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Abstract
It is often convenient to be able to save and subsequently restore the
state of a computation. It is also, in general, rather expensive. We
present a technique whereby states may be saved and restored extremely
fast, and yet the .information stored in a given state may be accessed
and updated reasonably quickly. This technique depends on an indexing
scheme which can be used to see whether the last value assigned to a
variable is still valid, or whether it must be retrieved from some
previous context (and if so, which one).

1 The Problem

AI programmers, expert system builders, etc. frequently need to write
programs that explore large search spaces. Such programs have to save
the state of the computation whenever they decide to investigate one
area of the search space rather than another, since they may make the
wrong choice and be forced to back up and try again.

The process of saving and restoring computational states is expensive in
two ways. It requires a large amount of memory (at worst a complete copy
of the process image for every saved state), and it takes time. The
costs may be diminished if we are content to save less than the entire
state, e.g. just saving the calling sequence, or just saving the values
of some predetermined set of variables. We are mainly concerned here
with this latter case, where the values of a specified set of global
variables are to be saved and restored (this restricted form of state
saving has been widely used in AI - see for instance Kaplan's discussion
of ATN parsing for natural language (1), or CONNIVEf^s contexts (2)).
However, the mechanism described below will deal with arbitrary cases of
variable access and assignment, and could easily be adapted for contexts
which included the values of local variables as well as globals.

A number of implementations of this restricted form of state saving have
been proposed, but they have generally suffered either frots taking a
long time to switch contexts, or froit taking a long time to access the
values of variables within a given context. We present below a technique
for context switching in which contexts may be saved and restored
extremely quickly, and yet on most occasions the value of a variable may
also be accessed without any search.

2 Contexts vs. Stack Frames

The discussion of how to iitplenient a state saving mechanism becomes
clearer if we relate our problem to that of saving and restoring the
values of dynamically bound local variables during procedure calls. The
effect of such a procedure call is to save the current values of the
local variables, i.e. the current context; 3o whatever processing is
required; and then restore the saved context. This is exactly the
problem ne 9t® dealing with, except that the contexts saved by procedure
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calling »echanis»s are always dealt with first-in first-out, whereas we
want to be able to restore arbitrary contexts, e.g. ones that were saved
after the one that is current, or ones that have been restored once
already but that we want to try yet again.

Procedure calling mechanises save the current context by stacking the
values that are to be saved, and popping the* when they are to be
restored. We cannot use this approach, since we cannot rely on contexts
being saved and restored in try particular order, lie can, however, begin
to solve our probteti by looking carefully at two strategies that are
widely used for binding values to variables, ninety deep and shallow
binding.

Allen provides a detailed discussion of these strategies (3); all ne
will do here is to summarise the sain points as they relate to our
particular problem.

In deep binding, alt values of variables art kept on a single stack of
var1ablt~valut pairs. Assignment Is done by pushing a new pair,
containing the relevant variable and its nen value, onto the stack;
variable access Is dont by walking down the stack wit 11 a pair
containing the required variable 1s found ~ tha value In this pair 1s
the vost recent, 1,t. current, valut of the variable; saving and
rtstoring contexts 1s dortt by saving tht position of the top of the
stack to save tht context, resetting 1t to that position to restore 1t»
Thus in this very purt for* of d«#p binding, context switching 1s
txtrtatly easy, assigrwtnt 1s tasy but wasteful of space, and access is
unacctptably lion.

in shallow binding, tach variable his a stack of values dirtctly
assodattd with 1t* Tht currtnt value of a variable »*y be accessed vtry
quickly, sinct It is staply tht top tltattnt of tht tssociattci stack, and
1t My b# updated by overwriting that tltfttnt C not,, by pushing 1t on
top). Howtvtr^ conttxt switching It rather laborious, sinct 1t Is
nactssary to scan all the variables whose vatuts havt to be saved or
rtstortd and tithtr push a copy of thair currtnt v#lut onto thtir
assodattd stack (saving) or pop tht currtnt vttut off (rtstoring).

In practict most isptiMtntations ust a combination of thtst strattgits,
kttping savtd vtlut* on » singtt stact and currtnt valuts assodattd
dirtctly wHh tht variablts (stt for Instanct UCILXSF U> or WPiiS
<5)>. Xn tht rtnaindtr of this p»ptr wt will adapt this ttchnfcmt for
conttxt switching whtrt tht «i«plt FIFO constraint of proctdurt calling
Is not obtytd*

For our task It Is convtnitnt t# adapt tht bat 1c ttrattgits at fellows:

(1) • conttiit % still • stack of variablt-valut pairs (a
stack)# kit it nm hm atsedattd #<t^ H a« Indtx, ¥• tm ust
Indictt to %m whtthtr ont conttyt <• a d^rtct dttctndant of ar«othtr.

(11) t#tn wt updatt § global var^atelt wt add a ntw va**1ablr"valut
to t>t currtnt stack/ as In limp bidding; an^ wt assodatt tht ntw valut
d^rtetly uit^ tht vifiifclt^ as in shallow b^ndtnf; but m also aisodatt
tht 1ndt« o* tht c**rftnt tonttit w^t^ t^t #tr^iblt# to that «•
tht Mlut wat
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(iii) to save a context, we now simply save the binding stack and its
index; to restore it, we reset the saved stack and index to be the
current stack and index. Thus all we need to do when we want to switch
contexts is to update the values of two global variables - there is no
need to construct any new data structures or to transfer large blocks of
data.

Civ) variable access is a little more complex. The essential point is to
compare the index of the current context with the index that was stored
with the variable when it was last updated, using an algorithm described
below. to see if the variable's index is a direct predecessor of the
current one. If it is then the value associated directly with the
variable must be the required one, since the context in which it was
last updated is a direct ancestor of the current one. If, on the other
hand, the index for the variable is not a predecessor of the current
one, then the variable must have been updated on some divergent branch
of the computation. In this case we will have to search down the current
binding stack to find the value we want.

To see what is going on, consider the following example:

C1: 3 -> Y;

CO: 1 -> X; 2 -> Y;

C2: ?X, ?Y

The above diagram represents a situation where 1 has been assigned to
and 2 to Y in context CO; CO has been saved, and continued as C1, anc
has been assigned to Y; and finally C1 has been saved, and CO has be
restarted as C2. What are the current values of X and Y ?

Clearly the value directly associated with X, i.e. the value m S
recently assigned to it, is 1. This value was assigned in CO, which i
direct ancestor of the current context, and hence is the value we wan

The-value currently associated with Y is 3, the value assigned ir
is not a direct ancestor of C2, so this value is not correct
Hence we will have to search down the the binding stack for C2 1w.
required entry. C2fs stack is built on top of COfs, so the first
we will cone to is 2, as required.

This all sounds very long-winded. The crucial point is the const-
and comparison of indices, since if this can be done quickly
many cases we can access variables almost as fast as if they
shallow bound in an environment with simple FIFO context switching,
we will never do worse than orthodox deep binding.

4 Indexing Contexts

Suppose we are just starting work, so the stack is empty, the inde*
1, and all the variables are initialised with the standard
"undefined" and index 1. He do some work, updating the stack ana
variables as we go, and eventually arrive at a decision point, where
want to save the current state of affairs for later while we exploi
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some hypothesis.

At this point we need to create two contexts, namely one to save for
later and one to make immediate use of. For each we initialise the stack
as a list containing nothing but a pointer to the current binding stack,
so that the binding stack in any given context is in fact a chain of
partial stacks. We obtain their indices by doubling the current index,
and adding 1 to it for one of them and not for the other. At this point
we have created two contexts, with stacks equivalent to the original and
indices 010 and 011 (binary), simply by copying a pointer and doing some
trivial arithmetic.

As we continue to spawn contexts we
indices marked as below

will grow a tree of them with

0100

010

01
0101

0110

011

0111

It is now easy to see if one index, 11 say, is a direct predecessor of
another, 12. We simply keep comparing them and then shifting 12 right
one place until either they are equal (11 is a direct predecessor of 12)
or 12 is less than 11 (11 is not a direct predecessor of 12).

This gives us what we needed - a rapid algorithm for generating indices
(shift the old one left one place, use this for the state which is to be
saved and add 1 for the one which is to be continued), and a rapid
algorithm for comparing indices (repeatedly shift right and compare).

To see again how this works out, suppose that as we grew the above
we had done the following assignments to X and Y.

tree
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2 -> Y

3 -> Y

1 -> X

?X# ?Y

In context 0100# the chain of part ia l binding stacks would have

Looked Mice

Stack for 0100 Stack for 010 Stack for 01
CY 33 — • —> O _ _ > CY 23

utterees in context 0111 # i t woyld have looked like

Stack for 0111 Stack for 011
™ > EX 23 —

Stack for 01
— > EY 23

What art tht valuta of X mm$ Y in ecMnttxt 0111 ?

'X hat ftttociitttf value 1# aasotiattd inrfii §1t# and the current Index
0111 • i t cc^tr t ' t t i t tht tuo im$itms ttot current one I t greeter# ^
t M f t I t right i'nd I t t>#u©§tft P11| t M t I * equ»i to tht one atftoc
nUh X# to i*t knw thet the velue 1 «»ociettd directly irtth X 1$ li
1ta currtnt value.

Y het etsodeted value S# Miocleted Index §1113* Me cespare thl t info*
witii the currtut tut? they »re not equals &wt the current one f
than f*e# so i«e thlf t i t rifl it and conpare then ^ i l n j t i t thfftftf
i t nou i11 # #i<ci I t t t i i than f#» Index^ ao MP k*i* that the value
atsociated Mltfc^f ,ff'«io longer t # t f i &n& m wUi km* to starch the
current binding'fetacfc* ThH ItMSludei the »tack containing the entry for
E **> Y# $0 wt u1ll flfti: the ^ 3 f 7 W

There art a number ©* rtfintiitntt Id the above ic't*wt p
Its performance nithout altering Its essential properties^ as follows;

I I I 1f fpu hm^ to search t'^t stack *s^ t%t vatue ©* a variable, 1t 1-
probably uo^th updating H i associated valwt and Indev to the value yo*
have just found! e*<j the cy^^t^t 1nde». I* you have just atctssed "
variable In a given €e*tett# fey &r§ mr§ tUely to access 1t next 1*
H nmt one or st)a»e direct descendant ©* It t^an In any one othei

t # so *t aa*es sense to ensure t^at y©« will be able to f^nd fh"
value directly ©̂  t^^t p#t^ rat^e^ tMn en tht ©me you have jus
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switched from.

Allan Ransay

fax ?3 §462 004S3 i'Ol?
(11) In the discussion above, we said that every tine you update a
variable you have to push a new entry onto the binding stack. In fact,
if you update a variable twice in the sane context, the second entry
will permanently obscure the first. The first entry will'then simply
waste space and make searches of the stack for other variables take
longer. For this reason^ instead of associating the current value
itself with the variable wt associatt the current stack entry. This
extra level of Indirection has little effect on the access tine, and
allows us to update the stack entry rather than adding a new one
whenever wt repeatedly assign to a variable in the same context - a
particularly important consideration in view of the effects of a
fragment of code such as

repeat 100 timts 1+1 ~> I; ... endrtptat;

which would otherwise add 99 unwanted entries to the binding stack.

These rsfintmtnts to the basic schtmt can each be implemented without
introckicing any change in its functional bthaviour* If they arc both to
be ustd within tht samt system, 1t is essential to note that entries
crtattd by virtu* of refinement <1> should not bt overwritten when the
variable 1s next assigntd, as described in rtfintmtnt (11).

16 Conclusions

The mtchanism outHntd abovt for saving and rtstoHng arbitrary conttxts
comparts very favourably with previews systtms with tht samt goal C##
?)• Saving and rtstoring conttxts btccmts a trivial matttr; assigning
valuts to variables takts a shorty ntarly fIxtd amount of timt, as dots
accession thtir valuts txetpt nhtn you havt switchtd into a conttxt
which it 1ncompat1blt with tht ont 1n which tht variable was last
§cet$*tdt or asstgntd. Admitttdly, wt rtquirt mort spact for storing
savtd valuts than would bt ntctssary *̂ conttxts wart always switchtd
undtr a UFO disdpHnt. Mt do, ttowtvtr, mafct rtaspnably teenjoitfe ust of
spact by tntuHng that mntf conttxt Is built dirtctiy on top of Its
actual prtdtcttsor* rathtr thin en a c^y of 1t# so that Mt do not stort
unntctssary tepits of

Tht mechanism hm hmn Impltmtnttd In P0^*11# but only to savt and
rtstort t i t valuts of a ustr-sptc1f1td t t f of global var1ablts« I t inch
I t has bttn ustd t f f t c t W t l y to Impltmtnt tht "rtgisftrs*1 of § btckw

tracking ATM parstr CD* I t does, howtvtr, provldt a complttt
dtscript^on ©̂  variablt «ccts* and ass1gnmtnt# »rtdr htnet could tasily bt
ustd for tht temporary assignmtnt of local vaHabits A^rln ^
calls. Using tht mtehanism it$er1b#d h t r t woyldl <ntv1tably bt
than tht ttehniouts currtntly um40 but I t M M Id grtatly f acU i t i t t
Impltmtntation of tht statt^saving rtquirtd for mort compltx control
structurts tM*» simptt cal l*andhrtturn#

Rtftrttmts

(1) R.«. p ^ a fitnt^at J^Ii*S£5*l ^mmsm in MNatu^al
g1^ t d . I . f^iTTnJ iT^rWSTc W?iFTf¥T31

C2) 6»J*tu$$man I S.V.Ucfttrmott CGHIilVfM AI
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ABSTRACT

This work deals with computer analysis of textured outdoor scenes

involving grass, trees, water and clouds. Descriptions of texture are

formalized from natural language descriptions; local texture descriptors

are obtained from the directional and non-directional components of the

Fourier transform power spectrum. Analytic expressions are obtained for

orientation, contrast, size, spacing, and in periodic cases, the

locations of texture elements. These local descriptors are defined over

windows of various sizes; the choice of sizes is made by a simple

higher-level program.

The process of region growing is represented by a sheaf-theoretical

model which formalizes the operation of pasting local structure (over a

window) into global structure (over a region). Programs were implemented

which form regions of similar color and similar texture with respect to

the local descriptors•

An interpretation is made of texture gradient as distance gradient

in space. A simple world model is described. An interpretation of texture

regions and texture gradient is made with a simulated correspondence

with the. world model. We find that a problem-solving approach, involving

hypothesis-verification, more satisfactory than an earlier pattern

recognition effort (Bajcsy 1970) and more crucial to work with complex

scenes than in scenes of polyhedra. Geometric clues from relative sizes,

texture gradients, aad interposition are important in interpretation.
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1. INTRODUCTION

1.1 Statement of Problem

We intend to deal in this thesis with techniques for computer

understanding of scenes with texture. We consider examples of outdoor

scenes, although textured surfaces appear in almost every sort of scene,

and we show some examples of isolated and artificial textures. Studies

in computer vision are motivated by a wide range of applications. Those

involving texture include agricultural survey and analysis of earth

resources satellite pictures. Planetary exploration by remotely controlled

vehicles will demand some autonomous vision because of long delay times.

The social benefits of computer-controlled cars have been described by

McCarthy. Industrial robots will soon acquire vision. Texture synthesis,

for which we feel our techniques are applicable, is useful in computer

aided design and computer aided art. Interpretation of scanning electron

microscope pictures e.g. for metallurgy may be of interest. We are also

interested in constructing a model of human perception. Finally, vision

is one of the more interesting problem areas within artificial intelligence,

and contributes to the advance in our understanding of intelligent systems.

Without undertaking a complete review of the literature, we would

like to broadly contrast the work we have done with that of other work in

•computer vision. Several small groups have studied perception of polyhedra.

Their work has been concerned with three-dimensional objects with plane,

uniform faces. The limited success of these efforts has depended to a

large extent upon large homogeneous areas and isolated edges, A number of

prediction-verification techniques have arisen* seme of which are special

to the simple cases considered there. Others are more general and useful

to our work. Because of the complexity of textured scenes, we feel that



the prediction-verification approach to perceptual systems is even more

important for our work.

Some work has been done with image processing, which is intended

for improving the ease of human interpretation of images of particular

value. [Quam, others]. Other work has been directed toward crop

identification and other statistical summaries of the earth surface.

These studies have also made limited progress and are mentioned in a

survey below. However, there is much room for improvement of texture

description, and those studies completely ignore scenes where the three-

dimensional character is important.

It should be clear what we are really after in an interpretation of

a scene. The goal is not only to get a map of colored and textured

regions. We are not merely after identification of some image as a

member of a class* That is, we are not out to identify the letter A.

Nor do we wish to identify some region of the image as seme previously

seen element, although this might help us to achieve our goal. We have

in mind a system with a task, to navigate, for example, and execution of

the task requires understanding of the structure of the space portrayed

by the image.

1.2 Outline of Thesis

In Chapter 1, after the statement of our problem, we present

a review of literature that we think is relevant to an analysis

of visual texture. The literature covered in this review comes from three

different sources: psychology, neurophysiology and computer science.

By no means is this review exhaustive. However, we hope to show the

reader9 through the psychological and neurophysiological review, which



features in grouping are Important, and thus justify the features that

we use for texture description. The computer science review Includes

pattern recogaition, l inguis t ic and analytic approaches.

In the second chapterf instead ni presenting seme formal

definition of a texture^ which we do not believe is possible* in general,

we describe two concrete scenes with textured dnd colored regions. With

these exa:np]es» ve describe our representation o! texture and of a real

scene,

"he third chapter presents the implementation of procedures

which give us testure descriptors• We discuss operators in ih%j spatial

domain t ibj t is edge am! region operator?* *a discuss serai? of the

technique* possible and prebless* to 3?t» encountered *n extending tiuv»t*

techniques to twKtunhi scenes„ Thc*n wt* d iwuis iinxturt «t?$t, ript i.rs

Jerived i% tbt* Fourier domain. *>i reci ioral ;ty t^rr^ c^t u bt* one ci the

r.ost u?ii*iui teatutof, easily Jet tc tablu in iht Fourier J^r«iin* Me find

i * t ! ; P2

ii|i|i|'ll I Ill if il'nil)I



present an analysis of the use of texture gradient in determining the

orientation of surfaces and relative depth. A simple world model is

presented for outdoor scenes. A discussion is made of higher level

procedures which make interpretation of two examples of outdoor scenes.

This higher level program has not been implemented, but gives a good

persepective to evaluate the modules developed, and is the target for

which we aimed.



1-3 Previous Results

During the past five years or so, a great deal of work has been

done in the area of computer-based visual perception, computer

recognition, and computer identification of visual scenes and patterns.

