NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

st

THE PCPLOG PROGRAMM NG SYSTEM

Steven Hardy
Novenber 1982

i QEM

Cognitirve Studies Research Paper
Serial no: CSRP 003

Th University of Sussex
Cognitive Studies Programe

School of Social Sciences
Fal ner

Brighton BNL 9QN

ABSTRACT

This chapter describes a typical Artificial Intelligence (AD)
programming system and shows how it differs from conventional
programming systems. The particular system described is POPLOG. It
incorporates a powerful screen editor, a PROLOG compiler and a POP-11
compiler. POP-11 is a dialect of POP-2 which has been extensively
developed at Sussex University. Other dialects of POP-2 exist, notably
GLUE and WonderPOP, but all share the important features of the original
which is described in [BURSTALL 711].

It is assumed that the reader is familiar with a range of conventional
programming languages, such as PASCAL and BASIC. It is shown that Al
programming systems, and in particular POPLOG, are used because of
advantages independent of AI itself. In fact, POPLOG could usefully be

employed for any application where program development costs are
significant.

N S $

1) | NTRODUCTI ON

Artificial Intelligence (Al) research involves, anmong other things,
making conmputers do tasks that are easy for people but hard for
conputers - such as wunderstanding English or interpreting pictures.
Since this is difficult, A researchers use progranmng systens which
facilitate the development of programs and are prepared to sacrifice
sone run-time efficiency to pay for this. Programs witten using Al
progranmng systens usually need nmore nenory and run nore slowy than
equivalent programs witten wth conventional programmns systens.
However, with the decreasing cost of conputer hardware, Al progranm ng
systems are now within the economc reach of many conputer users and
there is now no justification for non-Al progranmers to use poor program

devel opment tool's si nply because of their cost.

This chapter describes the POPLOG programm ng system devel oped at Sussex
University., It is currently inplemented on the VAX range of conputers
manufactured by Digital Equipment Corporation (DEC). These computers are
classified as large mni-computers. They have a 32-bit word size which
neans that programs can become \/ery large - many hundreds of tines
larger than is possible with a 16-bit machine such as the |BM Personal
Conputer. A medium sized VAX conputer at Sussex easily supports around
twenty simultaneous users of the POPLOG programming system To ensure
portability, POPLOG is based on VMS, the standard operating system
provided by DEC. (A UNX wversion is in preparation and a PERQ

inpl ementation is planned for late 1983.)

- T meE R Ry WAe MRV IV IV VW WUJYY T VI YWY UMW DU I W T W TT W s W was e

software 1is a little old fashioned. The current vogue in AI programming
system design is to use specialized hardware such as the LISP machine
(see [WEINREB 79]). LISP is the AI programming system most used in the
United States. The LISP machine is a special type of computer designed
to run LISP with the same efficiency as a conventional system runs on a
conventional computer. The LISP machine is a single user system - each
programmer has his or her own computer, each broadly comparable in power
to a VAX. We simply could not afford to buy twenty LISP machines and

neither, we think, will many potential users of the POPLOG system.

The phrase ‘'programming system' is used when referring to POPLOG in
place of the more usual ‘'programming Llanguage' because POPLOG, Llike
BASIC, provides a complete ‘environment' for the programmer to work
within. Moreover, there are two programming languages available in
POPLOG, POP-11 and PROLOG. Typically, a POPLOG user will invoke the
POPLOG system immediately after Llogging in and remain there until
returning to the monitor to log out. Within the POPLOG system, the
programmer can perform all the activities associated with programming.
Programs can be edited, compiled, debugged and documented all without
once leaving POPLOG. Full access to system utilities, such as MAIL, is
available. The POPLOG programming system includes all the following:

* VED, an extendible screen editor, which can display up to two
'windows' simultaneously. Among the comments made on this are 'the
best available editor for the VAX' and 'worth using POPLOG just for
the editor'. VED can be used to prepare both programs and

documentation.

* A POP-11 compiler, which translates POP-11 programs into VAX machine
code. The compiler can be invoked as a subroutine by user programs.

* Debugging tools, which enable the programmer to locate program
faults. These work at the source code level; the programmer need
not be aware that POP-11 is compiled into machine code. For example,
during breakpoints the user can give arbitrary POP-11 commands.

* An on-line documentation system allows the user to access HELP and
TEACH files which give aid and instruction respectively on how to
use the POPLOG system.

* A PROLOG compiler (see chapter by Clocksin in this voLume),.which
translates PROLOG programs into VAX machine code. PROLOG provides a
relational database with Limited theorem proving capability.

There are numerous advantages in combining these component into a single
system. For example, while the editor is being used the state of the
user's computation (such as constructed data structures) is retained.
The editor and compilers share memory and so can easily communicate.
when, for example, a POP~-11 procedure is edited only that one procedure
need be recompiled and not the entire program. Programs can be written
partly in POP-11, a sequential procedural language, and partly in
PROLOG, a backtracking declarative lLanguage. This provides a significant
advantage over stand-alone PROLOG systems where everything must be

written in 'logic' even those parts more naturally or efficiently

expressed procedurally.

Procedures written in other programming languages (such as FORTRAN or C)
may be incorporated into programs written using POPLOG. Although these
‘external procedures' may not be altered during a single session with
POPLOG this nevertheless provides a very powerful facility. A vision
program, for example, may do low level array manipulation in FORTRAN,
intermediate level processing in POP-11 and high level scene analysis in

PROLOG.

Since PROLOG is described elsewhere in this volume, in this chapter we
concentrate upon the POP-11 programming language and how it interacts

with the VED screen editor (similar interactions are possible between

PROLOG and VED).

2) THE POP-11 PROGRAMMING LANGUAGE

In this section a number of examples of programs written in POP-11 are
presented. They get increasingly complicated. Although POP-11 has many
characteristics in common with Llanguages Llike PASCAL it also has a
number of advanced features that permit programs to be written to solve
complex problems. The majority of POP-11 users have no conception of its
full power; many are content to treat it as Llittle more than an
interactive PASCAL. Indeed, POP-11 has been used to teach AI and
programming to hundreds of psychology and philosophy undergraduates at
Sussex University and these students are encouraged to treat POP-11 as

being of the complexity of LOGO.

The final part of this section is a discussion of the way POP-11 is
implemented. POP-11 is written almost entirely in POP-11 and so can

easily be extended.

