

for all i, 1<i<lq, all j, 1<j<q, WiSV where < is

3

prefix lexicographical ordering of tree addresse

-hermore, for all j, 1{j<q, let ij=k where

7.)=x Then, by the definition of an 0OI

37 7k"

.vation, it must be the case that the derivation

%
:he form § 5T>G s[u<-F1(sl,...,sm)] 6T>G

%*
~-t1(31,-..,sm)] '6f>G

C-té(sl,...fsm)[z<-t1/v(sl,...,sm)]] =
I-té(sl,...,sm)[z<—G(t1/v1(sl,...,sm),
N ICH OIS L

I-té(sl,...,sm)[z<-t’(t1/v1(sl,...,sm),

.,tl/vp(sl,...,sm))]] %?)Gnl

"

:'tz(sl,...,Sm)[z<'t2’1(sl,...,sm)

Page

wl<—t1/vil(sl,...,sm)] [zw2<—tl/viz(sl,...,sm)]]
. <-t1/viq(sl,...,sm)]]] %?)an

u<-té(sl,o.-,Sm)[z<—t'2',2(sl,.o-,Sm)

wl<-t2/zwl(sl,...,sm)] [zw <-t1/v12(sl,...,sm)]
—_ n — n
W <-t1/Viq(Sl,oco,sm)]]] ET>G 3 .. -O—'I—>G q+1

u<'ti(sl,...,Sm)[Z<-t'2',q(sl,..-,sm)

1<-t2/zw1(sl,...,sm)] oo

<-t2/zw (sl,...,sm)]]] =

q q *
u<-té(sl,...,sm)[z<-t2/z(sl,...,sm)]] %?)G

w

w

*
u<-t2(s1,...,sm)] —> _ t where n,+n,+...+n n-1]

01°G 1" "2 q+l”

r all i, 1<i<q, for all y€dom(t; i) such that y 1
’

efix of zwi, y€dom(t2/z) and tz(zy)=tg’i(y). Her

induction, for all i, 1<i{q,

(uzzw wO,start) | 1<j<q, zz weconst(tz)} V

h|
uzz w,sé) I i<i<q, zzijevar(tz), tz(zzij)=xd}
uzzwj,sﬁ(si,...,s;)) I 1<3<4, t'(wj)=xk} V

uzwO,start) | 1<j<q, zweconst(tz),
*
a prefix y of w s.t. y=z }Vb,t) 'h
(uzzw wO,start) | 1<j<q, zz weconst(tz)} \Y)

uzzij,sd) I 1<j<q, zzijevar(tz), tz(zzw w)=xd}
uzzwj,sﬁ(si,...,s;)) I 1<3<1, t’(wj)axk} V
uzwO,start) | 1<£j<q, zweconst(tz),

a prefix y of w s.t. y=z }Vb,t) where for all

var(t’) where t'(w)=xk, sﬁeskeleton(tllvk) and f

1 yedom(tllvk), (F(x)->t’ka)€Is§(si,...,s;)(y)'

Page

i, 1<{ilp, such that there does not exist a

ar(t’) such that t‘(w)=x let s;GTK be any tree

i’
h that szeskeleton(tllvi) and for all yedom(tllv

-(?)->t1,viy)€I Furthermore, fo

" ’ ’ .
si(sl,...,sm)(y)
i, 1<£ilp, let ki=s;(si,...,s;)(é). By inspecti
the definition of the characteristic automaton C
'ry state in C is closed using the function
.osure”". By inspection of the definition of the
iction "closure", for all i, 1<i<p, for all yé€var
'h that t’'(y)=x

(G(R)=->t’,y)6l Hence, by

E) L]
i ki

luction, ({(uzwO,start) | 1<i<q, szconst(tz),‘j
fix y of w such that y=z } V
: i

" ’ ’ , = *
lzzwi,sk(sl,...,sm) | 1<i<lq,t (wi) xk}Vb,t) lﬁ
:uz,s'(sg(si,...,s;),...,s;(si,...,s;))}Vb,t) whe
iskeleton(t’) and for all y€dom(t’),
’? ">t' GI ’ ’ ’ ’ ’
x) »¥) s (sz(sl,...,sm),...,s;(sl,...,sm))(y
: k=s'(sY(si,...,s;),...,s;(si,...,s;))(e). By t
istruction of the BUTLR(O) parser M,
f)-)t’ereduce(lk). By the construction of the
\racteristic automaton, S((I sesssl),G)=I , wh

kl k k

L(X)—>t1 ,V)GIk, and GOTO((Ikl g0 ’Ikp) ’G)SIkl .
1ce, by the construction of the BUTLR(O) parser M
!3((k1"°"kp)’c)=k" Therefore
:uz,s'(sg(si,...,s;),...,s?(si,...,s;)))}Vb,t) h

:uz,k’(sq(si,...,s;),...,s;(si,...,s;)))}Vb,t)

neeting the conditions of the |emm.

In order to show that any tree accepted b
BUTLR(O parser is generated by the correspond
granmar, the relationship between the states o
BUTLR(O parser, and the gr ammar synbols of th
corresponding tree grammar, nust first be esta
In other words, one nust know what tree of gra
synbols a tree stack corresponds to© Like in
parsing, the link between grammar synbols and
done using the notion called the "spelling”, a

defined by the foll.owing definition:

Definition 6.3.1; Gven any tree gramar G'(35,

its characteristic automat on GG=(] EV$, C, o(, On, F
lj,..« 1}, and its BUTLR(O parser
M=(G K, shift,reduce, goto,start) where K={1,..«

the relation spelling £ K x (2V3!) ¢ defined \
for any k€K, any f€rVi, k spelling f if and 01

ei t her

i) kPtart and f=S where S is the start

the tree grammar G

Page 339
r(£f)=0 and IkGS(qO,f)

r(£f)=m>0 and there exists states k ,...,kaK

1

such that IkGS((Ik yeersTy),0E)
1 m

e next lemma present a crucial result by showing

e relation sBelling is a total function.

e3.4: Given any tree grammar G=(Q,E,P,S), its
eristic automaton CG=(EV§,C,$,qO,F), and its

) parser M=(G,K,shift,reduce,goto,start), the

n spelling is a total function.

Assume that spelling is not a function. Then,

there exists a k€K such that there does not

exist an f€2VJ where k spelling f.

there exists a k€K such that for some two

symbols f,g€2VJ where f#g, k spelling f, and

k spelling g.

the first case has to be false since by the
ction of the set of states C, q0€C, and Ikec
there is a transition, defined on some grammar

to the state Ik' Hence, in order for the

relation spelling not to be a function, it mus
case that there exists a state k€K such that k
f and k spelling g where f#g. By inspection o

definition of spelling, there are 4 cases:

case 1: Ik=q0, f=8, and g#S. By inspection o
definition of the initial state 90 there exis
marked production of the form (F(f)-)t,vO)qu

v€const(t). By inspection of the definition o

spelling, either

a) Ik€8(q0,g) where r(g)=0

b) there exists states k,,...,k 6K where
1 m

and Ikeé((lk yererI),8)
1 m

By inspection of the construction of the trans
8, there can not be a marked production of the

(F(?)-)t,vO)GIk. But this is a contradiction.

case 2: r(f)=m>0 and r(g)=n>0. From k spelli
there exists states kl,...,kaK such that

IkQS((Ik ,...,Ik),f). From k spelling g, the
1 m
states kl,...,kneK such that Ik

inspection of the construction of state 1

Kk’
n
it

eS((Iki,...,I

k’
the case that closure({(H(X)->t,u) | t(u)=f£f,
for all i, 1<ilm, (H(?)—)t,ui)GIk }) =

i
closure({(H(®)->t,u) | t(u)=g, for all i, 1<iK

Page

f)-)t,ui)GIk,}). But then it must be the case th
i

which is a contradiction.

2 3: r(f)m>0 and r(g)=0. From k spelling £, the

3ts states k,,...,k 6K such that
1 m

r
5((Ik1,...,1km),f). From k spelling g, IkGS(qo,g

Inspection of the construction of state I it mu

k’
rhe case that closure({(H(X)=->t,u) | t(u)=f,

all i, 1<idm, (H(R)->t,ui)s6I

e D
sure({ (H(®)->t,u) | t(u)=g, (H(?)->t,00)€qo})- B
n it must be the case that f=g which is a

tradiction.

2 4: r(f)=r(g)=0 and ;k#qo. From k spelling f,
;(qo,f) while from k spelling g, IkGS(qo,g). Hen
nust be the case that closure({(H(X)=>t,u) | t(u)
?)—)t,uO)qu}) = closure({(H(R)->t,u) | t(u)=g,

t)—)t,uO)qu}). But then it must be the case tha

which is a contradiction.

refore the relation spelling is a total function.

Lemma 6.3.5 (below) shows that the spelling of
2 stack will derive the portion of the input tree

nned by its corresponding read-head.

Pa

Lemma 6.3.5: Given any tree grammar 6=(3,>,P,S),

characteristic automaton CG=(§V§;C,$,q0,F) where
3={Il,...,1c}, and its BUTLR(O) parser

M=(G,K,shift,reduce,goto,start) where K={1,...,c}
*

1>1; any b62“ x TK; any three trees t1’t2’t3€T
that t1=t3[u<-t2] ; 1if
({(uwO,start) | weleaf(tz)}Vb,tl) lﬁ ({(u,c)}VD

then

1) s %%> t, where s={(w,spelling(k)) | (w,k

ii) 1if o (E€)#start, then for all w€dom(oc),

(F(X)=>t,v)el then for all vz€dom(

o (w)?
(F(?)-)t,vz)ela:(wz) and 1f vzévar(t), t

spelling(ac (wz))=t(vz)

Proof: By induction on n.

base case: n=1. Hence ({(uO,start)}Vb,tl) lh
({(u,k)}Vb,tl) where t2(6)=a65 such that r(a)=0 :

k=shift(start,a). By the definition of shift,

*
[kGS(qo,a). Hence s={(€,spelling(k))}=a and a 5T
By the construction of the states in the characte

automaton, all marked productions in Ik are in on

the following two forms:

Pag:e
i) (F(®)->t,v) where t(v)=a

i1) (F(R)->t,v) where v€var(t) and t(v)=x1 fo

some 1, 1<i<r(F)

. both cases, {8}={w | vw€dom(t)}. Hence, for al.
r€dom(t), clearly (F(f)->t,v)€1k(w). Furthermore
1e first case, clearly t(v)=épellin5(k(8)). Henc

yth conditions of the lemma are met.

n
i\ductive step; 1d1 'ﬁ 1d2 - 1d3 where

lln({(uwo,start) | weleaf(tl)}Vb,tl) and

l3=({(u,k(si,...,s;))}Vb,tl) where r(k)=m. Depen
1 the last computation performed, there are three

1ses:

1se 1: id2=({(ui,si) | liiim}Vb,tl) where
shift(k, oo,k),£), tz(e)=fe§, r(f)=m, and for
, 1<i<m, si(&)=ki. Clearly, from lemma 6.3.2, fo

, 1<idm, ({(ujwO,start) | 1i<j<m, jweleaf(tz)} V

(ug,s]) | 1<3<1}Vb,¢t)) !-dni ({(ujw0,start) | 1i<j:
veleaf(tz)} V {(uj,sa) | lijﬁi}Vb,tl) where 0<nr
:nce, by induction, for all i, 1<ilm, s, %%) tZ/i

1ere si={(w,sgelling(j)) | (w,j)es;}, and for all

Sdom(si), if (F(?)-)t,v)GIs, then for all

$(w)°
z86dom(t), (F(?)-)t,vz)els,(wz) and if vzg@var(t),
i

Eelling(si(wz))=t(vz). By the definition of shif

Ikeg((lkl""’lkm)’f)° Clearly s = f(sl,...,s

{(w,spelling(j)) | (w,j)Gk(si,...,s;)} and s %
By construction of the states in the character

automaton CG, all marked productions in I, are

k

of the following two forms:
i) (F(R)->t,v) where t(v)=f

ii) (F(RX)->t,v) where ve€var(t) and t(v)=3

some 1, 1<i<r(F)

In the first case, clearly

(F(2)=->t,v)el By the construc

k(si,...,s&)(ﬁ)'

the state IkGC, Ik=closure({(H(Y)->t",w) | t"(

all 1, 1<i<m, (H(i‘)-)t",vi)GIk }). But then,
i
previous induction, for all vz€dom(t),

(F(R)=->t,vz)el and

k(si,ooo’S;)(z)
sBelling(k(si,...,s;)(z))=t(vz). In the secor

since t(v)=x it must be the case that for al

1’

vw€dom(t), (F(R)=-=>t,vw)eEl He

R(8],eee,8) (W)

conditions of the lemma are met.

