
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



BEGINNERS NEED POWERFUL SYSTEMS

Aaron Sloman

genitive Science Research Paper

rial no: CSRP 012

B University of Sussex
^nitjve Studies Programme
hool of Social Sciences
Liner
ighton BN1 9QN



 



Revised April 1983

BEGINNERS NEED POWERFUL SYSTEMS

Aaron Sloman,
Cognitive Studies Programme,
School of Social Sciences,

Univesity of Sussex,
Brighton,
BN1 9QN

Introduction

Computing systems are often very hard for most people to approach. To
some extent this is because of the inherent difficulty of giving
machines the ability to communicate in ways which people find natural:
not enough is understood about speech and how it is decoded, about the
structure and functions of natural languages, about how the average
person thinks about problems and processes. However some of the problems
of man-machine communication arise out of two additional factors:

(a) Owing to the high costs of hardware in the past, systems have
had to be designed to maximise machine efficiency.

(b) Most computer languages and software environments have been
designed by experts for experts. (E.g. most programming languages
are far too algebraic, to be approachable by the average user, and
non-numerical applications too often have to be reduced explicitly
to numerical representations.)

The first obstacle to real progress is rapidly diminishing. Very
soon it should be possible to buy powerful 32-bit microcomputers with
large amounts of memory very cheaply. These will give individual users
the power currently obtainable only from much Larger and more expensive
machines. So problems of memory and processor time will no longer be an
excuse for not making systems more approachable by ordinary people.

The second obstacle will remain, unless we can be far more
imaginative and adventurous about designing languages, programming
environments, operating systems, etc. But old thinking habits die hard,
and computer scientists are often more interested in how to design
systems about which one can prove theorems than in how to make systems
more approachable for ordinary people. Work in Artificial Intelligence
is an exception, but until now AI research e.g. into natural language
communication, has often been hampered by a lack of computing power, and
a lack of understanding of how to make systems easy for novices to use.
Nevertheless, some of the languages and program development environments
created to support AI research are more suitable for beginners than the
more common ones. At Sussex University we are already using such a
system, called POP-11, derived from P0P2, for teaching absolute
beginners. The same system is also used for advanced research. It is
sufficiently powerful that most of the POP-11 system, including a
sophisticated screen editor, is written in itself. (This makes it
potentially very portable.) In fact our POP-11 system is embedded in a
larger system, which we call POPLOG, since in includes PROLOG, and also
LISP. These languages a powerful screen editor, and a large collection
of library programs for teaching and other purposes, are all written in

A. Sloman



BEGINNERS Page 2

POP-11.

With the new more powerful machines which will be increasingly
available we shall be able, and we should try, to provide young
programmers with a training which is more suited to the design of
serious programs. This requires a language, or more precisely a
programming environment, which encourages the development of clear, well
structured, programs, and which makes systematic testing, debugging, and
maintenance as easy as possible. Increasingly it is programmer time,
not machine time, which is expensive.

Unless there is a co-ordinated effort at national or even
international levels to look ahead to the needs of the future, there is
a real risk that many schools will be stuck with an out of date approach
to computer education, namely teaching based on BASIC. This can do
permanent damage. I've seen evidence that some children are being
turned right off computing by what they currently experience in school.
How many of them will subsequently never take another opportunity to
give computing a second chance? This and the bad habits taught to the
minority who enjoy BASIC hacking leave me wondering whether putting
micros into schools at present is doing far more harm than good.

Even if not everyone now can have the most desirable tools, at
least more people should be thinking about them, developing and testing
prototypes. A top-down approach is desirable. We should not be arguing
now about which of the existing alternative languages is best. Rather we
need to agree on features that should be present in languages and
programming environments used for educational purposes, and then perhaps
develop such languages, if no existing languages are found to be
adequate. In particular, I want t? stress the importance of the
environment, that is the editing facilities, the "help1 facilities, the
tracing and debugging facilities, the documentation facilities, the
library facilities, the ability to share programs, the ability for users
to collaborate on programs, and so on. The environment is at least as
important as the language, if programming is not to be a real chore. A
good environment will encourage the discipline of documenting and
cleaning up programs. A poor environment will not.