2.1) AN OLD FAVOURITE: FACTORIAL

Bowing to an old tradition, we present as our first example of a POP-11
procedure the definition of FACTORIAL. The simplest way of writing this
procedure is recursively, thus:

define factorial (number) => result;
if number = 1 then
1 => result
else
number * factorial (number - 1) => result
endif
enddefine;

We can invoke this procedure, thus:

factorial (5) =>
**x 120

The symbol '=>' is called the print arrow and instructs POP-11 to print
out the value of the expression to its left. The output is preceded by
two asterisks, for example:

factorial (5) + factorial(5) =>
**x 240

The fact that the formal parameter to FACTORIAL is called NUMBER has no
significance to the POP-11 compiler. It might just as well have been
called, say, X. Any type of object (eg number or string) can be assigned
to any variable. This is not to say that POP-11 is a typeless language.
Every object has a type and it is not possible, for example, to subtract
a number from a string. The subtraction procedure checks at run time
that the arguments it has been given are numbers and if not it reports
an error to the user. This would happen if we applied FACTORIAL to, say,
a string:

factorial ('seven') =>

MISHAP: NON NUMBERS FOR ARITHMETIC OPERATION

INVOLVING: 'seven' = 1

DOING: factorial
The definition of FACTORIAL uses what is termed an ‘output variable', in
this case called RESULT. Whatever is 'assigned' to this variable is the
result of the procedure call. Assignment statements in POP-11 go from
right to left, thus:

expression => variable
For example:

1 => result
This assigns the number 1 to the variable RESULT. The final value of
this variable is the result of the procedure call. As with the formal
parameter NUMBER, there is no significance to the word RESULT. The

procedure could have been equivalently written as:

o |f x-:<i ﬁ]éﬁml > Iy' else x * factorials - 1) ->y endif
enddefine;

Notice, too, that new ines have no significance in POP-11.

FACTORIAL can also be defined iteratively, thus:
define factorial (number) -> result;
vars index;
1 -> result;
for index from 1l to nunber do
index * result -> result
endf or
enddefine;
The second line of this definition uses the keyword VARS to tell the
PCP-11 conpiler that the variable INDEX is 'local® to this procedure.
The semicolon after the declaration is a 'separatorl. |f a procedure
definition has several steps then they nust be separated by sem col ons.
This procedure has two main steps - assigning 1 to RESULT and a 'for
loop’. Notice that the value of the variable RESULT is changed several
times when this procedure is applied; it is the final value of RESULT

that is the result of the procedure.

The nmeaning of 'for loops! in POP-11 is very sinilar to other
programm ng |anguages. In this case the controlled statement:

index * result -> result
is executed with INDEX being first 1, then 2, then 3 and.so up to the
val ue of NUMBER.

Notice that in POP-11 nost syntactic constructions have an opening
keyword (eg FOR) and a closing keyword formed by prefixing END onto the
opening keyword (eg ENDFOR). Although this is verbose it is easy to read
and renenber and means that when it detects syntax errors the POP-11
conpiler can give nore useful information than would be possible if the

same closing keyword were used for many constructions (as in LISP).

example, can occur anywhere in the body of a loop and immediately stops
the loop. QUITLOOP is syntactic sugar for a simple GOTO to an implicit
label placed after the end of the loop. Other ‘jumpout' constructions in
POP-11 are more powerful. CATCH and THROW, for example, provide a

structured form of non-local GOTOs.

2.2) VARIABLES

POP-11 is a ‘dynamically scoped' language. This refers to the way 'free
variables' are treated. Had the variable INDEX not been declared as
local to FACTORIAL then the POP-11 compiler would have Llooked in the
environment of the procedure that invoked FACTORIAL to see if INDEX were
a local variable of that. If not, the POP-11 would Llook in the
environment of that procedure's invoker and so on until it either found
an active procedure with INDEX as a local variable or else reached the
end of the procedure calling chain and found the global variable INDEX.
This is to be contrasted with the mechanism used in 'lexically scoped'
languages such as ALGOL where free variables are looked for in lexically
enclosing procedures. A technique called 'shallou>binding' is used to
ensure that POP-11 variables can be accessed extremely rapidly (with
only one memory reference). See section 2.8 on how POPLOG is implemented

for more details.

Surprisingly, procedure definitions in POP-11 are simply syntactic sugar
for assignment statements. When a definition of, say, FACTORIAL is
encountered the POP-11 compiler simply assigns a 'procedure record' to
the variable FACTORIAL. Thus the following is permissible:

factorial => temp;

temp(5) =>
** 120

-5 -> X

factorialUx) =>

¥* 120

factorial -> tenp; x -> factorial; tenp -> x;
x(factorial) =>

¥ 120
Treating procedures as objects like any other, eg nunbers, which can be
moved around from variable to variable has many advantages. For exanple,
it is easy to redefine procedures in POP-11 - one sinply assigns a new
procedure. to an existing variable. Also, procedures may be passed as
arguments, returned as results; stored in data structures and, as we see

later, dynamically constructed like any other data structure! (See

2.3) DATA STRUCTURES

2.3.1) SYSTEM DATA TYPES

POPLO6 includes a rich set of -prodeined types of data structure

i ncl udi ng:
I ntegers in the range -536870911 to 536870911
deci mal s '‘real* nunbers (both single and double precision)
strings one dinmensional arrays of 'bytes’
vectors one dimensional arrays of any object
arrays any nunber of dinmensions

properties hash coded 'arrays®, any object can be a subscript

pairs as in LISP

procedures structures containing machine code

externals procedures witten in some |anguage other that POP-11
such as FORTRAN or assenbly |anguage

cl osures a conbination of a procedure and an environnent

processes see Section 2.7

devi ces descriptors of external objects like disc files
ne additional vitally inportant data structure is the 'word" which is
nmodelled on the LISP atom In essense, a word is a string wth
additional properties that has been entered in the POPLO6 dictionary.
There is only copy of any word (unlike strings where there may be

several strings containing the same letters). Wrds in POP-11 are also

variabl es; amongst the properties that words have are its value and its

syntactic type.

2.3.2) USER DEFINED STRUCTURES _

The user may define new types of data structure if the predefined types
of data structure are inappropriate. One way of declaring a new type of
data structure is to use a erecordclass® statement, for exanple:

recordcl ass person name age Sex;
This tells POP-11 that PERSON is a new type of data structure which has
three conponents a NAME, an AGE and a SEX. lnstances of data structures
are not declared in POP-11 but created using a sconstructor® procedure,
for exanple:

conspersonC steve", 33, "male") -> p;
This creates a new PERSON structure whose NAME is STEVE, whose AGE is 33
and whose SEX is MALE. The new structure is stored in an area of menory
called the "heap’ and a pointer to (ie the address of) the new structure

Is assigned to the variable P. W can use the new structure thus:

age(p) =>

*% 33

age(p) + 1 ->age(p);
age(p) => '

** 34

Notice that structures are accessed using procedures; the procedure
assigned to the variable AGE accesses the second conponent of a PERSON
structure. This convention makes it particularly easy to make a program
i ndependent of the form in which data is stored since there is no
syntactic distinction between accessing a field of a structure and
applying any other procedure to the structure. W mght, for exanple,
decide to alter our representation of a PERSON thus:

recordcl ass person nane yearofbirth sex;

