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ABSTRACT

This chapter describes a typical Artificial Intelligence (AI)
programming system and shows how it differs from conventional
programming systems. The particular system described is P0PL06. It
incorporates a powerful screen editor, a PROLOG compiler and a POP-11
compiler. POP-11 is a dialect of POP-2 which has been extensively
developed at Sussex University. Other dialects of POP-2 exist, notably
GLUE and WonderPOP, but all share the important features of the original
which is described in CBURSTALL 713.

It is assumed that the reader is familiar with a range of conventional
programming languages, such as PASCAL and BASIC. It is shown that AI
programming systems, and in particular POPLOG, are used because of
advantages independent of AI itself. In fact, POPLOG could usefully be
employed for any application where program development costs are
significant.



 



1) INTRODUCTION

Artificial Intelligence (AI) research involves, among other things,

making computers do tasks that are easy for people but hard for

computers - such as understanding English or interpreting pictures.

Since this is difficult, AI researchers use programming systems which

facilitate the development of programs and are prepared to sacrifice

some run-time efficiency to pay for this. Programs written using AI

programming systems usually need more memory and run more slowly than

equivalent programs written with conventional programmins systems.

However, with the decreasing cost of computer hardware, AI programming

systems are now within the economic reach of many computer users and

there is now no justification for non-AI programmers to use poor program

development tools simply because of their cost.

This chapter describes the POPLOG programming system developed at Sussex

University. It is currently implemented on the VAX range of computers

manufactured by Digital Equipment Corporation (DEC). These computers are

classified as large mini-computers. They have a 32-bit word size which

means that programs can become \/ery large - many hundreds of times

larger than is possible with a 16-bit machine such as the IBM Personal

Computer. A medium sized VAX computer at Sussex easily supports around

twenty simultaneous users of the POPLOG programming system. To ensure

portability, POPLOG is based on VMS, the standard operating system

provided by DEC. (A UNIX version is in preparation and a PERQ

implementation is planned for late 1983.)



software is a little old fashioned. The current vogue in AI programming

system design is to use specialized hardware such as the LISP machine

(see CWEINREB 79]). LISP is the AI programming system most used in the

United States. The LISP machine is a special type of computer designed

to run LISP with the same efficiency as a conventional system runs on a

conventional computer. The LISP machine is a single user system - each

programmer has his or her own computer, each broadly comparable in power

to a VAX. We simply could not afford to buy twenty LISP machines and

neither, we think, will many potential users of the POPLOG system.

The phrase 'programming system1 is used when referring to POPLOG in

place of the more usual 'programming language1 because POPLOG, like

BASIC, provides a complete 'environment' for the programmer to work

within. Moreover, there are two programming languages available in

POPLOG, POP-11 and PROLOG. Typically, a POPLOG user will invoke the

POPLOG system immediately after logging in and remain there until

returning to the monitor to log out. Within the POPLOG system, the

programmer can perform all the activities associated with programming.

Programs can be edited, compiled, debugged and documented all without

once leaving POPLOG. Full access to system utilities, such as MAIL, is

available. The POPLOG programming system includes all the following:

* VED, an extendible screen editor, which can display up to two
'windows' simultaneously. Among the comments made on this are 'the
best available editor for the VAX1 and 'worth using POPLOG just for
the editor1. VED can be used to prepare both programs and
documentation.

* A POP-11 compiler, which translates POP-11 programs into VAX machine
code. The compiler can be invoked as a subroutine by user programs.

* Debugging tools, which enable the programmer to locate program
faults. These work at the source code level; the programmer need
not be aware that POP-11 is compiled into machine code. For example,
during breakpoints the user can give arbitrary POP-11 commands.



* An on-line documentation system allows the user to access HELP and
TEACH files which give aid and instruction respectively on how to
use the P0PL06 system.

* A PROLOG compiler (see chapter by Clocksin in this volume), which
translates PROLOG programs into VAX machine code. PROLOG provides a
relational database with limited theorem proving capability.

There are numerous advantages in combining these component into a single

system. For example, while the editor is being used the state of the

user's computation (such as constructed data structures) is retained.

The editor and compilers share memory and so can easily communicate.

When, for example, a POP-11 procedure is edited only that one procedure

need be recompiled and not the entire program. Programs can be written

partly in POP-11, a sequential procedural language, and partly in

PROLOG, a backtracking declarative language. This provides a significant

advantage over stand-alone PROLOG systems where everything must be

written in flogic1 even those parts more naturally or efficiently

expressed procedurally.

Procedures written in other programming languages (such as FORTRAN or C)

may be incorporated into programs written using POPLOG. Although these

•external procedures1 may not be altered during a single session with

POPLOG this nevertheless provides a very powerful facility. A vision

program, for example, may do low level array manipulation in FORTRAN,

intermediate level processing in POP-11 and high level scene analysis in

PROLOG.

Since PROLOG is described elsewhere in this volume, in this chapter we

concentrate upon the POP-11 programming language and how it interacts

with the VED screen editor (similar interactions are possible between

PROLOG and VED).



2) THE POP-11 PROGRAMMING LANGUAGE

In this section a number of examples of programs written in POP-11 are

presented. They get increasingly complicated. Although POP-11 has many

characteristics in common with languages like PASCAL it also has a

number of advanced features that permit programs to be written to solve

complex problems. The majority of POP-11 users have no conception of its

full power; many are content to treat it as little more than an

interactive PASCAL. Indeed, POP-11 has been used to teach AI and

programming to hundreds of psychology and philosophy undergraduates at

Sussex University and these students are encouraged to treat POP-11 as

being of the complexity of LOGO.

The final part of this section is a discussion of the way POP-11 is

implemented. POP-11 is written almost entirely in POP-11 and so can

easily be extended.