Several results have been obtained in computer analysis of two-

dimensional images, interpreted as.projections of geometrically simple

real objects. See particularly, Guzman (I968), Brice and Fennema (1970),

Pingle (1969), and Falk (1970).

Polyhedra and collections of polyhedra are recognized from single

view projections. First the meaningful edges are recognized, then the

main regions and from these, finally, in combination with the world-

model, the identification of the objects is inferred.

Much less attention has been paid to computer analysis of two-

dimensional pictures which depict real-world scenes. What we mean here

are scenes such as forest, grass, water, and their combinations. The

separate regions, formed by, say, grass and bushes, do not differ in

contrast of light intensity, nor in color (as both are usually green),

but rather in their texture.

A primary problem in texture is how we perceive a textured surface

as uniform in a nontrivial way. Intuitively speaking, there are many

levels on which one can perceive texture* In one situation we may look

at the pattern shewing how bricks are distributed on the wall and call

that a texture. In another situation we may have a closer look at the

same wall from the game distance and see the texture of the individual

bricks and ignore the texture given by the architectural structure of

bricks.

Flock (1965) and Freeman (1970), reporting about various



experiments in connection with testing aspects of visual perception

pattern into components each of which is in some way internally

uniform (Werthelmer (1912)).

1*3-1 Neurophysiological Studies Relevant to Feature Extraction in
Visual Perception

In what follows we shall present a review of certain experimental

results dealing with visual feature detection in animals. The general scheme

of experimentation is as follows. The set of stimuli consists of geometric

entities such as slits, edges, bars, and corners. Recordings are made from

single cells or a small number of cells in a sequence along the direction

of insertion of an electrode in the visual system of animals (mostly cats

and monkeys). The conclusion is that there are special neurophysiological

units, identifiable in well-defined parts of the brain, capable of detecting

motion, orientations, and other features of the visual stimuli.

For instance, Kuffler (1953), placing microelectrodes near retinal

ganglion cells of cats, found that certain areas of the retina, when stimula:

by spots of light, caused the ganglion cells to fire, while other areas

inhibited firing. The shape of the excitatory areas for retinal ganglion

cells was a small disk, surrounded by an inhibitory annulus or vice versa.

The retinal areas, exhibiting the firing, are known as receptive fields.

Concentric receptive fields have been found also in the optic nerve

and in the LGN ^Lateral Geniculate Nucleus) of cats and monkeys (Hubel (i960

and Wiesel and Hubel (i960}). The only difference between retinal ganglion

cells and LGN cells is that the receptive fields in the LGN are smaller.

Also^ the receptive fields in the LGN of monkeys are smaller than those in a

The concentric receptive fields have a characteristic temporal behavior: If



the center of the field fires for "on11 responses, then the annulus fires

for "off11 responses or vice versa.

Only spatial changes evoke responses, while homogeneous illumination,

however strong, influences very little the firing of these units. In

functional terms these are "discontinuity detectors11. Of course, there

are "Ganzfeld detectors11 in the retina, responsive to average brightness

of a large region, which regulate the pupillary mechanism through the

superior colliculus, but we are only interested in neural units that

participate in processing patterned stimuli.

A revolutionary discovery was the description of the relation be-

tween receptive field geometry and the cytoarchitecture of the cortex.

Mountcastle (1957) discovered the columnar organization of the cat's

somatosensory cortex. This vertical modular arrangement in the somes thetic

cortex means that units along a column perpendicular to the cortical

surface all give rise to the same sensory discharge. In the monkey,

cells along one column respond to skin touch-pressure, and the

cells along another column to joint rotation. (Powell and

Mountcastle, (1959))* ^e interesting feature of this correlation between

cortical organization and functional organization became fully apparent in

the findings of Hubel and Wiesel (I960, 1962) in the visual cortex of the cat,

They found feature extractors of hierarchically increasing complexity*

However, as one goes from the so-called simple units, having elongated

receptive fields with antagonistic surroundings - also called slit or edge

detectors to complex and hypercomplex units that respond to highly special

features (like movement in a certain direction or the end of a line), one

notices that despite their diversity, alt of these feature extractors have



a common characteristic: they all respond optimally to a certain

orientation. In a vertical module (column) perpendicular to the cortical

surface of the cat and the monkey (Hubel and Wiesel I960, 1962, I968)

there are several types of units from the simple and complex or even

hypercomplex kind. But in a given column, all detectors have the same

preferred direction. In addition to this mapping of the orientation

information, the retinal position is also maintained and units with

receptive fields in neighboring retinal positions tend to lie in close

proximity.

Another remarkable finding by Hubel and Wiesel is the hierarchy of

feature extraction. Each unit in the hierarchy results from the outputs

of units of lower complexity using both excitatory and inhibitory connections

The simple units of slit or edge detector type are built from the so-called

Kuffler-units in the LGN by "summing11 several adjacent Kuffler units that

fall on a line of a given orientation. This summation results in a narrow

elongated receptive field having elongated elliptical excitatory (inhibitory)

area surrounded by an antagonistic neighborhood. Such cortical units fire

optimally for those line segments (slits or edge) that fall on the proper

location on the retina and have the, preferred orientation. These simple

units are the only ones (in addition to Kuffler - units) whose receptive

fields can be plotted by luminous dots and segregated Into inhibitory and

excitatory areas. The complex and hypercomplex units, on the other hand>

respond to such complex features as movement of an edge In a certain

orientation and direction or the perpendicularity of two Intersecting line

segments. Here It seems that the notions of straightness, orientation*

velocity, position, parallelism, perpendicularity, abrupt ending of a line,

8



corners, and so on, appear as features.

The primary visual problem, bow this information is used at later-

stages, is still untouched.

l«.3-2 Psychophysical Experiments Suggesting the Existence of
Visual Frequency Analyzers

In this section we give a brief survey of experiments concerning the

alleged existence of spatial frequency analyzers, located in the neural

system of human subjects. The set of stimuli consists of simple line patterns

with differing orientations, contrast, and spatial frequency.

. The human subjects involved in experiments are asked to respond to

the threshold contrast of the stimuli. Certain aspects of response are used

as arguments for and against the existence of a frequency analyzer in the

subject. Enroth-Cugel and Robson (1966) and Campbell and Robson (I968)

claim to have found neurophysiological evidence for a spatial frequency

analyzer. Several experiments have been done to determine the properties

(such as the transfer function) of the hypothetical analyzer using masking

methods. For example, Pollehn and Roehing (1970) used filtered two-dimensional

visual noise and spatial sinusoidal gratings. Julesz and Stromeyer (1970)

used one-dimensional filtered noise for masking. The noise consisted of

vertical strips whose amplitude along the horizontal axis of a CRT monitor

was determined by a Gaussian process. The visibility of a sinusoidal

grating is strongly dependent on the frequency of the grating. If the grating

frequency overlapped the noise band* it was masked. However, the rejection

band had to be at least an octave wide on either side (Blakemore and Campbell

{I969) and Julesz (I97I)). The frequency analyzers have such a shallow

characteristic that the analogy to Fourier analysis is rather remote.

Historically, the first hint of spatial frequency analysis was made

9



by Campbell and Kulikowski (I966) who investigated the visibility

threshold of a test grating as a function of the orientation of a masking

grating. They briefly mentioned that maximum threshold increase occurs

when the masking and test gratings have similar geometry. That spectral

analysis actually occurs in the visual system was suggested by Pantle and

Sekuler (I968) using adaptation and test gratings of different frequencies

and by Campbell and Robson (I968) who noted that a square grating appears

as a sinusoidal grating until the higher harmonics reach their visibility

thresholds.

A recent study by Nachmias et al. (I969) showed that at the threshold

of visibility the various spatial frequency analyzers are statistically

independent of each other (as long as the various spectral components

have frequency ratios in excess of 5-^)• The finding by Nachmias et al.

(I969) indicates that at threshold the phase of visual or auditory signals

is not detected by the perceptual system. However, for perception above

the threshold level, the phase information is used in higher processors.

After all, both the impulse function and white noise have the same flat

amplitude spectrum, but very different phase spectra. The fact that they

are heard and seen as being very different shows that ultimately the phase

information is utilized,

1-5*3 Psychological Studies in Pattern Grouping

The topic of this section is a discussion of the psychological

literature on texture grouping. The grouping process depends heavily

on criteria of similarity of items. Although it has been known for

some time that similarity is one of the most important features of

perceptual grouping, only recently, in the work of Julesz (1971)>

10



Beck (I967), and Attneave and Olson (1970), has it been made clear

explicitly what ki^ds of similarities are effective in this respect.

Beck (I967) has studied perceptual groupings produced by

line figures. He showed that the overall orientation was essential

for cluster formation, while more complex properties such as rated

similarity or familiarity of figures were irrelevant. Example: T and

tilted T are more similar than T and -J . However, as a texture,

T and tilted T form a more distinguishable texture than T and -|

This has been confirmed by Attneave and Olson (I970) who have done

similar and more extensive study, with different shapes such as L,

J , A, V, lines of different lengths, and orientations. Directionality

was important in grouping. We might expect curvature to be important

also, but curved lines were grouped with straight lines which had the

same direction.

Grouping was dependent also on orientation of the whole image*

In general, grouping and complementary segregation is based on certain

descriptors, sane of which represent relationships of elements of the

stimulus array to an internal Cartesian reference system*

Julesz (I962) has studied the clustering problem on random dot

textures (stereograms). He described textures and predicted their

properties by specifying their higher order statistics.

The usual joint probability distribution is an inadequate.

descriptor in perception, since it does not describe the shape of

clusters. There are at least two ways to handle this difficulty.

[One way is to define certain information rules for single clusters and

11



parametrize them (orientation, compactness, e tc . ) . The trouble with

this solution is the arbitrariness of the selection of cluster

parameters.] The second way is to use constructs of random geometry.

Novikoff (I962) was the first to suggest such a solution.

The clustering process is dependent on the similarity and

the proximity of elements. The similarity relation is relativized

to brightness, color, geometrical descriptors and other parameters.

The proximity relation is based on a distance measure. Nonmetric

multi-dimensional scaling techniques (Shepard (1962), Kruskal (1964))

and hierarchial cluster-seeking algorithms are useful tools for handling

similarity problems. The methods proposed by Shepard and Kruskal,

however, are appropriate only for linear or multilinear cases. In a

nonlinear situation an iterative algorithm is applied on small local

regions in order to find an intrinsic dimensionality (Shepard and Carroll

(1966), Bennet (I969), Fukunaga and Olsen (1971))* Applying

multi-dimensional scaling to discrimination of textures composed of

random 2 x 2 arrays, Julesz (1971) found that the most important factors

for texture discrimination were brightness and orientation.
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We have seen several a spec t s of visual t e x t u r e s , mostly from the

point of view of psychology and psychophyniology. Now, we sha l l examine

the c h a r a c t e r i s t i c s ami parameters of a t ex ture with respect to some of

the approaches tha t have been use*! in machine recogni t ion at t ex tu res .

The best review paper about the current s t a t e of texture ex t rac t ion

technology is that of Hawkins l/'<"'. According to him, there are iour

types of approaches that nave been taken tu tuKture c l a s s i f i c a t i o n :
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an i?::*irpKi the v / rk ol lamJari^ '1 ;;" 1 can tie nentiDned* Lendarls
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, : , . ; 3

"I" II



This has been used with some advantage in analyzing biological material

(Lipkin et al. I966, Prewitt and Mendelson (I968)), cloud pattern

classification (Darling and Joseph (1968)), and the discrimination of

strategic and tactical targets and terrain classification. The statistical

features, though sometimes useful, have some limits. Thus the variance

of a salt and pepper scene is the same as that of a white scene with a

uniform dark area. The size of connected areas (think of clouds, for

instance) can take a wide spectrum. The number of changes (zero crossings)

is informative again only within a certain context, when combined with

other features such as direction, etc. Histograms are useful in

estimating light distribution in the picture and setting up the threshold

values for measurements.

Shape measures used in texture analysis have involved applying a

particular local "matched filter" to every point in the image area, and

counting the number of points that match above some threshold. This has

been applied to the previously noted examples of classifying biological

material (Prewitt and Mendelson (1968)), to cloud classification, and

to targets and terrain classifications (Hawkins 0-97O)). A more analytic

approach to shape description of chromosomes is taken in terms of conic

sections. An individual chrosBOsoroe is defined as a non-negative function

on the real plane, subject to certain constraints on position, sizes

orientation, etc. Ledley et al* (1965) suggested a simple method of

measuring concavity and convexity. Integral geometry measures (julesz

(1971)) and their extensions amount to calculating the number of occurrences

of n-tuples of specially arranged local points in all orientations over

the image area.
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Matched filters allow one to describe practically any shape.

However, the matching process, due to the computation of a large

number of correlations and the need of hundreds of patterns, is rather

slow. The similarity relation can be defined in a straightforward

fashion in terms of the threshold values.

Simple descriptors such as convexity, length of the boundary/area,

etc., require small computation time, but similarity relations based on

these simple descriptors are not usually sufficient for sharp decisions.

Another set of simple descriptors has been suggested and implemented by

Rosenfeld and Thurston (1971). They use, in parallel, several local

averaging operators applied in different directions and on various sizes

of windows. All results obtained from these local operators are evaluated

and eventually a texture boundary is found. Though this method finds

some texture boundaries, the operators are too trivial for handling

a wide class of real textures. Besides, they do not provide any description

of a texture, they only detect the texture differences.

All the approaches discussed above are pattern classification

techniques. These techniques are not satisfactory for a description of

real textures for the following reasons:

(1) Pattern classification techniques have concentrated on linear

decision procedures, and domain independent formulations. Context appears

as a set of numberical coefficients in a linear function, and in the

choice of features. We have better models in terms of context dependent

decision trees which provide a better basis for generalization and

learning.

(2) Structural relationships and segmentation are part of the
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desired analysis. We discuss this further in our analysis. The point

has been made repeatedly by picture linguists.

PICTURE LINGUISTIC FORMALISM

In what follows we shall review the so-called linguistic approach;

"picture linguists11 take as their principal aim to analyze discrete

pictures such as bubble chamber photographs, biomedical pictures of

neurons, blood cells, and chromosomes, machine-printed, and hand-printed

characters, fingerprints and the like. They argue rather convincingly

that such pictures cannot be identified by means of classical receptor/

categorizer devices. What one is after in this situation Is not just a

classifica tion, but rather an articulated (discursive) description or

explication, capturing the structured subparts of a picture and the

relations between them (Miller and Shaw (I968), Narasimhan (1970),

Clowes (1970)).

One has to assume that certain pieces of Information have already

been extracted from the picture by means of nonlinguistic techniques

(texture elements and their possible structuring Is known). We combine

this prior knowledge with the data about the analyzed picture and then

"deduce1' Its structural description. The "deduction11 is accomplished by

a grammar. Due to the fact that we cannot describe a picture in terms

of strings of subpictures* phrase-structure grammars cannot be used

directly. The rewriting rules must act on more general entitles such

as arrays, drawings, labeled graphs (webs), multlgraphs, etc* For example,

Kirsch ;'1L>6J+) a rri Dacey (1967) designed a grammar for two-dimensional

languages, where the generating rules act on arrays. Pfaltz
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and Rosenfeld (I969) used for picture description the so-called web

grammars in which the rules act on labeled directed graphs. Simply,

in picture grammars one tries to replace the total ordering of strings

by a partial ordering of graph structures so that the parsing can still

work. - *»

The language of the graph grammar is nothing but a collection

of graphs that can be derived from initial graphs by iterated application

of the rewriting rules.

For instance, one can construct a grammar for directed two-

terminal series-parallel networks or neural networks (Pfaltz (1970)).

It is believed that the organization of textured regions in scenes would

be another promising field of application, particularly, when the number

of different textured regions occurring in a scene is small and when

their organization is such that a moderate set of rewriting rules can

do the job.

Methodical scanning of the picture with a prescribed system

of rules, which may be feasible when the variety of possible texture

elements and their interconnections is small, becomes rapidly uneconomical

where many varieties of wanted textures may exist, embedded in a

background containing many similar fotms which do not belong precisely

to the required category.

The intricacy of textured picture recognition is associated

not only with the presence of aa incredibly large number of elementary

texture elements,but also with the placement rules which seem to have

extremely complicated grammatical structure.
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To sum up, the linguistic method is suitable for such classes

of pictures that contain a small number of primitive objects. The

primitives have to be found with accuracy, otherwise the parsing process

will terminate in misrecognition. The picture must be recursive

in nature, so that a small number of rewriting rules can be used.

Picture languages are inappropriate in situations where the

number of primitives is large and the geometrical relationships

between these primitives are random. This is the case of most of the

scenes such as fabrics, aerial photographs (large number of primitives),

cloud covers, grass, bushes (random relationships), shading of smooth

objects, textured surface of three dimensional objects (continuity),

and similar natural or artificial scenes with strong aspects of

repetitiveness, continuity, and regioning, and with intricate changes

in gray levels and colors. On the other hand, descriptions of modes

and scene elements are graphs, and there is a broad analogy to picture

language in other approaches.

ANALYTIC FUNCTION APPROACH

A (real two—dimensional discrete rectangular) picture is

represented by a pair < I- x I , p >s where I and 1 are

non"empty finite Intervals of integers acrf p is an arbitrary real-valued

function p: I- x lp -+ Reals. If X = I* x 3L Is fixed, one can

identify the picture with p.

The definition itself Is empty. We may proceed to try to

approximate the picture function by analytic functions defined on

subsets of the Image plane• About the only useful analytic properties



are those based on periodicity. These constraints are inspired by

pictures in which the regions are generated from texture elements by

a more or less straightforward family of analytic rules.

A sample of special cases of deterministically textured pictures

is listed below:

(a) If p is spatially periodic on a connected region

S C X , i . e . ,

p(x + v,y) = p(x,y)

p(x, y + w) = p(x,y),

where x,y € S and <y,w> is the spatial period,,

and if p|s cannot be extended to a larger connected region S7 (S C s ')

without losing the periodicity of p j s ' , then <S,p> is called a

periodically textured region.

A picture decomposable into^ a family of periodically textured

regions {R.Jl < i < k] with spatial periods <v. ,w.> (X = U.R. and

R.flR. = 0, when i j£ j ) , is called a periodically textured picture.

Simple visual patterns, such as a rectangle covered by a mosaic

of squares, triangles, circles, e t c . , are examples of periodically

textured pictures- Brick wall, honey-comb herring bone and many other

orriaisental or mosaic patterns also belong to this class of pictures.