What do beginners need?

What kinds of tools should be provided for teaching programming? At
present (early 1982) there is probably nothing better than BASIC that is
widely available on a variety of cheap machines. The environment that
usually comes with BASIC has some good features which account for the
popularity of the language. In particular it is extremely reactive, and
very unfussy - e.g. variables don't need to be declared. But it has
many faults which arise out of its having been designed (a) to minimise
machine costs, (b) with mainly mathematical applications in mind. There
has been so much public criticism of BASIC that I shall not enlarge on
this. What sorts of languages and program development tools should we
then aim at?

To provide an appreciation of the sorts of programs and
applications that are already possible, and will be more widely
available in the near future, beginners need a powerful language with a
wide variety of features. Big building blocks make it easier to build
more interesting and more useful structures. The language should not



BEGINNERS Page 3

only be easy to use for the first few hours. The Language, and the
general hardware and software environment should go on providing
facilities which make learning, program design, testing and development
as easy as possible for an increasingly complex and varied range of
programs. This will make the use of computers fun and fruitful for far
more people than at present.

Here are some proposals, based on experience with a number of
different systems, and several years experience teaching non-numerate
students and some children. These proposals can be put into effect using
current hardware and software technology.

^ environment j[s â s important as the language.
As in BASIC, the language should provide access to an editor, and
the editor should have built in knowledge of the main language
constructs, to minimise errors, and reduce the amount of typing.
I.e. the editor should know about the formats for procedure
definitions, conditionals, loops, list brackets, etc. A full range
of editing commands should be provided, including searching,
formatting, block moves, global substitutions, etc. Ideally the
editor should make use of a screen with pointing device so that it
is easy to make changes without a great deal of laborious typing. It
would also be desirable to give spoken commands, in some contexts.
The editor should be available for ordinary text processing, so that
it is easy to write comments in programs, documentation, and project
reports. (Training in documenting programs should be an essential
part of any programming course. Many programmers are unable to
explain clearly to anyone else what their programs do or how to use
them.)

(b) Good syntax.....
It is wideUy acknowledged that a language should have far better
syntax for conditionals and loops than most BASIC systems. Similarly
the language should allow long variable names and procedure names,
to make programs more readable, less error prone, and easier to
develop and debug. Moreover, unlike LISP, for example, the syntax
should be fairly redundant, so that programs are readable and the
parser can give helpful messages if there are syntactic errors.
Ideally the language (like POP-11, and some other AI languages)
should allow the syntax to be extended by the user, so that the
original language doesn't have to anticipate all possible types of
applications in detail. This could be used both by teachers, who may
wish to provide new commands for particular applications, and by
more advanced students. For instance one of the POP-11 library
programs demonstrates how sentences can be parsed. By defining " "
as a macro for use with that program, we allow students to type

this is a test sentence

instead of:
s(Cthis is a test sentence]) — >

^S? U s e an interpreter or incremental compiler.
There should not be a slow edit-compile-link-load-test-edit cycle.
For all but the smallest programs this requires the ability to be
able to alter procedures at run time, and to type in commands in the
language, to test procedures on different examples, without having
to anticipate the commands and prepare a file which has to be
compiled and run. This interactive testing should not require



BEGINNERS Page 4

patching machine code. Alterations to procedures must be possible
at the source-language level. BASIC and some Artificial
Intelligence languages provide this facility by interpreting source
code represented as modifiable data-structures within the run time
system. Others (e.g. P0P2 POP-11, and some versions of LISP and
PROLOG) provide an incremental compiler. Both approaches require the
lexical analyser and parser, as well as the symbol-table, to be part
of the run-time system. Allowing old procedures to be re-defined may
also require the use of a "garbage collector" to reclaim the space
occupied by old procedures, and also requires procedure calls to be
indirect, so that no re-linking is necessary. In the old days, when
memory and processor time were expensive, these requirements were
serious obstacles. Now they are not.

