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Abst r act

It is often convenient to be able to save and subsequently restore the
state of a conputation. It is also, in general, rather expensive. V¢
present a techni que whereby states nay be saved and restored extrenely
fast, and yet the .information stored in a given state may be accessed
and updated reasonably quickly. This technique depends on an indexing
scheme which can be wused to see whether the last value assigned to a
variable is still valid, or whether it nust be retrieved from sone
previous context (and if so, which one).

1 The Probl em

Al programmers, expert system builders, etc. frequently need to wite
prograns that explore large search spaces. Such prograns have to save
the state of the conputati on whenever they decide to investigate one
area of the search space rather than another, since they may make the
wong choice and be forced to back up and try again.

The process of saving and restoring conputational states is expensive in
two ways. It requires a large amount of menory (at worst a conpl-ete copy
of the process inmage for every saved state), and it takes ti'me. The
costs may be dimnished if we are content to save less than the entire
state, e.g. just:saving the calling sequence, or just saving the values
of some predetermned set of variables. Ve are mainly concerned here
wth this latter .case, where the values of a specified set of global
variables are to be saved and restored (this restricted form of state
saving has been widely used in Al - see for instance Kaplan's di scussion
of ATN parsing for natural |anguage (1), or CONNVEf*s contexts (2)).
However, the mechani sm described below will deal with arbitrary cases of
variabl e access and assignnent, and could easily be adapted for contexts
whi ch included the values of local variables as well as gl obals.

A nunber of inplenentations of this restricted formof state savi ng have
been proposed, "but they have generally suffered either frots taking a
long time to switch contexts, or froit taking a long tine to access the
val ues of variables within a given context. W present bel ow a techni que
for context switching in which contexts my be saved and restored
extrenely quickly, and yet on nost occasions the value of a variabl e may
al so be accessed wi thout any search.

2 Contexts vs. Stack Franes

The discussion of how to iitplenient a state saving mechanism becones
clearer if we relate our problemto that of saving and restoring the
val ues of dynamcally bound |ocal variables during procedure calls. The
effect of such a procedure call is to save the current val ues of the
local variables, i.e. the current context; 30 whatever processing is
required; and then restore the saved context. This is exactly the
problemne 9t ® dealing with, except that the contexts saved by procedure
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cal ling »echanis»s are always dealt with first-in first-out, whereas we
want to be able to restore arbitrary contexts, e.g. ones that were saved
after the one that is current, or ones that have been restored once
already but that we want to try yet again.

Procedure calling mechanises save the current context by stacking the
values that are to be saved, and popping the* when they are to be
restored. W cannot use this approach, since we cannot rely on contexts
being saved and restored in try particular order, lie can, however, begin
to solve our probteti by l|ooking carefully at two strategies that are
\tl)\@dgly used for binding values to variables, ninety deep and shallow
i ndi ng.

Allen provides a detailed discussion of these strategies (3); all ne
Wil do here is to summarise the sain points as they relate to our
particular problem

In deep binding, alt values of variables art kept on a single stack of
varlablt~valut pairs. Assignnent |s done by pushing a new pair,
containing the relevant variable and its nen value, onto the stack;
variable access Is dont by walking down the stack wtll a pair
containing the required variable 1s found ~ tha value In this pair 1s
the vost recent, 1,t. current, valut of the variable; saving and
rtstoring contexts 1s dortt by saving tht position of the top of the
stack to save tht context, resetting 1t to that position to restore 1t»
Thus in this very purt for* of d«#p binding, context swtching 1s
txtrtatly easy, assigrwnt 1s tasy but wasteful of space, and access is
unacctptably Iion.

in shallow binding, tach variable his a stack of wvalues dirtctly
assodattd with 1t* Tht currtnt value of a variable »*y be accessed vtry
quickly, sinct It is staply tht top tltattnt of tht tssociattci stack, and
It MW b# updated by overwiting that tlitfttnt C not,_ by pushing 1t on
top). Howtvtr™ conttxt switching It rather [laborious, sinct 1t |Is
nactssary to scan all the variables whose vatuts havt to be saved or
rtstortd and tithtr push a copy of thair currtnt v#ut onto thtir
assodattd stack (saving) or pop tht currtnt vttut off (rtstoring).

In practict nost isptiMntations ust a conbination of thtst strattgits,
kttping savtd vtlut* on » singtt stact and currtnt valuts assodattd
dirtctly wHh tht variablts (stt for Instanct UCILXSF U> or WPiiS
<5)>. Xn tht rtnaindtr of this p»sptr wt will adapt this ttchnfcnt for
conttxt switching whtrt tht «i«plt FIFO constraint of proctdurt calling
I's not obtytd*

3 Full Context Switching

For our task It Is convtnitnt t# adapt tht bat 1c ttrattgits at fellows:

(1) « conttiit %still « stack of variablt-valut pairs (a binding
stack)y kit it nm hm atsedattd #<t® H a« Indtx, ¥ tmust the
Indictt to %n whtthtr ont conttyt <e a dMtct dttctndant of ar«othtr.

(11) t#tn w updatt § global vartatelt wt add a ntw va**lablr"valut osir
to t> currtnt stack/ as In linp bidding; an® w assodatt tht ntw valut
d*rtetly uit™ tht vifiifclt® as in shallLow b*ndtnf; but m also %iwsu(')%tt
tht Indt« o* tht c**tnt tonttit wht™ tAt #rAiblty to that « *n
tht Mut vat 3%%-
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(iii) to save a context, we now simply save the binding stack and its
index; to restore it, we reset the saved stack and index to be the
current stack and index. Thus all we need to do when we want to switch
contexts is to update the values of two global variables - there is no
need to construct any new data structures or to transfer large blocks of
data.

(iv) variable access is a Little more complex. The essential point is to
compare the index of the current context with the index that was stored
with the variable when it was last updated, using an algorithm described
below. to see 1if the variable's index is a direct predecessor of the
current one. If it is then the value associated directly with the
variable must be the required one, since the context in which it was
last updated is a direct ancestor of the current one. If, on the other
hand, the 1index for the variable is not a predecessor of the current
one, then the variable must have been updated on some divergent branch
of the computation. In this case we will have to search down the current
binding stack to find the value we want.

To see what is going on, consider the following example:

c1: 3 ->Y;

C0: 1 ->X;2->Y;

l
|
|
l
| c2: 2x, 2y
I

The above diagram represents a situation where 1 has been assigned to
and 2 to Y in context CO; CO has been saved, and continued as C1, anc
has been assigned to Y; and finally C1 has been saved, and CO has be
restarted as C2. What are the current values of X and Y ?

Clearly the value directly associated with X, i.e. the value m s
recently assigned to it, is 1. This value was assigned in C0, which i a
direct ancestor of the current context, and hence is the value we wan

The .value currently associated with Y is 3, the value assigned ir
is not a direct ancestor of €2, so this value is not correct
Hence we will have to search down the the binding stack for €2 1..
required entry. C2's stack is built on top of C0's, so the first
we will come to is 2, as required.

This all sounds very long-winded. The crucial point is the const~
and comparison of 1indices, since if this can be done quickly
many cases we can access variables almost as fast as if they
shallow bound in an environment with simple FIFO context switching,
we will never do worse than orthodox deep binding.

ﬁ'Indexing Contexts

Suppose we are just starting work, so the stack is empty, the index
1, and all the variables are 4initialised with the standard
"undefined” and index 1. We do some work, updating the stack anc
variables as we go, and eventually arrive at a decision point, where
want to save the current state of affairs for later while we explor
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some hypothesis.

At this point we need to create two contexts, namely one to save for
later and one to make immediate use of. For each we initialise the stack
as a list containing nothing but a pointer to the current binding stack,
so that the binding stack in any given context is in fact a chain of
partial stacks. We obtain their indices by doubling the current idindex,
and adding 1 to it for one of them and not for the other. At this point
we have created two contexts, with stacks equivalent to the original and
indices 010 and 011 (binary), simply by copying a pointer and doing some
trivial arithmetic.

As we continue to spawn contexts we will grow a tree of them with
indices marked as below

0100
|
010 |
' |
| |
| 0101
01 |
- . s o= I
| 0110
|
011 I
|
|
1 0111
|

It is now easy to see if one index, 11 say, is a direct predecessor of
another, 1I2. We simply keep comparing them and then shifting 12 right
one place until either they are equal (I1 is a direct predecessor of I2)
or I2 is lLess than I1 (I1 is not a direct predecessor of I2).

This gives us what we needed - a rapid algorithm for generating indices
(shift the old one Left one place, use this for the state which is to be
saved and add 1 for the one which is to be continued), and a rapid
algorithm for comparing indices (repeatedly shift right and compare).

To see again how this works out, suppose that as we grew the above tree
we had done the following assignments to X and Y.
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2->Y

1->X

X, ?Y

In context 0100, the chain of partial binding stacks would have
Looked like

Stack for 0100 Stack for 010 Stack for 01
Ly 33 >3 > LY 2]

whereas in context 0111, it would have looked Like

Stack for 0111 Stack for 011 Stack for 01
L3 > X 2] =—=———==> [Y 2]

What are the vnlutﬁ af X and Y in context 0111 ?

X has associated mwtuw 1, associated index 011, and the current index
0111. We compare the the two indices; the current one is greater, -
shift it right and it becomes 011; this is equal to the one assoc
with X, so we know that the value 1 associated directly with X il i
its current value.

Y has associated value 3, associated index 0100. We compare this index
with the current one; they are not equal, and the current one is greater
than Y's, so we shift it right and compare them again; the shifted
is now 011, which s Lless than Y's index, so we know that the value
associated wit no longer valid and we will have to search the
current binding stack. This includes the stack containing the entry for
2->Y, so we will ¥ind the regu value .

5 Refinements

There are a number of refinements to the above scheme which will improve
its performance without altering its essential properties, as follows;

(1) 1f you have to search the stack for the velue of a variable, 4t &
probably worth updating its associated value and index to the value yor
have just found and the current index. If you have just atcessed

varisble in a given context, you are more likely to access $t next 4
the same one or some direct descendant of 4t than in any one othes
context, oo 4t makes sense to ensure that you will be able to find th
value directly on this path rather than on the one you have jus:
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(i) in the discussion above, we said that every time you update a
variable you have to push a new entry onto the binding stack. In fact,
if you update a variable twice in the same context, the second entry
will permanently obscure the first. The first entry will then simply
waste space and make searches of the stack for other variables take
longer. For this reason, instead of associating the current value
itself with the variable we associate the current stack entry. This
extra Llevel of indirection has Llittle effect on the access time, and
allows us to update the stack entry rather than adding a new one
whenever we repeatedly assign to a variable in the same context - a
particularly important consideration in view of the effects of a
fragment of code such as

AUB 2 5 1988

switched from. o 1588

repeat 100 times I+1 —> I; ... endrepeat;
which would otherwise add 99 unwanted entries to the binding stack.

These refinements to the basic scheme can each be implemented without
introducing any change in its functional behaviour. If they are both to
be used within the same system, it is essential to note that entries
created by virtue of refinement (i) should not be overuritten when the
variable is next assigned, as described in refinement (ii).

6 Conclusions

The mechanism outlined above for sesving and restoring arbitrary contexts
compares very favourably with previous systems with the same goal (6,
7). Saving and restoring contexts becomes a trivial matter; assigning
values to variables takes a short, nearly fixed amount of time, as does
accessing their values except when you have switched intc & context
which 4s 4dncompatible with the one in which the variable was last
accessed or assigned. Admittedly, we require more space for storing
saved wvalues than would be necessary if contexts were always switched
under a FIFO discipline. We do, however, make reasonably economic use of
space by ensuring that every context is built directly on top of its
actual predecessor, rather than on a copy of it, so that we do not store
unnecessary copies of information.

The mechanism has been implemented in POP-11, but only to save and
restore the values of a user-specified set of global variables. As such
it has been used effectively to implement the “registers” of a back-
tracking ATN parser (1), It does, however, provide a complete
description of variable access and assigmment, and hence could easily be
used for the temporary assignment of local variables during procedure
calls. Using the mechanism described here would dnevitably be slower
than the technigues currently used, but it would greatly facilitate the
implementation of the state-saving required for wmore complex control
structures than simple call-and-return.
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ABSTRACT: This work deals with computer analysis of textured outdoor
scenes involving grass, trees, water and clouds. Descriptions
of texture are formalized from natural language descriptions;
local descriptors are obtained from the directional and non-
directional components of the Fourier transform power spectrum.
Analytic expressions are obtained for orientation, contrast,
size, spacing, and in periodic cases, the locations of texture
elements. These local descriptors are defined over windows of
various sizes; the choice of sizes is made by a simple higher-
level program.

The process of region growing is represented by a sheaf-
theoretical model which formalizes the operation of pasting
local structure (over a window) into global structure (over a
region). Programs were implemented which form regions of
similar color and similar texture with respect to the local
descriptors.

An interpretation is made of texture gradient as distance
grandient in space. A simple world model is described. An
interpretation of texture regions and texture gradient is made
with a simulated correspondence with the world model. We find

that a problem-solving approach, involving hypothesis-verification,
more satisfactory than an earlier pattern recognition effort
(Bajcsy 1970) and more crucial to work with complex scenes than

in scenes of polyhedra. Geometric clues from relative sizes,
texture gradients, and interposition are important in
interpretation.
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ABSTRACT

This work deais with computer analysis of textured outdoor scenes
involving grass, trees, water and clouds. Descriptions of texture are
formalized from natural language descriptions; local texture descriptors
are obtained from the directional and non-directional components of the
Fourier transform power spectrum. Analytic expressions are obtained for
orientation, contrast, size, spacing, and in periodic cases, the
locations of texture elements. These local descriptors are defined over
windows of various sizes; the choice of sizes is made by a simple
higher-level program.

The process of region growing is represented by a sheaf-theoretical
model which formalizes the operation of pasting local structure (over a
window) into global structure (over a region). Programs were implemented
which form regions of similar color and similar texture with respect to
the local descriptors.

An interpretation is made of texture gradient as distance gradient
in space. A simple world model is described. An interpretation of texture
regions and texture gradient is made with a simulated correspondence
with the world model. We find that a problem-solving approach, involving
hypothesis-verification, more satisfactory than an earlier pattern
recognition effort (Bajcsy 1970) and more crucial to work with complex
scenes than in scenes of polyhedra. Geometric clues from relative sizes,

texture gradients, and interposition are important in interpretation.
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1. INTRODUCTION

1.1 Statement of Problem

We intend to deal in this thesis with techniques for computer
understanding of scenes with texture. We consider examples of outdoor
scenes, although textured surfaces appear in almost every sort of scene,
and we show some examples of isolated and artificial textures. Studies
in computer vision are motivated by a wide range of applications. Those
involving texture include agricultural survey and analysis of earth
resources satellite pictures. Planetary exploration by remotely controlled
vehicles will demand some autonomous vision because of long delay times.
The social benefits of computer~controlled cars have been described by
McCarthy. Industrial robots will soon acquire vision. Texture synthesis,
for which we feel our techniques are applicable, is useful in computer
aided design and computer aided art. Interpretation of scanning electron
microscope pictures e.g. for metallurgy may be of interest. We are also
interested in constructing a model of human perception. Finally, vision
is one of the more interesting problem areas within artificial intelligence,
and contributes to the advance in our understanding of intelligent systems.

Without undertaking a complete review of the literature, we wauld
like to broadly contrast the work we have done with that of other work in
computer vision. Several small groups havestudied perception of polyhedra.
Their work has been concerned with three-dimensional objects with plane,
uniform faces. The limited success of these efforts has depended to a
large extent upon large homogeneous areas and isolated edges. A number of
prediction-verification techniques have arisen, some of which are special
to the simple cases considered there. Others are more general and useful

to our work. Because of the complexity of textured scenes, we feel that




the prediction-verification approach to perceptual systems is even more
important for our work.

Some work has been done with image processing, which is intended
for improving the ease of human interpretation of images of particular
value. [Quam, others]. Other work has been directed toward crop
identification and other statistical summaries of the earth surface.
These studies have also made limited progress and are mentioned in a
survey below. However, there is much room for improvement of texture
description, and those studies completely ignore scenes where the three-
dimensional character is important.

It should be clear what we are really after in an interpretation of
a scene. The goal is not only to get a map of colored and textured
regions. We are not merely after identification of some image as a
member of a class. That is, we are not out to identify the letter A.
Nor do we wish to identify some region of the image as some previously
seen element, although this might help us to achieve our goal. We have
in mind a system with a task, to navigate, for example, and execution of
the task requires understanding of the structure of the space portrayed

by the image.

1.2 Outline of Thesis

In Chapter 1, after the statement of our problem, we present
a review of literature that we think is relevant to an analysis
of visual texture. The literature covered in this review comes from three
different sources: psychology, neurophysiology and computer science.
By no means is this review exhaustive. However, we hope to show the

reader, through the psychological and neurophysiological review, which




features in grouping are Important, and thus justify the features that
we use for texture description. The computer science review Includes
pattern recogaition, linguistic and analytic approaches.

In the second chapter; instead ni- presenting seme forma
definition of a texture® which we do not believe is possible* in general,
we describe two concrete scenes with textured dnd colored regions. With
these exa:nples» ve describe our representation o! texture and of a real
scene,

the third chapter presents the implementation of procedures
which give us testure descriptorse We discuss operators in ih%j spatial.
domain; ibjt is edge am! region operator?* *a discuss sa? of the
technique* possible and prebless* to 3 encountered *n extending tiuvst*
techniques to twKtunhi scenes, Thttn w* diwuis iinxturt «2% ripth.rs
Jerived i% tbt* ;. Fourier domain. f*d reciioral;ty tArr™ eM u ¥ one ¢ the
r.ost. udAi*iui teatutof, easily Jettctablu in iht Fourier J'r«iin* Me find
that the Fourier technique has mmny probdlems, srd we analyze the advantages
and limitations of these descriptors. We show how to compute the size of
texture szlements and their contrast; these ampalytic expressions ars
evaluated for several examples and appear quite useful.

Chapter four describes a region growing aigorithm applied to
forming textured regions awmd colorsd regions. We preseat & sheaf-theoretic
point of view which providL precise specificatiocn of conditions for
continulty of textured or colored structures,

Chaptar five i{s devoted to the problem of interpretstion of out~
door scenes. e describe our earlier work using a pettsra recegnition

approach to the classification of texture samples. Then we

G © i i



present an analysis of the use of texture gradient in determning the
orientation of surfaces and relative depth. A sinple world nodel is
presented for outdoor scenes. A discussion is nade of higher |evel
procedures which make interpretation of tw exanples of outdoor scenes..
Thi s higher |evel program has not been inplenented, but gives a good

persepective to evaluate the nmodul es devel oped, and is the target for

whi ch we ai ned.




1.3 Previous Results

During the past five years or so, a great deal of work has been
done in the area of computer-based visual perception, computer
recognition, and computer identification of visual scenes and patterns.
Several results have been obtained in computer analysis of two-
dimensional images, interpreted as projections of geometrically simple
real objects. See particularly, Guzman (1968), Brice and Fennema (1970),
Pingle (1969), and Falk (1970).

Polyhedra and collections of polyhedra are recognized from single
view projections. First the meaningful edges are recognized, then the
main regions and from these, finally, in combination with the world-
model, the identification of the objects is inferred.

