
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



-1-

tive Science Research Papers: No 13.
htly shorter version appeared in Proceedings Cognitive Science
rence 1981)

COMPUTER SCIENCE DBPT.
, TECHNICAL REPOHT FILE

Skills, Learning and Parallelism

Aaron Sloman,
Cognitive Studies Programme,

University of Sussex,
Brighton, BN1 9 QN,

England.

rhe distinction between compiled and interpreted programs plays an
tant role in computer science and may be essential for
standing intelligent systems. For instance programs in a high-level
age tend to have a much clearer structure than the machine code
.ed equivalent, and are therefore more easily synthesised, debugged
jodified. Interpreted languages make it unnecessary to have both
entations. Further, if the interpreter is itself an interpreted
m it can be modified during the course of execution, for instance
ance the semantics of the language it is interpreting, and
ent interpreters may be used with the same program, for different
es: e.g. an interpreter running the program in 'careful mode1

make use of comments ignored by an interpreter running the program
ximum speed (Sussman 1975). (The possibility of changing
reters vitiates many of the arguments in Fodor (1975) which assume
II programs are compiled into a low level machine code, whose
reter never changes).

eople who learn about 4*ti*5plffilled/interpreted CAflligMnff&lgf? UNIVERSITY
ntly re-invent the idea that fthe development of S|k|tifcijfl>WWfVivA«IA 152
may be a process in which programs are first synthesised in an
reted language, then later translated into a compiled form. The
is thought to explain many features of skilled performance, for

ce, the speed, the difficulty of monitoring individual steps, the
ulty of interrupting, starting or resuming execution at arbitrary
d locations, the difficulty of modifying a skill, the fact that
mance is often unconscious after the skill has been developed, and

On this model, the old jokes about centipedes being unable to
or birds to fly, if they think about how they do it, might be
d to the impossibility of using the original interpreter after a
m has been compiled into a lower level language.



'411

ill- itl?.f.l j\-i]*Jk



-2-

step. But they do, and sometimes spontaneously correct themselves.
Adults performing some tasks requiring two sequences of actions to be
synchronised, for instance playing a musical instrument with two hands,
may experience similar problems.

The ability to run a program in parallel with others, using a third
process to achieve synchronisation could be a powerful source of new
skills. For instance, it would not be necessary to write a new program
interleaving the steps of two old ones, as is required in conventional
programming languages. Provided both programs are initially represented
in a form which permits synchronisation with messages from other
processes, it becomes possible to synthesise a new skill simply by
running the two old programs in step. It may be necessary to develop new
perceptual skills to check that all is going well, but that would be
required in any case for developing and monitoring a single serial
program integrating the two skills.

Similarly, instead of re-writing a program to cope with different
stopping conditions, the same program could be executed and interrupted
by different external monitors: for instance counting all the buttons,
counting out buttons till there's one for each button-hole, couting out
five buttons. Further, instead of building in error checks, which would
have to be different for different uses of a skill (running out of
buttons is only an error if you are trying to count out N buttons, and
there aren't enough), different monitors for different error conditions
could be used for different tasks, while essentially the same basic
programs are employed.

If programs are to be run in parallel this can be done either by
time-sharing a single processor, or by using a network of processors
which can work in parallel. In principle the two are equivalent, though
time sharing one processor raises many difficulties if each of the
separate processes has its own requirements concerning speed of
execution, synchronisation etc. Further, there is plenty of evidence
that human and animal brains consist of many units which can do things
in parallel. It is therefore most likely that if processes do run in
parallel as suggested above, then they probably run on different
processors, and are not simply time-shared.

This immediately suggests the possibility that different processors
may have different computational resources. For instance they may vary
in speed, or memory capacity. More importantly, they may vary in the
extent to which they have the capability to run programs or the extent
to which they have access to mechanisms required for synthesising
procedures, monitoring them, debugging them, interrupting and restarting
them, relating execution steps to goals and percepts, and so on.

Thus there might be some processors with all the facilities
reauired for deveLooina and testina nroarams. and nthpr



 



-3-

The more intelligent processor might develop the general structure
of a skill or ability, perhaps leaving some of the fine tuning,
adjustment of parameters and thresholds, etc., to be done at lower
levels while the program is run by a different machine. The latter
process would be what happens when an already learnt skill is improved
with practice. (I don't pretend to be saying anything about how the
fine-tuning, etc. is achieved.)