(d) General-purpose data structures.
The language should have several more data-types than BASIC, e.g.
lists and vectors, whose fields can contain arbitrary entities. Thus
it should be easy to construct trees and networks with arbitrary
components in them (numbers, lists, words, strings, etc.). For
beginners there should be one very flexible general purpose data-
type, for instance lists, with a built-in collection of useful
procedures and good syntax for constructing instances. Such
structures are needed for building programs which manipulate non-
numerical data. For instance, programs which analyse sentences need
to be able to treat a sentence as a list of words and create a list
of lists indicating the decomposition of the sentence.

(e) General purpose data-manipulating procedures.
It should be possible to provide a lot of general-purpose procedures
for manipulating data-structures. For instance, general procedures
(e.g. intersection, union, membership tests, etc.) which treat
lists or vectors as sets should be available and new ones easily
definable. They should be general in the sense of being applicable
no matter what sorts of objects are in the lists. This is easy in
the AI languages, like LISP, POP and PROLOG. It is hard in BASIC
since there are so few data-types available, and the improvements
offered by 'more structured1 versions don't address this issue at
all. It is hard in PASCAL and similar languages because the rigid
type structure rules out general procedure definitions. ALG0L68
provides facilities for getting round this, but they are not easy to
use.

^1? Control c£ memory.
Storage allocation should be dynamic, and an automatic garbage
collector should be available to reclaim inaccessible space, so that
it is easy to write programs which build lots of temporary
structures while exploring some problem. Beginners (and others)
should not have to be bothered with the tedious algorithms required
for reallocating memory. Garbage collection enables space to be
automatically reclaimed when procedures are recompiled
interactively. Even with falling memory prices, this will remain
necessary for a friendly programming environment. PASCAL and other
widely used languages don't normally provide garbage collectors. The
need hardly arises in BASIC as it's so difficult to get to the point
where you need a garbage collector! (If you are locked in a room all
the time, you don't need public transport either.)



•NNERS Page 5

Recursion and local variables.
The language should permit recursive procedures with local
variables, so that it is easy to write programs which explore trees
and networks, and implement naturally recursive algorithms, for
^stance searching algorithms. Proper local variables generally
acilitate the design of well-structured programs. Allowing mutual
ecursion makes it possible to break down complex programs into
odules which perform well defined sub-tasks no matter which other
odules call them.

Lructure-building syntax.
>od syntax should be provided (as in POP-11 and LISP) for
•nstructing lists and trees by typing in templates, making it
necessary to go through 15 calls of the list link constructor to
eate a 15-element list, for example. E.g. compare the syntax of
st construction in POP-11

[A list C in a list J of words]

:h the syntax of a more conventional language:

CONS(MAl#,CONS(HlistM,CONS(CONS(MinM,CONS(flaM,CONS("listf(,NIL))),
CONS("of",CONS("words",NIL)))))

earner should not have to type the latter. For that matter
ther should an advanced programmer! The beginner should not even
i to know that when she builds and manipulates lists she is
ntially making use of binary trees, any more than the person who
ns to use a television set needs to learn about transistors, or

car driver needs to learn about spark-plugs. We have
nstrated at Sussex that students can learn to do quite advanced

manipulation by thinking of lists only at a high level of
^action. The need to know more about the implementation arises
when links are changed in a previously constructed list. By

/ing list elements to accessed by numerical indices we also
e the cognitive demands. Compare:

list(4)

front(back(back(back(list)))
e LISP version:

(cadddr list)

H directed structure decomposition.
n-matching utilities should be provided so that structures can
sily checked and decomposed, without having to write awkward
f nested function calls. Here is the POP-11 syntax for digging
he second and third elements of a list named LIST, and
ing the elements to X and Y respectively:

LIST —> C= ?X ?Y —D

jl means fignore one item1, and '==• means ignore any number
ms, while •?' prefixes a variable which is to be given as
he matching elememnt. Compare this with the more conventional