case 2: 1d2=({(u,p(si,...,s;))}Vb,tl) where

G(?)—)t"ereduce(p(si,...,s;)(e)), r(G)=m,

k=goto((k1,...,km),G) where ki=si(€) for all j
*

and péskeleton(t"). By induction, s’ 6?) t, v

s’={(w,spelling(j)) | (w,j)€p(s ,.-0,8)}, anc

Pag:

Edom(p(si,...,s;)), if (F(?)-)t,v)GIP(Si,...,S;)O

en for all vz€dom(t), (F(?)-)t,vz)GIP(Si’...’S;)

1d 1if vz@#var(t), then
ielling(p(si,...,s;)(wz))=t(vz). Let
;={(w,sBelling(j)) | (W,j)Gsi}. Then
{(w,spelling(j)) | (w,j)ek(si,...,s;)}=G(s1,...,
- " l
early (G(R)=>t ’e)elp(si,...,s;)(E) since a redu
s performed. But then, since for all w€dom(t"),
(RX)=>t" € , ,
B I T I Pl
>e111n5(ﬁ(8i,---,s;)(w))=t"(w), s’=t". Therefore
*
' —— 11] —
,sl,...,sm) 01) t (sl,...,sm) OI> tye By the
ynstruction of the states of the characteristic
itomaton CG, all marked productions in I, are in

k

the following two forms:
i) (F(X)->t,v) where t(v)=G

ii) (F(R?)=->t,v) where ve€var(t) and t(v)=xi fo

some i, 1<i<r(F)

1 the first case, clearly
s(?)-)t,v)GIk(si’."’s;)(e). By the construction

1e state IkGC, ik=closure({(H(§)->t',v) 1 t’(v)=G

11 1, 1<i<m, (B(X)->t’,vi)6I }). But then, for
1

k(si’.'.,sl;.)(Z)
aelling(k(si,...,s;)(z))=t(vz). In the second ca

z8€dom(t), (F(R)->t,vz)el and

ince t(v)=x it must be the case that for all

i’

Pa

rw€dom(t), (F(R)=->t,vw)€l Hence

k(si,...,s;)(w)'

onditions of the lemma are met.

ase 3: u=€, id3=({(E,start)},t1), and
Ld2=({(E,p)},t1) where S->t€reduce(p(€)) and

*
3€skeleton(t). By induction, s’ %%) t, where

’

3 '={(w,spelling(j)) | (w,j)€p}, and for all w€dom

Lf (F(X)=->t’,v)€l then for all vz€dom(t’),

p(w)?

(F(R)->t’ ,vz)el and if vz#var(t’), then

p(wz)
;pelling(p(wz))=t(vz). Clearly, (S->t,€)€IP(E) s
reduction was performed. But then, since for all

v€dom(t), (S->t,w)61p(w) and spelling(p(w))=t(w),

3ince, by definition, spelling(start)=S and S->té€

’ —-i
»learly S 6T> t = s 5T> t, meeting the condition

he lemma.

Having provided the above proofs, the follow
rheorem puts these results together by showing th
‘ree language accepted by a BUTLR(O) parser is
identical to the tree language generated by its

rorresponding tree grammar.

frheorem 6.3.1: Given a tree grammar G=(J,>,P,S),

~haracteristic automaton CG=(§V§,C,8,q0,F), and i

BUTLR(0) parser M=(G,K,shift,reduce,goto,start),

Page

o - N(M.

oof : By the definition of a tree |anguage generat
atree grammar G L(G - {t€T—r}_| S(:}%> t}. Byt
finition of the tree |anguage accepted by a BUTLE

rser M N(M - {t€r | ({(uQ start) | u€leaf(t)},
JL

({(S,start)},t)} . Let t€L(G be any tree in L((

nee Sgg t. By the definition of an 01 derivati
ere exists a production of the form S >s€P such t
%1, s x¥> t+ By lemm 6.3.3,

(uQ'start) | u€leaf(t)},t) H ({(6,s')},t) where
€skeleton(s) and for all wEs, (S->s,wWEl , v. |
en, since 3>$€jrms' (6)), ({(6,s')},t) hi
(6, ETEEE)} ,t). Hence tEN(M and L(G £N(M. O
her hand, assune that t€N(M is any tree in N(M«
nee ({(uQSfart) |} u€leaf(t){,t) ha ({(6,5Tarn)},
lemma 6.3.5, S =>t. Hence tEL(G and N(M C I
erefore L(G »N(M.

4 Conjectures On Determ nism

Li ke a LR(0) parser generator, the BUTLR(O pi
nerator does not necessarily guarantee to produce
11 defined BUTLR(O parser. It is conjectured b]
thor that the BUTLR(O parser generator wll proc
wel | defined BUTLR(O) parser if the given tree

grammar is a BUOI(0) grammar. A tree grammar

6=(9,>,P,S) is considered BUOI(0) if and only i

1)

2)

G is conservative and reduced.

*
For any two derivations S %?)
t1[u<-F1(Sl,¢oc,sm)] ﬁ> tl[u<-t(sl,oo
*
and S Ei‘) tl[u <-F1(Sl,...,sm)] 0_I‘>
ti[u'(-t’(si,...,s;)], if there exists
v€dom(t’) such that
t’(si,...,s;)/v=t(sl,...,sm), then v=§

F1=F1, s,.=8

1 1 for all 1, 1<{i<m, and

tl[_u<-t(81,...,Sm)]=ti[u'<-t'(si,..e,SW‘

In other words, condition (i) guards against in

nondeterminism, and condition (iii) states that

reduce-move must be uniquely identified by a

characteristic tree.

Chapter VII

THE MACRO LANGUAGES - AN APPLICATION

The preceeding chapters presented a new model o
+ pushdown automata and a construction method to
.d a deterministic parser for a subclass of the
.ext-free tree languages. This chapter investiga
.nteresting application: a parsing technique for
3s of string languages more general than the
ext-free string languages. That is, this chapte
.olts the fact that the class of string languages
1ined as sets of yields of all trees in a
-ext-free tree language is the class of (0I)
o-languages, which is identical to the class of

xed (string) languages, (see Fischer[68][69]).

Q4 Q

Hence, by modifying the BUTLR(O0) parser to acce
strings instead of trees, this chapter presents
parsing method using the BUTLR(0) parser to con
new parser which will recognize string language
class of macro languages, as well as construct

deterministic parsers for a subclass of the mac
languages (which is a superset of the determini

context-free string languages).

The method used to build a parser for a ma
language is as follows: First, the macro gramm
converted to a tree grammar GZ‘ Then, using th
BUTLR(0) construction method, a BUTLR(O) parser
built to accept the tree language generated by
Finally, the constructed BUTLR(0) parsing table
used to define the BUTLRM(O) parser which tests
string is in the macro language generated by G1
However, instead of using tree instantaneous
descriptions and the decision relation associat
the BUTLR(0) parser, the BUTLRM(O) parser has i
form of instantaneous descriptions and decision
relation to describe moves made by the BUTLRM(O

parser.

Page

One should note that the purpose of this chapte
to provide the motivation behind the development
BUTLR(O0) parser, and to lay down the groundwork
ure research in formulating parsing methods to pa
ro languages. For these reasons, this chapter do
provide proofs for any of the theorems or
jectures. Furthermore, the construction methods
jectures presented in this chapter are new ideas
author’s, are based on previous experience with
ferent forms of automata and the relationships
ween these different forms of automata, and have
n completely worked out as yet. Hence portions c

s chapter may be sketchy at best.

The chapter begins with section 7.1 by present]
ethod of using the BUTLR(O) parser construction
hod to build a parser which simulates a LR(0) pa

the class of context-free string languages.

tion 7.2 introduces the definition of macro gramn
macro languages, and provides a brief review of
ic. The chapter concludes with section 7.3 by
ending the method used in section 7.1 to simulate
ted stack automaton (see Aho[68]) instead of a PI
defines the BUTLRM(O) parser which accepts strirs

guages in the class of macro languages.

7.1 Simulating LR(0) Parsers Using BUTLR(0) Pa

This section presents a method of using th
BUTLR(0) parser to simulate an LR(0) parser. Tl
concept used is to simulate strings using "flat'
where concatenation is explicitly expressed. It
words, it takes a context-free string grammar G

]

converts G1 into a tree grammar G2 such that eve

sentential form of G, is a "flat" tree which rej
the corresponding sentential form in Gl' Hence,
strings will be explicitly incorporated into th
grammar used to generate the BUTLR(0) parser anc
exists an isomorphism between the sentential fo:
generated by the string grammar G1 and sententi:
generated by the tree grammar GZ'
Back in chapter 3, pushdown automata were
presented. In that chapter, both the input and
stack of the PDA were presented as a string of
Furthermore, the stack used | as a reserved syml
represent the empty stack, concatenétion as the
operator used to perform a push, the top of the

was assumed to be the rightmost symbol in the s

and the LR(0) parser simulated a rightmost deri:

Page 35

To 1ift the above notions to a tree structure, th
sentation of strings must be lifted to trees. A
al assumption is to "explicitly" express the
tenation operator used in generating the string.

xample, the string "aAbBc" could be represented b

r

!/ \ or !/ \

| represents the empty string.

Assume the method to convert string grammars to
grammars uses the tree representation on the left
e). Let G be the string grammar G=(§,E,P,S) whert
A,B,C}; >={a,b}; and P={S->C, A->a, B=>b, C=>AI
B}. Following the above idea, the corresponding
grammar would contain the following tree

ctions:

!/ \ / A\ / \
1 c 1 a 1 b
C => - C => -
/\ /A
° B . B
/\ /A
1 A ° c
/\
] A

Also, the string "ab" is derived using th

grammar G as follows:

S—§>C—§'}AB—§>Ab-—E>ab

The corresponding derivation using the tr1

is:
S=>- =>o =>. . .
01 /\ o1 / \ oI /\ o1 / \-
_Cl' | . J
!/ \ / \ /\
° B ° ° L] .
/ \ /N 1\ /' \ /A
L A L AL b 1 1 b
/\
| a

By inspecting the two derivations at
differences between them, two problems wi
representation are visibly clear. One pr1
the sentential forms generated using tree
have not maintained the property that eve
form is a "flat" tree representing the cc
sentential form in the string grammar. £

is that the nonterminals label leaves anc

ivation (for which the BUTLR(0) parser is based
s not necessarily correspond to a rightmost
‘ivation which violates the constraints of an LR(!
'ser (for example, the above form of tree product

0 allow a leftmost derivation).

One should note that both of the above problem
'm from a common cause. In a string grammar a
iterminal A is a placeholder which represents a s
strings (of an§ length) while on the other hand,
ler to maintain the "flat" structure of the gener
2es, the conversion method assumes that any strin
1erated from A will be a single terminal symbol w
.1 replace the node labelled by A. Clearly, such
sumption is wrong. .Hence, the conversion should
1catenate the string occurring to the left of the
iterminal A, and the string derivable from A, unt

> structure of the string derivable from A is kno

To resolve this problem, the conversion method
lified such that the rank of every nonterminal is
.sed from being a constant to having an arity of
2re the nonterminal’s parameter represents the st

1t will occur to the left of the nonterminal. Le

> string to tree conversion be accomplished using

1ction 1ift : (EVQ)* -> TEVQV{'}(XI) where for

<n€(SV§)*, lift(oc) is recursively defined as f
i) 1ift(€) = x where € is the empty string
ii) 1ift(Pa) = * where ga=oc and a€>
1ift(p; \a
1ii) 1ift(BA) = A where BA=oc and A€Q

|
11££(p)

Example 7.l.1: Let G=(§,2,P,S) where

{s, A, B, C};

M el
oo

= {a, b}; and
P = {s->C, C->AB, C->ACB, A->a, B->b}. Then,
1ift(€) = x

lift(ab) = -

life(C) =

1ift(AB) = and

- —

1lift(aAb) = -

Ps

Using the function 1lift, the corresponding t

grammar of a string grammar 6=(2,>,P,S), denoted

is the tree grammar TGG=(§',E',P',S) where
§° = § where r(S)=0 and for all F€(P-{S}), r(l

3 = 3V{-,1} where r(*)=2, r(J1)=0,

and for all a€>, r(a)=0; and
P’ is a set of productions where
i) if S->c€P, then S->1lift(oc)(])€P’
ii) 1if A-> «c 6P where A#S, then A(x)=>lift(oc)¢

iii) nothing else

Example 7.1.2: Let G be the string grammar define

example 7.1.1. The corresponding tree grammar of

the tree grammar TGG=(§',E’,P’,S) where

P’ = {Ss->C, C=>B, C=>B,

| | ! | |
1 X A X C
| |
x A
|
X

A => - , B => < }.

