
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



ncremental Evaluation:
An Approach to the

Semantic Interpretation of
Noun Phrases

C.S.Mellish,
. . _ *L f

September 1982

Cognitive Studies Research Paper

Serial no: CSRP 001

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer



 



ABSTRACT

A new approach to reference evaluation, called incremental evaluation is
presented. This approach is designed to capture tKe notion that a
phrase's referent can only in general be determined by an analysis of
the global context of the phrase1 s use. It is also designed to support
the idea that useful semantic information can be extracted from a text
before a global analysis is complete. Incremental evaluation can be an
effective strategy in a domain where reference evaluation is
characterisable as a constraint satisfaction task. It is illustrated
with examples from the natural language understanding modules of MECHO
CBundy et al, 1979aD, a program which solves mechanics problems stated
in English. Several possible representations for partially evaluated
noun phrases are proposed and their advantages compared.

KEYWORDS

Natural Language Processing, Reference Evaluation, Incremental
Evaluation, Constraint Satisfaction.



CONTENTS

Page

1. Introduction 1

2. The MECHO project 3

3. Early Semantic Processing of NPs 6

4. Constraints and Reference Evaluation 8

5. Incremental Evaluation 13

6. Using Candidate Sets and "Waltz Filtering11 15

7. Towards Intensional Representations 21

8. Detecting inconsistencies 28

9. Conclusions 33

Acknowledgements 35

References 35



<!• Introduction

The research reported here is part of a Long term investigation into the

timing issues of natural Language understanding. That is, we are

interested in what constraints the structure of Language imposes on the

order in which a processor might effectively pursue the various subtasks

and the information that a processor might have available to it at any

one time. One important question that must be asked is: to what extent

is it possible to extract the meaning of a piece of language as it is

presented sequentially? This question bears on both the understanding of

speech in real time and on the comprehension of text in a strictly

left-to-right scan. There is certainly evidence CMarslen-WiIson, 1976D

that people are capable of developing some degree of understanding of a

sentence before it has been completed. This leads us naturally to ask

how much of this is possible and what it would mean to program a

computer to do it.

Traditional AI approaches to the understanding of natural language

CWoods et al, 1972; Winograd, 19723 have had Little to say about these

questions. That is, there is no sense in which these programs, half way

through a sentence, would have a partial representation of the meaning

and would be able to make inferences from it. Part of the problem here

has lain in the way in which semantic processing has been seen as

depending on syntactic processing, which is not complete until large

chunks of input have been consumed. It is in response to this view that

Riesbeck CRiesbeck 19753 says:

Why should consideration of the meaning of a sentence have to
depend on the successful syntactic analysis of that sentence?
This is certainly not a restriction that applies to people. Why
should computer programs be more limited?

The more recent PSI-KLONE system CBobrow and Webber, 1980D suggests that

there are ways around these problems without abandoning the idea of



syntactic analysis. PSI-KLONE determines incrementally the placement of

a sentence in a syntactic/semantic taxonomy as information about the

syntactic structure arrives, piece by piece. At any point, the system

has a partial description of the semantic "shape11, on the basis of which

inferences could be made.

PSI-KLONE develops semantic representations gradually as it proceeds

through a sentence, but these representations are still at the

"linguistic11, rather than the "discourse" level. That is, PSI-KLONE can

disambiguate word senses and classify structure within phrases, but it

is not concerned with what those phrases refer to in the non-linguistic

world. We feel strongly that understanding at the discourse level must

also be investigated as part of the study of timing constraints in

natural language understanding, and indeed it is on this level that we

will concentrate. To narrow the scope down somewhat, we have restricted

our attention to referential noun phrases and the problem of deciding

what they refer to. This paper will only consider singular referential

noun phrases. An extension to these ideas which covers plural phrases

and quantification to some extent is to be found in CMellish, 1981D•

The problem then is: to what extent is it possible to understand a noun

phrase (ie determine its referent) at the time that phrase is read (or

heard)? One's immediate response to this question, given the large

amount of work that has been addressed to the problem of understanding

pronouns, is to say "in general, not at all". Indeed, if one insists on

an "all or nothing" style of interpretation, this is the case. What we

present here, however, is a new style of reference evaluation,

incremental evaluation, in which partial knowledge of a phrase's

referent is explicitly represented. Given such a style of

interpretation, it is indeed possible to have a reliable, admittedly



partial, understanding of a noun phrase when that phrase is encountered.

Moreover, that representation can do useful work in allowing other

ambiguities to be resolved. :

In order to contemplate partial representations of noun phrase

referents, it is necessary to have characterised what kinds of

information encountered during reading can affect a processor's

knowledge of a referent and in what ways. Our particular implementations

of incremental evaluation have relied on the conception of reference

evaluation as a constraint satisfaction task. This particular

characterisation was motivated by the particular domain in which we were

operating - understanding mechanics problems. Although we believe that

it is applicable in a much wider class of domains, it is in order to

make some brief comments about the mechanics domain before we present

more details.

1- Ihl WEC.HO project

The research described here, and the development of computer programs to

investigate incremental evaluation, has taken place within the framework

of the MECHO project at Edinburgh University CBundy et al 1979aD. The

purpose of this project has been to develop a computer program to solve

mechanics problems stated in English, and to use this as a vehicle for

studying the control of inference in a problem solving system. For the

purposes of this paper, it is only some aspects of the natural language

modules of MECHO that will be discussed. For a more general view of

MECHO, the interested reader is referred to the above paper.

Here is an example of a mechanics problem that can be successfully

analysed by MECHO's natural language modules. It is taken from [Bostock

and Chandler 1975]



A stone is dropped from the top of a tower. In the last second
of its motion, it falls through a distance which is 1/5 of the
height of the tower. Find the height of the tower.

This single example serves to illustrate some of the characteristics of

mechanics problems that have been exploited in our programs. The

sentences of a mechanics problem serve primarily to. describe a

particular "micro-world" - what objects and relationships there are

within it. Hence we have concentrated our efforts almost entirely on

declarative sentences. It is rare for general laws to be stated or for

infinite sets of objects to be discussed, and so one can with reasonable

safety make the assumption that noun phrases will be simply referential

(not, for instance, generic). Time can play an important role, at least

in dynamics problems, and so one must be able to handle simple time

modifiers. However, we have made the assumption that a single time

period or moment will serve to qualify all the time dependent

relationships introduced by any one clause. This assumption has been

reasonable for all the problems we have considered.