Mote that in this case only two texture eleaents, are involved
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(black and white squares , e t c . ) and the whole p ic tu re Is described by

a f i n i t e group of t r a n s l a t i o n s In two d i r e c t i o n s (d i rec t product of two

t r a n s l a t i o n groups of In tegers modulo 11 x I o ) . Thus textured p ic tures

of t h i s kind can be defined In terms of t h e i r tex ture elements and an

appropr ia te f in i t e group of t r a n s l a t i o n s . Only a small degree of

complication i r i s e s when the text urt^i p i c tu re is decomposable In to

pe r iod ica l ly textured r eg ions .

b ,i If p Is p a r t i a l l y per iodic ' pe r iod ic In one of I t s arguments)

on a connected region S ~ X, i . e . ,

' i ; p,'x -f v ,y ; = p.x,y, ' Periodic In the f i r s t coordinate)

; I I ) p x, y -f w; s p ' x 5 y ; Periodic In the second coord ina te )

where x»y € S and v w/ is the period , and If pjs

cannot be extended to a la rger connected region Sf [S cz S*]

without los ing the p a r t i a l p e r i o d i c i t y of p j S /
s then

*5,p> Is ca l l ed a g a j ^ i a j j ^ g e j j o d ^ £oxtiurgdr region.

A picture decomposable Into a fansily of spa t i a l ly

periodic textured regions £H ] I <i*_ k] with periods

{v,} or {w^}, is called a 2BElklBAl2» E^lAgjIiS. textured

li p is EBLLMHx £llH2X 2M£12HS vn iJ ^iiximal connected

rt*'4i*'>n S, we* obi i MI a new c l a s s of a n a l y t i c a l l y character ized textured

MI* !k*re "almost pet; i od i e " means: For any T * ', thore e x i s t s <i

s^ p ; J T %- 1 * f[: -it tht- t o r r

i H '4 X + K V ,



where a±, a. € R, 0 < i < n, and 0 < j < m.

The function p7 is not periodic in general, though i t has periodic

components C e
l m ( a i X + b j y ) and the absolute differenceX>J

|p (x + v,y + w)-p'(x,y)| is an arbi trari ly small number for a suitable

pair <v?w>.

Assuming that the pictures under consideration are composed of

periodic, part ial ly periodic, or almost periodic textured regions^ we can

u t i l i ze features like expansion of the picture function p over a textured

region S into periodic orthogonal series such as Fourier, Hadamard-

Walsh e t c . In fortunate cases the orthogonal series-features ccrapress

the information hidden in the textured region into a few dominant

components. This is followed by pattexh classification ;Rosenfeld ?ljr2)9

Julesz (19t.*?)> and Bajcsy (1/70)). If the periodicity or repetitiveness

i s not the most relevant aspect of the picture in, question, an orthogonal

expansion may scramble the information content so that BO simplification

occurs•

A typical case appears when the phase spectrum happens to be

relevant In a Fourier expansion of a'lioaperiodic" picture and we restrict

ourselves only to the power spec true* Here the information content is

not only degraded, but also mixed in such t way that th« Fourier iinii^re.s

a r e n o m o r e r e l e v a n t ( L e n d a r i s * n d S t a n l e y l / ' V < ; .



1-^ The Contribution of This Research

We feel that theoretical and experimental advances have been

made in programs for understanding textured scenes. These are:

1. A sheaf-theoretic formalism for describing textured and

colored regions.

2. Symbolic structured description of textures.

3. Implementation of descriptors in terms of Fourier descriptors

Analytic expression of spacing, size and contrast of texture elements,

and their approximate location.

k. Forming of color regions.

5. Forming of textured regions.

6. Spatial interpretation of regions in terms of texture

gradient.

7. Description of a higher level procedure and world model for

outdoor scenes.
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2. TEXTURE DESCRIPTIONS

In this chapter we discuss qualitative descriptions of visual

textures in order to suggest the corresponding implementation in

procedures. Our aim will not be detailed descriptions; in a Borgese

story, a project to make perfect maps lead to maps the full size of the

countries mapped. Instead, we want to characterize textures in a compact

symbolic representation which suggests correspondences with our models,

and simplifies human communication and debugging. We feel that everyday

texture descriptions are good models for these purposes. At a low level,

we want to work with those descriptions to propose plausible colored and

textured regions. At a higher level, our aim is a description in object

space, not an image space map. Many interpretations and hypotheses should

be In terms of objects and properties of the object space• An example is

the Interpretation of texture gradient In the image as distance gradient

in space. Another interpretation is that overlapping regions correspond

to foreground and background.



2.1 Examples of Outdoor Scenes

In the scene shown in Figure 1, we find three elements: grass,

water, and rocks. The grass lies on an approximately level surface. The

rock is in front of the water and behind the grass. We do not describe

the image itself, but its interpretations as objects. In describing

this scene, we emphasize its segmentation into elements which are objects

and regions in object space. This structural description characterizes

the relationships among objects and regions. For example, a tree stands

above the ground and in front of the sky. The structure allows us to

talk about complex scenes in terms of simple elements. To move about,

we must know where the grass extends, where to walk around rocks, and

where the water is. These spatial relations are essential; even if we

were able to store and recognize whole scenes, we would need a mechanism

to discover where we walk and what we can pick up.

Grass, rocks and water correspond roughly to three regions in the

image. But these simple elements are not directly the sort of regions

which come from existing edge or region finding programs. The elements

we see are high level abstractions which do not coincide with color or

texture regions. In the first approximation, color is the most relevant

feature that distinguishes these regions. However, a closer look at the

picture suggests that the color boundaries do not correspond exactly to

the regions we see. Consider the white waves near the rocks or the dark

areas inside the grass region- O'ur texture region growing also defines

a set of regions. Directionality is important in the grass region, yet

that property is not uniform over the region. Thus the regions defined

by our texture descriptors do not coincide with the grass region we see.
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Yet there is a continuity over the region in some of the properties of

color, size and density of grass stalks. The fact that we have similar

stalks of grass over the whole field (sometimes with different direction

or with different color) makes it possible to propose the field as an

element. This complexity makes it impractical to attempt to identify

local elements with local prototypes for grass, sky, or water, or to

attempt to identify the low level regions from our programs.

In a second example in Figure 2 we have four elements: grass,

trees, clouds, and sky. Again, color separates the sky, clouds, grass,

trunks of trees, and in some areas, separates the crowns of trees.

Texture, on the other hand, separates the trees from grass.

In the object space description, the sky and trees are distinct. We

could arbitrarily define image regions as disjoint. Proximity of regions

of like color is one basis for proposing a connectivity among tree branches-

and among fragments of sky. Those connnectivities reflect the object

space descriptions of trees as connected and sky as connected. The regions

based on proximity in the image are unconnected and overlapping. That

description allows an inference (which may not always be valid) that the

trees are in front of the sky. Arbitrarily defining disjoint regions

rejects these hypotheses of object space connectivity and the conclusion

of interposition from overlap.

Although the trees are approximately of the same height, and the

grass stalks are also roughly of constant height, their apparent size in

the image decreases toward the center rear of the picture. The size of

the grass stalks nearest us is the same as that of the trees farthest from

us. Gibson [1950] has emphasized that perception relies heavily on the
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interpretation of systematic variation of apparent size with image

position (texture gradient) as a variation of distance from the observer.

For most purposes, the relative depth of elements in the world is

sufficient. Assuming that we know the position of the observer, the

gradient allows us to determine the absolute distance of objects. The

measurement of observer or camera position and angles, and calibration

of the image device (Sobel (1970)) are essential*
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Table 1

Name of Region

O
b
j
e
c
t
 

S
p
a
c
e

I
m
a
g
e
 

S
p
a
c
e

Texture
elements

Texture
element
size

Spatial
relation-
ships
between
elements

Color

Boundaries
of elements

Geometric
description
of elements

Expected
contrast

Grass

leaves, blades
of grass

width: 1/1+"
length: 2-10 in.

dense, roughly
parallel and
vertical, and
partial covering

green, yellow
or brown

fuzzy, smooth

linear and
directional

very low

Water

water waves

widely variable

quite parallel
waves or con
centric circular
waves

blue, dark blue,
dark green,
silver gray

fuzzy, smooth

linear, direct-
ional, con-
centric circles

very lew

Forest

(a) Evergreen:
trees

(b) Deciduous:
fruit trees

width/height: 1/2
length: 5-20 ft.

(a) vertical and
parallel

(b) vertical and
parallel
partial covering

(a) crown of trees
is green and the
trunk of trees
is dark brown.

(b) crown: green,
brown, yellow or
red; trunk:
light brown

sharp, not smooth

trunks of trees:
linear texture

crowns of trees:
blob-like texture

high (trees with sky)
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Table 1 (Continued)

Name

CDo
ctfo*

CO

4J

o
• n

o

CD
O

O *
en

m%

60

•S

i of Region

Texture
elements

Texture
element
size

Spatial
relationships
between
elements

Color

Boundaries
of elements

Geometric
description
of elements

Expected
contrast

Sky

homogeneous

homogeneous

blue

sharp
irregular
(horizon)

homogeneous

high

Clouds

a cloud

I/I4.-2 miles

pattern
depends on
weather

whi te , gray
r e d

fuzzy but
contrasting

blob-like or
directional

low

Brick wall

bricks

width: 3-I+
length: 8-15
inches

width/length
1/2

horizontal
rows

gray, red,
brown, yellow

sharp and
smooth

bidirectional

depends on
the back-
ground
low or high

Pebbles

pebbles

diameter:
1-3 inches

randomly
distributed

any color

sharp and
smooth

blob-like

low or high,
depending on
the back-
gr ound.
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2.3 Textured Regions and Their Organization

In the previous section we discussed images in a part/whole structure:

scene-regions-elements• The regions and elements were primarily in object

space. A texture may have a few layers of heirarchical structure; in

Fig. 3, the surfaces of the bricks have a rough texture. The regions

formed by the bricks are elements of the brick wall texture.
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of homogeneity, the regions of a common property correspond to the

regions of homogeneity from a region growing operation. The related

operation of findiqg discontinuity in texture properties is analogous

to edge-finding between homogeneous regions. Rosenfeld (I970) has

discussed the problem of finding texture boundaries as that of finding

gradients in the average values of statistical measures (which are

assumed to be any suitable operator) . While this is suggestive, it

unnecessarily emphasizes statistical measures as opposed to structured

descriptions which would be more suitable for patterned textures.

Let us approach the question of the organization of textured regions.

In the simplest case, the picture to be described is partitioned into a

disjoint covering of textured regions.

A somewhat more complex system of regions can be described by a

tree structure. It may be used to represent the topological organization

of brightness contours (Krakauer (1970)). While this may seem a great

generalization, a tree does not well describe the system of regions

from a number of descriptors. Even for a single descriptor, the tree is

rigidly heirarchical. The nodes of the representing network are used

for regions and the arrows correspond to the spatial relationships between

the regions. Systems of features lead to several networks of regions.

A single feature may give rise to a non~dlsjoint network of regions.

For an operator to give disjoint regloas (a partition) one must assume

an equivalence relation (reflexive, symmetric, and transitive).

Quantization would be an example leading to an equivalence relation-

Gradient thresholding would be another example* Selection of typical

values, followed by thresholding within an Intervalt would not lead to
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equivalences, so that it would not lead to a partition.

It is not necessary to fully expand the whole network or family

of networks. Rather, instead of thinking of comparing several networks

derived from different features, we use some simple hypotheses derived

from a subnetwork of some particular network and supported by evidence

from features which might imply another network (which may never exist

as such).

We must deal with texture boundaries as well as textured regions.

The boundary problem is dual to the grouping problem. Therefore the

difficulties encountered in a grouping have their analogs in boundary

detection. Take as an example the scene in Fig. 1. The objects in this

scene (grass, water, and rocks) are separated by physical or virtual

boundaries. Some of them are visible while others are hidden (grass covers

the boundary between water and rocks) . In the identification process

it is not clear whether one should follow the boundaries defined by

individual texture elements (look at the Individual straws near the rocks)

or whether one should look for some kind of average boundary or perhaps

keep a spatial gap between two different textures.

Region growing operators use certain similarity criteria. These

are applied In patching local structures Into global ones. Whenever we

meet a dissimilarity, a boundary point or segment Is proposed. In the

first approximation, a region is formed by patching continuous structures

over connected areas. In this case the corresponding boundaries are also

connected. There may also be Internal, unclosed boundaries. When local

discontinuities occur within a region, proximity criteria are used for

bridging the gaps. The proximity here Is used as an extension of continuity*



The same is true with interrupted boundaries. Proximity and continuity

of boundary segments suggest continuation.

In the past it has been customary to think of regions as a disjoint

covering of the image. The examples in Fig. 1 and Fig. 2 have shown that

this conception is too simple to be useful. An equally simplistic point

of view is that boundaries of regions are always closed curves.



3- PROCEDURES FOR TEXTURE DESCRIPTORS

In the previous chapter we discussed the description of texture in

object and image space. In this chapter we shall specify the impleinentation

of these descriptions. Specifically, we shall study texture descriptions

in the spatial domain and in the Fourier domain. Algorithms for concrete

descriptors will also be presented. Although the descriptors will be

derived in the Fourier domain from the power spectrum, they actually refer

to textural properties in the spatial domain*

We will find it useful to distinguish scalar, topological, and

geometric features (shape, area, size, boundary, connectivity, thinness

ratio) from relational features (spatial distribution, organization,

gradient).

3 -1 TexturePescriptors Derived in the Spatial Domain

Since descriptors refer to properties of objects represented in the

image space, it is natural to look for operators acting directly in the

spatial domain. The skeleton of this section is this: Procedures isolating

the image elements, geometric description of image elements, and clustering

of elements based on proximity and their spatial organization.

In the process of isolating the image elements the most important

features are the following topological properties: connectivity, continuity,

and proximity. These properties, applied to brightness or color, are used

in all region finders (Fenema and Brice (197O1)). Discontinuity is the

basic property to be used in edge and line operators (Blnford (1970)>

Hueckel {19"f I)). Current edge aad line operators are designed for de-

tecting discontinuities between two large homogeneous regions and they do

not operate satisfactorily on small regions. The textured elements that

one finds In outdoor scenes are too snail in size and too large in number
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and therefore cannot be processed usefully by any of the above operators.

However, under poor resolution conditions in the image, where the texture

elements are smeared (so that the homogeneity stands out more than usual), j

one may be successful even with the above mentioned operators. ^

After completing the isolation of image elements - figures, we shall

describe them. We select those descriptors which enable clustering,

i.e., based on proximity those which will find the nearby elements.

We had already a chance to note that color and brightness are among the

most important descriptors in natural scenes. Image elements cannot be

taken separately from their background. In fact, the common background

of the elements is a strong clue for their clustering. The relationship

between the background and color is expressed in terms of contrast, and

therefore it can be used as another descriptor.

The descriptors corresponding to spatial relations depend on

proximity relations just as cluster processes depend on proximity. Typically,

we want to define colored regions by proximity, rather than only

connectivity. Grass and trees are regions broken into many fragments

defined by connectivity. But other like regions are nearby. This

proximity in space and color can be phrased as a problem of proximity in

if. dimensions, using the multi-entry technique outlined by Bin ford in the

Stanford Progress Report of January I{JJl. Likewise, super regions can be

defined by brightness, contrast, size and shape descriptors clustered

on the basis of proximity. Spatial relations, the intervals between

elements and directions of these intervals, can be defined also among

elements linked by proximity.

As an expedient which is suitable for linear textures, one can
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project the elements into several directions. Each projection will

actually be a one-dimensional function of gray levels or color. Since

this function is still too complicated for practical implementation,

it is simplified by using a square wave approximation. The square

waves are described either by edge detection operators or by magnitude

and the distance between two consecutive zero crossings. Since the

distances between zero crossings are intervals in which the approximating

gray levels are constant, the method is called interval analysis. That

technique has been used with some success to describe regular linear

textures in an MIT term paper by Peter Wolfe, (I97O).

Since the shape of a two or three-dimensional object in a general

situation could be extremely complicated, we cannot hope and, in fact,

we do not want to describe it in detail. Instead, complex shapes are

decomposed into simpler ones which are (hopefully) easier to describe.

A typical example is a tree which may be decomposed into its trunk and

crown, where the trunk is geometrically linear while the crown is blob-

like. In shape analysis of outdoor scenes we find directioaality among

the most useful features. One can see this immediately in Table 1.

Directionality, combined with length/width ratio and length along the

preferred directionality make up a linear element description of shapes

or parts of shapes. These are all directly implementabie descriptors.

In ourdoor scenes, the shapes of texture element are quite important,

while the shapes of the important regions of object space (sky, grass,

trees, water) are not very important.

The apparent size of an object in an image is not relevant if

considered in isolation. This fact was already noted in Fig. 2. There
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the apparent size of grass was the same as the apparent size of trees,

located further from the observer. However, the size of region could be

relevant, particularly in the initial stage of a scene analysis when one

is searching for large connected regions. Despite the importance of

descriptors derived in the spatial domain, we shall not use them in this

work. Currently available edge finders and region finders are tailored

for large homogeneous regions. In natural scenes, textured areas are

composed of small texture elements. Even to the extent that the boundaries

of small regions are determined, the data structures require unreasonably

large memory, since the boundary descriptions are no longer economical.

The next steps of description of elements and clustering elements of

similar direction, size, color, or brightness, seem prohibitively time

consuming and difficult for grass, pebbles, sand, etc. The one-

dimensional interval analysis might have some utility but is very limited;

combined with other methods such as Fourier description, interval analysis

is potentially useful.

3.2 Texture Descriptors Derived in the Fourier Domain

In what follows we shall need some elementary and well-known notions

of Fourier analysis. They will be reviewed presently.

Consider a real picture function of two variables in a matrix form

g(x,y), where x and y are variables from fixed intervals of natural

numbers I- = {0, 1, »••» Pp-l}. The two-dimensional discrete finite

Fourier transform of the function g(x,y) is then given by

p-1 p-1

F(n,m) - — — J> . > % g{xyy)exp(-2Tri(KH+yiii)/p)> (1)
p x-G y~0

where p = p- = p9 &nd i is the usual imaginary unit.

39



In general, F(n,m) is a complex function, given uniquely by its

power spectrum P(n,m) and phase spectrum PSl(n,m):

P(n,m) = SQRT(F2 (n,m) + F*." (n,m)),

PSl(n,m) = ARCTAN(F. (n,m)/F (n,m)).

From the elementary properties of the Fourier operator it follows

that any real periodic function has a symmetric Fourier image with respect

to the origin. An equally well-known but somewhat more interesting fact

is that the power spectrum is invariant with respect to translation in

the spatial domain, but not with respect to rotation. A trivial

consequence of this property is that the directionality of a pattern in

the picture is preserved in the power spectrum but the phase of the trans-

form is not.

If a function is periodic, partially periodic, or almost periodic,

then its Fourier transform compresses the data considerably without great

loss of information and the relational features derived from the Fourier

image form a good description of periodic or almost periodic patterns.