Much less attention has been paid to computer analysis of two-
dimensional pictures which depict real-world scenes. What we mean here
are scenes such as forest, grass, water, and their combinations. The
separate regions, formed by, say, grass and bushes, do not differ in
contrast of light intensity, nor in color (as both are usually green),
but rather in their texture.

A primary problem in texture is how we perceive a textured surface
as uniform in a nontrivial way. Intuitively speaking, there are many
levels on which one can perceive texture. In one situation we may look
at the pattern showing how bricks are distributed on the wall and call
that a texture. In another situation we may have a closer look at the
same wall from the same distance and see the texture of the individual
bricks and ignore the texture given by the architectural structure of
bricks.

Flock (1965) and Freeman (1970), reporting about various




experiments in connection with testing aspects of visual perception
pattern into conponents each of which is in some way internally

uni form (Werthelmer (1912)). i

1*3-1 Neurophysiol ogical Studies Relevant to Feature Extraction in
Vi sual Perception

In what follows we shall present a review of certain experinenta
results dealing with visual feature detection in animals. The general scheng
of experinmentation is as follows. The set of stimuli consists of geometric
entities such as slits, edges, bars, and corners. Recordings are made from
single cells or a small nunber of cells in a sequence along the direction
of insertion of an electrode in the visual system of animals (nostly cats

and nmonkeys). The conclusion is that there are special neurophysiol ogica

units, identifiable in well-defined parts of the brain, capable of detecting
notion, orientations, and other features of the visual stimuli.

For instance, Kuffler (1953), placing microelectrodes near retina
ganglion cells of cats, found that certain areas of the retina, when stimla§
by spots of |ight, caused the ganglion cells to fire, while other areas

inhibited firing. The shape of the excitatory areas for retinal ganglion

cells was a small disk, surrounded by an inhibitory annulus or vice versa.

The retinal areas, exhibiting the firing, are known as receptive fields.

Concentric receptive fields have been found also in the optic nerve
and in the LGN ~Lateral GCeniculate Nucleus) of cats and nonkeys (Hubel (i960
and Wesel and Hubel (i960}). The only difference between retinal ganglion
cells and LGN cells is that the receptive fields in the LGN are snaller.

Al so™ the receptive fields in the LGN of nonkeys are smaller than those in a

The concentric receptive fields have a characteristic tenporal behavior: |If



the center of the field fires for "on'' responses, then the annulus fires
for "off'! responses or vice versa.

Only spatial changes evoke responses, while honpgeneous illunination,
however strong, influences very little the firing of these units. In
functional terns these aré "discontinuity detectors'. O course, there
are "Ganzfeld detectors® in the retina, responsive to average brightness
of a large region, which regulate the pupillary mechani smthrough the
superior colliculus, but we are only interested in neural units that
participate in processing patterned stimuli.

A revol utionary discovery was the description of the relation be-
tween receptive field geonmetry and the cytoarchitecture of the cortex.

Mount castl e (1957) discovered the columar organization of the cat's

somat osensory cortex. This vertical nodul ar arrangenment in the sonesthetic
cortex neans that units along a colum perpendicular to the cortica

surface all give rise to the same éensory di schar ge. I n the nonkey,

cells along one columm respond to skin touch-pressure, and the

cells along another columm to joint rotation. (Powel I and

Mountcastle, (1959))* ~° interesting feature of this correlation between
cortical organization and functional organization becanme fully apparent in

the findings of Hubel and Wesel (1960, 1962) in the visual cortex of the cat,

They found feature extractors of hierarchically increasing conplexity*

However, as one goes fromthe so-called sinple units, having el ongated

receptive fields with antagonistic surroundings - also called slit or edge
detectors to conplex and hyperconplex units that respond to highly special
features (like movenment in a certain direction or the end of a |line), one

notices that despite their diversity, alt of these feature extractors have




a common characteristic: they all respond optimally to a certain
orientation. In a vertical module (column) perpendicular to the cortical
surface of the cat and the monkey (Hubel and Wiesel 1960, 1962, 1968)
there are several types of units from the simple and complex or even

hypercomplex kind. But in a given column, all detectors have the same

preferred direction. In addition to this mapping of the orientation

information, the retinal position is also maintained and units with
receptive fields in neighboring retinal positions tend to lie in close
proximity.

Another remarkable finding by Hubel and Wiesel is the hierarchy of

feature extraction. Each unit in the hierarchy results from the outputs

of units of lower complexity using both excitatory and inhibitory connections
The simple units of slit or edge detector type are built from the so-called
Kuffler-units in the LGN by '"summing'' scveral adjacent Kuffler units that
fall on a line of a given orientation. This summation results in a narrow
elongated receptive field having elongated elliptical excitatory (inhibitory)
area surrounded by an antagonistic neighborhood. Such cortical units fire
optimally for those line segments (slits or edge) that fall on the proper
location on the retina and have the preferred orientation. These simple
units are the only ones (in addition to Kuffler - units) whose receptive
fields can be plotted by luminous dots and segregated into inhibitory and
excitatory areas. The complex and hypercomplex units, on the other hand,
respond to such complex features as movement of an edge in a certain
orientation and direction or the perpendicularity of two intersecting line
segments. Here it seems that the notions of straightness, orientation,

velocity, position, parallelism, perpendicularity, abrupt ending of a line,




corners, and so on, appear as features.
The prinmary visual problem bow this information is used at later-
stages, is still untouched.

|«. 32 Psychophysical Experinents Suggesting the Existence of
Vi sual Freguency Anal yzers

In this section we give a bFiéf survey of experiments concerning the
al | eged existence of spatial frequency analyzers, located in the neura
system of human subjects. The set of stinmuli consists of sinmple line patterns
with differing orientations, contrast, and spatial frequency.

The human subjects involved in experinments are asked to respond to
the threshold contrast of the stimuli. Certain aspects of response are used
as argunents for and agai nst the existence of a frequency analyzer in the
subj ect. Enroth-Cugel and Robson (1966) and Canpbell and Robson (1968)
claim to have found neurophysiol ogi cal evidence for a spatial frequency
anal yzer. Several experiments have been done to determ ne the properties
(such as the transfer function) of the hypothetical analyzer using masking
met hods. For exanple, Pollehn and Roehing (1970) used filtered two-dinensional
visual noise and spatial sinusoidal gratings. Julesz and Stromeyer (1970)
used one-di nensional filtered noise for masking. The noise consisted of
vertical strips whose anplitude along the horizontal axis of a CRT nonitor
was determ ned by a Gaussian process. The visibility of a sinusoidal
grating is strongly dependent on the frequency of the grating. |If the grating
frequency overl apped the noise band* it was masked. However, the rejection
band had to be at |east an octave wi de on either side (Blakenore and Canpbel
{1969) and Julesz (1971)). The frequency anal yzers have such a shall ow
characteristic that the analogy to Fourier analysis is rather renote.

Hi storically, the first hint of spatial frequency anal ysis was nmade
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by Campbell and Kulikowski (1966) who investigated the visibility
threshold of a test grating as a function of the orientation of a masking
grating. They briefly mentioned that maximum threshold increase occurs
when the masking and test gratings have similar geometry. That spectral
analysis actually occurs in the visual system was suggested by Pantle and
Sekuler (1968) using adaptation and test gratings of different frequencies
and by Campbell and Robson (1968) who noted that a square grating appears
as a sinusoidal grating until the higher harmonics reach their visibility
thresholds.

A recent study by Nachmias et al. (1969) showed that at the threshold
of visibility the wvarious spatial frequency analyzers are statistically
independent of each other (as long as the various spectral components
have frequency ratios in excess of 5:4). The finding by Nachmias et al.
(1969) indicates that at threshold the phase of visual or auditory signals
is not detected by the perceptual system. However, for perception above
the threshold level, the phase information is used in higher processors.
After all, both the impulse function and white noise have the same flat
amplitude spectrum, but very different phase spectra. The fact that they
are heard and seen as being very different shows that ultimately the phase

information is utilized.

1.3.3 Psychological Studies in Pattern Grouping

The topic of this section is a discussion of the psychological
literature on texture grouping. The grouping process depends heavily
on criteria of similarity of items. Although it has been known for
some time that similarity is one of the most important features of
perceptual grouping, only recently, in the work of Julesz (1971),
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Beck (1967), and Attneave and O son (1970), has it been made clear

explicitly what ki~ds of sinmlarities are effective in this respect.

Beck (1967) has studied perceptual groupings produced by
line figures. He showed that the overall orientation was essential
for cluster formation, while nore conplex properties such as rated
simlarity or fanmliarity of figures were irrelevant. Exanple: T and
tilted T are nore sinmlar than T and -J . However, as a texture,
T and tilted T forma nore distinguishable texture than T and -l .
This has been confirmed by Attneave and O son (1970) who have done
simlar and nore extensive study, with different shapes such as L,
J, A V, lines of different |engths, and orientations. Directionality
was inportant in grouping. W mght expect curvature to be inportant

al so, but curved lines were grouped with straight lines which had the

sane direction.

Groupi ng was dependent also on orientation of the whole inage*
In general, grouping and conplenmentary segregation is based on certain
descriptors, sane of which represent rel ationships of elenents of the

stimulus array to an internal Cartesian reference systent

Julesz (1962) has studied the clustering problem on random dot

textures (stereograns). He described textures and predicted their

properties by specifying their higher order statistics.

The usual joint probability distribution is an inadequate.
descriptor in perception, since it does not describe the shape of
clusters. There are at least two ways to handle this difficulty.

[One way is to define certain information rules for single clusters and
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parametrize them (orientation, compactness, etc.). The trouble with
this solution is the arbitrariness of the selection of cluster
parameters.] The second way is to use constructs of random geometry.

Novikoff (1962) was the first to suggest such a solution.

The clustering process is dependent on the similarity and
the proximity of elements. The similarity relation is relativized
to brightness, color, geometrical descriptors and other parameters.
The proximity relation is based on a distance measure. Nonmetric
multi-dimensional scaling techniques (Shepard (1962), Kruskal (196k4))
and hierarchial cluster-seeking algorithms are useful tools for handling
similarity problems. The methods proposed by Shepard and Kruskal,
however, are appropriate only for linear or multilinear cases. 1In a
nonlinear situation an iterative algorithm is applied on small local
regions in order to find an intrinsic dimensionality (Shepard and Carroll
(1966), Bennet (1969), Fukunaga and Olsen (1971)). Applying
multi-dimensional scaling to discrimination of textures composed of
random 2 x 2 arrays, Julesz (1971) found that the most important factors

for texture discrimination were brightness and orientation.
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|.J<* Texture in~” achine Recognitien

We have seen several aspects of visual textures, mostly from the
point of view of psychology and psychophyniology. Now, we shall examine
the characteristics ami parameters of a texture with respect: to some of
the approaches that have been usef! in machine recognition at textures.

The best review paper about the current state of texture extraction
technology is that of Hawkins { K'g3% According to him, there are iour
types of approaches that "nave been taken tu tuKture classification:

(1Y Spatial fri{*uenty content, {2) Gray level content, (/} Local shape
content, 3M1{ V' Higher order neabun”. K;-*t oi the *farly machine
texture recognition was re<;it*jd LO analysis :of aerial photographs. As
an i2*irpK' the virk. ol lamJari® 'l %,¢) can tie nentiDned* Lendarls

aRalyiuO picturt® " aerial phjtegraphs of a”?jriciltural landscapes -es

wtfii. as @M 'urban art-*s. For recognition purposus he Ui’ t/e pa<e

spectrum yt™ the brightness £unctian over 'Swe #/viows cli constant 92€»
Thet p™wi-ir spectrans “is analw*.e" ‘in tht* 13 lr%un" war. fir™t, t%? function©
arc {~wd; one the w'ntrg:e”? til/'fig dM1**re2t di.rtcticnn; then MM “noriiett
rildanw tUHureni  frequencies!. Ty tred V™ twe Juncti'/n:i, taiture
vo%et3f> al»n cre-~Uid.  Thi: fiMEtnrAi. stAl t45? MaPsr - <l peat« arJ the
strength of the peaks in both functions. Thease feature vectors ave used
for classification of the ayea. BHe distinguishes four classes:

man-nade areas [cities)

agricul:nri.l svreas

a single road

intersecrion of two roade,

Another way of describing repetitive patterns {3 tc use some

statistical features of the brightness function formiag the pattern.
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This has been used with some advantage in analyzing biological material
(Lipkin et al. 1966, Prewitt and Mendelson (1968)), cloud pattern
classification (Darling and Joseph (1968)), and the discrimination of
strategic and tactical targets and terrain classification. The statistical
features, though sometimes useful, have some limits. Thus the variance
of a salt and pepper scene is the same as that of a white scene with a
uniform dark area. The size of connected areas (think of clouds, for
instance) can take a wide spectrum. The number of changes (zero crossings)
is informative again only within a certain context, when combined with
other features such as direction, etc. Histograms are useful in
estimating light distribution in the picture and setting up the threshold
values for measurements.

Shape measures used in texture analysis have involved applying a
particular local '"matched filter" to every point in the image area, and
counting the number of points that match above some threshold. This has
been applied to the previously noted examples of classifying biological
material (Prewitt and Mendelson (1968)), to cloud classification, and
to targets and terrain classifications (Hawkins (1970)). A more analytic
approach to shape description of chromosomes is‘taken in terms of conic
sections. An individual chromosome is defimed as a non-negative function
on the real plane, subject to certain constraints on position, size,
orientation, etc. Ledley et al. (1965) suggested a simple method of
measuring concavity and convexity. Integral geometry measures (Julesz
(1971)) and their extensions amount to calculating the number of occurrences

of n-tuples of specially arranged local points in all orientations over

the image area.
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Matched filters allow one to describe practically any shape.
However, the matching process, due to the computation of a large
number of correlations and the need of hundreds of patterns, is rather
slow. The similarity relation can be defined in a straightforward
fashion in terms of the threshold values.

Simple dgscriptors suéh as convexity, length of the boundary/area,
etc., require small computation time, but similarity relations based on
these simple descriptors are not usually sufficient for sharp decisions.
Anpother set of simple descriptors has been suggested and implemented by
Rosenfeld and Thurston (1971). They use, in parallel, several local
averaging operators applied in different directions and on various sizes
of windows. All results obtained from these local operators are evaluated
and eventually a texture boundary is found. Though this method finds
some texture boundaries, the operators are too trivial for handling
a wide class of real textures. Besides, they do not provide any description
of a texture, they only detect the texture differences.

All the approaches discussed above are pattern classification
techniques. These techniques are not satisfactory for a description of
real textures for the following reasons:

(1) Pattern classification techniques have concentrated on linear
decision procedures, and domain independent formulations. Context appears
as a set of numberical coefficients in a linear function, and in the
choice of features. We have better models in terms of context dependent
decision trees which provide a better basis for generalization and
learning.

(2) Structural relationships and segmentation are part of the
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desired analysis. We discuss this further in our analysis. The point

has been made repeatedly by picture linguists.

PICTURE LINGUISTIC FORMALISM

In what follows we shall review the so-called linguistic approach;
"picture linguists' take as their principal aim to analyze discrete
pictures such as bubble chamber photographs, biomedical pictures of
neurons, blood cells, and chromosomes, machine-printed, and hand-printed
characters, fingerprints and the like. They argue rather convincingly
that such pictures cannot be identified by means of classical receptor/
categorizer devices. What one is after in this situation is not just a

classification, but rather an articulated (discursive) description or

explication, capturing the structured subparts of a picture and the
relations between them (Miller and Shaw (1968), Narasimhan (1970),
Clowes (1970)).

One has to assume that certain pieces of information have already
been extracted from the picture by means of nonlinguistic techniques
(texture elements and their possible structuring is known). We combine
this prior knowledge with the data about the analyzed picture and then
"deduce" its structural description. The "deduction' is accomplished by
a grammar. Due to the fact that we cannot describe a picture in terms
of strings of subpictures, phrase-structure grammars cannot be used
directly. The rewriting rules must act on more general entities such
as arrays, drawings, labeled graphs (webs), multigraphs, etc. For example,
Kirsch (1964 ) and Dacey (1967) designed a grammar for two-dimensional

languages, where the generating rules act on arrays. Pfaltz
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and Rosenfeld (1969) used for picture description the so-called web
grammars in which the rules act on labeled directed graphs. Simply,
inypicture grammars one tries to replace the total ordering of strings
by a partial ordering of graph strucﬁures‘so that the parsing can still
work. : R

The language of the graph grammar is nothing but a collection

of graphs that can be derived from initial graphs by iterated application

of the rewriting rules.

For instance, one can construct a grammar for directed two-
terminal series-parallel networks or neural networks (Pfaltz (1970)).
It is believed that the organization of textured regions in scenes would
be another promising field of application, particularly, when the number
of different textured regions occurring in a scene is small and when
their organization is such that a moderate set of rewriting rules can
do the job.

Methodical scanning of the picture with a prescribed system
of rules, which may be feasible when the variety of possible textufe
elements and their interconnections is small, becomes rapidly uneconomical
where many varieties of wanted textures may exist, embedded in a
background containing many similar forms which do not belong precisely
to the required category.

The intricacy of textured picture recognition is associated
not only with the presence of an incredibly large number of elementary
texture elements,but also with the placement rules which seem to have

extremely complicated grammatical structure.
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To sumup, the linguistic nethod is suitable for such cl asses
of pictures that contain a small nunber of primtive objects. The
primtives have to be found with accuracy, otherw se the parsing process
will terminate in msrecognition. The picture nust be recursive

in nature, so that a small nunmber of rewiting rules can be used

Picture |anguages are inappropriate in situations where the
number of primtives is large and the geonmetrical relationships
between these primtives are random This is the case of nobst of the
scenes such as fabrics, aerial photographs (large nunber of primtives),
cloud covers, grass, bushes (randomrel ationships), shading of snmpoth
obj ects, textured surface of three dinmensional objects (continuity),
and simlar natural or artificial scenes with strong aspects of
repetitiveness, continuity, and regioning, and with intricate changes
in gray levels and colors. On the other hand, descriptions of nodes
and scene el enents are graphs, and there is a broad analogy to picture

| anguage in other approaches.

ANALYTI C FUNCTI ON_APPROACH

A (real two—di mensional discrete rectangular) picture is
represented by a pair < ll X |2, p > where I1 and 12 are
non"enpty finite Intervals of integers aaf p is an arbitrary real-val ued
function p: Il X lp-+Reals. If X= Ii X 3& Is fixed, one can
identify the picture with p.

The definition itself Is enpty. W may proceed to try to
approximate the picture function by analytic functions defined on

subsets of the Inmage planes About the only useful analytic properties
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are those based on periodicity. These constraints are inspired by
pictures in which the regions are generated from texture elements by

a more or less straightforward family of analytic rules.

A sample of special cases of deterministically textured pictures

is listed beow:

(& If p is spatially periodic on a connected region

SCX, i.e.,

p(x + v,y) = p(x,y)

p(x, y +w) = p(X,y),

where x,y € S and <yw=> is the spatial period,,

and if p|s cannot be extended to a larger connected region S’ (S C s')
without losing the periodicity of pjs', then <Sp> is called a

periodically textured region.

A picture decomposable into® a family of periodically textured

regions {R]._JI < i <k] with spatial periods <V.,w.> X = UiRi and

Rl.fIRj = 0, when i j£ j), is called a periodically textured picture.