The purpose of natural language processing in HECHO is to receive a

problem such as the one above and produce a representation of the

micro-world described. This representation must be sufficiently precise

to be used by other modules for deciding where to resolve forces, which

equations to use, and so on, in order to come to a mathematical

characterisation of the relationship betweens the "unknowns11 and the

"givens" of the problem. The representation that we use is in terms of

simple Predicate Calculus assertions (with no quantifiers). The precise

repertoire of predicates that we have used is not important here, but

these are some of the assertions that would be generated for the above

problem (slightly simplified):



moment (momentD.
moment(moment2).
period(period1,moment1,moment2)•

stone (stoneD.

rod(toweri).
tangent (tower1,tangent1).
Hghtend(tower1,bott1).
body_f ixed(bott1,ground,point4,forever).
measure(tangent1,90,degrees)•

Ieftend(tower1,top1).

velocity(stone1,veil,moment!).
measure(vel1,0,ft/sec).
unsupported(stone!,moment1).

motion(stonel,topl,point5,momentl,moment2).

Given this style of representation, one can immediately see

possibilities for producing useful semantic structures continuously

during a left-right scan of the text. That is, there seems to be no

reason why the database of facts should not be built up gradually as the

program progresses through the sentence, rather than being generated

completely at the end. For instance, after the fragment:

A stone is dropped ...

has been read, there seems to be no reason why at least some of the

following could not be added to the database:

stone (stoneD.
velocity(stone1,veil,moment!).
measure(vel1,0,ft/sec),
unsupported(stonei,moment1).

Unfortunately, significant problems start to appear as soon as we look

at definite noun phrases and pronouns in this context. With the phrase

Ma stone11, we were fairly free to assume that a new object was being

introduced and to introduce a new token •stone!1 to stand for the

referent. If the fragment had been:



Tt is dropped

then we might have had more trouble identifying the referent before

formulating assertions involving it.

3.- Early Semantic Processing of NPs

The basic problem with trying to produce an interpretation of a noun

phrase as it is read is that, in general, a noun phrase does not in

itself provide enough information for this to be done. For instance, in:

A stone is dropped from a cliff 100 m above the sea.
... the speed ...

the noun phrase could refer to the speed of any of the the stone, cliff

and sea (at many possible times). Pronouns pose a possibly worse problem

than definite NPs - in:

A particle of mass 5 kg rests on a rough horizontal table.
••• ix ...

"it" could potentially refer to either the particle or the table, and it

is impossible to decide without more context. Winograd CWinograd 1972D

argued strongly for the early interpretation of definite noun phrases,

motivating this by the potential for resolution of syntactic ambiguity,

such as prepositional phrase attachment ambiguity. How was Winograd able

to do this? The answer is that SHRDLU had no characterisation of the

influence of context on definite NP interpretation and was forced to

come to an arbitrary decision at the time the phrase was read. Such an

approach is in no way guaranteed to come to a correct decision,

especially in examples like the above. The inadequacy of Winograd's

approach is shown in an excellent paper by Ritchie CRitchie 1976D. If

computer programs are to handle examples such as ours, we must progress

beyond the simplistic notion that "reference evaluation11 is something

that can be "done11 to a noun phrase and accept that:



The notion of "referent11 is something shaped by the context of a
noun phrase's use, rather than being a simple function of the
phrase itself.

Given this conclusion, what rival approaches are to be found? Certainly

a great deal of important work has been done, for instance by CCharniak,

1972; Schank et al, 1975D to determine ways in which referents may be

determined by context. Unfortunately, all of these have started from

the assumption that the form of the meaning of whole sentences is

available for use in the computations. They can therefore only provide

indirect guidance as to how it might be possible to understand a noun

phrase as it is read. In those programs that have attempted to produce

more complete understanding whilst a text is being read, such as SCHOLAR

CCarbonell, 1978D and IPP [Schank et al, 1980D, it has been necessary to

make decisions about which referents can be obtained locally and which

can only be determined later. SCHOLAR postpones consideration of all but

the simplest definite references, whereas IPP postpones all reference

decisions until the events described are matched up with an expectation.

Both of these systems require reference evaluation to be carried out on

an "all or nothing" basis.

None of these existing approaches are flexible enough to account for the

fact that one might have a partial understanding of a noun phrase at the

time it is read, and our notion of incremental evaluation is designed to

provide some of this needed flexibility. But first, we must have some

characterisation of how it is that information from the context of a

noun phrase's use can affect knowledge of the referent. We will be

perhaps less ambitious than Charniak or Schank and restrict ourselves to

a certain sort of information - information about what must be true in

order for the text to be meaningful. An appropriate characterisation of

this information is, we claim, as a network of constraints.



- 8 -

—• Constraints and Reference Evaluation

How is it that information from a text limits what noun phrases in that

text can reasonably refer to? We would like to emphasise one particular

way. The text is conveying a set of propositions about the world and is

doing so in a particular manner. If the text is to be understandable,

these propositions must make sense in the world of the reader and the

manner of communication must conform with the conventions for English

prose. Thus, if the reader can assume that the writer is being

cooperative and does not have a wildly differing model of the world,

various other propositions may be suggested to him as he reads. These

propositions, which we will refer to as constraints, must all be true in

order for the communication to make sense. As the reader progresses

through the text, more and more constraints accumulate (forming a

network ) . Some of these constraints mention properties and relations

that referents of noun phrases must satisfy. Reference evaluation comes

about, not through some special-purpose activity centred on noun

phrases, but as a "side effect11 of the global activity of trying to find

a way in which the constraints as a whole can be satisfied.

The power of seeing problems as constraint satisfaction tasks has been

demonstrated by much work in Artificial Intelligence CSussman and

Steele, 1980; Burstall, 1969; Waltz, 1972D. We have been able to

capitalise on some of these results in our research on incremental

evaluation.

What kinds of constraints might actually provide help in the search for

referents? One could isolate many categories, and here are a few:



bMHI, Gil I ^ C k/̂  VUU^b I I I 1 VI IIIU I

•given1 CHaviland and Clark, 1974D. If the writer has indicated

that some fact is 'given1 then the reader should be able to verify

it. For example, if the writer talks about "the particle of mass 3

lbs11 then the referent must be a particle and must have mass 3 lbs.

