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ABSTRACT OF THE THESIS

USING EMPIRICAL ANALYSIS TO REFINE
EXPERT SYSTEM KNOWLEDGE BASES

by Peter G. Politakis

Thesis Director Professor Sholom M. Weiss

This thesis describes a system that provides a unified design framework

for building and empirically verifying an expert system knowledge base. SEEK is a

system which gives interactive advice about rule refinement during the design of an

expert system. The advice takes the form of suggestions for possible experiments

in generalizing or specializing rules in a model of reasoning rules produced by an

expert Case experience, in the form of stored cases with known conclusions, is

used to interactively guide the expert in refining the rules of a model. This

approach is most effective when a model of the expert's knowledge is relatively

accurate and small changes in the model may improve performance. The system is

interactive; we rely on the expert to focus the system on those experiments that

appear to be most consistent with his domain knowledge. The design framework of

SEEK consists of a tabular model for expressing expert-derived rules and a general

consultation system for applying a model to specific cases. The system has been

used in building large-scale expert medical consultation systems, with examples

taken from an expert consultation model for the diagnosis of rheumatic diseases.
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CHAPTER 1

INTRODUCTION

1.1. Overview of the Problem

For the past decade, much of the research in the development of expert

systems has focused on the acquisition of knowledge for medical diagnosis and

treatment Some of the early prototypical expert systems in medicine included

CASNET [Weiss, et al 78] for ophthalmology, INTERNIST [Pople, et al 75] for

internal medicine, and MYCIN [Shortliffe 76] for infectious diseases. For large

systems of this kind, it is well known that better methods for acquiring expert

decision-making knowledge are needed to speed up the developmental cycle. Also,

the dual problem of how to verify the medical content of an expert system's

knowledge base and evaluate its performance is a relatively difficult task especially

for the early medical systems where the reasoning strategies were based on rather

complex scoring functions to account for the uncertainty in diagnostic tasks.

There have been two approaches to the problem of acquiring expert

knowledge. A direct approach has tried to find efficient techniques to extract

knowledge from the domain expert, while other research efforts have sought ways

of acquiring expert knowledge indirectly from samples of cases. Key aspects of

these approaches are presented in the top two boxes of Figure 1-1. First, we will

discuss the direct approach for building an expert medical consultation system.

In general the work on developing an expert system for medical consultation

has relied on the expert physician to provide all the domain-specific knowledge for



a consultation system is to conclude as well as the relevant findings needed to

reach them. Most real-world medical applications are characterized by uncertainty in

the clinical diagnoses and a large dimension of the data set which can include

hundreds of findings. Because of this and the observation that much of the

expert's clinically relevant knowledge is not formally specified but is based on

experience, the formalization of decision-making knowledge is well known to be a

time-consuming and formidable task in expert system development

Although production rule representations have been successfully used for

expressing expert decision-making knowledge, we still need some framework to

facilitate the expert7s formulation of rules in the development of an expert system

Finding useful levels of abstraction is a fundamental and difficult part of rule

formulation, particularly if we are to reduce a problem's dimensions. The expert

physician, like other specialists, does not spend his time writing down his rules of

reasoning. Doing such an unaccustomed task as having to explicitly express his

rules, the expert has little or no uniform structure to apply in formulating them; he

may forget pieces of knowledge, or introduce inconsistencies and mistakes in

writing his rules. Despite these practical difficulties, in the past most expert system

knowledge bases have been developed in detail before testing is carried out When

empirical evaluation was done, it was limited to a few test cases, with the major

goal of verifying performance, rather than as an integral part of the development

process. *:*

On the other hand, various methods for acquiring or learning expert rules

directly from sample cases have been found to be acceptable if certain

characteristics of the domain are known. For example, if the dimensions of the

problem area are of manageable size, the features for describing the case data are

sufficiently specific for accurate discrimination, and the case data are accurately

presented For limited-sized applications, knowledge that is acquired directly from

cases may be adequate for expert decision-making when cases are reasonably
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Figure 1-1: Approaches to Building Expert Systems

representative of the conclusions to be covered Unfortunately, for most large

medical applications, these characteristics usually cannot be met. Even if a large

number of cases for a realistic application is available, it is important to note that

cases aione do not contain all the domain-specify information which an expert

physician can provide to an expert system knowledge base.

Thus the problem consists of a lack of guidance and verification in the

development of an expert system knowledge base, since available diagnosed cases

may not be sufficient nor reliable enough to be used by themselves. So what can

be done? The motivation of this thesis came from the difficulties that were

experienced with previous approaches that relied only on the expert, or these that

relied only on samples of cases. While recognizing that the best source of



knowledge is the human specialist the approach described in this thesis is that the

expert's knowledge has to be supplemented by a representative set of cases for

testing purposes—to be integrated within a unified system that eases the tasks of

acquiring and verifying the decision-making knowledge. This approach has been

shown to work by the implementation of an interactive system for empirical

experimentation with expert knowledge, called SEEK.

1.2. Empirical Analysis in SEEK

SEEK combines design aids for building expert models with empirical testing

and evaluation heuristics that help the human specialist carry out experiments to see

if he can improve his decision-making knowledge.

SEEK starts with expert-derived rules of inference expressed in a tabular

model (a restricted type of production rule system) and uses experience, in the

form of stored cases with known conclusions, to interactively guide the expert in

refining the rules of a model. Performance information from the cases is integrated

into the design process of an expert model by providing advice about rule

refinement SEEK generates advice in the form of suggestions for possible

experiments in generalizing or specializing rules in the model. It is the regularities

about the performance of rules in misdiagnosed cases that SEEK specifically uses as

a basis for suggesting changes to the rules.

Case analysis methods are used to identify slight changes to the rules which

may correct the model's results on misdiagnosed cases. Minimal changes are

suggested under the assumption that the expert model is generally correct—the

expert knows his area and can express his knowledge in the model. This is not to

mean that the system will not work when a model is poorly presented. Rather, the

system will be most productive in its advice giving when the expert's rules are

generally correct and fine-tuning is needed. A summary of these points appear in

Figure 1-2.
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Figure 1-2: Characteristics of SEEK

1.3. Outline of Thesis

The remainder of Chapter 1 provides an overview of the SEEK system that is

organized according to certain stages in the development of an expert model. The

tabular model for representing expert knowledge is described and a summary of the

model refinement process is presented. Examples are given from an expert model

for diagnosing rheumatic diseases.

Chapter 2 reviews related research on knowledge acquisition and expert

system development and evaluation.

Chapter 3 describes the methods by which performance statistics are

gathered from the model's past experience in diagnosing cases. The central

component in gathering performance statistics is the application of case analysis

methods on each misdiagnosed case. The methods of case analysis identify rules



for refinement such that a misdiagnosed case may be correctly diagnosed by the

model when these rules are modified. Many examples are presented to illustrate the

application of these case analysis methods. Gathering performance statistics

represents the first of a two-step process in the generation of advice about rule

refinement

Chapter 4 describes heuristics for proposing rule refinement experiments.

The heuristics relate certain statistics about a rule's past performance on a data

base of cases to determine modifications of the rules in an expert model. The

process of interpreting the heuristics constitutes the second step for the automatic

generation of advice about rule refinement Several examples are included to

facilitate the description of the heuristics.

Chapter 5 provides an annotated sample session with SEEK. Many of the

system'$ interactive facilities are demonstrated in the course of refining rules to

find an improved formulation of the model.

Chapter 6 reviews the main points of this research, and makes several

suggestions for future work.

1.4. Overview of SEEK

This thesis describes an interactive program called SEEK that is an attempt to

unify certain parts of the knowledge acquisition and validation processes into a

single design framework. SEEK requires two knowledge sources: the domain

expert's knowledge, represented by expert-derived rules, and case experience, in

the form of a data base of cases with known diagnostic conclusions. SEEK

integrates performance information into the design of an expert system to facilitate

the process of experimenting with possible rule changes. A set of domain

independent heuristics generate advice about rule refinement by looking for

regularities about the performance of the rules on misdiagnosed cases.



1.5. The Model

A table of criteria, which is a specialized type of frame or prototype [Aikins

79] , is prepared for each potential diagnosis. The table consists of two parts:

• major and minor observations which are significant for reaching the
diagnosis,

• a set of diagnostic rules for reaching the diagnosis.

Figure 1-3 shows observations, grouped under the headings Major and Minor for

mixed connective tissue disease. For this disease, there are five major observations

that the expert considers very important while the six minors such as mild

Myositis are less specific but suggestive of the disease.

Major Criteria Minor Criteria

1. Swollen hands 1. Myositis, mild
2. Sclerodactyly 2. Anemia
3. Raynaud/s phenomenon or 3. Pericarditis

esophageal hypomotility 4. Arthritis <= 6 wks
4. Myositis, severe 5. Pleuritis
5. CO diff capacity, nl: < 70 6. Alopecia

Figure 1-3: Example of Major and Minor findings

The second part of the table contains the diagnostic rules. In Figure 1-4,

each column consists of a rule for a specific degree of certainty in the diagnosis.

There are three levels of confidence: possible, probable or definite. A diagnostic

rule is a conjunction of three components which are taken from the rows: specific

numbers of majors or minor observations, requirements, and exclusions.

Requirements are those combinations of observations which are necessary beyond

simple numbers of major and minor findings (although major and minor findings also

may be requirements). Exclusions are those observations which rule out the

diagnosis at the indicated confidence level. The three fixed confidence levels are an

important attribute of the model. They substitute for complex scoring functions

which can be a major difficulty in analyzing and explaining model performance

[Szolovits and Pauker 78]. It is understood that the rule with the strongest



example, if a definite diagnosis for a particular disease is made, even if the rules

for the probable or possible diagnosis for the same disease are satisfied, the

definite conclusion is considered more appropriate.

Definite Probable Possible

4 majors 2 majors 3 majors
2 minors

Requirements Positive RNP Positive RNP No requirement
antibody antibody

Exclusions Positive SM No exclusion No exclusion
antibody

Figure 1-4: Tabular Format for the Experts Rules

As an example, the rule for concluding definite mixed connective tissue

disease can be stated as follows: If the patient has 4 or more Major observations

for mixed connective tissue disease, and RNP antibody is positive, and SM antibody

is not positive, then conclude definite mixed connective tissue disease. In most

applications, multiple rules are described for each confidence level. Furthermore,

the components of the tabular model rules are not restricted only to observations

which are asked during a consultation session. There may be intermediate results

obtained by reasoning rules expressed in other tables; for example, the minor

labeled Pleuritis in Figure 1-3 may be derived by rules in a tabular model for

reaching this conclusion. A more detailed analysis of the model structure is

presented in Chapter 3, and examples of the tabular model format are shown in

Appendix B.

The following sections will focus on tools for model refinement that aid in

identifying two classes of changes which can be made to the rules: generalizations

or specializations. Generalizations are changes that weaken a rule R, resulting in a

different rule R where R logically includes R. For example, this can be

accomplished by dropping a requirement or decreasing the number of major and



minor findings for a rule. Specializations are changes that strengthen a rule R,

resulting in a different rule R$ where Rg is logically included by R; for example,

increasing the number of major and minor findings in a rule.

Frame-like schemes have been used to represent medical knowledge in the

PIP [Pauker, et al 76] and CENTAUR [Aikins 80] systems which were designed to

provide diagnostic consultations in subspecialties of medicine. In addition to

representing various clinical states, with expected ranges of measurements, and

related diseases in each disease frame, those frames contained slots containing

relatively complex scoring functions that could be specialized for the evaluation of

the disease frame. The tabular model presented here is a simple type of frame

representation requiring fixed types of observations (e.g., majors, exclusions) for

each diagnostic conclusion that are relatively easy to describe. Scoring follows

directly from the three confidence levels of definite, probable, and possible.

16. The Rheumatology Application

A consultation model for connective tissue diseases has been developed using

the EXPERT system [Weiss and Kulikowski 79] for developing consultation models.

This project is a collaborative effort between researchers at Rutgers University and

the University of Missouri. The connective tissue diseases subset of rheumatic

diseases are particularly difficult to diagnose. They include the following seven

diseases: rheumatoid arthritis, systemic lupus erythematosus (SLE), progressive

systemic sclerosis, mixed connective tissue disease, polymyositis, primary Raynaud's

syndrome, and Sjogren's disease. Some of the difficulties in the differential

diagnosis of these diseases may be appreciated by noting that that the disease

process evolves in atypical ways, that there is a general lack of deterministic criteria

to objectively confirm diagnoses, and that even the experts in this area disagree

about some of the diagnoses [Lindberg, et al 80].

A key design strategy for building the rheumatology model has been the
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testing of the model against a data base of clinical cases. The correct diagnosis for

each case was decided by agreement of at least two out of three rheumatologists.

After an initial design consisting of 18 observations and 35 rules, the model has

undergone many cycles of testing and revision. This incremental process resulted in

the expansion of the model to include 150 observations, of which several

observations were combined by rules to reach intermediate conclusions, and a total

of 147 rules. The model has been critiqued by an external panel of expert

rheumatologists, and a review of performance has shown the model to achieve

diagnostic accuracy in 94% of 145 clinical cases [Lindberg, et ai 80]. Current

efforts include expanding the model to cover other rheumatic diseases and to

provide advice about treatment management At this time, the dimensions of the

model include 30 final diagnostic conclusions, 600 intermediate conclusions, 900

observations, and over 1000 production rules.

1.7. Stages of Model Development

To perform the empirical analysis, SEEK must have a tabular model for each

final diagnosis. Also required is a data base of cases, including the correct final

diagnosis assigned to each case. The design of a model and the analysis of

performance can be segmented into the following steps:

• Initial design of the model

• Data entry: cases and expert7 s conclusions

• Performance analysis of the model

• Generation of model refinement experiments

• Impact of model changes on the data

Figure 1-5 illustrates the relationships between components of the SEEK

system that involve the above steps.
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1,8 Initial Design of the Mode!

A specialized text editor is used to specify an initial design of the model.

The EMACS editor [Stallman 80] has been extended with commands tailored to the

tabular model structure. Either one of three editing modes can be specified by the

model designer, table input table update, or table review and store. For each

newly identified final diagnosis, table input mode allows the model designer to list

major and minor observations and to specify components of the rules that would

conclude the diagnosis. In update mode, the table for a specified final diagnosis is

retrieved and the model designer can revise the rules or the lists of major and

minor observations. When the additions and updates are completed the table is

stored and translated into a format used by SEEK. The translation of the table

format is compatible with the EXPERT system format [Weiss and Kulikowski 79]

(Refer to Appendix B for examples of the formats involved)

1.9. Entry of Data in a Consultation Session

SEEK analyzes the performance of a models conclusions; it does not attempt

to analyze the performance of a questioning strategy. Although SEEK appears to be

a separate program, a consultation session is actually run by EXPERT as a

subprocess of SEEK. Therefore, the consultation session itself is identical to that

produced by EXPERT. In this section we will briefly illustrate a consultation session

for the rheumatology model. However, the form of questioning is quite similar to

many other medical consultation systems which have been reviewed elsewhere (e.g.,

[Weiss, et al 78].)

A questionnaire is used to enter the observations, including the correct

presumptive diagnosis for a case. Editing facilities are available to review and to

change the responses to questions. A case is stored in a data base which is

maintained by the system. The following highly abstracted example shows the

typical entry of data for a particular case where the user's responses appear in

boldface.
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Extremity Findings:
1) Arthralgia
2) Arthritis <*6 wks, or non-polyarticular
3) Chronic polyarthritis >6 wks,
k) Erosive arthritis
5) Deformity: subluxations or contractures
6) Swollen hands* observed
7) Raynaud's phenomenon
8) Polymyalgia syndrome
9) Synovia] fluid inflammatory

10) Subcutaneous nodules
Checklist:
*1,2,3,4,10

31. Presumptive Diagnosis:
1) Mixed Connective Tissue Disease
2) Rheumatoid Arthritis
3) Systemic Lupus Erythematosus
k) Progressive Systemic Sclerosis
5) Polymyositis
6) Primary Raynaud's
7) Sjogren's

Checklist:
*2

After all questions have been asked, the system provides a summary of the

data in the case. From this, the expert can correct any data entry errors and later,

the case can be stored in a data base. Cases are usually entered in large groups

during a single session. The cycle is repeated for each case: the data are entered,

errors are corrected, and the case is saved. An example of the interpretative

analysis of the rheumatology model is shown in Figure 1-6. This format, designed

by our collaborators at the University of Missouri, has proven very satisfactory in

the rheumatology consultation system. Similar formats for diagnostic descriptions



The sample interpretation includes the differential diagnosis (i.e., definite

rheumatoid arthritis and possible SLE) followed by detailed lists of supporting and

conflicting findings which provide a more complete picture of the case. These lists

are obtained by matching findings from the case data to prespecified lists that are

associated with each diagnosis in the model. The lists include those findings that

are consistent not expected, and unknown for the diagnosis.

1.10. Model Performance

A typical interaction with SEEK involves iterating through these steps:

1. obtain performance of rules on the stored cases,

2. analyze the rules,

3. revise the rules.

In reviewing the performance of a model, the expert's conclusions are matched to

the model's conclusions. The expert's conclusion is stored with each case, while

the model's conclusion is taken as that conclusion reached with the greatest

certainty. Figure 1-7 illustates the process of generating experiments for a model.

1.10.1. Conditions for Performance Evaluation

The first step in an analysis of performance is to produce a performance

summary for all stored cases. Performance is evaluated by matching the expert's

conclusion to the model's conclusion in each case. A practical problem for scoring

the results in a particular case occurs when ties in certainty between the expert's

conclusion and the model's different conclusion are noted. Whether the model is

scored as correct or incorrect for such a case affects the direction of subsequent

rule refinements. A decision on how ties should be treated in performance

evaluation rests with the problem domain. Whereas ties may be acceptable in

particular medical areas for which it is difficult to discriminate between competing

diagnoses, they probably would not be acceptable in areas for which the diagnostic

choices are well understood and mutually exclusive. Rheumatology is an area that
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NTERPRETiVE ANALYSIS

iagnoses are considered in the categories
efinite, probable, and possible*

ased on the information provided,
he differential diagnosis is

heumatoid arthritis (RA) — Definite

ystemic lupus erythematosus (SLE) — Possible

atient findings consistent with RA:
Chronic polyarthritis >6 wks.
RA factor (l.f.), titer 1: < 320
Subcutaneous nodules
Erosive arthritis

atient findings not expected with RA:
Oral/nasal mucosal ulcers

atient findings consistent with SLE:
Platelet count, /cmm: <* 99999
Oral/nasal mucosal ulcers
Arthritis <*6 wks, or non-polyarticular

atient findings not expected with SLE:
Erosive arthritis

nknown findings which would support the diagnosis of SLE:
LE cells
DNA antibody (hem.)
DNA antibody (CIEP)
DNA (hem.) , titer 1:
FANA
Sm antibody (imm.)

nd of diagnostic consultation: 29~Jul-82.

Figure 1-6: Sample Diagnostic Interpretation
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exemplifies the former condition. For instance, some rheumatic diseases do coexist

during the progression of the respective disease processes and therefore a final

diagnosis is difficult to make. In such cases, a tentative diagnosis may be made

while not ruling out other related diseases. An interpretation of a model's

conclusions could reflect this situation by treating ties in certainty to be correct

(e.g., ties in certainty at the possible or probable confidence level). There may be

exceptions. For example, ties at the definite level and at the null level (i.e., no

conclusion was reached by the model) may be considered incorrect for

diagnostically related diseases. Thus there is a need to specify conditions under

which performance evaluation is to be performed SEEK allows the model designer

to specify how ties in confidence are to be treated

Another analysis condition is to allow the model designer to determine which

rules and cases are to be ignored during the evaluation process. This is useful

when either there Bre insufficient numbers of cases for a particular final diagnosis,

or the rules for some diagnoses are not deemed to be in a satisfactory state by

the model designer. If not ignored, these rules usually interfere in several case

diagnoses and their performance over ail cases is therefore quite low. SEEK allows

the model designer to specify rules to be ignored during performance evaluation

and also cases where, for example, rules are deemed "solid".

1.10.2. Performancd Summary for the Model

The results are organized according to final conclusions and show the number

of cases in which the models conclusion matches the expert7s conclusion (refer to

Figure 1-8 below.) The column labeled False Positives shows the number of cases

in which the indicated conclusion was reached by the model but did not match the

stored expert7s conclusion. In Figure 1-8, the summary of performance for mixed

connective tissue disease indicates that 9 cases out of 33 were correctly diagnosed

Furthermore, there are no cases which were misdiagnosed by the model as mixed

connective tissue disease. The rules that conclude rheumatoid arthritis perform quite
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well for the stored rheumatoid arthritis cases, but they appear to be candidates for

specialization, because of the 10 false positives.

True Posit ives False Posit ives
Mixed Connective Tissue Disease
Rheumatoid A r t h r i t i s
Systemic Lupus Erythematosus
Progressive Systemic Sclerosis
Polymyosi t i s

9/
42/
12/
22/

4/

33
42
18
23
5

(27%)
(100%)

(67%)
(96%)
(80%)

0
10
4
5
1

(00%)

(13%)
(04%)
(04%)
(01%)

Total 89/121

Figure 1-8: Summary of Current Performance

In addition to the results shown in Figure 1-8, general performance results

about a specific rule can be obtained, showing the number of cases in which the

rule was satisfied An example of this is shown in Figure 1-9. This summary of a

rule's performance includes the number of cases in which the rule was used

successfully (i.e., matching the expert's conclusions stored with the cases) and the

number of cases in which the rule was used incorrectly (i.e., not matching the

expert's conclusions stored with the cases).

Rule 72: 2 or more Majors for RA
2 or more Minors for RA
No Exclusion for RA
—* Probable Rheumatoid a r t h r i t i s

43 Cases: in which th is ru le was s a t i s f i e d .
13 Cases: in which the greatest cer ta in ty in a conclusion was obtained

by th is ru le and i t matched the expert 's conclusion.
7 Cases: in which the greatest cer ta in ty in a conclusion was obtained

by th is ru le and i t did not match the expert 's conclusion.

Figure 1-9: Summary of Rule Performance



1.11. Analysis of the Model

Interactive assistance for rule refinement is provided during the analysis of

the model. The model designer has the option of analyzing either a single case or

all cases to obtain improvements in rule performance.

1.11.1. Analysis of the Model for a Single Case

The objective of single case analysis is to provide the model designer with an

explanation of the model's results for that case. This is accomplished by first

showing the model's confidence in both the expert's conclusion and the model's

conclusion. Rules are cited which were used to reach these conclusions. Rules for

the expert's conclusion are selected from those rules in the model with the same

conclusion as the conclusion stored with the case. If the model's conclusion does

not match the expert's conclusion in the case, the system attempts to locate a

partially satisfied rule for the expert's conclusion that is the c/osest to being

satisfied and would override the model's incorrect conclusion. A procedure for

finding the closest rule is described later. An example of the results of single case

analysis is shown below. The case in Figure 1-10 is misdiagnosed by the model

which has assigned the certainty value of possible to progressive systemic sclerosis.

The model's conclusion is rheumatoid arthritis with a certainty value of probable.

Rule 111 and rule 72 are responsible for reaching these conclusions at the indicated

certainty levels. In this example, rule 72 was triggered because 2 majors and 3

minors for rheumatoid arthritis are present and this case did not have the (exclusion)

findings that would deny rule 72. Given this information the model designer can

pursue either of two directions to refine the rules: either to weaken rule 72 so

that it will not override rule 111, or to find a stronger rule concluding progressive

systemic sclerosis. In response to this latter possibility, SEEK cites rule 112 as a

likely candidate to generalize. A procedure that SEEK uses to identify rules such as

rule 112 is described later.
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1. Expert*s conclusion: Progressive systemic sclerosis

2. Model's conclusion: Probable rheumatoid arthritis

Strongest satisfied rule for the expert' s conclusion:

rule 111: 1 or more majors for pss (1 majors satisfied)
1 or more minors for pss (3 minors satisfied)

—• Possible progressive systemic sclerosis

Rule for the model's conclusion:

rule 72: 2 or more majors for ra (2 majors satisfied)
2 or more minors for ra (3 minors satisfied)
no exclusion for ra (satisfied)

—* Probable rheumatoid arthritis

Rules for expert's conclusion with potential weight greater than
or equal to the model's conclusion:

rule 112: requirement 1 for probable pss (not set)
no exclusion for probable pss (satisfied)

—* Probable progressive systemic sclerosis

Figure 1-10: Analyzing a Misdiagnosed Case

Besides this information provided in single case analysis, SEEK allows the

model designer to interrogate any conclusion in the model both final and

intermediate results. The rules for any conclusion can be cited by specifying a rule

number or the internal label tagged to a conclusion (e.g., PSS for Progressive

systemic sclerosis). If desired, these labels can be displayed with the rules. All

rules for a conclusion can be cited, both totally satisfied and partially satisfied rules

in the case. This aids the model designer in reviewing the performance of a subset

of the rules on the case data



After the performance summary is obtained (Figure 1-8), a global analysis of

the model may be tried. The first step in the analysis of a model based on multiple

case experience is to specify a final diagnosis for which rules are to be analyzed.

In this manner, the model designer focuses the analysis on a subset of the rules in

the model. The analysis is usually done after performance results for all diagnoses

have been obtained SEEK assists the model designer in the analysis of a subset of

the rules which are relevant to the misdiagnosed cases. An important design

consideration for SEEK is to provide the model designer with a flexible means to

perform experiments in refining the rules. In this section, advice will be described

which helps in determining the specific experiments for rule refinement Heuristic

procedures are needed to select experiments from the many possibilities. For

example, SEEK uses a heuristic procedure to determine the rules that agree with the

expert7s conclusion which are closest to being satisfied in a misdiagnosed case. It

looks for a partially satisfied rule in a case for which the following conditions hold

1. The rule concludes at a minimum confidence level which is greater
than (or equal to, depending on the treatment of ties) the certainty
value for the model's conclusion;

2. The rule contains the maximum number of satisfied components for
all rules concluding at that confidence level.

A rule satisfying these conditions is marked for generalization (weakening), so that it

may be invoked more frequently. The rule used to reach the models conclusion is

marked for specialization (strengthening), so that it may be invoked less frequently.

A more detailed discussion of the heuristic rules is given in section 1.12.

After analysis of the rules for a given conclusion, SEEK reports the results

by numbering and listing rules that are potential candidates for generalization or

specialization. Figure 1-11 shows a summary of this rule analysis and includes

unsatisfied rules in the misdiagnosed cases that are candidate rules for generalization.

The column labeled Generalization stands for the number of cases suggesting the

generalization of a rule, and the column labeled Specialization stands for the

number of cases suggesting the specialization of a rule.
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Mixed Connective Tissue Disease

Generalization Specialization

Rule

5>*.

55.

56.

Certainty

Possible

Possible

Possible

2

7

8

0

0

57. Probable 2 0

58. Probable 2 0

Figure 1-11: Summary of Preditive Statistics for MCTD Rules

In Figure 1-11, rules at the possible level of certainty are strong candidates

for generalization. Although Rule 56 is not satisfied in 8 misdiagnosed cases, if

Rule 56 had been satisfied these 8 cases would have been correctly diagnosed In

the 8 cases cited for Rule 56, Rule 56 is closer to being satisfied than Rule 55 and

all the other rules. A more detailed analysis of each rule, summarizing the satisfied

and unsatisfied components of the rule, is normally obtained at this point Rule 55

can be stated as: If the patient has 2 or more Major observations for mixed

connective tissue disease and RNP antibody is positive, then conclude possible mixed

connective tissue disease. Rule 56 can be stated as: If the patient has 3 or more

Major observations for mixed connective tissue disease, then conclude possible

mixed connective tissue disease. A simple experiment for generalization of Rule 56,

which might be tried first because it is the simpler rule, is to decrease the number

of major observations that it requires.
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1.12. Overview of Model Refinement

This section summarizes how advice about refinements to a models rules

can be automatically generated based on an empirical performance analysis of the

rules. If we ignore for the moment the possibility of changing the confidence for a

rule, a rule can be changed in one of two ways. One can weaken the conditions in

a rule by removing components in the antecedent and thereby make the rule easier

to satisfy. This is called a generalization of the rule. Alternatively, a ruler's

conditions can be strengthened by adding components. This is called a specialization

of the rule and would make the rule more difficult to satisfy. The advice generated

by the system consists of specific generalizations and specializations of the rules in

a model. These are presented in the form of proposed experiments from which

the model designer can choose to subsequently try so that he may improve the

model's performance on a data base of cases.

Changing a rule's confidence can be viewed as a generalization or a

specialization of the rule. Increasing a rule's confidence falls in the category of

generalizations because the impact of the rule would be weighted more heavily over

the same rule which had lower assigned confidence. Similarly, decreasing a rule's

confidence reduces the impact of the rule since the rule would be weighted less.

This is in the class of specializations. We discuss next the task of generating rule

refinement experiments. Figure 1-12 exemplifies the process of analyzing and,

recommending rule change experiments for hypothetical diagnosis DX2. In this

example, the results of the model and the expert do not match for case 2.

Because DX2 is the correct answer for case 2, performance might be improved by

generalizing a DX2 rule or specializing a DX1 rule.



Figure 1-12: Overview of Rule Refinement Analysis for Diagnosis DX2
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1.12.1. Heuristics for Suggesting Experiments

Heuristics are needed to suggest specific rule refinement experiments from

the many possibilities that could be tried to correct misdiagncsed cases. Unlike the

example in Figure 1 -11 , situations often arise where some empirical evidence

supports the generalization and other evidence supports the specialization of the

same rule. In one misdiagnosed case, a satisfied rule could have been found to be

responsible for incorrectly diagnosing the case. On the other hand, the same rule

could have been unsatisfied in several other misdiagnosed cases where, if it were

satisfied, the rule could have correctly diagnosed these cases.

Given this situation, one would reasonably focus on ways to weaken the rule

as opposed to strengthening the rule because the empirical evidence favors this

approach. Thus a generalization experiment would be needed so that the rule will

be satisfied in the subset of misdiagnosed cases for which this rule should be

applied. The heuristics must therefore contain information about a rule's

performance in order to determine whether to weaken or to strengthen a rule.

Furthermore, other empirical information is needed to select a specific experiment

In the case of a generalization experiment, there must be a way of determining the

specific component(s) that ought to be removed from the rule. This means that we

need to gather statistics about a rule's performance on a data base of cases.

Statistics about a rule's performance on the entire data base of cases enter

in heuristic rules to determine rule refinement experiments. Each heuristic rule uses

these statistics to help determine:

1. the class of experiment (generalization or specialization) to be
suggested;

2. the specific component to change in the rule.

In Figure 1-13, an example of a heuristic rule is shown for suggesting an

experiment that decreases the number of majors in a rule.



There are two points to note about this heuristic. First this experiment is in

the class of generalizations, so we must verify that a generalization of the rule is

needed. This condition is expressed in the first clause of the heuristic. It requires

that the number of cases suggesting generalization of the rule exceeds that for

specialization of the rule.

If: the number of cases suggesting generalization of the rule is
greater than the number of cases suggesting specialization of
the rule and the most frequently missing component in the rule
is the "MAJOR" component

Then: Decrease the number of major findings in the rule.

Figure 1-13: Example of Heuristic Rule for Suggesting an Experiment

Secondly, we must select a component to remove from the rule. This

requires searching each of the cases supporting the generalization of the rule in

order to identify a component which is not satisfied in the rule. The component

most frequently missed among the cases supporting the generalization of the rule is

selected as the item to be weakened. In our example, this missing component must

be the majors component in order to suggest the specific experiment The heuristic

is evaluated by filling in the clauses with the appropriate statistics and testing

whether the clauses are satisfied All heuristics are interpreted in this way. This

represents the second stage of a two-stage process in generating advice about rule

refinement The first stage involves the process by which the statistics are

gathered and is described next

1.12.2. Gathering Performance Statistics about a Model

We now present an overview of the methods of analysis used to determine

which rules to generalize and which to specialize.

Given a case that is misdiagnosed by the model SEEK performs an analysis

on the rules that reach the expert's conclusion. As an example, let the expert's



conclusion be denoted by the symbol £ and the models different and therefore

incorrect conclusion be identified by the symbol M. Suppose the models

confidence in the expert's conclusion E is possible, while the model's confidence

in M is probable. The two rules responsible for reaching these conclusions are F?e

for the expert's conclusion and R for the model's conclusion. This is described
m

in Figure 1-14.

Conclusion Rule responsible

Model's confidence in
the Expert's conclusion: possible E R

m
Model's conclusion: probable M Rn

Figure 1-14: Summary Information about a Misdiagnosed Case

1.12.2.1. Generalization Statistics

Since the model concludes for the expert's conclusion possible E and the

model's conclusion is probable M, we need to find a stronger rule for E in order

to override the model's incorrect conclusion. We need to find a rule for the

expert's conclusion E with confidence that is at least probable. (We assume for all

examples that ties in confidence between the expert's conclusion and the model's

conclusion are acceptable, and therefore when they occur, the model is to be

scored as correctly diagnosing such a case.) Since no rule was satisfied that

concludes the expert's conclusion E with confidence greater than possible, we

could try to find a candidate rule to generalize which is partially satisfied. A

simple example of a partially satisfied rule is a rule which needs at least 2 major

findings, but only one major finding is satisfied As an alternative to finding a

partially satisfied rule to generalize, we could change the confidence of rule Re

from possible to probable.