Simple visual patterns, such as a rectangle covered by a mosac
of squares, triangles, circles, etc., are examples of periodically
textured pictures- Brick wall, honey-comb herring bone and mawy other

orriaisental or mosaic patterns also belong to this class of pictures.

Mate that in this case only two texture eleaents, are involved
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(black and white squares, etc.) and the whole picture is described by
a finite group of translations in two directions (direct product of two

translation groups of integers modulo I1 x I.). Thus textured pictures

2
of this kind can be defined in terms of their texture elements and an
appropriate finite group of translations. Only a small degree of
complication arises when the textured picture is decomposable into
periodically textured regions.
1f p is partially periodic (periodic in one of its arguments)

(b)

/

on a connected region S C X, i.e.,
(i) p(x + v,y) = p(x,y) (Periodic in the first coordinate)
(ii) p(x, y + w) = p(x,y) (Periodic in the second coordinate)
where x,y € S and v (w) is the period, and if plS
cannot be extended to a larger connected region S’ (S s’)
without losing the partial periodicity of pis', then

<S,p>> is called a partially periodic textured region.

A picture decomposable into a family of spatially

periodic textured regions {Risl <i< k} with periods

{Vi} or {wi}, is called a partially periodic textured

picture.

(¢) 1f p 1is partially almost periodic on a maximal connected

region S, we obtain a new class of analytically characterized textured
pictures. Here "almost periodic” means: For any € > O there exists a

function p': I, x I —» R of the form

1
/ . im(a, x + b v)
(x,y) = SyuymSuym(C, .e i v
P 3 F y i, 3 /e
such that |pix,y)-p’ix,y)|< €,




where a;s aj €R,0<1i<n, and 0 < j <m.

The function p’ is not periodic in general, though it has periodic

components C. eim(aix + bjy)
b

and the absolute difference

7
P’ (x + v,y + w)-p’(x,y)| is an arbitrarily small number for a suitable

pair <v,w>.
Assuming that the pictures under consideration are composed of
periodic, partially periodic, or almost periodic textured regions, we can

utilize features like expansion of the picture function p over a textured

region S into periodic orthogonal series such as Fourier, Hadamard-

Walsh etc. In fortunate cases the orthogonal series-features compress
the information hidden in the textured region into a few dominant
components. This is followed by pattem classification (Rosenfeld (1962),
Julesz (1962), and Bajecsy (1970)). 1If the periodicity or repetitiveness
is not the most relevant aspect of the picture in question, an orthogonal
expansion may scramble the information content so that no simplification
occurs.

A typical case appears when the phase spectrum happens to be
relevant in a Fourier expansion of a'honperiodic" picture and we restrict
ourselves only to the power spectrum. Here the information content is
not only degraded, but also mixed in such a way that the Fourier features

)y

are no more relevant (Lendaris and Stanley (1970)).




1-~ The Contribution of This Research

W feel that theoretical and experinental advances have been
made in prograns for understanding textured scenes. These are:

1. A sheaf-theoretic formalism for describing textured and
col ored regions.

2. Synbolic structured description of textures.

3. | mpl ement ation of descriptors in terns of Fourier descriptors -
Anal ytic expression of spacing, size and contrast of texture el enents,
and their approxinate |ocation.

k. Forming of color regions.

5. Fornming of textured regions.

6. Spatial interpretation of regions in terns of texture
gradi ent .

7. Description of a higher Ilevel procedure and world nodel for

out door scenes.
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2. TEXTURE DESCRI PTl ONS

In this chapter we discuss qualitative descriptions of visua
textures in order to suggest the corresponding inplenentation in
procedures. Qur aimwll not be detailed descriptions; in a Borgese
story, a project to nake perfect maps lead to maps the full size of the
countries mapped. Instead, we want to characterize textures in a compact
synbolic representation which suggests correspondences with our nodels,
and sinplifies human communi cation and debugging. W feel that everyday
texture descriptions are good nodels for these purposes. At a low |evel
we want to work with those descriptions to propose plausible colored and
textured regions. At a higher level, our aimis a description in object
space, not an inmage space map. Many interpretations and hypot heses should
be In terns of objects and properties of the object spaces An exanple is
the Interpretation of texture gradient In the imge as distance gradient
in space. Another interpretation is that overl appi ng regions correspond

to foreground and background.




2.1 Exanples of Qutdoor Scenes

In the scene shown in Figure 1, we find three elenents: grass,
water, and rocks. The grass lies on an approximtely level surface. The
rock is in front of the water and behind the grass. W do not describe
the image itself, but its interpretations as objects. |In describing
this scene, we enphasize its segnentation into elenents which are objects
and regions in object space. This structural description characterizes
the rel ationshi ps anong objects and regions. For exanple, a tree stands
above the ground and in front of the sky. The structure allows us to
tal k about conplex scenes in terns of sinple elenents. To nove about,
we nust know where the grass extends, where to wal k around rocks, and
where the water is. These spatial relations are essential; even if we
were able to store and recogni ze whol e scenes, we would need a nechani sm
to discover where we wal k and what we can pick up.

Grass, rocks and water correspond roughly to three regions in the
imge. But these sinple elenents are not directly the sort of regions
whi ch cone from existing edge or region finding prograns. The elenents
we see are high level abstractions which do not coincide with color or
texture regions. In the first approximtion, color is the nost relevant
feature that distinguishes these regions. However, a closer look at the
pi cture suggests that the color boundaries do not correspond exactly to
the regions we see. Consider the white waves near the rocks or the dark
areas inside the grass region- Ou texture region growi ng al so defines
a set of regions. Directionality is inmportant in the grass region, yet
that property is not uniform over the region. Thus the regions defined

by our texture descriptors do not coincide with the grass regi on we see.
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Yet there is a continuity over the region in some of the properties of
color, size and density of grass stalks. The fact that we have similar
stalks of grass over the whole field (sometimes with different direction
or with different color) makes it possible to propose the field as an
element. This complexity makes it impractical to attempt to identify
local elements with local prototypes for grass, sky, or water, or to
attempt to identify the low level regions from our programs.

In a second example in Figure 2 we have four elements: grass,
trees, clouds, and sky. Again, color separates the sky, clouds, grass,
trunks of trees, and in some areas, separates the crowns of trees.
Texture, on the other hand, separates the trees from grass.

In the object space description, the sky and trees are distinct. We
could arbitrarily define image regions as disjoint. Proximity of regions
of like color is one basis for proposing a connectivity among tree branches
and among fragments of sky. Those connnectivities reflect the object
space descriptions of trees as connected and sky as connected. The regions
based on proximity in the image are unconnected and overlapping. That
description allows an inference (which may not always be valid) that the
trees are in front of the sky. Arbitrarily defining disjoint regions
rejects these hypotheses of object space connectivity and the conclusion
of interposition from overlap.

Although the trees are approximately of the same height, and the
grass stalks are also roughly of constant height, their apparent size in
the image decreases toward the center rear of the picture. The size of
the grass stalks nearest us is the same as that of the trees farthest from

us. Gibson [1950] has emphasized that perception relies heavily on the
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interpretation of systematic variation of apparent size with image
position (texture gradient) as a variation of distance from the observer.
For most purposes, the relative depth of elements in the world is
sufficient. Assuming that we know the position of the observer, the
gradient allows us to determine the absolute distance of objects. The
measurement of observer or camera position and angles, and calibration

of the image device (Sobel (1970)) are essential.
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Tentured Regions and Textured Elements

The examples from the previous section demonstrated a structural
description of images by segmentation into elements of pblect space.

We further structure these textured regions in terms of texture elements
and their spatial relationships. In Table 1 we show some examples of
texture elements amd their velationships as they appear in object space
and image space,

Texture elements cannot be determined in isclation. A single element
may be unrelated to the texture. The relationships are f{requently only
approximate. In a texture of pebbles, the size similarity may be
important even though the sizes vary significantly; still, there iz 2
uniformity within a factor of 10 or so. Similarities of other properties
such as contrast, shape and spatial distributions may also be only
approwimite.

In practical implementations we can describe only simple relation-
ships: linear, pericdic, regular but aperiedic, continuous, svametric,
and the like. Likewise, shape descripiors sust be relatively simple.

One way gquestion the effectivensss of sieple velationships and their
descriptors; it is ressonable to thisk that a more complen description of
rextureé elements smi thelr velstionships is necessary for adequate
description of textures. The psychologics]l experiments cited in Chapter |
indicate that husss differsntistion of texturss depends beavily on & few
simple descriptors such es contrast and dirvectionalivy, snd ignores even
curveture in meking texture grouplings. Although we cannot estisate the
computat lonal cosplenity of descriptovs, we have an intuitive feeling

that in terms of time, or in teves of complexity of wiring for parsiisl

svatems, that simple descriptors such as divectionslity erve cleariy prefarred.
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Table 1

Name of Region Grass Water Forest
Texture leaves, blades water waves (a) Evergreen:
elements of grass trees
(b) Deciduous:
fruit trees
Texture width: 1/4" widely variable width/height: 1/2
element length: 2-10 in. length: 5-20 ft.
size '
o | Spatial dense, roughly quite parallel |(a) wvertical and
8| relation- parallel and waves or con parallel
[a N - - t. .
o' | ships vert%cal, and- centric circular (b) vertical and
between partial covering | waves
o parallel
o | elements . .
o partial covering
hime ]
QO
© | Color green, yellow blue, dark bluej(a) crown of trees
or brown dark green, is green and the
silver gray trunk of trees
is dark brown.
(b) crown: green,
brown, yellow or
red; trunk:
light brown
Boundaries fuzzy, smooth fuzzy, smooth sharp, not smooth
of elements|
| Geometric linear and linear, direct- |trunks of trees:
descriptionj| directional  ional, con- linear texture
of elementsi| | centric circles
‘ crowns of trees:
21 blob-like texture
©
o
“ 1 Expected very low very low lhigh (trees with sky)
o contrast
&0
o
=
ot
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Table 1 (Continued)

Namei of Region Sky Clouds Brick wall Pebbles
Texture homogeneousfa cloud bricks pebbles
elements
Texture 114.-2 miles | width: 3+ diameter:
element : length: 8-15 1-3 inches
size inches

3 _
i width/length
@© 1/2
o | Spatial homogeneous | pattern horizontal randomly
n i relationships depends on rows distributed
0 | between weather
elements
Color blue white, gray | gray, red, any color
red brown, yellow
Boundaries sharp fuzzy but sharp and sharp ad
of elements irregular contrasting amooth smooth
(horizon)
Geometric homogeneous [blob-like or | bidirectional | blob-like
description directional
of elements
®
°. | Expected high low depends on lov or high,
e | contrast the back- depending on
© ground the back-
60 low or high gr ound.
'S
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2.3 Textured Regions and Their Organi zation

In the previous section we discussed inages

scene-regi ons- el enent se

space. A texture may have a few layers of heirarchical structure; in

Fig. 3, the surfaces of the bricks have a rough texture. The regions

formed by the bricks are elenments of the brick wall texture

Fig. 3

The textured region thus ;*ia be 3 texture w ler®nl :in a textured super?

regions or

the texture rtitmfn; : md \H ot »"oryw-icicurr?

Region and edge [li:vrhr™ h#Viz riine % -%'w5 wfitlt lar”e h'“nogeneous

regions*

Grouping of t.a<i*jrc vkliamii:>=emix> tw vimwedk AiS a generalization

in a part/whole structure:

The regions and elenments were primarily in object

e e b A




of homogeneity, the regions of a common property correspond to the
regions of homogeneity from a region growing operation. The related
operation of finding discontinuity in texture properties is analogous
to edge-finding between homogeneous regions. Rosenfeld (1970) has
discussed the problem of finding texture boundaries as that of finding
gradients in the average values of statistical measures (which are
assumed to be any suitable operator). While this is suggestive, it
unnecessarily emphasizes statistical measures as opposed to structured
descriptions which would be more suitable for patterned textures.

Let us approach the question of the organization of textured regions.
In the simplest case, the picture to be described is partitioned into a
disjoint covering of textured regions.

A somewhat more complex system of regions can be described by a
tree structure. It may be used to represent the topological organization
of brightness contours (Krakauer (1970)). While this may seem a great
generalization, a tree does not well describe the system of regions
from a number of descriptors. Even for a single descriptor, the tree is
rigidly heirarchical. The nodes of the representing network are used
for regions and the arrows correspond to the spatial relationships between
the regions. Systems of features lead to several networks of regions.
A single feature may give rise to a non-disjoint network of regions.
For an operator to give disjoint regions (a partitien) one must assume
an equivalence relation (reflexive, symmetric, and transitive).
Quantization would be an example leading to an equivalence relation.
Gradient thresholding would be another example. Selection of typical

values, followed by thresholding within an interval, would not lead to
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equivalences, so that it would not lead to a partition.

It is not necessary to fully expand the whole network or family
of networks. Rather, instead of thinking of comparing several networks
derived from different features, we use some simple hypotheses derived
from a subnetwork of some particular network and supported by evidence
from features which might imply another network (which may never exist
as such).

We must deal with texture boundaries as well as textured regions.
The boundary problem is dual to the grouping problem. Therefore the
difficulties encountered in a grouping have their analogs in boundary
detection. Take as an example the scene in Fig. 1. The objects in this

scene (grass, water, and rocks) are separated by physical or virtual

boundaries. Some of them are visible while others are hidden (grass covers
the boundary between water and rocks). In the identification process
it is not clear whether one should follow the boundaries defined by
individual texture elements (look at the individual straws near the rocks)
or whether one should look for some kind of average boundary or perhaps
keep a spatial gap between two different textures.

Region growing operators use certain similarity criteria. These
are applied in patching local structures into global ones. Whenever we
meet a dissimilarity, a boundary point or segment is proposed. In the
first approximation, a region is formed by patching continuous structures
over connected areas. In this case the corresponding boundaries are also
connected. There may also be internal, unclosed boundaries. When local
discontinuities occur within a region, proximity criteria are used for

bridging the gaps. The proximity here is used as an extension of continuity.




The same is true with interrupted boundaries. Proximity and continuity
of boundary segments suggest continuation.

In the past it has been customary to think of regions as a disjoint
covering of the image. The examples in Fig. 1 and Fig. 2 have shown that
this conception is too simple to be useful. An equally simplistic point

of view is that boundaries of regions are always closed curves.
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3- _PROCEDURES FCR TEXTURE DESCRI PTORS

In the previous chapter we discussed the description of texture in
obj ect and inage space. In this chapter we shall specify the inpleinentation
of these descriptions. Specifically, we shall study texture descriptions
in the spatial domain and in the Fourier domain. Algorithms for concrete
descriptors will also be presented. Although the descriptors will be
derived in the Fourier domain from the power spectrum they actually refer
to textural properties in the spatial domain*

W will find it useful to distinguish scalar, topological, and

geonetric features (shape, area, size, boundary, connectivity, thinness

ratio) fromrelational features (spatial distribution, organization,

gradi ent).

3-1 TexturePescriptors Derived in the Spatial Domain

Since descriptors refer to properties of objects represented in the
i mage space, it is natural to look for operators acting directly in the
spatial dommin. The skeleton of this section is this: Procedures isolating
the inage el ements, geonetric description of imge el ements, and clustering
of el ements based on proxinmty and their spatial organization.

In the process of isolating the inage el enents the nost inportant
features are the follow ng topol ogical properties: connectivity, confinuity,
and proximty. These properties, applied to brightness or color, are used
inall region finders (Fenema and Brice (1970Y)). Discontinuity is the
basic property to be used in edge and line operators (Blnford (1970)>
Hueckel {19'f1)). Current edge aad line operators are designed for de-
tecting discontinuities between two |arge honpbgeneous regions and they do
not operate satisfactorily on small regions. The textured el enents that

one finds In outdoor scenes are too snail in size and too large in nunber

36




and therefore cannot be processed usefully by any of the above operators.
However, under poor resolution conditions in the image, where the texture ‘
elements are smeared (so that the homogeneity stands out more than usual),
one may be successful even with the above mentioned operators. i

After completing the isolation of image elements - figures, we shall
describe them. We select those descriptors which enable clustering,
i.e., based on proximity those which will find the nearby elements.
We had already a chance to note that color and brightness are among the
most important descriptors in natural scenes. Image elements cannot be
taken separately from their background. 1In fact, the common background
of the elements is a strong clue for their clustering. The relationship
between the background and color is expressed in terms of contrast, and
therefore it can be used as another descriptor.

The descriptors corresponding to spatial relations depend on
proximity relations just as cluster processes depend on proximity. Typically,
we want to define colored regions by proximity, rather than only
connectivity. Grass and trees are regions broken into many fragments
defined by connectivity. But other like regions are nearby. This
proximity in space and color can be phrased as a problem of proximity in
4 dimensions, using the multi-entry technique outlined by Binford in the
Stanford Progress Report of January 1971. Likewise, super regions can be
defined by brightness, contrast, size and shape descriptors clustered

on the basis of proximity. Spatial relations, the intervals between

elements and directions of these intervals, can be defined also among

elements linked by proximity.

As an expedient which is suitable for linear textures, one can




project the elements into several directions. Each projection will
actually be a one-dimensional function of gray levels or color. Since
this function is still too complicated for practical implementation,
it is simplified by using a square wave approximation. The square
waves are described either by edge detection operators or by magnitude

and the distance between two consecutive zero crossings. Since the

distances between zero crossings are intervals in which the approximating

gray levels are constant, the method is called interval analysis. That
technique has been used with some success to describe regular linear
textures in an MIT term paper by Peter Wolfe, (1970).

Since the shape of a two or three-dimensional object in a general
situation could be extremely complicated, we cannot hope and, in fact,
we do not want to describe it in detail. Instead, complex shapes are
decomposed into simpler ones which are (hopefully) easier to describe.
A typical example is a tree which may be decomposed into its trunk and
crown, where the trunk is geometrically linear while the crown is blob-
like. 1In shape analysis of outdoor scenes we find directionality among
the most useful features. One can see this immediately in Table 1.
Directionality, combined with length/width ratio and length along the
preferred directionality make up a linear element description of shapes
or parts of shapes. These are all directly implementable descriptors.
In ourdoor scenes, the shapes of texture element are quite important,
while the shapes of the important regions of object space (sky, grass,
trees, water) are not very important.

The apparent size of an object in an image is not relevant if

considered in isolation. This fact was already noted in Fig. 2. There
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the apparent size of grass was the same as the apparent size of trees,
located further from the observer. However, the size of region could be
relevant, particularly in the initial stage of a scene analysis when one
is searching for large connected regions. Despite the importance of
descriptors derived in the spatial domain, we shall not use them in this
work. Currently available edge finders and region finders are tailored
for large homogeneous regions. In natural scenes, textured areas are
composed of small texture elements. Even to the extent that the boundaries
of small regions are determined, the data structures require unreasonably
large memory, since the boundary descriptions are no longer economical.
The next steps of description of elements and clustering elements of
similar direction, size, color, or brightness, seem prohibitively time
consuming and difficult for grass, pebbles, sand, etc. The one-
dimensional interval analysis might have some utility but is very limited;
combined with other methods such as Fourier description, interval analysis

is potentially useful.

3.2 Texture Descriptors Derived in the Fourier Domain

In what follows we shall need some elementary and well-known notions
of Fourier analysis. They will be reviewed presently.