Definite noun phrases generally provide some constraints of this

kind, and this is the information that is most commonly associated

with reference evaluation.

(2) Constraints that are generated because of what is physically

possible in the world. If certain new information provided by the

text is to be believed, it must fit in with what is physically

possible. For instance, if the phrase "its ends11 is used, then the

referent of "its11 must be some object that has ends. If somebody

writes "The right end of the pole is attached to the left end11, the

referent of "the left end11 cannot be the left end of the pole,

because poles don't work that way (unless we know of a rather

strange pole in this context).

(3) Constraints that arise from pragmatic considerations. For instance,

one might use Grice's CGrice 1975D maxim of quality to reject

interpretations of new information that are trivially true. If

somebody wrote "the string is attached to its left end", then it

might be reasonable to conclude that the referent of "its" cannot be

the string, because the left end of any string is obviously attached

to the string itself.

(4) Constraints derived from syntactic or dicourse analysis. Syntactic

considerations are known to sometimes yield coreference and disjoint

referent information CLangacker, 19693. For instance, the referent

of "him" in "John hated him" cannot be John. It may be that



- 10 -

information about focus CGrosz, 1977; Sidner, 19793 could also be

formulated as constraints that referents must satisfy.

In MECHO, we have concentrated mainly on the first two of these

categories, but there is nothing in principle to prevent us using any of

the others. The important thing to note from this brief catalogue is

that information of all these kinds should be useable to help reference

evaluation, but \/ery little of it arises directly from the analysis of a

referring phrase itself. If we wish to make use of this information, a

"noun phrase centred11 approach to reference evaluation cannot be

adequate.

An example will demonstrate the kinds of constraints that MECHO might

generate during the reading of a mechanics problem. The following is

from CLoney, 1939D:

A hollow vertical cylinder, of radius 2a and height 3a, rests on
a horizontal table, and a uniform rod is placed within it with
its lower end resting on the circumference of the base.

This sentence presents several reference evaluation problems - what are

"it11, "its lower end11, Mthe circumference11 and "the base"? The

constraints generated will mention these, initially unknown, referents,

as well as referents that are known (assumed to be new objects

introduced). Here is a diagram of the constraints that might have been

generated by the time the end of the sentence is reached. For clarity,

referents are represented informally by the corresponding noun phrases

and constraints by English phrases.



circumference of"the circumference ...lf

has circumference
base of

i
has base - I "**"

Looking at part of this network, the phrase "the circumference ..."

gives rise to a referent that must be in a particular relationship

("circumference of") with the referent of "the base". This in turn must

be the kind of object that has a circumference ("has circumference") and

be related to some unspecified object ("??") which it is the base of

(there is no reason why we should restrict ourselves to dealing with

mentioned "unknown objects"). In MECHO, these constraints are actually

represented by Predicate Calculus assertions; that is, the "can be on"

constraint would actually expand into something like:

not below(End,Circ)
separable(End,Cire)
solid(End)

Where do these constraints come from? One could imagine any semantic

interpretation rule specifying constraints that must be satisfied for

the interpretation to make sense. In MECHO, constraints are generated

mainly by lexical entries. That is, the "meaning" of a word explicitly

includes indications of what constraints must be satisfied for it to be

correctly used. Here is part of our lexical extry for the verb "attach",

rephrased in pseudo-English:



(Referent X) "is attached to11 (Referent Y):

Basic meaning: fixed_contact(X,Y).
Constraints: solid(X) S soLid(Y) & separable(X,Y) & ...

The idea is that the "basic meaning11 consists of facts that will

normally be added to the database (world model), whereas the

"constraints" will be added to the constraint network. That is, the

former will be accepted as true, but the system will have at some point

to verify that the latter are true. This simple rule is changed if the

"attachment" is determined to be marked as 'given1 information, in which

case both components of the "meaning" generate constraints.

In the "constraints" for this example, the •separable1 constraint

embodies a mixture of physical and pragmatic considerations. Two objects

are considered "separable" if it is conceivable that they could be moved

relative to one another. If this were not the case, it would be

anomalous to say that the objects were in contact, because this fact

would be either obviously true or obviously false.

Here is not the place to defend the exact form of these assertions

(which have in any case been simplified for ease of presentation). The

essential point that we are making is that, given a developed

representation of some domain, one could frequently think of plausible

assertions to put in these places. It might be argued that there are

other factors that should be included (such as "preferences" CWilks,

1975D), but this does not subtract from the fact that a sizeable

proportion of one's knowledge of a domain can generally be embodied in

constraints. We will consider later how information derived from

"expectations" (as used in "script application" CSchank et al, 1975D)

can augment this constraint-centred framework.

Before we go on, it is worth making a few superficial remarks on how the



is assumed in all this that an inference system is available which is

able to propose values of unknown objects which satisfy some constraint

and also check whether particular objects do. This inference system must

take into account general laws about the domain as well as the

particular information about the world that has been gleaned so far.

Given a set of constraints on some referent, the simplest way of

guessing what the referent is is just to ask the inference system to

find some object which satisfies all these constraints simultaneously.

In the case where the only constraints are explicitly marked fgiven'

facts, this reduces to the paradigm reference evaluation strategy (to

evaluate Mthe big block11, find an object which is big and a block).

Such a simplistic mechanism ignores the fact that constraints are

accumulating continuously as the text is read. In order to take this

into account and nevertheless consider seriously the problem of

understanding during reading, we must consider rather more sophisticated

strategies.

5j. Incremental Evaluation

Given this picture of reference evaluation as a side effect of a

constraint satisfaction process, there are still important timing

strategies to decide. According to this model, as a reader progresses

through a text, he accumulates more and more constraints that the

referents must satisfy. When does he actually decide to guess what a

particular referent is? There are various possible strategies.

A first, extreme, strategy is to make a guess for a referent as soon as

the first constraint involving it appears. For instance, if "it11 was the

first word in a sentence, some neuter object would be chosen as the

referent before anything more was read. Such a strategy can be quickly



rejected (in general), because there is liable to be a large number of

objects satisfying the constraint, and the wrong one could easily be

picked. Such a regime would have to cope with huge amounts of

backtracking. The opposite extreme would involve postponing all

consideration of constraints until the end of a sentence, or perhaps

paragraph. This would be contrary to our goals of early understanding.