While this latter change is simple to perform, it is quite drastic. This can be

understood by examining how a model is prepared. Rules are written with specific

levels of confidence in mind. Changing a rule's confidence would mean that the



whole rule is in error and not just a component in the rule. When a rule is moved

from one confidence level to another (e.g., from possible to probable) the expert's

expectation in the importance of the rule is altered relative to all rules for a

specific diagnosis. Although the system generates experiments for changing a

rule's confidence, we are more interested in determining changes that are less

radical and comprise more subtle variations in the expert's rules.

We may be able to correct the case by changing rules for the expert's

conclusion. Several rules are usually applicable for generalization, each of which can

be weakened in many ways. We want to select a rule which would correct the

case, with as little modification as possible to achieve this. A predictive statistic is

needed to identify a rule such that if the rule were satisfied it would correct the

case and secondly, that it should be the closest to being satisfied among all

applicable rules. We describe below a process by which this statistic is gathered

for each misdiagnosed case. This is different from a statistic that simply logs what

happened in each case, for example, whether a particular rule was satisfied in the

case.

For each of the partially satisfied rules found for the expert's conclusion £,

a backtracing procedure is performed on the components in the left-hand side of

the rule to obtain a measure of the percentage of total satisfaction. A component

in a rule may itself have rjles which conclude it, requiring additional backtracing

over such rules; in an advanced version of a rheumatology model, there are as many

as six levels of rules. This procedure involves counting the number of components

in a rule needed for satisfaction and the number of components actually satisfied

by the case data intuitively, the idea is to select a rule to generalize which is the

ciosest to being satisfied, and it concludes with minimal confidence needed to

correct the case.

A partially satisfied rule for the expert's conclusion £ is selected that has



the greatest percentage of total satisfaction; call this rule R0'. The first unsatisfied

component found in this rule R ' is identified to be weakened The result of this

analysis means that if rule Re
/ was satisfied, the case would then be correctly

diagnosed Rule R ' would override the models incorrect conclusion of M caused

by rule Rm. Further, the rule R ' would be easier to satisfy if the first unsatisfied

component found in the rule was removed This summarizes the analysis to select a

candidate rule for generaiizaton of the experts conclusion. This analysis is

performed on each misdiagnosed case, and the summed statistics for candidate rules

to generalize are recorded for subsequent use by the heuristics.

1.12.2.2. Specialization Statistics

In addition to gathering statistics about rules to generalize, we also carry out

an analysis of the rules yielding incorrect conclusions for a misdiagnosed case, so

as to collect information about strengthening the conditions of these rules. By

definition, a case is misdiagnosed by the model when the models strongest

conclusion does not match the expert'$ conclusion stored in the case. To

determine candidate rules to specialize, we need to identify all conclusions reached

by the model which override the model's confidence in the expert7s conclusion. A

problem with determining specialization experiments is that a single rule change is

often not enough to correct the case. It is not uncommon to find multiple

problems with the rules because more than one conclusion was reached with a

confidence level exceeding that of the expert '$ conclusion.

Because of this we separate our conclusions into two classes of

specialization: primary and secondary specialization. Primary specialization contains

only the model's incorrect conclusion which was reached with greatest certainty

among all conclusions. The class called secondary specialization contains all other

incorrect conclusions.

For each incorrect case, the rules that reach the primary specialization



conclusion are traced. The results of this trace on each rule are used to determine

the effect of specializing the rule on the performance of the case. That is, if we

force the rule not to be satisfied, then how close is the case to being correctly

diagnosed?

In our example, the rules that conclude M are the subject of this analysis.

Rule R was responsible for reaching the conclusion of probable M. This rule

should not have been invoked, and therefore it is identified to be a candidate for

primary specializatioa If conclusions other than M were reached in the case with

confidence exceeding possible E, then the rules that reach these conclusions would

be identified for secondary specialization. A measure of closeness to correcting the

case if rule R is not satisfied is associated with this rule. This measure is derived
rn

from the number of satisfied rules for M and the number of conclusions in the

secondary class of specialization. This summarizes the rule analysis leading to the

specialization of rules. The statistics are recorded for each misdiagnosed case and

made available to evaluate the heuristics.

The statistics for primary and secondary specialization are not enough to

determine a specific experiment For instance, information about which component

to add to a rule is not readily obtained for a specialization experiment as it is for

generalization (to determine a component to remove from a rule). Knowledge of the

types of components (eg., majors, minors, requirements) that can appear in a rule

can help us to focus on a component to be specialized The heuristics for

suggesting specialization experiments can include a preference in changing one

component over another, based on an intuitive understanding of the components in

the tabular model.

Given a tabular model for a conclusion, one preferred ordering for changing

components in the rules expressed in this model could be: minors are preferred

over majors, and majors are preferred over requirements. As an example, if a rule



that is identified for specialization expresses a number of minors and a number of

majors, then according to the preference ordering one would strengthen the minors

component

Frequency data about a component on the entire data base of cases is

another source of information that is useful to determine a component to add to a

rule; but the best source of information for adding a component is the expert

1.12.3. Summary of Model Refinement Advice

In summary, the generation of advice about changes to a model is a two-

stage process. The first stage involves gathering statistics about rule performance as

a result of analyzing all cases in the data base. The second stage is the evaluation

of the heuristic rules using the statistics showing the rules' performance, for the

purpose of suggesting specific experiments about rule refinement The potential

loss as a result of generalizing a rule by either removing a component or increasing

the confidence is the increase in the number of false positives already attributed to

the rule. In Figure 1-14, a generalization experiment could have an adverse effect

on the performance of correct cases where the expert's conclusions is other than

conclusion E On the other hand, the potential loss as a result of specializing a rule

by either adding a component or decreasing the confidence is the decrease in the

number of cases in which the rule was significant in reaching the correct conclusion.

The exact impact of a change is ascertained by trying an experiment that

conditionally incorporates a change into the model and tests the model on the data

base of cases.



1.13. Generation of Model Refinement Experiments

As was shown in Figure 1 -11 , SEEK indicated several rules that were

candidates for generalization. In general there are many possibilities that can be

tried for refining the rules in a model. A heuristic rule-based scheme is used to

suggest experiments. The IF part of the heuristic rule contains a conjunction of

predicate clauses that looks for certain features about the performance of rules in

the model while the THEN part of the heuristic rule contains a specific rule

refinement experiment An example of a heuristic rule was shown in Figure 1-13

and was used to suggest the specific generalization experiment to decrease the

number of major findings in a rule. Currently, there are about a dozen heuristic

rules which are divided almost equally with respect to the types of experiments (i.e.,

generalizations or specializations) that may be suggested

Evaluation of a heuristic rule begins by instantiating the clauses with the

required empirical information about a specific rule in the model. Function calls are

used to gather the informatioa After instantiation, the clauses are evaluated in

order, beginning with the first clause in the heuristic rule. If all clauses are

satisfied, then the specific experiment is posted. All heuristic rules are evaluated in

this manner for a specific rule in the model. The experiments suggested by the

heuristic rules are narrowed by the expert to those changes consistent with his

medical knowledge. In Figure 1-15, the experiments suggested for the rules used

in reaching the diagnosis of mixed connective tissue disease are presented after

listing the misdiagnosed mixed connective tissue disease cases.

The experiments are ordered based on maximum potential performance gain.

Other criteria for ordering can be used such as ease of change, such as an

experiment that suggests a change in the minors of a rule might be preferred over

an experiment to change the majors. An explanation of a particular experiment is

provided by a translation of the specific heuristic rule used to suggest the

experiment into a narrative statement containing the empirical information about the



24 cases in which the expert7s conclusion MCTD does not
match the model's conclusion:

1, 4, 11, 12, 14, 15, 42, 47, 49, 57, 60, 67,
71, 75, 78, 80, 84, 93, 99, 100, 104, 105, 107, 130,

Proposed Experiments for Mixed Connective Tissue Disease

1. Decrease the number of majors in rule 56.

2. Delete the requirement component in rule 55.

3. Delete the requirement component in rule 54.

4. Decrease the number of minors in rule 57.

5. Delete the requirement component in rule 58.

Figure 1-15: Example of Suggested Experiments for Rule Refinement

rule. In Figure 1-16, the support for the first experiment is given. It should be

emphasized that a decision as to which experiments are to be tried, if any, is left

to the model designer. Even though a particular experiment is supported empirically,

an experiment must be justified in terms of other knowledge about the domaia For

example, is a rule resulting from the first experiment for rule 56 medically sound to

make the diagnosis? The suggested experiments can lead the expert into

reconsidering the lists of major and minor findings for a particular final diagnosis

and to possibly change these findings.

If rule 56 had been satisfied, 8 currently misdiagnosed MCTD cases
would have been diagnosed correctly. Currently, rule 56 is not used
incorrectly in any of the cases with diagnoses other than MCTD. In
rule 56 the component missing with the greatest frequency is "Major".

Therefore, we suggest to Decrease the number of majors in rule 56.
This would generalize the rule so that it will be easier to satisfy.

Figure 1-16: Example of Support for an Experiment

One is not absolutely certain of a net gain in performance before an



experiment is tried In the case of a generalization experiment there may be more

than one unsatisfied component in a rule marked for generalization; the marking

procedure picks the first unsatisfied component in the rule.

1.14. Modifying the Model

After an experiment to revise the rules has been determined, the model

designer can test his proposed revision on the cases. This is facilitated by editing

capabilities which permit the model designer to interrogate and to modify the rules

in the model. The changes are logged separately from the rules in the model so

that the original rules can be restored The editing functions include changing:

• the number of major or minor observations,

• the requirement component

• the exclusion component

• any rule reaching an intermediate result which is used by other rules.

Continuing with our example, Figure 1-17 shows SEEK/s response to the

model designer's suggested change of rule 56. It recommends changing the

number of majors required by rule 56 to be 2. The commands that allow the

model designer to interrogate and to modify the rules require rule numbers or

symbolic labels to reference parts of the model.

Rule 56 is:

3 or more Majors for MCTD
—* Possible Mixed connective tissue disease

Generalization of Rule 56 is:

2 or more Majors for MCTD
—* Possible Mixed connective tissue disease

Figure 1-17: Example of Rule Modification



1.15. Reviewing the Impact of the Refinement Experiments

The results of a specific experiment are obtained by conditionally

incorporating the revised rule(s) into the model. The updated model is then executed

on the data base of cases. The results are summarized in Figure 1-18 for making

the change to rule 56. In this example, such a modification significantly improves

performance. Several misdiagnosed mixed connective tissue disease cases are now

correctly diagnosed by the model. Moreover, there was no adverse side effect of

this change on other cases with different stored conclusions. The model designer

has the option either to accept or to reject the experiment If a simple

modification does not lead to desirable results, more complicated changes may be

tried, such as multiple modifications or dropping a condition in a requirement

MCTD

Others
Total

Others

RA
SLE
PSS
PM

Before

9/ 33

80/ 88
89/121

42/ 42
12/ 18
22/ 23
4/ 5

(27%)

(91%)
(74%)

(100%)
(67%)
(96%)
(80%)

False
Posi tives

0

9
4
5
1

After

17/ 33

80/ 88
97/121

42/ 42
12/ 18
22/ 23
V 5

(52%)

(91%)
(80%)

(100%)
(67%)
(96%)
(80%)

raise
Posi tives

0

8
3
3
1

Figure 1-18: Summary of Before/After Performance

1.16. Discussion

The tabular model appears to be a reasonable framework for encoding expert

knowledge in a real and complex application. Excellent performance was achieved

for the diagnosis of connective tissue disease [Lindberg, et al 80]. This approach

has proven particularly valuable in assisting the expert in domains where two



diagnoses are difficult to distinguish. For example, there are no definitive clinical

criteria to confirm the diagnoses in the connective tissue disease area The experts

obtain by means of empirical testing a measure of the usefulness of the

observations expressed in the tabular model.

There are limitations to this approach—for some applications it may be

difficult to express rules using major and minor observations or using only 3 levels

of confidence. Although this model may not be the most expressive model for

capturing expert knowledge, it is a model which is suitable for an empirical analysis

leading to experimentation with rule refinement Most samples of cases are not

completely representative and cannot begin to match the scope of an expert7 s

knowledge. But as others have found [Gaschnig 79] even with small samples of

cases, empirical evidence can be of great value in designing and verifying an expert

model.

Ideally, a tabular model abstracts the expert's reasoning while the cases

provide evidence that the model is accurate. SEEK attempts to achieve this harmony

by pointing out potential problems with these dual sources of knowledge. Given the

performance of the cases, potential problems with the rules can be identified with

the tools described earlier. The summarized performance results are a means for

the expert to rethink a tabular model that is performing poorly for a specific

diagnosis. The analysis of the tabular rules based on case experience sharply

focuses the expert's attention on modifications that potentially result in improved

performance and are also medically sound This can lead to reviewing individual

cases for inaccuracies in the data and to reconsidering the importance of specific

criteria in the model. This process is not intended to custom-craft rules solely to

the cases, but rather to provide the expert with explicit performance information

that should prove helpful for interactive modification of the rules.

In developing expert systems, we recognize that an expert's knowledge
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cannot be directly learned from sample cases except in highly limited situations. In

the past case review has been used solely to verify the performance of an expert

model. If, however, we begin with both a set of expert modeled rules and

representative sample cases, we have the basis for a more valuable interactive tool

for rule refinement With systems that integrate performance analysis into a model

design framework, the expert will obtain a better formulation of the model and a

better understanding of the explicit diagnostic criteria that he uses in his reasoning.



CHAPTER 2

BACKGROUND

In this chapter, we review research on knowledge acquisition from the

perspective of building expert consultation programs. Specifically, we are

concerned about methods for building a rule-based consultation program for

classification-type problems. For a medical diagnosis application, such a program

may be described as containing:

1. a set of diagnostic conclusions that stand for the program '$ possible
answers,

2. a set of findings (i.e., observations or features) that stand for the
program 's questions and are relevant in reaching the conclusions,

3. a set of rules that relate the findings with the conclusions.

The operation of a program using a knowledge base of this kind first gathers

some data about a patient The questioning strategy can be as simple as reading a

patient record from a data base file with little else required of the user, or it may

be guided by the program's reasoning component to ask questions that are related

to previous responses. In either case, once enough data is gathered a control

strategy directs the consultation for the classification task and decides which

conclusions best match the case data Building such a program usually starts with a

specification of the diagnostic conclusions and the findings, and knowledge

acquisition consists of formulating the rules that relate the findings to the

conclusions. With this basic description of the classification program in mind,

section 2.1 reviews case-derived methods of knowledge acquisition and section 2.2

surveys expert-derived techniques in expert system development and evaluation.



2.1. Case-derived Methods

Reviewed below are techniques that use sample cases alone to derive

decision-making rules. Using a set of cases alone can be especially difficult for

realistic and large-scale medical diagnostic applications where the dimensionality is

large both in the numbers of findings and conclusions and there is much uncertainty

in the diagnostic reasoning. In these applications, a set of cases rarely covers the

range of possible ways of arriving at diagnostic conclusions which an expert

physician has experienced The expert physician can specify domain-specific

information in expert modeled rules that is lacking in the cases and cover many

more situations than in a set of cases.

2.1.1. Statistical and Pattern Recognition Approaches

The formulation of various classifiers as mathematical discriminant functions

have used statistical decision theory methods [Fukunaga 72] , [Duda and Hart 73] ;

and [Ledley 59] presented one of the early decriptions of these methods for

medical applications. When sufficient statistics are available, one can obtain very

good performance by discriminant functions that have been formulated using Bayes'

rule [Warner 64] . Although Bayesian methods can achieve optimal classification that

satisfies minimum average risk or error-rate criteria, problems of dimensionality and

mutual exclusivity of conclusions are important limitations in the application of these

methods. These and other shortcomings of the Bayesian methods are discussed in

[Szolovits and Pauker 78]. If reasonable statistics are available (i.e., from a data

base of patient records such as ARAMIS [Fries 72] , [Fries 76]) and even if

conditional independence is relaxed, a large set of observations impose

computational demands to obtain for combinations of observations the conditional

and prior probabilities required of these methods. Early pattern recognition

techniques [Nilsson 65] used the samples of cases directly to build classifiers of

discriminant functions. Here, the basic process is one of adjusting weights of

features in a linear discriminant function in response to the current classification



assigned to a training sample. For a subclass of problems, it is known that this

adjustment process converges if the training samples are linearly separable, or that

the probability distributions of the features are noncverlapping. Another pattern

recognition method—the nearest neighbor technique—is based on the acquisition of

a few prototypical samples, which are then used to classify new samples based on

various closeness measures.

In general, statistical pattern recognition methods work well for limited-sized

applications. Better methods are needed to reduce the dimensionality for realistic

large-scale problem areas. When the discriminators are put to use they are

generally "black-box" systems [Kulikowski 80], That is, the interaction is limited to

entering data, from which the conclusions are derived in a mathematical way that is

not readily understandable by the expert Because of this difficulty of explaining in

familiar terms how the classifier used the data in reaching its results, it is generally

recognized that these methods are unacceptable in applications such as medical

consultation tasks where human confidence in the results is essential CGorry 73] ,

[Shortliffe 763.

2.1.2. Artificial Intelligence Approaches

A central concern in the design of Al learning programs is the internal

representation for the rule to be learned Many Al learning schemes have appeared

in the literature over the past two decades (eg., [Samuel 63] , [Waterman 70] ,

[Michalski 73] , [Winston 75], [Buchanan and Mitchell 78] , [Weiss, et al 79a],)

and comparative reviews of learning systems and methods have appeared in [Smith,

et al 77] , [Dietterich and Michalski 79] , and [Mitchell 82]. While much work has

been done, very few have reached the point of being used in a real application

[Buchanan and Mitchell 78], and experimentation has usually been in problem areas

with relatively small dimensions and noise-free data

In this section, we review two learning schemes in relation to SEEK. SEEK/s



method for the analysis of the cases focuses on a subset of rules by gathering

empirical information suggesting the generalization and specialization of rules in the

set This can be viewed as a learning system which limits changes to refinements

of existing rules.

The terms generalization and specialization are used in the version space

approach [Mitchell 77] . Here, two sets of rules are maintained as bounds on the

maximally specialized rules and the maximally generalized rules that are

consistent with the training cases presented for a conclusion, where the range of

expressions is based on a partial ordering of objects in the domain. A training case

is prespecified as either positive - a rule must be found to cover the case, or

negative - no rule should match the case. The scheme seeks to cover all positive

cases while allowing no negative cases to match any of the rules. There are no

certainty values assigned to the rules in the version space. The version space

method converges on a rule set provided that the cases are noise-free and

accurately diagnosed, and that the language underlying the partial ordering is

sufficiently expressive to accurately describe the training cases. An important result

of this work is that the condition under which the language for the partial ordering

may need revision occurs when the version space collapses. In contrast the

scheme implemented in SEEK refines expert-derived rules that have been

categorized by confidence levels in the model Correct classification for all cases is

not required That is, a negative case is allowed to be covered so long as there is a

rule for another conclusion which overrides the matched rule(s). A rule is marked

for generalization or specialization based on the comparison of the certainty values

assigned to the conclusion of the expert and the conclusion reached by the model.

Finally, our scheme is interactive in nature requiring the involvement of the model

designer. It is not intended to be an autonomous learning system.

The EURISKO program [Lenat 82a] [Lenat 82b] is related to SEEK in that the

analysis of previous problem-solving experience forms the basis for finding an
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improved formulation of the rules. EURISKO abstracts or revises rules used in the

task of searching for concepts and relationships in a domain.

In EURISKO, rules and meta-rules for abstracting or revising the rules, are

represented by frames and organized into a hierarchy of frames. This is different

than the representation of the rules in AM [Lenat 77] where the rules were

associated with particular slots in domain concept frames. The idea of putting the

rules into frames is that it facilitates their change by using the same control strategy

applied to the domain concepts. In one application, naval fleet design, the

abstraction/revision process is based on an analysis of several simulated battles with

particular naval fleet configurations. He [Lenat 82a] reports that for the naval fleet

design task, a 60/40% breakdown in the attribution to the human vs. EURISKO for

abstracting relevant rules. For the navai application, hundreds of hours of CPU time

on a XEROX Dolphin were used From the description given, it is not clear how the

automatic abstraction/revision occurs, i.e., the assignment of credit and blame to

rules, and how this information is put to use in the process of changing the rules.

In the SEEK scheme, we have used a fixed-means of assigning a rule/s

credit or blame from the deterministic scoring function applied to each tabular

model. In case analysis, predictive information is derived and made available to

SEEK/s heuristic rules in the form of summarized statistics for the purpose of

suggesting rule refinements.

2.2. Expert System Evaluation and Development

In this section, we review techniques for the evaluation and development of

expert systems.



2,2.1. Evaluation

Various representational schemes and decision-making strategies have been

applied for expert system development However, there have been few published

results concerning the evaluation of expert systems. The evaluations of CASNET

[Lichter and Anderson, 1977 77 ] , MYCIN [Yu, et al 78 ] , and PROSPECTOR

[Gaschnig 79] [Gaschnig 80] have shown the systems to perform at a

comparable level of performance with experts in glaucoma, infectious diseases, and

geologic mineral deposit analysis, respectively.

The key point about these studies is that evaluation occurred at the end of

the development cycle of the respective knowledge bases. The CASNET,

PROSPECTOR, and MYCIN studies each reported performance results on a few

cases. Intermediate as well as final conclusions reached by the consultation program

were evaluated for each case. In contrast our work in the development of a

rheumatology model (section 1.6 reviews this project) has concentrated on the

analysis of a large set of cases. Because the scoring function of a model is a

direct assignment of weight from rules to conclusions, evaluation of intermediate

results can be directly traced from final conclusions. Evaluation and analysis in SEEK

are based on a comparison of the expert7s final conclusion with the model's final

conclusion.

As a result of PROSPECTOR'S evaluation, the process was deemed to be a

worthwhile part of the development cycle. Case review served a useful purpose in

revising the model, and it was concluded that it should be integrated into the model

development process.

In PROSPECTOR, production rules are used for representing judgmental

knowledge and semantic networks represent descriptive knowledge about the

domain. Reasoning is primarily based on subjective bayesian methods which assign

and propagate weights to hypotheses. PROSPECTOR'S knowledge acquisition and



editing program (KAS [Reboh 81]) assists the model designer in building and

modifying the networks. One of its valuable functions is to show the effect of the

propagation of weight changes on hypotheses during a consultation session on a

case. Because of the many uncertainty measures usually associated with the

geologic domain models in PROSPECTOR, sensitivity analysis techniques have been

developed to test the models stability. However, knowledge acquisition and

evaluation is carried out on only a small number of cases.

Another system that aided case review is the TEiRESlAS program [Davis 77 ] ,

initially developed as a knowledge acquisition assistant for MYCIN [Shortliffe 76] .

TEiRESlAS acquires knowledge directly from the human expert and gives him the

capability of seeing his ruies applied on a case. Within the context of a

consultation session, this method interactively guides the expert through the

knowledge base of rules and has been shown to help the expert find errors with

his rules and correct them directly for the consultation at hand The primary kind

of assistance is in the acquisition of new ruies to correct erroneous conclusions

reached in the consultation. In this case, a rule model (meta rule) which contains a

summarization of information about a rule's form and likely content is used to

check against a new rule proposed by the expert The rule model is automatically

generated from the existing set of rules in the knowledge base.

In TEiRESlAS, the process of interacting with the user follows the rules

according to MYCIN's goal-directed control strategy. Briefly, an AND/OR goal tree

of clauses (conclusions and premise clauses in rules) is constructed as a result of

invoking ruies in the backward direction. To determine if a goal is satisfied (e.g.,

whether to conclude a disease) ail applicable ruies for the goal are invoked After

all of these rules are evaluated and assigned weights, the original goal is evaluated

by applying a scoring function on ail rule weights contributing to the goal.

4

Traversal of this goal tree by TEiRESlAS facilitates the expert's understanding



of the consultation and reduces the burden of isolating rules, especially when

several rules contribute to reaching a conclusion. When changes are made to the

knowledge base to correct an erroneous conclusion in a consultation, there is no

direct check of these changes on other cases previously processed by the

consultation program.

2.2.2. Generalized Knowledge Engineering Tools

There has been much work in providing general frameworks for developing

expert systems, such as AGE [Nii and Aiello 79 ] , OPS CForgy and McDermott 77 ] ,

HEARSAY III [Baizer et al 80 ] , EXPERT [Weiss, et al 79b], and EMYC1N [Van Melle

79] . The latter two have been built specifically to facilitate the construction and

testing of classification-type expert systems. EXPERT and EMYCIN provide the

expert system builder with a prespecified control strategy, a production rule

formalism for encoding expert knowledge, explanatory tools for tracing the

execution of rules during a consultation session, and a data base system in which

cases can be stored for empirical testing We have based SEEK on EXPERT, and

will now review some of its key features.

EXPERT is a system designed to facilitate the construction and testing of

expert consultation models. Several representational formats for using production

rules are available. Knowledge is compiled in EXPERT, offering efficiency in

processing individual cases. Unlike most other expert system design frameworks, a

distinction is made in the EXPERT formalism between hypotheses and findings,

following the traditional characterization of classification problems. The

representational formalisms and control strategy have been chosen to make model

design a simple and easy process (especially for those unfamiliar with computers.)

Model design follows a few fixed requirements in the organization of an EXPERT

model. A model consists of three sections. The Hypotheses section describes the

conclusions to be reached by the model, which they can be organized according to

final diagnostic, final treatment, and intermediate conclusions. The Findings section



describes the questions to be asked of the user in the consultation session. The

Rules section describes rules for

1. controlling the questioning of the session,

2. logically relating findings directly to conclusions,

3. logically relating findings and (intermediate) conclusions to other
conclusions.

An example of the EXPERT model structure appears in Appendix B.

Confidence values are assigned to conclusions within the numeric range of -1 and 1

[Weiss, et al 79b], where -1 indicates complete denial, and 1 complete

confirmation. An event-driven control strategy is employed The scoring function

has been deliberately made modular where parts can be turned on or off to

accommodate various reasoning strategies depending on the model designer's

preference for the application at hand The scoring function is based on a direct

assignment of the largest absolute weight among competing rules of findings-to-

hypotheses, offering the model designer predictability in evaluating a model's results.

Additional weights can be included from taxonomies and other rules.

A data base system maintains cases for which logical queries can be made to

retrieve statistical information on groups of cases. An important component of the

EXPERT design system is an automatic case conversion module. It is used to assess

the effect of a modification to the model on all cases in the data base. Significant

changes in the weights of ail conclusions in all cases are noted by the case

conversion module.

In EMYCIN, a LISP-based production rule formalism is used for expressing

inferential knowledge, and a goal-directed control strategy is employed. An Algol-

like language is used to ease the model designer 's expression of rules. The

facilities for evaluating the knowledge base of an EMYCIN consultation program

include an explanation capability to trace through the goal-tree of rules during and
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after a consultation session. Changes to the knowledge base can be checked by

running previously correct cases in batch mode, where the user must specify

relevant intermediate and final conclusions for evaluation purposes to the batch

processor.

2.3. Summary

The expert system design frameworks have provided reasonable

representations to encode expert knowledge from various domains; EXPERT and

EMYC1N have been applied to several medical and non-medical application areas. In

some areas [Bennett and Engelmore 79] [Weiss, et al 81a], scoring functions that

combine rule weights have not been needed However, problems remain in

determining how to best use scoring functions in handling approximate reasoning

This has been particularly important in medical applications, and better methods are

needed to understand a model's behavior.

The KAS and TE1RESIAS programs provide great assistance in reducing the

burden of the expert in unraveling and understanding the effect of the scoring

function, but this is done after a knowledge base is substantially developed and on a

case-by-case basis. Schemes such as EXPERT give the model designer the choice

of specifying the amount of weighting to be incorporated in the reasoning process.

For medical applications this is important, in helping elicit decision-making knowledge

from the domain expert where he will ideality be able to write his rules with a solid

understanding of how they are going to be used by the program.
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Past experience with knowledge acquisition and evaluation methods in expert

systems can be summarized as follows:

1. automatic learning from samples of cases have been applied to areas
with relatively small dimensions, adequate statistics, or having relatively
noise-free and accurate case data;

2. revising or abstracting rules based on an analysis of previous problem
solving experience requires an effective means to credit and blame
rules;

3. evaluation techniques have been applied after a system's knowledge
base has been developed and primarily on a case-by-case basis;

4. while expert system developments have produced adequate
representations, difficulties in understanding a models behavior have
persisted; and adjustment of scoring functions have been left to the
designer with assistance of knowledge-base editing programs.

tn SEEK, the cases are used for testing an expert-derived model. Although

cases may have errors in their data, the use of SEEK assumes that the correct

diagnosis stored with each case is accurately presented A scoring function that

assigns weight from a single rule is uniformly applied to each diagnosis in the

tabular model. This facilitates a direct assignment of credit and blame to the rules

for predicting rule modifications. Finally, empirical testing is integrated into the

design stage of a model. SEEK uses performance results over all cases to propose

experiments about rule refinement for improving a models performance.

Experiments are tested directly for empirical verification of the content of the

knowledge base.
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CHAPTER 3

METHODS FOR GATHERING

RULE REFINEMENT STATISTICS

3.1. Introduction

Information must be gathered to recognize and assess the positive or

negative aspects in a rule's past performance, so that refinements that will improve

the model's performance can be found For instance, the TERSSIAS system [Davis

77] assists the expert in correcting a single misdiagnosed case by providing a

guided trace of the execution of the rules. An explanation about an erroneous

conclusion reached by the model is derived from the rules cited in the trace. With

this in mind, the goal of this chapter is to show how case analysis methods are

applied on the rules in a tabular model and for each misdiagnosed case in a data

base of test cases. These methods cite rules as reasons for incorrect conclusions

and use these reasons to suggest rule refinements. This chapter provides the basis

for describing heuristic rules that suggest experiments about rule refinement

Methods of case analysis are described to gather performance statistics about a

model's rules in order to evaluate the heuristic rules. The heuristics are described

in chapter 4.

As noted earlier analysis of a case is based on comparing the model's

confidence in both the expert's conclusion and the model's conclusion. A case is

misdiagnosed by the model if the expert's conclusion does not match the model's

conclusion. The expert's conclusion is stored with the case, while the model's

conclusion is taken as that conclusion reached with the greatest certainty. Implicit in

the analysis of a misdiagnosed case is the ability to answer two questions about the



• why wasn't the expert's conclusion reached with greatest certainty?

• why was the models conclusion reached?

Knowledge that is needed to answer these • questions is readily obtained because a

models confidence in each conclusion can be directly determined from the single

rule that was satisfied with the greatest certainty.

This chapter is divided into three main sections. Sections 3.2 and 3.3

describe case analysis methods which are applied to the rules in cases misdiagnosed

by the model. Section 3.2 describes the method of case analysis to generalize rules

for the expert7s conclusion. Section 3.3 describes the method of analysis to

specialize rules for the models incorrect conclusioa Section 3.4 summarizes the

statistics that are gathered by these case analysis methods.

3.Z Generalization: Rule Analysis for the Expert's Conclusion

For each misdiagnosed case, a trace is performed on the rules applicable in

reaching the expert's conclusion. We want to correct a misdiagnosed case by

changing rules for the expert's conclusioa Several rules are usually applicable for

generalization and each can be weakened in many ways. For instance, a condition in

a rule can be removed; numeric threshold values for the numbers of majors or

minors can be decreased; and a rule's confidence level can be increased without

changing the rule's conditions. These specific kinds of rule changes zre similar to

other generalization methods that appear in the literature; for comparative review of

generalization methods, [Dietterich and Michalski 79] have characterized various

kinds of generalization such as a Dropping Condition Rule.

We begin by looking for rules for the expert's conclusion which would

correct the misdiagnosed case by simply increasing their assigned confidence levels.

In order to do this, we identify satisfied rules pointing to the expert's conclusion

which were overridden by rules for other conclusions.



As an alternative to increasing a rule's confidence we could try changing the

conditions in a rule. in order to do this, we look for partially satisfied rules

which require as little modification as possible in order to be satisfied Next, we

must separate the partially satisfied rules which would correct the case from those

which would not To select a candidate rule for generalization, we analyze the

subset of partially satisfied rules which would correct the case. In summary, there

are four steps in the trace:

1. identify satisfied rules for the expert's conclusion

2. find partially satisfied rules

3. find possible rules to generalize

4. select a candidate rule to generalize

In Figure 3 - 1 , we show a trace of a misdiagnosed case. The summary of the

model's performance on case 14 includes a statement of the expert's conclusion

of mixed connective tissue disease. Rule 39 with an, assigned confidence of

possible is satisfied for mixed connective tissue disease. Rule 66 is responsible

for reaching the model's incorrect conclusion of probable rheumatoid arthritis.