4«1 WE Hdyve g Bluual variqapilee wontalning e currcie ycaly wo Lan 1w
write an ordinary procedure called AGE, thus:
define age(x) => result;

currentyear - yearofbirth(x) => result
enddefine;

If the value of CURRENTYEAR changes then this will be reflected in the
result of future calls of AGE. For example:

consperson('steve", 1949, "male") => p;
1982 -> currentyear;

age(p) =>

*% 33

currentyear + 1 => currentyear;
age(p) =>

*k 34

We may even define an ‘updater' for AGE that will allow us to ‘'assign'
to the AGE of a PERSON even though there is no AGE field as such. With
this new representation, an assignment to AGE should be translated to an
assignment to the YEAROFBIRTH. The appropriate definition is:

define updaterof age(newage, x);

currentyear - newage -> yearofbirth(x);

enddefine;
We can use this new procedure thus:

age(p) =>

** 34

37 => age(p);

yearofbirth(p) =>

**x 1946

2.3.3) MEMORY MANAGEMENT

POPLOG includes a 'garbage collector'. This manages the heap where all
structures created by the user are stored. When a temporary data
structure is no Llonger accessible by the user (for example, no user
variables ‘points' to it) then the garbage collector reclaims the space
occupied by the inaccessible structure. It is not possible for the user
to find the actual address of a structure and, in fact, the garbage

cotlector will rearrange the heap periodically to coalesce reclaimed

2.4.1) STRUCTURE EXPRESSI ONS

The nost commonly used data structures in POP-11 are lists and words.
These are nodelled on the data structures provided in LISP. A list is a
linked collection of primtive data structures called PAIRs. PAIRs have
two conponents, a HD and a TL. A three element list of the words STEVE
|S and HAPPY could be created by the follow ng command:

conspai r ("steve, conspairCis", conspair("happy", nil))) -> x;
The HD of the first PAIR is a pointer to the first element of the Ilist;
the TL of the first pair is a pointer to a second pair whose HD is a
pointer to the second element and whose TL is a pointer to a third pair
whose HD is a pointer to the third element of the list and whose TL is a -
di stingui shed object, thus:

hd(x) =>

** steve

hd(tl(x)) =>

* % |S

hd(tl(tl(x))) =>

** happy

Al though there is a_default way of printing data structures, the user is
allowed to override this default and specify precisely how structures of
any given type are to be printed. POP-11 already has a special way of
printing PAIRs, thus:

X =

** Csteve is happyD
Addi tionally, square brackets "C' and "3" have been defined as syntax
words in PCP-11 so that users may create lists without explicit use of
CONSPAIR. (see section 2.8 for a discussion of how new syntax words are
created.) The above list could have been created nore sinply with the
st atement :

Csteve is happyD -> x;

- 12 -

Expressions such as these are termed 'structure expressions'. They
evaluate to data structures. In the example above, the structure could
be created at 'compile time' since all its constituents are known then.
This is not usually the case; usually data structures are created out of
components that are being held in variables and are not known at compile
time. For example, if the variable ADJ contains some word then the user
can create a three element list of the words STEVE, IS and the value of
ADJ thus:
[steve is “adjl

Jede v Je de I Je de e de e e de vk K de e e de sk de o d e e e ke I e e de sk de vk e de ok Sk de e e de e de e de vk e de ke ke e K
* NOTE TO PUBLISHER *
* The symbol ° does not come out very well on our *
* printer. It should be an upwards pointing arrow *

* and not a circumflex *
Fe vk g kK de de vk ke ek ek kK de kg ek ke Rk e de v ok e ok e ke ek sk ok & e e v de sk sk e e e vk v vk e ke ke Kk

The up-arrow, """, tells POP-11 that it 1is the value of ADJ that is
wanted and not the word ADJ itself. If the value of a variable is a
list, the double up-arrow, """" tells POP-11 to insert all the elements
of that Llist as elements of the new List, for example:

Lred orange yellowl -> x;

[blue "“"xJ =>

** [blue red orange yellowl

[""x bluel =>

** [red orange yellow bluel

[*"x are all coloursl] =>

[red orange yellow are all colours]
Since most POP-11 users use structure expressions, there is no need for
them to know about CONSPAIR. This eliminates many minor programming

errors. Structure expressions can be used to create all types of

datastructure.

To complement structure expressions, POP-11 provides a ‘'pattern
assignment' statement for decomposing Llists without the explicit use of
HD and TL. A typical pattern assignment is:
x ==> [?a ?b ?c];
This statement takes the list which is the value of the variable X and
assigns the first element of the list to A, the second to B and the
third to C. Unless the Llist has exactly three elements, an error message
is generated. A more complicated example of a pattern assignment is:
x ==> [?7a ?27b ?¢];
The double question mark indicates that B is to be given a Llist as
value. The first element of X is assigned to A, the last to C and a list
of the intervening elements to B. If X was initially [STEVE IS VERY
HAPPY], then A will be set to STEVE, B to [IS VERY] and C to HAPPY,
Using structure expressions and pattern assignments, it is easy to write
a procedure to produce a copy of a Llist with some given item deleted,
thus:
define delete(item; Llist) => result;
vars x, y;
list ==> [?7x “item ??y];
[*"x “"yl => result
enddefine;
delete("very'", [steve is very happyl) =>

*% [steve is happyl]

2.4.3) A SIMPLE DATABASE PACKAGE

Structure expressions and pattern assignments are used to provide a
simple 'database' facility in POP-11. The variable DATABASE is a list of
structures. The procedure ADD inserts a structure in this Llist, REMOVE
removes a structure and LOOKUP locates a structure, thus:

define add(item);

{"item ““"database] ~> database
enddefine;

- 14 -

define remove(item);
vars x, y;
database =--> [??x “item ??yJ;
[""x “"y] => database
enddefine;

define lookup(item);

vars x, y;

database --> [??x “item ??y]
enddefine;

LOOKUP will usually be given a pattern as argument; the effect of using
LOOKUP is to assign to the variable in that pattern, thus:

1 -> database;

add(Lsteve is happyl);

add(Laaron is busyl);

database =>

** [[aaron is busy] [steve is happyl]

Llookup(L?p is happyl);

p =>

** steve
Finally, FOREVERY constructions allow programs to iterate over all
instances of a set of patterns in a given list, for example:

forevery [L?x is a bachelor] [?x is richl] in database do
add(Cmary wants [“x loves maryll)
endforevery;
The definition of FOREVERY js stored in the auto-loadable library (see

section 3.4). The mechanism for defining new syntax words is discussed

in section 2.8.3; the definition uses co-routining (see section 2.7).