It would also mean that, during the analysis of a chunk of the chosen

length, one would not have the benefit of knowledge of referents to

solve syntactic (Winograd's example) or word sense ambiguity. An

intermediate position between these two extremes is to make a guess for

a referent as soon as the referring phrase has been processed, but we

have seen that this too has problems.

Our answer to this question of timing is that there is no arbitrary

point (end of noun phrase, sentence, etc) at which one can always

unambiguously resolve all references. Moreover, it should be possible to

use information about a referent for resolving other ambiguities even

before the referent is uniquely known. This answer leads us to a system

where reference evaluation proceeds gradually as the text is read. We

call this incremental evaluation. Incremental evaluation involves

having representations of partially evaluated referents, about which one

can reason and which become gradually more defined as the analysis

proceeds. There is no longer any need for arbitrary decisions to be made

(although there may still be scope for certain defaults to operate).

In the following sections, we will describe two different approaches to

incremental evaluation that we have tried and compare their advantages.

Before we do so, though, it is useful to summarise some questions that

any approach to incremental evaluation must answer:



How are partially evaluated referents represented?

How is a new constraint handled? How is it determined whether it
can be satisfied, and how does it affect the state of evaluation
of referents it mentions;?

What happens to information added to the database if it is
expressed in terms of partially evaluated references? What is it
taken to mean, and what can be inferred from it?

£• U s i n9 Candidate Sets and "Waltz Filtering"

The first approach to incremental evaluation that we have tried amounts

to this: we represent a partially evaluated referent by a candidate set,

a list of objects that satisfy all the constraints generated so far

which mention the referent. The representation of a partially evaluated

referent starts off with the set of objects that satisfy the first

constraint mentioning it. When a new constraint comes along, all those

objects in the list which do not satisfy the new restriction are

eliminated. If this means that exactly one object is left, then (in the

case of a singular reference) the referent has become fully defined. If

it means that all the objects are eliminated, then a contradiction has

been found and some drastic measure (in our program, backtracking) is

called for. Otherwise the referent still needs further specification -

hopefully further constraints will do this.

From this brief description, it can be seen that this choice of

representation is at least strong enough to support the syntax/semantics

interaction demonstrated by Winograd. That is, if a syntactic process

suggests an analysis which leads to a noun phrase with no possible

referent, this will be detected and a failure generated. Moreover, this

can take place at the time when the noun phrase is being read. The

advantage over Winogradfs system is, of course, that the system is not

forced into a decision if there happen to be several objects that

satisfy the description given just in the noun phrase.



It is quite possible for constraints relating together several partially

evaluated references to be generated for real sentences. A constraint

of this kind might be generated to embody the fact that the referent of

some non-reflexive pronoun should not be the same as the referent of

some other noun phrase, for instance. Some extra steps are needed to

ensure that maximum information is extracted from constraints of this

kind. Here, we have been able to use constraint satisfaction algorithms

[Mackworth, 1977D previously used in computer vision by Waltz CWaltz,

1972D and others. The essential idea is generally known as "Waltz

filtering11. The following extra steps have to be taken in order that

maximum use can be made of constraints that mention several partially

evaluated referents at once.

(1) Whereas a constraint that only mentions one partially evaluated

reference can be discarded as soon as its effect on the candidate

set has been determined, these other constraints must be stored

because they may need to be reapplied later.

(2) If a constraint expresses a relation between two partially evaluated

references, say, candidates for one should only be allowed if there

exist candidates for the other which stand in the relation to it.

That is, one cannot treat the constraint as two unary constraints

and consider each reference independently.

(3) Because of (2), whenever a change is made in the candidate set of

one partially evaluated reference, there may be ramifications for

other references that share constraints with it. Thus all these

other references should be reconsidered (in the light of the stored

constraints of (1)). That is, changes may propagate around the

network.



uicac lucao a u NUI * H U M an

constraints being used by MECHO in the understanding of a mechanics

problem. The problem is from CLoney, 1939D. In this case, the

techniques of constraint propagation allow an awkward reference problem

to be solved in a pleasing way.

A uniform rod ••• is supported ... by a string ... attached to
its ends.

The description of this example will have to be confined to a brief

treatment of the reference evaluation aspects. The main problem here is

in the referent of "its", which could initially be either the rod or the

string. However, we would like to allow only the former, since it would

be anomalous to speak of an object being attached to one of its ends. In

order to explain how this example is treated by the program, we must

first indicate how the semantic interpretation of a complex noun phrase

like "its ends" takes place. We take a fairly conventional view here -

that there is a rule in the grammar which says something like:

HP —> NPC+possD N

Corresponding to this syntactic rule is a semantic rule which states

that the referent of the complex HP is the result of applying some

semantic operation to the referent of the embedded NP. The exact

operation is specified by the lexical entry for the noun. Thus, in the

interpretation of a phrase like "its ends" there are actually two

referents to be obtained - the referent of "its" and the referent of

"its ends".

When the word "its" is encountered, the program sets up a new referent

token, 'flTS1, to represent the object described. There is an initial

constraint on what this object can be - it must be a singular object

that has been mentioned. The referent is given an initial candidate list

containing all such objects, here just the rod Crod! 1) and the string



- 18 -

(•stringi1). The next manoeuvre is to obtain the referent of Mits ends11

by applying the meaning of "ends11 to 'flTS1. This provides various

constraints on what 'flTS1 could be, which both candidates pass. That

is, both are objects able to have ends. Once this has been done, two new

partially evaluated references are set up to represent the two ends of

the unknown object "flTS1. What candidates are acceptable for these at

any time will depend on what candidates are acceptable for f£ITS'. This

is expressed naturally by two new constraints:

leftend(£ITS/£LEFTEND)
rightend(£ITS,£RIGHTEND)

In MECHO, we represent ends in terms of a convention which labels them

"left11 and "right11. Here I£LEFTENDI stands for "its left end" and

•£RIGHTENDf for "its right end". Each of these has two possible

candidates (it is assumed that tokens for the ends of the rod and the

string have already been set up).

The program now comes to deal with the attachment predicated between the

string and the ends, which involves two attachments, one for each end.