CASE 14

Expert conclusion* Mixed connective tissue disease
Model conclusion: Probable Rheumatoid arthritis

This is the rule for the expert's conclusion:

Rule 89: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 1 for Possible MCTD (RS102) (Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

This is the rule for the model's conclusion:

Rule 66: 2 or more Majors for RA (MJRA) (2 Majors Satisfied)
2 or more Minors for RA (MNRA) (2 Minors Satisfied)
No Exclusion 1 for Probable RA (ER101) (Satisfied)
—> Probable Rheumatoid arthritis (RA)

Figure 3*1: Example of a Misdiagnosed Case

The first step in the trace is to determine whether there are any satisfied rules for

the expert's conclusion in the case. This is equivalent to checking if the expert's
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conclusion was reached by the model with a confidence greater than zero. This is

done to identify rules that couid be modified by changing the confidence for the

satisfied rule from its current ievei to some higher level (e.g., changing the ruler's

confidence from possible to probable.) In case 14, rule 89 is the single satisfied

rule for mixed connective tissue disease. If there are no satisfied rules, then ail

rules are traced looking for partially satisfied rules that consist of one or more

satisfied components (e.g., one or more Major findings, or a satisfied requirement).

For case 14, we traced the unsatisfied rules which directly conclude mixed

connective tissue disease, of which there are 6 in the model. These rules are

shown in Figure 3 -2 , referenced by their internal rule numbers (88 through 93).
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Rule 88: 1 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
3 or more Minors for MCTD (MNMCT) (1 Minors Satisfied)
Requirement 1 for Possible MCTD (RS102) (Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

Rule 89: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 1 for Possible MCTD (RS1Q2) (Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

Rule 90: 3 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

Rule 91: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
2 or more Minors for MCTD (MNMCT) (1 Minors Satisfied)
Requirement 1 for Probable MCTD (RR102) (Not Satisfied)
—> Probable Mixed connective tissue disease (MCTD)

Rule 92: 3 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 2 for Probable MCTD (RR202) (Not Satisfied)
—> Probable Mixed connective tissue disease (MCTD)

Rule 93: 4 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 1 for Definite MCTD (RD102) (Not Satisfied)
No Exclusion 1 for Definite MCTD (ED 102) (Not Satisfied)
- - > Definite Mixed connective tissue disease (MCTD)

Figure 3-2: Rules for Mixed Connective Tissue Disease
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To put the next two sections into perspective, our goal is to correct a

misdiagnosed case by refining the rules for the expert7s conclusion. We want to

select a candidate rule for generalization which currently is unsatisfied but, if it

were satisfied, would correct the case. This implies that the kind of refinement

we /re seeking is the removal of specific components in the candidate rule. The

purpose of these two sections is to describe the steps which lead to the selection

of a candidate rule for generalization. Finally, we state that the selection of a

candidate rule for generalization is a suggestion in correcting a misdiagnosed case

and is recorded as a statistic to support the refinement of this rule. The statistic is

gathered for each misdiagnosed case according to the methods described below.

Next we describe a method for tracing the rules for the expert7 s conclusion

in a misdiagnosed case As a result of a consultation session on a case, a rule can

be found to be satisfied (and its conclusion infered by the model), or a rule can be

found to be unsatisfied. Given a misdiagnosed case, our method of analysis is

focused on the unsatisfied rules for the expert's conclusion because we want to

identify rules which may need to be weakened in order to correct the case In our

example of case 14, we want to refine the rules for the conclusion of mixed

connective tissue disease Among the unsatisfied rules for the expert's conclusion,

we're particularly interested in partially satisfied rules. A partially satisfied rule is

one which consists of at least one component satisfied by the case data, while also

containing at least one component that is unsatisfied by the case data. Partially

satisfied rules provide empirical evidence that is summarized by a measure reflecting

a rule's percentage of total satisfaction. The measure is used to determine

candidate rules for generalization, and the tracing procedure described below is used

to derive it

Each of the unsatisfied rules for the expert's conclusion is traced to

determine the rule's percentage of total satisfaction by the case data This is done

by maintaining two counts:
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• the number of satisfied components;

• the number of components needed for satisfaction.

Before describing this counting procedure, we must specify the structure of the

rules that it is applied to. Each rule in the model consists of a conjunction of one

or more components, where a component is identified as one of the following

types:

• Finding - the component expresses either an observation which is
asked directly of the user during the questioning stage of a
consultation session, or it expresses numbers of majors or numbers
of minors;

• Intermediate - the component expresses a conclusion that has rules
concluding it;

• Disjunction - the component expresses a list of findings or
intermediate components, a certain number of which is needed for
satisfactioa

An example of a rule containing these types of components is shown in Figure 3*3.

At the top level rule 83 consists of a conjunction of three components which are

taken from tine tabular model format of numbers of majors, minors, and a

requirement These components are detailed in the graphical representation of the

rule, where its hierarchical organization in a tabular model is illustrated. Note that

the requirement component labeled RSI02 is expanded in the tree to illustrate the

specific components which were used in reaching RS102.

The components of type finding are labeled: 1 major, 3 minors, RNP,

ENANP, and ENANH There is one component of type intermediate, labeled RS102;

and the component labeled ENAM is a disjunction.
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Rule 88: 1 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
3 or more Minors for MCTD (MNMCT) (1 Minors Satisfied)
Requirement 1 for Possible MCTD (RS102) (Satisfied)
— > Possible Mixed connective tissue disease (MCTD)

Rule 88 (4 satisfied/6 needed = 67% satisfied)

AND

1 major 3 minors RS102
(1/1) (1/3) (2/2)

t
AND

RNP
(1/1)

ENAM
(1/1)

t
OR

ENANP
(1/1)

ENANH
(0/1)

Figure 3-3: Trace of a Partially Satisfied Rule

The counting procedure is organized into 3 steps according to the type of

component encountered in a rule. A discussion of each step including an example

for each one follows the procedure. For each rule, the procedure scans the rule

left to right and examines each component according to these steps:



1 Finding component

a If the current component expresses a single finding value:

i. the count of the number needed for satisfaction is
one;

ii. the count of the number satisfied is one if the finding
value is satisfied in the case, and zero otherwise.

b. If the current component expresses numbers of majors or
numbers of minors:

i. the count of the number of majors or minors that are
needed for satisfaction is taken directly from the
clause (e.g rule 83 needs at least 1 Major for MCTD);

ii.- the count of the number of majors or minors that are
satisfied is determined as the minimum of the number
that are needed and the number that actually were
found in the case (e.g., 1 Major for MCTD is satisfied
in rule 38 although 2 Majors appeared in case 14).

2. intermediate component

a If the current component is an intermediate conclusion, then
apply the rule trace procedure on the rules that reach this
intermediate conclusion;

b. Select a rule with minimal difference between the number
satisfied and the number needed.

i. increment the count of the number needed for rule
satisfaction by the result obtained from tracing the
rules for the intermediate conclusion;

ii. increment the count of the number satisfied for this
rule by the result obtained from tracing the rules for
the intermediate conclusion.

3. Disjunctive component

a If the current component expresses a disjunction of K
components that are needed for satisfaction from N choices
(eg., 2 components of these 3 choices are needed: a, b, or
c), then apply the rule trace procedure on each of the N
choices; the results are N separate pairs of values
needed/satisfied.

b. Select the K maximally satisfied components and sum up the
respective needed and satisfied values;

i. increment the count of the number needed for the
rule containing the disjunctidn by the result obtained
above for tracing the components in the N choice, K
needed disjunction;



ii. increment the count of the number satisfied for the
rule containing the disjunction by the result obtained
above for tracing the ciauses in the N choice, K
needed disjunction.

The three steps in this counting procedure can be explained as follows. A

component of type finding usually is asked of the user during a consultation

session. It represents the most primitive piece of information about the case data

in a model. A finding is an observation, which in the medical domains typically

refers to items such as "fever greater than 38 degrees C" or a laboratory result

such as "positive antibody to RNP". A valid response for a finding is yes, no,

unknown, or a numerical result Whether a response for a finding is pertinent in

reaching a conclusion is determined by its use in the rules. To determine a

finding's satisfaction in a rule, a truth value is associated with the finding in the

rule. If the response to a finding satisfies the truth value condition specified in a

rule, then the finding is satisfied; otherwise it is unsatisfied Because of this simple

two-state outcome, the finding value in the step (1a.) is either one or zero. In our

example in Figure 3-3, the value for the number needed for satisfaction by each of

the findings RNP, ENANP and ENANH is one, while the value for the number

satisfied is taken from the case data as 1, 1, and 0, respectively, in a similar way,

we treat each major or minor satisfied as a finding and the sum of these values is

compared with the number of majors or minors needed for satisfaction by the rule.

This follows from step (1b,).

The intermediate component is labeled RS102 in our example in Figure 3-3.

By definition this component has rules which conclude it and therefore, these rules

must be traced to obtain a percentage of total satisfaction for the component A

rule which concludes RS102 and which is selected in step (2b.) is shown in the

figure. According to step {2b.}, this rule has a minimal difference between the

number needed and the number satisfied. This rule is satisfied by the data since

the finding RNP is satisfied and the disjunctive component labeled ENAM is



satisfied How the disjunction is scored is determined by step (3.}. Only one

component of 2 is needed to satisfy ENAM. In summary, the trace of a rule is

governed by the 3 types of components which can appear in a rule. Depending on

the type of component encountered, either finding, intermediate, or disjunctive, a

distinct scoring scheme is applied The results are summed to arrive at a measure

about the rule/s percentage of satisfaction. This measure is used to determine a

candidate rule to generalize by selecting a rule with maximum percentage of

satisfaction.

3.2.2. Finding Rules to Generalize

The result of the rule trace procedure is a percentage of total satisfaction

for each rule. Figure 3 - 3 illustrates the trace procedure for one of the rules (rule

33) that concludes mixed connective tissue disease In Figure 3 -3 , the components

labeled: 1 major, 3 minors, RNP, ENANP, and ENANH are identified as type finding;

the component labeled RS102 is an intermediate component; and, the component

labeled ENAM is a disjunction. Thus, in this case, the percentage of satisfaction

for rule 88 is 67%.

A summary of the trace of partially satisfied rules is shown below in Figure

3 - 4 where the rules for mixed connective tissue disease are organized by

confidence level. Five of the 6 rules for mixed connective tissue disease are

partially satisfied in case 14. For each partially satisfied rule found its confidence

is compared with the confidence assigned to the model's conclusion. if the

confidence for a partially satisfied rule overrides that for the model's conclusion,

the partially satisfied rule is added to a list of possible rules to generalize. This

list indicates that each of the rules would correct the case if it were satisfied We

want to select one of the rules as a candidate for generalization. Rules 9 1 , 92 and

93 are added to the list of possible rules to generalize, because each of these

partially satisfied rules would correct case 14 if it were satisfied (Recall we had

assumed that ties in confidence between the expert's conclusion and the model's



different conclusion are acceptable. Therefore, rules 91 and 92 with an assi<

confidence of probable would override the model's incorrect conclusion

probable rheumatoid arthritis in case 14.)

Confidence

Ruie number

Percentage
of ruie satisfied

Definite

93

57%

Probable

92

60%

91

71%

Possible

90 89

67% 100%

88

67%

Figure 3-4: Performance of a Subset of Rules on a Case

3.2.3. Selecting a Candidate Rule to Generalize

The previous two sections described how a measure about rule perform,

is obtained from a trace of each of the partially satisfied rules for the expe

conclusion. This is part of the case analysis process which is intended to deri

suggestion in the form of a statistic about the generalization of a rule. This sec

can be viewed as the concluding step in the case analysis. We want to sele

candidate rule to generalize based on the performance of the partially satisfied r

A heuristic procedure shown in Figure 3-5 is applied to the list of pos

generalizable rules in order to be actually generalized

1. the ruie concludes at a confidence level which least exceeds that for
the model's incorrect conclusion;

2. the ruie contains the maximum number of satisfied components for all
rules concluding at that level.

Figure 3-5: Closeness Measure for Selecting a Rule to Generalize

Rule 91 is selected in case 14 because it concludes at a minimum confid*

level (probable) needed to correct the case while being the most satisfied rule (

satisfied, from Figure 3-4) among ail rules concluding at that confidence I



Finally, the rule is displayed with information supporting its generalization. This

information includes the identification number of the case, the models incorrect

conclusion, and the first unsatisfied component found in the candidate rule. This is

shown in Figure 3-6 for case 14.

There exists 1 partially satisfied rule for MCTD with weight
assignment >= than that set by RA rule

Rule 91: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
2 or more Minors for MCTD (MNMCT) (1 Minors Satisfied)
Requirement 1 for Probable MCTD (RR102) (Not Satisfied)
—> Probable Mixed connective tissue disease (MCTD)

Information supporting generalization of rule 91:

Case Model's conclusion Unsatisfied component in rule 91
14 RA MNMCT

Figure 3*6: Generalization of Rule 91 for Case 14

Rule 91 is a partially satisfied rule for the expert's conclusion which, if

satisfied, will override the incorrect diagnosis of rheumatoid arthritis reached by rule

66 in case 14. Further, the minors component in rule 91 is the first unsatisfied

component found that is identified to be weakened Note that the requirement

component in rule 91 also is unsatisfied for case 14. In this case, weakening the

minors component (e.g. dropping the number of minors required to "1 or more

minors for MCTD") is a necessary, although not a sufficient modification of rule 91

to correct case 14.

3.2.4. Summary: Rule Analysis for the Expert's Conclusion

We started with a misdiagnosed case and knowledge about why the expert's

conclusion was not reached with greatest certainty. A tracing procedure is applied

to the rules for the expert's conclusion in order to identify a candidate rule to

generalize. The strongest satisfied rule for the expert's conclusion is identified so

that its assigned confidence might be increased to override the model's incorrect

conclusion. The rules that were not satisfied in the case with confidence exceeding



that for the models* incorrect conclusion are searched, looking for partially satisfied

rules, which are then added to a list of possible rules to generalize. After tracing

the ruies, a heuristic procedure finds a candidate rule for generalization by selecting

one partially satisfied rule from those on the list of possible rules to generalize,

auch that it is the closest to being satisfied. As a result a candidate rule for

generalization is identified by marking it with information supporting its generalization.

In summary, the answers to two subquestions were sought

1. Were there any satisfied rules for the expert's conclusion? If there
were, then the misdiagnosed case might be corrected by increasing
the confidence levels on these satisfied rules.1

2. Were there any partially satisfied rules that would correctly diagnose
the case if they were satisfied? If there were, then the misdiagnosed
case might be corrected by removing unsatisfied components from
the left-hand side of these rules.

results of
finding a rule
to generalize

no partially
satisfied rules
for the expert's
conclusion with
confidence
exceeding that
for the model's
conclusion

partially
satisfied rules
for the expert's
conclusion with
confidence
exceeding that
for the model's
conclusion

Figure 3-7: Determining a Rule to Generalize for the Experts Conclusion

1 While this is a simple change, it is a potentially drastic one for the expert. The
point is that the expert writes his rules with specific levels of confidence in mind.
Because of this, changing a rule's confidence would mean that the whole rule is in
error and not just a specific component in the rule. Even if a rule is moved from
one confidence level to another, the expert's belief in the importance of criteria in
the rule is changed relative to other rules. This is discussed more fully in Chapter
4 on specifying the conditions to suggest changing a rule's confidence.



3.2.5. Discussion

Rule analysis for the expert's conclusion does not guarantee that a candidate

ruie for generalization will be found for every misdiagnosed case. There may be no

rules available for the expert7 s conclusion that could otherwise override the

models incorrect conciusioa Alternatively, there may be rules available for the

expert's conclusion in the model, but no partially satisfied rules that would correct

a case if they were satisfied In the situation where ties in confidence between the

expert's conclusion and the model's different conclusion have been predetermined

to be incorrect there could never be a guarantee of finding a candidate rule for

generalization in every misdiagnosed case. This is easily seen by considering a case

in which the model's incorrect conclusion is reached at the definite confidence

level. Using the tabular model, with its organization based on the three confidence

levels, it will be impossible to find a rule to possibly generalize in this case. On the

other hand the chances that a candidate ruie for generalization would be found in

each misdiagnosed case might be improved when ties are predetermined to be

correct But the problem in this situation arises when no partially satisfied rules are

found for the expert's conciusioa

Even though it is possible that our method of analysis might not select

candidate rules to generalize for some misdiagnosed cases, these cases can be used

as evidence to specialize rules for the conclusions which were reached incorrectly.

This leads to an analysis of the rules for the model's incorrect conclusion that is

described below in section 3.3. Finally, we note that misdiagnosed cases which do

not lead to finding a candidate rule for generalization can be identified for potential

changes to the case data. Such a misdiagnosed case can be reviewed to ensure

that data including the stored expert's conclusion were entered correctly. In fact

cases for which the stored expert's conclusion was found to be incorrect actually

occurred during the development of a model in rheumatology. A display of the

performance of the rules for both the expert's conclusion and model's conclusion

facilitates this case review.
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3.3. Specialization: Rule Analysis for the Model's Incorrect Conclusion

in section 3.2, we described the case analysis method that led to gathering

suggestions about candidate rules to generalize, tn this section, we describe the

methods to determine candidate rules to specialize. We need to collect statistics

about rules which were inappropriately satisfied in a misdiagnosed case. Procedures

are first applied to determine those rules responsible for reaching incorrect

conclusions in the case, and second, to derive a measure of closeness in correcting

the case if these rules were forced to not be satisfied

By definition, a case is misdiagnosed by the model when the model's

(strongest) conclusion does not match the expert's conclusion stored with the case.

The problem with determining specialization experiments is two-fold how to

determine which rules should be candidate rules to specialize; and, how to determine

a specific change (e.g., adding a component which strengthens a rule's conditions)

after a candidate rule to specialize has been identified

3.3.1. Choosing Candidate Rules to Specialize

To determine candidate rules to specialize, we must identify all conclusions

reached by the model which override the model's confidence in the expert's

conclusion The problem is that a single rule change is often not enough to correct

the case. It is not uncommon to find multiple problems with the rules because

more than one conclusion was reached with confidence exceeding that for the

expert's conclusion. Because of this we separate these conclusions into two

classes that correspond to two classes of specialization: primary and secondary

specialization Primary specialization corresponds only to the model's incorrect

conclusion reached with greatest certainty among all conclusions. The class called

secondary specialization contains all other incorrect conclusions. Rules that reach

the conclusions in these two classes are analyzed to obtain statistics about their

performance in the case.
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As an example, case 14 is a misaiagnosed case that was used to describe

the case analysis method for generalizing rules in section 3.2 (see Figure 3-1). In

case 14, the model's confidence in the experts conclusion of mixed connective

tissue disease is possible, which is overridden by the model's conclusion of

probable rheumatoid arthritis. Rule 66 is responsible for this incorrect conclusion

and is shown in Figure 3-8. No other conclusions were reached by the model in

this case. Thus the class of primary specialization contains the conclusion of

rheumatoid arthritis, and the class of secondary specialization js empty for case 14.

Rule 66: 2 or more Majors for RA (MJRA) (2 Majors Satisfied)
2 or more Minors for RA (MNRA) {2 Minors Satisfied)
No Exclusion 1 for Probable RA (ER101) (Satisfied)
—> Probable Rheumatoid arthritis (RA)

Figure 3*8: Rule Responsible for Reaching an Incorrect Conclusion

We would like to determine the effect on the performance of case 14 by

specializing rule 66, which is responsible for the models incorrect conclusion of

probable rheumatoid arthritis. If we force rule 66 to be not satisfied (and

regardless of what is done to specialize it), then how dose is the case to being

correctly diagnosed?

To get an answer, we need to know the number of incorrect conclusions

reached by the model and the number of rules satisfied for each of these

conclusions. The primary and secondary classes of specialization are the sources

from which this information is obtained. The rules that reach the conclusions in

these two classes are traced to determine the number of rules which were

satisfied and they override the model's confidence in the expert's conclusion (i.e.,

those rules that conclude the model's conclusion noted by primary specialization,

and those rules which were satisfied but not directly responsible for the model's

incorrect conclusion, in the class of secondary specialization.)



For our example, rules that conclude rheumatoid arthritis are traced to

determine the number of rules satisfied in case 14. There is only one rule (rule 66)

for rheumatoid arthritis, and it is identified for primary specialization. If conclusions

other than rheumatoid arthritis were reached in the case with confidence exceeding

the possible level (for mixed connective tissue disease), then the rules that reach

these conclusions would be identified for secondary specialization. The summary of

this rule analysis is shown in Figure 3-9.

Conclusion Number of satisfied rules

Primary rheumatoid 1 (rule 66)
arthritis

Secondary none 0

Figure 3*9: Candidate Rules for Specialization in Case 14

From the results shown in Figure 3 -9 , we can determine how dose the

model would be to reaching the expert7s conclusion in case 14 if the rule for the

model's conclusion (rule 66) is not satisfied An interpretation of how dose to

correcting the case is associated with rule 66 that is based on the number of

conclusions reached with confidence exceeding that for the expert's conclusion and

the number of satisfied rules for the model's conclusioa This is shown in the

table in Figure 3-10. This closeness measure which is assigned to a rule is not a

specific value such as the percentage of total satisfaction (see section 3.2) used in

determining a candidate rule to generalize, but rather it is a fixed interpretation

selected from the choices available.

How close to correct? Number of incorrect Number of rules
conclusions reached for model's conclusion

a) "will correct now'1 1 conclusion 1 rule
b) "will be closer now" 1 conclusion >1 rule
c} "will not correct now" >1 conclusion >1 rule

Figure 3-10: Closeness Measures for Specialization

There are three closeness measures for specialization that are associated with



the ruies, which reach the conclusions in the classes of primary and secondary

specialization. This is done in the following way. For primary specialization, the

single rule responsible for the models conclusion gets closeness measure (a) or (b),

shown in Figure 3-10. We assign measure (a) or {b> to this rule because it is the

strongest satisfied rule and forcing this rule to be not satisfied would, at ail times,

improve the chances of correcting the case. Whether or not the case would be

corrected is determined from the number of conclusions reached and the number of

rules satisfied for each conclusion. In our example, rule 66 gets measure (a)

because it is the only rule for the model's conclusion, and there are no rules for

other conclusions that override the model's certainty in the expert's conclusioa If

there is more than one satisfied rule for the model's conclusion (in the class of

primary specialization) then these rules get closeness measure (b) or (c), shown in

Figure 3-10. This is done because these rules were satisfied in a misdtagnosed

case although they were not directly responsible for the incorrect diagnosis.

For secondary specialization, those rules found to be satisfied for conclusions

other than the model's conclusion get closeness measure (c) because these ruies

reach conclusions in secondary specialization that were overridden by other

conclusions (in particular, the model's conclusion). Forcing these rules to be not

satisfied would still require specialization changes to other rules. After associating

the closeness measures to the rules for primary and secondary specialization,

information supporting the specialization of the rule is recorded with each rule. This

includes the identification number of the case and the expert's conclusion for the

case.

3.3*2. Determining a Component to Specialize

The second problem is to determine a specific component to be modified

after a rule is identified for specialization. The statistics about primary and

secondary specialization are not enough to determine a specific experiment For

instance, information about which component to add to a rule is not readily obtained



for a specialization experiment as it is for generalization (to determine a component

to remove from a rule). Case analysis of a candidate ruie for specialization reveals

only that the ruie was satisfied There is no clue as to how the rule should be

modified so that it will not be satisfied. Knowledge of the types of components

(e.g., majors, minors, requirements) that can appear in a rule can help in focusing on

a component to specialize. A preference in changing one component over another

that is based on an intuitive understanding of the components in a tabular model can

identify a specific component in the ruie to specialize. Frequency data about a

component on the entire data base of cases is another source of information that

helps in determining a component to add to a rule. These frequency data and the

preference ordering are used by the heuristic rules for suggesting specialization

experiments and are described in Chapter 4.

3.3.3. Summary: Rule Analysis for the Models Incorrect Conclusion

Each misdiagnosed case is analyzed to determine candidate rules to specialize.

This involves counting the number of conclusions reached by the model and the

number of rules satisfied for each of these conclusions. The results of this analysis

indicate a rule/s class of specialization (La, primary or secondary), and an

interpretation of closeness to correcting a case is associated with the ruie for the

model's incorrect conclusioa Figure 3-11 describes the information used in this

analysis.

It should be noted that during an execution of a case by EXPEflT, the tabular

model for each diagnostic conclusion is evaluated in the order of entry as specified

by the model designer within the SEEK editor. This allows the model designer to

know in advance how to order tabular models which may depend on results

obtained from the evaluation of other tabular models. For example, a table for one

diagnostic conclusion may have a major component, which itself is a tabular model

and, therefore, should be evaluated prior to any references made to it Also, the

rules for each diagnostic conclusion are evaluated in the order of increasing
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1. how many conclusions were -reached?

2. for each conclusion reached and beginning with the "models
conclusion"

a how many rules were satisfied?

b. if there was more than one satisfied rule, then how many of
these rules had confidence which blocked the models
confidence in the expert's conclusion?

only 1

conclusions exceeding
the expert/s conclusion

more than 1

results of finding
rules to specialize

no satisfied rules
with confidence
exceeding that
for the expert's
conclusion but
less than the
strongest rule
for the model's
conclusion

>0 satisfied rules
with confidence
exceeding that
for the expert's
conclusion but
less than the
strongest rule
for the model's
conclusion

Figure 3-11: Determining Rules to Specialize for the Model's Conclusion

confidence levels and as specified by their order of entry into a particular

confidence level. In the case of multiple rules that are satisfied for the same

conclusion and at the same confidence level, the satisfied rule with highest order of

entry is identified as responsible for reaching the conclusion. This holds for each

table evaluated by EXPERT, thus providing a uniform analysis of the rules within

each table.



3.4. Discussion and Performance Statistics

In sections 3.2 and 3.3, we described and illustrated the methods of case

analysis for collecting information to determine the generalization and specialization

of rules on each misdiagnosed case. The suggestions consisting of candidate ruies

to generalize and to specialize are compiled in the form of statistics over ail

misdiagnosed cases in the data base. Thus the result for a rule may consist of

several cases, some of which explicitly support the generalization of the rule, and

others which support the specialization of the rule. How this empirical evidence is

put to use is a critical decision in the process of generating rule refinement

experiments. For any rule which has evidence supporting its refinement we want to

suggest an experiment that will potentially repair as many of the misdiagnosed cases

supporting the rule's modification Because of this, the evidence supporting the

generalization and specialization of the rule are summarized to easily identify a

direction to pursue, either to generalize or to specialize the rule. These summarized

suggestions are described below.

Note that this discussion has dealt with the statistics derived from an analysis

of misdiagnosed cases. There is one procedure performed on correctly diagnosed

cases. The rule for the expert /s conclusion that is responsible for correctly

diagnosing a case is marked as being used successfully in the case Further, this

rule is marked as being significant when the following condition holds: if the rule

for the expert7 s conclusion was not satisfied, then the case would be misdiagnosed

The statistics listed below about the performance of alt of the rules in a

model are used to suggest advise about rule refinement The statistics with numeric

labels 1, 2, 3, and 8 in this list, are exact statistics about the performance of a rule.

They indicate current performance of the rule The statistics with labels 4 through

7 are inexact statistics in that heuristic procedures were applied to predict the kind

of changes (i.e., generalization or specialization) for the rules. *



1 The number of cases in which the rule was used successfully. In
each of these cases, this means the rule was used to reach the
expert7s correct conclusion. It had the greatest certainty among ail
conclusions reached by the model.

2. The number of cases in which the rule was used incorrectly. In each
of these cases, the rule was responsible for the models incorrect
conclusion.

3. The number of cases in which the rule was significant for making the
correct diagnosis. In each of these cases, if the rule was not
satisfied, then the case would be incorrectly diagnosed by the model.
The actual numeric value for this statistic is always less than or equal
to the numeric value for the first statistic above, #1.

4. The number of cases suggesting the generalization of the rule. In
each of these cases, if the rule had been satisfied, then the case
would be correctly diagnosed by the model.

5. The number of cases suggesting the specialization of the rule with the
effect of correctly diagnosing each of these cases if the rule is not
satisfied

6. The number of cases suggesting the specialization of the rule with the
effect of moving closer to correctly diagnosing each of these cases
if the rule is not satisfied

7. The number of cases suggesting the secondary specialization of the
rule with the effect of not directly correcting each of these cases if
the rule is not satisfied The rule was not responsible for the
incorrect diagnosis but was satisfied with confidence that was greater
than (or equal to) that for the expert's conclusion.

8. The number of cases for which no candidate rule for generalization
was found, and this rule was satisfied for the expert's conclusioa In
each of these cases, the confidence for the expert's conclusion was
greater than zero, but no rules were found to be generalized

We focus on four of these statistics in order to get a better understanding

of the potential effects of either generalizing or specializing a rule in the model.

The second statistic through the fifth statistic are labeled respectively as G(LOSS),

S(LOSS), G(GAIN), and S(GAIN) where G indicates generalization and S indicates

specialization. A tradeoff in terms of the performance on the cases as a result of

either the generalization or specialization of a rule is shown beiow. The row for

generalization in the table says that the potential gain is G(GAIN) cases while the loss

will be at least G(LOSS) cases (i.e., those cases already misdiagnosed by the rule and



possibly more cases depending on the specific refinement of the rule). The actual

effect is determined by trying an experiment that incorporates a specific refinement

of the rule.

Class of Change Gain Loss

Generalization G(GAIN) (at most) G(LOSS) (at least)
{if satisfied)

Specialization S(GAIN) (at least) S(LOSS) (at most)
(if not satisfied)

Figure 3-12: Effect in Case Performance by Changing a Rule

The four statistics iabeied G(GAIN), G(LOSS), S(GAIN), and S(LOSS) provide a

basis for determining the type of change (i.e., generalization, specialization) that may

be done to a rule. For instance, if the number of cases suggesting the

generalization of a rule is greater than the number of cases suggesting the (primary)

specialization of the rule then one should consider refinements which generalize the

rule. Missing from these summarizing statistics is knowledge of what to change in a

rule beyond the classification of generalization or specialization. To assist in this

process, functions are available to determine if certain components exist in a rule,

and to find specific information which supports the generalization or specialization

of rules For instance, there is a function for selecting the most frequently

unsatisfied component in the cases supporting the generalization of a rule. This

leads to a discussion of the heuristics for suggesting experiments.



CHAPTER 4

GENERATION OF RULE REFINEMENT EXPERIMENTS

4.1. Introduction

The previous chapter discussed how performance statistics are gathered

about the rules in a tabular model. A trace of the rules in a case was analyzed to

determine two types of statistics We gave statistics indicating a rule's exact or

raw performance, for example, the number of cases in which the rule was satisfied

A second type of statistic was used to predict a modification of the rule. For

instance, when the model incorrectly diagnoses a case, two case analysis methods

are applied on fr»e model's rules to determine candidate rules to generalize and to

specialize, respectively. All of the statistics about a rule's performance are

accessed by functions which instantiate heuristic rules prior to evaluation

in this chapter, we describe the heuristics incorporated in SEEK. Examples

are given that demonstrate how the performance statistics are put to use in

suggesting rule refinement experiments. Figure 4 - 1 shows the kinds of experiments

that may be suggested. These experiments are organized according to the class of

refinement (i.e., generalization or specialization) and the item to change (eg., number

of majors, requirement) The heuristics described in this chapter were found useful

in our experiences in developing expert models. The conditions specified in the

heuristic rules are not to be construed as complete or unchangabie. They can be

augmented or changed.
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item to change Generalization Specialization

Confidence level increase decrease

Number of majors decrease increase

Number of minors decrease increase

Requirement weaken strengthen

Exclusion strengthen weaken

Figure 4*1: Classification of Experiments

4.2. Changing Confidence Levels in a Rule

This is an easy experiment to try. It simply means that a rule's confidence is

to be changed from its current level to some other leveL For instance, hypothetical

rules R1 and R2 are shown where rule R2 is the result of decreasing the

confidence for rule R1 from probable to possible.

Rl: R2:

M majors M majors
N minors N minors
Requirement Requirement
No Exclusion No Exclusion
—> Probable conclusion —> Possible conclusion

In contrast to the reasoning that is potentially involved in determining changes

to a rule's conditions (e.g,, increasing the number of majors or strengthening the

requirement in the rule), changing a rule's confidence is a straight-forward

modification. We will describe two heuristics which suggest the experiments to

decrease and to increase a rule's confidence, respectively. The conditions which

must be satisfied to suggest these experiments are discussed, and examples are

given



4,2.1. Decreasing a Rule's Confidence

Consider case 14 which was used to illustrate the case analysis methods in

Chapter 3. in Figure 4 -2 , the model assigned the confidence of possible to the

expert7 s conclusion of mixed connective tissue disease, and rule 89 was

responsible for reaching this conclusion. The models incorrect conclusion was

rheumatoid arthritis with an assigned confidence of probable. In this case, rule 66

was responsible for concluding incorrectly rheumatoid arthritis, and no other

conclusions were reached by the model.

CASE 14

Expert conclusion: Mixed connective tissue disease
Mode! conclusion: Probable Rheumatoid arthritis

This is the rule for the expert's conclusion:

Rule 89: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 1 for Possible MCTD (RS102) (Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

This is the rule for the models conclusion:

Rule 66: 2 or more Majors for RA (MJRA) (2 Majors Satisfied)
2 or more Minors for RA (MNRA) (2 Minors Satisfied)
No Exclusion 1 for Probable RA (ER101) (Satisfied)
—> Probable Rheumatoid arthritis (RA)

Figure 4-2: Example of a Misdiagnosed Case

The recognition of a particular rule which is responsible for reaching an

incorrect conclusion is required to consider an experiment of decreasing a rule's

confidence. The impact of rule 66 could be reduced by decreasing its assigned

confidence (for example, from probable to possible). Rule 66 would still be

satisfied in case 14.