X := FRONT(BACK(LIST)); Y: = FRONT(BACK(BACK(LIST)));

Dortantly, suppose the programmer wants to make a list of all



NNERS

the words between "I" and "you11 in a given List, and assign the new
List to VERBPHRASE. Here is the pattern-directed structure
decomposition in POP-11:

LIST —> L~ I ??VERBPHRASE you " 1

The "~" symboLs mean: ignore arbitrariLy many List eLements. The
prefix "??" says that the next word is a variabLe to be given as its
vaLue a List of aLL the corresponding eLements in the originaL List
(the one on the Left of " — > " ) .

Compare this with the more conventionaL:

VERBPHRASE := NIL;
UNTIL FRONT(LIST) = "I" DO

LIST := BACK(LIST)
ENDUNTIL;
LIST := BACKCLIST);
FOR ELEMENT IN LIST DO

IF ELEMENT = "you11 THEN
RETURN(REVERSE(VERBPHRASE))

ELSE
VERBPHRASE := CONS(ELEMENT/VERBPHRASE)

ENDIF
ENDFOR;
ERR0R(t"you" missing from List1)

Programs based on patterns are much easier to understand, much Less
error prone, and can be much more compact. For instance, having a
pattern embedded in a pattern can be equivaLent to nested Loops in
the more conventionaL Languages, e.g.

LIST —> t == CSENTENCE -= I ??VERBPHRASE YOU ~ 1 ~ 1

Here LIST is a List of Lists, and it is to be searched for a List
starting with the word "sentence". That List is then to be searched
for a set of words occurring between "I" and "YOU", and the List of
aLL those words assigned to VERBPHRASE. Try writing that in your
favourite Language.

Without cLaiming that the POP-11 syntax is the best that couLd be
devised (and we are open to suggestions for improvements) we do
cLaim that the use of this essentiaLLy graphicaL representation is
much more naturaL and approachabLe than the kind of representation
which most of the more aLgebraic Languages force on the programmer.
(Of course POP-11 aLLows the conventionaL styLe of programming when
that is required.)

'Object-oriented1 programming.
For more advanced programming, data-cLasses and cLass hierarchies
shouLd be definabLe, with inheritance of properties from cLasses, or
super-cLasses, to instances, to faciLitate moduLar design of compLex
programs. (These ideas derive from SIMULA-67 and SMALLTALK.) I
don't have concrete evidence, but I suspect that most Learners wiLL
not find it naturaL to express aLL programming ideas in this sort of
framework, as required by SMALLTALK. It is good just to start with a
coLLection of generaLLy useabLe data-types and generaLLy usefuL
procedures for operating on them. Whether an instruction is
presented as appLying a procedure to a structure, or sending a

Page 6



BEGINNERS P a 9 e 7

message to a structure may not make very much difference for more
sophisticated users. However I suspect that for the beginner the
Latter may be very confusing. Few peopLe wouLd naturaLLy interpret
3 + 5 as an asymmetricaL request to 3 to add 5 to itself.

(JO Procedures ajs data.
Procedures shouLd be objects, the vaLues of variables, so that they
can be created by programs, stored as data, and seLected by programs
as required for probLem soLving tasks. (This ruLes out many
conventionaL programming Languages, incLuding PASCAL, since they
have a rigid separation of program from data). AdmittedLy, the need
for this kind of power is not LikeLy to be feLt by a beginner
programmer. But for many tasks where decisions have to be taken at
RUN time, and the program needs considerabLe flexibility in its
decision-making strategies, it is important not just to be able to
embed conditionaL instructions in procedures, but aLso to be abLe
conditionaLLy to change procedures avaiLabLe at run time to
different parts of the program. The creation of new procedures at
run time requires that the parser or cbmpiLer shouLd be avaiLabLe as
a subroutine for user programs. The provision of good debugging
tooLs may aLso require that debugging aids shouLd be abLe to treat
procedures as objects which can be modified, so as to aLter their
behaviour temporariLy for debugging purposes. Making a procedure
produce trace printing is an exampLe.