2.1) AN OLD FAVOURITE: FACTORIAL

Bowing to an old tradition, we present as our first example of a POP-11

procedure the definition of FACTORIAL. The simplest way of writing this

procedure is recursively, thus:

define factorial(number) -> result;
if number = 1 then

1 -> result
else

number * factorial(number - 1) -> result
endif

enddefine;

We can invoke this procedure, thus:

factorial(S) =>
** 120



The symbol '=>' is called the print arrow and instructs POP-11 to print

out the value of the expression to its left. The output is preceded by

two asterisks, for example:

factorial^) + factorial^) =>
** 240

The fact that the formal parameter to FACTORIAL is called NUMBER has no

significance to the POP-11 compiler. It might just as well have been

called, say, X. Any type of object (eg number or string) can be assigned

to any variable. This is not to say that POP-11 is a typeless language.

Every object has a type and it is not possible, for example, to subtract

a number from a string. The subtraction procedure checks at run time

that the arguments it has been given are numbers and if not it reports

an error to the user. This would happen if we applied FACTORIAL to, say,

a string:

factorial('seven') =>
MISHAP: NON NUMBERS FOR ARITHMETIC OPERATION
INVOLVING: 'seven1 - 1

DOING: factorial

The definition of FACTORIAL uses what is termed an 'output variable1, in

this case called RESULT. Whatever is 'assigned' to this variable is the

result of the procedure call. Assignment statements in POP-11 go from

right to left, thus:

expression -> variable

For example:

1 -> result

This assigns the number 1 to the variable RESULT. The final value of

this variable is the result of the procedure call. As with the formal

parameter NUMBER, there is no significance to the word RESULT. The

procedure could have been equivalently written as:



if x « 1 then 1 -> y else x * factorials - 1) -> y endif
enddefine;

Notice, too, that newlines have no significance in POP-11.

FACTORIAL can also be defined iteratively, thus:

define factorial(number) -> result;
vars index;
1 -> result;
for index from 1 to number do

index * result -> result
endfor

enddefine;

The second line of this definition uses the keyword VARS to tell the

POP-11 compiler that the variable INDEX is 'local1 to this procedure.

The semicolon after the declaration is a 'separator1. If a procedure

definition has several steps then they must be separated by semicolons.

This procedure has two main steps - assigning 1 to RESULT and a 'for

loop1. Notice that the value of the variable RESULT is changed several

times when this procedure is applied; it is the final value of RESULT

that is the result of the procedure.

The meaning of ffor loops1 in POP-11 is very similar to other

programming languages. In this case the controlled statement:

index * result -> result

is executed with INDEX being first 1, then 2, then 3 and so up to the

value of NUMBER.

Notice that in POP-11 most syntactic constructions have an opening

keyword (eg FOR) and a closing keyword formed by prefixing END onto the

opening keyword (eg ENDFOR). Although this is verbose it is easy to read

and remember and means that when it detects syntax errors the POP-11

compiler can give more useful information than would be possible if the

same closing keyword were used for many constructions (as in LISP).



example, can occur anywhere in the body of a loop and immediately stops

the loop. QUITLOOP is syntactic sugar for a simple GOTO to an implicit

label placed after the end of the loop. Other 'jumpout1 constructions in

POP-11 are more powerful. CATCH and THROW, for example, provide a

structured form of non-local GOTOs.

2.2) VARIABLES

POP-11 is a 'dynamically scoped1 language. This refers to the way 'free

variables1 are treated. Had the variable INDEX not been declared as

local to FACTORIAL then the POP-11 compiler would have looked in the

environment of the procedure that invoked FACTORIAL to see if INDEX were

a local variable of that. If not, the POP-11 would look in the

environment of that procedure's invoker and so on until it either found

an active procedure with INDEX as a local variable or else reached the

end of the procedure calling chain and found the global variable INDEX.

This is to be contrasted with the mechanism used in f lexically scoped1

languages such as ALGOL where free variables are looked for in lexically

enclosing procedures. A technique called 'shallow binding1 is used to

ensure that POP-11 variables can be accessed extremely rapidly (with

only one memory reference). See section 2.8 on how POPLOG is implemented

for more details.

Surprisingly, procedure definitions in POP-11 are simply syntactic sugar

for assignment statements. When a definition of, say, FACTORIAL is

encountered the POP-11 compiler simply assigns a 'procedure record1 to

the variable FACTORIAL. Thus the following is permissible:

factorial -> temp;
temp(5) =>
** 120



5 -> x;
factoriaUx) =>
** 120
factorial -> temp; x -> factorial; temp -> x;
x(factorial) =>

** 120

Treating procedures as objects like any other, eg numbers, which can be

moved around from variable to variable has many advantages. For example,

it is easy to redefine procedures in POP-11 - one simply assigns a new

procedure to an existing variable. Also, procedures may be passed as

arguments, returned as results, stored in data structures and, as we see

later, dynamically constructed like any other data structure! (See

section 2.6 on procedure closures for an example of this.)

2.3) DATA STRUCTURES

2.3.1) SYSTEM DATA TYPES

P0PL06 includes a rich set of predefined types of data structure

including:

integers in the range -536870911 to 536870911
decimals 'real1 numbers (both single and double precision)
strings one dimensional arrays of fbytes'
vectors one dimensional arrays of any object
arrays any number of dimensions
properties hash coded farrays1, any object can be a subscript
pairs as in LISP
procedures structures containing machine code
externals procedures written in some language other that POP-11

such as FORTRAN or assembly language
closures a combination of a procedure and an environment
processes see Section 2.7
devices descriptors of external objects like disc files

One additional vitally important data structure is the fword' which is

modelled on the LISP atom. In essense, a word is a string with

additional properties that has been entered in the P0PL06 dictionary.

There is only copy of any word (unlike strings where there may be

several strings containing the same letters). Words in POP-11 are also



variables; amongst the properties that words have are its value and its

syntactic type.