A theory along these lines could explain how many skills (e.g.
musical performance) might be learnt by first learning various subskills
which are subsequently put together. The synchronisation of two old
skills might involve the development of a new third skill, which will
run in parallel with them. (Try opening and shutting your mouth and your
fist repeatedly in time. Then try doing it out of phase.) More complex
skills might involve an extended hierarchy of sub-processes some of
which control others. Some sort of synchronisation between largely
independent processes is in any case required for co-ordinating visual
perception with movement of limbs.

There are different ways in which synchronisation might be
achieved. The difficulty of playing a piano piece where the left and
right hand use different beats, suggests that sometimes the co-
ordination of two or more low-level machines requires synchronisation
signals linked to suitable points in the programs. Synchronisation could
make use of global timing signals, shared between all processes.
Alternatively, different groups of processes might use their own
synchronisation signals. (The former would limit the number of different
tasks requiring different rhythmic patterns which could be performed in
parallel.) Further, some kinds of synchronisation might use a sort of
variable representation of speed (like a throttle), as is suggested by
the co-ordination of complex dance movements or the hand and foot
movements needed to drive a car.

It is possible that other things besides timing can be co-
ordinated. For instance in playing music with two hands, phrasing,
stress and volume can be co-ordinated, and the same piece may be played
with different superimposed 'expression1, suggesting that there is a
supervisory program which controls the way the sub-programs are
executed. So besides timing, it seems that at least amplitudes and
smoothness of execution can be externally controlled.

If complex actions involve many different processes running in
parallel, then interrupting and re-organising the processes may be a
very complex matter. Such disturbances seem to play a role in some
emotional states, for instance when you lose your balance, or are
startled by a face seen suddenly at a window (Sloman 1981).

There are at least two different ways in which a program might be



 



-4-

should be immediately available to the lower levels.

There are many problems and gaps in this theory sketch, including
unknown trade-offs. Is there only one program-synthesising machine, or
are there several, allowing more than one new skill to be learnt at a
time? (E.g. learning a new poem at the same time as Learning a new
scale on the piano? Learning the words of a song at the same time as
learning the tune?) Is there a very large number of processors available
for executing programs in parallel, or only a small number (e.g. seven
plus or minus two?) The former would allow arbitrarily complex
hierarchically organised skills to be developed, subject possibly only
to the constraint that a single global synchronising 'beat1 is to be
shared between them all. How deep can the parallel process hierarchies
get? To what extent is horizontal communication across the hierarchies
possible? What happens if the central processor and a low-level
processor both attempt to run the same program? (Breathing seems to be
an example where this might occur, since it is controlled intelligently
in speaking, singing, etc. in addition to being an 'automatic' process.)
Perhaps the running is always done by a lower-level processor, but
sometimes under the control of the more intelligent program synthesiser?
How are the primitive instructions routed from processors to still lower
level processors, e.g. to muscles? If programs are physically copied
into the lower level processors, then can processors be re-used during
the process of development and de-bugging a skill? Is there some sort of
garbage collection of processors? Similar questions arise about the
space required for the alternative system where different processors
access the same program stored in the same location. Can storage space
for instructions be re-used? How are new processors and new storage
space allocated? Do the different processors share limited resources of
some kind, e.g. memory or 'fuel1, or are they truly independent? Does
this hierarchical parallel organisation of "motor" skills also play a
role in other abilities, e.g. perception, language understanding,
problem-solving?

It is consistent with the model sketched here that many of the
lower levels in the human brain use computational resources of types
which first evolved in much less intelligent organisms? How did the
newer, more sophisticated mechanisms evolve?

What are the implications of all this for our understanding of
consciousness? Perhaps if there is a hierarchy of machines, what we are
conscious of is restricted to information stores accessible by the
highest level system(s). Information and processes occurring in the
lower level machines will not be the only things which are not
accessible to conscious processing. Information which is in principle
accessible will not always be accessed when needed, for a whole variety
of reasons, including inadequate indexing, deliberate suppresion, etc.
It may also be the case that what is accessible and accessed for the



 



-5-

References

\. Fodor, The Language of Thought, Harvester Press, 1975.

SLoman, JQi£ Computer Revolution Jjn Phi losophy: Phi losophy Science and
Jels of Mind, Harvester Press and Humanities Press, 1978.

Sloman and M. Croucher, 'Why robots will have emotions1, IJCAI 1981.

Sloman and M. Croucher, 'You don't need a soft skin to have a warm
art: towards a computational analysis of motives and emotions',
jnitive Studies Research Papers No CSRP 004, Sussex University, 1981.

J. Sussman, Â  Computational Model oi^ Ski II Acquisition, American
>evier, 1981.



Carnegie Mellon University Libraries

3 61462 D13E3 130=1