As we have pointed out above, the power spectrum contains the

information about the form of a periodic picture function restricted to

a window. The phase spectrum, on the other hand, represents by and large

the locational (positional) information in a window.

We said also- tha t directionality Is preserved In the power spectrum.

This fact allows us to Infer some gross shape properties. We are able

to distinguish directional and non-directional components of texture.

For this reason, It Is useful to transform the power spectrum from a

cartesian coordinate system <h,ra> Into a polar coordinate system

<r» m >. Then In each direction cp , one can regard P(r, cp) as a
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one-dimensional function P •(*•)• Similarly, for each frequency r ,
to

function P (cp) is a one-dimensional function. Thus, the description

of the texture depends in this method on the form of the pair of functions

Function P (cp) determines whether there is a directional or non-

directional component. If function P'(CD) is flat then the corresponding

texture is nondirectional. If it has few distinguished peaks, the texture

is directional. One peak leads to a monodirectional texture. Two peaks

under certain constraints lead to a bidirectional texture.

The nondirectional texture could be homogeneous, noisy or blob-like.

Function P (r) distinguishes between noisy and blob-like texture.

The noisy texture corresponds to a flat nonzero function P (r)« . Whereas

9
in the case of the blob-like texture, function P (r) will have some

Cp

peaks. The homogeneous texture corresponds to an almost constant function

P (r) for rX) and with a large value for P (o) • In the case of
CD CD

a direct ional texture function P ( r ) wil l have peaks similar to the
cp

case of blob-like texture- The frequency in the maximum of P (r )
q>. max

wil l roughly correspond to the distance between two para l le l s t r ipes (in

the case of directional texture) and to the distance between two blobs in

the case of a blob-like texture.

We have shown the in terpre ta t ion of function P(cp). Now we want

to analyze a further possible in terpreta t ion of function P(r)« Consider

a monodirectional pattern that appears as a one-dimensional (in the

par t icular direct ion) square wave function shown in Fig. k



Fig. h

Denote the replicative symbol 0)(x) and the wave form by f(x). The

periodic function in Eig. k is expressed as a convolution of f(x) and

a)(x), thus

F(x) = f(x) * u)(x).

The Fourier transform of F(x)

= sine x • a)(x).

v I

Applying the window function of the width w

in the Fourier domain.

appears a'convolution

J(W(x.w) • F(x)) = sine x * (sine x •
w v



This function displayed graphically is seen in Fig. 5

Fig. 5

It is clear that we can measure — , — in the power spectrum

from the function P(r), for every directionality and window size w.

Consequently we can estimate (how well, depends on the brightness function)

the wavelength 2, as before and, in addition, the size of the

smallest element, v. v and I will be parameters associated with each

description. Examples of functions P(CD), P(r) of texture samples will

be presented next. The size of samples is 32 x 3^ points. The points

on the y axis have the corresponding values of the functions P(cp) and

P(r) respectively. The points cp (on the x axis) in the graph for function

P(cp) represent the value (x-1) * If , for x « 1, 2, ..*.» 16. The points

16

(on the x axis) in the graph for function of P(r) have just the

actual values of frequency r « 1, • •.«, 16.



Each pair of functions <P(cp), P(r)>will be described by some

parameters, listed in a table. Below is the list of the parameters

and their description.

NAME: The natural language names of the texture samples.

DESCRIPTOR: A hypothetical description of the sample according to

some criteria (thresholds) applied on functions <P(cp), P(r)>.

MAX P(9): The maximal value of P(cp) .

cp : Is such cp that P(cp ) = max P(*P).
max ^ lTmax; v J

WIDTH: The distance between cp-, , cpo, where cp < cp < w and
x. <— JL m a x C—

P(cp ) = MIN P(cp), the left side with respect to P(cp ) . P ^ ) = MIN
JL max <£.

P(cpo) ( t h e r:i-ght side with respect to P(cp ).

DIR: If the descriptor is directional, first perform a fan filtering

in such a way that the fan filter Is centered in cp and then findJ Tmax
m

MAX P(n,m) = P(n , M ) and thus compute DIR = a r c t g - ^ ^ . I f the
^ J x max maxy * a n

max

descriptor is nondirectional then just find

MAX P(n,ra) =P(n , m )v * J K max maxy

and compute DIR as above.

RO: Is the wavelength computed from the maximal point energy.

P 2
RO = window s i z e / / / n~ 4- m

max maxfi
M : is the mean value of function P(cp).

v : i s the variance of

MAX P{r) : Is the maximal value of P ( r ) .

r : Is such r that P(r ) = MAX P ( r ) ,
max v matx^ l x

WIDTH r: Is the distance between the center of P(r) and the

threshold value of the envelope of P(r).
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M :
r

v :
r

v:

I:

is the mean value of P(r).

is the variance of P(r).

is the element size, = window size/width r of the envelope.

is the spacing between elements.

= window size/frequency of the first peak.

In the case of bidirectional texture a pair of values is listed

for the following parameters:

MAX P(cp), cp , width cp, DIR and RO •
max

The texture names are on the top of each picture displaying the

corresponding function P(cp) and P(r). The actual samples of texture-

lines, wood, circle, and sand - are in Figures 1^ , 15, 20, and 21*

The texture water is a sample from the upper left corner of the picture

in Fig. 1.

Fig. 6 and Fig. 7 a display functions P(cp) and P(r) of textures,

parallel lines and water, followed by Table of Parameters. For the

identification of parameter v we have used the directional part of the

water picture. The filtered alternative of functions P(r) and P(cp)

for water is in Fig. 7b*



Fig. 6



Fig. 7a

Fig. 7b



TABLE 2

NAME LINES MATEE

Mkl P(tp)

max

WIDTH t?

DIE

10

l.-y? 1.57

It:

V

MAX ? ,r(

max

WIDTH r

IV'.:

11

1':'. it".



of MAX P(cp) and ^ ). The water waves are broken and thus they form

parallel broken lines organized in random fashion. This shows up in

the function P(r) of water texture. That is rather flat in comparison

with P(r) of the texture of lines.

In Fig. 8 we display a sample of grass from the scene in Fig. 1.

The upper left window in Fig. 8 is the original sample, the upper right

window is its corresponding power spectrum, the lower left window is

the power spectrum after a high pass filter and the lower right window

is the resynthesized original picture after the high pass filter.

This example is presented in order to demonstrate the necessity

for separating the slow changes from the real texture pattern. The

rationale for this is that most of the objects (texture elements) tend

to have the same reflectivity and the lighting varies smoothly, thus

shading in the Fourier domain generates a low frequency component.

Functions P(<p) and P(r) of textures grass, wood and canvas

are displayed in Figs. 9a, 10a, and lla respectively. The analyzed samples

from grass are in Fig. 8, fro© wood in Fig. 15, and on canvas in Fig. 18.

For the sake of considering the main directionality and thus to be able

to determine I and v we display the filtered alternatives in Fig. 9b

for grass, Fig. 10b for wood, and Fig,, lib, and lie fox canvas (for one

directionality). The table of their corresponding parameters is below:

I





Fig. 9a

Fig. 9b
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Fig. 10a



Fig. lla



Fig, lie



TABLE

NAME
DESCRIPTOR

MAX P(cp)

CD

max

WIDTH CD

DIR

RO

V
CD

MAX P(r)

v

WIDTH r

M
r

V
r

I

I
max

V for MAX DIR 1 1 1.8

COMMENTS: First of all, notice that grass Is described as bidirectional,

contrary to what would be expected. The reason Is that even after high

pass filtering, there is still significant slow change left

(wavelength = 16) which forms the second peak. One needs to know more

about the scene (its illumination^ continuity* context) In order to

remove this kind of slow change. It Is impossible without further

knowledge about the area to handle this situation appropriately,

GRASS
BIDIRECTIONAL

<8-35, 7-5>

<5, 15>

<69 k>

<0.l+63, 2.03>

<1U.31> 16>

k.16

0.53k

5.62

k

16

U.52

0.32^

<8,l6>

8

WOOD
MONODIRECTIONA.L

6k

Ik

5

2.55

8.87

32.8^

3.76

kk.e

3

16

31.1+6

2.51+

10

CANVAS
BIDIRECTIONAL

<108, 80>

< l , 9>

<h, 2>

<1.57, o>

<165 8>

1+9.3

5.i+6

120.3k

k

9

kl.lk

1.6k

<L6, 8>

8



because the same component (wavelength = 16) which in the case of grass

is undesirable, in the case of the canvas texture is an essential part

of its description.

Function P(r) in case of grass and wood shows similarities which

suggests that both of these textures have some noisy, irregular backgrounds.

On the other hand the canvas texture displays signficant peaks in low

frequency and decreasing power in higher frequencies.

For more detailed analyses of P(r), one has to separate the

different directionalities. This is what we have followed up in Figures

9b, 10b and lib and lie.

The last two examples of texture of blobs and sand demonstrate

the differences between nondirectional textures. In Fig. 12 and 13 are

functions P(9) and P(r) of samples of texture recorded in Fig. 20

and Fig. 21 respectively. Table 6 contains their corresponding parameters.

The P(cp) is a flat function in both textures as to be expected.

P(r) in the case of blobs has one signficant peak, whereas in the case

of sand P(r) is approximately flat.
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Fig. 12
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TABLE

NAME
DESCRIPTOR

MAX P(cp)

max

WIDTH 9

DIR

RO

\

V
CD

MAX P

V
max

WIDTH

Mr

Vr

9

V

(r)

r

BLOBS
BLOB - LIKE

82

13

3

2

11

60

2 .

120.

3

6

6 1 .

6.

10

2 .

.26

•35

• 31

.2

.72

.1+6

•70

•52

.6

SAND
NOISY

73-7^

13

3

2.35

5

52.8

2.1+8

75-8

6

12

5k.k

3.18

5

1-3

We must make some comments about the differences between

continuous and finite discrete Fourier transforms. The continuous

Fourier transform exists for every function with finite energy, while the

finite discrete Fourier transform exists for any function. Our interpretatio

will be based on the continuous transform and the actual computations on the

discrete transform (fast Fourier transform). The discrete transform is

really a Fourier series. A continuous Fourier transform is rotatioaally
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invariant (except for windowing effects) while a discrete transform has

distinguished axes along the coordinate axis and the diagonals. Thus

a directional image has a continuous Fourier transform in a very narrow

band, while the discrete transform has a narrow band transform only for

directions along the preferred axis. There is a corresponding difficulty

in defining fan filters which we have not succeeded in solving. The

difficulty with narrow fan filters is demonstrated in the following

example, a line with directionality 8 = 22 1/2° in digitized form,

with a window size of 8 x 8 points. Due to the sampling problem the

line is represented by only four points instead of the desired 8 points.

The values of the corresponding power spectrum are in matrix 2. From

inspecting the values in matrix 2 it is clear that there is a spread

of energies in different directions besides the expected direction

6' = 112 1/2°. This effect is due to poor sampling. For ©ore details

see Huang (I97O)*

MATRIX 1 f(x,y) MATRIX 2 P(n,m)
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All the real values in F(n,m) have to be divided by coefficient 6k.
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One should make a note of a fairly important though elementary

mathematical fact, namely that the Fourier transform does not preserve

functional restriction. More specifically, if g(x,y)|w denotes the

restriction of the image function g(x,y) to a window W (so that

g(x,y) is truncated outside W ) , then

F[g(x,y)|w] = F[g(x,y)]jW

is true for every W only when g(x,y) is periodic with period equal

to the size of W. Thus a Fourier image of a truncated function,

truncated outside a window, will in general depend also on the part of

the function g(x,y) whose domain is outside W. What this means

practically is that certain texture elements could be split in half by

windowing and as a consequence, an improper interpretation would be

derived. This problem can be partly compensated for by overlapping windowing

Human perception allows us to discount smooth changes in shading.

This fact allows us to separate shading from edges. The Fourier transform,

on the contrary, reflects not only edges, but also slow changes which

are ignored in human visual perception. Perhaps the simplest way of

demonstrating this is by recalling the basic dictionary of the Fourier

transform. We find that a rectangular impulse is transformed into a

2
sine function, a triangular impulse into a sine function, and a cosine

signal is transformed into two impulses. We are accustomed to regarding

images in terms of homogeneous regions with sharp boundaries, and to

describe elements by brightness and color contrast and outline shape.

In the Fourier domain, these become jumbled in a way that is only

approximately resolved by our heuristics; thus they are not always

usefully described*
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In addition, the texture elements (their shape) aad their

organization are also jumbled together in the Fourier domain. So, for

instaace, dots and small segments of lines organized in parallel liaed

fashionf will be described equally as aoaodircctional texture. Thus

they are not described in full detai ls . As wm said before, for aore

detail , one has to apply the spatial, local operators.

For areat of a scene for which ftoaogeaeons regions arc too small

for u»€ of usual edge^flndltig and region-growing technlc|oti, the Fourier

transfora provide* useful and cosipact descriptors* Many of the examples

of textured regions shewed linaar texture elements, crudely aligatd,

and with roughly unifons size and spacing. These shape descriptors

have natural counterparts in the Fourier doisairs. Directionality in the

spatial d&sain corresponds ts a directional transform, and unlfons spacing

corresponds roughly to dominant frequencies in the Fourier dsnain. Howev&r,

a Each ssore coianioa rinitornity in the spatial d©nsinf constant size

elessen18 randomly distributed, do%& net have a clear counterpart. Thtre

has been rsuth oversimplification of the uac oi the frequency spectrum*

In reality, it appears as though it ha« very tt%tncte4 ut i l i ty , boŵ

that 'utility corresponds to « fev descriptors wt ich havo prisuiry

itJpart-ance i?\ h\:min perception. Sirxc- ^>at du$cripi^T$ &

d^r^i.n cescriptor* not cflrrctl^ rtiatirc t**? the tram form,

% ; t h C ' i w i t



and their organization as directional opposed to nondirectional. It

will fail to detect some detailed description of the shapes of elements;

as well the Fourier technique cannot be very local. So the spatial

technique can complement the Fourier technique, being more local and

therefore more accurate in some sense.

All this concerns black and white pictures. In colored pictures,

each point is represented by at least a three-dimensional real vector;

the coordinates could represent either the brightness through red,

green and blue filters (possible other filters), or their normalized

values (R/R + G• + B, G/R + G + B, B/R + G + B) , or perhaps the

chomatic triple (hue, brightness, saturation).

It appears that color is a local property, meaning that the color

is determined by local contrast (with global constancy judgment). The

Fourier transof ran is an integral operator, that mixes up different

local properties consequently. Direct application of the Fourier texture

operator on an area is not useful for color in the general case, however,

under certain constraints, one can suggest some applications of the

Fourier operator on colored textures.

The simplest case is when the color is constant and the texture

is encoded in the brightness function. Examples are grass, water, brick

wall, etc. In this case the Fourier operator is used in the same way as

in the black and white picture*

The second case is when the texture is formed by only two

alternating colors. Here, let us assume the representation of the color

of a point as a vector whose coordinates will contain the brightness

of the point taken through red, green and blue filters respectively•
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Since we have only two colors, clearly, the brightness functions will

be correlated or antl-correlated with each other. Fourier analysis of

functions could giva a re«toi»bly go«3 description of the texture in

terns of the contrast of the color cewpooents. This is analogous to

spatial doswin analysis*

This discussion points out a crucial «re«kftesi of Fourier transform

techniques in iealiag with color.



3-3 Concrete Texture Descriptors: Local Descriptors

According to our theme, a texture is characterized by a structure

of texture elements and their spatial distribution. Each descriptor is

associated with a procedure and a set of geometric measures.

The descriptors may be derived from parameters that come from the

spatial and/or Fourier domain. In fact, often we will have to deal

with two different measurements of the same parameters (e.g., length,

width, direction), one performed in the spatial domain and the other in

the Fourier domain. Here we seek a common interpretation of these

measurements.

The input data from which we derive the local Fourier parameters

is the power spectrum of the picture over every window. Since we are

able to describe only what we measure, the technique that we implement

will determine the system of descriptors we can use. In particular, the

technique of Fourier analysis leads to the following system of descriptors:

monodirectional, bidirectional, blob-like, homogeneous, and random. Using

the input data of a local area one may expect to have more than just

one descriptor.

Next we discuss the particular types of local descriptors we shall

be using in our work.

(a) Monodirectional Texture

In the spatial domain, a monodirectional texture is approximately

invariant along seme direction • An example of monodirectional texture

is a system of parallel stripes. In the Fourier domain the spectrum

is approximately zero along the direction of near invarlance, and is

concentrated along the direction normal to that. Me take this description
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to be adequate for spatial domain elements with some curvature or

superimposed on a non-directional background. It makes sense to describe

as directional a spectrum in which the dominant energy is along one

direction, and where the directional peak is narrow.

Next we proceed to give a qualitative description of an algorithm

that provides monodirectional descriptors. As alluded to above, this

algorithm is based on the assumption that the texture will show concentration

of energy in a certain direction of the Fourier domain. Thus we want to

find a peak in the function of energy vs angle. This function is a

sum of energies over a fan with a certain angle y anc* direction cp.

Remember that the data structure is a matrix, and thus only four

directionalities (horizontal, vertical, and the diagonals) coincide with

the matrix unit invariant direction. The fan technique permits one to

include also the points near the investigated direction. The peaks of

the function are defined as its local maxima, greater than the average

value of the directional energy function. The width of a peak is defined

as the distance between two consecutive zero crossings of the directional

energy function minus the average value. The algorithm used two additional

parameters, namely, y an<* E^ • > where the latter must be greater

E - E,.
d x r TT

or equal to 2, while the former should not be greater than . The
10

angle y is the measure of width of the peak and i t s threshold value

corresponds to the limit of a useful directional description, E-. is

the energy in the angular stripe (fan) and E is the total energy. Its

threshold corresponds to the condition that the ra t io length/width must

be at least two*



The algorithm determining the descriptor derived in the Fourier

domain is given below:

Algorithm Monodirectiona1:
W.D/2

(1) Form a function P (9) = \ P(r,cp), where WD is the window

size.

(2) Find the number n of peaks of the function P (co) .

(3) If n = 1, then check the magnitude of the peak

Max (P (cp)) = E_. ,
^ r v r / / dir

and go to step (h) else mark the window by message: "There is more

than one direction, do further analysis11, and go to the end.

(k) If EJf I (E-E_. ) > 2 , then check the width of the peak which
dixr dir

corresponds to the angular s t r ip y a n c* continue in step (5) else mark

the window by the message: f*There could be blob-like or a noisy texture

here, do further analysis", and go to the end.

(5) If y ^ TT/lO, then mark the window: f1Monodirectional texture"

and go to the end else mark the window: "It is a monodirectional

texture with nondirectional components" and go to the end.

(6) End.