So what is accomplished by this experiment? It would be easier to find rules

for the expert's conclusion if we first decrease the confidence of rule 66. A

single refinement of decreasing the confidence level for rule 66 is sufficient to



correct case 14 for two reasons. First, there were no incorrect conclusions other

than rheumatoid arthritis reached in case 14. if there were, then the rules

responsible for reaching these conclusions might be modified like rule 66. And

secondly, there was a satisfied rule (rule 89) for the expert7 s conclusion of mixed

connective tissue disease.

The impact of this rule 89 would not be interfered by rule 66 as it currently

exists. In general this experiment may be viewed as a first step in solving a

problem that could for example, require subsequent generalizations of other rules.

In some cases such as case 14, it may actually produce the correct conclusions.

But in those cases in which this experiment does not correct the case directly,

partially satisfied rules for the experts conclusion that previously were not

considered for generalization are made available after the confidence is dropped for

the rule responsible for the incorrect conclusion in these cases, in other words, it

enhances the potential of finding a candidate rule to generalize which contains less

stringent conditions for mixed connective tissue disease The confidence of the

model's conclusion is compared with a rule's confidence to determine which rules

are to be considered for possible generalizations As an example, those rules for

mixed connective tissue disease with confidence stronger than possible are included

in the subsequent analysis that attempts to find a candidate rule for generalizatioa

This is summarized in Figure 4 - 3 for case 14.

Before experiment After experiment

Model's confidence in
the Expert's conclusion: possible MCTD possible MCTD
Model's conclusion: probable RA possible RA

Range of MCTD rules
for generalization: probable rules: 9 1 , 92 possible rules: 88, 89, 90

definite rules: 93 probable rules: 9 1 , 92
definite rules: 93

Figure 4-3: Effect of Decreasing Confidence for Rule 66 in Case 14

When should the experiment to decrease a rule's confidence be suggested?



!r. case 14, this experiment directly corrects the case. We couid impose a

restriction that this experiment should correct ail cases in which the rule was

responsible for reaching the model 's incorrect conclusion.

There are other factors about a rule that influence a decision to decrease the

rule's confidence. An important consideration is the evidence that supports the

generalization of the rule. Another factor to consider is the significance of the

rule's past performance in reaching the correct conclusion. However, one must

recognize that the experiment involves a conceptually drastic modification Because

the expert has already assigned a confidence which he feels is appropriate for this

rule, the expert's belief in all other rules for the same conclusion might be altered

if he accepts this experiment

Therefore, although this experiment is simple to perform, we want to impose

rather strict conditions which must be met in order to suggest it The heuristic for

determining the experiment to decrease the confidence level of a rule is shown in

Figure 4-4 . This heuristic consists of four conjunctive clauses.

If the number of cases in which the rule has been used
incorrectly is greater than the number of cases suggesting the
generalization of the rule,

and the number of cases that will be corrected if this rule is
specialized is greater than or equal to the number of cases
suggesting the generalization of the rule,

and the number of cases that will be closer to being corrected
is greater than or equal to the number of cases that will not
be corrected, if this rule is specialized,

and the number of cases in which the rule was significant in
reaching the correct conclusion is less than the number of
cases in which the rule has been used incorrectly,

Then Change the confidence level for the rule from its current
level to its adjacent lower level.

Figure 4*4: Heuristic rule for decreasing a rule's confidence



The first clause checks if the loss attributed to a rule exceeds the potential

gam cited to generalize the rule. This is an important requirement since it compares

the "current" evidence needed for performing the experiment with evidence that

couid reverse a decision to decrease the confidence.

The second and third clauses incorporate supportive evidence that decreasing

the confidence has potential benefits. The second clause checks if the "future" gain

as a result of the rule not being satisfied is at least as good as that caused by a

generalization of the rule. The third clause requires that more cases will be closer

now to reaching the correct conclusion as compared with the cases supporting the

secondary specialization of the rule. This clause verifies that among ail the cases

supporting the specialization of the rule, the rule was responsible for the primary

(highest ranked) incorrect conclusion more often than it was for a conclusion

secondary to the primary conclusion. Why bother with this third clause? It is an

attempt to enforce a stringent requirement for dropping the confidence because of

the potentially drastic effect the experiment could have on the expert's expectation

about reaching the conciusiori

The fourth clause checks the current significance of the rule. A rule is

significant for reaching the correct conclusion in a case means that if it were

removed or not satisfied then the case would be misdiagnosed by the model. It

indicates how important the rule has been, and therefore what the potential toss is.

Other expressions besides the one used in this fourth clause may be used to

compare the importance of a rule. For example, an expression that says "the rule's

rate of significance must be less than 40%" was used during a period of

experimentation with the heuristics. The value of 40% was determined from our

experience in refining the rheumatology model; i.e., this would be a parameter for

other domains. An approach to setting this value might be based on the expected

importance that the model designer could assign. The results of the system's

experience in using a value may be used to adjust a specific value.



4.2.1.1. Example

An experiment is shown below for decreasing a rule's confidence. The

example was abstracted from a set of experiments that were generated for the

rules that conclude rheumatoid arthritis. First, the heuristic is shown including the

specific values which were used in evaluation. This is followed by a narrative

statement that provides an explanation for this experiment

Heuristic satisfied for rule 66

/ / 8 cases in which rule 66 has been used incorrectly is greater
than 0 cases suggesting the generalization of rule 66,

and 4 cases that will be corrected if rule 66 Is not satisfied is
greater than or equal to 0 cases suggesting the generalization of rule
66,

and 2 cases that will be closer to being corrected is greater than or
equal to 2 cases that will not be corrected, if rule 66 is not satisfied,

and 0 cases in which rule 66 was significant is less than 8 cases in
which rule 66 has been used incorrectly,

Then change the confidence level for rule 66 from probable to
possible.

Note that the specific values which were filled in this heuristic are shown in

boldface. The narrative statement shown in Figure 4-5 paraphrases the information

used in satisfying the heuristic

Currently, rule 66 is satisfied in 8 cases with diagnoses other than RA.
If rule 66 had not been satisfied 4 of these cases (14,73,124,3) wouid
have been diagnosed correctly. Also, 4 cases (71,104,60,84) will have a
better chance of being correctly diagnosed if rule 66 is not satisfied
Even though rule 66 is used correctly 27% of the time it is satisfied, it
is significant to the final diagnosis 0% of the time

Therefore, we suggest to Change confidence level for rule 66 from
Probable (0.7) to Possible (0.4). This would weaken the impact of the rule
so that it will allow other rules to possibly correct misdiagnosed cases.

Figure 4-5: SEEK's Explanation of Experiment



Each sentence contains information that was used in evaluating a clause within

the heuristic rule. For example, the first sentence corresponds to the result

obtained by the function to determine the "number of cases in which the rule has

been used incorrectly". This sentence is the basis of the reasoning to support the

experiment and indicates the "current1 negative evidence attributed to rule 66.

Therefore, one should consider possible ways in reducing the impact of the rule.

Note that some information which was used in evaluating the heuristic is not

included in the explanation.

For the translation of a heuristic into its narrative paragraph form, each

function in a heuristic has an associated English language statement where variable

slots are prespecified for particular values (e.g., a rule number, a conclusion label, a

particular statistic.) The translation process is governed by the functions appearing

in the heuristic rule. The specific values in a function are filled in the corresponding

English statement For some functions, the exact values used in satisfying the

heuristic are replaced by a functional variation of the values. This is done to

improve the readability of an explanation; e.g., this occurs in the last sentence of the

explanation to indicate the rule's rate of significance instead of the actual number

of cases.

Furthermore, each function in the heuristic rule is prespecified with conditions

indicating if the English statement corresponding to the function is to be part of the

narrative explanatioa For example, a conditional print switch on the function

"number of cases suggesting the generalization of the rule" in this heuristic was

prespecified to be included in the explanation when the value was greater than zero.

The conditional print switch can be overridden at any time to produce ail English

statements. This is useful in investigating ail the details supporting an experiment

In Figure 4 -5 , a paraphrase of the information needed to determine the

potential gain as a result of not satisfying rule 66 appears in the second and third

sentences.



4.2.2. Increasing a Rule's Confidence

This section describes a heuristic rule to suggest the increase of a rule's

confidence level. On the surface, this experiment is a simple modification which

appears to require little reasoning to suggest it A simple approach for determining

that a rule's confidence should be increased would be to check if a rule is satisfied

for the expert7s conclusion in a case misdiagnosed by the model. If this is found,

the experiment would then be to increase this rule's confidence so that it exceeds

the confidence assigned to the model's incorrect conclusion Although this would

be effective, the experiment could have an adverse effect on the expert's prior

belief in the conditions that are stated in the rule. Moreover, the expected

importance in the conditions of the rules that may already exist at the increased

confidence level could be potentially altered relative to those conditions in the rule

for which the confidence is to be increased. Because of this, we want to suggest

the experiment only when it is compatible with the expert's other domain

knowledge impltcit in his initial choices of model design.

Rather than suggest the experiment based on surface phenomena alone, we

want to determine first whether another rule could be found to correct the case by

removing conditions in its left-hand side This would mean that a rule which is

already at the right confidence level is, at best partially satisfied and therefore may

be adjusted by removing components from its left-hand side When we could not

find such a rule, our experience has shown that increasing a rule's confidence is a

reasonable alternative.

The method of rule analysis for the expert's conclusion described in section

3.1 does not always find a candidate rule to generalize. This is because we look

for partially satisfied rules prior to selecting a candidate rule for generalization, and

there may be none. The misdiagnosed cases which do not suggest the

generalization of rules for the expert's conclusion would be unaccounted for. By

unaccounted, we mean that no information is obtained about weakening the



conditions in a rule and therefore the case would remain misdiagnosed However,

advice about rule-refinements might be generated for the unaccounted cases when a

rule has been satisfied for the expert'$ conclusion in these cases. As an example,

case 1 1 is misdiagnosed by the model as progressive systemic sclerosis with a

confidence of definite, and the experts conclusion is mixed connective tissue

disease with the models confidence of possible. Rules 90 and 141 are

responsible for reaching the expert's conclusion and model's conclusion,

respectively. This is summarized in Figure 4-6.

The important point about this case is that the analysis of rules for the

expert's conclusion did not result in finding a candidate rule for generalization. In

terms of refinement one could increase the confidence of the rule responsible for

the expert's conclusion (rule 90) to reduce, at least the difference in confidence

between the model's conclusion and the expert's conclusion Obviously, a negative

aspect of increasing the rule's confidence is the potential of increasing the number

of false positives already attributed to the rule. Thus, one could try a conservative

experiment by increasing the confidence assigned to rule 90 from "possible" to

"probable".

Before experiment After experiment

Expert's conclusion: possible MCTD, rule 90 probable MCTD, rule 90
Model's conclusion: definite PSS, rule 141 definite PSS, rule 141

Number of false
positives by rule 90: n cases at least n cases

Figure 4-6: Potential Effect of Increasing Confidence for Rule 90

An experiment to increase the confidence level of a satisfied rule for the

expert's conclusion can improve the chances that the rule will correct a

misdiagnosed case. The conditions under which this experiment may be tried are

stated in Figure 4-7.

There is one clause in this heuristic. Among the cases which satisfied the



If the number of cases in which the rule was satisfied for the
expert"s conclusion is greater than the number of cases in
which the rule was used incorrectly, and no candidate ruies for
generalization were found in each of these cases,

Then Change the confidence of the rufe from its current ievei to
its adjacent higher ievei.

Figure 4-7: Heuristic for increasing a Ruie/s Confidence

rule, it checks for misdiagnosed cases which did not suggest the generalization of

ruies. This is the basis for considering the increase of a rule's confidence. The

experiment is suggested if the number of such cases is greater than the number of

cases in which the rule was used incorrectly.

4.2.2.1. Example

An experiment for increasing a rule's confidence is shown below. This

experiment is based on the satisfaction of the heuristic with the evidence gathered

about rule 90.

Heuristic satisfied for rule 90

/ / 4 cases in which rule 90 was satisfied for the ex pert/s
conclusion, hut no candidate rule for generalization was found in each
of these cases is greater than 0 cases in which rule 90 was used
incorrectly,

Then change the confidence level for rule 90 from possible to
probable.

»

In this example, rule 90 is cited for refinement The support for this

experiment appears in four cases. A paraphrase of the heuristic is shown in Figure

4-8, providing the rationale for increasing the confidence of the rule.

The two sentences in this explanation correspond to the functions satisfied

by the expression in the heuristic. Note that the four cases are listed in the

explanatioa From this information the model designer can review these cases by

entering "single case" analysis, or he can try an experiment The actual effect of



Rule 90 was satisfied in 4 misdiagnosed cases (11,60,84,130), which
did not suggest to weaken any of the rules for MCTD. Currently, ruie
90 is not used incorrectly in any of the cases with diagnoses other than
MCTD.

Therefore, we suggest to Change confidence level for ruie 90 from
Possible (0.4) to Probable (0.7). This would strengthen the impact of the
rule to possibly correct these cases.

Figure 4-8: SEEK/s Explanation of Experiment

increasing the confidence for rule 90 can only be determined by incorporating the

modified ruie into the model and testing it on all cases.

4.3. Changing the Number of Majors and Minors in a Rule

In the design of a tabular model, the model designer prepares lists of major

and minor observations which are suggestive of the diagnostic conclusion. Rules

expressing numbers of major and minor criteria can be refined by decreasing or

increasing these numbers. Numbers of majors and minors are easily manipulated as

opposed to determining changes to specific items that would comprise the left-hand

side of a pure production ruie. Because of this, experiments that suggest to

increase or decrease the numbers of majors or minors are advantageous over other

possible rule refinements. The conditions under which one should consider these

kinds of refinements ore described next

4.3.1. Decreasing the Number of Majors or Minors

The heuristics that suggest decreasing the number of majors and minors are:

If the number of cases suggesting the generalization of the rule
is greater than the number of cases in which the ruie was
used incorrectly,

and the most frequent missing component in the rule is the
major component

Then Decrease tfce number of majors in the rule.
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!f the number of cases suggesting the generalization of the rule
is greater than the number of cases in which the rule was
used incorrectly,

and the most frequent missing component in the rule is the
minor component

Then Decrease the number of minors in the rule.

Each of these heuristics consist of two clauses. The first clause compares

the evidence supporting the generalization of the rule with the evidence about the

incorrect use of the rule When this clause is satisfied it indicates that the rule /s

past performance favors weakening the components in the rule. The second clause

indicates the component to change in the rule We note that the function for

determining the most frequent missing component scans the information that was

associated to a candidate rule for generalization in case analysis.

Information about candidate rule to generalize

Rule number 91
Concludes Probable MCTD
Required 2 majors and 2 minors

Cases supporting generalization of rule 91

Case number 14 71 104

Majors present 2
Minors present 1

Model's incorrect
conclusion RA

Missing component MINOR

Figure 4-9: Evidence Supporting the Generalization of Rule 91

2
1

RA

MINOR

0
2

RA

MAJOR



4.3.1.1. Example

As an example, three misdiagnosed cases supporting the generalization of rule

91 are shown in Figure 4-9. If rule 91 was satisfied, then these cases would be

correctly diagnosed Rule 91 concludes probable mixed connective tissue disease,

and 2 majors and 2 minors form part of the conditions required by rule 91. Mixed

connective tissue disease is the expert's conclusion \n each of these cases, but the

models incorrect conclusion is rheumatoid arthritis. Figure 4-9 shows that the

minor component is missing in two of these cases (14 and 71); also, case 14 had 2

majors and 1 minor for mixed connective tissue disease. Thus an experiment to

decrease the number of minors in rule 91 would be suggested with the

precondition that the number of cases in which rule 91 is used incorrectly is less

than three. Continuing with this example, the instantiation of the heuristic for

suggesting the decrease of the number of minors in rule 91 is shown with the

values used in its evaluation. This is followed by a narrative statement to justify the

experiment

Heuristic satisfied for rule 91

if 3 cases supporting the generalization of rule 91 is greater than 0
cases in which rule 91 was used incorrectly,

and the most frequent missing component in rule 91 is the MINOR
component,

Then, decrease the number of minors in rule 91.

SEEK/s Explanation of Experiment

If rule 91 had been satisfied, 3 currently misdiagnosed MCTD cases
would have been diagnosed correctly. Currently, rule 91 is not used
incorrectly in any of the cases with diagnoses other than MCTD. In rule
91 the component missing with the greatest frequency is "Minor".

Therefore, we suggest to Decrease the number of minors in rule 91.
This would generalize the rule so that it will be easier to satisfy.



The first sentence cites the positive evidence found in three cases to

support the generalization of ruie 91. Next there are no cases currently opposing

this kind of experiment Note that the information in the first and second sentences

was obtained from the functions used in satisfying the first clause in the heuristic.

This is the basis for considering an experiment to generalize the rule. The third

sentence indicates the component to change. The minors component in ruie 91 was

cited for refinement in most of the cases supporting the generalization of the ruie.

The evidence supporting this change is shown in Figure 4-9.

4.3.2. Increasing the Number of Majors or Minors

These refinements fall within the class of specializations. The heuristics for

increasing the number of majors or minors are similar to the heuristics for

decreasing the number of majors or minors in that they require a comparison of the

evidence suggesting the generalization and specialization of a rule. The difference

between them lies in the information used to determine a component to be changed

in the rule once the class of refinement has been determined For instance,

decreasing the number of minors is based on information obtained by case analysis

that picks a missing component from the case data, in a candidate rule for

generalizatioa

There is no analogous analysis of a rufe/s content during the case analysis

suggesting rules to specialize. This is simple to undertand Whereas the analysts of

candidate rules for generalization looks for rules and components in rules unsatisfied

by the case data, ail that is essentially known about candidate rules for specialization

is that these rules had been satisfied, and if they were forced to be unsatisfied

then other derived knowledge would say whether the case would be correctly

diagnosed

2The interpretations assigned to rules based on the closeness measures for
specialization; refer to section 3.3.



The point is that how these rules should be specialized so that they will not

be satisfied is not discernable from the knowledge about firing these rules alone.

This means that selecting a component to specialize must be based on information

other than that determined from a rule/s performance. The notion of ease of

changing a component can help in focusing on a satisfied component to specialize.

By this, we mean to specify a preference in changing one component over another

according to a precedence ordering over the components in a rule. One

precedence ordering that is based on an intuitively reasonable ordering of the types

of components appearing in the tabular model is:

minors < majors < requirement < exclusions

where the relation < means "is easier to change than". For example, increasing the

number of minors in a rule is preferred over all other components in a rule. The

heuristics for increasing the number of majors or minors embody this precedence

ordering by looking for certain relationships about the number of majors or minors

in the rule. The heuristic for increasing the number of minors is stated as:

If the number of cases suggesting the specialization of the rule
that will be either corrected or closer to being corrected is
greater than the number of cases suggesting the generalization
of the rule,

and the number of cases in which the rule was significant in
reaching the correct conclusion is less than the number of
cases suggesting the specialization of the rule,

and the number of minors in the rule is less than the total
number of minors listed for the conclusion,

Then Increase the number of minors in the rule.

Of the three clauses in the heuristic rule, the first requires that the evidence

is in favor of the specialization of the rule. Clearly, this must be satisfied for a

refinement that strengthens the conditions in a rule. The second clause checks the

potential loss as a result of the rule not being satisfied. This is done by comparing



the rule's significance with the evidence supporting the specialization of the rule.

The third clause checks whether the total number of minors expressible within the

minors component of a rule is not currently specified in the component This

ensures that increasing the number of minors required by a rule can in fact be

done; when the clause fails, it means that there are no other minors in the table for

this rule. The heuristic for increasing the number of majors is similar to this

heuristic and is stated as:

If the number of cases suggesting the specialization of the rule
that will be either corrected or closer to being corrected is
greater than the number of cases suggesting the generalization
of the rule,

and the number of cases in which the rule was significant in
reaching the correct conclusion is less than the number of
cases suggesting the specialization of the rule,

and the number of majors in the rule is greater than zero,

and the number of minors in the rule is greater than or equal
to the total number of minors listed for the conclusion,

Then Increase the number of majors in the rule.

The first and second clauses in this heuristic are the same as those in the

heuristic for increasing the number of minors. On the other hand, the third clause

requires that a major component must exist in the rule. The fourth clause checks

that the number of minors in the rule cannot be increased, and thus it makes sure

that an experiment to increase the number of minors could not have been suggested

for the rule. This clause is the complement of the third clause in the heuristic for

increasing the number of minors, making the two experiments mutually exclusive. A

preference is expressed for increasing the number of minors over an experiment to

increase the number of majors. A rule which satisfies the first and second clauses

is checked to determine if it contains a minor component with a value that can be

increased If not the experiment to increase the number of minors will not be



suggested If the same ruie contains a major component the experiment to

increase the number of majors will be suggested

It should be emphasized that these heuristics for increasing the number of

majors and minors contain information besides performance to determine the

specific component to specialize. This is to be contrasted with the heuristics for

decreasing the number of majors and minors which obtain corresponding information

about the components to decrease directly from the performance of the rule on the

cases. Our solution has been to include prior knowledge about likely components to

specialize, which can be changed for different kinds of models. For this reason,

among others, the heuristics are represented by rules which allows manipulation of

the conditions needed to suggest particular rule refinements.

4.3.2.1. Example

An example is shown below of the heuristic rule that would be satisfied in

order to suggest an experiment increasing the number of minors. The heuristic rule

is similar to those shown in the previous examples which included the instantiated

values in boldface.

Heuristic satisfied for rule 65

If 1 case suggesting the specialization of the rule that will be either
corrected or closer to being corrected if ruie 65 were not satisfied is
greater than 0 cases suggesting the generalization of rule 65,

and 0 cases in which rule 65 was significant is less than 1 case in
which ruie 65 was used incorrectly,

and 2 minors in ruie 65 is less than 5 minors listed for conclusion,

Then increase the number of minors in rule 65.

This heuristic rule suggests that the minors component of rule 65 should be

increased There is only one case which supports this experiment and rule 65 is



not significant in reaching the correct conclusion in any of the cases. Rule 65

contains a minors component which can be increased from its current value

requiring at least 2 minors. There are 5 minors which could be required by rule 65.

A paraphrase of this information is shown below,

SEEK's Explanation of the Experiment

Currently, rule 65 is satisfied in one case with diagnosis other than RA.
If rule 65 had been satisfied, none of the currently misdiagnosed RA
cases would have been diagnosed correctly. Even though rule 65 is used
correctly 8% of the time it is satisfied, it is significant to the final
diagnosis 0% of the time. Rule 65 requires 2 minors. Rule 65 does not
require any majors.

Therefore, we suggest to Increase the number of minors in rule 65.
This would specialize the rule so that it will be harder to satisfy.

The first sentence points the user to the fact that rule 65 had been used

incorrectly in only one case. In contrast the second sentence means that no cases

suggest the generalization of the rule. The information in the third sentence

indicates the rule's importance in reaching the correct conclusion. In terms of

refinement this means that there would be no loss in performance as a result of

the specialization of the rule. Finally, the numbers of minors and majors required by

the rule are shown. This is the context within which a decision about increasing the

number of minors is made.3

4.4. Changing a Requirement Component c*

This section describes heuristics for generalizing and for specializing the

requirement component in a rule. A requirement component consists of those

findings or intermediate results which must be satisfied in order to trigger the rule.

Refining the requirement component is similar to changing the numbers of majors or

minors in that one would either weaken or strengthen the conditions in the rule.

3We have not included the preference order—that is, the prior knowledge for
changing the components—in the explanation so as to focus the reader on the
specific performance information supporting the experiment



The difference between these two is that performance information about the

specific criteria which comprise majors or minors is not necessarily required in

order to decrease or increase the number of majors or minors in the rule, while

performance knowledge is helpful for changing the specific items which form the

requirement component Because a requirement component can be an arbitrarily

complex conjunction or disjunction, we need to incorporate in the heuristics

knowledge that goes beyond determining whether the requirement component should

be weakened or strengthened

This is done in a two step process. First heuristics are tried which

determine whether the requirement component in a rule needs to be changed Next

when an experiment is suggested to change the requirement component other

heuristics are used which incorporate performance information of the specific items

in the requirement component to refine the experiment The following section

describes two heuristic rules: (a) to suggest the generalization of the requirement

component (by deleting this component) and, (b) to suggest the refinement of an

experiment to generalize the requirement component

4.4.1. Weakening a Requirement Component

To determine that the requirement component in a rule needs to be

weakened, the rule's performance on the cases must favor the generalization of the

rule. This requires a comparison of the statistics collected by case analysis that

identify rules to generalize and specialize A second condition is that the rule must

contain a requirement component which was not satisfied in most of the cases

supporting the generalization of the rule. These two conditions are expressed in the

heuristic rule shown below. Note that no information is specified about the

performance of the specific components that form the requirement component

This is an important point because it means that the most specific experiment which

can be suggested when these conditions are satisfied is that the requirement

component itself should be removed from the rule containing it However, another



heuristic rule uses empirical evidence about the items within the requirement

component to make specific suggestions about the component The heuristic rule

incorporated in SEEK to suggest the removal of the requirement component in a

rule is stated as:

If the number of cases suggesting the generalization of the rule
is greater than the number of cases in which the rule was
used incorrectly,

and the most frequent missing component in the rule is the
requirement component

Then Delete the requirement component in the rule.

There are two clauses in this heuristic rule to determine that the class of

experiment is generalization and to check that the specific component to change is

the requirement component When satisfied, this heuristic rule posts the experiment

to delete the requirement component To refine this experiment the heuristic shown

below suggests a specific component in the requirement component to remove

If the requirement component that has been suggested to be
deleted from the rule is a conclusion,

and there is a most frequently missed component in the rule
that reaches this conclusion.

Then Delete the component.

This heuristic rule refines an experiment which has been previously suggested

The first clause determines if the requirement component has a rule which

concludes it If so, this means that the rule concluding this requirement component

must have an unsatisfied component in each of the cases suggesting the

generalization of the rule. It will follow that we then want to suggest that the

component most frequently missed should be deleted. The most frequently missed

component is identified by the second clause. Finally, the experiment is posted,

including the specific component to be removed from the rule. This process can

be recursively applied to components in the rules that contribute to reaching the

requirement component



89. Possible 15 (2/1) 42 (2/1) 47 (2/0) 57 (2/2)
(2/0) PSS RA NULL SLE

REQUIRE REQUIRE REQUIRE REQUIRE

67 (2/2) 100 (2/0) 105 (2/0)
NULL NULL NULL
REQUIRE REQUIRE REQUIRE

Case (#major/#minor)
Models Incorrect Conclusion

Missing Component

Figure 4-10: Evidence supporting the generalization of rule 89

4.4.1.1. Example: Deleting the Requirement Component in a Rule.

As an example, Figure 4-10 shows seven misdiagnosed cases supporting the

generalization of rule 89. If rule 89 had been satisfied these seven cases would

have been correctly diagnosed. Figure 4-10 shows that the requirement component

is missing in all seven cases. Thus an experiment to delete the requirement

component in rule 89 would be suggested provided that the number of cases in

which the rule is used incorrectly is less than seven. The structure of rule 89 is

shown in Figure 4-11 and includes rule 87 for reaching the requirement component

included in rule 89.

The requirement component in rule 89 is labeled RS102 which is reached by

rule 87. The instantiation of the heuristic for suggesting the removal of the

requirement component in rule 89 is shown below with the values used in its

evaluation. This is followed by a narrative paraphrase of this heuristic supporting

the experiment An example showing the refinement of this experiment that selects

a specific component in rule 87 for deletion is described in the next section.



Rule 87: RNP antibody fimm.) (RNP)
positive ENA, Med titer (ENAM)
—> Requirement 1 for Possible MCTD (RS102)

Rule 89: 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Requirement 1 for Possible MCTD (RS102) (Not Satisfied)
—> Possible Mixed connective tissue disease (MCTD)

Rule 89
t

AND
I

2 majors RS102

Rule 87
I

AND

I I
RNP ENAM

f
OR

'I I
ENANP ENANH

Figure 4-11: Graphical Representation of Rules

Heuristic satisfied for rule 89

If 7 cases suggesting the generalization of rule 89 is greater than 0
cases in which rule 89 was used incorrectly,

and the most frequent missing component in rule 89 is the
REQUIREMENT component,

Then, delete the requirement component in rule 89,

SEEK's Explanation of Experiment

If rule 89 had been satisfied, 7 currently misdiagnosed MCTD cases
would have been diagnosed correctly. Currently, rule 89 is not used
incorrectly in any of the cases with diagnoses other than MCTD. In rule
89 the component missing with the greatest frequency is "Requirement".

Therefore, we suggest to Delete the requirement component in rule
89. This would generalize the rule so that it wilt be easier to satisfy.



This explanation has the same form as those shown in earlier examples for

generalization experiments. There are two points to note. One is the contrast in

evidence found in case analysis for the generalization and specialization of the rule

89. This is found in the first and second sentences and shows the information

satisfied by the first clause in the heuristic. The first sentence corresponds to the

potential gain of 7 cases if rule 89 is generalized. The second sentence indicates

that no cases suggest the specialization of the rule. To determine that the

requirement component is the component to change in rule 89, the information

supporting the generalization of the rule shown in Figure 4-10 is scanned. An

example of the refinement of this experiment is described next

4.4.1.2. Example: Refining an Experiment that Deletes a Requirement Component

We show an example of the heuristic that refines an experiment to delete

the requirement component Continuing with our previous example, the heuristic

shown below identifies a specific component to be removed from the requirement

component in rule 89. In this example, the requirement component in rule 89 is

identified by its internal label (RS102).

Heuristic satisfied for rules 89 and 87

// RS102 that has been suggested to be deleted from rule 89 is a
conclusion,

and ENAM is the most frequently missed component in rule 87 that
reaches RS102,

Then delete the component ENAM from rule 87.

Rule 87 is a partially satisfied rule concluding RS1Q2, and it is the closest to

being satisfied among all rules that reach the conclusion of RS102. The case

analysis method for selecting a candidate rule for generalization is applied on the

subset of cases supporting the generalization of rule 89. The results are shown in

Figure 4-12. For these 7 cases, the component labeled ENAM in rule 87 is not

satisfied and therefore is suggested for deletion. If rule 87 is satisfied, rule 89



would be triggered And as stated in the explanation of the experiment to delete

the requirement component in rule 89, the satisfaction of rule 89 would correct the

seven cases supporting its generalization. A translation of this heuristic into a

narrative statement produces the explanation shown below.

SEEK's Explanation of the Experiment

Refinement for the experiment to delete the requirement component in
rule 89. Rule 87 concludes the requirement component in rule 89. In
rule 87 the component missing with the greatest frequency is "ENAM".

Therefore, we suggest to Delete the component labeled ENAM in rule
87. This would generalize the rule so that it will be easier to satisfy.

The important point about this explanation is that the refinement of a

previously suggested experiment is based on an analysis of the cases supporting the

experiment The explanation indicates that the component labeled ENAM in rule 87

is the most frequently missed among the cases suggesting that the requirement

component in rule 89 should be deleted.

In summary, we have shown an example of a heuristic to generalize a rule by

removing the requirement component This was followed by a refinement heuristic

which looks for a specific component to delete from the requirement This process

is initiated by the expert. The expert decides whether to seek refinements of

experiments and, if so, he determines which experiment is to be further analyzed

In our example, the expert would make a decision about deleting the requirement

component from rule 89 or to request a refinement of this experiment

4.4.2. Strengthening a Requirement Component

The heuristics for strengthening a requirement component in a rule are

described in this section. Strengthening the requirement component means that one

would add components to the requirement Thus refinements of this kind fall within

the class of specializations. This section is organized in the same way as the

previous section. Two heuristics ane described. The first heuristic rule determines

whether the requirement component should be strengthened The second heuristic



87. Definite 15 (2/1) 42 (2/1) 47 (2/0) 57 (2/2)
(0/0) PSS RA NULL SLE

ENAM ENAM ENAM ENAM

100 (2/0) 105 (2/0) 67 (2/2)
NULL NULL NULL
ENAM ENAM ENAM

Case (#major/#minor)
Models Incorrect Conclusion

Missing Component

Figure 4-12: Evidence Supporting the Generalization of a Rule

finds a specific item to add to the requirement component As with the heuristics

that suggest increasing the numbers of majors or minors, a preference ordering of

components to be changed is expressed in the first heuristic rule to identify that

the requirement component should be strengthened. This heuristic is stated as:

If the number of cases suggesting the specialization of the rule is
greater than the number of cases suggesting generalization of
the rule,

and the number of cases in which the rule was significant in
reaching the correct conclusion is less than the number of
cases suggesting the specialization of the rule,

and the number of majors in the rule is equal to zero,

and the number of minors in the rule is equal to zero,

Then Strengthen the requirement component in the rule.

This heuristic rule consists of four clauses. The first clause verifies that the

rule should be strengthened. This involves comparing the negative evidence

suggesting the specialization of the rule with the number of cases suggesting the

generalization of the rule. The second clause checks if the potential loss by

specializing the rule does not exceed the potential gain. To do this, the rule's



significance in reaching the correct conclusion is compared with the evidence found

in the cases for specializing the rule. The third and fourth clauses incorporate the

condition that the requirement component is to be strengthened only when the rule

does not contain major and minor components. The preference ordering described

earlier favors the specialization of the major and minor components before

considering the requirement component

It should be emphasized that the satisfaction of this heuristic does not

produce a specific refinement of the rule. Rather it suggests an area that needs

attention. As with any experiment generated by the system, the expert is

responsible for determining whether or not to accept the advice.