The lexical information for "attach" is consulted, firstly with

•stringi1 and I£RIGHTENDI as the objects related. This corresponds to

the relationship that would be derived from "the string is attached to

its right end" and will result in assertions in terms of the predicate

•fixed_contactf being added to the system's database. However, there are

various constraints that must be satisfied between two objects said to

be attached; in particular, they must be "separable" (see Section 4 ) .

Hence a new constraint is generated:



scpardo Lev si nngi/tRIGHTEND)

In order to satisfy this constraint, the system attempts to prove this

proposition with the right ends of the string and the rod substituted

for 'fRIGHTEND1. This succeeds for the right end of the rod, but not

for that of the string, because an object is not considered separable

from part of itself. Hence the right end of the string can be rejected

as a candidate of 'fRIGHTEND1. Now that a change has been made in the

candidate set, possible repercussions must be followed up. In

particular, 'flTS' must be reconsidered because it shares a constraint

with f£RI6HTENDf. Filtering 'flTS' using this shared Mrightendtf

constraint now causes 'stringi1 to be rejected as a candidate, because

'stringi' only satisfies the "rightend" constraint if its right end is a

candidate of 'fRIGHTEND1; the rod now remains as the only valid

candidate.

The constraints relevant to this problem are conveniently displayed in

an diagram, as before:

left end

Mits right end11

fRIGHTEND
separable

stringi

In this example, the constraints imposed on the right end have

propagated to affect a completely different referent, the referent of

"its". This could not be done in conventional reference evaluation

systems. Because the options for "its" are held open and later

constraints only indirectly concerning the referent are allowed to

propagate back, this awkward reference problem can be solved.

However, the story is not yet over. The change in the candidate set of



I VI UVJlfl 4»h»t»f I bi iv

be considered (both share constraints with it). Consideration of

•fRIGHTEND1 yields no more changes, but I£LEFTENDI can now Lose the Left

end of the string as a candidate. This change in I£LEFTENDI causes

•£ITS' to be reconsidered, but no more changes are forthcoming.

With the addition of the relevant "new1 information to the database, the

attachment between fstring1f and •fRIGHTEND1 has now been dealt with.

When the attachment between 'string!1 and •fLEFTEND1 is considered, the

constraint

separable<string1,£LEFTEND)

is trivially satisfied, because the only remaining candidate of

•fLEFTEND1 is the Left end of the rod.

This description should give some idea of what adding a new constraint

looks like in this system of incremental evaluation. The other important

question to be addressed is: how is fnew' information about partially

evaluated references to be interpreted? For instance, in the fragment:

It is smooth ...

the understander may be in a position of wanting to record that "it" is

smooth before coming to a decision about what "it" is. That is, it may

want to add to its knowledge of the world a fact like:

coeff_friction(£IT,zero)

How can this fact be used by the inference system before the candidate

set for "flT1 has been reduced to one object? The answer that we have

come up with is to have an optimistic inference system, which from this

fact is capable of inferring that any object is smooth as long as it is

a candidate for •fIT1. Hence what will be inferrable from this assertion

will change (and decrease) as we gain more and more information about



infer things that are not actually true - it will be able to infer that

all sorts of spurious objects are smooth from the above fact. This,

however, does not matter if our only use of the inference system is to

see if particular candidates satisfy particular constraints - in this

case, any error will simply result in candidates failing to be rejected

when they should be - a fairly harmless effect. There is no possibility

of candidates being erroneously rejected, because this would have to be

the result of the system failing to infer something that was true. Hence

there is little penalty in allowing the inference system to be

"optimistic11 in this way. Note, however, that when constraints involve

negation (and are established using "negation by failure11 CClark,

1978D), the optimistic mode has to be switched off, to prevent effects

of just this kind.

Z." Towards Intensions I Representations

There is a serious problem with the incremental evaluation scheme

introduced in the last section. This is that a complete candidate set

for a referent must be calculated as soon as the first constraint on

that referent is generated. An immediate cause of concern is: how large

will these candidate sets be, and will they become unmanageable? If one

is making a list of, for instance, all neuter objects that have been

mentioned in the past discourse, there may be a large number of objects

to consider. An adequate characterisation of focus CGrosz, 1977; Sidner,

1979D might cut this particular problem down to size, but there seem to

be other places where no such solution is available. Consider the

problem of reference to times. To understand sentences describing time-

dependent phenomena (such as appear in dynamics problems), it is

essential to identify at what times the various events are taking place.

Reference to these times may be explicit (with the use of modifiers like



M10 minutes Later11 or "in 198211) or may have to be inferred from some

default rules (for instance, events are usually described in the order

in which they occur). If we are to treat the "current time" as an

unknown object, to be linked to other objects by constraints in the

network, we must face the possibility that there could be an Infinite

number of possible "identities" that this object could have. This

problem of reference when there are time dependencies has already been

pointed out by Ritchie [Ritchie, 19763. It highlights a major problem

with the extensional representation of partially evaluated references

developed in the last section. To handle these new situations, we must

consider whether it is possible to develop useful intensional

representations instead.

An alternative representation of a partially evaluated reference would

be just the set of constraints that involve that referent. However, it

would only be worth proposing this representation if it had some

usefulness (such as the candidate sets had for rejecting false syntactic

hypotheses). Moreover, such a representation would only be interesting

from the point of view of incremental understanding if it could change

gradually during the reading of the text until it was equivalent to the

representation of a "fully disambiguated" referent.

A representation in terms of raw constraints can have some practical

usefulness if we shift our attention from the idea that constraints

outline the space of possible solutions and concentrate on the idea that

they delimit what is not a solution. Thus we can see the set of

constraints on a partially evaluated reference as representing, not a

set of possible referents, but a collection of "demons" whose purpose is

to reject inappropriate suggestions as to the identity of the referent.

These suggestions might come from more speculative parts of the



understanding system which are trying to find interesting patterns and

redundancies in the input (such as script appLiers CSchank et at,

19753). However, the question must still be answered: when should the

system decide that enough constraints have built up for an actual

"guess" for the referent to be made?