Consider a real picture function of two variables in a matrix form
g(x,y), where x and y are variables from fixed intervals of natural
numbers Il = {0, 1, ..., p2—1}. The two-dimensional discrete finite
Fourier transform of the function g(x,y) is then given by

p-1 p-1
12 S ZO g(x,y)exp(-2mi (xntym)/p), (1)
7=

P x=0

F(n,m) =
where p = P; =P and 1 1is the usual imaginary unit.
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In general, F(n,m) is a complex function, given uniquely by its

power spectrum P(n,m) and phase spectrum PSI(n,m):
P(n,m) = SQRT( (n m) +-F (n m)),
PSI(n,m) = ARCTAN(F (n m)/F (n m)).

From the elementary properties of the Fourier operator it follows
that any real periodic function has a symmetric Fourier image with respect
to the origin. An equally well-known but somewhat more interesting fact
is that the power spectrum is invariant with respect to translation in
the spatial domain, but not with respect to rotation. A trivial
consequence of this property is that the directionality of a pattern in
the picture is preserved in the power spectrum but the phase of the trans-
form is not.

If a function is periodic, partially periodic, or almost periodic,
then its Fourier transform compresses the data considerably without great
loss of information and the relational features derived from the Fourier
image form a goodﬂdescription of periodic or almost periodic patterns.

As we have pointed out above, the power spectrum contains the
information about the form of a periodic picture function restricted to
a window. The phase spectrum, on the other hand, represents by and large
the locational (positional) information in a window.

We said also that directionality is preserved in the power spectrum.
This fact allows us to infer some gross shape properties. We are able
to distinguish directional and non-directional components of texture.

For this reason, it is useful to transform the power spectrum from a
cartesian coordinate system <n,m> into a polar coordinate system

<r, @ >. Then in each direction ® , one can regard P(r, ®) as a
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one-dimensional function P m~(r). Similarly, for each frequency r,
function Pr () is a one-dimensional function. Thus, the description
ol the texturc depends in this method on the form of the pair of functions
B, (1), Polp)>.

Function Pr(¢) determines whether there is a directional or non-
directional component. If function Prﬁo) is flat then the corresponding
texture is nondirectional. 1If it has few distinguished peaks, the texture
is directional. One peak leads to a monodirectional texture. Two peaks
under certain constraints lead to a bidirectional texture.

The nondirectional texture could be homogeneous, noisy or blob-like.

Function P (r) distinguishes between noisy and blob-like texture.
¢
The noisy texture corresponds to a flat nonzero function P&(r). . Whereas
in the case of the blob-like texture, function P¢(r) will have some

peaks. The homogeneous texture corresponds to an almost constant function
P (r) for r>0 and with a large value for Pw(O). In the case of
o

11

a directional texture function P (T) will have peaks similar to the
©

)

will roughly correspond to the distance between two parallel stripes (in

case of blob-like texture. The frequency in the maximum of Pcp(rmax

the case of directional texture) and to the distance between two blobs in
the case of a blob-like texture.

We have shown the interpretation of function P(m). Now we want
to analyze a further possible interpretation of function P(r). Consider
a monodirectional pattern that appears as a one-dimensional (in the

particular direction) square wave function shown in Fig. L .
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Fig. h

Denote the replicative synbol' 0)(x) and the wave formby f(x). The
periodic function in Eig. k is expressed as a convolution of f(x) and
a)(x), thus
F(x) = f(x) * u)(x).
The Fourier transform of F(x)
F(F(x}) = F(£(x.v)) * T(w(x.1))
= sine x_* a)(x).

v I

» appears as a' convol ution ff?fﬁﬁﬁ'
Appl yi ng the wi ndow function of the width w ' o

in the Fourier domain.
J(Wx.w) ¢ F(x)) = sinex * (sine x * w(x)).
w \Y; I 4
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This function displayed graphically is seen in Fig. 5 .

W/Z

Fig. 5

It is clear that we can measure —% ,J% in the power spectrum
from the function P(r), for every directionality and window size w.
Consequently we can estimate (how well, depends on the brightness function)
the wavelength I, as before and, in addition, the size of the
smallest element, v. v and [ will be parameters associated with each
description. Examples of functions P(w), P(r) of texture samples will
be presented next. The size of samples is 32 x 32 points. The points
on the y axis have the corresponding values of the functioms P(@) and
P(r) respectively. The points ¢ (on the x axis) in the graph for function
P(p) represent the value (x-1) ';%g_, for x =1, 2, ...., 16. The points
(on the x axis) in the graph for function of P(r) have just the

actual values of frequency r =1, ...., 16.
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Each pair of functions <P(¢), P(r)> will be described by some
J parameters, listed in a table. Below is the list of the parameters
and their descfiption.
NAME: The natural language names of the texture samples.
DESCRIPTOR: A hypothetical description of the sample according to
some criteria (thresholds) applied on functions <P(w), P(r)>.
MAX P(®): The maximal value of P(p).
© _: Is such ¢ that P((pmax) = max P(?).

‘max

WIDTH: The distance between ®q5 cp2, where Cpl < o and

<
max _cn2

P(cpl) = MIN P(p), the left side with respect to P(cpmax). P(CPZ) = MIN

).

P((pg) (the right side with respect to P(Cpmax

DIR: 1If the descriptor is directional, first perform a fan filtering

in such a way that the fan filter is centered in P nax and then find
m

M ) and thus compute DIR = arctg

max n

max

MAX P(n,m) = P(n___, If the
max
max

descriptor is nondirectional then just find
MAX P(n,m) =P<nmax’ mmax)

and compute DIR as above.

RO: Is the wavelength computed from the maximal point energy.

RO = window size/ /n2 + e .
max max
M : is the mean value of function P(p).

v_: 1is the variance of P(p).

MAX P(r): 1is the maximal value of P(r).

r is such r that P(rmax) = MAX P(r).

max
WIDTH r: Is the distance between the center of P(r) and the

threshold value of the envelope of P(r).
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M : is the mean value of P(r).

T
v_: 1is the variance of P(r).

v: is the element size, = window size/width r of the envelope.
L: is the spacing between elements.

= window size/frequency of the first peak.

In the case of bidirectional texture a pair of values is listed

for the following parameters:
MAX P(yp), Pray’ Width @, DIR and RO.

The texture names are on the top of each picture displaying the
corresponding function P(g) and P(r). The actual samples of texture-
lines, wood, circle, and sand - are in Figures 14, 15, 20, and 21.

The texture water is a sample from the upper left corner of the picture
in Fig. 1.

Fig. 6 and Fig. 7a display functions P(p) and P(r) of textures,
parallel lines and water, followed by Table of Parameters. TFor the
identification of parameter v we have used the directional part of the
water picture. The filtered alternative of functions P(r) and P(y)

for water is in Fig. 7b.
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TABLE 2

NANE LI NES MATEE
Md R(tp) 22,12 13.5
Pirax 9 9

W DTHt? 4 3
DIE .42 157
10 2.9 id

M 39.8 5.08
v 14 .22 0.64
MAX 2{1) V3 6.9
¥ o 11 4

W DTH r B i

M 37.9 k.86
A 7.42 0.36%
t 3 8

v 1 1

COMENTS: Both textures, lines and weter are described by the progras
as sonodirectionsl {they have om afignficent peak in Plp) form,
geomstrically speaking, parallel vertical lines). Thet {s why Dyt 459
DIR ia both cases are the sems, e.5. ¥/2. The cootrast ia the picture
of 1inses is much higher thas ia the picture of water &8 indicated

by the values of P{o} and P{r). The regular pattern of lines shows
higher values of the directicnal composent ws the aondirectional

component thaa the texture of water. (Compare for instance the values
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of MAX P(®) and hb ). The water waves are broken and thus they form
parallel broken lines organized in random fashion. This shows up in
the function P(r) of water texture. That is rather flat in comparison !
with P(r) of the texture of lines.
In Fig. 8 we display a sample of grass from the scene in Fig. 1.
The upper lelt window in Fig. 8 is the original sample, the upper right
window is its corresponding power spectrum, the lower left window is
the power spectrum after a high pass filter and the lower right window
is the resynthesized original picture after the high pass filter.
This example is presented in order to demonstrate the necessity
for separating the slow changes from the real texture pattern. The
rationale for this is that most of the objects (texture elements) tend
to have the same reflectivity and the lighting varies smoothly, thus
shading in the Fourier domain generates a low frequency component.
Functions P(p) and P(r) of textures grass, wood and canvas
are displayed in Figs. 9a, 1l0a, and lla respectively. The analyzed samples
from grass are in Fig. 8, from wood in Fig. 15, and on canvas in Fig. 18.
For the sake of considering the main directionality and thus to be able
to determine [ and v we display the filtered alternatives in Fig. 9b

for grass, Fig. 10b for wood, and Fig. 1lb, and llc for canvas (for one

directionality). The table of their corresponding parameters is below:
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TABLE

NAME GRASS WOOD CANVAS
DESCRIPTOR BIDIRECTIONAL MONOD IRECTIONAL BIDIRECTIONAL
MAX P(®) <8.35, 7.5> & <108, 80>
I <5, 13> g1 <1, 9>
WIDTH o <6, b> 5 <4, 2>
DIR <0.463%, 2.03> 2.55 <1.57, O>
RO <l.31, 16> 8.87 <16, 8>
M, L.76 32.84 k9.3
Vo 0.534 3.76 5.46
MAX P(r) 5.62 k.8 120.3k
v it 3 4
WIDTH r 16 16 9
M L.52 31.46 47,14
v, 0.324 2.54 T.64
! <8,16> 10 <16, &
L oos 8 8
V for MAX DIR 1 1 1.8

COMMENTS: First of all, notice that grass is described as bidirectional,

contrary to what would be expected.

The reason is that even after high

pass filtering, there is still signficant slow change left

(wavelength = 16) which forms the second peak.

One needs to know more

about the scene (its illumination, continuity, context) in order to

remove this kind of slow change.

It is impossible without further

knowledge about the area to handle this situation appropriately,




because the same component (wavelength = 16) which in the case of grass
is undesirable, in the case of the canvas texture is an essential part
of its description.

Function P(r) in case of grass and wood shows similarities which
suggests that both of these textures have some noisy, irregular backgrounds.
On the other hand the canvas texture displays signficant peaks in low
frequency and decreasing power in higher frequencies.

For more detailed analyses of P(r), one has to separate the
different directionalities. This is what we have followed up in Figures
9b, 10b and 11b and llc.

The last two examples of texture of blobs and sand demonstrate
the differences between nondirectional textures. In Fig. 12 and 13 are
functions P(®) and P(r) of samples of texture recorded in Fig. 20

and Fig. 21 respectively. Table 6 contains their corresponding parameters.

The P(yp) is a flat function in both textures as to be expected.
P(r) in the case of blobs has one signficant peak, whereas in the case

of sand P(r) is approximately flat.
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TABLE 4

NAME BLOBS SAND
DESCRIPTOR BLOB - LIKE NOISY ;
MAX P(w) 82.26 73.7h
chax 13 13

WIDTH @ 3 3

DIR 2.35 2.35

RO 11.3%31 5

Mcp 60.2 52.8

vw 2.72 2.48

MAX P(r) 120.46 75.8

Vmax 3 6

WIDTH r 6 12

Mr 61.70 S5h.4

Vr 6.52 3.18

P 10 5

v 2.6 1.3

We must make some comments about the differences between
continuous and finite discrete Fourier transforms. The continuous
Fourier transform exists for every function with finite energy, while the
finite discrete Fourier transform exists for any function. Our interpretatial
will be based on the continuous transform and the actual computations on the
discrete transform (fast Fourier transform). The discrete transform is

really a Fourier series. A continuous Fourier transform is rotationally
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invariant (except for windowing effects) while a discrete transform has

distinguished axes along the coordinate axis and the diagonals. Thus

a directional image has a continuous Fourier transform in a very narrow

band, while the discrete transform has a narrow band transform only for

directions along the preferred axis. There is a corresponding difficulty

in defining fan filters which we have not succeeded in solving. The

difficulty with narrow fan filters is demonstrated in the following

example, a line with directionality 6 = 22 1/2° in digitized form,

with a window size of 8 x 8 points. Due to the sampling problem the

line is represented by only four points instead of the desired 8 points.
The values of the corresponding power spectrum are in matrix 2. From

inspecting the values in matrix 2 it is clear that there is a spread

of energies in different diregtions besides the expected direction

8’ = 112 1/2°. This effect is due to poor sampling. For more details

see Huang (1970).

MATRIX 1 £(x,y) MATRIX 2 P(n,m)
lo Jo o o |ofo]o o] ofolk}o joJo |o
o oo o |ofoJol]1}]|3 2.6] 1 1 {1 2.6 |2.6
0 oo |o fo |1 o Jofo2 1lojo]l 4}o |o}o |4
o lojo |1 |ofo]olof1 |26l 1]|1]|ed26ll |1 |26
oJ1}l0 |0 o jojojo}o ojojlo}jofs Jolo |oO
(0 J]O JO |O O JO0O |0 |O}-1 |2.6}2.6] 1| 1}2.6l2.41 |1
o Jojlo|o jojJojojo}-2 ols o} o » o |o
ojo}jo|o ojlojojo|-3 112.6j2.6] 1|1 |1 |1 2.6

4 3 2 -1o0o 1 2 3

All the real values in F(n,m) have to be divided by coefficient 6.
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One should make a note of a fairly important though elementary
mathematical fact, namely that the Fourier transform does not preserve
functional restriction. More specifically, if g(x,y)lw denotes the
restriction of the image function g(x,y) to a window W (so that
g(x,y) 1is truncated outside W), then

Flg(x,y)|W] = Flg(x,y)]|Ww
is true for every W only when g(x,y) is periodic with period equal
to the size of W. Thus a Fourier image of a truncated function,
truncated outside a window, will in general depend also on the part of
the function g(x,y) whose domain is outside W. What this means
practically is that certain texture elements could be split in half by
windowing and as a consequence, an improper interpretation would be
derived. This problem can be partly compensated for by overlapping windowing

Human perception allows us to discount smooth changes in shading.
This fact allows us to separate shading from edges. The Fourier transform,
on the contrary, reflects not only edges, but also slow changes which
are ignored in human visual perception. Perhaps the simplest way of
demonstrating this is by recalling the basic dictionary of the Fourier
transform. We find that a rectangular impulse is transformed into a
sinc function, a triangular impulse into a sinc2 function, and a cosine
signal is transformed into two impulses. We are accustomed to regarding
images in terms of homogeneous regions with sharp boundaries, and to
describe elements by brightness and color contrast and outline shape.

In the Fourier domain, these become jumbled in a way that is only
approximately resolved by our heuristics; thus they are not always

usefully described.
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In addition, the texture elements (their shape) aad their
organization are also jumbled together in the Fourier domain. So, for
instaace, dots and small segments of lines organized in parallel liaed
fashion; will be described equally as acaodircctional texture. Thus
they are not described in full details. As wm said before, for aore
detail, one has to apply the spatial, local operators.

For areat of a scene for which ftoaogeaeons regions arc too small
for b€ of usual edgeninditig and region-growing technlcjoti, the Fourier
transfora provide* useful and cospact descriptors* May of the examples
of textured regions shewed linaar texture elements, crudely aligatd,
and with roughly unifons size and spacing. These shgpe descriptors
have natural counterparts in the Fourier doisars. Directionality in the
spatial d&san corresponds ts a directional transform, and unlfons spacing
corresponds roughly to dominant frequencies in the Fourier dsnain. Howe/&r,
a Each szore adanioa rinitornity -in-the. spatial donsn: constant size
eélessenl8 randomly distributed, do%é& net have a clear counterpart. Thtre
has ibeen :rauth oversimplification of the uac .0i the frequency spectrum*

In reality, it .appears .as though it ha« very tt%tncted utility, bon war
that; 'utility corresponds. t9 « fev descriptors wtich havo prisuiry
itdpartzance P\:himin pergeption. Sirxc- ~>at dufcripi’T$ & e spatial

arrin cescriptort nat, cfirrct]” rtiatirc tR the :tramfam, frequescy
domain techaiques are guits limited. Weverthelsss, the propar comdinstion
of tha Fourler descriptor togn (hci vith the spatisl domsin techaique is
the suggested approsch for s ¢ ' ‘destifier. The Fourier tachaique
will compactly descride largs areas with repetitive features. The

description will contain some characteristics of the shape of the elements
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and their organization as directional opposed to nondirectional. It
will fail to detect some detailed description of the shapes of elements;
as well the Fourier technique cannot be very local. So the spatial
technique can complement the Fourier technique, being more local and
therefore more accurate in some sense.

All this concerns black and white pictures. In colored pictures,
each point is represented by at least a three-dimensional real vector;
the coordinates could represent either the brightness through red,
green and blue filters (possible other filters), or their normalized
values (R/R+ G+ B, G/R+ G+ B, B/R+ G+ B), or perhaps the
chomatic triple (hue, brightness, saturation).

It appears that color is a local property, meaning that the color
is determined by local contrast (with global constancy judgment). The
Fourier transofrm is an integral operator, that mixes up different |
local properties consequently. Direct application of the Fourier texture
operator on an area is not useful for color in the general case, however,
under certain constraints, one can suggest some applications of the
Fourier operator on colored textures.

The simplest case is when the color is constant and the texture
is encoded in the brightness function. Examples are grass, water, brick
wall, etc. In this case the Fourier operator is used in the same way as
in the black and white picture.

The second case is when the texture is formed by only two
alternating colors. Here, let us assume the representation of the color
of a point as a vector whose coordinates will contain the brightness

of the point taken through red, green and blue filters respectively.
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Since we have only two colors, clearly, the brightness functions will
be correlated or antl-correlated with each other. Fourier analysis of
functions could giva a re«toi»bly go«3 description of the texture in
terns of the contrast of the color cewpooents. This is analogous to
spatial doswin analysis*

This discussion points out a crucial «e«kftes of Fourier trandorm

techniques in iealiag with color.




3.3 Concrete Texture Descriptors: Local Descriptors

According to our theme, a texture is characterized by a structure
of texture elements and their spatial distribution. Each descriptor is
associated with a procedure and a set of geometric measures.

The descriptors may be derived from parameters that come from the
spatial and/or Fourier domain. In fact, often we will have to deal
with two different measurements of the same parameters (e.g., length,
width, direction), one performed in the spatial domain and the other in
the Fourier domain. Here we seek a common interpretation of these
measurements .

The input data from which we derive the local Fourier parameters
is the power spectrum of the picture over every window. Since we are
able to describe only what we measure, the technique that we implement
will determine the system of descriptors we can use. In particular, the
technique of Fourier analysis leads to the following system of descriptors:

monodirectional, bidirectional, blob-like, homogeneous, and random. Using

the input data of a local area one may expect to have more than just
one descriptor.

Next we discuss the particular types of local descriptors we shall

be using in our work.

(a) Monodirectional Texture
In the spatial domain, a monodirectional texture is approximately
invariant along some direction. An example of monodirectional texture
is a system of parallel stripes. In the Fourier domain the spectrum
is approximately zero along the direction of near invariance, and is

concentrated along the direction normal to that. We take this description
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to be adequate for spatial domain elements with some curvature or
superimposed on a non-directional background. It makes sense to describe
as directional a spectrum in which the dominant energy is along one
direction, and where the directional peak is nafrow.