Assuming that the expert takes the advice to strengthen the requirement

component then the problem is to determine how this component should be

specialized. We want to assist the expert in selecting a component to add to the

requirement by pointing him to the performance of components that currently exist

in the model.

However, the expert is not restricted in practice as to what can be added to

the requirement component For instance, a new item could be introduced which

was not previously incorporated in the model. This would require updating the

cases in the data base with results about the newly entered finding, and for a large

number of cases, this is a time-consuming process. While adding a new finding to

the model is a reasonable solution, we would like to narrow the expert /s attention

to parts of the model as it currently exists which may be relevant for strengthening

the requirement component

There are usually many findings already in the model that could be applicable

in specializing the requirement component The list of majors and minors for a

particular conclusion can serve as a meaningful source for this purpose since these



criteria have already been identified by the expert to be important in reaching the

conclusion. Knowledge about frequency of occurrence of majors and minors

informs the expert about the use of these criteria In fact, this is the idea

incorporated in the heuristic described below for refining an experiment to

strengthen the requirement component in a rule. Ideally, we want to restrict the

selection of a component to be added to the requirement component to one which

satisfies the following conditions:

1. the component is empirically consistent with the conclusion reached
by the rule containing the requirement component;

2. the component is empirically inconsistent with all other conclusions.

Because of the first condition the majors or minors for the conclusion

reached by the rule containing the requirement component can be chosen as the

source from which a specific component is to be selected Performance

information about the majors, for example, can be used to select for inclusion in

the requirement component of the rule a specific major that has high frequency of

occurrence in the cases with a stored experts conclusion matching that conclusion

reached by the rule. The second condition requires checking each case with a

stored expert's conclusion other than that conclusion reached by the rule containing

the requirement component Because this requires searching all cases we would like

to find a more efficient approach to checking for inconsistency. We can exploit

the performance statistics available about the cases specifically misdiagnosed by the

rule, which contains the requirement component

We can obtain the most frequently occurring stored expert7s conclusion

among these misdiagnosed cases. Once such a conclusion is determined, then the

range of cases which are searched to select a major that has low frequency of

occurrence is narrowed to those cases matching this stored expert7s conclusion.

In summary, we want to suggest a component which has minimal frequency



of occurrence among the cases with stored expert's conclusion that were most

frequently misdiagnosed by the rule, while being empirically consistent in the cases

with a stored expert's conclusion that matches the conclusion reached by the rule.

This is accomplished by incorporating frequency data about components into a

heuristic rule for suggesting a component to add to the requirement

Given that an experiment to strengthen the requirement component is

suggested, a refinement of this experiment can be requested in order to identify a

specific component to add to the requirement The heuristic rule is stated as:

If the frequency of the ITEM from the chosen criteria in the
cases with stored expert's conclusion matching that conclusion
reached by the rule is greater than zero,

and the frequency of the ITEM from the chosen criteria in the
cases with stored expert's conclusion matching that conclusion
most frequently misdiagnosed by the rule is less than 0.3,

Then Add the component labeled ITEM from the chosen criteria to
the requirement.

The first clause in this heuristic rule corresponds to satisfying the condition

that checks for empirical consistency, while the second clause checks for empirical

inconsistency. Intuitively, the value of .3 in the second clause checks that a low

{possibly no) frequency is needed However, domain information may be used to

change this parameter.4

There are two other points to note about this heuristic rule. First, the

notation used in this heuristic rule needs clarification. The phrase the chosen

criteria refers to the list of majors or minors for a particular conclusion that the

expert determines. The term the item refers to a specific major or minor in the

criteria chosen.

4ln section 4.2.1 another parameter in assessing a rule's expected importance
was mentioned although not used in the heuristic rule to decrease a rule's
confidence level.



The second point concerns the evaluation of this heuristic rule. Because

there are usually several items identified as, for example, majors, more than one

evaluation of the heuristic may be required until it is satisfied There could be as

many evaluations as there are majors for a particular conclusion. Because of this,

control of evaluation is iterative where the heuristic rule is instantiated and evaluated

with performance information about each major until it is either satisfied or the list

of majors is exhausted. This differs with the evaluation of all other heuristic rules

discussed in this chapter for which there is only one evaluation This is clearly an

area where semantic guidance is needed. An example is described next

4.4.2.1. Example: Strengthening the Requirement Component in a Rule

This example show the application of the heuristic rule to suggest that the

requirement component should be strengthened

Heuristic satisfied for rule 138

If 2 cases suggesting the specialization of rule 138 is greater than 1
case suggesting the generalization of rule 138,,

and 0 cases in which rule 138 was significant in reaching the
correct conclusion is less than 2 cases suggesting the specialization of
rule 138,

and there are 0 majors in rule 138,

and there are 0 minors in rule 138,

Then, strengthen the requirement component in rule 138.

This heuristic rule suggests that the requirement component in rule 138

should be strengthened Two cases support this experiment while there is one case

supporting the generalization of the rule. The second clause indicates that rule 138

is not significant in reaching the correct conclusion for any of the cases in the data

base This rnesns that a specialization of rule 138 would not cause a loss in

performance. Thus the first two clauses in this heuristic rule verify that a



specialization of rule 138 may improve the model's performance. The satisfaction

of the last two clauses means that the requirement component is the candidate for

specialization. A narrative statement paraphrasing the way in which this heuristic is

satisfied with information about rule 138 is shown next As for any experiment

that SEEK suggests, the expert reads the program's empirical justification for

proposing the experiment before trying it

SEEK/s Explanation of Experiment

Currently, rule 138 is satisfied in 2 cases with diagnoses other than
PSS. If rule 138 had been satisfied one of the currently misdiagnosed
PSS cases would have been diagnosed correctly. Rule 138 is significant
to the final diagnosis 0% of the time it is satisfied Rule 138 does not
require any majors. Rule 138 does not require any minors.

Therefore, we suggest to Strengthen the requirement component in
rule 138. This would specialize the rule so that it will be harder to
satisfy.

4.4.2.2. Example: Refining an Experiment that Suggests Strengthening the

Requirement Component

In this section, we show an example of the heuristic that refines an

experiment to strengthen the requirement component in a rule. The refinement is to

suggest an item to be added to the requirement component Continuing with our

previous example, our objective is to show how a specific item is selected for

inclusion in the requirement component of rule 138. in order to do this, we need

to know the criteria from which an item is to be selected This can be identified

from the conclusion reached by rule 138.

Rule 138: Requirement 1 for Probable PSS (RR104)
No Exclusion 1 for Probable PSS (ER104)
—> Probable Progressive systemic sclerosis (PSS)

Figure 4-13: Rule Containing a Requirement Component to be Specialized

Rule 138 is shown in Figure 4-13 and concludes PSS. Thus the criteria is



either the Majors for PSS, or the Minors for PSS. The system allows the expert

the option of choosing either one, or lets the system make the decision. There are

two other factors that we need to know about rule 138 in order to select a

component to be added to the requirement component Which cases are to be

used to test for consistency and inconsistency? Because the rule concludes PSS,

cases with a stored expert7s conclusion matching PSS are used to test for

consistency. To test for inconsistency the most frequently occurring stored

expert 's conclusion among the cases misdiagnosed by rule 138 is obtained to

determine the cases over which testing is to take place.

138. Probable 11 (3/2) 130 (5/1)
(0/0) MCTD MCTD

Case (#major/#minor)
Stored Experts Conclusion

Figure 4-14: Evidence Supporting the Specialization of Rule 138

The cases supporting the specialization of rule 138 are shown in Figure 4 -

14. From this, the conclusion of MCTD is identified as the one for which cases

with matching stored expert's conclusions are to be tested for inconsistency.

Figure 4 - 1 5 shows the frequency data about the Majors for PSS on the PSS cases,

for which consistency with the component should result and on the MCTD cases,

for which inconsistency with the component should be found These data are

compiled by the system and made available for inspection by the expert and for use

by the heuristics.

Consistency with: Inconsistency with:

Cases with Reviewer7s dx: PSS MCTD

Number of cases: 23 33

MAJORS for PSS Counts Percent Counts Percent
SACDV 0 0 0 0
PSSBX 13 56 2 6
SCLDY 20 86 14 42

Figure 4-15: Example of Frequency Data
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Because there are three items in the Majors for PSS, there could be as many

three evaluations of this heuristic. In our example, the first item satisfied by the

refinement heuristic is PSSBX. This is shown below.

Heuristic Satisfied for Adding a Component to a Requirement

/ / 0.56 which is the frequency of PSSBX from the MAJORS for
PSS in the cases with stored expert's conclusion PSS, that matches the
conclusion reached by rule 138 is greater than zero,

and 0.06 which is the frequency of PSSBX from the MAJORS for
PSS in the cases with stored expert's conclusion MCTD, that matches
the most frequently misdiagnosed expert's conclusion by rule 138 is
less than 0.3

Then, add the component labeled PSSBX from the MAJORS for PSS
to rule 135.

This heuristic rule shows that the component labeled PSSBX is satisfied in

more than half of the PSS cases. While this may not be the component that the

expert ultimately will select the process of showing statistics about components

currently in the model helps the expert determine which component will be selected

and how those components identified as majors are used. The Then part of the

heuristic indicates that the component labeled PSSBX should be added to rule 135

rather than 138. This is because rule 135 defines the requirement component

which is used and referred to in rule 138. The explanation of this heuristic

including the interaction with the expert in choosing the Major criteria for PSS is

shown next



SEEK's Explanation of Experiment

Rule 138 concludes at probable confidence level. Do you want to
strengthen rule 138 using Majors or Minors for PSS? We suggest the
Major criteria labeled: MJPSS.

Enter mnemonic- MJPSS or MNPSS or Press Return for our
suggestion: MJPSS

MCTD is the expert7 s conclusion in most cases misdiagnosed by rule
138. SACDV does not occur in any of the MCTD cases but also, does
not appear in any of the PSS cases. We suggest to rethink whether the
component labeled SACDV is consistent with the Major criteria for PSS.

Refinement for the experiment to Strengthen the requirement
component in rule 138. Rule 135 concludes the requirement component
in rule 138. MCTD is the expert's conclusion in most cases
misdiagnosed by rule 138. PSSBX in the Majors for PSS, occurs in only
6% of the MCTD cases. Further, PSSBX occurs in 56% of the PSS
cases. PSSBX appears to be consistent with PSS.

Therefore, we suggest to Add the component labeled PSSBX from
MJPSS to rule 135. This would specialize the rule so that it will be
harder to satisfy.

4.5. Changing an Exclusion Component

This section describes heuristic rules which suggest certain changes about the

exclusion component in a rule It is understood that the exclusion component

consists of those findings or intermediate results which must not be satisfied if the

rule is to be triggered This is incorporated in the rule by specifying a component

labeled No exclusion indicating the specific exclusionary items; in Figure 4-16 the

exclusion component is shown by its intended use in the rule, namely that the

negation of the exclusion must be satisfied to reach the conclusion.

Numbers of Majors and
Numbers of Minors and
Requirement and
No Exclusion
—> Conclusion at confidence level

Figure 4-16: Structure of Rule in a Tabular Model
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In terms of refinement we describe a heuristic rule that suggests the removal

of the No exclusion component in a rule. This is a generalization of the rule, and

the heuristic rule is stated as:

If the number of cases suggesting the generalization of the rule
is greater than the number of cases in which the rule was
used incorrectly,

and the most frequent missing component in the rule is the
"No exclusion" component

Then Delete the "No exclusion" component in the rule.

This heuristic consists of two clauses where the first clause requires that the

evidence about the rule's performance on the cases must favor the generalization

of the rule. The second clause indicates that the No exclusion component must be

unsatisfied in most of the cases suggesting the generalization of the rule. This

means that the exclusion component was satisfied in most of the cases, and the

negation of this component (i.e., No exclusion) is in fact missing (i.e., there were

exclusions). Note that the heuristic has the same form as other heuristics described

earlier; specifically the heuristics for decreasing the number of majors and minors,

and the heuristic rule for deleting the requirement component

The purpose of the heuristic rules for generalization is to suggest that certain

conditions in the rule should be weakened. For the heuristic described above, the

experiment suggested is to remove the No exclusion component of the rule. In the

next section, we show an example of this heuristic rule. A refinement to this

experiment would be to change the exclusion component so that it will not be

satisfied
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4.5.1. Generalizing a Rule by Deleting the Exclusion Component

We show an example of the heuristic rule to suggest that the No Exclusion

component should be removed from the rule. The satisfaction of this heuristic with

the statistics derived from case analysis is illustrated for a rule labeled 113.

Heuristic satisfied for rule 118

If \ case suggesting the generalization of rule 118 is greater than 0
cases in which rule 118 was used incorrectly,

and the most frequent missing component in rule 118 is the No
exclusion component,

Then, delete the No exclusion component in rule 118.

This heuristic contains rather weak evidence to support the experiment

Namely, only one case provides evidence to generalize the rule, while there are no

cases supporting the specialization of the rule. This is not a flaw in the heuristic

rule but rather a characteristic of a comparative statistical analysis. This a major

reason why we provide an explanation (as opposed to just presenting the specific

rule refinement) of the experiment in terms of the statistics satisfied by the

heuristic. The expert can make his decision after seeing the system's support for

a particular experiment The paraphrase of the heuristic rule is shown next

SEEK/s Explanation of Experiment

If rule 118 had been satisfied, one of the currently misdiagnosed SLE
cases would have been diagnosed correctly. Currently, rule 118 is not
used incorrectly in any of the cases with diagnoses other than SLE In
rule 118 the component missing with the greatest frequency is "No
Exclusion".

Therefore, we suggest to Delete the (no exclusion) component in rule
118. This would generalize the rule so that it will be easier to satisfy.

This experiment can be refined in two ways. Rather than delete the entire

component, we can pick an item within the exclusion component which was satisfied



and force it to be unsatisfied Alternatively, we can add an item to the exclusion

which forces the exclusion to be not satisfied. In either case, the idea is to modify

the rule that defines the exclusion so that it will become unsatisfied The heuristic

described below refines a previously suggested experiment to delete the No

Exclusion component by picking an item that forces the unsatisfaction of the

exclusion component This is the easier of the two approaches although a method

for adding a new item to the exclusion would be analogous to that used for adding

an item to the requirement component as described in section 4.4.2. (An item to

be added to an exclusion component would require empirical consistency, i.e., high

frequency of occurrence, with respect to the cases with stored conclusions

matching that for the models incorrect conclusion on the cases supporting the

removal of the No Exclusion component Empirical inconsistency of the item to be

added to the exclusion component is checked on the cases with stored conclusions

matching the conclusion of the rule containing the exclusion component) The

heuristic to refine the exclusion component is stated as:

If the exclusion component is a conclusion,

and there is a most frequently satisfied component in the rule
that reaches this conclusion,

Then Delete this component.

This heuristic rule refines an experiment which has been previously suggested

The first clause determines if the exclusion component has a rule which concludes

it The rule responsible for reaching the exclusion is analyzed against the cases in

which the exclusion was satisfied

We want to suggest that the item most frequently satisfied be deleted. The

assumption here is that the exclusion is composed of a disjunctive component Our

experience in writing exclusionary components is that they usually contain a

disjunction of items such that a diagnosis is ruled-out (at a particular confidence
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level) by having any one of them satisfied Because of this the refinement heuristic

works on a disjunctive exclusion component and looks for an item most frequently

satisfied This item is identified by the second clause.

4.5.1.1. Example: Refining an Experiment that Deletes the Exclusion Component

Continuing with our previous example of rule 118, we show a refinement of

the experiment to delete the No Exclusion. First we consider rule 118.

Rule 118: 1 or more Majors for SLE (MJSLE)
3 or more Minors for SLE (MNSLE)
Requirement 1 for Probable SLE (RR103)
No Exclusion 1 for Probable SLE (ER103)
—> Probable Systemic lupus erythematosus (SLE)

From this, the component labeled ER103 is the exclusion. The rule that

reaches this conclusion is shown next

Rule 114: Choose 1 of the following 3:
..... Skin Findings: Sclerodactyly (SCLDY)
..... Extremity Findings: Erosive arthritis (EARTH)
..... RNP and ENA severely hi titer (RNESH)
—> Exclusion 1 for Probable SLE (ER103)

The heuristic shown below suggests an item to delete from this rule labeled

114 which concludes the exclusion; and the explanation for the heuristic appears

after the heuristic.



Heuristic satisfied to refine an experiment about an exclusion

// ER103 concludes the exclusion that was suggested to be deleted,

and the component labeled EARTH is most frequently satisfied in
the cases supporting this experiment.

Then delete the component labeled EARTH from rule 114.

Refinement for the experiment to Delete the (no exclusion) component
in rule 118. Rule 114 concludes the exclusion component used by rule
118. In rule 114 the component satisfied with the greatest frequency is
"EARTH".

Therefore, we suggest to Delete the component labeled EARTH in rule
114. This would generalize the rule so that it will be easier to satisfy.

The component EARTH is selected by looking for a disjunctive exclusion

component If found, the first satisfied item in this disjunction is suggested for

removal.

If there are no disjunctions, the frequency data compiled about majors, for

example, may be used to pick a major item from the criteria for the incorrect

diagnosis (reached in the cases supporting the experiment) to be added to the

exclusion. Such an item should have low frequency of occurrence among the cases

with a diagnosis matching the rule's conclusion, and in our example, this diagnosis

would be taken directly from rule 118 as SUE

4.5.2. Specializing a Rule by Changing its Exclusion Component

A rule that is a candidate for specialization may be forced to be unsatisfied

by changing the exclusion component In this situation, the component labeled No

exclusion was satisfied meaning that a rule which concludes the specific exclusion

was not fired We can force the satisfaction of this exclusionary rule by removing

antecedent conditions. This accomplishes the desired modification because if the



exclusion is satisfied, the rule which references it is not satisfied Thus, removing

antecedent conditions in the exclusionary rule makes the exclusion satisfied more

often This kind of rule modification can be done in a manner similar to that for

refining a generalization experiment to weaken the requirement component (i.e., by

removing the most frequently unsatisfied exclusionary item found in the cases

supporting the specialization of the rule.)

4.6. Summary: Heuristics for Generating Experiments

The heuristic rules described in this chapter are evaluated as the second step

of the two-step process in generating rule refinement experiments. The idea is to

gather data about the models performance on a data base of cases and. to find

regularities about a rule's performance that suggest experiments for improving a

model's performance. The experiments are presented with explanations to the

expert The expert focuses on the experiments that appear most consistent with

his domain knowledge

The heuristic rules and their associated explanations are expressed in terms

of the tabular model. We described heuristic rules that operate on the top-level

rules of the tabular model and refinement heuristics that operate on the

components of the top-level rules. Heuristic rules for the top-level rules in the

model propose experiments for changing the confidence level, the numbers of

majors and minors, the requirement component, and the exclusion component

Refinement heuristics are applied after experiments about the top-level rules are

assessed by the expert The refinement heuristics provide a means to control the

level of detail in presenting performance information about an experiment

The heuristics suggest slight changes to the rules. However, the two

heuristics for changing a rule's confidence may be viewed as not conforming to

this positioa The change of a rule/s confidence is different than other changes

that can be done, because the rule as a whole may be considered in error rather
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than just a component These heuristics relate statistics that in effect reduce the

potentially drastic change of modifying a rule's confidence. For example, relatively

strict requirements for increasing a rule's confidence are specified—that a partially

satisfied rule could not have been found applicable for other kinds of

generalizations.

The heuristics for generalizing a rule by decreasing numeric values or

removing items use performance information alone to determine the particular

changes. On the other hand, specialization heuristics require other background

information in order to determine specific experiments. In these heuristics, a

preference ordering for changing components is incorporated, based on an intuitive

understanding of the terms in a tabular model. For instance, minors and majors are

easier to modify than requirements and exclusions, based on the semantics of

medical tabular models of this kind

The goodness of the heuristics is determined by the goodness of the

statistics in capturing a rule /s performanca The case analysts methods described in

Chapter 3 provide the exact and predictive statistics with respect to the two

approaches (generalization or specialization of rules) that a case may be corrected

Whether to generalize a rule or specialize a rule is determined from the summed

statistics derived from case analysis on all cases. However, there is no information

in the heuristics to indicate the actual impact of a particular experiment For

instance, a generalization experiment is determined by comparing the potential gain

(that a generalized rule could have on the cases supporting the experiment) with the

current known loss (that the rule has been used incorrectly.) The exact impact can

only be determined by trying the experiment
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CHAPTER 5

SAMPLE SESSION WITH SEEK

5.1. Introduction

The purpose of this chapter is to illustrate the application of the methods

described in the previous two chapters in facilitating the model designer's task of

developing an expert model. A transcript of a session in the development of a

rheumatology model is presented The session is annotated with comments and is

presented by sections to make it easier for the reader to follow. The model which

is used throughout this session represents an early state of model development by

expert rheumatologists [Lindberg, et al 80] . The session includes the model's

actual performance on a data base of cases. With this in mind, we present an

interactive session with SEEK to experiment with the rule refinements that can

improve a model's performance

This chapter is organized according to certain stages in the design of a

model First there is a start-up stage which gives the purpose of the sessioa In

this stage, the model designer selects from a menu of options for testing a model

and specifying conditions for evaluating the model. This is followed by a

performance analysis of the rules for two different conclusions which leads to

trying two experiments. The first experiment generalizes a rule, and the second

specializes a rule. Finally, the refinement of a previously suggested experiment is

showa

As we will see in the transcript, the program actually carries out the



updated model on the cases. The model is in a compiled format which affords

efficient interpretation of the cases.

SEEK is written in FORTRAN and runs on a DEC System 2060T processor

under the TOPS-2Q operating system. The program's runtime environment is

currently limited by a 256K address space where the program consists of 100K

words of instructions with the data space of about 150K words. Some of the

characteristics of the program are shown in Figure 5 - 1 . The program consists of a

main module which performs the following functions:

• User Communication

• Access to Subprocesses

• SEEK Editor

• Tabular Model Translators

• EXPERT Model Compiler

• EXPERT Consultation Program

• Performance Evaluation

• Statistics Gathering

• Heuristic Rule Interpretation

• Management of Model (and Rule Refinements)

• Management of Cases

The function of obtaining a performance evaluation is critical to SEEK's interactive

mode of operation. Performance evaluation involves interpreting a model on all

cases. A model file is initially loaded along with the data base of cases, in the

EXPERT format All cases reside in memory for the duration of the session with

SEEK and are organized by the stored expert /s conclusion for efficient access and

evaluation.

The actual running of the model on any case requires the conversion of case

data from a packed storage representation to a form interpretable by the



consultation program. Then, the consultation program executes the model on the

case data This consultation program resides in the main module of SEEK and is

really a specialized version of the general EXPERT consultation system.

The runtime performance of SEEK varies with the number of rules in the

model and the number of cases. Model interpretation is exhaustive—all rules are

invoked for each case. In a typical demand/usage of the Rutgers DEC System

2060T with 40 to 50 jobs online, our experience on different models for which

the number of rules ranged from 150 to about 1000 has shown runtime

performance to vary from about 8 cases/CPU second to about 3 cases/CPU second

In building large models (with as many as 900 findings, 600 hypotheses, 1000 rules,

and 200 cases,) these empirical results provide indications of the program's

efficiency in carrying out the experiments in real time.

FORTRAN Implementation (15000 statements)

Size: 250K words

(100K - Main Program, 150K - Data Space)

Cases: In Memory

Several Subprocesses
(Editor and Model Translators)

Figure 5-1: Characteristic of SEEK Implementation

5.2. Starting a Session in SEEK

This section presents the initial interaction with the model designer that sets

up subsequent analysis and refinement of a model The designer has the option of

requesting guidance during a session or directing his own course by specifying an

action from a set of available commands. The guidance is in the form of a menu

of command facilities from which a selected item indicates the next action to be

taken during a session. Commands have been placed on a menu list according to

the particular stage(s) of model design in which they appeared relevant to assist the
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model designer. An obvious advantage of the automatic guidance is that the model

designer does not have to know the specific commands, thus reducing syntactic and

spelling mistakes. (Currently, there are nearly 40 commands, some of which require

several arguments. Appendix A provides a description of the commands available to

the model designer.)

The transcript of a sample session is presented next in which this guidance

option has been taken. As an outline, this section includes the actions that must be

carried out in order to evaluate an expert model. We assume that an initial

formulation of the model exists, and that the model designer has entered a data

base of cases with known conclusions for testing it To evaluate performance, the

designer may modify default conditions under which this evaluation is to be

performed. There are several conditions including, for example, how to score cases

in which the models confidence in the stored expert7s conclusion is the same as

the model's strongest but different conclusioa We call this condition the treatment

of ties for which the model designer makes a decision before requesting a

performance summary. The interaction with the designer specifying conditions such

as the treatment of ties is presented in this section.



{This sample session is annotated with comments, appearing in
italics and enclosed in braces. The designer's line of input appears
in boldface.}

@seek

— System for Experimentation with Expert Knowledge —

Do you want assistance in this session? (Y/N) y

Type NOASSIST to exit assistance mode.

1. Design a tabular model.
2. Data entry: enter or revise cases.
3. Evaluate a model.
4. Search the data base of cases.
5. Describe command(s).
6. Exit SEEK directly.
Choose a number 3

Enter File Name, rheum

{The model designer specifies the name of a model to be tested.
This assumes that an initial design of the model exists. If the model
designer wants to enter or revise the model, request number 1 to
design a tabular model invokes as a subprocess the SEEK editor
consisting of a set of commands tailored to the tabular model structure.
For entering or revising the cases, request number 2 invokes the
EXPERT consultation program. In this session, the cases already have
been entered. The fourth request invokes a data base system for
querying the cases for obtaining statistical information. The subsystems
corresponding to the first 4 requests are accessed at this entry stage.
The model designer decides which subsystem to enter by responding
with the appropriate number. In this example, the model designer
wants to evaluate a rheumatology model. The response by SEEK to
most model designer requests is terminated with the symbols "WAIT>"
before moving onto the next menu list and is meant to control
scrolling on a video display terminal.}

WAIT>

1. Enter preconditions for evaluation.
2. Obtain model performance.
3. Exit this stage of model design.
Choose a number 1

{These items represent the actions the model designer can request
given that an evaluation of a model has been specified. The model
designer wants to specify conditions under which the evaluation is to



be performed. Note that the model designer can request that the
performance of the model be evaluated directly; in this case, default
conditional values are used. The third item which appears in each of
the following menu lists returns to the most recently displayed menu.
The next menu list contains the conditions which the model designer
may specify.}

1. Treatment of ties in scoring the cases.
2. Turn off cases and rules during evaluation.
3. Treatment of cases with >1 Reviewer conclusioa
4. Get Frequencies of majors and minors in all cases.
5. Exit this stage of model design.
Choose a number 1

Are ties in confidence assigned for the expert7 s conclusion and
the models different conclusion treated as OK, except when
tied confidence is (0) or (DEFINITE)? Default ties are OK
Answer Yes if Ties are OK. Answer No if Ties are WRONG (Y/N) y

{In the evaluation of this model, ties are to be treated as correctly
diagnosing the case.}

WAIT>

1. Treatment of ties in scoring the cases.
2. Turn off cases and rules during evaluation
3. Treatment of cases with >1 Reviewer conclusion.
4. Get Frequencies of majors and minors in all cases.
5. Exit this stage of model design.
Choose a number. 2

Rule Evaluation is currently turned off for conclusion(s):

None

Relevant final conclusions:

(1) MCTD (2) RA (3) SLE (4) PSS (5) PM
(6) PRAYN (7) SJ (8) UCTD

Enter values: (or None or Same) 6:8

{Cases and rules for certain conclusions can be ignored in the
evaluation of the model. This is useful when it is known that certain
rules have (not) been adequately formulated or tested. In this
example, the rules and cases for conclusions primary Raynaud's
(mnemonic label PRAYN), Sjogren's syndrome (SJ) , and
undifferentiated connected tissue disease (UCTD) are to be turned off
and therefore ignored in the evaluation of the model. The rules and
cases for the 5 remaining conclusions will be evaluated.)



WAIT>

1. Treatment of ties in scoring the cases.
2. Turn off cases and rules during evaluation.
3. Treatment of cases with >1 Reviewer conclusion.
4. Get Frequencies of majors and minors in all cases.
5. Exit this stage of model desiga
Choose a number 3

For each case in which more than 1 "Reviewer7s diagnosis" is present,
should the diagnosis reached with greatest certainty among all the
"Reviewer's diagnoses" be used to evaluate the case? If not the first
"Reviewer's diagnosis" found will be used Default answer Yes. (Y/N) y

{Model evaluation assumes that there is a single expert's conclusion
stored for each case. The program uses the stored expert's conclusion
to compare with the model's result in order to determine if the case
is correctly diagnosed by the model. However, a case can have more
than one stored expert's conclusion. The question is how do we
evaluate a model for such a case? We have given the model designer
a simple option to indicate how these cases are to be evaluated. In a
case with more than one stored expert's conclusion, we assume that
each of the stored expert's conclusions is equally likely. A positive
response to item 3 means that among these stored expert's conclusions,
we will assign for evaluation purposes the conclusion reached with
greatest confidence by the model as the expert's conclusion. This
assignment remains fixed for the duration of the session. (A better
method not currently implemented is to have the expert rank his
conclusions for each case.) As an example, suppose a case has as
stored expert's conclusions Af B, and C. When this case is evaluated,
the model's confidence in each of these conclusions is ordered to pick
one to be the single expert's conclusion to compare with the model's
top ranked result If the model's confidence in each conclusion is
PROBABLE A, DEFINITE B, and PROBABLE C, then B is assigned as
the expert's conclusion to be compared with the model's result. A
negative response to item 3 means that the case is to be evaluated as a
sample of conclusion A.)

WAIT>

1. Treatment of ties in scoring the cases.
2. Turn off cases and rules during evaluation.
3. Treatment of cases with >1 Reviewer conclusion.
4. Get Frequencies of majors and minors in all cases.
5. Exit this stage of model design.
Choose a number 4

{This request causes a compilation of frequency data about each of
the majors and minors specified in the model over the entire data
base of cases. The data are saved according to the stored expert's
conclusions in a file as a percent of the frequency of occurrence of the
majors and minors in the cases. These data are used by the program
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to suggest rule refinements and can be inspected by the model
designer. As shown below, the program asks for the name of the
model and reports its dimensions (e.g., number of cases, findings,
rules) prior to compiling the statistics about the majors and minors.
We note that this request does not effect how the model is to be
evaluated, but rather causes the collection of data that may aid in
model refinement after the model is evaluated. It is not a conditional
setting like each of the previous three items in this menu.
Nevertheless, it is requested prior to the evaluation of the model to
improve the efficiency of the model refinement process, i.e., collecting
frequency data does not take into account the model's behavior and is
therefore relegated as a task separate from model evaluation. Because
of this, we chose to add this request to the menu of conditions for
evaluation which is presented before the menu for performance
evaluation.)

er File Name: rheum

, of Cases:
te of english:
, of findings:
. of hypos;
. of tables:
. of chunks:
. of rules:

146
1075
151
73
9

8U1
169

- up to 150
7500
920
500
50

5000
1200

\\T>

Treatment of ties in scoring the cases.
Turn off cases and rules during evaluation.
Treatment of cases with >1 Reviewer conclusion.
Get Frequencies of majors and minors in all cases
Exit this stage of model design.
Dose a number 5

{This last request by the model designer indicates that he has
completed entering the conditions for performance evaluation. The
conditional settings remain in effect for the duration of the session;
however, the model designer can at any time revise them. Figure 5-2
summarizes the conditions under which the RHEUM model is to be
evaluated.}



1. The model is to be scored as giving the correct diagnosis for cases
in which the model's confidence in the expert7 s conclusion is tied
with that for a different conclusion.

2. The evaluation of the model is to ignore cases and rules for three
conclusions.

3. A case with more than one stored experts conclusion is to be
evaluated as a sample of that conclusion with greatest confidence.

Figure 5-2: Conditions for performance evaluation

5.3. Analyzing the M o d e l s Performance

After specifying the conditions for performance evaluation, the next st

to obtain information about how well the model is performing. This section s

how the model designer can analyze performance by interrogating the results

SEEK7s evaluatioa The results can be presented on a case-by-case basts or

can be presented in summary form over ail cases in the data base. This

format provides the model designer with a view of the models performance

takes into account its overall experience with the cases.

This section shows an example of each of these two forms of n

From the model designer's perspective, the goal of this stage of the session

focus on specific parts of the model that are performing poorly on the data

of cases. As shown below, the model designer will decide to work on the

that conclude mixed connective tissue disease because of the poor results o

cases with this diagnosis.

1. Enter preconditions for evaluatioa
2. Obtain model performance
3. Exit this stage of model desiga
Choose a number 2

{At this stage, the model designer already has specified the
conditions for evaluation and wants to obtain the results of
performance evaluation.)

1. Performance results in all cases.
2. Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model desiga
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jose a number.

Current

MCTD
RA
SLE
PSS
PM

Total

1

Performance

True
9/

42/
12/
22/
k/

89/1

Pos
33
1*2
18
23
5

121

itives
(27%)

(100%)
(67%)
(96%)
(80%)

(74%)

False Posi ti\
0 (00%)
10 (13%)
k (04%)
4 (04%)
1 (01%)

ilse Positives - no. of cases in which the indicated conclusion was
sached by the model but did not match the stored expert's conclusion.