2.3.2) USER DEFINED STRUCTURES

The user may define new types of data structure if the predefined types

of data structure are inappropriate. One way of declaring a new type of

data structure is to use a •recordclass1 statement, for example:

recordclass person name age sex;

This tells POP-11 that PERSON is a new type of data structure which has

three components a NAME, an AGE and a SEX. Instances of data structures

are not declared in POP-11 but created using a •constructor1 procedure,

for example:

conspersonC'steve", 33, "male") -> p;

This creates a new PERSON structure whose NAME is STEVE, whose AGE is 33

and whose SEX is MALE. The new structure is stored in an area of memory

called the "heap1 and a pointer to (ie the address of) the new structure

is assigned to the variable P. We can use the new structure thus:

age(p) =>
** 33
age(p) + 1 -> age(p);
age(p) =>

** 34

Notice that structures are accessed using procedures; the procedure

assigned to the variable AGE accesses the second component of a PERSON

structure. This convention makes it particularly easy to make a program

independent of the form in which data is stored since there is no

syntactic distinction between accessing a field of a structure and

applying any other procedure to the structure. We might, for example,

decide to alter our representation of a PERSON thus:

recordclass person name yearofbirth sex;



xi we nave a giuuai varidDie coniaimng rne current year we can now

write an ordinary procedure called AGE, thus:

define age(x) -> result;
currentyear - yearofbirth(x) -> result

enddefine;

If the value of CURRENTYEAR changes then this will be reflected in the

result of future calls of AGE. For example:

conspersonO'steve", 1949, "male") -> p;
1982 -> currentyear;
age(p) =>
** 33
currentyear + 1 -> currentyear;
age(p) =>

** 34

We may even define an fupdater' for AGE that will allow us to 'assign1

to the AGE of a PERSON even though there is no AGE field as such. With

this new representation, an assignment to AGE should be translated to an

assignment to the YEAROFBIRTH. The appropriate definition is:

define updaterof ageCnewage, x);
currentyear - newage -> yearofbirth(x);

enddefine;
We can use this new procedure thus:

age(p) =>
** 34
37 -> age(p);
yearofbirth(p) =>
** 1946

2.3.3) MEMORY MANAGEMENT

POPLOG includes a 'garbage collector1. This manages the heap where all

structures created by the user are stored. When a temporary data

structure is no longer accessible by the user (for example, no user

variables •points1 to it) then the garbage collector reclaims the space

occupied by the inaccessible structure. It is not possible for the user

to find the actual address of a structure and, in fact, the garbage

collector will rearrange the heap periodically to coalesce reclaimed



2.4.1) STRUCTURE EXPRESSIONS

The most commonly used data structures in POP-11 are lists and words.

These are modelled on the data structures provided in LISP. A list is a

linked collection of primitive data structures called PAIRs. PAIRs have

two components, a HD and a TL. A three element list of the words STEVE/

IS and HAPPY could be created by the following command:

conspair("steve11, conspairC'is", conspair("happy", nil))) -> x;

The HD of the first PAIR is a pointer to the first element of the list;

the TL of the first pair is a pointer to a second pair whose HD is a

pointer to the second element and whose TL is a pointer to a third pair

whose HD is a pointer to the third element of the list and whose TL is a

distinguished object, thus:

hd(x) =>
** steve
hd(tl(x)) =>
** is
hd(tl(tl(x))) =>
** happy

Although there is a default way of printing data structures, the user is

allowed to override this default and specify precisely how structures of

any given type are to be printed. POP-11 already has a special way of

printing PAIRs, thus:

x =>

** Csteve is happyD

Additionally, square brackets "C" and "3" have been defined as syntax

words in POP-11 so that users may create lists without explicit use of

CONSPAIR. (see section 2.8 for a discussion of how new syntax words are

created.) The above list could have been created more simply with the

statement:

Csteve is happyD -> x;
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Expressions such as these are termed 'structure expressions1. They

evaluate to data structures. In the example above, the structure could

be created at •compile time1 since all its constituents are known then.

This is not usually the case; usually data structures are created out of

components that are being held in variables and are not known at compile

time. For example, if the variable ADJ contains some word then the user

can create a three element list of the words STEVE, IS and the value of

ADJ thus:

Csteve is "adjD

•••••••••*•••••••••••••••*•***••••*•••••••••••••*••••

* NOTE TO PUBLISHER *
* The symbol * does not come out very well on our *
* printer. It should be an upwards pointing arrow *
* and not a circumflex *
••••••••••*••••••••••••••••••••••*•••••••••••••••••••

The up-arrow, M*fl, tells POP-11 that it is the value of ADJ that is

wanted and not the word ADJ itself. If the value of a variable is a

list, the double up-arrow, M**" tells POP-11 to insert all the elements

of that list as elements of the new list, for example:

Cred orange yellow] -> x;
Cblue ~xD =>
* * Cblue red orange yellow!
C~x blue] =>
** Cred orange yellow blue!
C~*x are all colours] s>

** Cred orange yellow are all colours]

Since most POP-11 users use structure expressions, there is no need for

them to know about CONSPAIR. This eliminates many minor programming

errors. Structure expressions can be used to create all types of

datastructure.



To complement structure expressions, POP-11 provides a fpattern

assignment1 statement for decomposing Lists without the explicit use of

HD and TL. A typical pattern assignment is:

x —•> C?a ?b ?c3;

This statement takes the list which is the value of the variable X and

assigns the first element of the list to A, the second to B and the

third to C. Unless the list has exactly three elements, an error message

is generated. A more complicated example of a pattern assignment is:

x — > C?a ??b ?cD;

The double question mark indicates that B is to be given a list as

value. The first element of X is assigned to A, the last to C and a list

of the intervening elements to B. If X was initially [STEVE IS VERY

HAPPY], then A will be set to STEVE, B to CIS VERY] and C to HAPPY.