In fact, we have been able to subsume an implementation of constraints

as "demons" and a way of dynamically deciding when to make a guess for a

referent under a single mechanism. The essential idea here is that the

system is built on top of a lazy inference system. Constraints are

actually given to the inference system (possible solutions are asked

for) as soon as they are generated, but the inference system may decide

to postpone consideration of them until later. This decision is made on

the basis of a meta-level analysis of the form of the constraints. If

the form suggests that there can be at most one possible solution, then

that solution will be sought and any partially evaluated references

mentioned in the constraint will be identified as a result. Otherwise

the constraint will be stored away and any partially evaluated

references mentioned in it will be left as "variables" whose values are

yet to be found. If at some point a script applier (or some similar

program) proposes a value for some referent, or a value is found by the

successful running of some constraint, then the form of those postponed

constraints mentioning this referent will change (the "variable" will

change to be the suggested value). As a result of this, the inferencer

may now decide to seek the solution to various other constraints.

An example should illustrate how these ideas work in practice. Consider

the constraints that would be generated at the start of the second

sentence in the following passage:



- 24 -

A particle is thrown vertically upward. The particle's velocity
is half of .....

The first sentence introduces one new, concrete referent, lparticle1l

say. The second sentence deals with two referents, the referents to "the

particle11 and "the particle's velocity11. Let us represent these with two

tokens, I£PARTICLEI and 'fVELOCITY1. These tokens can be looked apon as

variables, since these should eventually be identified with existing

known objects. The first constraint to be generated says that

•fPARTICLE1 must be a particle:

particle(fPARTICLE)

Should the inferencer try to satisfy this constraint now, or should it

leave it for later? In fact, the inference system can work out that it

has only been told about one particle so far, and that none of its

inference rules would enable it to infer the existence of particles.

Therefore the inference goal has at most one solution. The inference

system can therefore conclude:

fPARTICLE = particlei

Extra constraints now accumulate to insist that •fPARTICLE1 be the kind

of object that can have a velocity, for instance:

solid(particlei)

(We can write 'particle4!1 here, because of the established identity

above). This constraint is fully instantiated, and so there is no

possibility of multiple solutions. The inference system can and does

therefore establish that it is true. The referent 'fVELOCITY' is now

introduced, together with constraints:



- 25 -

velocity(£VELOCITY)
velocity(particle1,£VEL0CITY,£TIME)

time(£TIME)

Notice that we have to introduce a new object 'fTIME1, because objects

can have different velocities at different times. This is introduced as

a variable, because it is an object whose identity must be established

(one could regard it as the representation of the referent of an

ommitted phrase "then"). We will make the assumption that the same time

will apply to all the time-dependent relationships conveyed by this

sentence, and that hence this variable represents "the current time11, to

be inserted in all relevant assertions generated. Now, unfortunately,

there are inference rules that enable the system to create new times,

and so there are many possibilities for what '£TIME' could be. Likewise,

the set of possible velocities is open ended. So none of the above

constraints have guaranteed uniqueness properties, and both must be held

for later application.

There are several possibilities for what could happen when the rest of

the sentence is read. An explicit time modifier (eg. "ten seconds

later11) might directly provide a value for •£TIMEI. Alternatively, the

events in the two sentences might be seen as parts of some larger

structure (eg. a standard motion of a falling object), in which case the

expectations connected with the larger structure might propose a value

for I£TIMEI. Or there may be no more indications, in which case a

default strategy might choose the same time as the "current time" of the

last sentence. Whichever happens, at some point an identification of the

form:



will probably be made. In the Light of this identity, the second of the

above constraints has now changed in form, and is:

velocity(particlel,£VEL0CITY,time27)

Its original import was to ask "find me a velocity and a time at which

it is the velocity of particle!11. Its import now is "find me the

valocity of particle! at time27M. This now has uniqueness properties,

since any object only has one velocity at any given time. The system

can therefore infer what the referent is at this point without

introducing any search.

We have hinted at some of the criteria by which uniqueness of a

constraint is suggested by its form. In fact, uniqueness is just one of

a set of meta-level properties that MECHO is able to reason about to

direct its inferences CBundy et al, 1979b]. Apart from a few general

rules, the main source of information about uniqueness for our natural

language modules takes the form of a meta-level database where

information about particular predicates is recorded. This was

implemented by Lawrence Byrd.

In this second scheme, what interpretation can plausibly be made of

information stored in the database when it references partially

evaluated references? In our program, a "variable11 like 'fPARTICLE1 is

treated for the most part in the same way as any other token

representing an object in the world. That is, a fact about I£PARTICLEI

is seen in the same way as a fact about 'particle!1 - 'fPARTICLE1 just

names a new distinct object. However, the program has an "optimistic"

mode of inference just as in the first scheme. In this mode, •fPARTICLE1

can be assumed identical to any other object if this enables some proof

to go through. If such an assumption is made, the "variable" will become



instantiated to the given value, and this may, of course cause various

postponed inference goals (embodying constraints on possible values) to

be tackled. If these inferences succeed, then the identification will be

provisionally accepted (although a failure later may cause this to be

reconsidered on backtracking); otherwise it will be rejected.

The "optimistic mode11 of inference could well have been used to

implement a standard "script applier11 in MECHO, using the expectations

embodied in scripts to suggest possible referents. In fact, we have

conceived of expectations in a rather different way, and have attempted

to recognise places where a partial description given in one sentence is

then augmented with information given by another. For instance, in the

sequence:

A train leaves Edinburgh at 11 am.
It arrives in London at 6 pm.

both sentences can be seen as describing the same thing - the motion of

the train from Edinburgh to London. If we can realise this fact, then as

a consequence we can infer the referent of "it" in the second sentence.

In MECHO, the two sentences would give rise to assertions of roughly the

following form:

motion(train1,edinburgh,£DEST,11am,£TIME1)
motion(£IT,£START,london,£TIME2,6pm)

where the predicate 'motion1 relates an object, its starting and

finishing places and the starting and finishing times of the motion.

(We have used symbols like £START and £TIME2 here to represent "unknown

objects" even when they are not referents of actually appearing noun

phrases). Given some minimality assumptions about the model we are

creating [McCarthy, 1980D, we would like to assume that these two

descriptions are of the same motion, ie that:



- 28 -

£IT s traini
fSTART = edinburgh
£DEST = London
£TIME2 = 11am
£TIME1 = 6pm

In MECHO, we can do this by trying to "infer" the second assertion,

given the first one already in the database. The optimistic inferencer

will allow this, provided that any constraints woken up as a consequence

of the identifications can be successfully dealt with.