The power spectrum along the direction of maximum power is the

power spectrum normal to the invariant direction. In the spatial

domain humans characterize these profiles by step functions.

la the Fourier domain we can find the approximate wave length

of parallel strips (distance between two neighboring s tr ipes) , and

the width of stripes from our previous analysis. One way of identifying

width in the spatial domain would be to use one-dimensional interval



analysis along a direction. This technique could be used also for more

precise localization of monoclirectional textured edges than one can

achieve in the Fourier domain. The interval analysis method has not

yet been implemented.

The above algorithm has been implemented and tested on examples.

A sample is shown in Fig. Ik and Fig. 15•
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In Fig, 111- we have a texture of parallel lines and in Fig. 15 we

have a texture of parallel strips (wood grain). In both figures the

upper left pictures show the original textures, divided into four

windows (each window is of size J2 by 32 points). The pictures in the

upper right corner are resynthesized textures, produced according to

the description. The pictures in the lower left corner show the power

spectrum of the original textures. Note the two different directionalities

in the lower quadrants of the picture. Here the diagonal directionality

corresponds to wood grain pattern and the vertical directionality

represents the shading effect (slow changes in brightness).

(b) Bidirectional Texture

The descriptor "bidirectional11 is associated with two sets of

monodirectional stripes, described in the monodirectional texture. This

description belongs to the spatial domain and does not have a unique

Fourier counterpart. In terms of the power function vs. angle P (cp)

it corresponds to two distinguished peaks of P (CD), while the converse

is not true.

If function P (cp) for <p from <O,1T> has two distinguished peaks,

then it could represent at least one of the following two cases in the

picture (its window);

(of) two different directional textured subregions are adjacent

(are next to each other) in one window, or

(P) two different directional regions are superimposed (one is

on the top of the other). . •

The problems discussed above are shown in Fig. 16 and Fig* 17 and 18

where the pictures ia Fig* 16 show the case (a) and the picture in
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Fig. I7 and 18 exhibits the case
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Fig. Ik
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Row

1

1

1

2

o
I—

2

3

3

3

Column

1

2

3

1

2

3

1

2

3

Description of Pictures in Fig. 16

Four windows, where each contains horizontal

and/or ver t i ca l s t r ipes .

Picture <1,1> after directional f i l ter ing

process, performed in every window separately.

The "complement11 of <1,2>.

The power spectrum of <1,1>,

The phase spectrum of <!,!>• Here the phase is

transformed from the range <-TT,TT> to <0,2Tf>.

The absolute values of the phase spectrum of the

picture <1,1>,

The power spectrum of picture <1,1> parametrized

by the absolute value of the phase in range <O,ff/3>*

The same as in <3,1> but this time with range

<n/3> 2ir/3>.

The same as in p ic ture <3,2> but with range

<2TT/5>T1>.
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Fig. 16
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Fig- I?

Fig. 18
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The* description of pictures in Fig. Tf i s the same as that of

pictures In Fig* F4*» except in Rt*w 1 and Column lf where we have four

wintlows, each containing a Huperponi I »*»n ol horizontal and vertical H*M*M,

Let us concentrate for a moment oil the window* oi the i i rgt und

third quadrant of picture <1,1> In Fig* 1?. Each of the windows

is a composition of horizontal line textures and ver t ical line textures.

I t i s impossible to distinguish the cases of separate ;^) frcra overlap

(p) in the power apectrwa. Usiag the phase spectrum one would hope to

separate the region containing the horizontal lines froa the region

containing the ver t ica l l i n t s , or out would at least hope to be able

to identify their positional r e la t i eash ips . Unfortunately, i t is not

known at present how to carry out the separation. To owr kaowliiiiget no

one lias yet u$ed the pSia»« spectra© in a meaningful way.



Fig. 19
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The figure* In Fig. 19 show the vector display of the complex

Cunction Fut̂ fnj in a direction \ ; In our case it is in horizontal

and vertical direction for each -Cn,n£># The direction of the vector is

equal to the phase, and the length of the vector corresponds to the

value of the power* As one can see from the pictures, there is 00

evident diatinctiwa feature which would describe the relationship Left*

Right or Eight-Left*

We have shown above that in spite of the nonuniqueness of the

representation of bidirectional textures in the power spectrum, using

decomposition techniques,, one cart construct a suitable algorithm for

iden t i f i ca t ion purposes*

We shall soon give such an algsyiihzi. Kc:*t*vrei% be i ore* *-e <!;*» that ,

we vant to paint ot:t that the osn&in c : val id i ty ei ti:«; para-xtcrs

associate?;; with tri& c«?*3criptor ^ given bv the ;'.2^i;? »:»i va l id i ty cf

the parair&ters use:* : :̂ r ^.ono-iirectiona! t ex tu res , except that the lova*

^nJ ;..ppt:r bouau^ry ai" ti Kj-; now c-)ir^t?c fre^ ,•"** tc ->*,"* •^>*

H;)HwV£f, the ptii-ks are ."U: lined ; r; the £anx ua} as w^s a-'r;*-̂  i,n :H^

^H^ :

'.-.c c ,;J r

?' ' • • **£*.. ' '4

? ^ .

: : * :i

I"1



{;;) P a r t i t i o n region R Into four equal ly large subwindws

Rj , R,|f R ^ and R^.

(k ) Check each subwindow R, for i » l , , , * , ^ , whether it Is a

b i d i r e c t i o n a l textured region or no t , using the algorithm "Bidirectional".

If the answer is yes , then s e t MR. On, otherwise se t MR. Off*

(h) If MR. a re On for a l l i* l f •••,)+ then describe the given

window '^region R) as a " b i d i r e c t i o n a l t e x t u r e " and go to the end, e l s e

go to s t ep ( 6 ) .

(v) If MR. a rc Off for a l l i » l , . , . , ^ and a l l the subwindows

are monodlrec t ional , then descritx? the corresponding region as "Two

monoiUrectional t ex tu res with d i f f e r e n t d i r e c t i o n s are adjacent" and

go to the end, e l s e Issue the rneisage: ^Further teKture loca l i za t ion

is necessary t f ami go tu the

Thi"\ -'iehcript^r I »* a^:<i iated with blobi and nonlinear

t r ;hu.- i ^r * It shxild ?<• -%-̂ :i,';: that thtsfe two C0npuri€at» go together

i :v ri*H'*r t.:-st it ij :^* ^ u i i l c l ^ n t to nave bl;:bs «-t.s te:<tfin?

"-,-•?- !'3r jrtvrr-a,-- - '':;,/*>•]••*, ^ s c r i p t ion. For iri'itaneo, blc*h& 3ft

r:,: * >.v;-.! *-:.ivf % c: r**c * * r1^ ;̂ tcxi^ri% «n«J the lM&blik.«mi>$sf wil l be



approximating circle in the spatial domain.

It would seem logical to pass from mono- and bidirectional

textures to tri-, tetra-, ..., n-directional textures, before turning

to blobs. However, it is very hard to interpret these higher order

directionalities in the spatial domain.

The blob-like algorithm describes blobs and their nonlinear

distribution. It is based on the assumption that patterns which do not

have directionality, noise, nor homogeneity, are some sort of blob-like

textures. In the Fourier domain this assumption corresponds to two

conditions. First, P (cp) is constant and, second, P (r) is not

constant.

Algorithm Blob-like:
WD/2

1. Form functions P (cp) = \ P(r,<p) and

r=d

If

and then compute their respective mean values

2 TT

cp = 0

2 WD/2

M - Y~ P (r) ,

where WD i s the window s i ze .

Next compute their variations
2 ff

-TJ1T 5 1 rt (
p

r(<p) " M
r )

© =s 0 r

—
WD
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2. If M > CN and M > CN, then go to step 3 else print

the message: flThe structure is on the level of the camera noise11

and go to the END.

3- If v > CN, then go to step 7 else print the message:

"All energies are equally distributed in every direction11, and go to

step k.

h. If v > CN, then go to step 5 else print the message: "It

is a noisy texture" and go to the END,

5. Find Max P (r) = P (r ).

cp cp m a x 7

If r < 2, then print the message: flThere is only one texture

element"; go to step (6) .
6. Form a new discrete function l ( i ) from P (r) in the

cp

following way:

Assume that P (r) is a combination of sinc(r,cp) type functions*

Find a l l the local maxima and a l l the minima of the function P ( r ) .

For every local maxinum r . , there are two surrounding minima r, . ,
J max 1* ° l i*

ro . such that
r , . < r . < r^ . , where

l i max i 2 i '

r = r12

If l ( i ) is a convex function, then print the message: flTexture elements

are blob-like" and go to step 7, else print the message: lfiThere is an

unidentifiable texture11 and go to END*

7. Assume that P {cp) Is a combination of sine functions. Find a l l

the local maxima of the function P (cp) and If their number Is greater
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than 2 , issue the message: "The blob-like texture has some directional

features11, else print the message: ''There is no blob-like texture".

8. END •

The above algorithm has been tested "on an example shown in Fig. 20

which should be self-explanatory.

Fig,, 20



(d) Noisy (Random) Texture

The spatial case:

A random distribution of dots (pepper and sal t pattern) forms

a model of noisy texture. This model describes the random spatial

organization of dot - texture elements versus periodic or regular

distribution of texture elements.

Fourier Case:

The texture in this model corresponds to a homogeneous

distribution of energies in the power spectrum.

Descriptor "noisy" is associated with certain parameters

(obeying sane threshold constraints), explained below:

EL will denote the rat io of the size of the one-dot-texture

element and the size of a real texture element. The inequality

EL < WD/I4 + CN means that a texture element with area of two dots

and WD (window size) of 8 x 8 points will s t i l l be a dot-texture element,

ED is the parameter of random distribution. ED is the ratio

of

EM and M , where _,
r 2 71

EM = MAX Abs(P (cp) - M ) and M = —
m r r r WD

cp « 0 •

The value of ED is set to be ED' < 0.1 + ON.

CN is the noise of the TV camera.

Algorithm Random:

1. Form functions P (cp), P ( r ) , M , M , v , and v as they
r cp r q> r cp

were described in the algorithm blob-like.

2. If M < CM or M < CN. then write the message: flThe texture
r - cp -
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s t r u c t u r e i s on the TV camera noise le\*el* check if i t is a homogeneous

texture1 1 and go to END, e l se go to s t ep 5*

3 . i f v > El), then wr i t e the rcessafte: 'Vrusre Is no ramim

d i s t r i b u t i o n ' 1 am! go to END, else* p> t;> »tep !* •

km If v > EL, then wr i te the PWBsn%e: f*There mi ghi be a blct>~

l ike t e x t u r e " and %*> to BND, e l s e wr i te the* "Rcasa^t;: '*I'he toxtwro is m

randomly d i s t r i b u t e d clot p a t t e r n " .

p ic tu re i " Kite lef* ^p;^^r ...:;,: r

the r i^n t upper *;•;:*« r Is t'.-. ; -*

of the ur i



(e) Homogeneous Texture.

A homogeneous region of uniform brightness (in black and white

picture), color (in colored picture) forms a model of a homogeneous

texture.

The Fourier counterpart is represented by a Dirac function

with its center in the zero point of the coordinate system.

The only threshold parameter in this model is the level of

the TV camera noise (CN).

Algorithm Homogeneous

1. Form a function

TT WD/2

noise (r,cp) = 2 ^> ^> P(r,cp) - P(0,0)

cp = 0 r = 0

P(0,0) is also called the DC value.

If noise (r,cr>)< CN then write the message: "The texture is homogeneous11

else write the message: "The texture is not homogeneous11,

END.

An additional parameter - the average value of the intensity

of light over a particular window is associated with every description

of a homogeneous texture.



The following table summarizes the texture descriptors we have

implemented:

Table 5

DESCRIPTORS

Monodirecti ona1

Bidirectional

Bloblike

PARAMETERS

DIR - direction of lines

ww - distance between two parallel lines

Y - a measure of straightness of a line

t - a measure of "thicknessff of a line

DIR^ DIR2 -

directions of lines 1-, 1 , respectively.

Wl* W2 "

distances between two parallel lines in two

different directions DIR- and DIR.

V Y2 -
measures of straightness of lines 1-, 1 .

t-, t - measure of "thickness11 of lines

1 , 1 , respectively,

d = DIR]L - DIR2

Comment: lines 1- and 1 are assumed to be

nonparallel.

R - the distance betweea two texture elements in

direction DIR.



Table 5 (Continued)

DESCRIPTORS

Random ( N o i s y )

Homogeneous

PARAMETERS

EL - a measure of "dotness" of the pattern.

ED - a measure of random distribution

(M + M )/2 - the mean value of "constantly"

distributed energies.

noise (r,ca) ~ a measure of the degree of variation

of the "homogeneous" area.

DC - the average value of the intensity of light

over window W.
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h. COLORED AM TEXTURED REG1WS

In the previous chapter, we discussed procedures for texture descriptors.

This chapter describes the determination of textured and colored regions

and introduces a mathematical d e s c r i p t i o n topological »heafn, to formalize

the region-formiag process* The texture descriptors are u§ed to iortn

regions with similar descriptors* The ragion-growing is low-level in

that it docs not use the context of a world model. It is intended as a

tool for higher level rout ines . The proposed regions function as in i t i a l

guesses a taut isportaat areai of the image. Thus, the routines favor

large regions at the expense of smaller regions f a sort of fll«v of !h#

fishes", the big ones eat the ataaller. Sine* there are few useful

texture descriptors and organisation procedures, this attention to low

level myS.ulcs was <* necessary focus for cr*isr rest^ircii*

The in::>r^a! di.-:t inciiirft between lov-levol and nizri-levc-I processes

refers to thv context which the process takes into aci ^.:nt, ?.Cvi,̂ h!;% *^

raan If>w-!i>vel whers the ccinter.t is local end h*tso,\ :n tlic in&$£, -̂.-c ^y

hij'h-level we rvar* aa rbiect ^pate Interprct^**^ ;- ^';:i;:^ i€pe^-is ;i si-vtral

1 i.i ve 1 >: *? I 'i b:% t ? s c: 1 an ŝn̂  r e 1 & t i ;>n H , g 1 o ba I ' . ¥t w /* a 1 •-" 11 r ̂  a I a r ̂ f r

ill nil m i in i n 1 1 |



our approach to the microscopic one.

As the scanner traverses across the picture in a television-like raster

scan, the local texture descriptors (these descriptors might be spatial,

or histogram, etc., in addition to those we use)over each window

are sent to the program which detects the appearance of similarities or

dissimilarities of the structures, over the given pair of windows. The

knowledge of the existence of similarities is retained together with

locations. All the windows with similar structures are joined together

by a two-way list which is constructed during the scanning process. The

program also detects the break of similarities between two structures and

gives a command to the scanner to scan with windows of smaller size.

When two windows are joined or split apart, different texture names

are assigned to them. Each structure associated with a window is tested

to determine its similarity with other structures or its proper association

with the existing similarity classes.

Region boundaries do not usually coincide with the grid windows, and

hence there occurs both merging of two adjacent areas, and the splitting

of an area into at least two portions.

In this work a set of real life and artificial pictures was scanned

and processed by our program to demonstrate the capability of the implemented

Fourier method. The results of testing indicate that our method is

capable of decomposing pictures into regions, where each region corresponds

to a different texture or color.

In our implementation of region growers, the emphasis was on testing

some of the ideas and not on the efficiency of programming. However^ for

illustration we present in Table 6 the average time and memory load for our

8?



programs. The programs have been implemented on a PDP-1O, at the

Artificial Intelligence Project, Stanford University.

Table 6

NAME AND FUNCTION
OF THE PROGRAM

FANAL.SAI
FAST FOURIER TRANSFORM
AND SEGMENTATION

TEXTUR.SAI
TEXTURE ANALYSES
ON WINDOWS (52 x 3 2 )
POINTS

MIKRQA.SAI
LOCALIZATION TEXTURE
ANALYSIS OF WINDOWS
(8 x 8) -

TREE .SAI
TEXTURE REGION GROWER

COLOR. SAI
COLOR REGION GROWER 1

SIZE OF THE
PICTURE

256 x 128

256 x 128

256 x 128

256 x 128

192' x 128

CPU TIME (min)

i f .15

2.07

12.8

8-0

2 . 0

CORE (k)

39

3k

27

36

22
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k .1 An Algorithm for Finding Regions

The process of localization of structures was described in detail in

Section 3*3* Here we shall focus our attention on finding the connections

between local structures in terms of continuity, discontinuity, and

proximity. The actual job to this effect is carried out by a region grower

that we shall describe momentarily. The region grower can be used both for

continuous textured regions and continuous colored regions* The algorithms

for our region grower use the principle of local constancy whose content

is summarized in the phrase: "Unite connected locally similar areas into

one global one.n Our algorithm uses the notion of a cell which is nothing

but an arbitrary window of the smallest possible size, carrying meaningful

information.

Algorithm "Region Finder*1

1. Set regional index i to 1 and produce a mark R. .

2. Take the first untested cell and call it the first pilot cell

(which thereby is also a pilot cell).

3. Set XSIDE to be RIGHT SIDE, YSIDE to be LEFT SIDE, and XADJ to be

RIGHT ADJACENT.

k. If the pilot cell has been tested for its XADJ cell, then go to

step 8, otherwise mark the pilot cell by a mark signifying the fact that it

has been tested on its XSIDE, and continue in step 5*

5- Find the next XADJ cell. Ask whether this new cell does not exceed

the size of the picture and has not been tested on its YSIDE. If the

answer is NO, continue In step 6, else go to step 8.

6. If the pilot cell and the adjacent cell are similar, them continue

in step 7, else mark the pilot cell on its XSIDE* indicating that it has

been tested, and go1 to step 8..

89



I

7. Join the two cells (pilot cell and the new cell), mark the new

cell by a mark R. and indicate the fact that it has been joined on its

YSIDE. Store the new cell in an array of new cells. Make the cell a pilot

cell and go to step 8.

8. If XSIDE is the RIGHT SIDE, then set XSIDE to be LEFT SIDE, YSIDE

to be RIGHT SIDE, and XADJ to be LEFT ADJACENT and go to step ^. If XSIDE

is the LEFT SIDE, then XSIDE is set to be the UPPER SIDE, YSIDE is set to

be LOWER SIDE, and XADJ is set to be UPPER ADJACENT, and go to step 9. If

XSIDE is the UPPER SIDE, then set XSIDE to be LOWER SIDE, YSIDE to be UPPER

SIDE, and XADJ to LOWER ADJACENT, and go to step 10.

9. Set the pilot cell to be the first pilot cell and go to step k.

10. Take the array of new cells. Take the index j (initially j = 0)

and increase it by 1. If j exceeds the number of all new cells, then go

to step 11, else take the element n. fro© the array of new cells and sake it

the first pilot cell and go to step 3.