Using structure expressions and pattern assignments, it is easy to write

a procedure to produce a copy of a list with some given item deleted,

thus:

define delete(item, list) -> result;
vars x, y;
list — > C??x "item ??y];
r*x " y ] -> result

enddefine;
delete(MveryM, Csteve is very happy]) =>
** Csteve is happy]

2.4.3) A SIMPLE DATABASE PACKAGE

Structure expressions and pattern assignments are used to provide a

simple 'database1 facility in POP-11. The variable DATABASE is a list of

structures. The procedure ADD inserts a structure in this list, REMOVE

removes a structure and LOOKUP locates a structure, thus:

define add(item);
C'item "database] -> database

enddefine;



- 14 -

define remove(item);
vars x, y;
database — > C??x "item ??yD;
C~x ~"yl -> database

enddefine;

define Lookup(item);
vars x, y;
database ~ > C??x "item ??y]

enddefine;

LOOKUP will usually be given a pattern as argument; the effect of using

LOOKUP is to assign to the variable in that pattern, thus:

C] -> database;
addCCsteve is happy]);
add(Caaron is busy]);
database =>
** CCaaron is busy] Csteve is happyDD
lookup(C?p is happyD);
P =>

** steve

Finally, FOREVERY constructions allow programs to iterate over all

instances of a set of patterns in a given list, for example:

forevery CC?x is a bachelor! C?x is richDD in database do
addCCmary wants [*x loves mary]])

endforevery;

The definition of FOREVERY is stored in the auto-loadable library (see

section 3.4). The mechanism for defining new syntax words is discussed

in section 2.8.3; the definition uses co-routining (see section 2.7).

2.5) A SIMPLE PARSER

Pattern assignments may contain restrictions; these are elements in the

pattern which restrict the values which can be assigned to a variable.

For example, the statement:

Ci saw 3 ships] — > C??x ?y:isinteger ??zl
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is an example of a restricted pattern assignment. The variable Y is

constrained to accept as value only an integer. Thus the result of the

above assignment would be to give X the value CI SAWD, Y the value 3 and

Z the value [SHIPS].

If we have written procedures called NOUNPHRASE and VERBPHRASE which,

respectively, return TRUE if given a noun phrase and a verb phrase then

the following statement will succeed (ie not cause an error) only if the

value of LIST is a 'sentence1:

list —> C??x:nounphrase ??y:verbphraseD

The variables X and Y will be set, respectively, to the portion of LIST

which is the noun phrase and the portion which is the verb phrase.

Should the sub-procedures NOUNPHRASE and VERBPHRASE return anything

other than TRUE or FALSE (say parse trees) then X and Y will be set to

the results of those procedures.

So that we can tell whether LIST is a sentence (it may not be) we use

the procedure MATCHES This performs a pattern assignment and returns

TRUE unless the assignment would cause an error in which case it returns

FALSE. The following is a procedure which recognizes a 'sentence1 and

returns a parse tree for it (or else returns FALSE if its argument is

not a 'sentence1):

define sentence(list) -> result;
vars X, Y;
if list matches C??X:nounphrase ??Y:verbphraseD then

[sentence "X "YD -> result
else

false -> result
end if

enddefine;
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The definition of NOUNPHRASE is equally straightforward:

define nounphrasedist) -> result;
vars X, Y;
if list matches C?X:determiner ??Y:adjnounD then

Cnounphrase "X "YD -> result
else

false -> result
endif

enddefine;

This says that a noun phrase is a DETERMINER followed by an ADJNOUN. An

ADJNOUN is either simply a NOUN or else an ADJECTIVE followed by an

ADJNOUN:

define adjnoun(list) -> result;
vars X, Y;
if list matches C?X:nounD then

X -> result
elseif list matches C?X:adjective ??Y:adjnounD then

Cadjnoun "X "YD -> result
else

false -> result
endif

enddefine;

A verb phrase is defined as a verb followed by a nounphrase, thus:

define verbphrase(list) -> result;
vars X, Y;
if list matches C?X:verb ??Y:nounphraseD then

Cverbphrase "X "YD -> result
else

false -> result
endif

enddefine;

To complete our parser we need procedures to recognize the lexical

categories, thus:

define determiner(word) -> result;
if member(word, Cthe eachD) then

[determiner "wordD -> result
else

false -> result
endif

enddefine;
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define noun(word) •> result;
if member(word, [cardinal shoe]) then

[noun *word] -> result
else

false -> result
endif

enddefine;

define adjective(word) -> result;
if member(word, [purple]) then

[adjective "word] -> result
else

false -> result
endif

enddefine;

define verb(word) -> result;
if member(word, [discarded!) then

[verb "word] -> result
else

false -> result
endif

enddefine;

We can now test our parser, thus:

sentenceCCthe cardinal discarded each purple shoe]) =>
** [sentence

[nounphrase [determiner the] [noun cardinal]]
[verbphrase [verb discarded]

[nounphrase [determiner each]
Cadjnoun [adjective purple]

[noun shoe]]]]

The form of this parser is so straightforward that is easy to write a

program that will generate the above program given a description of the

grammar. POP-11 contains such a program in the library (see section

3.4). The programs generated by the library package are less simplistic

than that shown above which is not recommended as a way of writing

parsers; the example is shown only to illustrate structure expressions

and pattern assignments.

The grammar and example shown here are similar to those in the chapter

on PROLOG in this book. This will enable the reader to compare a POP-11



2.6) PROCEDURE CLOSURES

POP-11 provides a number of mechanisms for dynamically creating new
»

procedures as a program is running. In this section, which can be

skipped on first reading, we illustrate the way one such technique,

called partial application, is used for input and output in POP-11 and

also how it could be used to implement PROLOG.

2,6.1) CLOSURES IN INPUT AND OUTPUT

Partial application is a technique whereby a procedure and some

arguments for that procedure can be 'frozen1 together to create a new

procedure (or 'closure1 as it sometimes called). A closure needs fewer

arguments than the original procedure; if all the arguments were frozen

in at the time the closure was created then it will need need no

additional arguments at all. Partial application is used to provide

elegant input/output mechanisms in POP-11 arid this application is a good

introduction to closures. POP-11 provides a number of primitive

procedures for accessing disc files. With some simplifications, two of

these are:

* SYSOPEN which takes as argument the name of a disc file and returns
a 'device descriptor1 for reading from that file.

* SYSREAD which takes as argument a device descriptor, created by
SYSOPEN, and returns the 'next' character from the disc file.