8. Detecting inconsistencies

In the incremental evaluation scheme of the last section, there are some

serious problems that arise from the fact that constraints are only

considered individually for uniqueness properties. It is quite possible

for a set of constraints on a single referent to allow only one

solution, whereas the individual constraints allow many. For instance,

if '£X' has to be a segment of some piece of string, then

leftend(£X,point34)
rightend(£X,point56)

only allow at most one possible value for f£Xf, whereas individually

they allow the possibility of several. The system would postpone finding

a solution for f£Xf whereas it should not.

A partial solution to this problem is to consider "in parallel" multiple

representations of the same facts. For instance, if we use a predicate

•ends1 which relates an object to its two ends in addition to the above,

we have:



which is a single constraint with clear uniqueness properties. This

method has been used to some limited extent in MECHO. It is similar to

what Sussman and Steele call "shifting perspective11.

A second severe problem is that one can no longer guarantee that

examples like Winograd's will work in this scheme. This is because it is

quite possible for the set of postponed constraints to be contradictory,

and yet for this not to be noticed until a good while later. We have

introduced a new way of handling a certain subclass of constraints which

overcomes this problem. Unfortunately, the generalisation to all

constraints is problematic.

The class of constraints that we can handle with this mechanism is type

constraints. Assuming that the organisation of types within a domain is

static and can be structured in a particular way (to be discussed), it

is possible to associate with each type a fixed logical term. Given an

"unknown object11, such as a pronoun referent, the current knowledge of

how that object fits into the various type hierarchies can also be

represented by a logical term. When a constraint on the type of the

object appears, this can be reflected in the objectfs special term by

replacing the current value with the most general unifier of the current

value with the term associated with the type constraint (in fact, a

simplified version of unification will suffice). If the two terms are

not unifiable, then the new constraint is contradictory to the

information already known about the object. Hence inconsistencies (of

this limited form) in postponed constraints can be detected without the

necessity to actually decide on referents.

To illustrate the structure that is expected of the type hierarchies and

the kinds of logical terms that are used to represent types, here are



some of the rules defining types in MECHO (simplified):

(1) entity(X) <—> oneof «Czero_d(X),one_d(X),two d(X)/shapeless(X)>
(2) entity(X) <—> oneof.{neuter(X),non_neuter(xT>
(3) entity(X) <—> oneof <whole(X),part(X)>
(4) entity(X) <—> oneof {spacial(X),abstract (X)>

(5) non_neuter(X) <—> oneof {male(X),female(X)>
(6) spacial(X) <—•> oneof {solid(X),non_solid(X)>

(7) body(X) <—> whole(X) & solid(X)
(8) particle(X) <—> zero_d(X) & body(X)

(9) man(X) <—> male(X) & particle(X)

Two kinds of rules are supported by the scheme. Rules (1) to (6) specify

how particular types decompose. These are all decompositions into

disjoint subtypes Ooneof1 is a variadic varient of "exclusive or11). A

type may decompose in several independent ways (eg. rules (1) to (4) for

•entity1). The second kind of rule defines new types in terms of those

already mentioned (rules (7) to (9) are of this form). Here are the

logical terms representing some of these types, assuming that the above

is a complete description. An isolated M_" symbol represents a variable

with a different name from any other.

en t i t y - en t i t y (_•_/_/_)
zeroed - entity (zero_d •_/_•_)
one_d - ent i t y (one_d ,_,_,_)
neuter - entity(_,neuter,_7_)
non_neuter - entity(_,non_neuter (_) ,_,_)
whole - entity(_,_,whole,_)
spacial - entity(_,_,_,spacial(_))
male - entity(_,non_neuter(male),_,_)
solid - entity(_/_/_^spacial(solid))
body - entityC^^whole^spaciaKsolid))
particle - entity(zero^d/_,whole/spacial(solid))
man - entity(zero_d/non_neuter(male)/whole/

spacial(solid))

The essential idea here is that variables represent non-commitment about

certain subclassifications, whereas non-variable values represent

commitment to particular values. However, non-variable values may

themselves have structure, corresponding to subtrees in the type

hierarchies. A subtype may be subclassified in several ways, and the



- 31 -

independent subcLassifications give rise to values appearing in separate

components of a term. A type rule of the second type gives rise to a

term which is formed by unifying the terms corresponding to the

defin***. For example, the term for •body1 is the unifier of the terms

for 'whole' and 'solid'. On the other hand, there is no term

corresponding to the intersection of 'neuter1 and 'man', because the

corresponding terms do not match.

In representing types as terms of logic, we are extending some of the

ideas used by Dahl [Dahl, 19813 in her database question answering

programs. Our mechanism represents an extension, inasmuch as alternative

subclassifications can be handled and the terms are generated

automatically from the rules.

Given this underlying framework, this is what might happen to an unknown

object (such as a definite noun phrase referent) encountered in a text.

The object, '£REF1', say, is initially assigned a type term

corresponding to the special type 'entity1, ie., given the above

classification, a version of:

entity <_,_,_,J

Whenever a new constraint appears which has a bearing on the objects's

type, this term will become further instantiated to reflect this. For

instance, if the object was the referent of the phrase "it" then the

constraint

neuter(£REF1)

would appear. As a result of this, the term would become further

instantiated to:



(the result of unifying the previous term with the special term for

•neuter1) This term represents our partial knowledge of how the object

fits into our type classifications. It would be sufficient to reject an

additional constraint such as:

man(£REF1)

because the term for •man1 does not unify with what has been built so

far. Because of the constraints associated with relationships that

•£REF1' is predicated as taking part in, the type term is likely to

become further instantiated as the text is read. For instance, if the

phrase appears in the fragment:

It has a mass of 5 lbs and ...

then 'fREFV must be a body (since only bodies have masses). As a result

of the constraint:

body(£REF1)

being generated, the type term for f£REF1' will become further

instantiated to:

entity(_,neuter,whole,spacial(solid))

This would be sufficient to reject extra constraints specifying that

•£REF1' be the end of a rod (a •part1 rather than a • whole1) or a time

period (an "abstract1 rather than a 'spacial'), for instance. It is

still not completely explicit about all aspects of the object (eg

whether it is one-dimensional), but the representation suffices for

contradictory constraints to be detected without the necessity of

actually deciding what the referent is.

This mechanism gives us a simple way of detecting inconsistent

combinations of unary constraints. The main overhead is the "type term11



in association wixn eacn ODjecx xoKen. IT we wisnca LU e*ucnu tms

to n-ary constraints, it would be necessary to keep a term for each

possible n-tuple of objects! This would be quite unwieldy in practice.