U) Using the buiLt jn> parser/compi Ler for teaching
Another advantage of run-time avaiLabiLity of the parser, etc., is
that teachers can write teaching programs which at appropriate
points ask the system to read in and execute student commands. This
makes it possible to use teaching programs which give students a
great deal, of opportunity for initiative. If their •answers1 are
essentiaLLy programs which can be executed, then the teacher does
not need to anticipate all possibLe answers. Students then feeL
more in controL of their own Learning, and can, consequentLy, Learn
more. The aLternative wouLd be for the teacher to write a command
interpreter for constructs in the Language. But this is wasted
effort if there is a compiLer. The Sussex University POPLOG system
makes use of this kind of power for teaching purposes, in the ways
described beLow.

^ Faci Lities for interacting during £ •break*•
More advanced students wi CL create programs which go wrong after
constructing quite compLex databases, networks, Lists, etc. The fuLL
power of the parser/interpreter/compiLer shouLd be avaiLabLe during
error breaks, or user-defined breaks, to facilitate the testing and
debugging of such programs. Most conventionaL Languages provide at
best an interactive debugging aid which enables one to access values
of variables, set break points, and single step through procedures.
They do not provide the full power of the original programming
language, so that the user can write new procedures after an error
occurs to examine complex data-structures and print out selected
results in a useful format, for example. Ideally it should be
possible in an error break to redefine a faulty procedure and
continue the computation from just before the error. This is
possible in interpreted LISP systems. In special cases it is
possible in POP-11.



BEGINNERS Page 8

^H? Terminal interrupts.
The user should be able to interrupt and suspend processing, run
arbitary procedures during the break, then continue from the point
of interrupt. This also aids development, testing debugging. BASIC
provides this, unlike PASCAL, FORTRAN, ALGOL and other widely used
languages. The trouble is that what you can do with BASIC when you
have interrupted your program is as Limited as what you can do in
the original program. For instance, you can't easily define a
procedure to crawl around a network printing out all the nodes which
fail to satisfy some test, since in general that requires recursion.

(o) User defined 'interrupt' _O£ 'exception1 handling.
The nature of what happens at an interrupt or error should not be
rigidly fixed, but should be user definable, and should be
dynamically alterable. It should be easy for teachers to make the
error messages different for beginners. Similarly some demonstration
packages for use by beginners should be able to trap errors, and
prevent confusing messages being printed out. (This facility would
not be directly used by the more naive students.)

(£) Parallel programming.
There should be facilities for simulating running sets of programs
in parallel so that it is easy to write various simulations of
interacting systems. Often it is more natural and modular to specify
two procedures, and talk about how they are to be synchronised, than
to define a single serial procedure to do the same thing.

(q) Demons.
It should be easy to define demons which will run when certain
conditions are met, e.g. when a particular variable has a specified
value, or when a certain sort of data-structure is accessed or
altered. The concept 'whenever' needs to be added to ' i f , 'while',
'until1, etc.

(r) Inference mechanism.
For many purposes it is useful to be able to give a program factual
information, including inference rules, in a logical language of
some sort, and leave it to the computer to have to draw the
conclusions, instead of the programmer having to translate the
inference rules into a procedural form. Many interesting
programming problems require the program to search for a solution by
systematically exploring alternatives. For this purpose it is often
useful if the language has built-in facilities for such back-track
searching. These facilitites are provided in PROLOG and related
^languages. PROLOG is becoming more widely available, though the
most common implementations do not yet provide a rich environment of
the sort described here. Moreover, although such 'logic based1

languages are powerful and natural for a limited class of
applications, e.g. the manipulation of a database of information
some of which is represented explicitly and some of which is to be
inferred on the basis of rules, or the analysis and transformation
of linear or tree like structures, it is not clear that they are
good for other problems, where a depth-first searching structure is
not the most natural process organisation. The Sussex University
POPLOG system combines PROLOG with POP-11, to provide the best of
both worlds. LHardy and Mellish 19823.