I !/ \ ! !/ \
X X a x X b

Furthermore, for the derivation
S =§> C —§> ACB —E> ACb _§> AABbD _E>
AAbb —§> Aabb —E> aabb

the corresponding derivation in TG, is

G
s=DZCc=S B o = e
o1’ | or’ [or’ ,\ oI ,
1 c cC b B b
l l |
A A A
| I |
1 ik A
l
ik
= . => ° —> °
01 ;0\ 0T, oTT Ty
I S S
/\ / \ /\
A b I S
[/\ /\
/ \

Note in the above example that for e
form oc derived using G, the correspondir
TGG produces the tree lift(oc)(|). Hence
between the string grammar and the tree ¢
maintained. Furthermore, since in tree |
each nonterminal occurs as a descendant c
nonterminals which occurred to the right
nonterminal in the string case, an O0I der

correspond to a rightmost derivation.

Page

One should note that the inverse operation of t

ction 1ift can also be defined. Given a string

nmar G=(J,>,P,S) and its corresponding tree gramm

=(9°,>’,P",S), let the function

—_
1d : TS'VQ'(XI) -> (2VQ0) be recursively defined
n that
i) yield(x) = €
i) yield(]) = €
i) yield(a) = a where a€>
v) yleld(.) = yield(t,)+yield(t,)
1 2
!/ \
1 %2

v)

re

mple 7.1.3: Let G and TG

yield(A) = yield(tl)'A where a€)d

|
Y

t, and t, are trees in TS'VE'(XI)'

G be defined as in exampl

o2,

then

yield(C) = C ,

yield(B) = AB , and

|
A

X

yield(*) = aAb
/ \
A b

°

/ \

X a

The next theorem and three lemmas show (wif
proof) the fact that the yields of trees in TGG

string language generated by G.

Lemma 7.1l.1: Given any string grammar G=(§,S,P,S

its tree grammar TGG=(Q',E',P',S), any string

ocG(SV§)*, ac=yield(lift(oc))=yield(lift(oc)(])

Lemma 7.1.2: Given any string grammar G=(§,>,P,

its tree grammar TGG=(§',E',P',S), if § .____R_>n oc |

s ="

o1 1lift(oc)(]) and cc=yield(lift(oc)(l)).

Lemma 7.1.3: Given any string grammar G=(3,>,P,!

its tree grammar TGG=(§',S',P’,S), if s ﬁ)n t,
s ="

R yield(t) and t=1ift(yield(t))(l).

Theorem 7.l.1: Given any string grammar G=(§,S,I

its corresponding tree grammar TGG=(§',_2_',P',S),

L(G)={yield(t) | tGLOI(TGG) }.

Page

Having converted the string grammar G to the t

immar TG the BUTLRS(O) parser (the BUTLR(0) par

G,

)l1ied to string grammars) can be built. A BUTLRS

'ser is a septuple

[G,TGG,K,shift,reduce,gpto,start) where

G=(§,E,P,S) is the string grammar defining
the BUTLRS(O) parser;

TGG=(§',5',P',S) is the corresponding
tree grammar used to define the BUTLR(O) pars
tables;

K is a finite ranked alphabet of parser states;

shift : tuples(K) x >’ => K V {error}
is a function defining the

parsing shift table;

reduce : K -> ZP is a function defining

the parsing reduce table;

goto : tuples(K) x @' -> K V {error}
is a function defining the parsing
goto table; and

start€K is the initial state.

~thermore, the BUTLRS(O) parser is constructed us

orithm 6.3.1. That is, let

=(TGG,K,shift,reduce,goto,start) be the BUTLR(O)
rser built by algorithm 6.3.1. Then, the BUTLR(O

fines the set of states K, the initial state star

the three parsing functions shift, reduce, and

the BUTLRS(O) parser M, and M is deterministic

only if M’ is deterministic.

The instantaneous description of a BUTLRS
parser 1is quite different from the instantaneo
description for the BUTLR(0) parser. The inpu
structure is a string (not a tree), the input

scanned from left to right as opposed to scann
tree from the leaves to the root, and the inte
memory is a single tree stack. An instantaneo
description of a BUTLRS(O) parser (denoted IDS

—%
pair (t,oc)€T, x > where t is the current (tr

K
and oc is the string left to scan on the input
The initial configuration is the pair

(shift(start,|), oc) where o is the string to

The decision relation Iﬁ C IDS x IDS of a

BUTLRS(O) parser M=(G,TGG,K,shift,reduce,gotot

determines the next move made by the BUTLRS(O)

M. Given two instantaneous descriptions id, a

1

s
id }h id

1 if and only if

2

Page

i) id1 = (t,a*oc) and id2 = (kz(t,kl),a:) whe

k,=shift(start,a) and k

1 =shift((t(€),k1),'

2

ii) :l.cl1 = (p(t), oc) and id2 = (k(t),oc) where
A(X)->s6reduce(B(t)(€)), A#S, pEskeleton(s

and goto((t(€)),A)=k

iii) id1 = (p,E) and id2 = (start,€) where

reduce(p(E))={S—>s} and p€skeleton(s)

other words, in terms of an LR(0) parser, condit
) is a shift-move over the input symbol "a",
1dition (ii) is a reduce-move on the production A
»re 1ift(®)=s defines the corresponding tree
>duction A(x)=>s, and condition (iii) is a
luce-move on the start production S$->6 causing
eptance whefe 1ift(8)(1)=s defines the correspon

art tree production S->s.

Like an LR(0) parser, acceptance of the string
ly occurs if the decision relation causes a serie
res which converts the initial instantaneous
scription into the instantaneous description

rart,€). Hence, the language accepted by a BUTLR

rser M, denoted N(M), is the set
*

1) = {ocei* | (shift(start,|),oc) l-z (start,€)}
k

is the transitive reflexive closure of Iﬁ.

Example 7.l.4: Let G=(3,>,P,S) be a string gr

where
2 = {s,A};
S = {a,b}; and

{s=>A, A->ab, A->aAb};

Then D=(G,K,shift,reduce,goto,l) is an LR(O)

where
K={1,2,3,4,5,6} and

shift, reduce, and goto

the following tables:

are defined by

shift reduce goto
a b A
tmmmpm——t Fomm————— + +==—t
1 | 3 | | 2 | S->A | 1 1 2 |
tommmpmm—t pmmm + e 3
31 31 4 4 | A->abd | 3 1 5 |
tmm—pm——t tommm———— + +===t
5 1 1 6 | 6 | A=->aAbd |
tommmtpmm—t tommm e +

Furthermore, TGG=(§',S',P'

9’ = @ where r(S)=0 and

,S) where

r(A)=1;

2 = 3V{l,*} where r(l)=r(a)=r(b)=0,

and r(*)=2; and

P={S->A, A-> -
I
X

/\

X a

The constructed BUTLRS(O) parser M, defined b

Pag

UTLR(0) parser M'=(TGG,K,shift,reduce,goto,1), is

=(G,TG,,K,shift,reduce,goto,l) where

G’
K={1,2,3,4,5,6,7,8,9} such that

r(1)=r(2)=r(3)=r(4)=0, r(5)=r(8)=1, and
r(6)=r(7)=r(9)=2; and

shift, reduce, and goto are defined by

the following tables:

shift reduce
e a b e
e i Sl St 2 tomm +
1 1 2} 3 | 4 | | | S =-> A |
s et ST S 5 1 I
2,3) | | | | 6 | | 1 1
tmmmtpmm et m et fomm e +
6,3) 1 | | 1 6 | | A => |
bt b bl S il 1 / \ |
6,4) | | | 1 7 1 71 x . b |
i i s Bttt I / \ |
8,4) | | | 1 9 | | b4 a |
tommmtpm et Fomm—— +
1 A => |
goto |1 / \ |
|1 x A b |
A 9 | | |
o=t | . I
215 I / \ I
et I X a |
6 | 8 | trmmmr e e——a- +
fm=—t

he language accepted by the LR(0) parser D and tli
UTLRG(0) parser M is the set of strings {a™" |
or example, the string "aaabbb" is accepted by tI
R(0) parser D as follows:

(l1,aaabbb) ‘H (13,aabbbd) }H (133,abbb) Fh

(1333,bbb) k, (13334,bb) Fk (1335,bb) K

(13356,b) I-d (135,b) l-d (1356,8€) I-d

(12,8) l-d (1,8)
Similarly, the corresponding computation using 1
BUTLRS(O) parser M is as follows:

(2 , aaabbb) 3

d
(6,aabbb)l—§
!/ \

2 3
(6,abbb)l-csl
!/ \

6 3
/A
2 3
(6 , bbb)
/A d
6 3
!/ \
6 3
/ \
2 3
(7 , bb)
/' \ d
6 4
/\
6 3
/ \
6 3
/ \
2 3

Page 367

rom the above example, one can notice several
rities between the LR(0) parser D and the

(0) parser M. One similarity is that the string
b" is accepted by both the LR(0) parser D and the
(0) parser M by performing 10 computation moves.
r similarity is that whenever the LR(0) parser D
med a shift-move, the BUTLRS(O) parser M also
med a shift-move. The same is also true for

~-moves. Also, both the LR(0) parser D and the

BUTLRS(O) parser M is deterministic. By lookin
deeper similarities, one notices the similariti
between the two forms of internal memory. Afte
computation move, the spelling of the stack of
LR(0) parser D corresponds to the yield of the
of the tree stack of the BUTLRS(O) parser M. T

n
1f (1, c) l-d“ (p,0) and (2,a) l—Z (t,8), then

sBelling(p)=yie1d(sgelling(t)).

It is the firm belief of the author that t
results are true in general, and the following

conjectures present these beliefs:

Conjecture 7.1l.1: Given a string grammar G, the

parser M1=(G,K1,shiftl,reducel,gotol,startl), a

BUTLRS(O) parser

M2=(G,TGG,K2,shiftz,reducez,gotoz,startz), then

a) (start,oc) lhn (p,e) if and only if

n
(shiftz(start,l),a:) Fg (t,®) where

spelling(B)=yield(spelling(t)) and
lift(sEelling(p))(L)=sEelling(t).

b) Ml is deterministic if and only if M

deterministic

2 i

¢) L(G) = N(M,) = N(M,)

Conjecture 7.1.2: Given a string grammar G, the

BUTLRS(O) parser can be extended to a BUTLRS(k)
(a parser with k symbols of lookahead on the ing
tape). Furthermore, the conditions of conjectur
apply to the comparison between the LR(k) parser

the BUTLRS(k) parser.

7.2 The Macro Languages

‘This section presents the definition of a
grammar and how a macro (string) language is ger
from a given macro grammar (see Fischer[68][69]]
with most grammars, the generation process is pe
via a series of derivation steps. Furthermore,
tree grammars, macro grammars also have two rest
forms of derivations called outside-in and insic
derivations and both modes of derivation will be

presented.

Informally, a macro grammar is a gene
string grammars where the notion of a macr
from programming languages. In other word
nonterminals is a ranked alphabet where no
with arity greater than zero get parameter
manner as tree grammars. The occurrences
on the right-hand side of a production cor
placeholder into which the corresponding a
the production is substituted for the occu
variable. Hence, in some sense, macro gra
quite similar to tree grammars. The diffe
that while a macro production is performin
rewrite step, the structure it is manipula

string instead of a tree.

Definition 7.2.1: A macro grammar is a qua

(E,S,P,S) where
§ is a finite ranked alphabet of

nonterminal symbols;

2 is a finite alphabet of terminal symb

S6F is a designated symbol in § called

start symbol where r(S)=0; and

P is a finite set of pairs of the form

(F(xl,...,xm),cx:)Gtern(Q,E)2 where F

Note: Each pair (F(xl,...,xm),a:)eP is called a
production. Furthermore, for any production

(F(xl,...,xm),a:)GP, if x€X, occurs in the string

A
then xexm (i.e. the only variables which can occ
the right-hand side of a production are those whi

occur on the left-hand side of the production).

For convenience of notation, the string
F(xl,...,xm) where r(F)=m will be denoted in vect
form as F(¥X). Productions will be denoted as F(3
where (F(®),oc)€P. 1In general, upper case lettet
as F,G,H,«+.s will be used to denote nonterminal
symbols while lower case letters such as a,b,c,..
will be used to denote terminal symbols. Furthe:
greek symbols will be used to denote terms. Depe
on the context, G will also be used to denote a
grammar. Finally, unless otherwise specified, or

assume that A=max{r(F) | Fe€Q}.