In addition, the above rule formats would be inadequate to define many

n-ary predicates. As a result, we must conclude that our initial

candidate set approach still stands as the most powerful method, as

regards the detection of inconsistencies.

9. Conclusions

What conclusions can we draw from this work about the possibilities for

understanding text as it is read? Initially it seemed that any general

approach to deriving noun phrase referents early was doomed to failure,

given the fact that information from all over the text should be taken

into account in making decisions. We hope that this paper has shown

that

In domains such as the mechanics domain, representations of
partially-known referents can be computed early and refined
incrementally as the text is read. These partial representations
can do useful work, for instance by

(1) Policing syntactic decisions which have ramifications for
referents (eg Winograd's example).

(2) Policing suggestions from ''script applier11 type programs
which are trying to recognise higher level structures in the
text.

We have presented various approaches to this incremental evaluation and

compared their advantages. All of the approaches rely on a particular

characterisation of how information from the text ?»ff*ets knowledge of

referents. We hope that we have demonstrated that, in a class of

domains, it is appropriate to see this information as taking the form of

constraints. Moreover, reference evaluation should not be seen as a



- 34 -

special-purpose activity associated with interpreting noun phrases, bi

as a side effect of a global process of establishing the reasonablenes

of the message of the text.



ACKnowieogements

We would like to thank Alan Bundy and the other members of the MECHO
group for many ideas and fruitful discussions. This research made
extensive use of the DEC System-10 Prolog system CPereira et al, 1979D,
and the MECHO project was funded by grant GR/A 57954 from the British
Science Research Council.

References

Bobrow, R.J. and Webber, B.L. (1980), Parsing and Semantic
Interpretation jm the BBN Natural Language Understanding ul System,
Proceedings of the CSCSI/SCEIO Conference, May 1980.

Bostock and Chandler (1975) Applied Mathematics (Vol 2 ) , S. Thornes,
1975.

Bundy, A., Byrd, L., Luger, 6., Mellish, C , Milne, R. and Palmer, M.
(1979a) MECHO: jA Program t£ Solve Mechanics Problems Working Paper
50, Department of Artificial Intelligence, University of Edinburgh.

Bundy, A., Byrd, L., Luger, 6., Mellish, C. and Palmer, M. (1979b)
Solving Mechanics Problems using Meta-tevel Inference, Proceedings
of IJCAI-6, 1979.

Burstall, R.M. (1969) A Program for Solving Word Sum Puzzles Computer
Journal 12:48-51, f96TT^

Carbonell, J. 6. (1978) POLITICS: Automated Ideological Reasoning
Cognitive Science 2, 27-51 (1978).

Charniak, E. (1972) Towards a Model of Children's Story Comprehension
PhD Thesis, MIT Ai Laboratory, 19/27 ~

Clark, K.L. (1978) Negation as Failure in Gallaire, H. and Minker, J.
(eds) Logic and Databases, Plenum Press, New York.

Dahl, V. (1981) Translating Spanish into Logic through Logic AJCL 7(3),
149-164 (198T5

Grice, H.P., (1975) Logic and Conversation In Cole, P. and Morgan, J.
(eds) Syntax and Semantics, Academic Press, 1975.

Grosz, B.J. (1977) The Representation and Use of Focus in Dialogue
Understanding TecHrvical Note 151, SRI International, 1^777 —

Haviland, S. and Clark, H. (1974) What's New? Acquiring New Information
SI 1 Process Jhj Comprehension JVLVB~13:512-521, 1974.

Langacker, R. (1969) On Pronominalisation and the Chain of Command
Prentice Hall, 1969. —

Loney, S.L. (1939) The Elements erf Statics and Dynamics Cambridge
University Press, 1969T



- 36 -

Mackworth, A. (1977) Consistency in Networks of Relations Artificial
Intelligence 8:99-118, 1977.

Marslen-Wilson, W. (1976) Linguistic Descriptions and Psychological
Assumptions in the Study c£ Sentence Perception, in Wales, R.J. and
Walker, E. (eds) New Approaches to Language Mechanisms North
Holland, 1976. ~

McCarthy, J. (1980) Circumscription - £ form o£ Non-Honotonic Reasoning
Artificial Intelligence, 1980.

Mellish, C.S. (1981) Coping with Uncertainty: Noun Phrase Interpretation
and Early Semantic Analysis PhD thesis, Department of Artificialano tarty semantic Analysis PhD thesis, D<
Intelligence, University of Edinburgh, 1981.

Pereira, L., Pereira, F. and Warren, D., (1979) User's Guide to DEC
System-10 Prolog, Occasional Paper 15, Department of ArtfficTaT
Intelligence, University of Edinburgh.

Riesbeck, C.K. (1975) Computational Understanding in Schank, R. and
Nash-Webber, B. (eds), Theoretical Issues Jjn Natural Language
Processing, Association of Computational Linguistics, 1975.

Ritchie, G.D. (1976) Problems in Local Semantic Processing in Brady, M.
(ed), Proceedings of the AISB Conference, Edinburgh, 1976.

Schank, R.C. and the Yale AI Project (1975) SAM - £ Story Understander
Research Report 43, Yale University Department of Computer Science,
1975.

Schank, R.C, Lebowitz, M. and Birnbaum, L. (1980) An Integrated
Understander AJCL Vol 6, No 1, 1980.

Sidner, C.L. (1979) Towards a Computational theory ctf Definite Anaphora
Comprehension in English Discourse, PhD Thesis, Dept of Electrical
Engineering and Computer Science, MIT, 1979.

Sussman. G.J. and Steele, G.L. Jr (1980) CONSTRAINTS - £ Language for
Expressing Almost-Hierarchical Descriptions Artificial Intelligence
14, 1-39 (1980).

Waltz, D. (1972) Generating Semantic Descriptions from Drawings £f
Scenes with Shadows Technical Report, MIT, 1972.

Wilks, Y.A. (1975) A Preferential, Pattern-Seeking, Semantics for
Natural Language Inference, Artificial Intelligence 6:53-74, 1975.

Winograd, T. (1972) Understanding Natural Language Academic Press, 1972.

Woods, W.A. et al (1972) The Lunar Sciences Natural Language Information
System: final Report, Report No. 2378, BBN, 1972.