Next we proceed to give a qualitative description of an algorithm
that provides monodirectional descriptors. As alluded to above, this
algorithm is based on the assumption that the texture will show concentration
of energy in a certain direction of the Fourier domain. Thus we want to
find a peak in the function of energy vs angle. This function is a
sum of energies over a fan with a certain angle vy and direction .
Remember that the data structure is a matrix, and thus only four
directionalities (horizontal, vertical, and the diagonals) coincide with
the matrix unit invariapt direction. The fan technique permits one to
include also the points near the investigated direction. The peaks of
the function are defined as its local maxima, greater than the average
value of the directionalrenergy function. The width of a peak is defined
as the distance between two consecutive zero crossings of the directional

energy function minus the average value. The algorithm used two ddditional

parameters, namely, vy and Edir , where the latter must be greater
E- Edir , ﬁ
or equal to 2, while the former should not be greater than —— . The
10

angle vy is the measure of width of the peak and its threshold value
corresponds to the limit of a useful directional description. Edir is

the energy in the angular stripe (fan) and E is the total energy. Its

threshold corresponds to the condition that the ratio length/width must

be at least two.




The algorithm determining the descriptor derived in the Fourier

domain is given below:

Algorithm Monodirectional:

WD?E
(1) Form a function P_(P) = : P(r,p), where WD is the window
r r=1

size.
(2) Find the number n of peaks of the function Pr(w).
(3) I1If n =1, then check the magnitude of the peak
ng (P.(p)) = Egy 5
and go to step (4) else mark the window by message: 'There is more
than one direction, do further analysis', and go to the end.

(b)) 1f Edir/ (E—Edir) > 2, then check the width of the peak which
corresponds to the angular strip vy and continue in step (5) else mark
the window by the message: 'There could be blob-like or a noisy texture
here, do further analysis', and go to the end.

(5) 1f y <M/ 10, then mark the window: 'Monodirectional texture"
and go to the end else mark the window: "It is a monodirectional

texture with nondirectional components' and go to the end.

(6) End.

The power spectrum along the direction of maximum power is the
power spectrum normal to the invariant direction. In the spatial
domain humans characterize these profiles by step functions.

In the Fourier domain we can find the approximate wave length
of parallel strips (distance between two neighboring stripes), and
the width of stripes from our previous analysis. One way of identifying

width in the spatial domain would be to use one-dimensional interval
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analysis along a direction. This technique could be used also for more
precise localization of monodirectional textured cdges than one can
achieve in the Fourier domain. The interval analysis method has not
yet been implemented.

The above algorithm has been implemented and tested on examples.

A sample is shown in Fig. 14 and Fig. 15.
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In Fig. 14 we have a texture of parallel lines and in Fig. 15 we
have a texture of parallel strips (wood grain). In both figures the
upper left pictures show the original textures, divided into four 1
windows (each window is of size 32 by 32 points). The pictures in the
upper right corner are resynthesized textures, produced according to
the description. The pictures in the lower left corner show the power
spectrum of the original textures. Note the two different directionalities
in the lower quadrants of the picture. Here the diagonal directionality
corresponds to wood grain pattern and the vertical directionality
represents the shading effect (slow changes in brightness).

(b) Bidirectional Texture

The descriptor 'bidirectional' is associated with two sets of
monodirectional stripes, described in the monodirectional texture. This
description belongs to the spatial domain and does not have a unique
Fourier counterpart. In terms of the power function vs. angle Prﬁy)
it corresponds to two distinguished peaks of Prﬁm), while the converse
is not true.

I1f function Pr(@) for @ from <O,T> has two distinguished peaks,
then it could represent at least one of the following two cases in the
picture (its window):

(@) two different directional textured subregions are adjacent
(are next to each other) in one window, or

(B) two different directional regions are superimposed (one is
on the top of the other).

The problems discussed above are shown in Fig. 16 and Fig. 17 and I8

where the pictures in Fig. 16 show the case (a) and the picture in

67




Fig. 17 anrd 18 exhibits the case (B).
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Fige 15

Each of the figures displays nine pictures whose meaning is

explained in the table below, where the row and column numbers refer to

particular pictures in Fig. 16,




Row Column Description of Pictures in Fig. 16
1 1 Four windows, where each contains horizontal
and/or vertical stripes.
1 2 Picture <1,1> after directional filtering
process, performed in every window separately.
1 3 The "complement” of <1,2>.
2 1 The power spectrum of <1,1>.
2 2 The phase spectrum of <1,1>. Here the phase is
transformed from the range <-T7,7T> to <0,2T>.
2 3 The absolute values of the phase spectrum of the
picture <1,1>.
| 3 1 The power spectrum of picture <1,1> parametrized
by the absolute wvalue of the phase in range <D,ﬂ75>.
3 2 The same as in <3,1> but this time with range
<1/3, 2n/3>.
3 3 The same as in picture <3,2> but with range

<2/ 3,m>.
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Fig. 18
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B

The description of pictures in Fig. 17 is the same as that of
pictures in Fig. 18, except in Row | and Column 1, where we have four
windows, cach containing a superposition o) horizontal and vertical lines.

let us concentrate for a moment on the windows ol the first and
third quadrant of picture <1,1> in Fig. 17. Each of the windows
is a composgition of horizontal line textures and vertical line textures.
It is impossible to distinguish the cases of separate (y) from overlap
(B) in the power spectrum. Using the phase spectrum one would hope to
separate the region containing the horizontal lines from the region
containing the vertical lines, or one would at least hope to be able
to identify their positional relationships. Unfortunately, it is not
known at present how to carry out the separation. To our knowledge, no

one has yet used the phase spectrum in a meaningful way.
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Fig. 19
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The figures in Fig. 19 show the vector display of the complex
function F(n,m) in a direction ); in our casc it is in horizontal
and vertical direction for each <n,m>. The direction of the vector is
equal to the phase, and the length of the vector corresponds to the
value of the power. As one can see from the pictures, there is no
evident distinctive feature which would describe the relationship Left-
Right or Right-Left.

We have shown above that in spite of the nonuniqueness of the
representation of bidirectional textures in the power spectrum, using
decomposition techniques, one can construct a suitable algorithm for
identification purposes.

We shall soon give such an algorithm. However, before we do that,
we want to point out that the domain of validity of the parameters
associated with this descriptor is given by the domain of validity of
the parameters used for monodirectional textures, except that the lower
and upper boundary of d is now changed from <0,7> to <y, -y>.
Moreover , the peaks are defined in the same way as was dome in the
monod irectional algorithm,

(1) Pind the number of peaks (n) of function I'r{w). 1f
n=2, then find the corresponding directions ®y and ©, for each
peak, else write the measage: "This is not @ bidirectional texture,
do further analysis”, and go to the end.

2) 1£ 9 w/10 > Mn{'ﬂl - @2) > M"/10, then go to step (3),
else write the message: "This is a deformed monodirectional texture”
and go to the end.
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{;) Partition region R Into four equally large subwindws
Rj, Ry R" and R\

(k) Check each subwindow F\; for i»l,,,*,~, whether it Is a
bidirectional textured region or not, using the algorithm "Bidirectional”
If the answer is yes, then set MR, On, otherwise set MR; Off*

() 1f MR are On for all i*l;ee)+ then describe the given
window ‘“region R) as a "bidirectional texture" and go to the end, else
go to step (6).

@ If MF& arc Off for all i»l,.,.,~ and all the subwindows
are monodlrectional, then descritx? the corresponding region as "Two
monoiUrectional textures with different directions are adjacent" and
go to the end, else lIssue the rneisage: “Further teKture localization
is necessary' ami go tu the end.

END.
{¢) Rlob-liks Textuge

Thi"y <tiehcript™r' Le*=@M<i-iated with blobi and nonlinear
distrihusir* Lt shxild e R6™MY that thtsfe two COnpuri€at» go together
to kv riFHEr f-st it Yij oM 2AuiticlAnt to have bl;bs s te<tin?
elewane W3 jntvrr-a,-g = Ehgi>eleds ~scription. For iri'itaneo, bch& &t
a QI Eod i 96 ¢ lertenr™ L texiAri% «xd the 'M&Dlik.«mi>$d will. be
very weak.

In the Fourisr domaia, blobs ars rveapresentsd by a concentric
energy distridbution. Am asoulus with the greastest snergy value is the
peak annulus. In the {mplementation of the description {see the algorithm

below’! we approximate areas of the transfors by circles. Ths radius of

the appranimating circle is inversely progportional to the radius of the
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approximating circle in the spatial domain.

It would seem logical to pass from mono- and bidirectional
textures to tri-, tetra-, ..., n-directional textures, before turning
to blobs. However, it is very hard to interpret these higher order
directionalities in the spatial domain.

The blob-like algorithm describes blobs and their nonlinear
distribution. It is based on the assumption that patterns which do not
have directionality, noise, nor homogeneity, are some sort of blob-like
textures. In the Fourier domain this assumption corresponds to two

conditions. First, Pr(w) is constant and, second, gm(r) is not

constant .,

Algorithm Blob-like:

Wp/2

EE: P(r,p) and

r=1

1. Form functions Prﬁp)

T

> p(re)

=0

Pcp(r)

and then compute their respective mean values

2 i
M = 0 E P _(p) and,
=0
2 WD/2
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H

where WD is the window size.

Next compute their variations

m
2 2
v =W~ E o (Pr(q)) - Mr) and
m =

WD/2
2 2
, (B (z) - M)
® W Tr=1
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2. If Mr> CN and I\:/F! > AN, then go to step 3 else print
the message: "The structure is on the level of the camera noise'
and go to the BEND.

3- If V. > QN, then go to step 7 else print the message:
"All energies are equally distributed in every direction'*, and go to
step k.

h. If ch> CN, then go to step 5 else print the message: "It
is a noisy texture" and go to the BEND,

5 FKFnd Max P (r) = P (r )-

cp cp max’

max —
If r < 2, then print the message: "There is only one texture
element”; go to step (6). |

6. Fom a new discrete function I(i) from P (r) in the
@

following way:
Assume that P (r) is a combination of sinc(r,cp) type functions*

Find all the local maxima and all the minima of the function P (r).

For every local maxinum r ., there are two surrounding minima r, .,
L1 J mex 1* ° li*
ro . such that
r,. <r . < r”™., where
li max i 2i"
r = r12

If I(i) is a convex function, then print the message: "Texture elements
are blob-like" and go to step 7, else print the message: "There is an
unidentifiable texture and go to BEND*

7. Asume that Pr {© Is a combination of sine functions. Fnd all

the local maxima of the function Pr (@ ad If their number |Is greater
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than 2 , issue the message: '"The blob-like texture has some directional
features'. else print the message: '"There is no blob-like texture'.

8. END.

The above algorithm has been tested-on an example shown in Fig.20

which should be self-explanatory.

Fig. 20
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(d) Noisy (Random) Texture

The spatial case:

A random distribution of dots (pepper and salt pattern) forms
a model of noisy texture. This model describes the random spatial
organization of dot - texture elements versus periodic or regular
distribution of texture elements.

Fourier Case:

The texture in this model corresponds to a homogeneous
distribution of energies in the power spectrum.

Descriptor "noisy" is associated with certain parameters
(obeying some threshold constraints), explained below:

EL will denote the ratio of the size of the one-dot-texture
element and the size of a real texture element. The inequality
EL < WD/4 + CN means that a texture element with area of two dots

and WD (window size) of 8 x 8 points will still be a dot-texture element.

ED is the parameter of random distribution. ED is the ratio

of
EM and M_, where ‘
r P} Lid
EM = I.g)\x Abs(Pr(ep) - Mr) and Mr = WD———— E Pr(CP),
\ © = 0

The value of ED is set to be ED < 0.1 + ON.

CN is the noise of the TV camera.

Algorithm Random:

1. Form functions Pr(m), gv(r), M, %¢, v_, and v@ as they
were described in the algorithm blob-like.

2. If M < CNor @w < CN, then write the message: '"The texture
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structure is on the TV camera noise level, check if it is a homogeneous
texture” and go to END, else go to step 3.

3. If v, > ED, then write the message: '"There is no random
distribution” and go to END, else go to step k.

L., 1f vw > EL, then write the message: 'There might be a blob-
like texture” and go to END, else write the message: 'The texture is a
randomly distributed dot pattern”.

END.

The algorithm has been tested by an example shown in Fig. 21 . The
picture in the left upper cormer is a texture of sand; the picture in
the right upper corner is the resynthesized image of the original, according
to the description. Finally, the left lower corner shows the power

spectrum of the original.




(°) Honogeneous Texture.

A honogeneous region of uniform brightness (in black and white
pi cture), color (in colored picture) forms a nodel of a honbgeneous
texture.

The ‘Fourier counterpart is represented by a Dirac function
with its center in the zero point of the coordinate system

The only threshold paraneter in this nodel is the |evel of

the TV canera noise (CN).

Al gori t hm Honpbgeneous

1. Forma function

T WD/ 2
noise (r,cp) =2 "> N> P(r,cp) - P(0,0)
=0 r=20

P(0,0) is also called the DC Val ue.
If noise (r,cr>< ONthen wite the message: "The texture is honogeneous'!
else wite the message: "The texture is not honpgeneous'?,
END.

An additional paraneter - the average value of the intensity
of light over a particular window is associated with every description

of a honogeneous texture.
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The following table summarizes the texture descriptors we have

implemented:

Table 5

DESCRIPTORS

PARAMETERS

Monodirectional

DIR - direction of lines
ww - distance between two parallel lines
Y - a measure of straightness of a line

Epm/ (E-Eppp) = €

t - a measure of "thickness'" of a line

Bidirectional

DIR,, DIR, -

directions of lines ll’ 12, respectively.
WW.,, WW. -

1> 772
distances between two parallel lines in two

different directions DIR1 and DIRE.

Yl’ Y2 =
measures of straightness of lines 11, 12.

1 t2 - measure of "thickness" of lines

1’ 12, respectively.

d = DIR1 - DIRQ

Comment: lines 11 and 12 are assumed to be

t

1

nonparallel.

Bloblike

R - the distance between two texture elements in

direction DIR.




Tabl e 5 (Conti nued)

DESCRIPTORS

PARAMETERS

Random (Noisy)

EL - a measure of "dotnhess' of the pattern.

ED - a measure of random distribution

(Nx!- + M )/2 - the meen value of "constantly"
®

distributed energies.

Homogeneous

noise (r,ca) — % measure of the degree of variation
of the "homogeneous' area.
DC - the average value of the intensity of light

over window W.




h CGLCRD AVI_TEXTURED REGIWS

In the previous chapter, we discussed procedures for texture descriptors.
This chapter describes the determination of textured and colored regions
and introduces a mathematical description topological »heafn, to formalize
the region-formiag process* The texture descriptors are u8d to iortn
regions with similar descriptors* The ragion-growing is low-level in
that it docs not use the context of a world model. It is intended as a
tool for higher level routines. The proposed regions function as initial
guesses a taut isportaat areai of the image. Thus, the routines favor
large regions at the expense of smaller regions; a sort of "l«v of !h#
fishes", the big ones eat the ataaller. Sine* there are few useful
texture descriptors and organisation procedures, this attention to low
level mySulcs was <* necessary ifocus:for .@*is resthircii*

The in%i>r2al dix:tinciiirft Ibetween lov-levol. and migti-leve-1. processes
refers to thv context which the process takes into aci snt, 204 Y%0 *
raan If>w-li>vel, whas the ccinter.t. is local..end. ) :n tlic . iNn&$E, ML 1Y
hifzh-level. we rvar® - aa: rifi ect i~pate Interprot™* i tem N2 (€pelris )is si-vtral
TiveI> *Plrlid: %t ?s0: lan /g™ rel&tizné .glokal '. ¥twiad < 11r” alarffr
srmesmat of texture descriptors and low-lewel organization mechanisms.
However, it is fmportast to have & balance between the low~lewel snd
higher-level aystams, aad to design for their commmication.

Yo emphavize that we ues 2 tachniqus vhars we start fros large windows
and take sesller wisndows at boundaries. This epproach hes a limitation
of misaing sudstructure. Ths microscopic spproach of starting from small
vindows and tryiag to plece together global structure has a complemsntary
weakness of missing global order., Owerall, we think this poiats up the

oeed {or s range of sises for local organisation. For texture, we prefer

8¢
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our approach to the microscopic one.

As the scanner traverses across the picture in a television-like raster
scan, the local texture descriptors (these descriptors might be spatial,
or histogram, etc., in addition to those we use)over each window
are sent to the program which detects the appearance of similarities or
dissimilarities of the structures, over the given pair of windows. The
knowledge of the existence of similarities is retained together with
locations. All the windows with similar structures are joined together
by a two-way list which is constructed during the scanning process. The
program also detects the break of similarities between two structures and
gives a command to the scanner to scan with windows of smaller size.

When two windows are joined or split apart, different texture names
are assigned to them. Each structure associated with a window is tested
to determine its similarity with other structures or its proper association
with the existing similarity classes.

Region boundaries do not usually coincide with the grid windows, and
hence there occurs both merging of two adjacent areas, amd the splitting
of an area into at least two portions.

In this work a set of real life and artificial pictures was scanned

and processed by our program to demonstrate the capability of the implemented
Fourier method. The results of testing indicate that our method is
capable of decomposing pictures into regions, where each region corresponds

to a different texture or color.

In our implementation of region growers, the emphasis was on testing
some of the ideas and not on the efficiency of programming. However, for

illustration we present in Table 6 the average time and memory load for our
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programs. The programs have been implemented on a PDP-10, at the

Artificial Intelligence Project, Stanford University.

Table 6

NAME AND FUNCTION SIZE OF THE CPU TIME (min) CORE (k)
OF THE PROGRAM PICTURE

FANAL.SAT 256 x 128 L.15 29
FAST FOURIER TRANSFORM
AND SEGMENTATION

TEXTUR.SAI 256 x 128 2.07 3L
TEXTURE ANALYSES

ON WINDOWS (32 x 32)
POINTS

[MIKROA .SAT 256 x 128 12.8 27
LOCALIZATION TEXTURE
ANALYSIS OF WINDOWS
(8 x 8)

TREE .SAI | 256 x 128 8.0 I 36
TEXTURE REGION GROWER ‘

COLOR.SAT
COLOR REGION GROWER 1% x 128 2.0 22




k.1 An Algorithm for Findi ng Regi ons

The process of localization of structures was described in detail in
Section 3*3* Here we shall focus our attention on finding the connections

bet ween local structures in terns of continuity, discontinuity, and

proximty. The actual job to this effect is carried out by a region grower
that we shall describe nonentarily. The region grower can be used both for
continuous textured regions and continuous colored regions* The algorithns

for our region grower use the principle of local constancy whose content

is sumuarized in the phrase: "Unite connected locally sinilar areas into
one global one." Qur algorithmuses the notion of a cell which is nothing
but an arbitrary wi ndow of the snallest possible size, carrying nmeaningfu
infornatioﬁ.

Al gorithm "Regi on Finder*?

1. Set regional index i to 1 and produce a mark Rl.

2. Take the first untested cell and call it the first pilot cell

(which thereby is also a pilot cell).

3. Set XSIDE to be RIGHT SIDE, YSIDE to be LEFT SIDE, and XADJ to be
RI GHT ADJACENT.

k. If the pilot cell has been tested for its XADJ cell, then go to
step 8, otherwise mark the pilot cell by a mark signifying the fact that it
has been tested on its XSIDE, and continue in step 5*

5- Find the next XADJ cell. Ask whether this new cell does not exceed
the size of the picture and has not been tested on its YSIDE. |If the
answer is NO, continue In step 6, else go to step 8.