Thus:

sysopen('foobaz') -> d

The variable D will now hold a device descriptor for the file called

FOOBAZ. To read the first character from this file we would do:

sysread(d) =>



second character and so on. If we fpartiaUy apply1 SYSREAD to the

device descriptor D, thus:

sysread(Xd%) -> p;

then the variable P will hold a closure. Notice that partial application

is denoted by •decorated parentheses1, •(%• and • % ) ' . We can now simply

apply P to read succesive characters from the file, thus:

p<> =>

SYSREAD and SYSOPEN are packaged up into a procedure called DISCIN which

takes as argument a file name and returns a procedure which reads from

that file, thus:

define discinCfilename) -> result;
sysread(%sysopen(filename>%) -> result

enddefine;
discinC'foobaz1) -> p;
p O =>

2.6.2) CLOSURES AND PROLOG

In this section a highly simplified account of the way PROLOG is

implemented in POPLOG is given; CMELLISH 83] is a fuller account.

2.6.2.1) CONTINUATION PROGRAMMING

PROLOG is implemented using a technique called Continuation passing1.

In this technique, procedures are given an additional argument, called a

continuation. This continuation (which is a procedure closure) describes

whatever computation remains to be performed once the called procedure

has finished its computation. In conventional programming, the

continuation is represented implicitly by the 'return address1 and code

in the calling procedure. Suppose, for example that we have a procedure,

called PROG, that has just two steps: calling the subprocedure F00 and

then when that has finished execution calling the subprocedure BAZ,

t-hnc •



define progO;
fooO;
bazO;

enddefine;

Were this procedure to be re-written using explicit continuations, then

BAZ would be passed as an extra argument to F00 since BAZ is the

continuation for F00. Actually, it is not quite that simple since PROG

itself would also have a continuation and this must be passed to BAZ as

its continuation, thus:

define prog(continuation);
foo(baz(%continuation%))

enddefine;

Thus, if we invoke PROG we must give it explicit instructions,

CONTINUATION, as to what is to be done when it has finished. PROG

invoked F00, giving F00 as its continuation the procedure BAZ which has

been partially applied to the original continuation since that is what

is to be done when BAZ (now invoked by F00 as its continuation) has

finished its task.

This apparently round about way of programming has an enormous advantage

- since procedures have explicit continuations there is no need for them

to •return1 to their invoker. Conventionally, sub-procedures returning

to their invokers means:

I have finished - continue with the computation

With explicit continuations we can assign a different meaning to a sub-

procedure returning to its invoker, say:

Sorry - I wasn't able to do what you wanted me to do

PROG accomplishs its task by first doing F00 and then doing BAZ. The

power of continuation programming is made clear if we define a new

procedure NEWPROG, thus:

Try doing F00 but if that doesn't work then try doing BAZ



This is represented thus:

define newprog(continuation);
foo (cont i nuat i on);
ba z(cont i nuat i on);

enddefine;

If we now invoke NEWPROG (with a continuation) then it first calls FOO

(giving it the same continuation as itself). If FOO is succesful then it

will invoke the continuation. If not then it will return to NEWPROG

which then tries BAZ. If BAZ too fails (by returning) then NEWPROG

itself fails by returning to its invoker.

2.6.2.2) PROLOG PREDICATES AND CONTINUATIONS

Consider the following PROLOG procedure:

happy(X) :- healthy(X), wise(X).

This says that X is HAPPY if X is HEALTHY and WISE. If this is the only

definition of HAPPY then we may translate this to the following POP-11

procedure:

define happy(x, continuation);
healthy(x, wise(%x, continuation%))

enddefine;

A call of this procedure can be interpreted as meaning:

Check that X is happy and if so do the CONTINUATION

This is accomplished by passing X to HEALTHY but giving HEALTHY a

continuation which then passed X across to WISE. Let us suppose that

someone is HEALTHY if they either JOG or else EAT CABBAGE, ie:

healthy(X) :- jogs(X).
healthy(X) :- eats(X, cabbage).

This can be translated as:

define healthy(x, continuation);
jogs(x, continuation);
eats(x, "cabbage11, continuation);

enddefine;



Finally, let us assume that we know that CHRIS and JON both JOG, thus:

jogs(chris).
jogs(jon).

We can represent this as a POP-11 procedure thus:

define jogsCx, continuation);
if x = "chris" then continuationO endif;
if x = "jon" then continuationO endif;

enddefine;

The translation of JOGS is too simplistic. It does not cater for the

case where X is unknown and we wish to find someone who JOGS. This is

dealt with in the actual PROLOG sub-system of POPLOG by representing

unknowns by data structures whose contents are initially UNDEF, a unique

word. Instead of simply comparing X with the word CHRIS, JOGS instead

trys to 'unify1 the data structure with the word CHRIS. (Also, PROLOG

procedures are translated directly into virtual machine code and not

into POP-11 procedures.) A full account of this process is inappropriate

in a paper of this length.

2.7) CO-ROUTINES AND GENERATORS

POPLOG allows programs to be be written as a number of cooperating

processes. Only one process may be active at any given moment and it

must explicitly relinquish control of the processor before any other

process may run. This restricted multi-processing facility is called

co-routining. To illustrate the use of co-routines, a program to solve

the fsame fringe1 problem is presented.

The same fringe problem consists of writing some program to take two

arbitrarily shaped trees and to determine if the ffringe1 of the two

trees is identical. This is true for the following two trees:
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• *

/ \ / \

/ \ / \

A * * C
/ \ / \

/ \ / \
B C A B

What makes this problem difficult is that while one can write a

recursive program to traverse one tree it is very hard to write a

program to traverse two differently shaped trees. The solution is to

have one process per tree. These processes would perform a simple

recursive traversal of their single tree pausing after finding each

element of the fringe.