Example 7.2.1: The macro grammar which generates

strings of the form {anbncn | n>1} is the macro ;
G=(9,>,P,S) where

9§ = {S,F} such that r(S)=0 and r(F)=3;

S = {a,b,c}; and

P = {§->F(a,b,c), F(x,y,z)->xyz,

F(x,y,2z)=->F(xa,yb,zc)}

A macro language is generated from a ma
by performing a series of derivation (or rew
steps. Given a macro grammar G=(§,E,P,S), 1

one-step derivation (or rewrite) relation

= c tern(ﬁ,.—i)z be defined as the set of pa
{(oc~F(oc1,...,ocm)°p,oc°6[oc1,...,ocm]'p
oc,ocl,...,ocm,p,eetern(ﬁ,i), and F(X)->6
In other words, given any string oc'F(ocl,..
string F(ocl,...,ocm) is rewritten (or repla

string e[ocl,...,ocm] using the production

F(Xl goece ,Xm)">9o

Equipped with the meaning of a one-step
derivation, one is able to define the set of
generated from a macro grammar. Given a mac

G=(§,§,P,S), a sentential form is any string

- * *
oc6term(P,>) such that S =u> oc where ="‘-1f>

transitive reflexive closure of =u'->. Furthe

string language generated by a macro grammar

L(G), is the set of all sentential forms o
—%

ac€2 . Hence

L(G)={oc€$* | S =u>* oc).

Pa

Example 7.2.2: Let G be the macro language define

example 7.2.1. A sample derivation which generat
string "aaabbbccce" is as follows:
=§> F(a,b,c) =§> F(aa,bb,ce) =§>

F(aaa,bbb,cce) =§> aaabbbecce

As mentioned earlier, the situation regardin
derivation modes for macro grammars is as intrica
the derivation modes for tree grammars. One=-step
derivations are not commutative in the sense that
« -—‘—1-> «, using Fl(x)-->|‘31 and o, _5> o 5 using

FZ(?)->p2, it is not necessarily the case that th

exists a term @, such that o« =—;>) using FZ(
and «c, 5> o, using Fl(x)->§1. To show this, c

the following example:

Example 7.2.3: Let G=(§,>,P,S) be a macro grammar

that

® = {S,F,G} where R(S)=0 and r(F)=r(G)=1;

> = {a}; and

P = {S->F(G(a)), F(x)=>a, G(x)->x}.
Clearly F(G(a)) =§> F(a) using G(x)=>x and F(a) =
using F(x)->a. On the other hand, when the order
the derivation steps 1s reversed, F(G(a)) =§> a

F(x)=>a and it is now impossible to perform a rew

using G(x)->x.

Hence, the order in which derivation steps ¢
applied affects the resulting derived string (i.e
derivation steps are not necessarily independent
another). This result has been shown by
Fischer[68][69]. Like tree grammars, there are t
modes of derivations (besides the unrestricted cc
which are commonly used and are known as inside-c

(I0) or outside=in (0I) derivation modes.

An 10 one-step derivation (denoted -I——o->) is &

one-step derivation applied to an innermost nonte
occurring in the string. In other words, the
derivation step can be applied to any subterm
F(ocl,...,ocm) where no nonterminals occur in anjy

terms « through o« . More formally, the -ﬁ> Te

is defined as follows:

€term(9,2), oo, =

For any two terms oc,, o 1 To

1
only if oy '—-_6> o, and

2

i) «, = ocF(pl,...,pm)e

1) o, = blp,,...,p_l0

Page
1) F(?)-)SGP where r(F)=m
.v) for all i, 1<i<m, piG(SVXA)*

e that conditions (i) through (iii) are just the
iditions of a one-step derivation while condition

r) is the added condition of an IO derivation.

Similarly, an OI one-step derivation (denoted :

a one-step derivation applied to a top-level
iterminal in a term. In other words, it can be
>lied to any nonterminal which is not embedded wi
)ther nonterminal. More formally, the relation %
defined as follows:

for any two terms ocl,oczﬁtern(ﬁ,}:), « ﬁ) <,
only if oy ‘:";) o, and

i) o, = ocF(pl,...,pm)e
1) @, = ocS[pl,...,pm]e
1) F(?)-)SGP where r(F)=m
lv) o ,08term(3,>)

1in, as in an I0 one~step derivation, conditions
rough (iii) are just the conditions for a one-ste
rivation while condition (iv) is the added condit

r an 01 derivation.

To clarify the difference between unrestri
10, and OI derivations (i.e. —G>’ T3>’ and 6f>

consider the following example:

Example 7.2.4: Let G=(3,>,P,S) be a macro gramm

that
9 = {S,F,G} where r(S)=0 and r(F)=r(G)=1;
> = {a}; and

{s=>F(G(a)), F(x)=>xx, G(x)=->xx, G(x)=->x
The set of all possible I0 derivations is as fo

S ?%) F(G(a)) ?%D F(aa) ?%) aaaa

S ?%) F(G(a)) ?%) F(a) fﬁ) aa
On the other hand, the set of all possible OI
derivations is as follows:

S %%> F(G(a)) 6T> G(a)G(a) 6f> aaG(a) 3f> aa

S %?) F(G(a)) %?) G(a)G(a) 6?5 aaG(a) %%) aa

S %%) F(G(a)) €?> G(a)G(a) 6?) aG(a) %?) aaa

S %?) F(G(a)) %?) G(a)G(a) %?) aG(a) %%) aa

S %%) F(G(a))) G(a)G(a) o1 G(a)aa 510 22
S %?) F(G(a)) 317 G(a)G(a) 53 G(a)aa o1 22
S %?> F(G(a)) 5% G(a)G(a) %?) G(a)a %?) aaa
S %?) F(G(a)) %?> G(a)G(a) §?> G(a)a %?0 aa
Also, the set of all possible (unrestricted)

derivations is as follows:

=5> F(6(a)) => 6(a)G(a) => aaG(a) => aa

Pag

S => F(G(a)) => G(a)G(a) = aaG(a) =;> aaa
s => F(G(a)) => G(a)G(a) => aG(a) => aaa
S => F(G(a)) ==> G(a)G(a) =—;> aG(a) = aa

S ==> F(G(a)) = G(a)G(a) = G(a)aa => aaaa
S => F(G(a)) => G(a)G(a) == G(a)aa =5> aaa
s => F(6(a)) => 6(a)G6(a) => G(a)a = aaa

§ => F(6(a)) =5> 6(a)G(a) =5> G(a)a => aa

§ => F(6(a)) => F(aa) => aaaa

S =—> F(G(a)) => F(a) =§> aa

Note that in the above example that using an
erivation mode the languége generated is {aa,aaa:
hile using either an O0I or unrestricted derivatic
ode the language generated is {aa,aaa,aaaa}l. As
ight expect, it turns out that the results about
0, 0I, and unrestricted modes of derivation for t
anguages are also true for macro grammars. Howe:
efore stating these results the definition of a
anguage must be extended to allow the derivation

o be specified.

For notational convenience, the transitive
losures of the different derivation modes are de/

s follows. The transitive closure of =§>, ?%), :

— —_—t — t —_—F
T> are denoted as —E> , T3> , and 3T> respective

while the transitive reflexive closures of =§>

m—

* d __>*
01 > , and =

. L
> are denoted as _E> ’ 01

and o

respectively.

To extend the notion of a macro language
either an I0, OI, or unrestricted derivation 1
must also generalize the definition of sentent
forms. Given a macro grammar G=(J,>,P,S) and
derivation relation =ﬁ> where M€8{I10,0I,u}, a &

*
form is any term oc such that S =M-> ac. Furi

the string language generated by G using =ﬁ>,

—%
LM(G), is the set {oc€x | S ‘—‘-‘ﬁ) alt.

Having generalized these definitions, thi
following result of Fischer[68][69] is present

without proof:

Theorem 7.2.1: Given a macro grammar G=(§,E,P

macro languages generated by the three differ
of derivation are related as follows:

L o(6) € Ly (6) = L (G)

oI

Note: The remainder of this chapter will only

OI derivations.

Pag

The object of this chapter is to apply the
ITLR(0) parser to string languages and attempt to
'oduce as much determinism as is possible. Follo
1is notion, the methods used to make LR(0) parser
rterministic should also be applied to macro
inguages. To this end, the notion of a rightmost
rrivation must also be introduced. Given a macro

rammar G=(§,S,P,S), the one-step rightmost deriva

»lation ::-E> [tern(@,z)z is defined as follows:
For any two terms ccl,oczetern(ﬁ,}_—), «, > «

only if o ﬁ) o, and

1 2

i) o, = ocF(pl,....,pm)e
ii) «, = ocS[pl,...,ﬁm]e
111) F('x')-)SGP where r(F)=m

- *

iv) ee().VxA)

1 other words, =§> is the one-step derivation app

> the rightmost top-level nonterminal. Furthermo
*

at :ﬁ>+ and 21;) denote the transitive and transi

aflexive closures of :§> respectively.

Pa

ixample 7.2.5: Let G be the macro grammar defined

2xample 7.2.4. The set of all possible rightmost
lerivations is as follows:
S =§> F(G(a)) =§> G(a)G(a) =§> G(a)aa =§> aaaa
S =§> F(G(a)) =§> G(a)G(a) =§> G(a)aa =§> aaa
S =§> F(G(a)) =§> G(a)G(a) =§> G(a)a =§> aaa

S =§> F(G(a)) =§> G(a)G(a) :§> G(a)a =§> a

As with I0 and OI derivation modes, in order
2xtend the notion of a macro language under a rig
lerivation, the definition of sentential forms mu
1gain be generalized. Given a macro grammar
3=($,>,P,S) and the derivation relation =§>, a

*
sentential form is any term oc such that S =§> fo

‘furthermore, the string language generated by G u

. R —% %
R>’ denoted LOI(G), is the set {oac€> | S R> 0

Having generalized the above definitions, th

following result is conjectured:

Conjecture 7.2.1: Given a macro grammar G,

R
HOI(G) = LOI(G) = L(G).

Page
Parsing The Macro Languages

This section presents a new type of parser to
)gnize string languages in the class of OI macro
yuages, the BUTLRM(O) parser (the BUTLR(O) parser
.ied to macro languages). The BUTLRM(O) parser i
structed using the construction method for the
,R(0) parser and is a generalization of the

;RS(O) parser presented in section 7.1.

The method used to build the BUTLRM(O) parser i
‘ollows: First, the macro grammar G1 is converte

y tree grammar G, using a generalization of the

2
tion "1ift" defined in section 7.1. Then, using
BUTLR(O0) construction method, a BUTLR(0) parser
>uilt to accept the tree language generated by G2
111y, the parsing tables of the BUTLR(0) parser M
used to define the BUTLRM(O) parser M where the

srnal memory simulates a nested stack automaton

sented by Aho[69].

‘A nested stack automaton is a parser invented b
to parse the class of indexed languages (which i
itical to the class of OI macro languages, see
her[68][69]). The parser is a nondeterministic
-down parsing method where the moves of the neste

k automaton simulate the derivation which produc

the input string. While the nested stack autom:
quite interesting in itself, the important conce
in this thesis is its form of internal memory, |

nested stack.

A nested stack is a recursively defined ob
based on the notion of a stack. Like a stack,
are only two operators which update the stack.
operators are the push (adds an element to the |
the stack) and the pop (deletes an element from
of the stack). However, unlike the typical def:
of a stack, an element on the stack can either |
stack symbol or a nested stack (and hence, a

recursively defined object).

The way in which the nested stack is used
nested stack automaton to parse macro languages
simulate a PDA whenever possible. The top-leve.
is used to parse the top=-level strings (strings
embedded by nonterminals with arity greater tha:
Hence, whenever the macro grammar is also a str:
grammar, the nested stack is just a stack and tl
nested stack automaton simulates a PDA. Howeve:
nonterminal occurs in the top-level string, and
nonzero arity, a nested stack is created for ea

its parameters. Then, each of the parameters a

Pag:

‘eated like a top-level string and are parsed usi
e same method as with the top-level string (and

nce, uses the recursive nature of the nested sta

To use the nested stack in the construction o
lTLRM(O) parser, the function "1ift" has to be
:neralized such that a macro grammar is converted
-ee grammar which Qill simulate a nested stack in

a stack (as was done in section 7.1). 1In other
yrds, the arity of each nonterminal will be raise
1le where the added parameter of the nonterminal
spresents the string that will occur to the left
e nonterminal. A stack will be used to parse th
)ﬁ-level string under the assumptions used by an
irser (i.e. wunder the same assumptions used by t
ITLRS(O) parser). Whenever a nonterminal with ar
ypears in the string, a nested stack will be crea
»)r each parameter of the nonterminal and each nes
ack will be treated like a top level string. 1In
-her words, each nested stack will be parsed unde
;sumptions used by a LR(0) parser. Furthermore,
lfferentiate between the top—level stack and a ne
rack two empty stack symbols will be used. The s
L" will be used as the empty stack symbol for the
yp-level stack while the symbol "€" will be used

1e empty stack symbol for all nested stacks.