6. |If the pilot cell and the adjacent cell are sinilar, t hem cont i nue
in step 7, else mark the pilot cell on its XSIDE* indicating that it has

been tested, and go' to step 8.
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7. Join the two cells (pilot cell and the new cell), mark the new
cell by a mark R.l and indicate the fact that it has been joined on its
YSIDE. Store the new cell in an array of new cells. Make the cell a pilot
cell and go to step 8.

8. If XSIDE is the RIGHT SIDE, then set XSIDE to be LEFT SI DE, YSIDE
to be RIGHT SIDE, and XADJ to be LEFT ADJACENT and go to step ~. If XSIDE
is the LEFT SIDE, then XSIDE is set to be the UPPER SIDE, YSIDE is set to
be LONER SIDE, and XADJ is set to be UPPER ADJACENT, and go to step 9. If
XSIDE is the UPPER SI DE, then set XSIDE to be LOAER SIDE, YSIDE to be UPPER
SIDE, and XADJ to LOAER ADJACENT, and go to step 10.

9. Set the pilot cell to be the first pilot cell and go to step k.

10. Take the array of new cells. Take the index j (initially j = 0)
and increase it by 1. If j exceeds the nunber of all new cells, then go
to step 11, else take the el enent r& fro© the array of new cells and sake it
the first pilot cell and go to step 3.

11. Zero the array of new cells. If there is any cell in the picture
that has not been yet tested, then increase the index of regions i by 1,

make a new mark Ri and go to step 2, else go to the end.

END.
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L.2 Texture Regions

This algorithm has been tested on textured regions as well as on colored}
regions. The scanning process is, for instance, shown in Fig. 22 with
white squares, each representing windows of 32 x 32 points. Fig. 22
displays the boundaries of different textured regions of the picture
shown in Fig. 23, after the first pass. One can see the different sizes
of windows.

Over every window there are several descriptors and parameters.
Since we used several window sizes (32, 16, 8) and some of the parameters
are size dependent, we reduced all descriptors and parameters to the

smallest window size (8). Then the criteria of similarity had to be set.

o
ooy
w«.mm.q«v, PRSRE]

Fig. 22




The criteria of similarity are set by the higher level program. In
our work we used two approaches, ndt exclusive but rather complementary.

One approach used only black and white pictures and did not assume
any previous knowledge about the scene. The similarity criteria were
determined by the camera noise and expected error of the method. The
whole region growing was based only on the similarities of certain
geometric properties described by the Fourier texture operator. The
results of this approach are displayed in Fig. 24 and 26, where one can
see that while this approach is sufficient for separating regions on
simple, more or less artificial scenes (the rastered cube on Fig. 23,
the cube on a grid surface in Fig. 25, it is not adequate for finding
boundaries of regions of real outdoor scenes. 1In the latter case one
needs to know more about the scene and thus conduct a directed texture

region growing or texture boundary detection.

The directed texture region growing and/or boundary detection is
the other approach that we used. It uses information gained through a
color region grower. This information directs the application of the

textured operator for two purposes:

One is to look for a common texture where the colors are the same or
proximal. The other is to look for texture differences where there are

colored boundaries.

This approach identifies more efficiently the real regions and their
boundaries. The example in Figure 27 shows the different textured regioas
of the original picture displayed in Fig. 1. Most of the grass region

came out as directional texture. Only two areas (one on the left side and
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the other on the right side) within the grass region were identified as
noisy texture, though with the same direction as the directional textures.
It requires further verification of the continuity in those two textures
in order to remove the boundaries.
The main difference between the two approaches is that in the latter
we use the texture operator in a directed way. This means that as well as
applying the texture operator only in certain areas (not all over the picture),
we also have the choice of asking for continuity and proximity in several

descriptors and parameters independently.

Fig. 23

93




R

i T S —




———— ——

Fig. 26

27

Fig.



N e? Col or Reqgions

Simlarly, as for textured regions, the region grow ng al gorithm has
been used for colored regions. The colored picture consists of three
filés, each representing the brightness through red, green and blue filters.
We use the nornalized values of color for each point (e.g. RFR+ G+ B,
BIR-f G4- B) where R B,Gare the intensities through the red, bl ue and
green filteré respectively. As in the texture region grower, here we use
again wi ndows over which the average values of RRR+ G+ Band B/R+ G+ B
are conmputed. The size of the wi ndows depends on the structure of the
pi cture we have chosen (8 x 8)_. The wi ndows are overl apped, so that
continuity is checked strictly. The threshold value that determi nes the
simlarity criterion depends on the resolution of the picture as well as
on the V\Aﬁdow size. In our case, it is set to 2, provided that we deal
with 6 bit pictures. The exanmple in Fig. kh shows the result of the above
descri bed color region grower, applied on the picture in Fig. 1. The original
picture is only h bits resolution, so the threshold has to be different

(0*75) « Otherwise every thing is the same.




.t A Sheaf-Theoretic Point of View of Finding Regions

The geometric analysis of pictures, in particular, partition of a
picture into regions, can be neatly presented in the language of sheaves
(for details see the APPENDIX). From a sheaf-theoretic point of view,
the region identification process is based on an assignment of
structures to windows (the local structure) and on passing from LOCAL
STRUCTURES (over windows) to GLOBAL ONES (regions). Thus, each region is
specified by one sheaf. Over every window, we can have several different
descriptors, thereby different structures. Each of these structures will
partition the picture in a different way. These different partitionings
of the picture, described by different sheaves, correspond to the different
layers of description of the picture. Naturally, the sheaves could be
interconnected through some connecting mappings. The difficulty in making
use of the structure of sheaves in scene analysis is that we usually do not
know the connecting mappings between two different sheaves.

The sheaves constitute a vehicle for checking the continuity and
proximity of structures with respect to some well defined connected mapping.
In a concrete application of a texture region grower, this mathematical
tool has the following limitations:

(i) 1If the structure is a texture, then it will find the continuity
in the texture, but it will find discontinuity in the texture element.

Thus the smallest window size must be restricted to the size of the texture
elements.

(ii) The sheaf-theory assumes that the structures over every two
windows, which are in inclusion relationship, are related by a connected

mapping. However, in reality the different positions of windows may cause
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false continuities or di.sconti nuities. One has to do several
di fferent overl apped wi ndowing in order to overcome this error.

The contribution of the sheaf point of viewto region growing is
that it defines precisely the conditions for continuity and discontinuity
of a structure with respect to sone connected mappi ng. " The sheaf t heory
shows that if the structures fromtwo (overlapped) w ndows and their
over | apped part are connected by the mapping, then the union of these two
wi ndows is continuous with respect to the structure and the mapping. It
is interesting that the sheaf conditions are simlar to natural continuity
conditions for use of the Fourier power spectrum

In nost of our applications (texture or color region grower), the
connected mapping is the local similarity relationship (it nust be an
equi val ence rel atilon). Naturally, the theory allows nmuch nore conplicated
mappi ngs as well as structures.

After this discussion let us present the sheaf-theory nore formallye
The topology we shall use is discrete and is induced by certain norns,
taken fromthe structure to integers. Once the topology is fixed, we
i ntroduce a conveni ent system of nei ghborhoods, called wi ndows. W think
of windows as a systempartially ordered by inclusion. Procedures which
eval uate the data over the wi ndows assign to every wi ndow a structure of
descriptors. \When two windons, say v and w, are in inclusion relation-
ship v Cw, the corresponding networks of descriptors Kw and N are
related hj a connecting sapping

pY: N->M

Y w % .

which essentially restricts the network over the bigger wi ndow to a network

98




on the smaller window. Since the process of restriction is transitive,
one obtains by this formalization a PRESHEAF associated with the image
function

N = <NviB$>

Sheaves are presheaves satisfying additional axioms. A definition of
a sheaf in its full generality requires several additional technicalities.
A more direct definition of a sheaf with a fairly clear picture-theoretic
interpretation is given below.

Thus, loosely speaking, a sheaf is a system of structures over a
lattice of windows, where each structure represents one particular texture.

Coﬁsider a presheaf § = {SV; B z} of structures over a cellular space
X, i.e., on the lattice of subsets <Sub(X), € >. Then S is a sheaf over
X precisely when for any family {Viliel} of subsets of X with V =y V,,

i

the following two conditions are satisfied:

. . . V V 4 r7 7 /
(1) Uniqueness axiom: Vif (s’) =g, (8"")) = s’ =s"";

. . . N . =z \Y : = V 3 =
(2) Existence axiom: Vl,]{ﬂv.lﬂv’(si) BV.jﬂ.(sj)] >
1 3 3
svk [gy (s) = s, ],
k

where s,s’,s”esv,sies sjESV » 8,85, and i,j,kel.

Vi’ K

The condition (1) says that if the structure elements s are locally
identical, then they are also globally identical. That is elements are
uniquely determined by local data.

The condition (2) says that if we have local data which are compatible,
they actually "patch together" to form global data.

The geometric meaning of axioms (1) and {2) is displayed below in Fig.

28 and Fig. 29.




Fig. 29

Fig. 28
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5. INTERPRETATION OF OUTDOOR SCENES.

The main issue in this chapter is how to recognize and interpret

real outdoor scenes of grass, water, sky , etc.

5.1. Pattern Recognition Approach.
In an early stage of our research, we tried to recognize texture
using a pattern recognition method (Bajcsy, 1970). We computed a function
of energy (E) along the frequencies (f) and derived a feature vector from this

function., The features were the number of peaks, their energies, their

width and their corresponding frequencies. In addition, we characterized
the function as flat or with peaks. These features were used for clas-
sification of the texture into classes: grass, water, regular pattern
(1ike blobs, brick wall) and unidentified. As an example, the grass and
water had more flat function than the regular patterns. Samples of the
function of the energy and the frequency of textures of grass, water,

brick wall and blobs is displayed in Figs. 30 - 33.




Each picture consists of two graphs. One is the function (energy,
frequency) computed in the window without any preprocessing (indexed by
(a)), and the other is the same function as above computed from the data,
which was preprocessed (indexed by (b)). Preprocessing, in the case
of grass and water, was a high pass filtering. The purpose of the
preprocessing was to éliminate the effects of shadows on grass or water.

For the regular patterns, the preprocessing consisted of a low pass
filtering. The purpose of this filtering was to enhance the main fre-
quency components of a regular pattern and suppress the noise.

By this method we could distinguish well the regular patterns (or
man made patterns) from the natural textures encountered in outdoor
scenes. It was more difficult to distinguish the water from the grass
unless the main frequency component was sufficiently different. The
training feature vector was extremely sensitive to differences in how
the picture was taken, in particular, the distance between the observer
and the scene, and the orientation of the observer (whether he is on the
ground or in an airplane) with respect to the scene. This method did
not consider any corrections for texture gradient. It simply classified
some areas of a scene into some given classes of textures.

We could have improved the feature vector using further features
similar to Lendaris' and thus enlarged and refined the classification
procedure of texture. We did not do it for the following reasons:

(i) Feature vectors offer very specific and rigid description of

a texture, which is an obstacle in finding continuity of
textured regions unless the texture is a very regular pattern

without any features such as texture gradient. Naturally, omne
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can construct feature vectors |less specific, but then the
sensitivity for the differences between tw different textures
will be |lessened, which in general is not desirable. To sum
up, in the texture region finder one needs to have a flexi-
bility in choosing features for grouping or discrimnatory
purposes. One also wants to have synbolic descriptions with
sone paraneters as opposed to only numeric description (as in
the feature vector). The synbolic description (if properly
chosen) is invariant with respect to several netric (scalar)
features and thus it represents a certain abstraction which
is ﬁseful for recognition purposes.

(ii) The classification process of textures into sonme classes besides
feature vectors uses sone distance measurements between the
training feature vector and the sanple feature vector. This
process does not consider any topological properties of w ndows,
nanely connectivity, continuity and proximty. Furthernore,
metric description of a real texture is not sufficient for
identification purposes. For instance, grass is identified
as grass not only because of its color or the geonetry_of its,
texture but also through its spatial relationship Wit h 6ihef
objects on the scene (e.g. grass is always on ﬁhé gfbu&i
bel ow a sky* etc.).

A different abproach had to be sought for describing textures; an

approach that would give synbolic descriptions of a texture together with .-
sone paraneters and would find continuous regions with respect to their

descriptions. In Chapter J we have described the texture operator that
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produces such a description. This operator can function on different

wi ndow sizes. The |arge wi ndows capture the global textures, whereas

the small wi ndows are used for recognition of fine texture that in the

| arge wi ndow is not noticed. The continuity and proxinity of some struc-
tures are the basic properties used in a region grower. So far, we talked
nmostly about the texture structure. However, the structure that forns

a region could depend on many properties, such as color, shape, size,

and ot hers.

5-2. Texture G adient.

Many el enments of the world are made up of texture elenents of a
constant size, (grass, brick walls, wheat, water waves). The apparent
size of texture elenments depends upon distance. Although there is a
chance for mi stake, it is natural to interpret consistant variation in
apparent size of texture elements as a measure of relative distance*

If there is little variation, the interpretation is that the surface is
everywhere approxi mately at the same di stance from the observer. Such
surfaces are nearly perpendicular to the line of sight and are called
frontal surfaces.. If there is a systematic variation of apparent size
of texture elenments, smaller elenents are assumed further away. Such
a texture gradient suggests that the surface is longitudinal, that is,
along the line of sight* The presence or absence of a systematic tex-
ture gradient gives a rough indication of the angle, curvature, and
relative distance of objects. The role of texture gradient In human

perception of depth has been described by G bson (1950)-
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C

eye (camera)

Fig. 34

In Figure 34, surface AB is a longitudinal surface and surface BC
is a frontal surface. In the image there exists a gradient of texture,
from coarse to fine along ab, whereas in the image, no such gradient
occurs along bc, and the texture is uniform throughout.

The texture gradient can be used as a measuring stick whose scale
we don't know, but which gives us relative depth estimates:

B 1is twice as far as A.
For familiar surfaces for which we know the texture element size, the
scale of the measuring stick is known, and we have an estimate of absolute
distance (provided we have an estimate of the surface angle with regard
to the observer's image plane - we shall show soon that we can determine

that angle). Since the observer knows his orientation with regard to
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gravity, by assuming a |level ground plane, he can estimte the distance
of areas near his feet with reasonable accuracy. This helps in estab-
Iishing absolute size of grass and other textures on the ground.

There is one reasonabl eness condition on texture gradients. The
apparent size of texture elenments should decrease toward the horizon.
That is, we don't expect large nearly |level overhangs, above us, and
for opaque surfaces below the horizon, we nust see decreasi ng apparent
el enent size toward the horizon

The projection of a longitudinal or slanted surface on a picture
pl ane is obtained by perspective geonetry. The principles governing

such a projection are as follows (See Fig. 35)-

r | mge Pl ane
'Fd s

Slanted Surface

Fig. 35
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Fromthe simlarity of two triangles follows

fd-( tan 9, - tan 6") fd-cos 9,
g R,

For snal | (62-0]L), R,L =I%+dR
dR = g* tanor=( tan 0" - tan 0") R‘tan a

Now let us define a fractional (G adient)

¢ _ [Fractional change in elegeiit B:zB (jwa’ei)
Baseline in inage

V' o2

J2(8 " By) fd (tan 9" - tan ©)

where 81,60 %re texture elenent sizes in the inage*

R S

After some approximation we obtain fornula:

— tan of.
e =

-

Rephrasing the formula in terms of angles (on retina) instead of length
on retina, we get:

€' m- tan,.
Thus, we can calculate the angle with respect to observer.

Since the observer knows his angles with respect to gravity and he
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knows the angle with respect to the observer, he thus knows the

angle of the surface with respect to gravity.

Then, the texture element in the object space can be computed as

follows:

| ~AR 61
fd-.cos ¢
How sensitive are estimates of the distance to the assumption that

the ground is level?

Consider Fig. 36 .

Horizon

— -

Fig. 36
We want to calculate the distance from observer to the ground for
level and non-level cases. & is the angle between the horizon and the

observer view. And g is the angle of the slanted surface.
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is the ratio between the distance S, and the distance Sy, which is

the distance to the level surface. The fornula shows that there is a
fairly strong dependence on a> except for snmall distances.

As an exanple of the texture gradient and its recognition, we
present a picture of the ocean (See Fig. 37); without recording the
texture gradient we find a partition of the picture into several regions
(See Fig. 38). All regions are described as nmonodirectional textured
regions, with the same directionality but with different wave | engths
However the wave |ength changes linearly in a vertical direction across
the picture. (Fromthe bottomof the picture the wavelength = J2 to the
top of the picture where the wavelength = 8) ¢ Thus, by recognizing the
texture gradient, we recognize the whole picture as one textured region,

displayed in Fig. 39+



Fig. 37
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Fig. 58
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5.3. The World Model

In chapter 2 we looked closely at elements of an outdoor scene,
involving grass, sky, clouds, water, and trees. On of our purposes
was to introduce the sort of texture descriptors whch we have imple-
mented. The other was to lead the way into a discussion of our world
model. We saw a great range of variation for sizes, colors and other
properties of texture elements in these outdoor scenes. Grass ranges
in color through greens, browns, and yellows. Trees range from a few
feet to a few hundred feet in height. Because of this wvariation and the
variation of apparent size of objects at different distances from the
observer, it appears that no immediate identification of image textures
with elements of the world is reliable. In some cases, the understandings
depend on perhaps unconscious reasoning: the spray on rocks is not very
similar in appearance to the ocean around it. In many cases, the identi-
fications are:simply resolved by considéring relations b@tﬁ@eﬁ image
regions; motion obscuration identifies trees in front of clbuda, shadows
identify trees as standing abové ground, obscuration implies a background.
Relative depth determineé that the ground is roughly level and that trees
stand above the ground.

It is reasonable ﬁo‘queutinm whether a model which must allow #8
much fiexihilityfas to allow the rangé of sizes for objects, and ihﬂ
variation ’in relations, is @f any use at Ali_ There are several ways
in which it is~ﬁn@fu1. Thﬂ‘first is that certain relations are reasonably
stable. The sky is bright against the horizon. The proportions of grass
and trees are roughly independent of size. Certain regular shapes are

usually man-made. The second is that much of the wvariation is connected
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with subsidiary conditions. 1If trees appear different colors, they are
different species, and have other identifiable properties. If the grass
is yellow, then it must be dry. An apparent size gradient probably means
a distance gradient.

However, the usual mode of perception is continuous perception.
In scene analysis, we often think of showing a single picture with mno
context and expect the observer to understand it. Indeed, humans can
do just that usually. But the bulk of perceptual activity is involved
in moving in a world in which changes happen slowly and locally. Most
of the world is nearly unchanged from one moment to the next. Most of
thé recent perceptual understanding are useful at any instant; the system
knows a great deal about the enviromment and makes incremental changes

to its model. The making of the changes to the model is aided by the

detail of the knowledge already available.

That does not mean that we can do without the ability to actually
build up the model, either from the picture shown out of context, or
guided by an already detailed model. But it does mean that a large

part of perceptual activity is guided by detailed models.