{The results are organized by final conclusion and show the
performance of the model on a data base of 121 cases. From this, the
model designer wants to see more detailed results about the conclusion
MCTD. An item in the next menu list allows the model designer to
do this.}

\\T>

List experiments about rule-refinement
Single case analysis of model.
See parts of model or detailed performance results.
Exit this stage of model design.
aose a number 3

See model parts - findings, conclusions, rules.
List the questionnaire for the model.
Description of majors and minors for a conclusion
Graphical performance summary of model.
Performance about a rule.
Obtain frequencies of majors/minors on certain cases.
Exit this stage of model design.
Dose a number 4



Select one of these choices:

(Press return for display of all conclusions):

DMCTD 2>RA 3)SLE

Enter number: 1

4)PSS 5)PM

Mixed connective tissue disease

10 -

5 -

84 RA

OK X
Definite

11
14
60
71
104
130

OK X
Probable

PSS
RA
RA
RA
RA
PSS

16
26
37
79
89
112
116
117
145

OK
Poss

1
4
12
15
42
57
78
107

X
ibie

PSS
SLE
RA
PSS
RA
SLE
SLE
SLE

47
49
67
75
80
93
99
100
105

X
Nul

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

1

OK: case # correctly diagnosed at indicated confidence level
X: case # incorrectly diagnosed as the associated conclusion

at the indicated confidence level

{This histogram presents the 33 MCTD cases with the model's
conclusion and confidence. Each case is labeled by a data base
reference number. The results include the 9 cases which were scored
correctly by the model and the model's confidence in MCTD for these
cases (i.e., the cofumm labeled "Possible" and "OK" for reaching the
correct conclusion, shows cases 16, 26, ..., 117, and 145J The other 24
MCTD cases are shown according to the model's confidence in the
incorrect conclusion. For example, the column labeled "Probable" and
"X" includes case 14 which should be MCTD but was incorrectly
diagnosed as probable RA. In fact, several MCTD cases were
misdiagnosed as probable RA, and therefore they account for many of
the false positives attributed to RA. This know/edge is used in section
5.6 to determine an experiment to specialize a rule. The rightmost
column labeled "NULL" shows cases for which no conclusion was
reached by the model. From these results, the model designer wants
to look at a single case (case 14). This is presented next)

WAIT>

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion.
4. Graphical performance summary of model.
5. Performance about a rule
6. Obtain frequencies of majors/minors on certain cases.



7. Exit this stage of model design.
Choose a number: 7

1. List experiments about rule-refinement
2. Single case analysis of model.
3. See parts of model or detailed performance results.
4. Exit this stage of model design
Choose a number. 2

Analysis basis - (1) Conclusion (2) Case: 2

Total number of cases: 146. Enter case number 14

CASE 14

Expert conclusion: Mixed connective tissue disease
Model conclusion: Probable Rheumatoid arthritis

Value of Expert conclusion by Model: Possible Mixed connective tissue disease

This is the rule for the expert's conclusion:

Rule 89: Y 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
Y Requirement 1 for Possible MCTD (RS102) (Satisfied)
Y — > Possible Mixed connective tissue disease (MCTD)

{Case 14 should be diagnosed as mixed connective tissue disease.
The model's strongest satisfied rule for this conclusion is rule 89.
The T " to the left of each component in the rule means that the
component was satisfied. Case 14 satisfied the two components in rule
89, namely, 2 majors and a requirement labeled RS102.}

This is the rule for the model's conclusion:

Rule 66: Y 2 or more Majors for RA (MJRA) (2 Majors Satisfied)
Y 2 or more Minors for RA (MNRA) (2 Minors Satisfied)
Y No Exclusion 1 for Probable RA (ER101) (Satisfied)
Y — > Probable Rheumatoid arthritis (RA)

{The model's incorrect conclusion is probable rheumatoid arthritis,
and rule 66 is responsible for reaching this conclusion. In terms of
refinement, citing this rule is meant to suggest that rule 66 should be
specialized to reduce its impact on case 14. To correct the case by
changing rules for the expert's conclusion of mixed connective tissue
disease, rule 91 is shown below as a candidate rule for
generalization.)

MCTD rule triggered, checking for partially satisfied rules



>= than that set by RA rule

There exists 1 partially satisfied rule for MCTD with weight assignment
>= than that set by RA rule

Rule 91: Y 2 or more Majors for MCTD (MJMCT) (2 Majors Satisfied)
N 2 or more Minors for MCTD (MNMCT) (1 Minors Satisfied)
N Requirement 1 for Probable MCTD (RR102) (Not Satisfied)
N —> Probable Mixed connective tissue disease (MCTD)

WAIT>

1. See model parts - findings, conclusions, rules.
2. Performance about a rule.
3. Graphical performance summary of model.
4. Data entry: enter or revise cases.
5. Exit this stage of model design.
Choose a number S

{From the results shown about the performance of the model on the
MCTD cases and including the specific analysis in case 14, the model
designer decides to experiment with changes of the MCTD rules. This
is presented in the next section.)

5.4. Generation of Rule Refinement Experiments

This section shows how the model designer interacts with SEEK to <

experiments about changing the rules for MCTD. From his point of view, the

of this section is to arrive at a decision about which rules, if any, are t

modified and how they should be changed To do this, the model designer

requests experiments about rule refinement for MCTD. Next, he select

experiment to investigate, which is aided by the program's explanation of

experiment Finally, SEEK presents the rules involved in this experiment This

systematic procedure that is carried out easily because of SEEK's guidance fac

Although the model designer can request a display of summary information -

the cases supporting particular experiments, this is not included in this sectic

keep the session brief. In section 5.6, we include an example of the surr

information to help clarify the process of specializing a rule.



.1st experiments about rule-refinement
Single case analysis of model.
See parts of model or detailed performance results.
Exit this stage of model design.
>ose a number 1

ect one of these choices:

DMCTD 2)RA 3)SLE 4)PSS 5)PM

er number 1

{The model designer requests experiments about rule refinement for
the rules that conclude MCTD. S££/f's response includes a list of the
numeric labels for the cases mi sd tag nosed by the model. This is
followed by a list of experiments ordered according to the maximum
potential gain that can be achieved in correcting the cases.}

I cases in which the expert7s conclusion MCTD does not
tch the model's conclusion:

1, 4, 11, 12, 14, 15, 42, 47, 49, 57, 60, 67,
M, 75, 78, 80, 84, 93, 99, 100, 104, 105, 107, 130,

Proposed Experiments for Mixed connective tissue disease

Delete the requirement component in rule 89.

Decrease the number of minors in rule 88.

Decrease the number of minors in rule 91 .

Delete the requirement component in rule 92.

Why do an experiment?
View tradeoff of cases supporting refinement of rules.
List experiments about rule-refinement
See parts of model or detailed performance results.
Try an experiment
Refine an experiment
Rank experiments by potential ease of change.
Compare pairs of experiments.
Exit this stage of model design.
Dose a number: 1
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{The model designer wants to look at the experiment to delete the
requirement component in rule 89, because it is the program1 s highest
ranked experiment according to potential performance improvement.
The program's explanation for this experiment is shown here.}

Enter experiment number
*1

If rule 89 had been satisfied, 9 currently misdiagnosed MCTD cases
would have been diagnosed correctly. Currently, rule 89 is not used
incorrectly in any of the cases with diagnoses other than MCTD. In rule
89 the component missing with the greatest frequency is "Requirement".

Therefore, we suggest to Delete the requirement component in rule 89.
This would generalize the rule so that it will be easier to satisfy.

WAIT>

1. Why do an experiment?
2. View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement
4. See parts of model or detailed performance results.
5. Try an experiment
6. Refine an experiment
7. Rank experiments by potential ease of change.
8. Compare pairs of experiments.
9. Exit this stage of model desiga
Choose a number 4

{At this point, the model designer can do several things. For
instance, he can obtain an explanation for any of the other experiments.
The cases supporting an experiment and subparts of the model can be
presented. An experiment can be tried. The experiments can be
ranked and compared according to expected ease of change. Although
it is not shown in the transcript, this ranking is based on a
prespecified list of items for change that is also used to select
components for specialization in a rule. In our example, the model
designer decides to continue with the experiment of deleting the
requirement component in rule 89 by investigating this rule.}

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion
4. Graphical performance summary of model.
5. Performance about a rule.
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design.
Choose a number 1

Enter finding/conclusion mnemonic or rule number
*89
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Rule 89: 2 or more Majors for MCTD (MJMCT)
Requirement 1 for Possible MCTD (RS102)
—> Possible Mixed connective tissue disease (MCTD)

{From this, the model designer will investigate RS102 since it is
the most frequently missed component among the 9 cases supporting
the generalization of rule 89.}

WAlT>

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model
3. Description of majors and minors for a conclusion.
4. Graphical performance summary of model.
5. Performance about a rule.
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design
Choose a number 1

Enter finding/conclusion mnemonic or rule number
*rs102

Hypothesis: RS102
Requirement 1 for Possible MCTD

Rules that conclude Requirement 1 for Possible MCTD

Rule 87: Other Laboratory Findings: RNP antibody (imm) [RNP, TRUE]
positive EN A, Med titer [ENAM, 0.9 : 1]
—> Requirement 1 for Possible MCTD [RSI02, 1]

{The rule 87 can be investigated further by requesting the
components labeled RNP and ENAM. Nonetheless, this rule with its
conditions that are either explicitly shown or summarized into an
intermediate result referenced in rule 87 corresponds directly to a
component in the tabular model for MCTD. Since the components
specified in the tabular structure of majors, minors, requirements, and
exclusions have meaning to the model designer (he created it), the
experiment to delete the requirement component contests the need for
this component to reach the diagnosis of "possible" mixed connective
tissue disease. Because of this, the model designer should rethink the
specific conditions. Ultimately, an experiment should be tried. As
shown in the next section, the model designer will take the advice to
delete the requirement component If this is not acceptable, SEEK
facilities allow the model designer to obtain more performance
information about the requirement component by requesting a
refinement of this experiment.}

WAIT>



1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion.
4. Graphical performance summary of model.
5. Performance about a rule. *
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design.
Choose a number: 7

5.5. An Experiment that Generalizes a Rule

This section shows how the model designer can actually modify the rules.

For each modification, the program prompts the model designer for the type of

change, the rule to change, and the component to change. After entering the

desired changes, the experiment is executed by running the updated model on all

cases in the data base The changes are saved in order to restore the model to its

predecessor state The result of the experiment is a Before/After summary of

performance on the cases. From this, the model designer can accept or reject the

changes.

1. Why do an experiment?
2 View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement
4. See parts of model or detailed performance results.
5. Try an experiment
6. Refine an experiment
7. Rank experiments by potential ease of change
8. Compare pairs of experiments
9. Exit this stage of model design
Choose a number 5

{An experiment to change the rules is requested by the model
designer. Continuing with our example of the last section, the
experiment is to delete the requirement component from rule 89. The
model designer is prompted for his change.)

1. Conditionally incorporate rule-refinements.
2. Exit this stage of model design.
Choose a number 1

Select one of these:
(DChange confidence for a rule
(2)Weaken a rule (decrease/delete components)
(3)Strengthen a rule (increase/add components)
(4)lnsert a rule
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Enter number: 2

Enter rule number. 89

Change number of majors or minors in rule?
(Y/N): n

Select component to weaken in rule:
1) MJMCT
2) RS102

Enter number: 2

{At this point, the program shows the model designer's change to
rule 89.}

Candidate for Change is RS102 in rule 89

Rule 89 is:

Rule 89: 2 or more Majors for MCTD (MJMCT)
Requirement 1 for Possible MCTD (RS102)
— > Possible Mixed connective tissue disease (MCTD)

Generalization of Rule 89 is:

Rule 89: 2 or more Majors for MCTD (MJMCT)
— > Possible Mixed connective tissue disease (MCTD)

{The program runs the updated model on the data base of cases.
This takes about 15 CPU seconds for this model (about 8 caseslCPU
second). Since runtime performance also varies with the size of the
model and the number of cases, we've tried two other models
developed with the SEEK program. One is an expanded version of
this rheumatology model, and the other is a model in dermatology*
These models are each much larger (e.g., by a factor of 6 in the
number of conclusions and findings for the expanded model in
rheumatology) with data bases of 150 and 200 cases, respectively.
Even with these models, the runtime performance is about 3 cases/CPU
second. The point is that the program actually performs the
experiment in real time, and it has proven not to be unbearably long
to wait for the results. The results of the model designer's
experiment is shown next,}



MCTD

Others

Total

Before

9/ 33

80/ 88

89/121

(27%)

(91%)

(74%)

False
Posi tives

0

After

17/ 33

80/ 88

97/121

(52%)

(91%)

(80%)

False
Posi tives

0

Others

RA
SLE
PSS
PM

42/
12/
22/
4/

42
18
23
5

(100%)
(67%)
(96%)
(80%)

10
4
4
1

42/
12/
22/
4/

42
18
23
5

(100%)
(67%)
(96%)
(80%)

9
3
2
1

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

Do you want to incorporate this fix into a new model version? (Y/N) y

Reference label for current version: KB1,

WAIT>

1. Accept refinement
2. Reject refinement
3. Exit this stage of model design.
Choose a number 1

{The model designer accepts the refinement to rule 89, because of
its favorable impact on the MCTD cases (8 cases are corrected). There
is no adverse effect on other cases, i.e., no cases which were
previously diagnosed correctly are mi sd fag nosed by the updated
model.}

5.6. An Experiment that Specializes a Rule

In this section, the model designer focuses on the RA rules for refinement

Why not continue with the MCTD rules? A significant improvement in performance

was obtained by the last experiment on the MCTD rules. And the performance of

the MCTD rules is still not comparable to the performance of the other rules. Then

why consider the RA rules? The answer is that the model designer is not ignoring

the MCTD rules but rather, as part of the analysis that led to requesting experiments



about the MCTD rules, the model designer saw in the histogram several MCTD cases

which were misdiagnosed as RA Because of this, the designer now wants to

experiment with rules that apparently should be specialized to reduce their impact

on the MCTD cases. Therefore, the part of the session shown in this section

focuses on the RA rules that apply to cases misdiagnosed as RA when they are

MCTD.

1. Performance results in all cases.
2 Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model design.
Choose a number 1

{The model designer requests the performance summary, which
reflects the results of the experiment tried and accepted to generalize
rule 89.)

Current Performance

True Positives False Positives
MCTD 17/ 33 (52%) 0 (00%)
RA h2/ k2 (100%) 9 (11%)
SLE 12/18 (67%) 3 (03%)
PSS 22/ 23 (96%) 2 (02%)
PM k/ 5 (80%) 1 (01%)

Total 97/121 (80%)

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

WAIT>

{The model designer requests rule refinement experiments about the
rules for rheumatoid arthritis (RA).}

1. List experiments about rule-refinement
2. Single case analysis of model.
3. See parts of model or detailed performance results.
4. Exit this stage of model design.
Choose a number 1

Select one of these choices:

DMCTD 2)RA 3)SLE 4)PSS 5}PM

Enter number 2

0 cases in which the expert7 s conclusion RA does not
match the models conclusion:



Proposed Experiments for Rheumatoid arthritis

1. Change confidence level for rule 66 from Probable (0.7) to Possible (0.4).

2. increase the number of minors in rule 66.

3. Increase the number of minors in rule 65.

4. Increase the number of minors in rule 64.

5. Change confidence level for rule 67 from Definite (0.9) to Probable (0.7).

6. Increase the number of majors in rule 67.

WAIT>

{As was done for the experiments to refine the MCTD rules in the
last section, the model designer selects the first experiment to
investigate. This experiment is ranked number one in terms of
potential gain in performance.}

1. Why do an experiment?
2. View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement
4. See parts of model or detailed performance results.
5. Try an experiment
6. Refine an experiment
7. Rank experiments by potential ease of change.
8. Compare pairs of experiments.
9. Exit this stage of model design
Choose a number 1

Enter experiment number
*1

Currently, rule 66 is satisfied in 8 cases with diagnoses other than RA.
If rule 66 had not been satisfied, 6 of these cases (14,60,71,73,124,3)
would have been diagnosed correctly. Also, 2 cases (104,84) will have a
better chance of being correctly diagnosed if ruie 66 is not satisfied.
Even though rule 66 is used correctly 27% of the time it is satisfied, it
is significant to the final diagnosis 0% of the time.

Therefore, we suggest to Change confidence level for rule 66 from
Probable (0.7) to Possible (0.4). This would weaken the impact of
the rule so that it will allow other rules to possibly correct
misdiagnosed cases.



{This explanation emphasizes the "known" performance gain that the
experiment would accomplish. Indeed, gathering predictive statistics
to suggest an experiment is our goal, particularly for suggesting a
change in a rule's confidence. This is critical because of the effect
the experiment may have on the model designer's reasoning. By
moving a rule to a different confidence level, the model designer's
belief in the importance of criteria that are in the rules for a
particular tabular model may be changed. This could be complex to
resolve. Perhaps we should have chosen not to suggest experiments of
this kind. Obviously we didn't, because the conditions expressed in
the heuristics described in section 4.2 require know/edge of definite
performance improvements in order to suggest the experiment. These
improvements which are shown in the explanation are intended to
minimize drastic changes in the model designer's reasoning. If the
experiment is tried and accepted fin this session, it will be), the
model designer should reconsider the criteria in the specific RA rules
at the "possible" confidence level. Although this can lead to a
reworking of the RA criteria which is effectively done with the SEEK
editor. The point here is that the experiment is suggested only when
the effect of changing a rule's confidence is known to be strongly
favorable for a rule's performance. The cases supporting this
experiment are shown next.}

WAIT>

1. Why do an experiment?
2. View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement
4. See parts of model or detailed performance results.
5. Try an experiment
6. Refine an experiment
7. Rank experiments by potential ease of change
3. Compare pairs of experiments.
9. Exit this stage of model design.
Choose a number 2

0 cases in which the expert's conclusion RA does not
match the model's conclusion:

Rheumatoid a r t h r i t i s

Rule

65.

66.

Certainty

Possible

Probable

Oefini te

0

0

0

No. of Cases Suggesting No. of Cases Suggesting
Generalization Speciali2ation

1

7

1



WAIT>

1. Cases which support the generalization of a rule.
2 Cases which support the specialization of a rule
3. See model parts - findings, conclusions, rules.
4. Data entry: enter or revise cases.
5. View tradeoff of cases supporting refinement of rules.
6. Exit this stage of model design.
Choose a number 2

Enter rule number

(Press return to list ail rules with rule-refinement evidence):
*66

Case (#major/#minor)
Expert's Conclusion

RULE

66. Probable Ik (2/1) 60 (3/1) 71 (2/1) 10k (0/2) 73 (1/3)
(2/2) MCTD MCTD MCTD MCTD SLE

124 (2A) 3 (1/3) 84 (3/D
SLE PSS *MCT0

{These are the cases supporting the specialization of rule 66. Case
84 is distinguished from the others with an asterik to indicate that
rule 66 was not directly responsible for the incorrect diagnosis.
Rather rule 66 was secondary to another rule which fired the primary
incorrect diagnosis in case 84. The model designer notes that most of
the other 7 cases should he MCTD. Therefore, the experiment to
change rule 66/s confidence should have its greatest impact on the
MCTD cases; this is already known by the model designer since he saw
these misdiagnosed cases in the histogram for MCTD. Nonetheless, this
points out the two primary ways the program allows the model
designer to view misdiagnosed cases - one from the expected
conclusion (MCTD) and the other from the model's incorrect conclusion
(RAJ.}

WAIT>

1. Cases which support the generalization of a rule.
2. Cases which support the specialization of a rule.
3. See model parts - findings, conclusions, rules.
4. Data entry: enter or revise cases.
5. View tradeoff of cases supporting refinement of rules.
6. Exit this stage of model desiga
Choose a number 6

1. Why do an experiment?
2 View tradeoff of cases supporting refinement of rules.
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.ist experiments about rule-refinement
>ee parts of model or detailed performance results.
"ry an experiment
tefine an experiment
tank experiments by potential ease of change.
Compare pairs of experiments.
Exit this stage of model desiga
>ose a number 5

{The model designer will try this experiment to decrease the
confidence level in of rule 66.}

Conditionally incorporate rule-refinements.
Exit this stage of model desiga
>ose a number 1

act one of these:
:hange confidence for a rule
Veaken a rule (decrease/delete components)
trengthen a rule (increase/add components)
tsert a rule
sr number 1

ar rule number 66

act new confidence for rule:
definite (2)Prcbabie (3)Possib!e (4)Null
sr number 3

Candidate for Change is rule 66

Rule 66 is:

le 66: 2 or more Majors for RA iMJRA)
2 or more Minors for RA (MNRA)
No Exclusion 1 for Probable RA (ER101)
—> Probable Rheumatoid arthritis (RA)

Rule 66 is moved

le 66: 2 or more Majors for RA (MJRA)
2 or more Minors for RA (MNRA)
No Exclusion 1 for Probable RA (ER101)
—> Possible Rheumatoid arthritis (RA)
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RA

Others

Total

Before

42/ 1*2

55/ 79

97/121

(100%)

(70%)

(80%)

False
Posi tives

9

After

42/ 42

61/ 79

103/121

(100%)

(77%)

(85%)

False
Posi tives

3

Others

MCTD
SLE
PSS
PM

17/
12/
22/
4/

33
18
23
5

(52%)
(67%)
(96%)
(80%)

0
3
2
1

20/
14/
23/
4/

33
18
23
5

(61%)
(78%)

(100%)
(8o%)

0
3
2
1

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

Do you want to incorporate this fix into a new model version? (Y/N) y

Reference label for current version: KB2.

WAIT>

1. Accept refinement
2. Reject refinement
3. Exit, this stage of model desiga
Choose a number 1

{The model designer accepts the refinement which improves the
performance of the model. At this point, the SEEK editor could be
invoked to reconsider the criteria in the table for RA, because the
conditions in the rules at the "possible" level may need adjustments.
This may involve changes that are as simple as removing logical
redundancy among these rules or a reworking of the criteria that form
the majors and minors for RA. The important point is that the model
designer has knowledge of the performance of his criteria to guide his
reformulation. In any event, two experiments have been tried and the
results have been accepted. The next section shows the refinement of
an experiment that occurs at a later point in the session.}



5.7. An Experiment that Adds a Component to a Rule

In this section, we pick up the session after a few more refinements have

been made to the rules in the RHEUM model. (The specific refinements were the

removal of two rules from the RA table and were done in the SEEK editor) We

show an experiment that specializes a rule by adding a component to its conditions.

The important point about this experiment is how the model designer arrives at

trying it The actual experiment tried is a refinement of an experiment previously

suggested This section shows how SEEK assists the model designer to investigate

detailed performance information brought to his attention by an experiment The

model designer is interested in specializing rules for progressive systemic sclerosis

which are responsible for incorrectly diagnosing MCTD cases. First the histogram

shown earlier in section 5.3 is used again to determine that a specialization of rules

for progressive systemic sclerosis (PSS) is a possible way of correcting the

misdiagnosed MCTD cases. Secondly, the model designer requests rule refinement

experiments. After selecting an experiment the model designer asks for a

refinement of this experiment because it doesn't indicate a specific change Finally,

the experiment is tried

1. Performance results in ail cases.
2. Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model desiga
Choose a number. 1

Current Performance

True Positives False Positives
MCTD 25/ 33 (76%) 0 (00%)
RA k2/ k2 (100%) 2 (03%)
SLE 1V 18 (78%) 1 (01%)
PSS 23/ 23 (100%) 2 (02%)
PM k/ 5 (80%) 1 (01%)

Total 108/121 (89%)

False Positives - no* of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

WAIT>
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{As noted earlier, the model designer must select the parts of the
model that the program will work on. The performance summary
shown above helps in this selection. The model designer wants to
improve the performance of the MCTD cases. The same mode of
investigation used in section 5.3 is applied again to the MCTD cases.
The model designer requests a histogram of performance for the MCTD
cases. This is shown next.}

1. List experiments about rule-refinement
2. Single case analysis of model.
3. See parts of model or detailed performance results.
4. Exit this stage of model design.
Choose a number 3

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion.
4. Graphical performance summary of model.
5. Performance about a rule
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model desiga
Choose a number 4

Select one of these choices:

(Press return for display of all conclusions):

DMCTD 2)RA 3JSLE 4)PSS 5)PM

Enter number. 1



Mixed connective tissue disease

26
25 -

20 •

1 5 •

10 •

5 •

84 RA

OK X
Defini te

11 PSS
130 PSS

OK X
Probable

1
4
12

15
16
26
37
42
47
57
60
67
71
79
80
89
93
100
105
107
112
116
117 78 SLE
145 104 RA

OK X
Possible

49 NULL
75 NULL
99 NULL

X
Null

OK: case # correctly diagnosed at indicated confidence level
X: case # incorrectly diagnosed as the associated conclusion

at the indicated confidence level

{There are two interesting things about this histogram. First, the
determination of PSS as the part of the mode/ to work on next is
shown by the two MCTD cases misdiagnosed as PSS in the column
labeled "Probable" and "X". Secondly, the fact that all the correct
diagnoses occur at the "possible" confidence level deserves attention.
The reason for this is based on the method by which generalization
statistics are gathered. The closeness measure used to select a
candidate rule for generalization leads to a choice of the rule which
requires as little modification, and minimal confidence to correct the
case. Assuming that the cases are accurately entered, there are two
situations to consider. If all the data for MCTD is known for each of
the cases, then the results mean that the cases manifest the disease
weakly and what may be needed now is to collect cases which are
believed to be more solid examples of the disease MCTD, i.e., they
presumably would be diagnosed at the "definite" confidence level by
the model. In this situation, another possibility is to weaken the rules
at the "definite" and "probable" confidence levels without specific
know/edge about their performance. On the other hand, if all the data



about MCTD is not known, then the results are probably accurate. As
an insurance, these cases should be reviewed first, to verify the
accuracy of the data, but more importantly to verify that the specific
confidence in MCTD is "possible".}

WAIT>

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion
4. Graphical performance summary of model.
5. Performance about a rule.
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design.
Choose a number 7

1. List experiments about rule-refinement
2. Single case analysis of model.
3. See parts of model or detailed performance results.
4. Exit this stage of model desiga
Choose a number 1

Select one of these choices:

DMCTD 2>RA 3)SLE 4)PSS 5)PM

Enter number 4

{The model designer requests experiments about PSS.}

0 cases in which the expert7 s conclusion PSS does not
match the model '$ conclusion;

Proposed Experiments for Progressive systemic sclerosis

1. Change confidence level for rule 136 from Probable (0.7) to Possible (0.4).

2. Strengthen the requirement component in rule 136.

WAIT>

{The model designer focuses on the second experiment by requesting
the program*s explanation for doing this. The alternative is of no
interest to the model designer. The explanation is shown next.}

1. Why do an experiment?
2. View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement



See parts of model or detailed performance results.
Try an experiment
Refine an experiment
Rank experiments by potential ease of change.
Compare pairs of experiments.
Exit this stage of model design
Dose a number 1

:er experiment number

Currently, rule 136 is satisfied in 2 cases with diagnoses other than
PSS. If rule 136 had been satisfied none of the currently
misdiagnosed PSS cases would have been diagnosed correctly. Even
though rule 136 is used correctly 37% of the time it is satisfied it is
significant to the final diagnosis 0% of the time. Rule 136 does not
require any majors. Rule 136 does not require any minors.

Therefore, we suggest to Strengthen the requirement component in rule
136. This would specialize the rule so that it will be harder to
satisfy.

Why do an experiment?
View tradeoff of cases supporting refinement of rules.
List experiments about rule-refinement
See parts of model or detailed performance results.
Try an experiment
Refine an experiment
Rank experiments by potential ease of changa
Compare pairs of experiments.
Exit this stage of model desiga
oose a number 4

{The model designer requests to see the rule 136 which is used
incorrectly in two cases. The model designer a/ready knows from the
histogram for MCTD that the two cases should be MCTD. Even if these
cases are not known, the model designer can see them by requesting
the cases that support the specialization of rule 136.}

See model parts - findings, conclusions, rules.
List the questionnaire for the model.
Description of majors and minors for a conclusion.
Graphical performance summary of model.
Performance about a rule
Obtain frequencies of majors/minors on certain cases.
Exit this stage of model desiga

loose a number 1

iter fiQding/conclusion mnemonic or rule number:
36



Rule 136: Requirement 1 for Probable PSS (RR104)
No Exclusion 1 for Probable PSS (ER104)
—> Probable Progressive systemic sclerosis (PSS)

{From this, the model designer will investigate the requirement
nponent labeled RR104.}component labeled RR104.}

WAIT>

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusioa
4. Graphical performance summary of model.
5. Performance about a rule.
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design.
Choose a number 1

Enter finding/conclusion mnemonic or rule number
*rr104

Hypothesis: RR104
Requirement 1 for Probable PSS

Rules that conclude Requirement 1 for Probable PSS

Rule 133: Skin Findings: Diffuse sclerosis, extending above wrists [SCLER,
TRUE]
~> Requirement 1 for Probable PSS [RR104, 1]

{Rule 133 is a simple rule consisting of a single condition that the
finding of sclerosis must be true for the requirement component to be
satisfied. At this point, the model designer decides to take the advice
for strengthening the requirement. He could add a component on his
own or he can have the program suggest a specific component. To
follow this latter direction the model designer asks for a refinement
to the experiment.)

WAJT>

1. See model parts - findings, conclusions, rules.
2. List the questionnaire for the model.
3. Description of majors and minors for a conclusion.
4. Graphical performance summary of model.
5. Performance about a rule.
6. Obtain frequencies of majors/minors on certain cases.
7. Exit this stage of model design.
Choose a number. 7

1. Why do an experiment?
Z View tradeoff of cases supporting refinement of rules.



Jst experiments about rule-refinement
See parts of model or detailed performance results.
fry an experiment
Refine an experiment
Rank experiments by potential ease of changa
Compare pairs of experiments.
Exit this stage of model design.
:>ose a number 6

{Requesting a refinement of an experiment invokes the next menu
from which several items can be selected besides the actual
refinement.}

Refine an experiment
List experiments about rule-refinement
See model parts - findings, conclusions, rules.
Obtain frequencies of majors/minors on certain cases.
Exit this stage of model design.
Dose a number 1

er experiment number

{The model designer specifies the number of the experiment to be
refined. The program scans the experiment to recognize that it
suggests to strengthen the requirement component and responds with a
question about the criteria to be used for selecting a component to be
added to the requirement.}

Rule 136 concludes at probable confidence level. Do you want to
strengthen rule 136 using Majors or Minors for PSS? We suggest the
Major criteria labeled: MJPSS.

Enter mnemonic- MJPSS or MNPSS or Press Return for our suggestion: tnjpss

{The model designer selects the major criteria for PSS. At this
point the program invokes a heuristic rule that operates iteratively over
the chosen criteria. This process involves selecting a component, filling
the heuristic rule with the appropriate data and evaluating the
conditions (described in section 4.4.2) for satisfaction. As shown
below, the program responds even when the heuristic rule fails and
cites the component whose statistics caused the failure. In this
instance, the information about the component labeled SACDV is a
useful by-product of the process of evaluating the heuristic rule. The
point is that although we want to find a component satisfying certain
constraints, a component (SACDV) is found along the way which a/ready
has been identified by the model designer to be important in reaching
the conclusion PSS but doesn't manifest itself in the PSS cases. It
should be reviewed by the expert. This is shown next.}

SACDV does not occur in any of the MCTD cases but also, does not appear
in any of the PSS cases. We suggest to rethink whether the component
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labeled SACDV is consistent with the Major criteria for PSS.

{The next response is due to the satisfaction of the heuristic rule on
the component labeled PSSBX. The program links the experiment
requested for refinement with the new (refined) experiment number 3.}

Refinement for experiment #2 to Strengthen the requirement component in
rule 136.

3. Add the component labeled PSSBX from MJPSS to rule 133.

{The explanation of this experiment is shown next.}

MCTD is the expert7 s conclusion in most cases misdiagnosed by rule 136.
PSSBX in the Majors for PSS, occurs in only 6% of the MCTD cases.
Further, PSSBX occurs in 56% of the PSS cases. PSSBX appears to be
consistent with PSS.

Therefore, we suggest to Add the component labeled PSSBX from MJPSS to
rule 133. This would specialize the rule so that it will be harder to
satisfy.

{At this point, the model designer must rationalize whether this
component labeled PSSBX does fit into his expectation about the
diagnosis of "probable" progressive systemic sclerosis. Even though
the heuristic is satisfied with empirically sound reasons for selection
of this component, the model designer should consider its medical
relevance. Next, the model designer does indeed decide to try the
experiment.}

WA1T>

1. Refine an experiment
2. List experiments about rule-refinement
3. See model parts - findings, conclusions, rules.
4. Obtain frequencies of majors/minors on certain cases.
5. Exit this stage of model design.
Choose a number. 5

1. Why do an experiment?
2. View tradeoff of cases supporting refinement of rules.
3. List experiments about rule-refinement
4. See parts of model or detailed performance results.
5. Try an experiment
6. Refine an experiment
7. Rank experiments by potential ease of change.
8. Compare pairs of experiments.
9. Exit this stage of model design.
Choose a number 5



1. Conditionally incorporate rule-refinements.
2. Exit this stage of model design.
Choose a number 1

Select one of these:
(DChange confidence for a rule
(2)Weaken a rule (decrease/delete components)
(3)Strengthen a rule (increase/add components)
(4)lnsert a rule
Enter number 3

{The experiment to add the component labeled PSSBX to the
requirement is tried by entering the specific modification in response
to the following prompts.}

Enter rule number 133

Change number of majors or minors in rule?
(Y/N): n

Enter mnemonic of component to add to the rule: pssbx

{The program shows the result of the rule1 s modification next. If
errors are noted, the model designer reenters his modification request.)