11. Zero the array of new cells. If there is any cell in the picture

that has not been yet tested, then increase the index of regions i by 1,

make a new mark R. and go to step 2, else go to the end.

END.
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k.2 Texture Regions

This algorithm has been tested on textured regions as well as on colored

regions. The scanning process is3 for instance, shown in Fig» 22 with

white squares, each representing windows of J2 x J2 points• Fig, 22

displays the boundaries of different textured regions of the picture

shown in Fig. 23, after the first pass. One can see the different sizes

of windows.

Over every window there are several descriptors and parameters.

Since we used several window sizes (32, 16, 8) and some of the parameters

are size dependent, we reduced all descriptors and parameters to the

smallest window size (8). Then the criteria of similarity had to be set.

:•.•••/^ ̂ "-:-./.'li'•'-.r. -.S '.r\rf •>'•' ' ••
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The criteria of similarity are set by the higher level program. In

our work we used two approaches, not exclusive but rather complementary.

One approach used only black and white pictures and did not assume

any previous knowledge about the scene. The similarity criteria were

determined by the camera noise and expected error of the method. The

whole region growing was based only on the similarities of certain

geometric properties described by the Fourier texture operator. The

results of this approach are displayed in Fig. 2^ and 26, where one can

see that while this approach is sufficient for separating regions on

simple, more or less artificial scenes (the rastered cube on Fig. 23,

the cube on a grid surface in Fig. 25, it is not adequate for finding

boundaries of regions of real outdoor scenes. In the latter case one

needs to know more about the scene and thus conduct a directed texture

region growing or texture boundary detection.

The directed texture region growing and/or boundary detection is

the other approach that we used. It uses information gained through a

color region grower. This information directs the application of the

textured operator for two purposes:

One is to look for a common texture where the colors are the same or

proximal. The other is to look for texture differences where there are

colored boundaries*

This approach identifies more efficiently the real regions and their

boundaries. The example in Figure 2j shews the different textured regions

of the original picture displayed in Fig. I» Most of the grass regioa

came out as directional texture. Only two areas (one on the left side and



the other on the right side) within the grass region were identified as

noisy texture, though with the same direction as the directional textures.

It requires further verification of the continuity in those two textures

in order to remove the boundaries.

The main difference between the two approaches is that in the latter

we use the texture operator in a directed way. This means that as well as

applying the texture operator only in certain areas (not all over the picture),

we also have the choice of asking for continuity and proximity in several

descriptors and parameters independently.

Fig. 23



Fig,., 2k
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^ •? Color Regions

Similarly, as for textured regions, the region growing algorithm has

been used for colored regions. The colored picture consists of three

files, each representing the brightness through red, green and blue filters.

We use the normalized values of color for each point (e.g. R/R + G + B,

B/R -f G 4- B) where R,B,G are the intensities through the red, blue and

green filters respectively. As in the texture region grower, here we use

again windows over which the average values of R/R + G + B and B/R + G + B

are computed. The size of the windows depends on the structure of the

picture we have chosen (8 x 8 ) . The windows are overlapped, so that

continuity is checked strictly. The threshold value that determines the

similarity criterion depends on the resolution of the picture as well as

on the window size. In our case, it is set to 2, provided that we deal

with 6 bit pictures. The example in Fig. kh shows the result of the above

described color region grower, applied on the picture in Fig. 1. The original

picture is only h bits resolution, so the threshold has to be different

(0*75) • Otherwise every thing is the same.
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h J\- A Sheaf-Theoretic Point of View of Finding Regions

The geometric analysis of pictures, in particular, partition of a

picture into regions, can be neatly presented in the language of sheaves

(for details see the APPENDIX). From a sheaf-theoretic point of view,

the region identification process is based on an assignment of

structures to windows (the local structure) and on passing from LOCAL

STRUCTURES (over windows) to GLOBAL ONES (regions). Thus, each region is

specified by one sheaf. Over every window, we can have several different

descriptors, thereby different structures. Each of these structures will

partition the picture in a different way. These different partitionings

of the picture, described by different sheaves, correspond to the different

layers of description of the picture. Naturally, the sheaves could be

interconnected through some connecting mappings. The difficulty in making

use of the structure of sheaves in scene analysis is that we usually do not

know the connecting mappings between two different sheaves.

The sheaves constitute a vehicle for checking the continuity and

proximity of structures with respect to some well defined connected mapping.

In a concrete application of a texture region grower, this mathematical

tool has the following limitations:

(i) If the structure is a texture, then it will find the continuity

in the texture, but it will find discontinuity in the texture element.

Thus the smallest window size must be restricted to the size of the texture

elements*

(ii) The sheaf-theory assumes that the structures over every two

windows, which are in inclusion relationship, are related by a connected

mapping. However, in reality the different positions of windows way cause
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false continuities or discontinuities. One has to do several

different overlapped windowing in order to overcome this error.

The contribution of the sheaf point of view to region growing is

that it defines precisely the conditions for continuity and discontinuity

of a structure with respect to some connected mapping. The sheaf theory

shows that if the structures from two (overlapped) windows and their

overlapped part are connected by the mapping, then the union of these two

windows is continuous with respect to the structure and the mapping. It

is interesting that the sheaf conditions are similar to natural continuity

conditions for use of the Fourier power spectrum.

In most of our applications (texture or color region grower), the

connected mapping is the local similarity relationship (it must be an

equivalence relation). Naturally, the theory allows much more complicated

mappings as well as structures.

After this discussion let us present the sheaf-theory more formally •

The topology we shall use is discrete and is induced by certain norms,

taken from the structure to integers. Once the topology is fixed, we

introduce a convenient system of neighborhoods, called windows. We think

of windows as a system partially ordered by inclusion. Procedures which

evaluate the data over the windows assign to every window a structure of

descriptors. When two windons, say v and w, are in inclusion relation-

ship v C w, the corresponding networks of descriptors K and N are

related hj a connecting sapping

p w : N -> M
^v w v •

which essentially restricts the network over the bigger window to a network
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on the smaller window. Since the process of restriction is transitive,

one obtains by this formalization a PRESHEAF associated with the image

function

N = <N .RV>
V1KW

Sheaves are presheaves satisfying additional axioms. A definition of

a sheaf in its full generality requires several additional technicalities.

A more direct definition of a sheaf with a fairly clear picture-theoretic

interpretation is given below.

Thus, loosely speaking, a sheaf is a system of structures over a

lattice of windows, where each structure represents one particular texture.
W

Consider a presheaf S = {S ; (3 } of structures over a cellular space

X, i.e., on the lattice of subsets <Sub(x), c >• Then S is a sheaf over

X precisely when for any family {V. | i€l} of subsets of X with V = fj V.,

i
the following two conditions are satisfied:

(1) Uniqueness axiom: Vi[ g^ (s7) = g^ (&")} => s' = s " ;
i i

(2) Existence axiom: Vi,j[pv i n v (s ) = &, Jn (s )] =>
i M j i ! j J

s?k ( s ) = s ] ,

where s,s; ,s' ' , s es , and i,j,k€l.

j k

The condition (1) says that if the structure elements s are locally

identical, then they are also globally identical. That is elements are

uniquely determined by local data*

The condition (2) says that if we have local data which are compatible,

they actually "patch together11 to form Rlobal data.

The geometric meaning of axioms (1) and (2) is displayed below in Fig.

.'̂. and Fig. 29-
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Grass

(a)

(a)

Fig. 30

Blobs

Fig. 31



5. IOTERPRgTATIOK OF 0UTOOO1 SCEMES,

The main issue in this chapter is how to recognize and interpret

real outdoor scenes of grass, water, »ky f etc.

5*1* Pattern Recoflftitlon Approach,

In an early stage of out research, we tried to recogoi«t texture

utieg * pattern recognition method .'Bajcsy, 197O)« We eoaputed a function

of energy (E) along the frequeacies (f) aad derived a feature vector from this

function* The features were the number ®i peaks, their energies, their

width and their corresponding frequencies* in addition, we char«cttri«td

the function as flat or vlth p#ak«. Th€f»c* feature! were? osed for cia»-

slflcation of the* texture Into classes: gra»»f water, regol*r pattern

{like blobs* brick will) mni unidentified* As an exuatple, the graft and

water had »or# flat fttneti^© thmn the regular patterns. Sumpies of the

function of the energy and the frequency $f textures «>f grass, water,

brick wail and bi«i»i Is displayed in Figs, yi - ,'<%



Each picture consists of two graphs. One is the function (energy,

frequency) computed in the window without any preprocessing (indexed by

(a)), and the other is the same function as above computed from the data,

which was preprocessed (indexed by (b)). Preprocessing, in the case

of grass and water, was a high pass filtering. The purpose of the

preprocessing was to eliminate the effects of shadows on grass or water.

For the regular patterns, the preprocessing consisted of a low pass

filtering. The purpose of this filtering was to enhance the main fre-

quency components of a regular pattern and suppress the noise.

By this method we could distinguish well the regular patterns (or

man made patterns) from the natural textures encountered in outdoor

scenes. It was more difficult to distinguish the water from the grass

unless the main frequency component was sufficiently different. The

training feature vector was extremely sensitive to differences in how

the picture was taken, in particular, the distance between the observer

and the scene, and the orientation of the observer (whether he is on the

ground or in an airplane) with respect to the scene. This method did

not consider any corrections for texture gradient. It simply classified

sane areas of a scene into seme given classes of textures.

We could have improved the feature vector using further features

similar to Lendaris* and thus enlarged and refined the classification

procedure of texture. We did not do it for the following reasons:

(i) Feature vectors offer very specific and rigid description of

a texture, which is an obstacle in finding continuity of

textured regions unless the texture is a very regular pattern

without any features such as texture gradient* Naturally, one
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can construct feature vectors less specific, but then the

sensitivity for the differences between two different textures

will be lessened, which in general is not desirable. To sum

up, in the texture region finder one needs to have a flexi-

bility in choosing features for grouping or discriminatory

purposes. One also wants to have symbolic descriptions with

some parameters as opposed to only numeric description (as in

the feature vector). The symbolic description (if properly

chosen) is invariant with respect to several metric (scalar)

features and thus it represents a certain abstraction which

is useful for recognition purposes.

(ii) The classification process of textures into some classes besides

feature vectors uses some distance measurements between the

training feature vector and the sample feature vector. This

process does not consider any topological properties of windows,

namely connectivity, continuity and proximity. Furthermore,

metric description of a real texture is not sufficient for

identification purposes. For instance, grass is identified

as grass not only because of its color or the geometry of its

texture but also through its spatial relationship with other

objects on the scene (e.g. grass is always on the girou&d,

below a sky* etc.).

A different approach had to be sought for describing textures; an

approach that would give symbolic descriptions of a texture together with

some parameters and would find continuous regions with respect to their

descriptions. In Chapter J we have described the texture operator that
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produces such a description. This operator can function on different

window sizes. The large windows capture the global textures, whereas

the small windows are used for recognition of fine texture that in the

large window is not noticed. The continuity and proximity of some struc-

tures are the basic properties used in a region grower. So far, we talked

mostly about the texture structure. However, the structure that forms

a region could depend on many properties, such as color, shape, size,

and others.

5-2. Texture Gradient.

Many elements of the world are made up of texture elements of a

constant size, (grass, brick walls, wheat, water waves). The apparent

size of texture elements depends upon distance. Although there is a

chance for mistake, it is natural to interpret consistant variation in

apparent size of texture elements as a measure of relative distance*

If there is little variation, the interpretation is that the surface is

everywhere approximately at the same distance from the observer. Such

surfaces are nearly perpendicular to the line of sight and are called

frontal surfaces. If there is a systematic variation of apparent size

of texture elements, smaller elements are assumed further away. Such

a texture gradient suggests that the surface is longitudinal, that is,

along the line of sight* The presence or absence of a systematic tex-

ture gradient gives a rough indication of the angle, curvature, and

relative distance of objects. The role of texture gradient In human

perception of depth has been described by Gibson (1950)•
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eye (camera)

Fig. ^

In Figure 3*4- , surface AB is a longitudinal surface and surface BC

is a frontal surface. In the image there exists a gradient of texture,

from coarse to fine along ab, whereas in the image, no such gradient

occurs along be, and the texture is uniform throughout.

The texture gradient can be used as a measuring stick whose scale

we don't know, but which gives us relative depth estimates:

B is twice as far as A.

For familiar surfaces for which we knew the texture element size, the

scale of the steasuriî g stick is known, and we have an estimate of absolute

distance (provided we have an estimate of the surface angle with regard

to the observer's i»age plane - we shall show soon that we can determine

that angle). Since the observer knows his orientation with regard to

If*



gravity, by assuming a level ground plane, he can estimate the distance

of areas near his feet with reasonable accuracy. This helps in estab-

lishing absolute size of grass and other textures on the ground.

There is one reasonableness condition on texture gradients. The

apparent size of texture elements should decrease toward the horizon.

That is, we don't expect large nearly level overhangs, above us, and

for opaque surfaces below the horizon, we must see decreasing apparent

element size toward the horizon.

The projection of a longitudinal or slanted surface on a picture

plane is obtained by perspective geometry. The principles governing

such a projection are as follows (See Fig. 35 )•

Image Plane

Fig. 35
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d *cos
R
1 fd

cos 9*

d -cos
& ^2 for small 01 , 0O,

fd/cos e2 ^
cos 0- ^ cos 0

\ Ri

From the similarity of two triangles follows

fd-( tan 92 - tan 6^) fd-cos 92

For small (6 - 0]L ) , R, = R + dR

dR = g* tanor=( tan 0^ - tan 0^) R^ tan a

Now let us define a fractional (Gradient)

€ _ Fractional change in elegeiit B±ZB (jwa^ei)
Baseline in inage

V'52
t
 + B2) fd (tan 9^ - tan ©t)

where 8116O
 are texture element sizes in the image*

After some approximation we obtain formula:

tan of.e = -~w^
Rephrasing the formula in terms of angles (on retina) instead of length

on retina, we get:

€ l m - tan a.

Thus, we can calculate the angle with respect to observer.

Since the observer knows his angles with respect to gravity and he
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knows the angle with respect to the observer, he thus knows the

angle of the surface with respect to gravity.

Then, the texture element in the object space can be computed as

follows:
R

fd-cos a

How sensitive are estimates of the distance to the assumption that

the ground is level?

Consider Fig. 36 •

Horizon

Ground Plane

Fig. 56

We want to calculate the distance from observer to the ground for

level and non-level cases. 6 is the angle between the horizon and the

observer view. And a is
 t h e a n « l e o f t h e s l a n t e d surface.



Then S
1 = 6

S 2 6+ a

is the ratio between the distance S, and the distance Sp, which is

the distance to the level surface. The formula shows that there is a

fairly strong dependence on a> except for small distances.

As an example of the texture gradient and its recognition, we

present a picture of the ocean (See Fig. 37); without recording the

texture gradient we find a partition of the picture into several regions

(See Fig. 38). All regions are described as monodirectional textured

regions, with the same directionality but with different wave lengths.

However the wave length changes linearly in a vertical direction across

the picture. (From the bottom of the picture the wavelength = J2 to the

top of the picture where the wavelength = 8)• Thus, by recognizing the

texture gradient, we recognize the whole picture as one textured region,

displayed in Fig. 39 •
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Fig. 37
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Fig. 58



Fig. 39
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5-3* The World Model

In chapter 2 we looked closely at elements of an outdoor scene,

involving grass, sky, clouds, water, and trees. On of our purposes

was to introduce the sort of texture descriptors whch we have imple-

mented. The other was to lead the way into a discussion of our world

model. We saw a great range of variation for sizes, colors and other

properties of texture elements in these outdoor scenes. Grass ranges

in color through greens,, browns, and yellows. Trees range from a few

feet to a few hundred feet in height. Because of this variation and the

variation of apparent size of objects at different distances from the

observer, it appears that no immediate identification of image textures

with elements of the world is reliable* In seme cases, the understandings

depend on perhaps unconscious reasoning: the spray on rocks is not very

similar in appearance to the ocean around it. In many cases, the identi-

fications are simply resolved by considering relations between image

regions; motion obscuration identifies trees in front of clouds, shadows

identify trees as standing above ground, obscuration implies a background.

Relative depth determines that the ground is roughly level and that trees

stand above the ground.

It is reasonable to question whether a model which must allow as

much flexibility as to allow tbe range of sizes for objects, and the

variation in relation®, is of any use at all. There are several ways

in which it is useful. The first is that certain relations are reasonably

stable* The sky is bright against the horizon. The proportions of grass

and trees are roughly independent of size. Certain regular shapes are

usually man-made* The second is that much of the variation is connected
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with subsidiary conditions. If trees appear different colors, they are

different species, and have other identifiable properties. If the grass

is yellow, then it must be dry. An apparent size gradient probably means

a distance gradient.

However, the usual mode of perception is continuous perception.

In scene analysis, we often think of showing a single picture with no

context and expect the observer to understand it. Indeed, humans can

do just that usually. But the bulk of perceptual activity is involved

in moving in a world in which changes happen slowly and locally. Most

of the world is nearly unchanged from one moment to the next. Most of

the recent perceptual understanding are useful at any instant; the system

knows a great deal about the environment and makes incremental changes

to its model. The making of the changes to the model is aided by the

detail of the knowledge already available.

That does not mean that we can do without the ability to actually

build up the model, either from the picture shown out of context, or

guided by an already detailed model. But it does mean that a large

part of perceptual activity is guided by detailed models.

Another aspect of the world model is that it contains the information

about the observer's point of view. The observerfs motion provides a

depth sense equivalent to stereo, but much more useful for distant ob-

jects* Distance estimates using motion parallax depend on the observer's

estimate of his motion* Stereo distance measurements depend upon a model

for the convergence position of the two eyes, the eye separation, a ad

correspondence of the coordinate systems of the two eyes. An equivalent

observer model has been implemented at this laboratory in the wo-rk of
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Sobel (I970), Tenenbaum (I97O), and the use of observer's motion for depth

perception has been implemented by Nevatia (unpublished). Formally, the

model has two levels:

(a) Regions in the o!ijg4ct space, objects and collections of

objects, called'the eler&fents of the model;
>

(b) Structured description of the elements in the object space.

These descriptions are almost directly interpretable in a

program as procedures.

A world model is a dynamic structure that changes during the

identification process. The description of the elements of the model

is carried out in the object space and, wherever it is possible, with

counterparts in the image space. Not all descriptors in the object

space have a meaningful• counterpart in image space. An example is the

size of objects, which can be interpreted from distance estimates and

apparent sizes.

The properties of grass, sky, water and trees have been described

in Table 1. All these descriptions are included in the world model and

some new ones are included in Table 7*

All objects in the model, except rocks and unnamed objects, have

broken boundaries.