Given a macro grammar G=(§,>,P,S), let th
function lift : term(Q,>) -> pSVQ'\/{',L,E}(xA
where §’=0 such that for all F€J’ where F#S, t
of F is one larger than its corresponding rank
and 1ift is recursively defined as follows:

(1) 1ife(€) = X, where € is the empty string
(ii) lift(p'xi) = / ° \ where xiGXA
1ife(d) Xirl
(111) 1ift(p-a) = . where a€X
/ \
1ife(p) a
(iv) 1ift(*F) = F where F€Q and r(F)=0
|
1ife ()
(v) lift(p.F(pl,...,pm)) = F
1ife(d) 1ife(p)(€) ... 1ife(

where F€J and r(F)=m>0

Example 7.3.1: Let G be the string grammar def

example 7.1.1. Then,
1ift(&) = x
1ife(C) = C
|

X

1ift(AB) = and

A
|
B
I

h'd

Page 385

er words, the function "1lift" is a generalizatior
function "1lift" presented in section 7.1 and

for string grammars the resulting trees will be

me.

e 7.3.2: Let G be the macro grammar in example

Then,

a g b € c

E
t(F(x,a,x,b,x,c)) =
13:%2Ps%5 N
x/\

\ \
a b . c
!/ \ !/ \ / \
(3 X, £ X4 €

t(aF(F(a,b,c),b,c) =

X4

::—_-~—“—‘“‘"*~—_.

\ e/\ I\ \
I\

a (] b 8 c
!/ \
€ a E b g c

Using the function 1ift, the method to co
macro grammar to a tree grammar can be defined
a macro grammar G=(§,E,P,S), let the correspon

grammar of the macro grammar G (denoted TGG) b

tree grammar TGG=(§',S',P',S) where
9° = § where r(S)=0 and for all other
nonterminals FE€Q‘, the rank of F is one
than the rank of F in @;
3" =3V{+,]1,€} where r(])=r(€)=0, r(-)=2,
and for all a€>, r(a)=0; and

P’ is a set of productions where
1) 1if S->c«c 6P, then S->1ift(oc)(])€P’

i1i) 1if A-> oc€P where A#S and r(A)=0, then

A(x)->1ift(oc)€P’

iii) 1if A(xl,...,xm)—><n€P where r(F)=m>0, t

A(xl, e oo ,Xm+1)‘>lift(m)GP'

iv) nothing else

Example 7.3.3: Let G=(3,>,P,S) be the macro gr

such that

] {S,F} where r(S)=0 and R(F)=3,

M
I

{a,b,c,d}, and

2]
1

{s => F(ad,bd,cd),

Page

F(x,y,z) =-> F(axd,byd,czd),
F(x,y,z) => xdydzd}.
language generated by G is the set
{andn+1bndn+1cndn+1 | n>1}

1 the macro grammar G is converted to the tree

nmar TGG, the generated tree productions are as

Lows:
3 => F
- / \ / \ / \
. d . da - d
!/ \ /\ !/ \
E a g g c
F =->
fﬂZX>Xv ”’/””’
/\ /\ \
d d . d
/\ /\ !/ \
. z . w
/ \ !/ \ !/ \
€ a € b € c
F =-> .
AN A
K'Yy 2 W . d
!/ \
. w
!/ \
. d
!/ \
. z
!/ \
. d
!/ \
X y

thermore, for the derivation

=§> F(ad,bd,cd) =§> F(aadd,bbdd,ccdd) =§>

F(aaaddd,bbbddd,cccddd) =§> aaaddddbbbdddde

the corresponding derivation in TG, is

i / \\
+ / \
d . d

d
/ \ / \ o\
(] a € b £ c

OT>//F \\

- /\ /\ /A
i d i d . d
/\ AN AN
AN I\ I\ /\ I\ /\

d € d € d
/\ /\ /\
a b c
%’-_f> F
/\ !/ \ !/ \
d . d . d
AN AN AN
E/\ /\ / \ /\ !/ \ !/ \
a d b * d c d
/ \\\ / \\\ / \\\
!/ \ !/ \ !/ \ !/ \ /\ !/ \
a d b d c d
!/ \ !/ \ !/ \
(2 a € b € c

Page

/A / \ E/\ / \
. d ° d c ° d
/A / /\
/ A\ e/\ /A e/\ / \
° d b d c * d
AN AN o
i) i .
AR e/\ / \
a °* d b d
AN /\
° . b
I\ /A
a ° d
/ \
€ a

e: The tree derived by TGG in the above derivatio

resents the nested stack L'Ll'd'LA'd'L7’d where L

ough L9 are nested stacks as follows:

E'a°L2'd

e
]

L, = G'a'L3'd
L, = €ca-°d
L, = e'b'LS'd
L, = e'b'L6'd
L, = €*b°d
L, = E°c°L8°d

L, = E'c'Lg'd

L, = €+c°d

One should note that the inverse mapping of
function 1lift can also be defined. Given a mact
grammar 6=(9,>,P,S) and its corresponding tree g
TGG=(§',§',P',S), let the function
yield : TS'V@'(XA) -> term(9,>), where

A=max{r(F) | F€0’}, be recursively defined as fc
i) yield(xl) = yield(]) = yield(€) = €
ii) yield(a) = a where a&>

iii) yield(x = x, where xi+1€X and i>1

i+1) i A

iv) yield(-) = yield(tl) . yield(tz)
/\
1 %2

v) wyield(F) = t,*F where F€Q’

1

vi) yield(F)

tl'F(yield(tz),...,yielé

tm+1

where F€Q° and Elseeest €T

a8T3 v g (Xp)

Page

ample 7.3.4: Let G and TG, be defined as in examgp

G
3.3, then
eld(F) = F(a,b,c) and
/_
/ \ / \ / \

[a g b € c

eld(F) = aF(F(a,b,c),b,c)

o F o o
\ AN / \ / \
ae‘/‘/./ .\-'E b € .
/ \ / \ / \
€ a € b € c

The next theorem and three lemmas state (withe

oof) that the set of yields of trees in TG, is tt

G

cro language generated by the macro grammar G.

mma 7.3.1: Given any macro grammar 6=(9,>,P,S) ai

8 tree grammar TGG=(§',S’,P’,S), any string

eterm(9,>), cc=yield(lift(oc)) = yield(lift(oc)(

mma 7.3.2: Given any macro grammar G=(3,>,P,S) ai

s tree grammar TGG=(§',§',P',S), if s =§>n oc, t

=0

51 1ift(oc)(]) and c=yield(lift(oc)(l)).

Lemma 7.3.3: Given any macro grammar G=(3,>,P,

its tree grammar TGG=(§',E',P',s), if s %?>n t

g ="

2 yield(t) and t=lift(yield(t)(l)).

Theorem 7.3.1: Given any macro grammar G=(0,>,

its tree grammar TGG=(Q',5',P’,S),

Lo (6) = {yield(t) | t6L, (TG.)}.

Having converted the macro grammar G to

grammar TG the BUTLRM(O) parser (the BUTLR((

G’

applied to the macro grammars) can be built.
BUTLRM(O) parser is a septuple

M=(G,TG,,K,shift,reduce,goto,start) where

G’
G = (§,>,P,S) is the macro grammar definin;

the BUTLR(O0) parser;

TG, = (§’,2°,P’,S) is the corresponding
tree grammar used to define the BUTLR(O)
tables;

K is a finite ranked alphabet of parser stc

shift : tuples(K) x X’ -> KV{error}
is a function defining the parsing shift

reduce : K =-> 2P is a function defining

the parsing reduce table;

Pag

goto : tuples(K) x 3§ -> KV{error}
is a function defining the parsing
goto table; and

start€K is the initial state;

urthermore, the BUTLRM(O) parser is constructed v

lgorithm 6.3.1. Let

’=(TGG,K,shift,reduce,gpto,start) be the BUTLR(O)

arser built by algorithm 6.3.1. Then, the BUTLR(
arser M’ defines the set of states K, the initial
tate start, and the three parsing functions shift

educe, and goto of the BUTLRM(O) parser M.

The instantaneous description of the BUTLRM(C
arser is quite different from the instantaneous
escriptions for the BUTLR(0) parser. The input
tructure is a string (not a tree) and is scanned
eft to right (as opposed to scanning the tree frc
eaves to the root). Furthermore, the internal me
s a string of tree stacks where each element in t
tring is a tree stack representing a nested stacl
he tree stacks in the string are ordered in a
eft-to-right order according to the relative nest!t
f the nested stack the tree stack is representing
ther words, the string of tree stacks is a list «
ested stacks where the first element in the list

he top-level stack and all other elements are ne:

stacks which have not yet been added (pushed)
top-level stack. More formally, an instantane
description of a BUTLRM(O) parser (denoted ID)
pair (oc,P)GT; X 5* where oc is a string of t1
and B is the remaining portion of the input st
has not been read. The initial configuration

pair (k,ﬁ) where k=shift(start,|) and p is the

to parse.

The decision relation l% C IDM x IDM of :

parser M=(G,TGG,shift,reduce,goto,start) dete:

next move made by the BUTLRM(O) parser M. Giv

instantaneous descriptions id1 and idz, id1 e

and only if one of the following six conditior

(i) 1d1 = (oc*t,a*p) and id2

k1=shift(start,a) and k2=sh1ft((t(6),k1),')

= (el (t,k)),p:

In other words, this condition is a shift-move
to the innermost (rightmost) nested stack whe
symbol a is read and the corresponding state |

pushed onto the innermost (rightmost) nested

(ii) id1 = (a:'t(tl,...,tm),p) and
id2 = (a:'k(tl,...,tm),p) where

F(?)-)sereduce(t(tl,...,tm)(E)), F#S, r(F)=m,

Page
keleton(s), and goto((tl(E),...,tm(E)),F)=k

e that this condition is a reduce-move applied t
» innermost (rightmost) nested stack using the ma
yduction F(®)=->6 where 1ift(8)=s defines the

‘responding tree production F(X)->s.

1) id1 = (oc,a*p) and id2 = (a:'k(kl,kz),p) wher

:ghift(start,€), k,=shift(start,a), and

2

;hift((kl,kz),‘)

s condition creates a new one-node nested stack
.th the single element representing the stack "€a
] adds the new nested stack as the innermost

 ghtmost) nested stack (note: This type of move

called a create-move).

7) id, =(ac°t 't2,|3) and id2 = (oc'k(tl,tz),p) wh

1 1
;hift((tl(E),tz(E)),°)

s condition takes the innermost (rightmost) nest
ack t2 and pushes (adds) the nested stack t2 onto

> of the next innermost nested stack t, (note: T

1

be of move will be called a merge-move).

) id1 = (c*t,p) and id

=shift(start,€) and k

5 = (cn'kz(kl,t),p) where

zashift((kl,t(e))")

Page

other words, this condition takes the innermost

sted stack t and pushes (adds) the nested stack t
to a new empty nested stack creating a new nestec
ack of one element where the element is the neste
ack t (note: This type of move will be called ar
bed-move).

i) id1 = (t,€) and id (start,€) where

2
>s€8reduce(t(€)) and tE€skeleton(s)

te that this condition is a reduce-move on the
p-level nested stack using the start (macro)
oduction S->6 where 1ift(8)(1)=s defines the
rresponding start (tree) production S->s, and is

cause acceptance of the input string.

A BUTLRM(O) parser is considered deterministic

d only if for every instantaneous description id]

ere exists an 1d2 such that 1d1 K 14 then id

d 2?
ique. In other words, a BUTLRM(O) parser

2

(G,TG.,,K,shift,reduce,goto,start) is deterministi

G)
d only if

i) The BUTLR(O) parser

M'=(TGG,K,shift,reduce,goto,start) is

deterministic.

1ii) There are not shift/shift, shift/reduce
shift/create, shift/embed, shift/merge,
reduce/reduce, reduce/create, ...

merge/merge conflicts.

Example 7.3.5: Let G and TGG be the macro gramme

the corresponding tree grammar defined in examp]

7.3.3. Then M-(G,TGG,K,shift,reduce,goto,start]

BUTLRM(O) parser such that
K ={1,2,...,27} where
r(l) = r(2) = ... = 1r(7) =0,
r(3) = r(4) = ... = r(1l6)
= r(18) = r(19) = ... = r(23)
= r(25) = r(26)

r(27) = 2,
and r(l7) = r(24) = 3; and

shift, reduce, and goto are defined by the £

tables:

shift

e a b c d
e S e e St R 5

7

s e T s 4

l

6

5

4

3

2

1

8
e T e s s ST

(3,4)
(3,5)
(3,6)
(8,7)
(9,7)

(10,7)

-9
e s St it anEE TR R

10]
T T S s s

111

et et S s

12

i ST L et TR

131

s T e e e s

14|

e e S e A

|

(8,11)

151

s ST T S s £

(2,11)

16|

it e e it it 4

(9,12)

18}
T S e e 4

(10,13)

191

T T e 5

(14,7)

201
s et e s

(15,7)

21|

it BT e e i it ¥

(16,7)

22|
e e e

(18,7)

14

s et S T

(8,19)

151

i e R i o

(2,19)

23|
et s s i

(20,12)

161

s BT s e

(9,21)

23]
i e R s T SRS

(20,21)

18]

et T e B s Kaiaias

I

(10,22)

(continued on next page)

Page

e a b c d
i el et S A

|
I
|
|

|
|
!
|

25|
T et T E R R

26|
L T T e

26|
T T T e

27|
s ST R R A

(23,7)
25,13)
25,22)
(26,7)

3
3
’
.