Candidate for Change is rule 133

Rule 133 is:

Rule 133: Skin Findings: Diffuse sclerosis, extending above wrists [SCLER,
TRUE]
—> Requirement 1 for Probable PSS [RR104, 1]

Specialization of Rule 133 is:

Rule 133: Skin Findings: Diffuse sclerosis, extending above wrists [SCLER,
TRUE]
Skin Findings: Skin bx diagnostic of PSS [PSSBX, TRUE]
—> Requirement 1 for Probable PSS [RR104, 1]

{At this point, the program executes the updated model on the cases.
The results include the improvement in performance (gain of one case).
The model designer can reconsider the result of the one MCTD case
still misdiagnosed as PSS in light of this experiment. One possibility
is that the case may have errors in its data, including the possibility
that the expected conclusion of MCTD may be wrong. This is easily
determined through the single case analysis mode shown earlier. In
this session, the model designer decides to accept the revision.)
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Before

PSS 23/ 23 (100%)

Others 85/ 98 (87%)

Total 108/121 (89%)

False
Posi tives

2

After

23/ 23

86/ 98

109/121

(100%)

(88%)

(90%)

False
Posi tives

1

Others

MCTD
RA
SLE
PM

25/
42/
14/
4/

33
42
18
5

(76%)
(100%)
(78%)
(80%)

0
2
1
1

26/
42/
14/
4/

33
42
18
5

(79%)
(100%)
(78%)
(80%)

0
2
1
1

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

Do you want to incorporate this fix into a new model version? (Y/IM) y

Reference label for current versiorc KB5.

WAIT>

1. Accept refinement
2. Reject refinement
3. Exit this stage of model desiga
Choose a number 1

WAIT>

1. Performance results in all cases.
2. Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model design.
Choose a number. 1
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Current Performance

HCTO
RA
SLE
PSS
PM

Total

True
26/
Ul/
1V
23/
k/

109/1

Pos
33
42
18
23
5

21

i tives
(79%)

(100%)
(78%)

(100%)
(80%)

(90%)

False
0
2
1
1
1

Posi tives
(00%)
(03%)
(01%)
(01%)
(01%)

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert/s conclusion.

WAIT>

1. List experiments about rule-refinement
2 Single case analysis of model.
3. See parts of model or detailed performance results.
4. Exit this stage of model desiga
Choose a number 4

1. Performance results in all cases.
2. Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model desiga
Choose a number 3

Reference label for current version: KB5.

{The model designer has tried 5 experiments in this session, three
of which have been shown in this transcript. The model designer has
the option to continue, to save the results of this session, or to go back
to earlier versions of the model in this session, where a version
corresponds directly to a particular experiment. In this session, the
model designer decides to back up to the beginning of the session.)

WAIT>

1. Save current version of model.
2. Back up to earlier version of model.
3. Ignore current session, and start new sessioa
4. Exit this stage of model desiga
Choose a number 2

Enter version number or negative number to back up:
*0

4r\r



WAIT>

1. Performance results in ail cases.
2. Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model design.
Choose a number 1

Current

MCTD
RA
SLE
PSS
PM

Total

Performance

True Pos
9/ 33

42/ 42
12/ 18
22/ 23
4/ 5

89/121

iitives
(27%)
(100%)
(67%)
(96%)
(80%)

(74%)

False
0
10
4
4
1

Positives
(00%)
(13%)
(04%)
(04%)
(01%)

False Positives - no. of cases in which the indicated conclusion was
reached by the model but did not match the stored expert's conclusion.

{At this point, the state of the model is restored. The modei
designer terminates the session.}

WAIT>

1. List experiments about rule-refinement
2. Single case analysis of model.
3. See parts of modei or detailed performance results.
4. Exit this stage of modei design
Choose a number 4

1. Performance results in all cases.
2 Individual case results.
3. Version of model during current session in SEEK.
4. Exit this stage of model design.
Choose a number 4

1. Design a tabular model.
2. Data entry: enter or revise cases.
3. Evaluate a model.
4. Search the data base of cases.
5. Describe command(s).
6. Exit SEEK directly.
Choose a number 6

[DONE]



5.8. Summary of a Session with SEEK

This chapter has illustrated an interactive session with SEEK in refining a

model. The model designer tests a model after specifying conditions under which

the evaluation is to be done. First he requests an evaluation. The results are

presented and analyzed A section of the model is identified for possible rule

refinement Second the model designer inquires for advice about improving the

performance of the model. The program replies with possible rule changes and

empirical reasons why they are suggested Third the model designer refines some

rules. The program runs the revised model on the data base of cases and reports

the results. This process is then repeated

The session demonstrated that performance information can be effectively

integrated into the process of expert model development A models performance

on a data base of cases is used to identify potential problems with the rules.

Performance information is accessed by the program in the form of summarized

statistics to suggest ways of correcting the problems. Finally, performance

summaries aid the model designer in empirically verifying his revisions. Command

facilities provide efficient examination of the model and its performance. Because

there are many things that the model designer can do in any one stage of the

session, we have implemented a guidance facility to simplify the selection of a

particular action by grouping various commands according to the stage of model

design in which they are most likely to be required. There are a several facilities

which the model designer did not use in the session although they appeared as

items in the menus. For instance, the editor for entering the expert7 s rules was

designed to be used straight-fcrwardly with commands tailored to the tabular model

structure.
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CHAPTER 6

DISCUSSION AND SUGGESTIONS
FOR FUTURE WORK

6.1. Results and Discussion

The goal of this research was to propose practical methods for building and

verifying the performance of expert models for realistic large-scale medical

applications. The thesis has described an interactive system that provides a unified

framework for designing and testing expert models, and applied it to the

development of a diagnostic consultation system in rheumatology. The

implementation and successful development of SEEK has demonstrated that

performance information can be integrated into the design stage of an expert model.

A models past experience in diagnosing cases can be efficiently utilized to

generate intelligent advice about refining a model's rules to improve performance.

Sections 6.1.1 through 6.1.4 review the main points which contribute to the

realization of this capability — Unified Framework for Model Design and Testing,

Tabular Model, Heuristics for Generating Advice, and Dual Sources of Knowledge.

6.1.1. Unified Framework for Model Design and Testing

Our specific result is that advice about rule refinement to improve a model's

performance can be generated in a unified framework for model design and testing.

In this section, we will review the interaction with the model designer.

The basic process in using SEEK is an incremental design of an expert model.

The model designer first enters his rules in the tabular model format Then cases
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1. evaluate the model on the test cases.

2. analyze the rules.

3. revise the rules.

All three steps are initiated by the model designer He decides, for example,

whether to look at the performance of the model with respect to all cases and

therefore obtain a global performance summary, or to investigate the performance

of the model on a single case. A more informative view is obtained from a

performance summary on all cases. The bottom-line results of the model show

exactly which of the major parts of the model are performing well and which are

not This eases the model designer's next step in selecting a part of the model to

investigate further

Unified Framework for Expert Model Design and Testing

• Expert-Derived Rules in a relatively simple model representation

• Case Experience in the form of stored cases with known diagnoses

• Can Build a Real-World Expert Model for large-scale diagnostic
application

Generation of Advice in the Design of an Expert Model

• Gather Performance Statistics about the Model at the Design Stage

• Can Generate Intelligent Advice about rule refinement to improve a
model's performance

Figure 6*1: Research Results

To get to the third step for revising the rules usually involves a lot of work

in determining which rule to revise and specific changes. It is in the second and

third step that SEEK can provide great assistance to the model designer The model

designer selects a tabular model and requests experiments about the rules, and SEEK



154

takes over to analyze the rules involved and to suggest likely changes.

The extent to which SEEK is a productive aid may be assessed by

considering the specific interaction with the model designer. We summarize below

certain points in the incremental design process where the model designer supplies

information:

1. the determination of conditions for evaluating the model;

2. the selection of a final conclusion for which rules are to be analyzed;

3. the selection of rule refinement experiments;

4. the review of the impact of an experiment

The model designer informs SEEK about characteristics of the domain and

about how to proceed in the design of a model at these four points. First the

conditions for evaluating the model require background information about the domaia

An important example is the treatment of ties in confidence between the expert's

conclusion for a case and the model's different conclusioa Here, knowledge about

how conclusions present themselves in the domain is incorporated into SEEK's

evaluation of a model. This impacts not only the explicit performance results but

also the kinds of rule refinements that the system will generate.6 In section 6.2, we

suggest an improvement on the specification of how ties should be treated by

considering individually the conclusions which may overlap and at particular

confidence levels.

5To say that SEEK begins its analysis at the second step technically is not true
since some of the performance statistics are already available from the performance
evaluation of the model on all cases. For example, the statistics about a rule's
correct use and significance are known and available particularly for evaluating the
heuristics. The three steps serve more as a guide in understanding the process than
in indicating specific sections of the program.

6ln the examples shown throughout the thesis, we have treated ties as correct
It should be clear that possibly very different results and experiments may appear if
ties are treated as incorrect (i.e., if the conclusions were considered mutually
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conclusions for which rules and cases should not be included in the evaluation of

the model. The benefits of this relate primarily to the practical aspects of model

design. For example, when rules have not been adequately prepared and cases are

not available for certain conclusions, the model designer can still proceed by

temporarily ignoring such conclusions.

After specifying the conditions for model evaluation and obtaining the results

of model evaluation, the model designer must select a conclusion for which rules

are to be analyzed for the generation of rule refinement experiments. This is a

means of forcing the model designer to think about his criteria The performance

summary of the model over all cases is the source from which this decision is

made. After selection, the experiments presented to the model designer must be

analyzed. We have emphasized this point at various times because it is here that

the consideration of other domain knowledge is critical to obtain a medically sound

set of rules. In section 6.2, we suggest a means of improving the selection of a

particular experiment by generating experiments over all conclusions. Also,

suggestions are presented for incorporating domain-specific knowledge into the

heuristics, and thereby, potentially focus on more relevant experiments than those

which rely on empirical information alone.

The last point in the incremental model design process is the acceptance or

rejection of the experiments Clearly, a definite improvement in performance of the

updated model on the cases is an important criterion for accepting an experiment

However, the results of an experiment may not show gain in performance and, in

fact, may cause a degradation in performance. The key criterion about whether to

accept an experiment is the model designer's belief in the adequacy or medical

relevancy of the specific rule refinements tried. This reemphasizes the importance

of the selection of an experiment where the model designer is expected to select

an experiment(s) that is most consistent with his domain knowledge. Finally,

performance results on all cases aid in the verification of the model.



In summary, we have identified explicit points where certain kinds of user-

specified information enters into empirical testing. Some information is entered

directly and will probably remain in effect for the duration of the model design

process (eg., the treatment of ties). Other information is specified following an

analysis of the following results: performance summary, the suggested experiments,

and the impact of experimental results. An area for future work lies in finding

ways of explicitly representing more of the background information used in the

analysis of these results.

6.1.2. Tabular Model

In this section, we review the tabular model for expressing and evaluating

expert decision-making knowledge and conclude the section with a discussion about

the model's general applicability.

6.1.2.1. Expressing Expert Knowledge

As a tool for encoding an expert's decision rules, the tabular model provides

a framework for reducing tine dimensionality inherent in large-scale medical

applications. A strongly related point concerns the tabular model's effectiveness

for expressing discrimination criteria To get a better understanding of these points,

let's review how the tabular model is put together.

The process of formulating a table for a given diagnosis requires two steps.

The first step is for the expert to list the findings which he believes are relevant in

reaching the diagnosis. Even though a set of such findings can be quite large, the

terms majors, minors, requirements, and exclusions are used to group findings

according to their importance and specific relevance in reaching a particular

diagnosis. These terms are relatively easy to understand particularly in medicine

where they have been used in formalizing criteria for various diseases.

The second step is to write the rules with respect to the three confidence



levels of definite, probable, and possible. An important organizational attribute of

the tabular model is that all rules for a given diagnosis are expressed together and

are ordered by the three confidence levels. The expert focuses on a confidence

level and formulates a rule as a conjunction of these components: numbers of

majors and minors, a requirement and an exclusion. The important aspect of this

rule formulation process is the semantics implicit in the components used to reach a

diagnosis. For instance, while the components consisting of a requirement and an

exclusion form the necessary conditions, one can think of the numbers of majors

and minors as sufficiency conditions for considering the diagnosis at a particular

confidence level.

The expression of discrimination criteria is an important part of rule

formulation for obtaining a model with realistic performance. In terms of the

tabular model discriminating criteria include the specific requirements which must be

satisfied to reach a diagnosis, and the exclusions which rule-out a diagnosis at a

particular confidence level The level of description of these conditions can be

refined by expressing intermediate rules; such a rule groups or summarizes particular

combinations of detailed findings which comprise and contribute to reaching a

requirement or exclusion. This is not to mean that just because the terms of

requirements and exclusions are available, one can easily write discriminating

diagnostic criteria This facility comes from the overall process of writing tabular

models systematically for each disease and of applying the fixed types of terms

uniformly. In doing so, the expert will have to consider the types of relations

among diseases for determining useful exclusions.

6.1.2.2. Evaluating Expert Knowledge

Since the models confidence in a diagnosis is directly determined from a

rule satisfied with greatest confidence, the expert knows how his rules are going to

be evaluated. Our experience has shown that even for an expert physician

previously unfamiliar with the tabular model, the tabular scheme for expressing rules

is quickly grasped.



A deterministic evaluation of rules in the tabular model is the foundation for

analyzing the performance of the models rules. SEEK can easily assess which rules

were correctly fired and which were not This has led to case analysis methods

that gather predictive statistics about rules to generalize and specialize.7

The tabular model format makes for an efficient translation into the EXPERT

syntax used by SEEK. This format imposes an ordering on the evaluation of rules—

for example, rules that conclude intermediate results such as the numbers of majors

and minors precede the final diagnostic rules. The model is automatically translated

into the EXPERT syntax. The translation is not a difficult process primarily because

simple representational structures in the EXPERT formalism are suitable for encoding

the tabular model. (Appendix B shows examples of the formats involved in the

translation of a tabular model.)

6.1.2.3. Applicability of the Tabular Model

Problems that can be cast as classification-type tasks may be suitable for

analysis by SEEK. The practical aspect of the consultation task is viewed as a single

session of diagnostic consultation, where all the case data are entered before the

final conclusions are analyzed If the problem can be put into the fixed structure of

the tabular model where the relevant decision-making knowledge can be represented

by production rules, then the interactive tabular model design and testing framework

provided by SEEK should be strongly considered to assist in expert model

development

The tabular model may prove quite reasonable for expressing knowledge

which has few deterministic logical criteria but rather many uncertainty relations with

It should be noted that logical analysis of the model structure may be performed
where certain kinds of checks would be beneficial—for example, simple logical
procedures such as checking for redundancies or gaps in the expression of
numbers of majors and minors between rules might be incorporated as a
subprocess of the SEEK editor. Some approaches to doing this kind of logical
analysis appear in [Politakis and Weiss 80].



varying individual contributions to the overall decision-making. This is the situation

for rheumatology. In this domain, the use of majors and minors provides a simple

initial level of abstraction to separate and test the importance of the criteria

In general the decision-making process in a domain should be largely based

on empirical associations in which the observations of the domain can be related to

majors, minors, requirements, and exclusions to effectively reduce the dimensionality

of the problem. In rheumatology for example, this has been highly successful

where there are hundreds of observations in the questionnaire of the latest model

(1982) which are manageably organized in the tabular model Although confidence is

fixed to 3 levels, this can ease the expert's task of writing rules, especially when

grappling with diagnoses that are overlapping and not mutually exclusive.

The tabular model may be inadequate for other application areas. Encoding

knowledge in terms of majors and minors may be difficult for some applications. In

such domains, the tabular model may still be used where all knowledge is encoded

as requirements and exclusions.8 However, without majors and minors (or any other

uniformly applied abstraction terms) and especially if dimensions are quite large, rule

formulation can be quite difficult Without the use of majors and minors there is a

loss both in the explicit structure and in the implicit semantics they provide to the

overall design of a model—this is critical to reduce the complexity of the rule

formulation process.

8 We note that SEEK can function without majors and minors, in which case the
rule refinements would be limited to removing or adding specific components. For
generalization experiments, this does not present any significant problems since the
component chosen for deletion is taken from the performance of the rule in which
the component is a part On the other hand, there is a problem in determining the
pre-conditions for adding a component to a rule. In the current scheme, the lists
of majors or minors are used to localize the selection of an item to add to a rule.
An extension to handle this is that frequency data about the items in the
requirements and exclusions of the rules could be complied over all cases and made
available for the expert to inspect



For other applications/ domain knowledge can have a richer inference

structure than that provided by the tabular model. For instance, it may be the case

that more refined levels of inferencing are needed than the three confidence levels

of definite, probable, and possible. Also, the tabular model framework does not

provide explicit links among tabular models (i.e., hierarchical or other descriptive

connections). However, hierarchical relations can be encoded in the rules of a

model and therefore would be included only as they pertain to decision-making in

the application area For instance, a reference of a disease as a major in one table

may be defined by another table to indicate a hierarchical relation.

Another consideration about the tabular model framework is that it does not

provide a means to specify control of the consultation session.9 There is no means

to indicate explicitly various questioning orderings directly in the tabular model.

During the execution of a consultation, there is limited interaction between the

questioning strategy and the evaluation of the model; questioning is done in a fixed

order before the model's rules are tried. We have largely ignored the user

interaction in the consultation session and have concentrated on acquiring the rules

that are useful for the consultation.

However, we do consider the questioning scheme an area of future work.

This can be complex since, on the one hand the simple scoring function affords the

ease with which rule experimentation can be done, yet, integrating control

information about questioning into the model's evaluation makes empirical analysis

less direct Ideally, we would want to give the capability of explicitly indicating

question ordering in the tabular model directly without sacrificing the predictive

analysis of the model's behavior. One possible direction to accomplish this is to

introduce another term in the tabular model which would reference a subset of the

majors and minors of a given table in a preferred order for questioning. The idea

9 [Aikins 803 shows how control knowledge is made explicit in the prototypes
of the CENTAUR system for improving the efficiency of the consultation session.



is to ask the questions containing these items prior to evaluating the rules. When a

prespecified number of them are satisfactorily answered for their use in the rules,

the system would pursue other questions derived from the contents of partially

satisfied rules to confirm diagnoses at particular confidence levels. Although this is

just a first step, the idea is to make the questioning scheme more focused but

relatively separate from model evaluation.

6.1.3. Heuristics for Suggesting Rule Refinement Advice

There are about a dozen heuristic rules for generating rule refinement

experiments. The heuristic rules relate performance statistics about a models rules

to determine rule changes for the expert to consider In this section, we review

the formulation and adequacy of the heuristic rules.

6.1.3.1. Formulating the Heuristics

We need to review the process of gathering performance statistics to

understand how the heuristics were formulated10

An important consideration in the design of SEEK was to identify which

statistics were to be gathered Some of the statistics were obvious at the outset

while others were found after some experience with the program in the early stage

of its development The easy ones were derived from knowledge about the

model's behavior-—credit and blame for a ruleHs\ directly determined—and ire^

readily available for performance analysis. Some of the other statistics were

derived from our practical goals—for generalization, to find a rule which would

correct a misdiagnosed case meant to look for partially satisfied rules whose

confidence exceeded that for the model's incorrect conclusion.

A common-sense analysis of the performance of a model's rule was applied

10Gathering statistics is the basis for all subsequent actions taken in the course
of finding an experiment for improving the model's performance.



to determine which statistics to relate in a heuristic rule. For instance, if more

cases have been found to favor the weakening of a rule /s conditions as opposed

to strengthening the rule, then a generalization experiment should be considered A

statistical comparison of this kind appears in most of the heuristic rules described in

Chapter 4.

<gSe—lieterminte a specific generalization experiment for a rule is a relatively

easy process to understand. If it is empirically known that a rule should be

generalized, a search is needed on each of the cases supporting the generalization

of the rule to find some pattern about the rule /s unsatisfied components. Case

analysis provides important information for this, namely, the first unsatisfied

component found in the rule. Because of this, ail that is needed is to pick the most

frequently missed component Thus, for the generalization of the components in the

top-level rules in a model, we can suggest 4o£deccflasa^ the number of majors or

minors, and the removal of the requirement and exclusion components. This

summarizes how we obtained most of the generalization heuristics described in

Chapter 4.

For specialization, we had two factors to consider. First, there can be more

than one incorrect conclusion reached in a misdiagnosed case, and therefore, we

needed a means of determining specific rules to specialize. We chose to split

these conclusions into primary and secondary classes in order to determine how

badly a case was misdiagnosed by the model. We defined a closeness measure in

Chapter 3 that assigns (to the incorrectly applied rules in these classes) an

interpretation of how close a misdiagnosed case would be to correction if these

rules were forced to be not satisfied This measure led to the summed statistics

about rules for primary and secondary specializations that could be easily compared

with the statistics about candidate rules for generalization.

A second point about specializing a rule concerns how it should be
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strengthened. This is more difficult than it is for generalization. The reason is that

performance information alone indicates only that a rule has been satisfied (and does

not indicate which component in a rule should be strengthened or how to add a

component to a rule.) The notion of ease of change is introduced to help in this

problem. The idea is that the components in a rule may be ordered based on an

understanding of the nature of the component—that minors are easier to change

than majors, and majors are easier to change (preferred over) requirements, etc.

Accordingly, a separate heuristic rule was formulated for selecting a component to

strengthen in a rule cited for specialization.

This covers most of the heuristics that deal with the top-level rules in the

model. We introduced refinement heuristics to get experiments about the

intermediate rules which underlie the components in a top-level rule. A model's

rules are organized hierarchically and contribute to the higher level rules in a direct

way—for example, a requirement component which is not satisfied can be traced

back through the rules which may be used to reach this conclusion. Because of

this, the introduction of the refinement heuristics provided a way to deal with an

important consideration, i.e., how to present the experiments to the human expert?

There are many ways to change the model, and we want to give advice in a

systematic manner. A benefit of using refinement heuristics is that the expert may

gauge the level of detail for investigating experiments.

It should be noted that many of the generalization heuristics may be collapsed

to a single heuristic rule that suggests the removal of the most frequently missed

component without regard to a specific type of component We have left them

separate for the possibility of augmenting them with some background or domain-

specific knowledge.



6.1.3.2. Adequacy of the Heuristics

The adequacy of the heuristics can be assessed in two ways: the advice

they provide (Le, the adequacy for covering the kinds of refinements that may be

needed to the tabular model) and the manner in which the advice is presented (i.e..

the interaction with the expert and the empirical evidence presented)

Total coverage of the kinds of refinements is provided by the heuristics, i.e.,

the heuristics suggest experiments about each of the terms that appear in the

tabular model structure. There are refinement heuristics that operate on the

requirement and exclusion components in order to obtain more specific experiments

than citing the top-level components alone. There are no refinement heuristics for

the experiments to decrease or increase the numbers of majors and minors in a

rule. Nonetheless, the kinds of refinements (including the change of a rule's

confidence level) are limited to changing the existing rules in the model.

Although the system does not suggest to add a new rule, such a capability is

secondary to a basic task of. refining the rules placed in the model by the expert

Our heuristics refine the rules that the expert thinks are best and any extensions to

the model would be done as a result of experimenting with the existing rules.

What is the manner in which the advice is presented? An interactive scheme

is used for presenting advice that provides a controlled framework for revision of

the rules. The heuristics are domain-independent11 and are applied on the rules for

one diagnosis, which the expert selects. The expert is therefore expected to

narrow the experiments suggested by the heuristics to those most consistent with

his domain knowledge. Finally, the narrative explanation of the heuristics facilitates

the expert's analysis of the empirical evidence that supports the experiments.

11 The specific parameter values in the current set of heuristics have an intuitive
rationale (e.g., the refinement heuristic for adding an item to a requirement
component shown in section 4.4.2 uses a specific parameter value to test for
inconsistency.) These values may be altered with other information from the domain
of application.



The heuristics are built into the system by hand There is no facility to

change them directly by the user. Manipulating the heuristics occurs at the data

structure level. The clauses in the heuristic rules have particular (numeric) labels to

reference functions, relational operators, and values. Each heuristic is represented

by a pair of data structures (one for the left-hand side of the heuristic and the

other for the heuristic's right-hand side). Changing a clause involves setting the

functional references by using numeric labels, setting the relational operator and any

associated values. A set of pointers are used to reference the heuristics. Thus, to

change a heuristic rule requires that the appropriate set of pointers are updated

after the heuristic's clauses are changed This is a tedious and very primitive

process for which specific improvements have been ignored in the development of

SEEK.

Suggestions about language facilities for expressing the heuristics are

presented in section 6.2. A language facility offers the possibility for the expert to

incorporate domain-specific information into the heuristics to narrow the generation

of experiments relevant to the domain

6.1.4. Dual Sources of Knowledge

SEEK requires that the expert7s decision-making knowledge be expressed in

the tabular model and that test cases are provided with the correct conclusions.

We have made two working assumptions about these dual sources of knowledge.

For the tabular model we have assumed that the model is generally correct—that

the model has been thoughtfully prepared although its criteria may require fine-

tuning. The expert is expected to know what he's formulating in the model and

also to have done his best at preparing it In this respect, we have focused on

suggesting slight changes in generalizing or specializing the model's rules.

In dealing with the cases, one can rarely assume that very large sets are

presented with complete accuracy. Nevertheless, we do assume that care is taken
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in the determination and actual assignment of the expert's correct diagnosis for

each of the stored cases. This is critical to SEEK/s performance evaluation since

rule refinements are derived from case analysis, which compares the models

conclusion with the stored expert 's conclusion.

Another point concerns the representativeness of the cases for each

conclusion. Informally stated, SEEK works best when there are a large number of

test cases, but; how many cases actually should be used for each conclusion?

Furthermore, how many cases should be classic examples, and how many should be

more difficult cases for differential diagnosis? In this work, we have only assumed

that the expert has access to cases which are representative, at least, of those

seen in a real-world setting.

To get more information about the nature of cases, the expert may be able

to provide not only the correct diagnosis for each case but also the confidence in

the diagnosis. This has not been done here; however, further work is needed in

order to test whether a better basis for collecting representative cases is provided

if confidence levels as well as diagnosis can be reliably obtained for each case.

Within the current scheme of requiring that the correct diagnosis for each

test case be specified, histograms which display the distribution of cases according

to the models confidence (Chapter 5 presented examples of histograms) are helpful

to gain insight into the nature of the cases. When the expert has sufficient

credibility in the models rules, the histograms could be used as indicators for

selecting test cases.



6.2. Future Work

in this section, some suggestions for future work are presented We will

consider extensions of specific features in SEEK beginning with the preconditions of

model evaluation. Other ideas are suggested for improving the evaluation of the

model, the evaluation of the heuristic rules, and for improving the model design

process by empirical testing.

6.2.1. Treatment of Ties for Model Evaluation

The current implementation allows the expert to select how ties are to be

scored Unfortunately, this is an all-or-nothing optioa The problem is that while

some conclusions may be considered mutually exclusive and ties are therefore not

acceptable, overlap for other diagnoses can occur. Further, the confidence at which

ties are acceptable may differ. For unrelated diagnoses, the tied confidence of

definite may be appropriate. The point is that an improvement over the current

scheme for setting ties should be considered—for example, to give the expert the

option of selecting the confidence levels at which ties are acceptable and to further

specify the diagnostic overlaps which are acceptable at the particular levels.

6.2.2. Cases with multiple conclusions

The cases presented to the program are expected to have a single best

diagnosis although the^e may be several expert's diagnoses stored with a given

case. An alternative is to give the expert the option of spliting the diagnoses into

two groups: the primary, or top-ranked answer(s) for the case, and the secondary,

consisting of all other diagnoses he thinks are reasonable for the model to

conclude. With this extension, a case can be scored by means of using the turnoff

option (currently a global condition for model evaluation) to ignore rules for the

secondary diagnoses. Thus, a case with diagnoses such as rheumatoid arthritis as a

primary diagnosis and Sjogren/s syndrome the secondary diagnosis can be

effectively scored by ignoring the secondary conclusion which could be reached at



the definite confidence level, and compare the models top-ranked result with its

confidence in rheumatoid arthritis.

6.2.3. Gathering statistics

If we look at the steps involved in identifying a candidate rule for

generalization, the method used to compute the closeness measure deserves

attention. The rule tracing procedure maintains two counts on the number of

components satisfied and the number of components needed for satisfaction. These

counts are used to compute a rule's percentage of total satisfaction.

Whether an individual component in a rule is totally satisfied is not taken into

consideration in arriving at the percentage measure. For all the top-level rules, each

consisting of numbers of majors and minors, a requirement and an exclusion,

additional weighting may be given to some components, for example, based on

being totally satisfied components. This may produce a better measure, however, of

the partially satisfied rules to select a candidate rule to generalize.

The rule with maximum percentage of satisfaction and with minimal

confidence needed to correct the case is selected as a candidate rule for

generalization In this rule, the first unsatisfied component found is identified for

removal. The rule may have other unsatisfied components, which are ignored by our

scheme. An extension to this is to identify all unsatisfied components. As an

example, consider rule R in Figure 6 - 2 which is a candidate rule for generalization.

Suppose rule R has 3 cases supporting its generalization, and the first unsatisfied

component for each of these three cases is A, A, and B. Thus, component A would

be chosen for removal since it is the most frequently missed component among the

three cases according to this criterion. But for cases 1 and 2, component B is also

unsatisfied Thus if the method first gathers all unsatisfied components and

assigns them to the cases individually there could be a more informed pattern to be

extracted as shown in this example. Along the same line a rule /s components may



Rule Rs A & B & C -> DX1

CASE 1: U U S
CASE 2s U U S
CASE 3t S U S

Us unsatisfied component
S: satisfied component

Figure 6-2: Rule with Unsatisfied Components

be ordered explicitly according to preference in changing the components. This may

be particularly useful for rules that reach intermediate conclusions.

In gathering the statistics about specialization, two kinds of conclusions are

noted: primary—refers to the model's highest ranked incorrect conclusion in a case,

and secondary—refers to all other incorrect conclusions reached in a case. The

closeness measure for the rule responsible for the primary conclusion is an

interpretation about how close the case would be to correction if the rule were

forced to be not satisfied This measure is derived from the number of rules

incorrectly satisfied and the number of incorrect conclusions reached in a

misdiagnosed case

As an example from the methods described in section 3.3. the interpretation

of f rule for the primary conclusion and more than 1 incorrect conclusions says

that if the rule is forced to be not satisfied, the case would have a better chance

for correction. This can be misleading since we don't take into account the actual

number of incorrect conclusions that were reached Obviously, one could try to use

this information by extending the current set of interpretations for specialization

experiments. For example, the number of incorrect conclusions reached in a case

could give a better picture of how badly the model actually performed on a case.

This could be used to indicate interpretations such as will remove the top-ranked

1 2 We note that the top-lev* rules have a fixed ordering of components (majors,
minors, requirement, and exclusion), from which it seemed more systematic and
reasonable that the first unsatisfied component found in the rule be used.



incorrect conclusion for the case and will be closer to being correct but <

problems still remain if the number of other incorrect conclusions were lesj

a small yet prespecified threshold value. Another one could be will remov

top-ranked incorrect conclusion but forget about correcting the cas<

specializations since there are many other problems if many incorrect conch

were reached in the case.

Although some extensions can be made and new statistics proposec

more difficult task is to determine how the statistics are to be put to use i

heuristics. We believe that continued experience with the program on dif

models and careful monitoring of the experiments suggested and those that

not may lead to finding statistics which are useful. There are two features in

which can help—a trace of the execution of the heuristics, and the notificatioi

an experiment could not be suggested when all heuristics fail for a particular n

6.2.4. Model Execution improvenrients

The model is evaluated by invoking all rules on each case in the data

The execution time for this task varies according to the number of rules i

model and the total number of cases. In Figure, 6-3, the dimensions and exe<

times for three models are shown.

MODELS

M1 M2 M3
Number of cases: 143 199 146
Number of rules: 794 981 169
Total number of
components in
the rules: . 4195 4207 841

Time (CPU seconds)

on DEC 2060T: 49 68 16

Figure 6-3: Performance in Evaluation of 3 Models

Because of the exhaustive evaluation of the model for all cases, improvemei

efficiency can come from organizing the model with possibly fewer rules



selective evaluation of the tables. The first extension might be accomplished by

replacing the rules which determine the numbers of majors and minors with a

special functional argument in a rule.

An abstract example of the current method of computing the numbers of

majors and minors is shown next It is a means of computing the number of

majors taken from that rule with the most number of items satisfied in its left-hand

side, and it is derived from our implementation to be consistent with the EXPERT

syntax: However, a more concise form would be a single rule shown below these

3 rules with a function COUNT that returns a value. This would require changes to

the control strategy to, in effect evaluate this rule differently, and to assign the

value to the right-hand side of the rule.