One may wonder what other descriptors (besides texture descriptors

and color descriptors) could be relevant in the model* Unlike in the

case of grass blades, water waves, and trees, where their size plays

an important role, the size of rocks varies so much that it is hardly

a useful feature for them* On the other handy the shape of rocks

(bloblike), is significant because it can be contrasted with the linear
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shapes of grass leaves or water waves. However, the only rocks of

interest are those which are big enough to stick far out of the ground

(might impede navigation). Here we worry about the relevance of size

and shape of texture elements. What about the size and shape of regions?

Size and shape is not significant for regions of grass, ocean, forest,

and ensembles of rocks.
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Tab,

legions in
Object Space

grass

water

sky

clouds

tree

rock

Color
Attributes

Usually greenf
80©etiftes yellow
or light brown,
never blue*

Hue or greent
some timett gray
with silver vavftgf
never red

Light blue, the
brightest area
in the scene.

l^^^^oS|tct:s In tlit sky*
i
|

The crown it
uftutiiy green«
I0«tfciw« yellow*
brown or red *

5 flit trunk If dark :
brown *

Alt eha4«e of gray,'
brown or red*

Spatial
Relationships

Located, on ground, under
the sky and trees*

Located at the ground plane
below sky and trees. In the
image space, ocean and grass,
trees or rocks could form over^
lapping regions*

Skf is the farthest region in :
the act fit and It la always j
above any element of rite woxti '
model* is the image space i t •
can fora overlapping region* with
gr*si t trees, and rocks* ;

Trc#« are telow tha sk>% tad
atote grtfi or ocean*

Rocks a w alvaya toe low sky and
on ikt %t$v$&* Ttn&y could fe*
ic*tttr#'4 In fr**'« i n l water* 1

On gfmm4% 'Imtm sty* ;
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5.k The Higher Level Program

We discuss briefly a suggested higher level program which we

simulate. Vfe concentrate on the two scenes in figures ^0 and k2. Fig. ^0

contains three pictures taken of the scene in Fig. 1 through J filters,

red, green and blue. The names SCENE1, SCENE2 and SCENEjJ correspond to

red, green and blue filtered scenes. Figure k2 contains four pictures

of a scene in Fig. 1+1. The top two and the bottom left pictures correspond

to the red, green, and blue filtered pictures, respectively. The bottom

right picture is the brightness function of the scene in Fig. kl.

Fig. lt-0
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Fig. la
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Si^

Fig. k2
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Let us call the scenes in Fig. 1*0 and lj-2 WATER and ROSES respectively.

There are three gross parts of this process of interpreting the structure

of the scenes, these might be called:

organization of regions having continuous properties

determination of spatial relations

identification of elements in object space;

They are not strictly heirarchical, since identification determines new

spatial relations, and suggests other low level organizations.

Some of the mechanisms for organization of continuous regions were

previously discussed. The regions based on continuity in color and some

texture descriptors are natural starting places. Proximity provides the

basis for the suggestion of texture super-regions which are disconnected,

but may be usefully considered as a unit. In this operation, we group

together nearby regions of like color or like textural properties. The

next mechanism is that of hypothesis-verification: a particular color or

texture region is a hypothesis of continuity. If the region has some

physical continuity, we should find that other properties are continuous

over the region. If the boundaries are false, then there should be

textural properties which continue across the boundary, from which we

would assume a continuity which would be tested by looking for other

continuity. If the boundaries correspond to physical boundaries, we will

usually be able to find a discerntinuity in some textural property.

We can infer a few spatial relations from the texture gradient,

from guesses about interposition (which object is ia front of which)

from the observer orientation and position, combined with the ground

hypothesis. In a complete systea* we could call 00 depth perception by

1 2 0 . •
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Fig

Fig.
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stereo and motion parallax. Our inferences would be a good guide to

economical use of these modules*

Identification, in our suggested system, proceeds both from the

world model and from the data. Some elements of the world model are

better starting places than others. We assume that the sky would be

easily established in most cases. Other image elements should be

approached after finding the important structural elements in object

space, i.e., sky, ground plane, and trees. We are assuming that a full

variety of properties and relations aid us in making initial and tentative

identifications of sky, etc.

In Figure k-0, which we call WATER, we have two major regions which

correspond to grass, a region which corresponds to the rock, and two

regions which correspond to the water. In the scene called ROSES, the

sky appears as one large region and several small regions; there are three

regions of the bush, and several small regions which correspond to roses.

In the analysis of these two scenes based only on texture analysis

without guidance, the scene WATER is described partly adequately. After the

texture gradient suggests further continuities, the grassy regions merge,

and there remain three main image elements which correspond to grass,

rock, and water; see Fig. k^*

This texture organization is suitable for providing hypotheses of

continuity for regions which are broken by color organization for WATER;

see Fig. kk. The similarity In color of the joined color regions confirms

the texture continuity. In ROSES, the sky is adequately described by

texture, while the bush and flower regions are chaotic, as one can s<$e ,;,!&

Fig. U5- This reflects one of the inadequacies of the Fourier transform,
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the weakness with feature sizes approaching the window size. This is

normally accomplished by subdividing regions with slow changes which

correspond to probable region boundaries* That was suppressed in this

version of the program.

The region-growing does not succeed in isolating the flowers by

cutting up windows containing flowers to partition off smaller cells of

adjoining areas of the bush. This is the worst performance of the

texture region finding process, but it is instructive. On the whole, the

unaugmented texture region analysis is unable to aid in proposing useful

alternative hypotheses for organization. However, texture boundaries for

the sky coincide with color boundaries (the color boundaries of the roses

are displayed in Fig. U6), and a slight relaxation of the criteria for

continuity, verified by continuity in contrast among the color components,

does provide a set of larger texture regions among the bush and flowers.

Even in that worst case, the jurabled areas of color correspond to regions

of moderate size under texture, so that there are no large regions of

the picture which appear entirely chaotic under both aspects. The texture

descriptors are useful for analyzing the color regicms, and have more

utility used la that directed mode. The element size and contrast are

meaningful when restricted to1 the bush; la the unaided texture analysis»

these descriptors nix the flowers and bush.

In evaluating our higher level proceduresy it is usual that we re-

evaluate the quality of the lower level nodules* We find significant ways

in which they could be improved, and In ways which would best be done at

that level. In general, it is better to proceed to a fully developed

system then to put disproportionate work at the low level. Me will later
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specify what improvements we would make in the low level modules.

Let us make the preliminary organization of the two scenes. With

ROSES, we begin with proximity of color regions. The bush regions and

the flower regions are alike in color; for example in two areas of the

bush, the color coordinates r/(r+g+b) and g/(r+g+b) are:

Sample 1 (.1*6, .

Sample 2 (•*+?, -

thus we can conjecture these as a super-region. Let iis compare contrast

and dominant wavelength for these two color regions which we conjecture

to be similar. Compare the two color regions in Fig. kS with the Tables

8, 9, and 10 of average intensity, wavelength, and contrast, over 8 x 8

windows. Me see that the dominant wavelength is short over much of these

two color regions. In fact, if we define a region from the small

wavelengths (< k) the region spreads over most of the bush. In the scene,

the sky is a region under color and a l l texture descriptors. The sky

boundary in color is reinforced by the existence of texture boundaries.

As we have indicated, textural properties are probably adequate to confirm

continuity of the regions suggested by color for bushes and flowers, and

to show discontinuities of frequency. In WATER, the two regions correspond-

ing to water are joined by proximity in color and continuity in texture.

The water boundary shows up strongly as a change in color and in texture,

directional to homogeneous for the water-rock boundary, and different

directionalities with distinctly different color at the water-grass

boundary. The grass is continous in directionality, size, and color.

We can now make correspondence with the world model. Since the sky is

often prominent in outdoor scenes, we attempt to find the sky. We look
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at white and blue regions which are near or above the horizon. In

WATER, we might try the region which is really water. The color is

acceptable, but the directionality is very unlikely for sky, and the

contrast and size of texture elements is also unlikely. (This estimate

is based on a few months of sporadic sky watching. (Of course, there

are directional clouds, "mackerel sky11, but i t seems quite infrequent.

Also, the clouds seem to have much lower frequency.) The water region is

below the horizon. If there were a significant view, we could see a

texture gradient and thus substantiate that the surface is flat. Also,

in continuous perception, we would find that the water motion is very

different from cloud motion. Motion would also allow interpretation of

the breakers around the rock as part of the water. The region correspond-

ing to grass is directional, low contrast, and has a texture gradient,

imp lying that i t is horizontal* The color is consistent with grass,

which lies on the ground plane. From the ground plane asswaption, we

can estimate the size of the elements of the grass:

image size*aagular resolution*diBtance

» 2*fl/6S6/#3DO cm « .9cm

where we estimated the image size previously, the camera parameters are

known, and the distance is obtained from a erode guess, but is known in

principle front th* obsarver position and orientation. The size is also

consistent with gr*fi bl#d»»* For the rocks neither color nor homogeneity

tel l ua very with. Since the reck is convex downward on Its boundary with

water, we atiua* that the rock is in front of the horizontal water surfiftet.

Me assume thus that i t is an object which sticks up from the surface,

and calculate the vertical height and leagth along the ground* Frttft the
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image, the texture gradient tells us that the distance at the rock is about

k times that at the front of the picture. Thus, the above expression

gives:

18*(1/666)*1200cm = 36cm

while the width of the rock is approximately 300cm. These are only

approximate values which depend on our guesses about the ground plane

and texture gradient. On the other hand, the conclusions depend most

strongly on relative size conclusions. Grass elements are small; rocks

are often big compared to grass. We can make the comparison between

the rock and grass near the base of the rock. In the image, the rock is

big, and from all assumptions about objects in the image being further

away as they recede in apparent position toward the horizon, the rock is

much bigger than the elements of the grass. These give some strength to

the assumption.

In ROSES, we begin by attempting to find the sky. The only region

of acceptable color is the sky itself. The color is white, indicating

clouds, with low contrast as seen in Table 8. The texture is homogeneous.

As a verification, we might find blue patches, find motion, and find that

the distance of this region is very great. The region is far above the

horizon, and is very bright; see the brightness in Table 6. From the

concave downward boundary with the other regions, we assume that it is

behind the green elements. With the identification sky; we find that

the green elements are in front of the sky, thus probably approximately

vertical and are frontal (they show no systematic texture gradient , also

indicating that they are vertical). The texture is blob-like; the blob

size is interesting. If we can guess that these are leaves rather than
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leaf clusters or branches, then we can estimate the distance to the bush,

Finding tin* stem** voulti aid in that. Because thu bush is probably

vertical* it is not grass. If we include leaf elements, fruits and

flowers in our descriptions of trees «nd bushes, then by guessing that

the flowers are really associated with the bush which surrounds the®, we

can guess the scale of the leaves relative to the flowers, and thus

establish that the texture elements are leaves and establish approximate

distance* Of course, at any level, we could establish relatively

unique elements to correspond in two viewst and determine distance by

stereo or notion*



6. CONCLUSIONS

We presented a representat ion of textured scenes which was not a two-

dimensional representat ion of the projected image, but a three-dimensional

representat ion of the elements and s p a t i a l r e la t ions in object space. We

feel that the representat ion of spa t i a l r e la t ions such as !§rass is found on

the ground planefland the nearly i n f i n i t e distance of the sky are charact-

e r i s t i c of these elements, and help more than any other propert ies to

identify them and to orient the observer. Our representat ion is effect ive,

a l so , in that i t is segmented in to d i s t i n c t elements3 which are described

by a heirarchy of texture regions and textured elements. Textured regions

may be texture elements of a super t ex tu re , or texture elements may be

textured regions of a sub-texture . This is not only a formal nicety, but

a usual part of our descript ion of ourdoor scenes; for example, in t r ees ,

the leaves are texture elements of leaf c lus te r s or branches, which are

texture elements of a t r e e , which is a texture element of tree c lu s t e r s .

The descript ion of shape of texture elements depends heavily on a l inear

approximation to shape, and describes d i r e c t i o n a l i t y , width of texture

elements, and spacings. We argue from psychological evidence that these

are the ntost important of desc r ip to r s , and further, that they are natural

for computer implementation* These descr ip tors are most useful for

d i rec t iona l t ex tu res . The representat ion is included in a world model for

which an example was given, but which awaits implementation with the

high level procedures.

A s iaple color region aim lys i s WBB very useful in texture analys is .

The normalized color coordinates, r/(r+g+t>) and gf(r+grtb) were

compared for cont inui ty , ani regions were defined by neighbors of

continuous color• There are so»e po ten t ia l proble»s in an analysis
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of color in outdoor scenes, since many of the texture elements are very

small. Typically, the regions are leaves or blades of grass. As an

expedient to find larger regions, we have averaged over a small window,

and compared colors of adjacent windows. As a consequence, we sacrificed

localization of edges. The expedient is only partially successful however.

We notice that the averaging works best among clusters of leaves where the

color is uniform to begin with. Where the leaves are isolated against the

sky, the color contrast is large, and continuity of the averages are only

by chance. Thus, the averaging is not very successful. A better mechanism

to define larger regions of color is perhaps to go to the computationally

more difficult operation of finding like colors within windows, that is

to implement color regions based on proximity rather than continuity.

The obvious value of defining color regions which ignore the brightness

fluctuations of individual leaves should not lead us to ignore brightness

edges and consider only color edges. We also make use of the size of the

brightness regions, the leaves in this case.

A sheaf-theoretic description formalizes the process of region-growing

and gives an exact account of the shift from local to global and vice

versa. One must be cautious about interpreting the sheaf-theoretic

notions in the context of color and texture regions* Due to sampling we

have a finite scale of window sizes and the definition must include a

least window size, the size of texture elements. No such discreteness

conditions are embedded in sheaf theory.

In the implementation of texture descriptors, we were able to translate

those spatial domain descriptors that we found important fro© Fourier

transforms over windows of various sizes. Directional and non-directional
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components were separable to a useful extent. These reflected shapes

of texture elements and their spatial relations, or statistical properties

of irregular textures. We argued that the human description of an image

makes use of a step function approximation; we often describe in terms of

regions of constant intensity. We obtain analytic expressions for the

contrast, the element size and spacing, and some location information;

these were based on a spatial domain model of pulses of equal amplitude,

width and spacing, on a uniform background level. The implementation of

Fourier transform descriptors had sane minor implementation difficulties

which are usually overlooked. They are consequences of the fact that

the Fast Fourier Transform is really a Fourier series and act a Fourier

transform. A Fourier transform has no preferred directions, while the

Fourier series has preferred axes along the x and y coordinate axes.

This introduces a non-isotropy in the fan filter* We have used only a

straightforward fan filter and have not attempted to compensate for the

peculiarities of the Fourier series. There are also spurious broadening

of peaks which are consequences of the Fourier series. Despite these

difficulties, the spectra show useful directionality properties, and we

have been able to work with them.

The more serious problems with the Fourier trans forms are conceptual

difficulties which are true of any orthogonal expaasioti and of the true

Fourier transform. Interpretation is based on the power spectrum and

phase information Is Ignored. These transforms are non-local* aad give

very poor edge and position la format ion. To an extent, we have tried to

get around this by an expedient of using local windows* This provides a

crude localization, which was not adequate for ntftay purposes. The usefulness



of the transforms was very dependent on the scale of the windows. The

descriptors were most useful when the window size was such as to exclude '

I
other regions and to include some repetition of texture elements within the 1

window. This meant that a range of window sizes was necessary, and that

we could not always have windows small enough or large enough. To a certain

extent, we could probably get positional information from our analytic

expression using the phase of the transform. However, that is useful only

for uniformly spaced texture elements. In most useful cases, the spacing

is quite irregular. The non-local nature of the transform is a severe

disadvantage in using color information. As in other cases, we can make

examples where the averaged quantities are useful in smearing out and

bridging local boundaries. This has limited utility. There are a few

simple cases for which the color contrasts can be extracted from the

Fourier transform of separate intensities through three filters. We have

not yet incorporated these into our descriptors.

There are some incremental improvements to be made to our Fourier

descriptor scheme. One of these is to* use interval analysis for determining

widths and locations of discontinuities in directional textures. In sane

cases, overlapped windowing would be useful near boundaries. Includir^

Fourier color components was mentioned above. We should include edge and

region operators (perhaps oo filtered directional components) to find the

extent to linear elements and to find boundaries of quasi-homogeneous

regions.

Textured regions were obtained on the basis of the texture descriptors.

We found that a range of window sizes was necessary; our strategy was not

adequate to use the window sizes as well as it might have. The choice of
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window sizes would be better left to higher level choice among suggested

regions. The actual program which gave textured regions classified the

descriptors according to mono-directional, bi-directional, blob-like,

homogeneous, and noisy. Then adjacent regions were merged into continuous

regions based on continuity of the descriptors. A change of scale was used

if there was a strong frequency 1 component (that i s , there probably was

an edge in the window) or if there was a bi-directional texture which

could arise from a boundary of two directional textures. A second region-

growing pass relaxes the cr i ter ia and ignores classifications to extend

large regions by including acceptable small neighboring regions under

relaxed cr i te r ia .

A guided program determined textured regions based on information

passed down from above. This program was guided by the user, but the

advice could equally well have come from other programs. The guided

programs determined texture regions within specified areas and according

to specified similarity cr i ter ia , for example, frequency and contrast.

Continuity could be explored on the basis of separate parameters.

We see some incremental improvements to the region-growing based

on Fourier descriptors. We would add an alternate tactic for windows with

loog wavelengths; now we subdivide based on the possibility of an edge in

the window* We would also increase window size to look for a repeated

feature of m larger size. We would eliminate the classification step now

uattd. There is »c»e argument in favor of the classification. There are

actually many natural objects which fall into one or another of these

classes- But the classification in the early stages introduces artificial

boundaries and Ignores the multiple descriptors which are available. Only
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later does it relax these classes. A further and more significant

addition would be an implementation of proximity of like descriptors on

nearby windows for texture super-regions.

We presented an outline for a higher level procedure to make a

correspondence between the image elements and the world model. This

outline was not implemented but simulated in two examples. The striking

conclusions from the simulation were that interpretation of the three-

dimensional structure of the scene was necessary to make the identification.

This contrasts with the work done in interpretation of aerial photographs,

for which the world is effectively on a locally flat surface, and depth

considerations are unimportant. A perceptual system begins to have inter-

esting structure when it can work with more than a single property. Our

model deals with multiple properties by a hypothesis-verification paradigm

for proposing boundaries and regions. Continuity in a physical surface

can be hypothesized on the basis of one of the properties. Often, the

region description from some one property will be particularly simple and

useful. It is not clear that we can always pick in advance which property

it is; with sufficient context we could usually make a good choice. But

we can try several different choices as hypotheses of meaningful surfaces,

and test that continuity in that property corresponds to continuity in

other properties; discontinuity in physical surfaces often reflects dis-

continuities in several properties. In these examples, color regions were

joined into color super-regions of like color. Textural properties of

dominant frequency and contrast showed continuity of these properties over

the color super-region. At this point, the lower-level modules could

function in a guided mode to expand the region corresponding to these
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typical descriptors and include nearby areas of the image which were

not we11-described in the earlier analysis with l i t t l e context.