Paap



BEGINNERS Pa9e 9

^ Fil-e and terminal handling
For more advanced uses, there should be a variety of standard ways
of reading in files, e.g. as bit streams, as byte-streams, as
character-streams, as text-item streams, etc.

^1? Extendable syntax and data types.
For more advanced users the language should be extendable in a
variety of ways. For instance users should be able to define their
own additional data types (as in PASCAL and P0P2) for greater
modularity, and they should be able to define their own infix
operations and "macros" to extend the syntax for special
applications (as in LISP and P0P2). Teachers would then find it easy
to make available simplified commands for users with special needs,
as was pointed out above. This would also make it easier to
transport programs written in one dialect of the language to a
machine running another dialect. Definitions of the relevant syntax
extensions can simply be attached to the beginning of the program.

(JLJ) Graphics.
For many beginners it is important in the early stages to have a
good visual display of what the program is doing. For this and other
reasons it is useful if good tools are available for writing
programs which draw pictures on a screen, as in most LOGO systems.
Graphical facilities are also useful for programs written by
teachers to help students.

^ Providing £ total environment.
The language should give full and easy access to all operating
system facilities such as reading and creating files, interrogating
the system, examining directories, sending messages across a network
(if there is one), etc.

(w) Help facilities
There should be a good on-line 'help1 system. At the very least the
user should be able to ask for the definition of a system procedure.
There should also be ways of getting reminders of the syntax, and of
some definitions of cncepts and techniques. An interactive help
system will often be much more convenient than a printed manual,
requiring tedious searches through tables of contents or index
entries. Ideally the online documentation to cater for a variety of
levels of expertise, providing both full explanations of concepts
and facilities for those who don't know about them and terse
reminders for those who have met them previously. A tree-structured
menu-driven help system is sometimes used, but experience shows that
this can be unhelpful if the decomposition into a tree does not
match the conceptual structure of all users (i.e. when presented
with a set of options at a high level it may be hard to decide which
branch to take to get to what one wants). A help system requires
many access routes. Ideally it should have an •intelligent1

interface which selects appropriate information on the basis of a
dialogue in which the user's needs are clarified.

^20? A 9°°d shareable library.
Beginners should not have to construct their programs from the small
building blocks typically provided as part of the definition of a
programming language. Ideally they should have easy access to a
library of procedures which they can use as subroutines in their
programs, so that they will quickly reach the stage of designing



BEGINNERS p39 e 10

programs which do something interesting. Ideally such a library
should be shared by a collection of users, so that if a new item is
added it is immediately available for others. This requirement is
more easily met by a single time-shared machine than by a collection
of stand-alone microprocessors. Good networking facilities are
required for the latter.

Intelligent programming aids.
As program-understanding systems become available, it should be
possible for the techniques to be built into •monitors1 which help
users test and debug their programs. When making changes, the user
should be advised automatically of potential inconsistencies. It
should be possible for users to specify conditions which the monitor
would check. This should be up to the user, instead of a collection
of constraints being rigidly enforced by the language definition, as
in typed languages.

1? Facilities for sharing and communication
One of the great benefits of a time-shared or networked system is
that different users can share each other's files, system
enhancements, bug-fixes, or library extensions, are immediately
available to all users, and users can communicate easily using a
'mail1 facility. Many users of such systems have found it extremely
useful to be able to communicate by computer. For instance, students
in difficulty can leave mail messages for the tutor, instead of
having to go and see her. We have found that many students make good
use of this facility, and it suits tutors better, as they can deal
with the problems at times which suit them. Computers in schools
should be linked into networks, preferably networks extending across
schools, so that the experts in one place can help people in
another. National networks have proved very useful in this way to
scientists and engineers, both in Britain and in the USA.