SOtO

F
s

17}
-t

4
\

2,11,12,13)

24
m———t

2,19,21,22)

4
\

D D - - - - - - CE D T WD - W DD D -, D D - - — D - - D - -

The language accepted by the BUTLRM(O) parser
set of strings

{andn+lbndn+1cndn+1 | nZl}
and by inspection of the tables above, clearly

deterministic. For example, the string

"aadddbbdddccddd" is accepted by the BUTLRM(0]

Page

follows:
, aadddbbdddccddd) |-:1‘

+ 8 , adddbbdddccddd) l-:

!\
3 4

«+8 + 8 , dddbbdddccddd) l-‘:l‘
/ \ / \
3 43 &4

-8 + 11 , ddbbdddccddd)

+ 19 , dbbdddccddd) L‘C‘l‘
\

, bbdddccddd) l-‘;‘

° 9 , bdddccddd)

, deccddd) l-:

7
, ccddd) l-‘:l‘

Page 40

23
/
20
[\
15 7
/ \
2 19 9
/[\ /
14 73
/ \

8 11
/\ /\
3 4 8 7
/' \

3 4
(/
2 19//////

/\
14 7

(start,®)

Page

Like the BUTLRS(O) parser, there are several
njectures the author has about this model and are

llows:

njecture 7.3.1: Given a macro grammar G and the

ELRM(O) parser M=(G,TGG,K,shift,reduce,gpto,starg

I(G)=N(M).

njecture 7.3.2: Given a macro grammar G, the

rLRM(O) parser can be extended to a BUTLRM(k) par
parser with k symbols of lookahead on the input

pe)-

njecture 7.3.3: Given a string grammar G, the LR(

rser M1=(G,K1,shiftl,reducel,gptol,startl), and t

TLRM(O) parser

=(G,TGG,K2,shiftz,reducez,5ptoz,start2), then

a) (start, o) I-d“ (3,8) if and only if
n .
(shift,(stare,|), o) l-‘;‘ (t,®) where

sgelling(p)=yie1d(sBelling(t)) and
1ift(sgelling(p))(L)=sgelling(t).

b) M1 is deterministic if and only if M

deterministic

2

c) L(G)=N(M1)=N(M2)

Conjecture 7.3.4: Given a string grammar G, th

BUTLRM(O) parser can be extended to a BUTLRM(k
(a parser with k symbols of lookahead on the i
tape). Furthermore, the conditions of conject
apply to the comparison between the LR(k) pars

the BUTLRM(k) parser.

Conjecture 7.3.5: The class of string language

recognized by the class of deterministic LR(k)
languages 1is a subclass of the class of langua
recognized by the class of deterministic BUTLR

parsers. Furthermore, the inclusion is proper

While this chapter has presented a new pa
model for the class of macro languages and the
deterministic model is quite powerful, it may
the most powerful form of a parsing model for

of macro languages. One may have wondered why

n+l n . n+l
c

n n+1bn d | n>1l} was chosen

language {a d d

example instead of the string language {anbncn

Page !

reason for this 1is that the second case will

uce a nondeterministic BUTLRM(O) parser and the
e is that the BUTLRM(O)Vparser does not take
ntage of the context of the tree stacks occurring
he left of the tree stack being updated. In othe
s, whenever a new nested stack is created, the
ext of all other outer nested stacks is lost.

e, a possible way to increase determinism is to
fy the BUTLR(O0) construction method to use left
ext in the same manner that the LR(0) parsing

0d does in simulating a bottom—up tree automaton
e the stack 1is a list of current states associat:
. read-heads occurring to the left of the read-he
g updated, and the update is based on the conten

he stack.

Chapter VIII

CONCLUSION

Chapter two presented the notation and ter
used in this thesis. Chapter three presented
context-free (string) languages and a summary o
LR(0) parsing techniques. Chapter four present
context-free tree languages and several results
context-free tree languages which are based on
~known results about context-free (string) gramm
Chapter five presented the tree pushdown automa
which accepts the class of context-free tree la
and chapter six presented a construction method
build a deterministic tree pushdown automaton (

BUTLR(0) parser) for a subclass of the context-

LORKR

Pa

ree languages. Finally, chapter seven presented
pplication of the BUTLR(0) parser to parse strin
.anguages in the class of OI macro languages. Th
hapter provides a summary of the major results o
lissertation in terms of its contribution to comp
icience, as well as open questions and possible f

research on the topics covered in this thesis.

3.1 Summary Of Research

The crux of this dissertation is to present
yarsing model to recognize the class of context~-f
-ree languages using a new parsing model which is
yottom—=up tree automaton augmented with internal
onsisting of a finite sequence of trees (called
stacks). This new form of automaton is called a
>ushdown automaton. Furthermore, the tree pushdo
izutomaton corresponds to the standard (string) pu
automaton in the same manner that the bottom-up t
automaton corresponds to the (string) finite auto
lence, like the pushdown automaton, the tree push
automaton can only access the tree stack through
root, and nodes can only be pushed (added) or pop

(deleted) at the root of a tree stack.

The goal of this dissertation is to develo
types of parser constructors. The first type o
constructor is a constructor to build a determi
tree pushdown automaton which has the power to
recognize a subclass of the context-free tree
languages, and is based on the notions used by
parser. The second type of parser constructor
parser constructor which takes the first parser
constructor and applies its construction method
strings in order to obtain a new parser constru
which would have the power to recognize the mac
(string) languages (which is more general than
class of context-free string languages on which
LR(0) parser is based on). One should note tha
first type of parser construc%or is the major g
this thesis while the second is to provide an

application of the first.

The ideas and inspiration used throughout
thesis was to mimic and generalize the construc
methods used by LR(k) parser constructors, and
so, develop a new, more powerful parsing techni
this end, the methods of the LR(k) parser const
are lifted to a more powerful form of languages
as context-free tree languages, and the develop

a construction method which creates a determini

Pag

arser for a subclass of the context-free tree

anguages.

The major results of this dissertation in ter
t meeting the above goals are threefold: (1) The
lass of tree languages generated by context-free
anguages 1s i1dentical with the class of tree lang
ecognized by tree pushdown automata; (2) The the
f LR-parsing (shift-reduce parser constructors fc
ontext-free string languages) extends to context-
ree languages. More specifically, the natural
eneralization of the LR(0) parser constructor is
UTLR(O) parser constructor which generates a clas
arsers that recognizes the class of context-free
anguages and builds a deterministic parser for a
ubclass of the context—-free tree languages; and
he author conjectures that the BUTLR(0) parser cs
sed to build a parser to recognize macro (string)
anguages (the BUTLRM(O) parser) and the construct
ethod constructs a determiﬁistic parser for a sut
f the macro languages. Furthermore, the class of
tring languages recognized by the deterministic
UTLRM(k) parser should be a proper superclass of
lass of string languages recognized by determinic

R(k) parsers.

The key to both the BUTLR(0) parser and th
BUTLRM(O) parser is the characteristic automato:
the LR(0) parser, the BUTLR(0) parser directly
from its characteristic automaton. The charact
automaton of the BUTLR(0) parser is an automato
to recognize deterministically a set of charact
trees, which are well defined subtrees of the
sentential forms generated by a tree grammar.
Furthermore, the construction of the characteri
automaton is based on the fact that the set of
characteristic trees can be generated by a root:
tree grammar and hence, the set of characterist

correspond to a co-regular tree language.

To summarize the major results of this
dissertation in terms of the construction of th
BUTLR(O0) parser, and the tree pushdown automato
the BUTLR(O0) parser is based on, the following

results is presented:

1) The power of the tree pushdown automat
the same as the power of a context-fre
grammar (see theorem 5.9.1). 1In other
the class of tree languages accepted b
pushdown automata is identical to the

(0I) context-free tree languages.

Page 413

In general, the set of characteristic trees
generated by context-free tree grammar is not

a regular tree language (see theorem 6.2.1).

Given a context-free tree grammar G, a
root-linear tree grammar G’ can be constructed
such that the tree language generated by G’ is
identical to the set of characteristic trees
of G (see theorem 6.2.2). As a consequence,
the set of characteristic trees generated by a
context-free tree grammar is a co-regular tree

language.

The class of co-regular tree languages is a
proper subset of the class of context-free
tree languages (see theorem 4.11.3). Hence,
recognizing characteristic trees should be
simpler than recognizing context—-free tree

languages.

The construction method of the characteristic
automaton for a context—-free tree grammar G
produces a bottom—up tree automaton M such
that M recognizes every characteristic tree
generated by G. However, it is not
necessarily the case that the set of trees

recognized by the characteristic automaton M

6)

is identical to the set of characteris

trees (see theorems 6.2.3 and 6.2.4).

A BUTLR(0) parser M, constructed from
context—-free tree grammar G, recognize
exactly the tree language generated by
Furthermore, for a subclass of the
context—-free tree languages, the const
BUTLR(O0) parser is deterministic (see

603.1).

Furthermore, while producing the above res

about tree pushdown automata and the BUTLR(O0)

construction method, the following related resu

also been shown:

D)

Given a tree grammar G, the tree langu
generated under an OI derivation mode
identical to the tree language generat
a prefix lexicographical ordering deri
mode (i.e. a leftmost OI derivation,

theorem 4.1.2).

Page 41

Like context-free (string) grammars, given a
context-free tree grammar G, one can
effectively construct a context—-free tree
grammar G’ such that the tree languages
generated by G and G’ are identical, and G’ 1
in 2-normal form (see theorem 4.5.1). In
other words, the right-hand side of every
production in G’ contains at most a total of

nonterminal or terminal symbols.

Like context-free (string) grammars, given a
context-free tree grammar G, one can
effectively construct a context-free tree
grammar G’ such that the tree languages
generated by G and G’ are identical, and G’ i
in "weak Chomsky normal form" (see theorem
4.,9.1). In other words, the tree grammar G’
is in 2-normal form where the right-hand side

of every production in G’ contains either

i) 2 nonterminal symbols and variables

ii) a single terminal symbol and variables

iii) a one node tree labeled by a vari

4) A "pumping lemma" for the class of co

tree languages (see theorem 4.11.2).

lemma can be uses to show that a part

tree language is not in the class of

co-regular tree languages.

8.2 Open Questions

While working on the above topics, severs

topics and concepts have been brought

up for w

solution has been found. These topics represe

questions in this field of study (and
and can be broken down into two types
This first type of open questions are

the author has conjectured answers to

related
of quest
those fc

the ques

but has not found a proof of the result, and s

presented by the following list:

1) The class of tree grammars for which

deterministic BUTLR(0) parser will be

constructed is the class of BUOI(O) t

grammars (where BUOI(0) corresponds t

meaning of LR(0) grammars for context

string languages, see section 6.4).

Page 417

Given a macro grammar G, the sﬁring language
generated under an 0I derivation mode 1is
identical to the string language generated
under a rightmost OI derivation mode (see

conjecture 7.2.1).

Given a macro grammar G and the BUTLRM(O)
parser M generated by G, the string language
recognized by the BUTLRM(O) parser M is
identical to the string language generated by
the macro grammar G under an OI derivation

mode (see conjecture 7.3.1).

The BUTLRM(O) parser constructor can be
extended to a BUTLRM(k) parser constructor (a
parser with k symbols of lookahead on the

input tape, see conjecture 7.3.2).

Given a context-free (string) grammar G, the
BUTLRM(O) parser M generated by G, and the

LR(0) parser D generated by G:

i) The set of possible moves that can be made
by the BUTLRM(O) parser M is identical to
the set of possible moves that can be made
by the LR(0) parser D (i.e. the BUTLRM(O)

parser M simulates the LR(0) parser D).

ii) THe BUTLRM(O) parser M is determin
and only if the LR(0) parser D is

deterministic.

iii) The string language generated by t
string grammar G is identical to t
string language recognized by the
BUTLRM(O) parser M, which is ident
the string language recognized by

LR(O0) parser D.
(see conjecture 7.3.3)

6) The conditions of 5 (above) also apply
comparisons between the BUTLRM(k) pars

the LR(k) parser.

7) The class of string languages recogniz
the class of deterministic LR(k) parse
subclass of the class of string langua
recognized by the class of determinist
BUTLRM(k) parsers. Furthermore, the i

is proper.