2.5) A SIMPLE PARSER

Pattern assignments may contain restrictions; these are elements in the
pattern which restrict the values which can be assigned to a variable.
For example, the statement:

[i saw 3 ships] ==> [??7x ?y:isinteger ?72z]

- 15 -

is an exanple of a restricted pattern assignment. The variable Y is
constrained to accept as value only an integer. Thus the result of the
above assignnment would be to give X the value G SAWD, Y the value 3 and
Z the value [SHIPS].

If we have written procedurets called NOUNPHRASE and VERBPHRASE whi ch,
respectively, return TRUE if given a noun phrase and a verb phrase then
the follow ng étatement will succeed (ie not cause an error) only if the
value of LIST is a 'sentence:
list — C??x:nounphrase ??y:verbphraseD

The variables X and Y will be set, respectively, to the portion of LIST
which is the noun phrase and the portion which is the verb phrase.
Should the sub-procedures NOUNPHRASE and VERBPHRASE return anything
other than TRUE or FALSE (say parse trees) then X and Y will be set to

the results of those procedures.

So that we can tell whether LIST is a sentence (it may not be) we use
the procedure MATCHES This performs a pattern assignment and returns
TRUE unless the assignment would cause an error in which case it returns
FALSE. The following is a procedure which recognizes a 'sentence’ and
returns a parse tree for it (or else returns FALSE if its argument is

not a 'sentencel):

define sentence(list) -> result;
vars X, VY:
if list matches C??X: nounphrase ??Y:verbphraseD then
[sentence "X "YD -> result
el se
false -> result
endif
enddef i ne;

- 16 -

The definition of NOUNPHRASE is equally straightforward:

define nounphrase(list) => result;
vars X, Y;
if list matches [?X:determiner 2??Y:adjnounl then
Cnounphrase “X “YJ => result
else
false -> result
endif
enddefine;

This says that a noun phrase is a DETERMINER followed by an ADJNOUN. An

ADJNOUN 1is either simply a NOUN or else an ADJECTIVE followed by an

ADJNOUN:

define adjnoun(list) <> result;
vars X, Y;
if Llist matches [?X:noun] then
X => result
elseif Llist matches [?X:adjective ??Y:adjnoun] then
Cadjnoun “X “Y] => result
else
false =-> result
endif
enddefine;

A verb phrase is defined as a verb followed by a nounphrase, thus:

define verbphrase(list) -> result;
vars X, Y;
if List matches [?X:verb ??Y:nounphrasel] then
Cverbphrase “X “Y] => result
else
false => result
endif
enddefine;

To complete our parser we need procedures to recognize the
categories, thus:

define determiner(word) => result;
if member(word, [the eachl) then
[determiner “word]l => result
else
false -> result
endif
enddefine;

lexical

- 17 -

define noun(word) => result;
if member(word, [cardinal shoel) then
Cnoun “wordl => result
else
false => result
endif
enddefine;

define adjective(word) => result;
if member(word, Cpurplel) then
Cadjective “word] => result
else
false => result
endif
enddefine;

define verb(word) =-> result;
if member(word, [discardedl) then
Cverb “word] -> result
else
false => result
endif
enddefine;
We can now test our parser, thus:
sentence([the cardinal discarded each purple shoel) =>
** [sentence
Cnounphrase [determiner thel [noun cardinalll]
[Cverbphrase [verb discarded]
Cnounphrase [determiner eachl
Ladjnoun [adjective purplel
Cnoun shoelll]
The form of this parser is so straightforward that is easy to write a
program that will generate the above program given a description of the
grammar. POP-11 contains such a program in the Llibrary (see section
3.4). The programs generated by the library package are less simplistic
than that shown above which is not recommended as a way of writing
parsers; the example is shown only to illustrate structure expressions

and pattern assignments.

The grammar and example shown here are similar to those in the chapter

on PROLOG in this book. This will enable the reader to compare a POP-11

2. 6) PROCEDURE CLOSURES

POP-11 provides a number of mechanisnms for dynamcally creating new
»

procedures as a program is running. In this section, which can be
skipped on first reading, we illustrate the way one such technique,
called partial application, is used for input and output in POP-11 and
also how it could be used to inplenment PROLOG

2,6.1) CLOSURES |IN | NPUT AND OUTPUT

Partial application 1is a technique whereby a procedure and sone
arguments for that procedure can be 'frozen® together to create a new
procedure (or 'closure’ as it sometimes called). A closure needs fewer
arguments than the original procedure; if all the arguments were frozen
inat the time the closure was created then it wll need need no
addi tional arguments at all. Partial application is used to provide
el egant input/output mechanisms in POP-11 aid this application is a good
introduction to closures. POP-11 provides a number of primtive
procedures for accessing disc files. Wth some sinplifications, tw of
these are:

* SYSOPEN which takes as argument the name of a disc file and returns
a 'device descriptor® for reading from that file.

* SYSREAD which takes as argument a device descriptor, created by
SYSOPEN, and returns the 'next' character fromthe disc file

Thus:

sysopen(' foobaz') ->d
The variable D will now hold a device descriptor for the file called
FOOBAZ. To read the first character fromthis file we would do:

sysread(d) =>

second character and so on. If we fpartialy apply' SYSREAD to the
device descriptor D, thus:

sysread(Xd% -> p;
then the variable P will hold a closure. Notice that partial application
is denoted by *decorated parentheses®, «(% and » %) ' . W can now sinply
apply P to read succesive characters fromthe file, thus:

p> =
SYSREAD and SYSOPEN are packaged up into a procedure called DISCIN which
takes as argument a file name and returns a procedure which reads from
that file, thus:

define discinCfilename) -> result;
sysread(%sysopen(filename>% -> result

enddefi ne;

di sci nC foobaz!) -> p;

po =

2:6.2) CLOSURES AND PROLOG

In this section a highly sinplified account of the way PROLOG is
inplemented in POPLOG is given; CMELLISH 83] is a fuller account.

2.6.2.1) - CONTI NUATI ON_PROGRAVM NG

PROLOG is inplemented using a technique called Continuation passing’.
In this technique, procedures are given an additional argunment, called a
continuation. This continuation (which is a procedure closure) describes
what ever conputation remains to be performed once the called procedure
has finished [ts conputation. In conventional programming, the
continuation is represented inplicitly by the 'return address' and code
in the calling procedure. Suppose, for exanple that we have a procedure
called PROG that has just two steps: calling the subprocedure FO0 and

then when that has finished execution calling the subprocedure BAZ,

t-hnce

define prog();
foo();
baz();
enddefine;
Were this procedure to be re-written using explicit continuations, then
BAZ would be passed as an extra argument to FO00 since BAZ is the
continuation for FOO. Actually, it is not quite that simple since PROG
itself would also have a continuation and this must be passed to BAZ as
its continuation, thus:
define prog(continuation);
foo(baz(Xcontinuation¥%))
enddefine;
Thus, if we dinvoke PROG we must give it explicit instructions,
CONTINUATION, as to what is to be done when it has finished. PROG
invoked F00, giving FOO as its continuation the procedure BAZ which has
been partially applied to the original continuation since that is what

is to be done when BAZ (now invoked by FO00 as its continuation) has

finished its task.