(aa) Â  good collection c£ intuitively meaningful packages for students
to play with, use as subroutines in building programs, then later
re-implement themselves. The success of Logo depends in part on the
fact that motion and pictures are familiar and interesting to
everybody (unlike quadratic equations, bits bytes or statistics, for
instance). But this idea of building on familiar and entertaining
'micro-worlds' can easily be generalised. For instance, students can
play with programs which 'think' about the movements of people or
animals from one place to another. A database of information can
represent the state of the world and be changed by executing
procedures. For example, one of our teaching packages (originally
written as a project by an undergraduate, then adopted by Max Clowes
for teaching) introduces the world of the puzzle in which a man has
to get a fox a chicken and some grain across a river, using a boat
which will hold the man and at most one other item. Commands are
available like

PUTIN(CFOXD);
GETINO;
CROSSRIVERO;

This sequence will produce a 'mishap' message announcing that the
chicken has eaten the grain. Students can ask for the current
database to be printed out at any stage. The syntax is slightly
ugly, but it does introduce the idea of applying a procedure, the
idea of a list of words, etc. But the syntax is not the main point.



BEGINNERS Pa9e 11

Another micro-world involves simulating a hand moving blocks about
on a table, making towers for example. However, in this case
students are led through the process of building the programs which
simulate the movements themselves.

In both cases it is very important that the simulation is not just
doing something on the screen or on a real table with a real robot
arm, but in a representation of the world, in the computer. For this
introduces the idea of a computer which thinks about something,
makes plans, tries out plans and strategies. Not only does this
introduce very powerful ideas for thinking about how computers can
be used, and abused, it also leads to new ways of thinking about how
the human mind works. Having a computer control external things
which jMt̂  cannot perceive does not have these advantages. For this
reason we have made our turtle create pictures not by doing
something on a screen, but by fpainting' a two-dimensional array
inside the computer. This can be* printed out, but it can also be
used as input to other programs which analyse the picture, and
produce some sort of description of their structure. Again, students
start by using library programs which do the analysis, then later
they write their own programs to do this.

Other packages we make available include a program which enables
students to type in a simple grammar, e.g. for a subset of English,
and then explore its properties either by seeing which sentences it
will parse, and what sort of analysis of the structure of sentences
it produces, or by having the program generate at random sentences
which accord with the grammar. The latter generally shows that the
grammar allows far more constructions than the student intended, and
trying to control this by extending the grammar can lead to real
linguistic insights. Again, the fact that the computer is
manipulating the rules for the grammar, presented in a form which is
easy for people to read also, helps to indicate some of the power of
computing, and raises challenging questions about how people
understand language.

I cannot claim that we have come near to exhausting the potential of
this approach. If students come to us for only one term, there is no
time for the majority to explore more than four or five such
packages, though the very best students manage to achieve far more
than even the average ones. There is probably no right set of
packages — different teachers, different environments, different
age-groups, can all be accommodated with different sorts of toys.
Indeed, it is probably important for teachers not just to import
someone else's packages, but to have direct experience of building
their own, so that they have a deep understanding of the problems
the students will encounter when they try to construct their simpler
versions, or when using the package produces unexpected behaviour.

The presentation of these teaching packages in the POPLOG system
makes very heavy use of features of the environment described above.
The editor is used by the students to read a library file which
gives instructions. It is also used to type in commands. The
incremental compiler is used to compile appropriate library files,
and also to compile and execute commands typed in by the student.
Powerful list manipulating and pattern matching facilities make it
relatively easy for the teachers to build interesting programs, and
for the students to do likewise. The mail system and other

Pane 11



BEGINNERS Page 12

facilities allow users to help one another, to share files, to
request help from the teacher, etc.