The second type of open question are those that
brought up by the author, but for which the aut

cannot even make a conjecture. to the question

1)

2)

3)

4)

5)

Page

Can epsilon rules (productions with just a
single variable on the right-hand side) be
removed from context-free tree languages (s

section 4.7)?

Is there an effective method of converting
nonconservative tree grammars (i.e. tree
grammars which contain a production where a
variable occurs on the left-hand side of th
production but not the right) into

conservative tree grammars (see section 4.7

Can a tree grammar be reduced? That is, gi
any tree grammar G, can the tree grammar G
converted to a tree grammar G’ such that th
tree language generated by G and G’ are
identical, and every production in G’ is us
in the generation of some tree in the tree

language generated by G (see section 4.8).

Does there exist a pumping lemma for the cl

of context—-free tree languages?

Does there exist a parsing model which
recognizes exactly the class of co-regular
tree languages? Furthermore, does there ex

a parser constructor for this model such th

the construction will guarantee to pro«
deterministic parser for the class of

co-regular tree languages (see section

6) Can the definition of the tree pushdow:
automaton be converted to use unificat
instead of "simple" tree matching and
remove the restriction that the tree p
automaton will not (by default) be
nondeterministic whenever the tree grai
which generated the tree pushdown auto:

nonconservative.

8.3 Future Research

Future research in this area could follow
different directioﬁs. At one end of the spectr:
research could continue along the theoretical v
investigating other parsing models to recognize
languages as well as possible generalizations (
restrictions) on the type of tree grammar used.
to the other end of the spectrum, research coul
continue by investigating the application side,
how the tree pushdown automaton (and the BUTLR(
parser constructor) can be applied to macro (st

languages. The following paragraphs state some

Page

hor’s continuing interests in this area in both

rory and application.

One research goal is to investigate
1teralizations of the BUTLR(0) parser constructor
ler to increase the class of tree languages
rognized deterministically. For example, the not
a lookahead should be introduced to produce a
'LR(k) parser which should reduce nondeterminism.
> should note that this includes two different ty
lookahead where the meaning of K symbols of
ykahead is dependent on whether or not the input
1guage will be a string or tree language. In the
ring case, the k symbols of lookahead corresponds
> next k leaves (or symbols on the input) while 1
3 tree case, the k symbols of lookahead correspon
the next k immediate ancestors of the node. Lik
rsing techniques, other possible modifications to
restigated are construction methods which 1lift th
rions of SLR(1l) and LALR(l) parser constructors (
temmer[69,71,72], Anderson, Eve, and Horning[72],
,onde, Lee, and Horning[71]) to trees in order to
>duce "smaller" deterministic parsers for a subcl
the tree languages recognized by the class of
terministic BUTLR(k) parsers. Still other possib

iifications to the BUTLR(k) parser constructor to

investigated are state minimization methods 1lik
of compatibility for LR(k) parsers introduced b
Pager[77a,77b] which will produce an equivalent
to that of a BUTLR(k) parser, but requires less

and hence, less machinery.

Another mode of research will be to invest
other types of tree representations (besides th
graphical representation of Gorn trees used in
thesis) and the corresponding effects on the ma
needed. For example, one possibility is to 1lin
tree structures by using some type of total ord
the nodes of the input tree (postorder for exam
Intuitively, such an ordering should simplify t
model from a tree pushdown automaton to a neste
automaton (a finite-state automaton augmented w
internal memory which is a self-stacking pushdo

stack, see Aho[69]).

Yet another goal of future research is to
investigate some of the other eight possible fo
tree pushdown automata (as mentioned in the
introduction). In particular, there is another
of the tree pushdown automaton envisioned by th
which will accept the class of IO context-free

languages (which is a different class of tree 1

Pag

1an the class of OI context-free tree languages,

1glefriedt and Schmidt[77,78]). The model consis
top-down tree automaton that uses a single tree
) remember the structure of the scanned portion o
1put tree. Like a BUTLR(O) parser, there is also
1wvisioned parser constructor which also resembles
(k) parser constructors and should construct a

aterministic model for a large subclass of the IO

yntext-free tree languages.

As with the BUTLR(O) parser, the envisioned
ynstructor starts by building a deterministic top
1itomaton to recognize characteristic trees. From

1itomaton, the shift, reduce, and goto tables dire

reated and define the generated parser. However,
11ike the BUTLR(0) parser, included in the defini
' shift-moves and reduce-moves is the existence o
barallel”" action where the action is applied to a
ibtrees of the input tree which must represent th

ame tree (or value as an I0 derivation mode impli

s parameters).

Another possibility is to study some relaxati
1 the definition of context-free tree languages,
1e effects these alterations have on the parsing

>dels. In particular, the type of relaxation to

investigated is the removal of the restriction |
every production F(xl,...,xn)—>t, only variable:
through X can occur in the tree t. That is, t
introduce the notion of "local" variables is to
introduced into productions which will allow th
specification of a tree language using a tree g:
which only partially describes the structure of
trees in the language (unlike context-free tree
grammars which totally specify the tree languag
Questions of interest are both in the interpret.
these "local" variables, and how the eight poss
forms of tree pushdown automata can be modified

handle such types of language specification.

Another goal is to investigate the BUTLRMU
parser in more detail than was done in this the
This includes investigating generalizations or
modifications to both the BUTLR(O0) and BUTLRM(OI
constructors in order to increase the class of
languages that will be recognized by determinis:
BUTLRM(O) parsers. In particular, to investiga
to add left-to-right context such that every mo:
by the BUTLRM(O) parser is based on all the inf
gained so far (which is currently lost whenever

nested stack is created).

Page 425

second area of application, besides parsing the
'string) languages, is along the lines of

1g an automatic compiler constructor. That is,
ress both the syntax and semantics of the

»r using two types of rewrite systems, and from
rewrite systems construct automatically the

2r., The first rewrite system would be a string
r describing the syntax which would be used to
he input and produce a parse tree as is

-ly done with LR parsers. The second rewrite
would be a tree grammar defining a tree

icer where the tree transducer would be used to
= the parse tree of the input into the

Llcally equivalent tree in the object language.

1 conclusion, the area appears to be very rich in
*h possibilities for the forseable future. The
believes that the parsing models introduced in
1esis will result in practical models, sometime
future, which will be used by the computer

2 community.

Aho, 2, 183, 351, 381, 422
Alphabet, 14

Ancestor, 26

Anderson, 35, 422
Antisymmetric, 17

Arbib, 13

Arity, 20

Arnold, 169-170

Augmented tree grammar, 105

Bar-hillel, 41, 43, 136, 163
Bi jective, 18

Bottom—up tree automata, 181
Brainerd, 4, 163, 183

Buchi, 2, 8, 183

Butlr (0) parser, 392
Butlr™(0) parser, 361

Butlr{0) characteristic automaton,

311

Butlr(0) parser, 257
decision relation, 258-259
determinism, 262

instantaneous description, 257

language accepted, 263
well defined, 262

Characteristic derivation step,

288
Characteristic grammar, 274
Characteristic tree, 268
Chomsky, 61, 155, 223
Class, 15
Concatenation, 18
Conservative grammar, 145
Conservative production, 145
Context-free grammar, 37
derivation, 38
language generated, 39
reduced, 40
right-linear, 42
rightmost derivation, 38
sentential form, 40
Context—free tree grammar, 85
io derivation, 90

INDEX

language generated
oi derivation, 91
one-step derivatio
sentential form, 8
Courcelle, 2, 8

Dauchet, 169-170

Depth, 26

Deremmer, 35, 422

Derivation-renaming
135

Derivation—~renaming
135

Descendant, 26

Doner, 4, 8, 163, 18

Druseikis, 35

Eilenberg, 8, 43, 47
Elgot, 2

Emtpy tree stack, 18
Englefriedt, 4, 89,
Epsilon-free, 144
Epsilon-rule, 144
Eve, 35, 422

Evey, 61, 223, 240

Finite state automat
computation relati
determinism, 46
instantaneous desc
language accepted,

Fischer, 4, 20, 349,
378, 381

Friedman, 2, 8

Function, 18
finite domain, 18
partial, 18
total, 18

Gallier, 2, 8
Geller, 35, 71
Gorn, 23, 27
Gries, 2
Guessarian, 8

ag, 2

ison, 3, 35, 41, 43, 47,

), 55, 71, 136, 147, 223, 240
1, 35

\ing, 35, 422

witz, 2

s 2

ctive, 18

srnal node, 26
srsection, 15
lerivation, 90

Wi, 8

1iry, 13
‘h, 3, 6, 34-35, 70

nde, 2, 35, 422

juage, 14

s 26

 nodes, 26

, 35, 422

in, 18

7, 8

ls, 3, 6, 55, 223, 240
)) parser, 64
\:aracteristic string, 70
>mputation relation, 65
1stantaneous description, 64
anguage accepted, 66

211 defined, 64

ro grammar, 370

> derivation, 374
anguage generated, 372, 378,
380

. derivation, 375
ne~-step derivation, 372
ightmost derivation, 379
idor, 4, 8, 183

<ed production, 299

, 20

ner, 2

1, 13

an, 4, 8, 183

N-normal form, 123

N-tuple, 15

Natural numbers, 19

Nested stack automaton, 381

Nivat, 2, 8

Node, 26

Noncharacteristic derivatio
288

Nonredundant tree grammars,

Nt/t segmented grammars, 1l

Nt/t segmented productions,

Nth m-way tree composition,

Oettinger, 55

0i derivation, 91
Oppen, 2

Ordered pair, 15

Pager, 35, 422

Papadimitriou, 3, 55, 223,

Partial ordering, 17
strict, 17 .
total, 17

Perles, 41, 136

Positive integers, 19

Powerset, 15

Prather, 13

Product, 15

Production slice, 270

Production slice supertree,

Purdom, 35

Pushdown automata, 56
computation relation, 57
determinism, 59
instantaneous descriptior
language accepted, 58

Rabin, 43, 50, 163, 297
Rank function, 20
Ranked alphabet, 20
constants, 20
function sybmols, 20
Reduced tree grammar, 146
Redundant tree grammars, 1
Reflexive, 17
Relation, 16
antisymmetric, 17
domain, 16

range, 16
reflexive, 17
total, 16
transitive, 17
transitive closure, 17
transitive reflexive closure,
17
Renaming function, 108
Rewrite production, 286
Ripley, 35
Rivieres, 2
Root, 26
Rosen, 2
Rounds, 163

Salomaa, 43, 47
Schimpf, 35
Schmidt, 4, 89, 97
Schutzenberger, 18, 61, 223, 240
Scott, 43, 50, 163, 297
Set, 14
cardinality, 14
difference, 15
empty, l4
equality, 14
finite, 14
infinite, 14
intersection, 15
membership, 14
powerset, 15
union, 15
Shamir, 41, 43, 136, 163
Skeleton - definition, 258
Stack alphabet
trees, 188
Stateless tree pushdown automata,
205
computation relation, 206
determinism, 214
instantaneous description, 206
language accepted, 207
Stearns, 6
String, 18
empty, 18
length, 19
prefix, 19
suffix, 19
String grammar, 37

String substitution,
Subset, 14

proper, l4
Subtree, 28
Sum, 20
Surjective, 18

Takahashi, 8

Terms, 20

Thatcher, 4-5, 8, 1¢

Transitive, 17

Transitive closure,

Transitive reflexive

Tree, 25

Tree address, 26

Tree composition, 3(

Tree domain, 23
postfix lexicograg

24
prefix lexicograpt
24

Tree pushdown automs:
computation relat]
determinism, 203
instantaneous desc
language accepted,

Tree replacement, 3(

Tree stack, 188

Trees with variables

Tuples, 16

Ullman, 2
Union, 15

Variable name select
Variable size index,

Wand, 2
Weakly reduced, 147
Wright, 4, 8, 183

Page 4
BIBLIOGRAPHY

A. V. [1969] - Nested Stack Automata. JACM,
1. 16, no. 3, July 1969, pp. 383-406

A. V. and Ullman, J. D. [1972] - The Theory
1rsing, Translation, and Compiling. Internation
. Computer Mathematics 3, p.l149-155

A. V. and Ullman, J. D. [1979] - Principles
mpiler design. Addison-Wesley Publishing c
2ading Mass.

b, Bowen, Martin Chaney, Micheal Fay,

1omas Pennello, and Rachel Radin [1976]
ranslator writing system for the Burroughs B570
\formation Sciences, UC Santa Cruz, Santa Cruz, C

rson, T.; Eve, J.; and Horning, J. [1973] -
‘ficient LR(1) parsers, Acta Informatica 2,
-39 A .