This apparently round about way of programming has an enormous advantage
- since procedures have explicit continuations there is no need for them
to 'return' to their invoker. Conventionally, sub-procedures returning
to their invokers means:

I have finished - continue with the computation
With explicit continuations we can assign a different meaning to a sub-
procedure returning to its invoker, say:

Sorry = I wasn't able to do what you wanted me to do
PROG accomplishs its task by first doing FOO and then doing BAZ. The
power of continuation programming is made clear if we define a new
procedure NEWPROG, thus:

Try doing FOO but if that doesn't work then try doing BAZ

This is represented thus:
define newprog(continuation);
foo(continuation);
baz(continuation); -
enddefine;
If we now invoke NEWPROG (with a continuation) then it first calls FOO
(giving it the same continuation as itself). If FOO is succesful then it
will invoke the continuation. If not then it will return to NEWPROG

which then tries BAZ. If BAZ too fails (by returning) then NEWPROG

itself fails by returning to its invoker.

2.6.2.2) PROLOG PREDICATES AND CONTINUATIONS

Consider the following PROLOG procedure:

happy(X) :- healthy(X), wise(X).
This says that X is HAPPY if X is HEALTHY and WISE. If this is the only
definition of HAPPY then we may translate this to the following POP-11
procedure:

define happy(x; continuation);

healthy(x, wise(¥x, continuationX))

enddefine;
A call of this procedure can be interpreted as meaning:

Check that X is happy and if so do the CONTINUATION
This is accomplished by passing X to HEALTHY but giving HEALTHY a
continuation which then passed X across to WISE. Let us suppose that

someone is HEALTHY if they either JOG or else EAT CABBAGE, ie:

healthy(X) :- jogs(X).
healthy(X) :- eats(X, cabbage).

This can be translated as:

define healthy(x, continuation);
jogs(x, continuation);
eats(x, '"cabbage", continuation);
enddefine;

Finally, let us assume that we know that CHRIS and JON both J0G, thus:

jogs(chris).
jogs(jon).

We can represent this as a POP-11 procedure thus:
define jogs(x, continuation);

if x = "chris" then continuation() endif;

if x = "jon" then continuation() endif;
enddefine;

The translation of JOGS is too simplistic. It does not cater for the
case where X is unknown and we wish to find someone who J0GS. This is
dealt with in the actual PROLOG sub-system of POPLOG by representing
unknowns by data structures whose contents are initially UNDEF, a unique
word. Instead of simply comparing X with the word CHRIS, JOGS instead
trys to 'unify' the data structure with fhe word CHRIS. (Also, PROLOG
procedures are translated directly into virtual machine code and not
into POP-11 procedures.) A full account of this process is inappropriate

in a paper of this length.

2.7) CO-ROUTINES AND GENERATORS

POPLOG allows programs to be be written as a number of cooperating
processes. Only one process may be active at any given moment and it
must explicitly relinquish control of the processor before any other
process may run. This restricted multi-processing facility is called
co-routining. To illustrate the use of co-routines, a program to solve

the 'same fringe' problem is presented.

The same fringe problem consists of writing some program to take two
arbitrarily shaped trees and to determine if the 'fringe' of the two

trees is identical. This is true for the following two trees:

- 23 -

Wiat makes this problem difficult is that while one can wite a
recursive program to traverse one tree it is very hard to wite a
programto traverse two differently shaped trees. The solution is to
have one process per tree. These processes would performa sinple
recursive traversal of their single tree pausing after finding each

element of the fringe.

W can easily represent trees like those above with lists, thus:
CACBdl CCABD D

W represent a node of the tree as either a word (neaning we are at a

tip of the tree and the word is on the fringe) or else as a list of

subtrees. For sinplicity, we say that nodes are either tips or else have

exactly two sub-trees. A procedure to traverse such a tree is:

define traverse(tree);
if islist(tree) then
traverse(treed));
traverse(tree(2>
el se
suspend(tree, 1)
endi f
enddef i ne;

The notation ' TREEd)' means the first subtree. PCP-11 allows lists (and
many other structures) to be accessed as if they were one dimensional
arrays. Thus, if the TREE given to TRAVERSE is a list, then TRAVERSE
calls itself recursively - first on the first subtree and then on the
second subtree. If the TREE given to TRAVERSE is not a list then it nust
be a tip, ie a word on the fringe. In this case TRAVERSE calls the

invoked it. To create a process, we use the procedure CONSPROC.
Basically, CONSPROC takes as argument a procedure and returns a process
which when invoked with RUNPROC will call the given procedure. CONSPROC
must also be given the arguments that will be needed by the procedure
and a count of the number of arguments. The following procedure,
FRINGEPROCESS, takes as argument a tree and returns as result a process
which will traverse the given tree:

define fringeprocess(tree);

consproc(tree, 1, procedure x; traverse(x); termin endprocedure)

enddefine;
(The notation PROCEDURE ... ENDPROCEDURE specifies an ‘'anonymous'
procedure; these are called 'lambda expressions' in LISP). We can apply
the above procedure to some particular tree, thus:

fringeprocess(Lla bl [c [d €1J]) =-> x;
The value of X is now a process which can be run with RUNPROC. RUNPROC
also needs to know whether any data items are to be passed to the
process; in this case there are none. RUNPROC will start the process
which will enter TRAVERSE and continue execution until it reaches a call
of SUSPEND. The parameter to SUSPEND will then be passed back to the

calling process as the result of RUNPROC, thus:

runproc(0, x) =>
** 3

We have now got the first element of the fringe of the tree given to
FRINGEPROCESS. The process held in the variable X is now suspended half
way through the execution of TRAVERSE. If we invoke RUNPROC repeatedly

we will get the subsequent elements of the fringe, thus:

>

runproc(0, x)
** b
runproc(0, x) =>
*k C

- 25 -

Eventual [y, the process in X will termnate and produce TERMN as its
result so that we know we have reached the end of the fringe. (TERMN is
a unique object used by POP-11 programs to signify that a estreant has

termnated.)

It is a sinple matter to wite a procedure which takes two trees, create
processes for each of them and then conpare the 'results® given by the
two processes, thus:
define samefringe(tl, t2);
vars x1, x2, pl, p2;
fringeprocess(ti) -> pl;
fringeprocess(t2) -> p2;
repeat forever
runproc(0, pl) -> x1;
runproc(0, p2) -> x2; _ _
if x1 » termn and x2 = termn then return(true) endif;
unless x1 = x2 then return(false) endunless;
endr epeat ;
enddef i ne;
RETURN is a key word to force imediate termnation of a procedure call.
This is used as soon as two fringe elenents are different. If the trees
have identical fringes then the two sub-processes wll eventually return
TERM N sinmul taneously and the REPEAT loop will be broken. If the fringes
are different then the POPLOG garbage collector (see section 2.3) wll

recover the space occupied by the now unwanted processes.