Another aspect of the world model is that it contains the information
about the observer's point of view. The observer's motion provides a
depth sense equivalent to stereo, but much more useful for distant ob-
jects. Distance estimates using motion parallax depend on the observer's
estimate of his motion. Stereo distance measurements depend upon a model
for the convergence position of the two eyes, the eye separation, and
correspondence of the coordinate systems of the two eyes. An qu@@ﬁiﬂmt

observer model has been implemented at this laboratory in the work of
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Sobel (1970), Tenenbaum (1970), and the use of observer's motion for depth
perception has been implemented by Nevatia (unpublished). Formally, the
model has two levelsi

(a) Regions in the oﬂjggp space, objects and collections of
objects, calledfthe élgwbnts of the model;

(b) Structured descript;on of the elements in the object space.
These descriptions are almost directly interpretable in a
program as procedures.

A world model is a dynamic structure that changes during the

identification proce;s. The description of the elements of the model
is carried out in the object space and, wherever it‘is pbssible, with
counterparts in the imége space. Not all descriptors in the object
space have a meaningfuliqopnterpart in image space. An example is the
size of objects, which can be iﬁterpreted from distance estimates and
apparent sizes. |

The properties of grass, sky, water and trees have been described
in Table 1. All these descriptions are included in the world model and
some new ones are included in Table 7.

All objects in tﬁe model, except rocks and unnamed objects, have
broken boundaries.

One may wonder what other descriptors (besides texture descriptors
and color descriptors) could be relevant in the model. Unlike in the
case of grass blades, waéér‘waves, and trees, where their size plays
an important role, the size of récks varies so much that it is hardly

a useful feature for them. On the other hand, the shape of rocks

(bloblike), is signficant because it can be contrasted with the linear
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shapes of grass |eaves or water waves. However, the only rocks of
interest are thosé whi ch are big enough to stick far out of the ground
(mght inpede navigation). Here we worry about the rel evance of size

and shape of texture elements. What about the size and shape of regions?
Size and shape is not significant for regions of grass, ocean, forest,

and ensenbl es of rocks.
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Tab.

TN

Regions in Color Spatial
iObject Space Attributes Relationships
grass Usually green, Located on ground, under
sometimes yellow the sky and trees.
or light brown,
never blue.
jwater Blue or green, Located at the ground plane
sometimes gray below sky and trees. In the
with silver waves, image space, ocean and grass,
never red trees or rocks could form over-
lapping regions.
sky Light blue, the Sky is the farthest region in
brightest area the scene and it is always
in the scene. above any element of the world
, . model. In the image space it
iclouds Objects in the sky.| can form overlapping regions with
grass, trees, and rocks.
tree The crown is Trees are below the sky, and
usually green, above grass or ocean.
sometimes yellow,
brown or red.
The trunk if dark
brown.
frock All shades of gray,| Rocks are always below sky and
brown or ved. on the ground. They could be
scattered in grass and water.
junnamed any color On ground, below sky.
- jobjects
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5.k The Higher Level Program

We discuss briefly a suggested higher |evel programwhich we
simul ate. Vfe concentrate on the two scenes in figures "0 and k2. Fig. "0
cont ai ns fhree pictures taken of the scene in Fig. 1 through J filters,
red, green and bl ue. " The names SCENE1l, SCENE2 and SCENFJ correspond to
red, green and blue filtered scenes. Figure k2 contains four pictures
of a scene in Fig. 1+#l. The top two and the bottom left pictures correspond
to the red, green, and blue filtered pictures, respectively. The bottom

right picture is the brightness function of the scene in Fig. ki

Fig. It-0
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Fig. k2
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Let us call the scenes in Fig. 0 and 42 WATER and ROSES respectively.
There are three gross parts of this process of interpreting the structure
of the scenes, these might be called:

organization of regions having continuous properties

determination of spatial relations

identification of elements in object space;

They are not strictly heirarchical, since identification determines new
spatial relations, and suggests other low level organizations.

Some of the mechanisms for organization of continuous regions were
previously discussed. The regions based on continuity in color and some
texture descriptors are natural starting places. Proximity provides the
basis for the suggestion of texture super-regions which are disconnected,
but may be usefully considered as a unit. In this operation, we group
together nearby regions of like color or like textural properties. The
next mechanism is that of hypothesis-verification: a particular color or
texture region is a hypothesis of continuity. If the region has some
physical continuity, we should find that other properties are continuous
over the region. If the boundaries are false, then there should be
textural properties which continue across the boundary, from which we
would assume a continuity which would be tested by looking for other
continuity. If the boundaries correspond to physical boundaries, we will
usually be able to find a discontinuity in some textural property.

We can infer a few spatial relations from the texture gradient,
from guesses about interposition (which object is in front of which) and
from the observer orientation and position, combined with the ground plane

hypothesis. In a complete system, we could call on depth perception by
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Fig. 43

Fig. Lk
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stereo and motion parallax. Qur inferences would be a good guide to
economi cal use of these npdul es*

Identification, in our suggested system proceeds both from the
worl d nmodel and from the data. Sone elenents of the world nodel are
better starting places than others. W assume that the sky would be
easily established in nbst cases. Oher inmage elenments should be
approached after finding the inportant structural elements in object
space, i.e., sky, ground plane, and trees. W are assunming that a ful
variety of properties and relations aid us in making initial and tentative
identifications of sky, etc.

In Figure k-0, which we call] WATER, we have two mmj or regions which
correspond to grass, a region which corresponds to the rock, and two
regi ons which correspond to the water. In the scene called ROSES, the
sky appears as one |arge region and several small regions; there are three
regi ons of the bush, and several small regions which correspond to roses.

In the analysis of these two scenes based only on texture analysis
wi t hout gui dance, the scene WATER is described partly adequately. After the
texture gradi ent suggests further continuities, the grassy regions nerge,
and there remain three main imge el enents which correspond to grass,
rock, and water; see Fig. k~*

This texture organization is suitable for providing hypotheses of
continuity for regions which are broken by color organization for WATER;
see Fig. kk. The simlarity In color of the joined color regions confirns

the texture continuity. 1In ROSES, the sky is adequately described by

texture, while the bush and fl ower regions are chaotic, as one can sdbﬁ@j

Fig. Us- This reflects one of the inadequacies of the Fourier tranSforW
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the weakness with feature sizes approaching the window size. This is
normally accomplished by subdividing regions with slow changes which
correspond to probable region boundaries. That was suppressed in this
version of the program.

The region-growing does not succeed in isolating the flowers by
cutting up windows containing flowers to partition off smaller cells of
adjoining areas of the bush. This is the worst performance of the
texture region finding process, but it is instructive. On the whole, the
unaugmented texture region analysis is unable to aid in proposing useful
alternative hypotheses for organization. However, texture boundaries for
the sky coincide with color boundaries (the color boundaries of the roses
are displayed in Fig. 46), and a slight relaxation of the criteria for
continuity, verified by continuity in contrast among the color components,
does provide a set of larger texture regions among the bush and flowers.
Even in that worst case, the jumbled areas of color correspond to regions
of moderate size under texture, so that there are no large regions of
the picture which appear entirely chaotic under both aspects. The texture
descriptors are useful for analyzing the color regions, and have more
utility used in that directed mode. The element size and contrast are
meaningful when restricted to the bush; in the unaided texture amalysis,
these descriptors mix the flowers and bush.

In evaluating our higher level procedures, it is usual that we re-
evaluate the quality of the lower level modules. We find significant ways
in which they could be improved, and in ways which would best be done at
that level. In general, it is better to proceed to a fully developed

system then to put disproportiomate work at the low level. We will later
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speci fy what inprovenents we would nake in the low |evel nodul es.
Let us nake the prelinmnary organization of the two scenes. Wth

ROSES, we begin with proximty of color regions. The bush regions and
the flower regions are alike in color; for example in tw areas of .the
.bush, the color coordinates r/(r+g+b) and g/(r+g+b) are:

Sanple 1 (.1*6, .43)

Sample 2 («*+2, -4L0)
thus we can conjecture these as a super-region. Let iis compare contrast
and dominant wavelength for these two color regions which we conjecture
to be similar. Compae the two color regions in Fig. kS with the Tables
8, 9, and 19 of average intensity, wavelength, and contrast, over 8 x 8
windows. Me see that the dominant wavelength is short over much of these
two color regions. In fact, if we define a region from the small
wavelengths (< k) the region spreads over most of the bush. In the scene,
the sky is a region under color and all texture descriptors. The sky
boundary in color is reinforced by the existence of texture boundaries.
As we have indicated, textural properties are probably adequate to confirm

continuity of the regions suggested by color for bushes and flowers, and

to dow discontinuities of frequency. In WATHR the two regions correspond-

ing to water are joined by proximity in color and continuity in texture.
. The water boundary shows up strongly as a change in color and in texture,
directional to homogeneous for the water-rock boundary, and different
directionalities with distinctly different color at the water-grass
boundary. The grass is continous in directionality, size, and color.
We can ronv meke correspondence with the world model. Since the sky is

often prominent in outdoor scenes, we attempt to find the sky. We look




at white and blue regions which are near or above the horizon. 1In
WATER, we might try the region which is really water. The color is
acceptable, but the directionality is very unlikely for sky, and the
contrast and size of texture elements is also unlikely. (This estimate
is based on a few months of sporadic sky watching. (Of course, there
are directional clouds, '"mackerel sky", but it seems quite infrequent.
Also, the clouds seem to have much lower frequency.) The water region is
below the horizon. If there were a significant view, we could see a
texture gradient and thus substantiate that the surface is flat. Also,
in continuous perception, we would find that the water motion is very
different from cloud motion. Motion would also allow interpretation of
the breakers around the rock as part of the water. The region correspond-
ing to grass is directional, low contrast, and has a texture gradient,
implying that it is horizontal. The color is consistent with grass,
which lies on the ground plane. From the ground plane assumption, we
can estimate the size of the elements of the grass:

image size¥*angular resolution*distance

= 2%(1/666/%300 cm = .9cm
where we estimated the image size previously, the camera parameters are
known, and the distance is obtained from a crude guess, but is known in
principle from the observer position and orientation. The size is also
consistent with grass blades. For the rock, neither color nor homogeneity
tell us very much. Since the rock is convex downward on its boundary with

water, we assume that the rock is in front of the horizontal water surface.

We assume thus that it is an object which sticks up from the surﬁaﬁm, 

and calculate the wertical height and length along the ground. From the
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image, the texture gradient tells us that the distance at the rock is about
k times that at the front of the picture. Thus, the above expression
gives:
18* (1/666)* 1200cm = 36an

while the width of the rock is approximtely 300cm These are only
approxi mate val ues which depend on our guesses about the ground plane
and texture gradient. On the other hand, the conclusions depend nost
strongly on relative size conclusions. Gass elements are snmall; rocks
are often big conmpared to grass. W can namke the conparison between
the rock and grass near the base of the rock. In the inmage, the rock is
bi g, and fromall assunptions about objects in the image being further
away as they recede in apparent position toward the horizon, the rock is
much bigger than the elements of the grass. These give sonme strength to
the assunption

In ROSES, we begin by attenpting to find the sky. The only region
of acceptable color is the sky itself. The color is white, indicating
clouds, with low contrast as seen in Table 8. The texture is honmpbgeneous.
As a verification, we nght find blue patches, find nmotion, and find that
the distance of this region is very great. The region is far above the
hori zon, and is very bright; see the brightness in Table 6. Fromthe
concave downward boundary with the other regions, we assune that it is
behind the green elenents. Wth the identification sky; we find that
the green elenents are in front of the sky, thus probably approximtely
vertical and are frontal (they show no systematic texture gradient , also
indicating that they are vertical). The texture is blob-like; the blob

size is interesting. If we can guess that these are |eaves rather than

127




leaf clusters or branches, then we can cstimate the distance to the bush.
Finding the stems would aid in that. Because the bush is probably
vertical, it is not grass. 1If we include leaf elements, fruits and
flowers in our descriptions of trees and bushes, then by guessing that
the flowers are really associated with the bush which surrounds them, we
can guess the scale of the leaves relative to the flowers, and thus
establish that the texture clements arc leaves and establish approximate
distance. Of course, at any level, we could establish relatively

unique elements to correspond in two views, and determine distance by

stereo or motion.
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6. COONCLUIONS

We presented a representation of textured scenes which was not a two-
dimensional representation of the projected image, but a three-dimensional
representation of the elements and spatial relations in object space. We
feel that the representation of spatial relations such as'8rass is found on
the ground plane”and the nearly infinite distance of the sky are charact-
eristic of these elements, and help more than any other properties to
identify them and to orient the observer. Our representation is effective,
also, in that it is segmented into distinct elements; which are described
by a heirarchy of texture regions and textured elements. Textured regions
may be texture elements of a super texture, or texture elements may be
textured regions of a sub-texture. This is not only a formal nicety, but
a usual part of our description of ourdoor scenes; for example, in trees,
the leaves are texture elements of leaf clusters or branches, which are
texture elements of a tree, which is a texture element of tree clusters.
The description- of shape of texture elements depends heavily on a linear
approximation to shape, and describes directionality, width of texture
elements, and spacings. We argue from psychological evidence that these
are the ntost important of descriptors, and further, that they are natural
for computer implementation* These descriptors are most useful for
directional textures. The representation is included in a world modd for
which an example was given, but which awaits implementation with the
high level procedures.

A siaple color region amlysis WBB very useful in texture analysis.
The normalized color coordinates, r/(r+g+t>) and df(r+grtb) were
compared for continuity, ani regions were defined by neighbors of

continuous colore There are so»e potential proble»s in an analysis
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of color in outdoor scenes, since many of the texture elenents are very
small. Typically, the regions are |eaves or blades of grass. As an
expedient to find larger regions, we have averaged over a small w ndow,
and conpared colors of adjacent wi ndows. As a consequence, we sacrificed
| ocalization of edges. The expedient is only partially successful however
W notice that the averagi ng works best anong clusters of |eaves where the
color is uniformto begin with. Were the |eaves are isolated against the

sky, the color contrast is large, and continuity of the averages are only

by chance. Thus, the averaging is not very successful. A better nechani sm

to define larger regions of color is perhaps to go to the conputationally
nore difficult operation of finding like colors within w ndows, that is
to inmplement color regions based on proximity rather than continuity.

The obvious value of defining color regions which ignore the brightness
fluctuations of individual |eaves should not lead us to ignore brightness
edges and consider only color edges. W also make use of the size of . the
bri ght ness regions, the leaves in this case.

A sheaf-theoretic description fornalizes the process of region-grow ng
and gives an exact account of the shift from local to global and vice
versa. One nust be cautious about interpreting the sheaf-theoretic
notions in the context of color and texture regions* Due to sanpling we
have a finite scale of wi ndow sizes and the definition nmust include a
| east wi ndow size, the size of texture elements. No such discreteness
conditions are enbedded in sheaf theory.

In the inplenentation of texture descriptors, we were able to translate
those spatial donmain descriptors that we found inportant fro© Fourier

transfornms over wi ndows of various sizes. Di rectional and non-directiona
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components were separable to a useful extent. These reflected shapes

of texture clements and their spatial relations, or statistical properties
of irregular textures. We argued that the human description of an image
makes use of a step function approximation; we often describe in terms of
regions of constant intensity. We obtain analytic expressions for the
contrast, the element size and spacing, and some location information;

these were based on a spatial domain model of pulses of equal amplitude,

width and spacing, on a uniform background level. The implementation of

Fourier transform descriptors had some minor implementation difficulties
which are usually overlooked. They are consequences of the fact that
the Fast Fourier Transform is really a Fourier series and not a Fourier
transform. A Fourier transform has no preferred directions, while the
Fourier series has preferred axes along the x and y coordinate axes.
This introduces a non-isotropy in the fan filter. We have used only a
straightforward fan filter and have not attempted to compensate for the
peculiarities of the Fourier series. There are also spurious broadening
of peaks which are consequences of the Fourier series. Despite these
difficulties, the spectra show useful directionality properties, and we
have been able to work with them.

The more seriocus problems with the Fourier transforms are conceptual
difficulties which are true of any orthogeonal expansion and of the true
Fourier transform. Interpretation is based on the power spectrum and
phase information is ignored. These transforms are non-local, and give
very poor edge and position information. To an extent, we have tried to
get around this by an expedient of using local windows. This provides a

crude localization, which was not adequate for many purposes. The usefulness
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of the transforns was very dependent on the scale of the windows. The

1

descriptors were nost useful when the wi ndow size was such as to exclude
other regions and to include sone repetition of texture elenents within the
wi ndow. This nmeant that a range of w ndow sizes was necessary, and that
we could not always have wi ndows snall enough or |arge enough. To a certain
extent, we could probably get positional information from our analytic
expression using the phase of the transform However, that is useful only
for uniformy spaced texture elenments. In nost useful cases, the spacing

is quite irregular. The non-local nature of the transformis a severe

di sadvantage in using color information. As in other cases, we can nake
exanpl es where the averaged quantities are useful in smearing out and

bri dgi ng Iocal'boundaries. This has limted utility. There are a few
sinple cases for which the color contrasts can be extracted from the

Fourier transform of separate intensities through three filters. W have
not yet incorporated these into our descriptors.

There are sonme increnental inprovenents to be made to our Fourier
descriptor schene. One of these is to* use interval analysis for deterniningé
wi dths and | ocations of discontinuities in directional textures. In sane !
cases, overlapped w ndowi ng woul d be useful near boundari es. I ncl udi r»
Fourier color conponents was nentioned above. W should include edge and
region operators (perhaps oo filtered directional conponents) to find the
extent to linear elements and to find boundaries of quasi-honbpgeneous

regi ons.

Textured regions were obtained on the basis of the texture descriptors.

We found that a range of wi ndow sizes was necessary; our strategy was not

adequate to use the wi ndow sizes as well as it might have. The choice of
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window sizes would be better left to higher level choice among suggested

regions. The actual program which gave textured regions classified the
descriptors according to mono-directional, bi-directional, blob-like,
homogeneous, and noisy. Then adjacent regions were merged into continuous
regions based on continuity of the descriptors. A change of scale was used
if there was a strong frequency l component (that is, there probably was
an edge in the window) or if there was a bi-directional texture which

could arise from a boundary of two directional textures. A second region-
growing pass relaxes the criteria and ignores classifications to extend
large regions by including acceptable small neighboring regions under
relaxed criteria.

A guided program determined textured regions based on information
passed down from above. This program was guided by the user, but the
advice could equally well have come from other programs. The guided
programs determined texture regions within specified areas and according
to specified similarity criteria, for example, frequency and contrast.
Continuity could be explored on the basis of separate parameters.

We see some incremental improvements to the region-growing based
on Fourier descriptors. We would add an alternate tactic for windows with
long wavelengths; now we subdivide based on the possibility of an edge in
the window. We would also increase window size to look for a repeated
feature of a larger size. We would eliminate the classification step now
used. There is some argument in favor of the classification. There are
actually many natural objects which fall into one or another of these

classes. But the classification in the early stages introduces artificial

boundaries and ignores the multiple descriptors which are available. Only
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later does it relax these classes. A further and more significant
addition would be an implementation of proximity of like descriptors on
nearby windows for texture super-regions.