We can easily represent trees like those above with lists, thus:

CA CB Cll CCA BD CD

We represent a node of the tree as either a word (meaning we are at a

tip of the tree and the word is on the fringe) or else as a list of

subtrees. For simplicity, we say that nodes are either tips or else have

exactly two sub-trees. A procedure to traverse such a tree is:

define traverse(tree);
if islist(tree) then

traverse(treed));
traverse(tree(2>);

else
suspend(tree, 1)

endif
enddefine;

The notation 'TREEd) 1 means the first subtree. POP-11 allows lists (and

many other structures) to be accessed as if they were one dimensional

arrays. Thus, if the TREE given to TRAVERSE is a list, then TRAVERSE

calls itself recursively - first on the first subtree and then on the

second subtree. If the TREE given to TRAVERSE is not a list then it must

be a tip, ie a word on the fringe. In this case TRAVERSE calls the



invoked it. To create a process, we use the procedure CONSPROC.

Basically, CONSPROC takes as argument a procedure and returns a process

which when invoked with RUNPROC will call the given procedure. CONSPROC

must also be given the arguments that will be needed by the procedure

and a count of the number of arguments. The following procedure,

FRINGEPROCESS, takes as argument a tree and returns as result a process

which will traverse the given tree:

define fringeprocess(tree);
consproc(tree, 1, procedure x; traverse(x); termin endprocedure)

enddefine;

(The notation PROCEDURE ... ENDPROCEDURE specifies an •anonymous1

procedure; these are called fLambda expressions1 in LISP). We can apply

the above procedure to some particular tree, thus:

fringeprocess(CCa bU Cc Cd elll) -> x;

The value of X is now a process which can be run with RUNPROC. RUNPROC

also needs to know whether any data items are to be passed to the

process; in this case there are none. RUNPROC will start the process

which will enter TRAVERSE and continue execution until it reaches a call

of SUSPEND. The parameter to SUSPEND will then be passed back to the

calling process as the result of RUNPROC, thus:

runproc(0, x) =>
*• a

We have now got the first element of the fringe of the tree given to

FRIN6EPR0CESS. The process held in the variable X is now suspended half

way through the execution of TRAVERSE. If we invoke RUNPROC repeatedly

we will get the subsequent elements of the fringe, thus:

runproc(0, x) =>
** b
runproc(0, x) =>
** c
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Eventually, the process in X will terminate and produce TERMIN as its

result so that we know we have reached the end of the fringe. (TERMIN is

a unique object used by POP-11 programs to signify that a •stream1 has

terminated.)

It is a simple matter to write a procedure which takes two trees, create

processes for each of them and then compare the 'results1 given by the

two processes, thus:

define samefringe(t1, t2);
vars x1, x2, p1, p2;
fringeprocess(ti) -> p1;
fringeprocess(t2) -> p2;
repeat forever

runproc(0, p1) -> x1;
runproc(0, p2) -> x2;
if x1 » termin and x2 = termin then return(true) endif;
unless x1 = x2 then return(false) endunless;

endrepeat;
enddefine;

RETURN is a key word to force immediate termination of a procedure call.

This is used as soon as two fringe elements are different. If the trees

have identical fringes then the two sub-processes will eventually return

TERMIN simultaneously and the REPEAT loop will be broken. If the fringes

are different then the POPLOG garbage collector (see section 2.3) will

recover the space occupied by the now unwanted processes.

The reader will note the similarity between testing the •outputs1 of two

processes and testing two lists for equality. POP-11 provides a

mechanism by which a process can be made to appear to be a list of its

outputs. The following expression:

pdtolist(runproc(%0, fringeprocess(tree)%))
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evaluates to a 'dynamic list1. Dynamic lists are data structures that

appear to be simple lists. The normal list processing procedures like HD

and TL will work on them. Actually, the elements of a dynamic list are

evaluated only when they are required. If we were to access the third

element of the dynamic list created by the above expression then POP-11

would arrange for the process to be run three times without our being

aware of it.

2.8) HOW POPLOG IS IMPLEMENTED

The POPLOG system is implemented almost entirely in POPLOG. There are

three reasons for this:

* It gives the user almost unlimited power to tailor the system to his
own requirements.

* It is the easiest way of doing it - POPLOG is a powerful programming
tool and it is very convenient to be able to make use of it in its
own construction.

* It makes the POPLOG system inherently portable. At a time when there
are so many exciting developments in hardware design we wanted the
POPLOG system to be relatively independent of any actual computer.
About three man months work should be sufficient to move the system
to any 32-bit computer. Since the essential programming tools, such
as a screen editor, are already in POPLOG the user of POPLOG is also
relatively independent of the operating system.

2.8.1) THE OVERALL STRUCTURE

The POPLOG system can be visualized as an inverted pryamid resting upon

the POPLOG virtual machine. The POP-11 and PROLOG compilers translate

programs into instructions for this machine. Virtually all of the POPLOG

system, including the screen editor and the compilers themselves, is

written in POP-11 and so can be translated into POPLOG virtual machine

code.



POPLOG virtual machine code is itself the apex of a pyramid and can be

translated into the machine code of the actual machine on which POPLOG

is running. For user programs, POPLOG contains an in-core assembler

which translates POPLOG virtual machine code directly into running

programs in memory.

To produce the running code for the POPLOG system itself, a different

mechanism must, of course, be used. This is accomplished by having a

•boot strap1 version of the POPLOG system which simply makes a list of

POPLOG virtual machine code instead of translating it into running

programs in memory. A stand-alone program (written in POP-11, naturally)

translates this list into the assembly language provided by the host

operating system. Once in this form, it is easy to 'link in1 programs

written in languages other than POP and then use the standard assembler

to produce a running program. This arrangement can be illustrated in

diagrammatic form, thus:

| POP-11 PROGRAM | | PROLOG PROGRAM |

V V
(pop-11 compiler) (prolog compiler)

v v

| POPLOG VIRTUAL MACHINE CODE |

V V

(run time assembler) (batch assembler)
v v

| RUNNABLE PROGRAM | | VAX ASSEMBLER PROGRAM |

V *
(vax assembler) < « « | OTHER LANGUAGES

v *

RUNNABLE PROGRAM



need be re-written for the new computer. The batch assembler (used for

compiling the P0PL06 system itself) makes many machine dependent

'optimizations1. Host importantly, it replaces code calls of certain key

procedures (such as addition) by suitable inline code. As the batch

assembler is table driven it is easy to modify it for a new type of

computer.