The reader will note the sinilarity between testing the soutputs® of two
processes and testing two lists for equality. POP-11 provides a
mechani sm by which a process can be made to appear to be a list of its
outputs. The fol | owing expression:

pdtolist(runproc(%, fringeprocess(tree)%)

- 26 -

evaluates to a 'dynamic Llist'. Dynamic Llists are data structures that
éggeaf to be simple Lists. The normal Llist processing procedures like HD
and TL will work on them. Actually, the elements of a dynamic Llist are
evaluated only when they are required. If we were to access the third
element of the dynamic Llist created by the above expression then POP-11
would arrange for the process to be run three times without our being

aware of it.

2.8) HOW POPLOG IS IMPLEMENTED

The POPLOG system is implemented almost entirely in POPLOG. There are
three reasons for this:

* It gives the user almost unlimited power to tailor the system to his
own requirements.

* It is the easiest way of doing it - POPLOG is a powerful programming
tool and it is very convenient to be able to make use of it in its
own construction.

* It makes the POPLOG system inherently portable. At a time when there
are so many exciting developments in hardware design we wanted the
POPLOG system to be relatively independent of any actual computer.
About three man months work should be sufficient to move the system
to any 32-bit computer. Since the essential programming tools, such
as a screen editor, are already in POPLOG the user of POPLOG is also
relatively independent of the operating system.

2.8.1) THE OVERALL STRUCTURE

The POPLOG system can be visualized as an inverted pryamid resting upon
the POPLOG virtual machine. The POP-11 and PROLOG compilers translate
programs into instructions for this machine. Virtually all of the POPLOG
system, including the screen editor and the compilers themselves, is
written in POP-11 and so can be translated into POPLOG virtual machine

code.

POPLOG virtual machine code is itself the apex of a pyramid and can be
translated into the machine code of the actual machine on which POPLOG
is running. For user programs, POPLOG contains an in-core assembler
which translates POPLOG virtual machine code directly into running

programs in memory.

To produce the running code for the POPLOG system itself, a different
mechanism must, of course, be used. This is accomplished by having a
'boot strap' version of the POPLOG system which simply makes a Llist of
POPLOG virtual machine code instead of translating it dinto running
programs in memory. A stand-alone program (written in POP-11, naturally)
translates this list into the assembly Llanguage provided by the host
operating system. Once in this form, it is easy to 'link in' programs
written 1in languages other than POP and then use the standard assembler
to produce a running program. This arrangement can be illustrated in

diagrammatic form, thus:

* - o - o * * %*
| POP-11 PROGRAM | | PROLOG PROGRAM |
* - * %* 3 *
v v
(pop-11 compiler) (prolog compiler)
v v
| POPLOG VIRTUAL MACHINE CODE |
%* “ X *
v v
(run time assembler) (batch assembler)
v v
* : - g * *
| RUNNABLE PROGRAM | | VAX ASSEMBLER PROGRAM |
* - % * 3 *
v *
(vax assembler) <<<<< | OTHER LANGUAGES
v *
*

*— %

RUNNABLE PROGRAM |
- *

- e s 7 JEEE T R TR Wy eewitl bYW W O TTeWw vwwilipwbe Sy TR RNV VN RITTR REwT W

need be re-written for the new computer. The batch assembler (used for
compiling the POPLOG system itself) makes many machine éependent
‘optimizations'. Most importantly, it replaces code calls of certain key
procedures (such as addition) by suitable inline code. As the batch
assembler is table driven it is easy to modify it for a new type of

computer,

2.8.2) THE VIRTUAL MACHINE

An understanding of the POPLOG virtual machine is of great help in
understanding POP-11. This machine is conceptually very simple and the
mapping between POP-11 instructions and virtual machine instructions is
also simple. POPLOG is based on a stack oriented machine. Expressions in
POP-11 are translated into instructions for this machine. For example,
the assignment statement:

Xty =>2;

translates into the virtual machine instructions:

push X - Put the value of variable X on the stack
push y - Put the value of variable Y on the stack
call + - Call the addition procedure, which removes

two elements from the stack and replaces them
by their sum

pop 2z - remove one element from the stack and store
in the variable Z

A second stack is used to save the values of local variables during
procedure calls. For example, the procedure:
define double(x); x * 2 enddefine;
translates to:
- Save the value of variable X on the system stack
pop - Set variable X from the user stack

push - Put the value of X onto the user stack

save X
X
X
pushq 2 - Put the integer 2 onto the user stack
*
X

call - call the multiplication procedure
restore - Restore the value of X from the system stack

up into a ‘'procedure record' which is then assigned to the variable

"DOUBLE.

Understanding this simple two stack mechanism makes it easy to
understand many features of POP-11. For example, it 1is clear that
procedures can have more than one result (that is, procedures can leave
more than one thing on the stack); it is even possible for procedures to
have a variable number of results (though this can lead to obscure

programs).

Notice, too, that POP-11 has a simple way of assigning scope to
variables. ALl occurrences of the same variable name (say X) refer to
the same Llocation; on entry to a procedure the current value of its
local variables are saved and then on procedure exit they are restored.
That is, POP-11 is 'dynamically bound' with 'shallow binding'. This has
the advantage that procedures are not associated with any particular
environment; a procedure is simply a collection of instructions that can

be executed any time and in any environment.

Also, it can be seen that it is necessary for the addition procedure,
say, to check that it has been given two numbers. (Since the addition

procedure can be invoked at any time whatever the state of the stack).

In POPLOG it is not variables that are typed but objects. A POP-11
procedure cannot INSIST that it be given only, say, integers; if this is
crucial to the procedure's operation then it must check for jtself. It
is not generally recognized that typed variables greatly restrict the
type of procedure that can be written. For example, the SORT procedure
in the POP-11 Llibrary takes two arguments: a list of any type of object

and a boolean procedure embodying the ordering criteria. A procedure

such as this could not be witten in a strongly typeq | anguage, such as
PASCAL, because the precise type of the procedure is not known at
conpile time (it is known that it nmust return a truth value, but it is
not known what type of argunent it requires; in fact it mght be given

ANY type of argunent).

The sinple representation for procedures, conbined with the ability to
call the conpiler recursively, gives the user great flexibility.
Crucially, the user can wite programs which CONSTRUCT procedures by
assenbling the text for the procedure and then conpiling that text. The
ability to do this is often of great inportance in A prograns where a

program may wish to extend itself on the basis of the data it is given.