The development of computing languages has shown a steady move towards
more and more sophisticated virtual machines, vastly improving the ease
of communication between person and computer. There is no reason to
believe that existing programming languages have achieved anything close
to the maximum level of comprehensibility. Much research is needed into
the reasons why it is so hard for all but a small proportion of the
population to become good at writing programs. Perhaps this will lead to
a collection of new constructs for programming languages. In particular,
there is no reason why at Least for the non-expert programming languages
should not be far more closely modelled on natural languages. Why
shouldn't the programmer be able to say:

Make a list of all the words between "I" and "you" and call it
VERBPHRASE.

insteady of having to use some artificial and unfamiliar language? Of
course natural languages are often ambiguous and imprecise, and that
means that communication has to be two-way, with the hearer free to ask
for clarification and disambiguation. Similarly, programming could be
much more of an intelligible dialogue with the computer. For
professional programmers writing programs to be used by others, it is
very likely that artificial languages will remain superior. But for
beginners and for those who wish to use computers as non-specialists, it
should be possible to use a more familiar and natural language. It is
not easy to give a computer the ability to understand unrestricted
English, but work is progressing, and it shouldn't be too long before
much more friendly systems are possible than anything currently
available. Of course, they will make heavy demands on processors and
memory, but that should not be a problem.

One of the implications of these ideas is that beginners need very
sophisticated systems, not simple systems. It might be thought that
different systems are needed for advanced users and sophisticated
programmers. As a teacher, I have found I prefer the language I use for
writing complex programs to be essentially the same as the one I use for
teaching, even if the students only learn about a subset of the
language. Some of these features would not make much difference to
absolute beginners, but the more advanced pupils (aged about 12 upwards)
would be able to benefit. Moreover, teachers would find such a language
much better for writing teaching programs than BASIC and other common
languages. And our experience shows that even absolute beginners benefit
from having good list-processing facilities from day one.

This collection of desirable features will probably not make much
sense to someone whose experience so far is restricted to primitive
languages like BASIC, FORTRAN, PASCAL, and assembler languages. I
sometimes find that pupils with such experience have more difficulty
learning to use powerful techniques, like recursion, than beginners, who
have no previous experience of computing. Going the other way, from a
good language to a poorly structured one is easier, though very
annoying!

I am worried that our schools will produce pupils who have got used
to a style of programming which is most unsuited for the design of
complex programs, and that such pupils will find it hard to absorb more



BEGINNERS Page 13

powerful concepts and techniques, Like people used to Roman numerals
resisting the move to Arabic notation, (After all, they'd probably
argue, 'I II III1 is clearly superior to '1 2 3 1. Never mind the
problems of expressing '562,349' in Roman numerals!

I am also worried that instead of helping lots of children to
approach computing, the present practice of putting very limited
microprocessors, with primitive languages, into schools will not only
teach the gifted few bad programming habits, but will permanently turn
the ordinary majority against computing. They will find it boring,
frustrating and difficult, and, having been permanently turned off
computing, may therefore not take up the opportunities to learn to use
much better systems which will be available in a few years. Perhaps it
would be better to keep micros out of schools until far more
approachable systems can be provided! I wonder how many micro-computers
eagerly sought as Christmas presents not long ago now lie unused in
cupboards because they are so difficult and frustrating for the ordinary
user? Alternatively they may be used solely for the purpose of running
game-playing programs of a type which may teach some manual and visual
skills, and little else.

The software knowledge to design and implement better languages is
now available. Machines with the power to make such languages cheaply
available will soon be on the market. A co-ordinated initiative, with
co-operation between government, manufacturers, and schools could put
really powerful and effective computing resources at the fingertips of
all children within a few years.

But I fear this will not happen because too many people are too
content with what they already know and love. There is plenty of
evidence already that in the world of software it is not necessarily the
fittest which survives.

ACKNOWLEDGEMENT
I thank Masoud Yazdani for helpful comments on an earlier draft.

NOTE:
Readers may find it useful to consult

S. Papert, Mindstorms, Harvester Press, 1980.

S. Hardy, 'The Poplog programming system1 Cognitive Science Research
Papers, No. 3, 1982, University of Sussex.

C.S. Mellish and S. Hardy 'Integrating Prolog in the Poplog
environment' Cognitive Science Research Papers, No. 10, 1983,
University of Sussex.



 