The regions which come forth do not make a neat image. They overlap

and do not cover the whole image. S t i l l , we are aiming to interpret those

parts of i t that are simple to understand. Inferences of spatial relations

are important here. Texture gradient gave estimates of surface orientation.

The ground plane assumption gave a local coordinate system when combined

with the assumption that objects stand out from the ground. These

relations depended primarily on relative distance and relative size

estimates which were not greatly sensitive to the assumptions. In some

cases i t was possible to guess which object was in front of another,

either because of concavity, or from identification of the sky or water.

In identifying elements and structure of the world model, our

simulation attempted first to establish the sky. Based on color

brightness, contrast with the horizon, and i t s position (above the

horizon estimated by gravity), this is assumed a simple match. We can also

then determine the sky line and guess which objects stand out from the

ground plane. Sizes of texture elements were of considerable use; knowledge

of sl&e is much more useful here than in the blocks world where context

ig limited. The knowledge of the size of grass blades is more useful

than the knowledge of the size of one particular block.

We have raeotioned »ome incremental improvements to texture local

description and to forming texture regtions. The primary weaknesses at

this level are the crude localization and limited use of proximity in

e«tabllshifl(g super-regions. Improvement of the color region-finder is of

primary importance. Since must of the interpretation depended upon
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inference separate from strictly textural properties of areas of the

image, we feel that the most significant next stage is to embed these

elements in a complete visual system. This would involve more than just

implementation of the simulated higher level program. The typical system

would navigate in an outdoor or planetary exploration environment. The

navigation goals make explicit which problems the system needs to solve

at any time. The situation is one of continuous perception which allows

the model built up at one instant to be used in subsequent problem-solving

Continuous perception also allows us to tell which objects are moving,

which is of use in outdoor scenes. The complete system would have

stereo and motion parallax for depth at small and great distances. To

a certain extent, the system would avoid finding solutions which could

be found purely from single projections, but such a system appears

feasible within the current state of computer vision, while a system

which ignores so much information does not appear to be achievable soon.
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A P P E N D I X

Topological Models

In this section we give a brief account of a possible approach to

the topology of pictures and then explain the sheaf-

theoretic model of textured scenes, involving several different structure

sheaves.

The topology we shall use is discrete and is induced by certain

norms, transplanted from the structure of integers. Needless to say,

the purpose of this topology is to make precise the use of such notions

as continuity and proximity.

Once the topology is fixed, we introduce a convenient system of

neighborhoods, called windows. These will be used throughout this work.

Given a textured picture with the discrete topology as indicated

above, we assign to every window over the picture a structure of some

sort, depending on the picture under the window and, perhaps, on some

fragment of prior knowledge concerning the picture. The structure in

question can be something very simple such as a set of descriptions or

something store involved such as a vector space, generated by the

attribute vectors of the picture under the window. We emphasize the

dtgree of generality involved in the specific choice of structures.

In the implementation of our picture identification program we use a

structure induced by the Fourier image of the picture function.

After the species of structures has been selected, we reduce the

degree of freedom In the set of structures by assuming that the structures

over any pair of windows standing in an inclusion relationship are

closely related* That is» one of the structures can be trans formed
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into the other precisely when the picture function under the two windows

is continuous. The transformation, which in a general situation is

called a horoomorphism, depends on the picture function and possibly on

a prior knowledge relevant to the picture. If we imagine that the

structures carry the local picture information, then the corresponding

homomorphisms t e l l us how this information changes as we move from one

window to another. Thus the question as to when and how to join two

locations on the picture is answered by the homomorphisms, interrelating

some of the s t ructures .

Topology and Metric of Digitized Pictures

One of the most efficient ways of arriving at the topological model

of a digitized picture is to consider the picture as a set of cells X

and coord inatize or parametrize i t by the finite normed two-dimensional

space of integers modulo <n,m>:

Z2 = ZxZ/<n,m>
n,m ' '

2
More specif ica l ly , if A : X —» Z is a selected coordinatization

function, we put
A A A

(i) x + y = z iff x + y = z; (Vector addition)
A A

( i i ) Jx = y iff j * x = y; (Scalar multiplication)
A A

( l i i ) x < y iff x < y; (Partial ordering)

( i v ) | | x | | « J i j + | j | ; (Sum n o r m )

(v) « x » = Max(| ij ,J j | ) , (Max norm)

Where x»y € X:, x = <i*j>, and i , j 6 Z.

The structure {Xs+,^1<, | | | ( , « » ] is called the cellular

«̂ 2£££% where the conceptual ingredients are, respectively, vector addition,
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s c a l a r m u l t i p l i c a t i o n , p a r t i a l o r d e r i n g , n u m - n o r m ( c i t y b l o c k n o r m ) , and

m a x - n o r m .

Both norms induce a discrete topology in the cellular space X..

The intended interpretation of the elements of X is the retina point,

a geometric location of the point information, which is of interest in

input data. Geometrically we can think of X as a finite, rectangular,

two-dimensional array of congruent squares, whose coordinates are given

by a grid of pairs of integers, located at their midpoints. The advantage

of defining X in this way lies in the possibility of using a coordinate-

free (topological) language, and when necessary, we can carry over the

concepts of vector calculus to X.

When several coordinization functions (sampling) are given, one

can order them partially by the fineness or coarseness relation. The

finest coordinization * is usually that which is suitable for capturing

the ultimately relevant local information concerning the gray level shape

or color change. Clearly, a finer coordinization function leads (at

least potentially) to a more complete description of a picture.

The subsets of X are subjected to generalized vector operations

such as . . . • . •••••.

g u a i ; . , . •-'. . •"•..''.. . • . '.

A 4- B * {a + bja€A. an«3 b€B},

ttfotre A , i c X .

W« shall not use these operations in this work since other

operations will piay a far wore important role. The horizontal and

vertical rectangular subsets of X ( i , e . , planar intervals) are called
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A is a window iff A = [a 6 X | x < a < y3 > where x and y are

some cells in X, Thus, windows are essentially two-dimensional intervals.

The empty window is denoted by 0. The set of a l l windows Wind

is partially ordered by inclusion* In fact, i t forms a finite distributive

latt ice with zero element 0, unit element X and with operations:

Intersection:

A A B = A n B;

Union:

A V B = fl {C £ Wind | A c C A B C C ) ,

where A,B € Wind,

The window A V B denotes the smallest rectangle containing A and

B. The lattice < Wind, 0, x, V, A > will be the basic structure in

picture Identification. (A similar lattice is obtained by taking the

convex subsets of X.)

The choice of norms in X induces a special system of neighborhoods,

suitable for developing the basic properties of continuous and

proximal functions on X.

For every natural number p we define the p- neighborhood (von

Meuman template) of a cell x by

N(x;p) = iy| ||x - y| | < pj.

If we neglect the effect of the picture boundary, a p- neighbor-

hood forms a diamond shape cluster of cells about x.

Another system of p-nelghborhoods (Moore templates) Is defined

bj the max^norai:

M(x;p) - {yj « x - y » < p) .

These neighborhoods form square windows about x, if we forget
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about the effect of the picture boundary.

As pointed out in the introduction, our main interest will be

in pictorial relationships such as neighboring, inside near, equidistant,

perpendicular, overlap, above, etc-, and in pictorial objects such as

figure boundaries, regions, and the like. These are certain roetric-

topological entit ies, definable in terms of the primitives of the

cellular space X. Theoretically one may think of a broader class of

geometric entities (projective, affine, metrical, and topological), but

this is an auxilliary issue now. We shall totally disregard at present

the semantic relationships and semantic obleets% induced by a particular

object-world model.

The starting point of a picture representation is a picture function-

p: x -> R, whose values are called gray levels. In the case of colored

pictures, the values p(x) for x € X are vectors9 representing the

intensity of light for a fixed system of colors.

The difficulty with the picture function lies in the fact that it

is a point function, as opposed to an area or set function* We need m

data structure, where the point information is usefully transformed into

a local or areal information which is the only one we are interested ±nf

now.

in order to achieve this, we associate with every restriction

pjA of the picture function p, whare A is a window in X, a structure»

carry ing the desired local information # But before wfc txplaitt Jtow can

this be done, we shall review some of the sheaf-theoretic notions.

Presheaves of Pictorial Structures of a given,. Specifta

What are presheaves and what are they good for? These are the



questions we intend to answer in this section. As for the theoretical

details, the reader may consult Bredon (I967). First, we state the

general definition of a presheaf and then we give a number of concrete

examples of presheaves relevant to picture theory.

Let <E, < > be a partially ordered set. Then by a presheaf of

structures of species SIGMA on E we shall mean a pair of sets

S = < {Sj a € E ) , ( ^ | a < b j >

such that for all a,b,c «- E the properties displayed below are valid:

(1) S is a structure of species SIGMA and p for a < b is

a SIGMA-homomorphism p :!

mapping from S, to S .

,̂ called the connecting (transition)

(2) -̂  S is the identity SIGMA-homomorphism (automorphism)

on S •

c b c

(3 ' a < b A b < c => p = p o p..
""" a a D

A presheaf on E will conveniently be denoted by S = {S ;p ] .
a a

The species SIGMA refers to the type of a structure which could be

just a plain set, a set endowed with certain relations and/or operations,

or anything that resembles a mathematical structure (group, vector

space, automaton, etc.). The only point to be realized is that the

structures in question should be of the same sort or type. The SIGMA-

homomorphism nay be defined in various ways, the simplest, perhaps,

being the structure preserving mapping from the dona in of one structure

into the domain of the other.

Before we launch ourselves into a more specialized study of sheaves,

it seems useful to illustrate the definition of a presheaf by a couple

of intended interpretations. This will hopefully help us to envisage



the picture - theoretic applications.

One of the simplest presheaves is the constant presheaf of sets.

Here S = S is a fixed set of elements and g is the identity

mapping on the fixed set S.

(a) Presheaf of continuous functions

Let X be a topological space. For each V c X let S,

be the set of all continuous real-valued functions f:V -> R, and for

W c V let fî rS -> S be the mapping which assigns to each f € S

its domain restriction f|W. Then, of course, fjw € S , since a

restriction of a continuous mapping is again continuous. This con-

struction gives a presheaf {S ;(3 } on the set of all subsets of X,

partially ordered by inclusion. We call it the presheaf of continuous

real-valued functions on X.

If the topological attribute "continuous" is replaced by "uniformly

continuous11, "proximally continuous11, "differentiable", "analytic11, etc.,

we get a whole family of new presheaves on the same space. Moreover,

we get some other presheaves on X when we consider only a system of

neighborhoods, e.g., N = {N(x;p)j x € X, p > 0 j, rather than the set

of all subsets of X.

(b) Presheaf of Histograms

Consider a picture function p: X -• R together with the

lattice of a l l windows < Wind,e > of the cellular space X. Assign to

every window W a set of histograms S or more precisely, a set of

distribution functions corresponding to a family of random variables,

characterizing certain features of the picture p.

As connecting mappings fL, , choose for V c W an appropriate



stochastic transformation, (stochastic matrix) transforming the elements

S into the elements of S . The presheaf axioms are readily verified.

The structure {Sr^pr,} ^s a presheaf, called the presheaf of histograms.

Again, we can take the system of square windows. M = {M(x;p)|x e X, p > o}

and consider another presheaf of histograms.

(c) Presheaf of Geometric Models

Let p; X -» R be a picture function together with the lattice

of windows <Wind, C->of the space X. Assign to every window a

geometric model S , induced by the picture over W, The geometric

model is essentially a set of figures (lines, circles, etc.) together

with the figure attributes and their placement rules.

The connecting transformations V: S S are restrictions or

in a more general situation, they are certain similarity functions,

assigning to every element S a most similar element from S . In the
w V

case of pictures with local gradients, some other homomorphisms may be

of interest.

(d) Presheaf of Feature Spaces

Let p: X -* R be a picture function and let <Con,c > be

the lat t ice of convex subsets of X. Define STT for W € Con as
W

the linear space generated by • the feature vectors associated with p/w

via measurement, and identify each JJ
transformation. Then [S ;

J fQr wg y with a
is a mcxiel for the presheaf axioms.

Several other scene analysis concepts turn out to have a

sheaf - theoretic interpretation.

Simply, a presheaf is a formal device which assigns to

certain local areas of a topologies! space a specific structure in

lkk



such a way that whenever two areas are in inclusion relationship,

the assigned structures are in homomorphism relationship.

The reader should see by now the connection between presheaves

and picture structure identification by windowing. Often a presheaf

S on < E, < > has a relatively simple structure "locally11 about every

point a € E.

A suggestive picture of a presheaf over a window in a

cellular space is given below, in Fig. 1+7. It is important not to

confuse the presheaf structure with the picture function.

S

t/////////////////

Fig.

1U5



Frequently we are not interested in all windows of a cellular

space but rather in a subset of windows. This is the case when the

texture elements are large enough and we do not want to enter into their

structure. In situations like this, the following notion appears to

be relevant.

Let E7 C E be a partially ordered subset of < E, < >.

Then the presheaf

<{S la € E 7}, [pb 1 a < b A a, b € E7} >
a a

is called the restriction o_f S JLo. E 7 and is denoted SJE7.

Thus, the presheaf structure is considered only over some points of E.

Often several presheaves are of interest on the same base E.

In situations like that we want to know how to relate them.

Let S = [S ;(3 } and T = [ T ; \ } be two presheaves on E
a a a a

of the same species SIGMA.

Then by a homomorphism

®:S -»T

of one presheaf into another we shall mean a family of SIGMA homomorphisms

a = [a | a € E] such that for all a,b € E:

*b b
a < b => a o p = \ o a, •

The condition above is explained suggestively by stating that

the following diagram of functions is commutative for al l a < b:



In less formal terms, the way the structures in S are

related can be modeled in terms of the structures in T. This notion

is important in the semantics of picture identification, We tafca S

as a "geometric11 presheaf and T as a "semantic11 or "World-model11

presheaf and translate the geometric information of S into a world-

model information of T.

As pointed out, in picture-theoretic applications presheUves

are essentially families of structures of certain species, interconnected

by transformations, expressing continuity.

With every presheaf S of species SIGMA, on a base < E, < >

we associate two important structures of the same species SIGMA,

provided that certain existence conditions are met. Before we show how

this is done, two auxiliary notions are in order.

Mamely, the direct product Prod S and the direct sum
~ — — a€E a

Slim S . If S are plain sets, then Prod S is just the Cartesian
a eEa a a e E a

product of the sets S and Sum S is the disjoint union of these sets.

a a e Ea

Given a presheaf S of species SIGMA then by the section

(Projective or inverse limit) of S we mean the structure Sect (S) =

{S e Prod S | V a,b [a < b => gb (sb) = s j } .
a€E a a a

Thus9 Sect(S) of a substructure of the direct product

Prod S (provided that i t exists) .
a

a

Given a presheaf S of species SIGMA then by the cosectioct

(inductive or direct limit) of S we understand the structure

Cosect(S) = Sim S / s ,
a

11*7



where Sum S^ = { < a,s > | s€S } denotes the direct sum of the

a

family [S } for aeE and s is the smallest equivalence relation

on the direct sum, containing the binary relation H;

< a,s > s < b,t > <=> 3 c < a,b [pa(s) = p b (t) ],
c c

with s6S and tGS, .
a b

Thus, Cosect(S) is a quotient structure of the direct sum

Sum S (provided that it exists).aa

Given a presheaf S, i t can be shown t h a t i f f ler i i s a f i r s t

element of E, then the isomorphism

S ^ Sec t (S)
e

holds and also

a: S -» T => a /: S -> T .
e e e

In other words, the structure Sect(S) can be identified with the structure

S , assigned to the first element e in E. In applications, Sect(S)

corresponds to the structure of particular texture elements.

Dually, if e/ is a last element of E, then

S P? Cosect(S)

and

a: S -> T => a i : S / -> T .
e e e

Again, Cosect(S) can be identified with the structure S t> assigned

to the last element e/ in E. In applications, Cosect(S) corresponds

to the structure of the textured region.

Sheaves of Pictorial Structures of a Given Species

Sheaves are presheaves satisfying additional axioms. A

definition of a sheaf in its full generality requires several additional



technicalities. We shall present therefore such a definition which is

free of abstract conceptual constructions, general enough, and yet

still relevant in picture analysis.

Let < Wind, c > be the lattice of windows over the cellular

space X. Consider a presheaf [S , fLJ over the window system

< Wind, c: >. Then this presheaf is called a sheaf if for any family

of windows {\J±} ? such that Wj, c W -» W G [W }
n.

"the following isomorphism is valid:

S n w > ~ Sect (S|[W.}).

i

Thus, loosely speaking, a sheaf is a system of structures over

a lattice of windows, where each structure represents one particular

texture.

Dually, we call presheaf {.S.,, fv.} a cosheaf if for any

family of windows {W,}. _ - such that W c: W. -» € [W.J. _

the following isomorphism is valid:

Sy w< - Cosect (slCWj}).

i

A n»re direct definition of a sheaf with a fairly clear picture-

theoretic interpretation is given below.

Consider a presheaf S « {S ; p^} of structures over a

cellular space X, i.e., on the lattice of subsets < Sub(X), c >.

Then S is a sheaf over X precisely when for any family IV. j i€l}

of subsets of X with V « U V., the following two conditions are
i X

satisfied:

Ik9



(1) Uniqueness Axiom:

£ (s') = ^ (8")] = = s

(2) Existence Axiom:

^ j

n
n v (s )] => sVk [pv (s) = sk],

where s,s',s"< ,s .

i j

, S j € S y .j € S y

j

The condition (1) says that if the structure elements s are

locally identical, then they are also globally identical. That is,

elements are uniquely determined by local data.

The condition (2) says that if we have local data which are

compatible, they actually "patch together" to form global data.

This might appear as a perhaps unduly sophisticated way of looking

at the windowing process in which by overlapping windowing we are

capable to recover the unique structure of the picture from several

local structures. The definition of a sheaf will turn out to be a test

method for texture region identification.

The picture - theoretic substance of sheaves is this, A sheaf

is essentially a system of "local coefficient". In picture-theoretic

applications we start by assuming that a picture has certain local

pictorial properties which are captured by a structure S v of certain

species. We then express these properties in terms of the properties

of the structure sheaf S over a picture region. Finally, we apply

the theory of sheaves to deduce certain global properties of the picture.

Consequently, the importance of sheaves in scene analysis is simply
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in giving relations between local and global properties of a scene.
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