2.8.3) DEFINING SYNTAX WORDS

The POPLO6 virtual wmachine is available to the user as a set of
procedures for 'planting’ virtual machine code instructions. This neans
that the POP-11 conpiler itself can be witten as a set of POP-11
procedures. Indeed, sonme infrequently used syntactic constructions are
defined by quite ordinary POP-11 procedures stored in the 'auto

| oadabl €® library (see section 3.4).

Suppose, for exanple, that POP-11 did not already have an UNTIL | oop.
The form of such a loop is:
UNTIL condition DO actions ENDUNTIL

The POPLOG virtual machine instructions for such a loop are:

| abel L1

<code for the condition>
ifso L2

<code for the actions>
goto L1

| abel L2

element from the top of the user stack and 1T 1t 1> 1we 1hreen - -

control to the given label. .

The user could add UNTIL Lloops to POP-11 by defining the following
procedure:

define syntax until;
vars L1, L2;
gensym() => L1;
gensym() => L2;
plantlabel(L1);
compileto(''do");
plantifso(L2);
compileto("enduntil');
plantgoto(L1);
plantlabel (L2);

enddefine;

(This definition has been simplified for clarity.) The procedure
COMPILETO reads in and compiles text up to the given closing keyword, in
this case ENDUNTIL. The various PLANT procedures create POPLOG virtual
machine code. The procedure GENSYM creates unique words for use as

Labels.

Should one UNTIL Loop be nested inside another then the above definition

of UNTIL will be invoked recursively by COMPILETO.

3) THE ENVIRONMENT

As we have shown, POP-11 is a powerful and flexible programming
language. Programming languages, however, are only one of the tools the
programmer needs. Programmers typically spend much of their time
interacting with ancillary programs like editors and debugging packages.
Perhaps the most crucial advantage POPLOG offers the programmer is that
all the necessary tools are integrated into a single ‘'programming

environment'. Most significantly, a powerful screen editor, called VED,

-32 -

is intimately linked to the compilers and the run time system. This
means that the familiar cycle in which so much programmer time is spent:
EDIT >> COMPILE >> TEST >> DEBUG

v
<<L<LLLLLLLLLLLLLLLLLLLLLL

can be appreciably speeded up. It is the BASIC programming environment
that has made that language so useful, not BASIC itself. In POPLOG we
have married powerful programming languages to a superb programming

environment

3.1) THE TEXT EDITOR

Since programmers spend more time modifying programs than running them,
it is important they have good editing facilities. POPLOG accomplishes
this by building the editor into the run time system so allowing the
user to edit and re-compile portions of his program as it 1is being

developed and tested.

POP-11 is primarily intended for interactive use from a terminal. In
earlier implementations of POP-11, the compiler read a stream of
definitions and imperatives from the user's terminal and wrote back any
output. In this new implementation for the VAX a text editor, called

VED, is interposed between the user and the POP-11 compiler, thus:

e fm——— * * *
| USER |=—=—------ | VED |=======-mm | POP-11 COMPILER |
N A———— K- * * *
|
|
*

FILING SYSTEM |
*

" — %

- 33 -

Notice that the user is always comunicating with VED, the text editor.
(This section is confined to how POP-11 fits into the POPLOG
environment. The PROLOG conpiler occupies a simlar place to the POP-11

conpiler in this schene.)

The user's VDU screen continuously displays a portion of some selected
file or files. These files may belong either to the user or be files
bel ongi ng to POPLOG (such as documentation or tutorial files). Wen
user presses the DO T button part of the ecurrent’ file is sent to the
POP-11 conpiler. The POP-11 conpiles the fragment of text sent to it and
sends back any output to VED which splices the output into the current
file and hence displays the output on the user's VDU screen. Since the
output is stored in an edit file it is easy to review any output that

has scrolled off the top of the VDU screen.

This may sound \jery conplicated, but in practice it is very sinple since
the scope of the DOT button will default to any fresh text typed in
since the DOT button was last pressed. A sinple interaction with POPLOG
will consist of the user typing in a conmand, pressing the DOT button
and observing the output; this cycle is then repeated. If a definition
needs to be nodified two or three keystrokes after editing suffice to
have the procedure re-conpiled and incorporated into the existing

conpi | ed program

The editing procedures can be invoked directly by POP-11 (and PROLOG)
programs. A programwanting to create a disc file can therefore use the
full power of the editor to aid it in this task. Moreover, any program

wanting sinple graphical output can acconplish this using the editor.

disc file;.the procedure DRAW invokes editing procedures to alter
the disc file and VED ensures that the user's terminal is updated as
the file is updated.

* A demonstration problem solving package, called SOLVER, demonstrates
means-?nd analysis and forward chaining heuristic search. The search
space is shown as a dynamically changing tree. It is intended that a

simigar facility will be incorporated into the PROLOG system to
provide a uniquely powerful debugging tool.

POPLOG makes full use of the VAX virtual memory system to minimize

actual disc 10.

Without a demonstration it is difficult to know how an editor ‘'feels'.
In a paper one is reduced to giving a written description which is an
inadequate substitute for practical experience. However, VED is
sufficiently convenient to havé attracted a number of users who have no
interest in programming and simply want to use it as a word-processing

system.

The task of describing VED is complicated by the fact that it can be
customized by the individual wuser. In essence, VED provides an
extensible set of 'editing procedures'. Any particular procedure can be
‘attached' to one of the keys on the user's terminal. Normally, for
example, the key marked 'A' will, when pressed, invoke a procedure to
insert a letter A into the current file. The terminals in use at Sussex
University have over thirty 'function' keys in addition to the normal
QWERTY keyboard; these additional keys are allocated to commonly used
procedures such as:
MOVE-CURSOR-TO-RIGHT-OF-NEXT-WORD
Escape sequences are used to get access to procedures not allocated to a

key (such as the procedure to select some new file for editing).

- 35 -

Since the editing procedures are written in POP~11, the user can write
new editing procedures and, if desired, attach them to keys or keystroke

sequences.

In summary, POPLOG incorporates a powerful text editing facility that
can be used both by the programmer to modify his program and also by the
program itself to simplify output. The editor is written entirely in

POP-11 and can be extended or otherwise modified by the programmer.

3.2) DEBUGGING TOOLS

The design of POP-11 makes the provision of explicit debugging tools
less necessary than with other programming Languages. The principal
reason for this is that the compiler can be invoked during breakpoints.
This allows the user to give any POP-11 command - for example to examine
or change variables, or even to edit and recompile procedures.
Breakpoints occur whenever there is an error, whenever code execution
reaches a declared breakpoint (set, perhaps, by editing a procedure
definition to idinclude a call of the compiler) or when the user

interrupts a running program.