We presented an outline for a higher level procedure to make a
correspondence between the image elements and the world model. This
outline was not implemented but simulated in two examples. The striking
conclusions from the simulation were that interpretation of the three-
dimensional structure of the scene was necessary to make the identification.
This contrasts with the work done in interpretation of aerial photographs,
for which the world is effectively on a locally flat surface, and depth
considerations are unimportant. A perceptual system begins to have inter-
esting structure when iﬁ can work with more than a single property. Our
model deals with multiple properties by a hypothesis-verification paradigm
for proposing boundaries and regions. Continuity in a physical surface
can be hypothesized on the basis of one of the properties. Often, the
region description from some one property will be particularly simple and
useful. It is not clear that we can always pick in advance which property
it is; with sufficient context we could usually make a good choice. But
we can try several different choices as hypotheses of meaningful surfaces,
and test that continuity in that property corresponds to continuity in
other properties; discontinuity in physical surfaces often reflects dis-
continuities in several properties. 1In these examples, color regions were
joined into color super-regions of like color. Textural properties of
dominant frequency and contrast showed continuity of these properties over
the color super-region. At this point, the lower-level modules could

function in a guided mode to expand the region corresponding to these
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typical descriptors and include nearby areas of the image which were
not well-described in the earlier analysis with little context.

The regions which come forth do not make a neat image. They overlap
and do not cover the whole image. Still, we are aiming to interpret those
parts of it that are simple to understand. Inferences of spatial relations
are important here. Texture gradient gave estimates of surface orientation.
The ground plane assumption gave a local coordinate system when combined
with the assumption that objects stand out from the ground. These
relations depended primarily on relative distance and relative size
estimates which were not greatly sensitive to the assumptions. In some
cases it was possible to guess which object was in front of another,
either because of concavity, or from identification of the sky or water.

In identifying elements and structure of the world model, our
simulation attempted first to establish the sky. Based on color
brightness, contrast with the horizon, and its position (above the
horizon estimated by gravity), this is assumed a simple match. We can also
then determine the sky line and guess which objects stand out from the
ground plane. Sizes of texture elements were of considerable use; knowledge
of size is much more useful here than in the blocks world where context
is limited. The knowledge of the size of grass blades is more useful
than the knowledge of the size of one particular block.

We have mentioned some incremental improvements to texture local
description and to forming texture regtions. The primary weaknesses at
this level are the crude localization and limited use of proximity in
establishing super-regions. Improvement of the color region-finder is of

primary importance. Since must of the interpretation depended upon
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i nfference separate from strictly textural properties of areas of the

i mge, we feel that the nost significant next stage is to enbed these
elements in a conplete visual system This would involve nore than just

i nmpl enent ati on of the sinul at.ed hi gher level program The typical system
woul d navigate in an outdoor or planetary exploration environnent. The
navi gati on goals make explicit which problenms the system needs to solve
at any tinme. The situation is one of continuous perception which allows
the model built up at one instant to be used in subsequent problemsolving ,
Conti nuous perception also allows us to tell which objects are nmoving,
which is of use in outdoor scenes. The conplete system would have
stereo and notion parallax for depth at small and great distances. To

a certain extent, the systemwould avoid finding solutions which could

be found pl.J-rer fromsingle projections, but such a system appears
feasible within the current state of computer vision, while a system

whi ch ignores so nmuch information does not appear to be achi evabl e soon.




APPENDTIZX

Topological Models

In this section we give a brief account of a possible approach to
the topology of pictures and then explain the sheaf-
theoretic model of textured scenes, involving several different structure
sheaves.

The topology we shall use is discrete and is induced by certain
norms, transplanted from the structure of integers. Needless to say,
the purpose of this topology is to make precise the use of such notions
as continuity and proximity.

Once the topology is fixed, we introduce a convenient system of
neighborhoods, called windows. These will be used throughout this work.

Given a textured picture with the discrete topology as indicated
above, we assign to every window over the picture a structure of some
sort, depending on the picture under the window and, perhaps, on some
fragment of prior knowledge concerning the picture. The structure in
question can be something very simple such as a set of descriptions or
something more involved such as a vector space, generated by the
attribute vectors of the picture under the window. We emphasize the
degree of generality involved in the specific choice of structures.

In the implementation of our picture identification program we use a
structure induced by the Fourier image of the picture function.

After the species of structures has been selected, we reduce the
degree of freedom in the set of structures by assuming that the structures
over any pair of windows standing in an inclusion relationship are

closely related. That is, one of the structures can be transformed

137



into the other precisely when the picture function under the two windows

is continuous. The transformation, which in a general situation is

called a homomorphism, depends on the picture function and possibly on

a prior knowledge relevant to the picture. If we imagine that the
structures carry the local picture information, then the corresponding
homomorphisms tell us how this information changes as we move from one
window to another. Thus the question as to when and how to join two
locations on the picture is answered by the homomorphisms, interrelating
some of the structures.

Topology and Metric of Digitized Pictures

One of the most efficient ways of arriving at the topological model
of a digitized picture is to consider the picture as a set of cells X
and coordinatize or parametrize it by the finite normed two-dimensional

space of integers modulo <ao,m>:

z° =2 x7/<a,m>
n,m —_—

More specifically, if A : X - Z2 is a selected coordinatization

function, we put

A A A
(i) x+y=2z iff x+y = z; (Vector addition)
(i11) jx =y iff 3% Q = 9; (Scalar multiplication)
(iii) x <y iff 2 < 9; (Partial ordering)
(iv) ilxl! = Iil + Ijl; (Sum norm)
(v) <<>> = Max(]il,]i]), (Max norm)

A
Where x,y € X, x = <i,j>, and i,j € Z.
The structure {X,+,*,< [I ll, << >>§ is called the cellular

_2

space, where the conceptual ingredients are, respectively, vector addition,
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scalar multiplication, partial ordering, num-norm (city block norm), and

max-norm.

Both norns induce a discrete topology in the cellular space X.

The intended interpretation of the elements of X is the retina point,
a geonetric location of the point information, which is of interest in
i nput data. Geonetrically we can think of X as a finite, rectangular,
t wo-di nensi onal array of congruent squares, whose coordinates are given
by a grid of pairs of integers, located at their mdpoints. The advantage
of defining X in this way lies in the possibility of using a coordinate-
free (topological) |anguage, and when necessary, we can carry over the
concepts of vector calculus to X

VWhen several coordinization functions (sanmpling) are given, one

can order thempartially by the fineness or coarseness relation. The

finest coordinization* is usually that which is suitable for capturing
the ultimately relevant local information concerning the gray |evel shape
or color change. Clearly, a finer coordinization function |eads (at

| east potentially) to a nore conplete description of a picture.

The subsets of X are subjected to generalized vector operations

such as

Algebvafc .

A 4- B * {a + bja€A. ax3 b€B},
ttfotre A ,ig X.

W« shall not use these operations in this work since other
operations will piay a far wore important role. The horizontal and
vertical rectangular subsets of X (i,e., planar intervals) are called

ndows :
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A is a window iff A ={a € X | x<a <y}, wvhere x and y are
some cells in X. Thus, windows are essentially two-dimensional intervals.

The empty window is denoted by O. The set of all windows Wind |
is partially ordered by inclusion, 1In fact, it forms a finite distributive

lattice with zero element O, unit element X and with operations:

Intersection:

AANB=AN B;
Union:

AvVvB=N{CewWind | ACCA BCC},
where A,B € Wind.

The window A V B denotes the smallest rectangle containing A and
B. The lattice < Wind, 0O, x, V, A > will be the basic structure in
picture identification. (A similar lattice is obtained by taking the
convex subsets of X.)

The choice of norms in X induces a special system of neighborhoods,
suitable for developing the basic properties of continuous and
proximal functions on X.

For every natural number p we define the p- neighborhood (von

Neuman template) of a cell x by

N(x;p) = {y] ||x - v]| <»}.

If we neglect the effect of the picture boundary, a p- neighbor-
hood forms a diamond shape cluster of cells about x.

Another system of p-neighborhoods (Moore templates) is defined

by the max-norm:
M(x;p) = {y] <<x - y>> < p}.

These neighborhoods form square windows about x, if we forget
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about the effect of the picture boundary.
As pointed out in the introduction, our man interest will be

in pictorial relationships such as neighboring, inside near, equidistant,

perpendicular, overlap, above, etc-, and in pictorial objects such as

figure boundaries, regions, and the like. These are certain roetric-
lopglogical entities, definable in terms of the primitives of the
cellular space X. Theoretically one mey think of a broader class of
geometric entities (projective, affine, metrical, ard topological), but
this is an auxilliary issue now. We shall totally disregard at present

the semantic relationships and semantic_obleetsy,, induced by a particular

object-world moddl.

The starting point of a picture representation is a picture function-

p: X -> R, whos values are called _gray levels. In the case of colored
pictures, the vélu&e p(x) for x € X are vectorsy representing the
intensity of light for a fixed syssem of colors.

The difficulty with the picture function lies in the fact that it
is a point function, as opposed to an area or set function®* We need m
data structure, where the point information is usefully trandormed into
a local or areal information which is the only one we are interested =ny
Nowv.

in order to achieve this, we associate with every restriction
pA of the picture function p, whare A is awndowv in X, a structure»
carrying the desired local information# But before wic txplaitt Jov can
this be done, we shall review some of the sheaf-theoretic notions.

Presheaves of Pictorial Structures of a given, Spedfta

Whet are presheaves and what are they good for? These are the
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quest ions we intend to answer in this section. As for the theoretical
details, the reader may consult Bredon (1967). First, we state the
general definition of a presheaf and then we give a number of concrete
examples of presheaves relevant to picture theory.

Let <E, <> be a partially ordered set. Then by a presheaf of

structures of species SIGMA on E we shall mean a pair of sets

_ b
S =< {sa| a € E}, {ea

| a <b} >

such that for all a,b,c « E the properties displayed below are valid:

(1) §, 1is a structure of species SIGMA and BZ for a <b is

a SIGMA-homomorphism 32:859 S, called the connecting (transition)
mapping from Sb to Sa
(@) Bzzsa — S, is the identity SIGMA-homomorphism (automorphism)

(3) a<bAb<c =>p = a: o 8-

A presheaf on E will conveniently be denoted by S = {Sa;B:}'

The species SIGMA refers to the type of a structure which could be
just a plain set, a set endowed with certain relations and/or operations,
or anything that resembles a mathematical structure (group, vector
space, automaton, etc.). The only point to be realized is that the
structures in question should be of the same sort or type. The SIGMA-
homomorphism may be defined in various ways, the simplest, perhaps,
being the structure preserving mapping from the domain of one structure
into the domain of the other.

Before we launch ourselves into a more specialized study of sheaves,
it seems useful to illustrate the definition of a presheaf by a couple

of intended interpretations. This will hopefully help us to envisage
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the picture - theoretic applications.

One of the simplest presheaves is the constant presheaf of sets.

Here Sa = S 1is a fixed set of elements and Bb is the identity
a
mapping on the fixed set S.

(a) Presheaf of continuous functions

Let X be a topological space. For each VC X let SV
be the set of all continuous real-valued functions £:V — R, and for
\Y X . .
WcVv let Bw:SV —aSW be the mapping which assigns to each f € SV

its domain restriction le. Then, of course, f|W € SW’ since a

restriction of a continuous mapping is again continuous. This con-
. , W
struction gives a presheaf {SV;BV] on the set of all subsets of X,

partially ordered by inclusion. We call it the presheaf of continuous

real-valued functions on X.

I1f the topological attribute "continuous" is replaced by "uniformly
continuous', "proximally continuous', 'differentiable", "analytic", etc.,
we get a whole family of new presheaves on the same space. Moreover,
we get some other presheaves on X when we consider only a system of
neighborhoodé, e.g., N= {N(x;p)| x € X, p >0}, rather than the set
of all subsets of X.

(b) Presheaf of Histograms

Consider a picture function p: X - R together with the
lattice of all windows < Wind,& > of the cellular space X. Assign to
every window W a set of histograms SW or more precisely, a set of
distribution functions corresponding to a family of random variables,
characterizing certain features of the picture p.

As connecting mappings 33 , choose for VC W an appropriate

143



stochastic transformation, (stochastic matrix) transforming the elements

Sw into the elements of SV. The presheaf axioms are readily verified.

\Y
The structure {SW;BW} is a presheaf, called the presheaf of histograms.

Again, we can take the system of square windows M = {M(x;p)|x € X, p > 0}
and consider another presheaf of histograms.

(c) Presheaf of Geometric Models

Let p: X - R be a picture function together with the lattice
of windows <Wind, € >of the space X. Assign to every window a

geometric model S induced by the picture over W. The geometric

W’
model is essentially a set of figures (lines, circles, etc.) together
with the figure attributes and their placement rules.

The connecting transformations sz Sw —aSV are restrictions or
in a more general situation, they are certain similarity functions,
assigning to every element Sw a most similar element from SV. In the

case of pictures with local gradients, some other homomorphisms may be

of interest.

(d) Presheaf of Feature Spaces

Let p: X—- R be a picture function and let <Con,C > be
the lattice of convex subsets of X. Define SW for W € Con as
the linear space generated by the feature vectors associated with p/W

. . \'
via measurement, and identify each Bw for WC V with a linear

transformation. Then {Sw; ﬁ;} is a model for the presheaf axioms.
Several other scene analysis concepts turn out to have a
sheaf - theoretic interpretation.
Simply, a presheaf is a formal device which assigns to

certain local areas of a topological space a specific structure in
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such a way that whenever two areas are in inclusion relationship,

t he assigned structures are in homonorphi smrelationship.

The reader should see by now the connection between presheaves
and picture structure identification by windowing. Often a presheaf
S on<E <>has a relatively sinple structure "locally! about every
point a € E.

A suggestive picture of a presheaf over a window in a
cellular space is given below, in Fig. 1+7. It is inportant not to

confuse the presheaf structure with the picture function.

A

I+
x b 777

Fig. ky
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Frequently we are not interested in all windows of a cellular
space but rather in a subset of windows. This is the case when the
texture elements are large enough and we do not want to enter into their
structure. In situations like this, the following notion appears to
be relevant.

Let E' C E be a partially ordered subset of < E, <>.

Then the presheaf
b

| a<bAa,bekE
a <

<{s,la €E}, {B
is called the restriction of S to E’ and is denoted S|E’.
Thus, the presheaf structure is considered only over some points of E.

Often several presheaves are of interest on the same base E.
In situations like that we want to know how to relate them.

Let S = {Sa;B:} and T = {Ta; X:} be two presheaves on E
of the same species SIGMA.

Then by a homomorphism

a:S »T

of one presheaf into another we shall mean a family of SIGMA homomorphisms
o = {aa[ a € E} such that for all a,b € E:

a<b => o, o BZ = xz o ab-

The condition above is explained suggestively by stating that

the following diagram of functions is commutative for all a < b:

(84
a
s, > T,
A\ /N
b
B> A
a a
Sb > Tb
%
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In less formal terms, the way the structures in S are
related can be modeled in terms of the structures in T. This notion
is important in the semantics of picture identification. We take S
as a ''geometric' presheaf and T as a "semantic"” or "World-model"
presheaf and translate the geometric information of S into a world-
model information of T.

As pointed out, in picture-theoretic applications presheaves
are essentially families of structures of certain species, interconnected
by transformations, expressing continuity.

With every presheaf S of species SIGMA on a base < E, <>
we associate two important structures of the same species SIGMA,
provided that certain existence conditions are met. Before we show how

this is done, two auxiliary notions are in order.

Namely, the direct product Pﬁgg Sa and the direct sum
a -

Sum S . If S are plain sets, then Prod S is just the Cartesian
a a€eg @&
a €E

product of the sets Sa and Sum S is the disjoint union of these sets.
a € E

Given a presheaf S of species SIGMA then by the section
(Projective or inverse limit) of S we mean the structure Sect (S) =

b
{s € zgd S, | va,b[a<b= B, (s,) =s,}.

Thus, Sect(S) of a substructure of the direct product

Prod S_ (provided that it exists).

a
Given a presheaf S of species SIGMA then by the cosection

(inductive or direct limit) of S we understand the structure

Cosect(S) = Sum S_/ =,
a
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where Sum Sa ={<a,s> l sesa}< denotes the direct sum of the
a
family {Sa} for a€E and = 1is the smallest equivalence relation
on the direct sum, containing the binary relation =;
<a,s >=<b,t > <> JFc<a,b [Bi(s) = B: (e) 1,
with sesa and tGSb.

Thus, Cosect(S) is a quotient structure of the direct sum

Sum S (provided that it exists).

a

Given a presheaf S, it can be shown that if "e" is a first

element of E, then the isomorphism

S = Sect(s)
e

holds and also

a:S - T => aé,:Se—>Te.
In other words, the structure Sect(S) can be identified with the structure
Se’ assigned to the first element e in E. 1In applications, Sect(S)
corresponds to the structure oflparticular texture elements.

Dually, if e’ is a last element of E, then

Sef; Cosect(S)

and
Q/:S — T =>ae/ : Se/ —-)Teo
Again, Cosect(S) can be identified with the structure Se” assigned
to the last element e’ in E. 1In applications, Cosect(S) corresponds

to the structure of the textured region.

Sheaves of Pictorial Structures of a Given Species

Sheaves are presheaves satisfying additional axiams. A

definition of a sheaf in its full generality requires several additional
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technicalities. We shall present therecfore such a definition which is
free of abstract conceptual constructions, general enough, and yet
still relevant in picture analysis.

Let < Wind, € > be the lattice of windows over the cellular
space X. Consider a presheaf {SW, 3;} over the window system
< Wind, € >. Then this presheaf is called a sheaf if for any family

. n n
of windows {Wi} i =1 such that W, CSW-oWE {Wi} i=1,

“the following isomorphism is valid:

Sy = Sect (s|{wi}).

Thus, loosely speaking, a sheaf is a system of structures over
a lattice of windows, where each structure represents one particular
texture.

Dually, we call presheaf {Sw, Bx} a cosheaf if for any

. . I ‘ n
family of windows {Wi}i -1 such that W C Wi — € {Wiji -1

the following isomorphism is valid:

S, W ~ Cosect (S]{Wi}).
i
A more direct definition of a sheaf with a fairly clear picture-
theoretic interpretation is given below.
Consider a presheaf S = {SV; é@} of structures over a
cellular space X, i.e., on the lattice of subsets < Sub(X), € >.
Then § is a sheaf over X precisely when for any family {V, | ie1}
of subsets of X with V = ? Vi’ the following two conditions are

satisfied:
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(1)

Uniqueness Axiom:

Vil (s) = By
i i

(2)

Existence Axiom:

. .r Vi _ V. _ v
TH308y y (s5) = Byd qy (sp)] => sVk [By (s) = s;.1,
in j . .
i 3 k
h 7 /77
where s,s’,s eSV’SiESV.’SjESV , sjesv',SkGSV s
i j k
The condition (1) says that if the structure elements s are
locally identical, then they are also globally identical. That is,

elements are uniquely determined
The condition (2) says that

compatible, they actually 'patch

by local data.
if we have local data which are

together" to form global data.

This might appear as a perhaps unduly sophisticated way of looking

at the windowing process in which by overlapping windowing we are
capable to recover the unique structure of the picture from several

local structures. The definition of a sheaf will turn out to be a test

method for texture region identification.

The picture - theoretic substance of sheaves is this. A sheaf

is essentially a system of "local coefficient'". 1In picture-theoretic

applications we start by assuming that a picture has certain local

pictorial properties which are captured by a structure SV of certain

species. We then express these properties in terms of the properties

of the structure sheaf S over a picture region. Finally, we apply

the theory of sheaves to deduce certain global properties of the picture.

Consequently, the importance of sheaves in scene analysis is simply
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in giving relations between local and global properties of a scene.
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