2.8.2) THE VIRTUAL MACHINE

An understanding of the P0PL06 virtual machine is of great help in

understanding POP-11. This machine is conceptually very simple and the

mapping between POP-11 instructions and virtual machine instructions is

also simple. POPLOG is based on a stack oriented machine. Expressions in

POP-11 are translated into instructions for this machine. For example,

the assignment statement:

x • y -> z;

translates into the virtual machine instructions:

push x - Put the value of variable X on the stack
push y - Put the value of variable Y on the stack
call + - Call the addition procedure, which removes

two elements from the stack and replaces them
by their sum

pop z - remove one element from the stack and store
in the variable Z

A second stack is used to save the values of local variables during

procedure calls. For example, the procedure:

define double(x); x * 2 enddefine;

translates to:

- Save the value of variable X on the system stack
- Set variable X from the user stack
- Put the value of X onto the user stack
- Put the integer 2 onto the user stack
- call the multiplication procedure
- Restore the value of X from the system stack

save
pop
push
pushq
call
restore

X
X
X
2
•

X



up into a fprocedure record1 which is then assigned to the variable

^DOUBLE.

Understanding this simple two stack mechanism makes it easy to

understand many features of POP-11. For example, it is clear that

procedures can have more than one result (that is, procedures can leave

more than one thing on the stack); it is even possible for procedures to

have a variable number of results (though this can lead to obscure

programs).

Notice, too, that POP-11 has a simple way of assigning scope to

variables. All occurrences of the same variable name (say X) refer to

the same location; on entry to a procedure the current value of its

local variables are saved and then on procedure exit they are restored.

That is, POP-11 is 'dynamically bound1 with 'shallow binding1. This has

the advantage that procedures are not associated with any particular

environment; a procedure is simply a collection of instructions that can

be executed any time and in any environment.

Also, it can be seen that it is necessary for the addition procedure,

say, to check that it has been given two numbers. (Since the addition

procedure can be invoked at any time whatever the state of the stack).

In P0PL06 it is not variables that are typed but objects. A POP-11

procedure cannot INSIST that it be given only, say, integers; if this is

crucial to the procedure's operation then it must check for itself. It

is not generally recognized that typed variables greatly restrict the

type of procedure that can be written. For example, the SORT procedure

in the POP-11 library takes two arguments: a list of any type of object

and a boolean procedure embodying the ordering criteria. A procedure



such as this could not be written in a strongly typed language, such as

PASCAL, because the precise type of the procedure is not known at

compile time (it is known that it must return a truth value, but it is

not known what type of argument it requires; in fact it might be given

ANY type of argument).

The simple representation for procedures, combined with the ability to

call the compiler recursively, gives the user great flexibility.

Crucially, the user can write programs which CONSTRUCT procedures by

assembling the text for the procedure and then compiling that text. The

ability to do this is often of great importance in AI programs where a

program may wish to extend itself on the basis of the data it is given.

2.8.3) DEFINING SYNTAX WORDS

The P0PL06 virtual machine is available to the user as a set of

procedures for fplantingf virtual machine code instructions. This means

that the POP-11 compiler itself can be written as a set of POP-11

procedures. Indeed, some infrequently used syntactic constructions are

defined by quite ordinary POP-11 procedures stored in the fauto

loadable9 library (see section 3.4).

Suppose, for example, that POP-11 did not already have an UNTIL loop.

The form of such a loop is:

UNTIL condition DO actions ENDUNTIL

The POPLOG virtual machine instructions for such a loop are:

label L1
<code for the condition>
ifso L2
<code for the actions>
goto L1
label L2



element from the top of the user stack ana IT it i» nv«. .r, _.—

control to the given label. .

The user could add UNTIL loops to POP-11 by defining the following

procedure:

define syntax until;
vars L1, L2;
gensymO -> L1;
gensymO -> L2;
plantlabel(U);
compileto(ndoM);
plantifso(L2);
compileto(MenduntiI");
plantgoto(LI);
plantlabel(L2);

enddefine;

(This definition has been simplified for clarity.) The procedure

COMPILETO reads in and compiles text up to the given closing keyword, in

this case ENDUNTIL. The various PLANT procedures create P0PL06 virtual

machine code. The procedure GENSYM creates unique words for use as

labels.

Should one UNTIL loop be nested inside another then the above definition

of UNTIL will be invoked recursively by COMPILETO.

3) THE ENVIRONMENT

As we have shown, POP-11 is a powerful and flexible programming

language. Programming languages, however, are only one of the tools the

programmer needs. Programmers typically spend much of their time

interacting with ancillary programs like editors and debugging packages.

Perhaps the most crucial advantage P0PL06 offers the programmer is that

all the necessary tools are integrated into a single "programming

environment1. Most significantly, a powerful screen editor, called VED,
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is intimately linked to the compilers and the run time system. This

means that the familiar cycle in which so much programmer time is spent:

EDIT » COMPILE » TEST » DEBUG
v

can be appreciably speeded up. It is the BASIC programming environment

that has made that language so useful, not BASIC itself. In P0PL06 we

have married powerful programming languages to a superb programming

environment

3.1) THE TEXT EDITOR

Since programmers spend more time modifying programs than running them,

it is important they have good editing facilities. POPLOG accomplishes

this by building the editor into the run time system so allowing the

user to edit and re-compile portions of his program as it is being

developed and tested.

POP-11 is primarily intended for interactive use from a terminal. In

earlier implementations of POP-11, the compiler read a stream of

definitions and imperatives from the user's terminal and wrote back any

output. In this new implementation for the VAX a text editor, called

VED, is interposed between the user and the POP-11 compiler, thus:

| USER | 1 VED |— 1 POP-11 COMPILER |

I
I

I FILING SYSTEM |
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Notice that the user is always communicating with VED, the text editor.

(This section is confined to how POP-11 fits into the POPLOG

environment. The PROLOG compiler occupies a similar place to the POP-11

compiler in this scheme.)