Since POP-11 procedures can be manipulated by POP-11 programs, debugging
tools can be written in POP-11 itself. (This feature of POP~11 is shared
by LISP and other AI languages). For example, in the POPLOG Llibrary,
there is a short program (about 50 lines) that will add 'trace' printing

instructions to specified procedures.

Considering the importance of debugging it is surprising that so few
languages make proper allowance for it. It is not uncommon for Language

- —-=Afae & sha auailahla farilities. Freauently there

To summarize, the basic design of POP-11 makes the provision of explicit
debugging tools less necessary than wth other non-Al |anguages. The

| anguage was designed with debugging in mnd.

3.3) THE DOCUMENTATI ON SYSTEM

One big advantage of having a screen editor built into the POPLOG system
is that it greatly sinplifies providing documentation for the on-line
user. A sinple editor command, such as:

HELP FR
tells the editor that the user want to look at the 'help file' for 'for?
(one of the iterative constructions in POP-11). The editor assigns a
'window' on the user's VDU screen and within that window displays the
wanted documentation. The docunentation is visible as the user ponders
over the file he is editing which is also visible. If the information
given is insufficient, the user can give the conmand:

TEACH FR

1

This selects the 'teach file® for 'for'. Teach files are generally nuch

longer and are tutorial introductions to the use of POPLOG.

A third level of documentation, 'reference files!, are provided for
those wanting nmore precise details of how the system works. These are

primarily intended for experienced programers.

POPLOG was devel oped with the needs of teaching as well as research
firmy in mnd. A collection of many dozens of 'teach files' exist. They
explain not only aspects of POPLOG but also aspects of Al in general.
“Undergraduates at Sussex University can spend up two years studying Al
and much of their reading will be of teach files. Typically, a course

tutor can tell a student to go and read a particular teach file as a

- 37 -

week's work. Teach files usually include exercises and assignments for
students. Some are designed for on-line study while others can be

printed and read away from the terminal.

3.4) THE LIBRARY

An essential component of POPLOG is the associated program Llibrary.
POPLOG has an ‘'auto-loading' mechanism that causes library files to be
automatically compiled and idincluded 1into any user program that
references them. As part of the undergraduate teaching program a number
of simplified AI programs have been written and these are available for
incorporation into user programs. These include a suite of programs for
operating on line-drawings, an ELIZA-like program, a structure database
and a parser generator program that writes parsers in POP-11 given a

context free grammar.

ALL Llibrary programs may be perused with the editor and the SHOWLIB

command. In this way, many users have developed their skill and

understanding.

4) CONCLUSIONS

The POPLOG system for the VAX computer, although originally developed
for Al research, has features that make it useful in more general
applications. The system provides an excellent environment for the
programmer. He need not ever leave this environment since it includes
needed utilities such as text editors, documentation and debugging

+Ant A Tha sramnilarn itcalf 3¢ nat intriiceive . asneraliv daina the riaght

- 38 -

conpiler, screen edi'tor etc are all witten in POP-11). The system runs
on an unnmodified VM5 operating system and will be nade available on

other machines and operating systens.

- 30 -

Bl BLI QGRAPHY

CBURSTALL 19713
Progranmng i n- POP-2
Burstall, ColTins and Poppl estone
Edi nburgh University Press, 1971

This book describes the earliest version of POP-2. In addition to a

grirrer it also has many demonstration programs which, unfortunately, are
adly witten with excessive use of GOTGs etc.

CCLOCKSIN 19813
Progranmng in_PRALOG
WTTram O ocksin and Chris Mellish
Springer-Verlag, 1981

This book a reference manual for, and introduction to, PROLOG

CGREEN 19743

T. Geen and D Guest . |
International Journal of Man-Machine Studies (1974) 6

This paper describes GLUE, a dialect of POP-2, used for controlling
Experinental Psychol ogy experinments.

CHEWTT 19763

View ng Control Structures as Patterns of Passing Messages
Carl Hew tt '

Artficial Intelligence meno 410

Massachusetts Institute of Technol ogy, 1976

Readi n% the paper, which introduces the ACTCR nodel of conputation, wl
help the reader understand more about the continuation passing style o
progranmng used in Section 2.6.2.

CHOLLOWAY 19803
The SCHEME- 79" Chi p
Jack HolToway, Quy Lew s, Gerald Sussman and Alan Bell
Artficial Intelligence Menmo 559
Massachusetts Institute of Technol ogy, 1980

This describes a hardware inplenentation of the SCHEME interpreter. Se
CSUSSMAN 19753 for an account of this |anguage.

ey) FOW
A Real Tinme Garbage Collector
that_.can Recover Tenporary Storage Quickly
Henry Lieberman and Carl Hew tt _
Artficial Intelligence meno 569
Massachusetts Institute of Technol ogy, April 1980

One of the serious disadvantage of the POPLO6 programm ng environment is
that periodically it takes time out to reorganize its nenory - a process
called garbage collection. This paper describes one nethod of overcom ng
this problem As POPLO6 is not used for real-time work we have not
attenpted to use any of the ideas in this paper. Wth the decreasing cost
of conputer memory, the problem my go away as we mght expect conputers
to have such massive amounts of memory that either garbage collection

w |l be unnecessary or else can be postponed till a non critical tine
(I'ike overnight).

CMEAD 19793
Lntroduction to VLSl Systens
Carver Mead and Lynn Conway
Addi son Wesley, 1979

It is becomng increasingly inportant for programmng system designers to
consi der whether their design could exploit special purpose hardware.

This was not an issue in the design of POPLO6 since we wi shed to use
standard, commercially available hardware; the interested reader, however,
may wish to consult this introduction to VLSl design

CMELLI SH 19833
|nplementing PROLOG in POP-11
Chris Mellish and Steven Hardy
Cognitive Studies Meno
University of Sussex

This paper (in preparation) describes the way in which PROLOG has been
i mpl emented in the POPLOG system and outlines the advantages of putting
a PROLOG conpiler into a good progranmng environment.

CPAPERT 19803
Mndstorne: ~Children, Computers and Powerful. ldeas
Seymour Papert
Harvester Press, 1980

An entertaining and enthusiastic account of the benefits of using
conputers in children's education.

"SUSSMAN 19753
SCHEME. An Interpreter for Fxtended lanbda Calculus
Gerald Jay Sussman and Quy Lewis Steele
Artficial Intelligence Menmo 349
Massachusetts Institute of Technol ogy, 1975

A very worthwhile paper describing a collection of issues about
inplenenting interpreters for the Lanbda Calculus. In particular, there
is a useful discussion of the relative merits of 'dynanic! and 'static!
bi ndi ng

-4 -

[WEINREB 19791 ,
LISP Machine Manual
Daniel Weinreb and David Moon
Massachusetts Institute of Technology

The reference manual for the MIT LISP machine. This is only for the very
dedicated as it explains very Little of the philosophy behind using single
user computers.