>, M. A., Kfoury, A. J., and Moll, R. N. [198
basis for theoretical computer science, Spring
»rlag, New York, 1981

ld, A. and Dauchet, M. [76] = Un theoreme de
1iplication pour les forets algebriques, JCSS, v
3}, #3 (October 1976), p.223-244

Iillel Y.; Perles, M.; and Shamir, E. [1961]] -
1 formal properties of simple phrase-structu
rammars, Zeitschrift fur Phoneti

rachwissenschaft, und Kommunikationsforshung, 1

1illel, Y. and Shamir, E. [1960] - Finite-state
Aanguages: formal representations and adequa
roblems, The Bulletin of the Research Council

sreal, 8F, p.155-166

v, Go3 Levy, J. [1978] - Minimal and Optimal
rmputation of recursive programs. JACM vol 26,
, P 148-175, January 1978

Brainerd, W. S. [1969] - Tree generating regu
systems, Informationand Control 14, 217-231

Brosgol, B. M. [1974] - Deterministic transla
grammars, PhD Thesis, Technical report #
Center for Research In Computing Technology,
University, Cambridge Mass

Buchi, J. R. [1960] - Weak second order arith
and finite automata, Zeit. Math. Log
Grundlagen. Math. 6, p. 66-92

Buchi, J. R. and Elgot, C. C. [1958] - Deci
problems of weak second-order arithmetics an
automata. Abstract 553-112, Notices Amer
Soc. 5, 834

Buchi, J. R. and Wright, J. B. [1960] -
Mathematical theory of automata. Notes on
presented by J. R. Buchi and J. B.
Communication Sciences 403, Fall 1960, Unive
Michigan, Ann Arbor, Michagan

Chomsky, N. [1956] - Three models for the
descriptions of Languages, IRE Transacti
Information Theory 2, #3, p.l13-124

Chomsky, N. [1959] - On certain formal propert
grammars, Information and Control, 2, p.l37-

Chomsky, N. [1962] -Context-free grammars and
pushdown storage, MIT Research Lab of Ele
Quarterly Progress Report 65

Chomsky, N. and Miller, G. A. [1958] - Finit
languages, Information and control, 1, p.91-

Courcelle, B. [1976] - Completeness results fo
equivalence of recursive schemes. “J.
System Sci._12(2), p.179-197

Courcelle, B. [1981] - A representation of tre
languages, I and II, “theor. Comput. Sci.)

Page /4

eikis, F. and Ripley, G. D. [77] - Extended
LR(k) parsers for error recovery and repair. Dep
f Computer Science, Univ. of Arizona, Tuscan Az,

mer, F. [69] - Practical translators for LR(k)
anguages, Ph.D. thesis, Dept. of Electric
ngineering, M.1.T., Cambridge, Mass.

mer, F. L. [71] - Simple LR(k) grammars. Comn.
CM 14, p. 453-460

mer, F. [82] - XPL distribution tape containing
ALR translator writing system. Computer E:
nformation Sciences, UC Santa Cruz, CA.

r, Jo E. [70] - Tree acceptors and some of thel
pplications, J. Comput. System Sci. (JCSS) 4

ey, P. J. [74] - Formal Languages and
ecursion Schemes, PhD dissertation, Harve
niversity, Cambridge Massachusetts.

e, J., Parchmann, R., and Specht, J. [79]
zilard languages of 10 - grammars, Information :
ontrol 40, no.3, pp. 319-331

nberg, S. [74] - Automata, Languages, and
achines, Vol. A, Academic Press, New York

nberg, S. and Wright, J. B. [67] - Automata ir
eneral algebras, Information and Control 11:
«452=-470

t, C. C. [61] - Decision problems of finite

utomaton design and related arithmetics. Trar
mer. Math. Soc. 98, p.21-51

lfriet, J. [80] - Some open questions and

ecent results on tree transducers and t1
anguages, Memorandum nr. 293, Technis¢
ogeschool twente, Enschede, Netherlands

lfriet, J. [80] - Some open questions and

ecent results on tree transducers and t)
anguages, in Formal Language Theory (R. B
ditor), Academic Press

Engelfriet, J. [8l1] - Tree transducers and
syntax—directed semantics, Memorandum nr
Technische Hogeschool twente, Enschede, Net

Englefiet, J. [75] - Bottom—up and Top-down t
transformations - a comparison, Technical [
twente, Enschede, Netherlands

Engelfriet, J.; Schmidt, E. M. [77] - I0 ar
"J. of computer and system sciences_15, t

Engelfriet, J.; Schmidt, E. M. [78] - IO an
*J. of computer and system sciences_16, t

Evey, Re J. [63] - The theory and applicatic
pushdown store machines, PhD. Thesis and
Report, Mathematical Linguistics and
Translation Project, Harvard University, NS¢

Fischer, M. J. [68] - Grammars with macro-1i
productions. Doctoral Dissertation,
University, Cambridge Mass.

Fischer, M. J. [1969] - Grammars with macro-
productions. 9th Symposium on switct
automata theory.

Friedman, E. P. [76] - The inclusion problen

simple 1languages, “Theor. Comput. S
P.279-316

Friedman, E. P. [77a] - Equivalence Problems
Deterministic Context—=Free Languages anc
Recursion Schemes, “J. Comput. System Sci
344-359

Friedman, E. P. [77b] ~ Simple Context-Free
Languages and Free Monadic Recursion Scheme
Systems Theory_11, p. 9-28

Gallier, J. H. [80] - Deterministic Finite 4
with Recursive Calls and DPDA’s (detailed =
technical report #MS-CIS-80-36, Dept.
University of Pennsylvania

Page

lier, J. H. = DPDA’S in "Atomic Normal

Form" and applications to equivalence proble
Theoretical Computer Science 14, North-Holl
Publishing Co., 155-186

ler, M. M. and Harrison, M. A. [77]
- Characteristic parsing: A framework for produc
compact deterministic parsers I., JCSS 14, p.265-

sburg, S [66] - The mathematical theory of

context-free languages, McGraw~Hill Book Co.,
York

sburg, S. and Greibach, S. A. [66] =~
Deterministic context-free 1languages, Informat
and Control 9, p.620-649

n, S. [1962] - Processors for infinite codes of
Shannon - Fano type, “Proceedings of the Sympos:
on Mathematical theory of Automata)

n, S. [1962] =~ Symbolic Languages in [
cessing

Proceedings of the Symposium organized and editec
the International Computation Centre Rome, M:
26-31, Gordon and Breach Science Publishers, N.Y.

n, S. [1965] ~ Explicit Definitions and Linguis!
Dominoes, “Systems and Computer Science\L John 1
and Satoru Takasu Eds.

n, S. [1967] - Handling the growth by definitior
mechanical languages, Spring Joint Compt
Conference, 1967

es, D. [71] - Compiler construction for digital
computers, John Wiley and Sons, New York (1971)

ssarian, I. [81] - On pushdown tree automata.
Proceedings of 6th CAAP (Genoa, lecture notes
computer science, Springer-Verlag) 1981

tag, J., Horowitz, E., and Musser, D. [76]
- Abstract data types and software validation,
report 76=-48, University of California, Los Ange:

Guttag, J., Horowitz, E., and Musser, D. [78]

- Abstract data types and software validation
21, #12, p.1048-1064

Haines, L. H. [65] - Generation of Recognition
Formal Languages, PhD Thesis, MIT (1965)

Harrison, M. A. [78] - Introduction to formal
language theory, Addison-Wesley Publishin
Reading Mass. 1978

Harrison, M. A. and Havel, I. M. [73] - On a
of deterministic grammars, in Automata, Lan
and Programming (M. Nivat ed.), p.4
North-Holland Publishing Co., Amsterdam (1973

Hoffman, M. and O0‘Donnell, M. J. [82] - Patte
matching in trees, JACM 29, #1, p.68-95

Hopcroft, J. E. and Ullman, J. D. [69] - For
languages and their relation to au
Addison-Wesley Pusblishing Co. (1969)

Huet, G. [80] - Confluent Reductions: Abstract
propoerties and applications to term re
systems. JACM, vol 27, no 4, october 1980

Huet, G.; Oppen, D. C. [80] - Equations and r
rules, A survey. "Formal Languages: Persp
and open problems”. Editor, Ron Book, A
Press, 1980

Joshi, A. K.; Levy, L. S. [77] - Constraints
structural descriptions : local transform
SIAM “J. of Computation\, vol 6, no2, June 1

Joshi, A. K.; Levy, L. S.; Takahashi M. [75
Tree Adjunct Grammars, “J. of Computer and
Sciences\, Vol 10,#1 Febuary 1975

Knuth, D. E. [65] - On the translation of lang

from left to right. Information and Control
607-638

Page

th, D. E. [68] - Semantics of Context-free

Languages. “Mathematical Systems Theory\, vol#2,
2 (1968)

th, D. E. [71] - Top-down Syntac Analysis,
Acta Informatica 1, #2, p.79-110

stensen, B. B.; Madsen, 0. L. [8l1] - Methods
Computing LALR(k) lookahead. ACM transactions
programming languages and systems, Vol 3, Nc
January 1981

onde, We R.; Lee, E. S.; and Horning, J.

]

- An LALR(k) parser generator. Proc. 1
congress71l, North Holland, Amsterdam, p.#151-153

onde, W. R. and Rivieres, J. D. [81] - Handli
operator precedence in arithmetic expressions v
tree transformations. ACM Transactions
Programming Languages and Systems, Vol 3,
January 1981, p.83-103

tin, A. and Schutzenberger, M. P. [67] - A
combinatorial problem in the theory of free monoi
Combinatorial Mathematics and its Applications,
128-144 (1967)

is, H. R.; Papadimitriou, C. H. [81] - Elemer
of the theory of computation, Prentice H:
Englewood Cliffs, N.J. 1981

is II, P, M. and Stearns, R. E. [68]
- Syntax-directed Transduction, JACM 15,
p.465-488

idor, M. and Moran, G. [69] - Finite automata

over finite trees, Technical Report 30, Hel
University, Isreal

lhorn, K. [79] - Parsing Macro Grammars
top down, Information and Controo 40, no.l,
123-143

Page

lner, R. A. [78] - A theory of type polymorphis
in programming, JCSS 17, #3 (December 19
p-345-375

vat, M. [75] - On the interpretation of recursiv
polyadic program schemes, Symposia Mathematica
Academic Press, N.Y., 225-281 (1975)

ttinger, A. G. [61] - Automatic Syntactic Analy

and the Pushdown Store, Proceedings of Symposis
Applied Mathematics (vol 12), American Mathemat
Society, Providence, R.I. (1961)

ger, D. [77a] - A practical general method for
constructing LR(k) parsers. Acta Informatica 7,
249-268 (1977)

ger, D. [77b] - The lane tracing algorithm for
constructing LR(k) parsers and was of enhancing
efficeincy. Information Sciences 12, p.#l
(1977)

ather,R. E. [76] - Descrete mathematical struct
for computer science, Hougton Mifflin Co., Boc
1976

rdom, P.; Brown, C. A. [79] - Parsing extendec
LR(k) Grammars, Technical report #87, comg
science dept., University of Indiana. 1979

rdom, P.; Brown, C. A. [80] - Semantic Routine
and LR(k) Parsers, Acta Informatica, (1980)

bin, M. O. and Scott, D. [59] - Finite automat

and their decision problems. IBM Journal
Research and Development, 3, p.114-125 (1959)

bin, M. O. [68] - Decidability of second order
theories and automata on 1infinite trees.
Research Rept. RC#2012. 1IBM Yorktown Heights,
(1968)

sen, B, K. [73] - Tree-manipulating systems anc
Church-Rosser Theorems. JACM 20, 160-188 (1973)

Page

nds, We C. [69] - Context-free grammars on tree
IEEE annual Symp. Switching and Automata Thec
10th, Oct. 1969, pp 143-148

nds, We C. [70] - Mappings and grammars on tree
J. Math System Theory 4, #3, pp. 257-287

omaa, A. [69] - Theory of Automata,
Pergamon Press, New York (1969)

omaa, A. [73] - Formal Languages, Academic Press
New York (1973) :

impf, X. M. [81] - Construction Methods of LR
Parsers, master’s thesis, technical rejy
#MS-C1S-80-40, Dept. of CIs, University
Pennsylvania, 1981

utzenberger, M. P. [63] - On context-free

languages and pushdown automata, Information
Control 6, p.246-264

tcher, J. W. [67] - Characterizing derivation
trees of context-free grammars through
generalization of finite automata theory. JCS¢
316-332 (1967)

tcher, J. W. [73] - Tree automata: An informal
survey, in Currents in the Theory of Computing
V. Aho ed.) Prentice-Hall series in autom:
computation, Prentice~Hall Inc., Englewood Clif
N.J. P.143-172 (1973)

tcher, J. W. and Wright, J. B. [68]

- Generalized finite automata theory with
application to a decision problem of second o1
logic, J. Math. Systems Theory 2 (1968)

d M. [77] - Algebraic theories and tree rewritirs
systems, Technical rept. 66, Dept. of Compt
Science, Indiana University, Bloomington Ind.