The user's VDU screen continuously displays a portion of some selected

file or files. These files may belong either to the user or be files

•belonging1 to POPLOG (such as documentation or tutorial files). When

user presses the •DOIT1 button part of the •current1 file is sent to the

POP-11 compiler. The POP-11 compiles the fragment of text sent to it and

sends back any output to VED which splices the output into the current

file and hence displays the output on the userfs VDU screen. Since the

output is stored in an edit file it is easy to review any output that

has scrolled off the top of the VDU screen.

This may sound \jery complicated, but in practice it is very simple since

the scope of the DOIT button will default to any fresh text typed in

since the DOIT button was last pressed. A simple interaction with POPLOG

will consist of the user typing in a command, pressing the DOIT button

and observing the output; this cycle is then repeated. If a definition

needs to be modified two or three keystrokes after editing suffice to

have the procedure re-compiled and incorporated into the existing

compiled program.

The editing procedures can be invoked directly by POP-11 (and PROLOG)

programs. A program wanting to create a disc file can therefore use the

full power of the editor to aid it in this task. Moreover, any program

wanting simple graphical output can accomplish this using the editor.



disc file; the procedure DRAW invokes editing procedures to alter
the disc file and VED ensures that the user's terminal is updated as
the file is updated.

* A demonstration problem solving package, called SOLVER, demonstrates
means-end analysis and forward chaining heuristic search. The search
space is shown as a dynamically changing tree. It is intended that a
similar facility will be incorporated into the PROLOG system to
provide a uniquely powerful debugging tool.

POPLOG makes full use of the VAX virtual memory system to minimize

actual disc 10.

Without a demonstration it is difficult to know how an editor 'feels1.

In a paper one is reduced to giving a written description which is an

inadequate substitute for practical experience. However, VED is

sufficiently convenient to have attracted a number of users who have no

interest in programming and simply want to use it as a word-processing

system.

The task of describing VED is complicated by the fact that it can be

customized by the individual user. In essence, VED provides an

extensible set of 'editing procedures1. Any particular procedure can be

'attached1 to one of the keys on the userfs terminal. Normally, for

example, the key marked 'A' will, when pressed, invoke a procedure to

insert a letter A into the current file. The terminals in use at Sussex

University have over thirty 'function* keys in addition to the normal

QWERTY keyboard; these additional keys are allocated to commonly used

procedures such as:

MOVE-CURSOR-TO-RIGHT-OF-NEXT-WORD

Escape sequences are used to get access to procedures not allocated to a

key (such as the procedure to select some new file for editing).
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Since the editing procedures are written in POP-11, the user can write

new editing procedures and, if desired, attach them to keys or keystroke

sequences*

In summary, POPLOG incorporates a powerful text editing facility that

can be used both by the programmer to modify his program and also by the

program itself to simplify output. The editor is written entirely in

POP-11 and can be extended or otherwise modified by the programmer.

3.2) DEBUGGING TOOLS

The design of POP-11 makes the provision of explicit debugging tools

less necessary than with other programming languages. The principal

reason for this is that the compiler can be invoked during breakpoints.

This allows the user to give any POP-11 command - for example to examine

or change variables, or even to edit and recompile procedures.

Breakpoints occur whenever there is an error, whenever code execution

reaches a declared breakpoint (set, perhaps, by editing a procedure

definition to include a call of the compiler) or when the user

interrupts a running program.

Since POP-11 procedures can be manipulated by POP-11 programs, debugging

tools can be written in POP-11 itself. (This feature of POP-11 is shared

by LISP and other AI languages). For example, in the POPLOG library,

there is a short program (about 50 lines) that will add 'trace1 printing

instructions to specified procedures.

Considering the importance of debugging it is surprising that so few

languages make proper allowance for it. It is not uncommon for language

. Freauently there



To summarize, the basic design of POP-11 makes the provision of explicit

debugging tools less necessary than with other non-AI languages. The

language was designed with debugging in mind.

3.3) THE DOCUMENTATION SYSTEM

One big advantage of having a screen editor built into the POPLOG system

is that it greatly simplifies providing documentation for the on-line

user. A simple editor command, such as:

HELP FOR

tells the editor that the user want to look at the 'help file1 for 'for1

(one of the iterative constructions in POP-11). The editor assigns a

'window1 on the user's VDU screen and within that window displays the

wanted documentation. The documentation is visible as the user ponders

over the file he is editing which is also visible. If the information

given is insufficient, the user can give the command:

TEACH FOR

This selects the 'teach file1 for 'for1. Teach files are generally much

longer and are tutorial introductions to the use of POPLOG.

A third level of documentation, 'reference files1, are provided for

those wanting more precise details of how the system works. These are

primarily intended for experienced programmers.

POPLOG was developed with the needs of teaching as well as research

firmly in mind. A collection of many dozens of 'teach files' exist. They

explain not only aspects of POPLOG but also aspects of AI in general.

Undergraduates at Sussex University can spend up two years studying AI

and much of their reading will be of teach files. Typically, a course

tutor can tell a student to go and read a particular teach file as a



- 37 -

week's work. Teach files usually include exercises and assignments for

students. Some are designed for on-line study while others can be

printed and read away from the terminal.

3.4) THE LIBRARY

An essential component of POPLOG is the associated program library.

POPLOG has an 'auto-loading1 mechanism that causes library files to be

automatically compiled and included into any user program that

references them. As part of the undergraduate teaching program a number

of simplified AI programs have been written and these are available for

incorporation into user programs. These include a suite of programs for

operating on line-drawings, an ELIZA-like program, a structure database

and a parser generator program that writes parsers in POP-11 given a

context free grammar.

All library programs may be perused with the editor and the SHOWLIB

command. In this way, many users have developed their skill and

understanding.

4) CONCLUSIONS

The POPLOG system for the VAX computer, although originally developed

for AI research, has features that make it useful in more general

applications. The system provides an excellent environment for the

programmer. He need not ever leave this environment since it includes

needed utilities such as text editors, documentation and debugging
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compiler, screen editor etc are all written in POP-11). The system runs

on an unmodified VMS operating system and will be made available on

other machines and operating systems.
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