[1 : a, b, c] -> 1 Major for DX1
[2: a, b, c] -> 2 Majors * "
[3: a, b, c] -> 3 Majors " "

[COUNT: a, b, c] -> MJ, value

The second improvement concerns the evaluation of the tables. In EXPERT

syntax, rules can be organized into groups called HH tables with the following

syntax: IF condition THEN evaluate collection of rules. The IF part contains

conditions to be satisfied prior to considering the rules in the THEN part If there

exists a preprocess for computing valid conditions under which a table should be

evaluated, then some efficiency could be gained

6.2.5. Evaiuafion of the Heuristic Rules

The heuristics are evaluated after being filled in with the required statistics.

For a given rule in the model, most of the heuristics are evaluated Some other

heuristics are not tried because they are triggered only for the refinement of

previously suggested experiments. These refinement heuristics go deeper in the

analysis of rules and are invoked only on demand by the model designer. The



evaluation of the heuristics consists of a single cycle13 of testing the cone

and posting the experiments on a list of suggested rule refinements for the i

designer to consider.

A single cycle follows from the assumption that the heuristics contain ei

information to suggest the most obvious changes. For example, the function l\

which determines the most frequently missed component among the

supporting the generalization of a rule, has been found to be quite ade

However, an extension of this scheme that would draw out more experir

changes can be based on multiple cycles of heuristic evaluation. For example,

several cases support the generalization of a rule R, and the MFMC function is

to pick a component for deletion as in:

Cases supporting the
genera l izat ion of R: 1 3 5 6 7 15 17

Missing component: A A B C A C C

Here, seven cases support the generalization of rule R and the MFMC is

a tie between two components A and C. In practice, MFMC returns A an<

remaining cases would go unnoticed, even though the support for removi

occurs in equal numbers as that for removing A.

However, if we remove those cases that were accounted for in the

evaluation cycle, and start a second evaluation of the heuristics, then the

supporting C in this example would be given a chance of suggesting experir

The point is that multiple evaluations of the heuristics could be tried in situation

the generalization heuristics that use the MFMC function. When there are few

supporting the generalization of the rules, a single pass should suffice.

13with the exception of the heuristic rules for adding an item to a comp
(e.g., the refinement heuristic for strengthening a requirement component, des(
in section 4.4.2 is evaluated at least once and as many times as the numb
items appearing in a list of items (majors) that are used to select an item;)



6.2.6. Adding Background Information to the Heuristics

One of the main advantages of the heuristics is that they are domain

independent14 So long as the expert '$ knowledge is expressed in the tabular model

format it makes no difference whether the model is for rheumatology, dermatology,

or auto-repair. Also, the heuristics operate in exactly the same way for each of

the tables of rules.

There is no domain-specific component in the heuristics. The expert uses his

experience when reviewing and choosing the experiments suggested by the

heuristics, without which it would be difficult to engage in sessions of model

refinement If we were to extend the capabilities of SEEK, the most difficult aspect

would be to guide the expert in making appropriate changes in discriminating

between the conclusions and in helping incorporate the knowledge which is needed

to make medically sound refinements.

In our experiments with SEEK, we have sometimes been told that the system

makes reasonable suggestions for the cases at hand, which nevertheless are not as

medically sound as alternatives might be. The former of course is to be expected,

since the advice is derived from case review, but the point is that the advice is

meant to force the expert to rethink his criteria in light of these phenomena The

program is supposed to help the expert test his rules and suggest ways to change

them, but it is not designed to carry out the task of getting a medically consistent

set of rules on its owa Since experiential knowledge for the expert is largely a

matter of empirical association, much of the medical soundness consists of missing

empirical knowledge that the expert is able to reconsider. For instance, specific

correlations of findings may be brought to the expert7 s attention as a result of

14ln the current implementation, the heuristics require only background information
of orderings that are part of general medical conventions, and not specifically
related to a particular domain.



seeing the performance of the rules, which SEEK is intended to assist in dr

out The expert knows how to interpret the experiments and decides

experiments to pursue.

Thus, the knowledge about how and why a certain change should be tri<

preferred over another is largely based on rethinking the model, so as to un

what is lacking in it For example, the rethinking process may determine that ;

of findings may occur together, though unexpectedly, and possibly what is n<

to improve the model is that one of the findings should be expanded ini

constituent observations to correctly discriminate between competing diagnoses.

However, what is the possibility of introducing some domain expertise

the heuristics to make the program ignore certain changes and go on to 01

An example from the rheumatology domain may clarify the problem Fo

diseases known as mixed connective tissue diseases, the laboratory finding of

is a highly specific indication of the disease and is incorporated as a requirenr

the table for MCTD.

Now consider what the program does in a situation where an experimer

been generated to delete the requirement component of an MCTD rule contair

conjunction of the finding RNP and other findings. The program can refiro

experiment and look for a particular finding to be removed at the request c

expert Since it is only checking for what is satisfied and not satisfied

program reports back the best item to change on this basis alone. If the case

accurate and complete, the experiment is probably empirically sound But the e

may believe that the rule should contain always the finding of RNP and nev<

considered for removal. The heuristic might be augmented with knowledge that

if the experiment is to delete a requirement component of an MCTD rule, th«

not suggest the removal of the finding RNP because he says so and therefore

something else in the rule.



Another example where background information is important is in adding a

component to a rule. Our solution is to let the expert tell the program which list

of criteria of majors or minors should be used to select a component to change (an

example of this was shown in Chapter 4). Default preferences used by the

heuristics are based on the rule's confidence—if the confidence is definite or

probable then use the major list; if the confidence is possible then use the minor

list It may be advantageous to have this information incorporated in the heuristics

directly by the expert Another example is derived from our experience with a

threshold setting to compare with a rule's percentage of the time it was significant

when invoked After some experiments with a specific rheumatology model and its

associated cases, we arrived at a threshold setting of 40%. The heuristic

incorporating the expression was to determine a specialization experiment for

decreasing a rule's confidence. The expression was: "a rule /s rate of significance

must be less than 40%/' which was used to determine how many cases were

allowed to be lost

These are a few examples that point out the kind of background information

which might improve upon the generation of rule refinement experiments. How

should this background information be acquired from the expert? We see three

modes. One is in the context of a session where the expert is prompted with

questions after an experiment is accepted The information may then be accessible

to the heuristics, such as for an experiment which deletes the requirement

component in an MCTD rule. Another mode is to have a distinct set of heuristics

for each tabular model defining a disease. The advantage of this approach is that

the heuristics might then be tailored to the specific diseases. The third mode could

combine the first two. Thus, the heuristics for each disease may be initially set up

as they exist currently, then they are augmented with some constraints about which

components to ignore for possible experiments, while the results of subsequent

experimental trials would be used by the expert to refine the heuristics.



The first step, however, is to have a convenient means for the expressi*

the heuristics by the expert Although our heuristics currently can be viewed fc

user, they are represented and manipulated within FORTRAN arrays and conseqi

only those familiar with the program can modify them. For the user, there

translator which produces a readable version of the heuristics but there is no f

available to change them directly.

A language for expressing the heuristics is needed. We envision a Ian<

of functional expressions with a simple Algol-like syntax in which the expert

express certain parameter values or preferences in changing the rules. An ex;

can be taken from the the heuristic rule to suggest the decrease of the numb

majors in a rule:

If NGEN(R) > NSPEC(R)

& MFMC(R) = "majors"

Then DECREASE MAJORS(R).

The functional labels specify the statistical values to be compared,

example, NGEN indicates the number of cases supporting the generalization

rule. The THEN part indicates the rule refinements such as DECREASE The id€

have about this language is similar to the language for expressing domain-sp

rules in selecting laboratory techniques in the design of genetic experimer

MOLGEN [Friedland 81] [Stefik 80] , where the rules are associated with sp

laboratory techniques represented in the MOLGEN knowledge base [Stefik 79].

The kinds of functions for specifying background information in our heur

may be simple predicates that express particular components or rules to be igi

in generating experiments. Another function could be used to set the list of a

to be used for selecting a component to add to a rule. In our example for R

function which is referenced in the heuristics for changing the MCTD rules mig

specified by NOT(RNP) to indicate that the component should be ignore



generating experiments. Furthermore, exceptions of this kind may be explained by

the experts reasons for specifying them. Associating a line of English text would

do this.

In general, having a convenient way for expressing this kind of background

information should prove helpful to tailor and augment the heuristics by the expert

In this way, we may get a better understanding of the decision-making involved in

selecting experiments.

6.2.7. Automatic Search for Experiments

In this section, we propose a means of extending the generation of

experiments by having the system suggest and carry out multiple experiments. First,

let's review the current method of generating experiments.

Our method for generating experiments requires the expert's involvement

First he must focus on a conclusion (rules for a particular tabular model) and

subsequently request experiments about .these rules Secondly, the expert must

select an experiment to try. These two action requirements are a systematic and

simple means of forcing the expert to think about his rules. Once this is done,

SEEK takes over and the process of generating experiments (i.e., gathering

performance statistics, evaluating the heuristics) is carried out If the expert has

focused on a conclusion DX1, and requests experiments for DX1, SEEK's analysis

is split into two groups according to conclusion DX1 and all others conclusions.

All experiments for the rules that conclude DX1 are ranked according to a

simple criterion that uses the following statistical values about each rule: the number

of cases suggesting the generalization of the rule and the number of cases

suggesting the specialization of the rule. The best experiment in terms of

performance improvement is the first one presented (e.g., the experiment for rule x

in Figure 6-4). This is the current method of interaction necessary for generating

experiments.



refinement to rule x concluding DX1

e

refinement to ru le 2 concluding DX1

Figure 6-4: List of Rule Refinement Experiments

The experiments suggested are presented with respect to the rules for one

conclusion and against all cases. An extension to this scheme is to reduce the

expert7s involvement by an automatic search scheme. The idea is to provide a

more global analysis than that provided by the single view of one conclusion versus

all others.

From the expert7s standpoint our extension would require only that he

request experiments rather than additionally citing a particular conclusion The

extension consists of two parts. The first is to look at the current performance

and to generate experiments for all conclusions, and to report either the best single

experiment to try over all conclusions, or the best experiment for each one of the

conclusions. Thus, for DX1, ..., DXN the program first would generate the

experiments for these conclusions and then it reports back the single best one

overall, possibly including some others that are close in potential performance

improvement This is simply a best-first search that is based on the current

performance of the model.

The second part uses the results of this search by actually executing the

single best-ranked experiment and possibly continuing to some predefined depth.

The results of this cycle of generate experiments -- and execute the best one

could be reported in the Before/After summary form along with the experiment (and



explanation). To assess whether an experiment produces positive results, a simple

criterion is to check if there is a gain in correcting the cases — that the true

positives increase from one experiment to the next Thus, the success of any

particular experiment may be based on the comparison of the "bottom-line" results

provided in the Before/After summary.

For example, the use of a simple comparison of the numbers of true

positives from before and after an experiment would signal negative results when

the true positives decrease. The experiment that caused the negative results or any

of the earlier (positive) experiments should be brought to the expert7 s attention.

The expert can possibly be given the option of stepping through each of the

experiments or to select the one that caused the problem. In the stepping mode, if

the expert doesn't agree with some experiment taken (even though it resulted in

performance improvement) he may stop the process and investigate the rules and

criteria which comprise them. As an example. Figure 6 - 5 shows a hypothetical

trace of the experiments tried along with the explanations and summary of

performance.

Finally, in the current implementation, a trace of the experiments tried and

those that were accepted is maintained for analysis after a session is terminated.

Finding ways of using this information during the course of a model refinement

session should be considered in line with the search scheme suggested above.

6.2.8. Adding New Knowledge to the Model

The methods described in the thesis have concentrated on the revision of

existing rules in the model by removing or decreasing components, and adding or

increasing components. Nonetheless, we stated in Chapter 1 that a small model in

rheumatology was initially developed, and that after many cycles of testing and

revision the model was expanded to the point of containing several times the

number of findings, rules and conclusions. In this section, we consider this issue of



Experiment 1
Delete the requirement component in rule 89.
(explanation)

Results
Before After

Experiment 2
Decrease the number of majors in rule 90. Value changed: 3 to 2.
(explanation)

Results
Before After

Figure 6-5: Trace of Search Scheme - Multiple Experiments

adding knowledge to the model, i.e., to incorporate new elements, as a result of

empirical testing. These might include inserting, combining, or deleting the majors

and minor findings, and abstracting intermediate hypotheses.

One can obviously expand the model directly without knowledge of the

current performance of the model. In this case, the expert introduces new diseases

in the form of tables, with corresponding new findings and intermediate results

added to cover the broader domain area We usually expect the expert to start

with a limited size model; and to reach a realistic performing model, he typically has

to expand the knowledge base, with some of the findings being decomposed into

more refined descriptions, new intermediate conclusions introduced to group the

findings, etc.

But what is involved in drawing out and adding new knowledge to a model as

a result of empirical testing? We want to ease the analysis process in determining

a model extension that may be tried. Extensions can be the introduction of more

detailed findings to replace an existing finding, the grouping of several findings into

a rule that reaches a new intermediate result, or the spliting of a rule into more



than one rule ror reacning a particular result, me reasoning invoivea in determining

an appropriate extension of the model can be a complex problem that may be

appreciated by looking at an example. The key idea is that none of the experiments

tried seems to get good results. The following example focuses on the analysis of

one of the experiments.

Suppose that a rule x for possible MCTD requires 3 majors to fire the rule,

and a generalization experiment tried on this rule was the decrease of the number

of majors to 2. Suppose the experiment resulted in several cases that were

misdiagnosed by this rule.

The first step in analyzing the results is to cite the counterexamples of the

rule refinement experiment to make sure they appear to be accurately described,

with the rule cited so that the case data that satisfied the rule's conditions are

shown. From this, one can possibly determine changes to the criteria—replacing an

item in the major component with either more specific findings (e.g., replacing an

item call pulmonary disease with more specific items such as pleuritis and CO

diffusing capacity < 40%), or replacing several items with a more general i tem 1 5

In our example with rule x, the expert would have to rationalize the

conditions in the rule containing 2 majors by analyzing the cases. Assuming that the

case data are accurate, the expert must do two things. First he must check that 2

majors makes sense to confirm the diagnosis of possible MCTD, and secondly, he

must see if they are sufficiently specific to discriminate between MCTD and the

stored answers in the cases misdiagnosed by the rule.

It is through this analysis that the expert must determine how to change, for

15Although the expert can split a rule or combine others into a rule, the system
does not actually generate the advice to say, for example, "split the component
labeled pulmonary disease into a and b and replace pulmonary disease in the
majors for MCTD with these items".



example, the majors for MCTD. Given that the rule is medically sounc

confirming the diagnosis of MCTD, the analysis is focused on the i

discrimination with other diseases. Starting with the expected conclusions i

cases misdiagnosed by the rule, suppose there is a high frequency of one diac

among these cases (e.g. most of the cases misdiagnosed by rule x hav<

expected conclusion of SLE). A simple means of assessing the majors is by Ic

at their frequency in the cases with the conclusion of SLE Suppose the major

MCTD are listed and one item — pulmonary disease — had high frequency i

SLE cases. So what does this mean?

An item labeled pulmonary disease appears in the major criteria fo

disease MCTD. Since the expert previously identified the item as a major, w€

assume this item is rationally compatible for this disease. But the empirical r

reveal that this item is not specific to MCTD alone. A possible solution is th<

major of pulmonary disease item may be refined by replacing it with other itei

discriminate the MCTD cases from the SLE cases.16 The expert is the only o

do this even if there exists a rule for pulmonary disease. He analyzes the resu

uncover the existence of a potential conflict in the use of a particular item. I

context SEEK provides a fundamental tool to discover details within the dat;

can help the expert'$ determination of how, for example, pulmonary disease

be refined

However, the guidance for the analysis of negative (unfavorable) perforr

results of an experiment is limited to suggestions of the tools to be use

opposed to actually carrying out (parts of) this analysis automatically. The lattei

be tried by combining the application of the tools into a procedure which wot

The expert may not be able to uncover something that will resolve
problem, i.e., the single item found can not be refined In this case, the
previously believed to be important in reaching the diagnosis of MCTD, mi
removed from the majors for MCTD, or possibly added to the exclusions fc
SLE criteria



invoked based on the recognition of an experiment s poor results. We can

speculate that a heuristic rule which looks for negative results of certain kinds of

generalization experiments would have as its right-hand side a procedure which

would, in effect summarize details of the experiment's impact The benefits of

this would be at least to improve the efficiency of the analysts of the experimental

results. However, this is just a first step in getting a better understanding of a very

difficult issue.

6.3. Conclusion

The scheme presented in this thesis has been tested in rheumatology.

Another application that was tried independently was in dermatology. These are two

real-world applications to assess our empirical analysis approach. The goal of this

thesis has been to show that performance information can be usefully employed in

the design of large real-world expert models. A major result is that a unified

framework for expert model design and testing can be built that facilitates the

experimentation with expert knowledge. Our specific experimental results have

shown that SEEK provides the tools to build and efficiently maintain a high

performance rheumatology model17 which consists of 900 findings, 600

intermediate conclusions, and over 1000 production rules for nearly 30 rheumatic

diseases. Furthermore, while the dimensions of the dermatology model are similar

to those in the rheumatology model it is important to note that this model was

developed in a relatively short amount of time.18

The significance of SEEK's scheme of empirical testing is its ability to put

empirical results to use for the generation of intelligent advice about rule refinement

Although the advice suggests ways of improving model performance on a data base

of test cases, the importance of advice is to stimulate the expert's rethinking of

17at a rate of more than 90% correct diagnosis on 150 cases

18less than 1 man year's effort



his domain—to provoke further investigation of his decision making knowlec

the form of a tabular mode!—based on the explicit results of empirical an

We believe that the integration of the methods described in this thesis provide

controlled framework to carry out the empirical inquiry necessary to build

performance diagnostic consultation systems.

The successful development of the SEEK program has shown tha

complexity of the model building task can be manageably handled by provic

systematic means for acquiring decision-making knowledge, which also hel

testing this knowledge within a single framework. The effectiveness of SE

offering advice about rule refinement centers on a relatively accurate descripti

the expert '$ criteria in the form of tables. This has been proven in rheumat

and SEEK's advice based on case experience can improve performance as

demonstrated in the sample session in chapter 5.

A relatively simple representation that is suitable for capturing the exp

knowledge is important The expert understands how his knowledge is used

the representation, and the system produces meaningful results in the for

advice about revising it

Finding a sufficiently expressive knowledge representation has been or

jhe main concerns in the application of Al techniques and is driven by the nee

the application area This is particularly true for the work presented in this 1

Much of the insight into what would be a useful assistant came from our pr<

experience with rheumatology problems. Since the tabular model is a format t

familiar to physicians and also one that is directly representable in the machir

effective line of communication is opened The point is that much stands 1

gained in the design of an effective assistance program by working closely wi

real application area
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We have identified explicit points in the model design and empirical testing

framework where various kinds of interaction with the expert control and focus

experimentation with his knowledge. An important area for the design of future

SEEKHike systems is to find language facilities for meaningful interactive model

building and testing. We believe that the foundation for this has been developed

with the heuristics and command facilities in the SEEK program, and we have

suggested that the development of a language facility for the expression and

customization of heuristic rules is a first step in gaining a better understanding of

the process of empirical experimentation. Finally, the methods described in this

thesis should be applied to other domains. With these experiences, new ideas and

extensions may be found that might further our understanding of capturing expert

knowledge in a computer



APPENDIX A

COMMAND FACILITIES

This appendix provides a description of the commands available to the

of SEEK. The user has the option of using these commands directly or to I

system prompt him in the form of menus, which are used in the sample sess

Chapter 5.

EDIT

• Enters a structured editor to edit a tabular model. A tabular model is
organized by final diagnoses and includes slots for major and minor
observations, diagnostic rules for confidence levels: definite, probable,
possible, and rules for intermediate conclusions which are used by the
diagnostic rules. Once in the editor, help facilities are available by
typing ESC-H (escape H), ESOE, or ESOS

• Syntax: EDIT [MODELNAME]

CASES

• Enter the EXPERT consultation system to enter or to revise cases.
Once in EXPERT, help facilities are available by typing "?".

• Syntax: CASES

TEST

• To load a model for performance analysis by SEEK. Useful
commands to issue immediately after loading a model are: TIES,
TUrnoff. The TEST command must be issued prior to any analysis
commands: SUM, ANalyze, ADvise, Experiments.

• Syntax: TEST



• Typing TIES allows the designer to specify a condition for
performance evaluation: to determine treatment of ties in confidence
for the experts conclusion and the models different conclusion in
each of the cases.

• Syntax: TIES

lOff

• To ignore the analysis of rules and cases for a specified final
diagnosis.

• Syntax: TUrnoff

To obtain a performance summary of the model on the cases.
Results are organized by final diagnoses. The SUM command must be
issued once a "dynamic" version of the model is created (see
WHATIF), or immediately after a predecessor version is restored (see
BACK). A switch 7S" on the SUM command will produce a list of
cases with the values for the expert 's stored conclusion and the
models conclusion assigned to each case.

Syntax: SUMC/S]

• To obtain a histogram display of the distribution of case performance
for a specified final diagnosis. If no final diagnosis is specified then
all final diagnoses are shown for which there exists cases with
matching stored expert conclusions. MNE is mnemonic for final
diagnosis.

• Syntax: DCASE [|MNE)3

To list the model's conclusions for a specified case number. All
cases are listed if no argument is specified

Syntax: SCore [(CASE#)3

• To display the performance of a rule on the stored cases. Argument
is a rule number.

• Syntax: HITs(rule#)
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2SUM

To show the summary of performance (see SUM) as a result of
making an experimental change to the model, in a "before" and "after"
format This command is valid only when a model refinement
experiment (see WHATIF) is not accepted by the designer and prior to
making any subsequent changes to the model. It is useful because it
saves the results of the most recent experiment and thus does not
require the re-execution of the experiment on the cases.

Syntax: 2SUM

EFFECT

• To show the results of making an experimental change to the model
on each case. This command is used in conjunction with the 2SUM
command. Results include the disposition of each case for a
specified diagnosis.

• Syntax: EFFECT [(MNE)]

ANalyze

• To enter analysis mode. The program prompts the designer for a
basis of analysis: "single case" or "all cases". In "single case", a
specified case is retrieved. In "all cases', rules for a specified final
diagnosis are subjected to analysis over all stored cases.

• Syntax: ANalysis

VIEW

• This command is used in the "all cases" basis of analysis (see
ANalysis). It shows two numbers for each rule - indicating that the
rule is a potential candidate for generalization or specialization in the
respective number of cases. If there are x cases for generalization:
if the rule is satisfied then x misdiagnosed cases would be correctly
diagnosed. If there are y cases for specialization: if the rule is not
satisfied, then y misdiagnosed cases would have improved chances of
being correctly diagnosed.

• Syntax: VIEW
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• This command shows information about the cases supporting the
generalization of each rule (see VIEW). It shows the number of major
and minor observations satisfied (for the expert7 s diagnosis) in the
case; the models incorrect conclusion; and, the first unsatisfied
component in the rule.

• Either zero or two arguments can be specified:

ARG1 - rule number
ARG2 - "CASE", "DX", or "ALL"

• If no arguments are specified ail rules are listed (ARGD with all the
information available (ARG2 - "ALL").

• Syntax: GEN [(ARG1,ARG2)]

• SPEC shows information about the cases supporting the specialization
of each rule (see VIEW). It shows the number of major and minor
observations satisfied (for the expert7 s diagnosis) in the case, and the
expert's (correct) conclusioa

• Either zero or two arguments can be specified:

ARG1 ~ rule number
ARG2 - "CASE" or "ALL"

• If no arguments are specified all rules are listed (ARGD with all the
information available (ARG2 - "ALL").

• Syntax: SPEC C(ARG1,ARG2)]

erirnents

• Produces a list of suggested changes to be made to the rufes for a
specified diagnosis. The experiments are ordered by maximum
potential gain in performance on the cases.

• Syntax: EXPeriments(MNE)

rise

• Produces a list of suggested changes (see Experiments) to the model
and a statement to explain why a change is suggested

• Syntax: ADvise(MNE)



REFlNements

• To produce a list of refined changes for a specified experiment (see
Experiments). One argument is required to specify the number of the
experiment for which refinements are sought

• Syntax: REFiNements(EXPnumber)

WHY

• To produce an explanation of a suggested change to the model. One
argument is required to specify the number of the experiment

• Syntax: WHY(EXPnumber)

PRECedence

• To produce the list of experiments (see Experiments) in order of
reasonable changes to be made to the model.

• Syntax: PRECedence(MNE)

ASSESS

• To evaluate an experiment or pair of experiments (see Experiments,
PRECedence) in terms of potential performance gain and reasonable
changes. One or two arguments can be specified:

ARG1 - experiment number 1
ARG2 - experiment number2

• Syntax: ASSESSIARG1 [,ARG2] )



191

iATIF

• The WHATIF command is used to conditionally incorporate in the
model one or more experimental modifications to the rules. The
result is a summary of performance (see SUM) of the effect of the
change on the cases. The output format is based on "before" and
"after" the changes are made to the model. The designer is prompted
to accept the changes and therefore to form a new version of the
model, or to reject the changes.

• Note that changes made by WHATIF are dynamic and are in effect for
the duration of the current session in SEEK. See the BACK command
to restore the model to a previous version of the model as a result
of an accepted WHATIF. An accepted WHATIF can be permanently
incorporated into the model by issuing the SAVE command.

• Syntax: WHATIF(FIXES) where FIXES are:

FIX1 && FIX2 && ... && RXn (n<=8)

• Each FIX is of the form.

TYPEiCATTRIBUTE,] OBJECT, VALUE)
where
if TYPE is "Generalize" or "Specialize"
then ATTRIBUTE is mnemonic label of a rule's component

OBJECT is rule number
VALUE is a number (n>0) or "0" (delete component)

OR
if TYPE is "ADD" (to add components to a rule)

or "INSERT" (to insert a new rule)
then ATTRIBUTE is ignored

OBJECT is rule number
VALUE is a logical combination of components

OR
if TYPE is "MOVe"
then ATTRIBUTE is ignored

OBJECT is rule number
VALUE is "NULL", "POSSible", "PROBable",

or "DEFinite"

Flward

• FORward command is the same as WHATIF except that the fix is
incorporated into a new version of the model without asking the
designer to accept or to reject it

• Syntax: FORward(FIXES)



BACK

• BACK is used to backup to a previous version (during the current
session) of the model. Whenever WHATIF is accepted or FORward is
issued, SEEK produces a reference label for the new version of the
model. Use the numeric part of the label to backup to a previous
version (the default value is zero when TEST mode is entered).
Alternatively, a relative negative-valued reference number can be used
(e.g., -1 to restore to the most recent previous version of the
model). Use VERSion command to obtain the current version number.

• NOTE: To ensure precise performance information, issue SUM
command immediately after BACK.

• Syntax: BACK(number)

SAVE

• To save (i.e., to make permanent) the current version of the model as
a result of any dynamic changes (see WHATIF, FORward) made during
the current session

• Syntax: SAVE

COMPILE

• To compile the model. One argument is required to specify the model
file name.

• Syntax: COMPILSMODELNAME)

IGNORE

• To ignore the dynamic changes (see WHATIF, FORward) incorporated
during the current session and start over.

• Syntax: IGNORE

WHATIS

• To get a description of parts of the model. One argument is required

• If a numeric argument is specified, it is interpreted as a rule number.
The rule matching the rule number is displayed.

• If an alphameric argument is specified, it is interpreted as a mnemonic
for a finding or conclusion in the model.

• Syntax: WHATIS(ARG)
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is ion

• The current version number as a result of dynamic changes (see
WHATIF, FORward) to the model is displayed.

• Syntax: VERSion

• To produce a pretty display of the major and minor observations for
a specified final diagnosis.

• Syntax: TOP(MNE)

D

• To list the findings in the questionnaire section of the model.

• Syntax: FIND

V

• To start a new session with SEEK.

• Syntax: NEW

t

• To exit SEEK directly.

• Syntax: Quit

{

• List the cases with more than one Reviewer's diagnosis.

• Syntax: 2DX

LTi-dx

• This allows the model designer to determine how cases with more
than one Reviewer '$ diagnosis are to be treated

• Syntax: MULTi-dx



SEARCH

• To enter the EXPERT Data Base Search Program. This program allows
the model designer to get statistical information by specifying search
patterns. Help facilities exist once in the SEARCH program

• Syntax: SEARCH

GFREQ

• To compile frequencies of majors or minors for all conclusion and on
over all cases. This produces a file with extension M.FRQ" attached to
model filename. To obtain specific frequencies, use the OFREQ
command.

• Syntax: GFREQ

OFREQ

• To obtain frequencies of majors or minors on cases with a specified
Reviewer's Diagnosis. Two arguments are required ARG1 -
mnemonic of major or minor criteria; ARG2 - mnemonic of a final
conclusion or "*" to see freqs of ARG1 over ALL conclusions
(Example: OFREQflVIJRA,*) will show freqs about the majors for RA
over all conclusions.)

• Syntax: OFREQJARG1,ARG2)

S AMPLe - sess ion

• Shows a sample session with SEEK.

• Does not include the use of the EDIT facilities.
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APPENDIX B

TABULAR MODEL FORMAT

This appendix shows an example of how a tabular model is encoded into the

EXPERT [Weiss, et al 81b] syntax used by SEEK There are three formats. The

first format represents the tabular model which is prepared by the expert This

model is then entered into the system by using SEEK's editor. Editing commands

are tailored to the tabular model structure that makes this translation a relatively

easy process. The second format is the result of entering the model via SEEK's

editor. The third format shows the tabular model in the EXPERT syntax. A

translator takes the model in the structured editor's format and produces an

EXPERT model file. Finally, EXPERT/s compiler program translates the model file

into a format (not shown in the appendix) that is executable by the EXPERT

consultation program.

B.I. Initial Model Format

Shown below is an example of a model that is prepared by the expert It

shows the major and minor observations for the diagnosis of MCTD as well as the

rules for the three confidence levels of Definite. Probable, and Possible. In this

example, the expert has prepared one rule at the definite confidence level two

rules at the probable confidence level, and three rules for possible MCTD. The rule

labeled A. at the probable level can be read as: 3 or more majors for MCTD and a

conjunctive requirement of the lab results anti-RNP positive with ENA titer

>1:1000, There is no exclusion indicated for this rule. The rule labeled B. at the

probable level needs two majors with at least one of them to be taken from the



or severe Myositis. Also, two or more minors are needed by this rule as well as

the requirement and exclusionary values that are needed by rule A for probable

MCTD.

Proposed C r i t e r i a for MCTD
Mixed connective t issue disease

Major C r i t e r i a

1 . Raynaud's or esophageal
hypomoti1i ty

2. Swollen hands, observed
3. Sclerodactyly
k. CO diff capacity, % ni: <70
5. Myositis, severe

Minor Criteria

1. Alopecia
2. WBC count, /cmm: <4000
3* Anemia - <=10 gm% female,

<* 12 gm% male
k. Pleuritis
5. Pericarditis
6. Arthritis <*6 wks, or

non-po1yar t i cu1ar
7. Malar (butterfly) rash
8. Platelet count, /cmm

(thousands): <100
9. Myositis, mild

Defin?te Probable Possible

CLIN A, k majors A* 3 majors

B. 2 majors,
incl 1 or more
from #1, #*, #5

2 minors

A* 3 majors

B. 2 majors

C, 1 major
3 minors

REQD anti-RNP +, anti-RNP +,
with ENA >«1:1*000 with ENA >»1:1000

A. No requirements

B. anti-RNP +,
with ENA >*1:100

C. anti-RNP +,
with ENA >«1:100

EXCL anti-Sm none none



B.2. SEEK Editor-Format of the Model

This section show$ the equivalent model as a result of entering it in the SEEK

editor. A partial listing of the editor commands available to encode and update a

tabular model is presented below.

escape T EDIT the NAME for the specified diagnosis
or treatment.

escape M EDIT the MAJORS,
escape N EDIT the MINORS,
escape D EDIT the DEFINITE RULES,
escape R EDIT the PROBABLE RULES,
escape 0 EDIT the POSSIBLE RULES,
escape I EDIT the INTERMEDIATE RULES,
escape K DELETE a TABLE for the specified diagnosis

or treatment.
escape L LIST a TABLE
control-T INSERT a TEMPLATE for a new TABLE,
control-R INSERT a TEMPLATE for a new RULE SET.
escape P MOVE a TABLE to a different position.
escape W TYPE a DIRECTORY of the diagnosis and

treatment tables.

Commands for Editing Tables

There are four main sections to the SEEK Editor-Format The first section

contains the English description of the diagnosis of MCTD which is to be used

during a consultation session

The description of the final diagnosis is followed by the lists of majors and

minors that form the second section of the model's editor format Here, each item

is identified by a mnemonic label. We summarize below several ways to indicate

special treatment of an item for which a switch (indicated by the symbol "/") may be

appended to its mnemonic label.

If no switch is indicated (e.g., the mnemonic labeled SWOLH in the majors)

then the item is interpreted as a finding which requires a positive response to a

question to be asked during consultation. The switch 7F" is used to indicate that a



negative response is required for a finding. The switch 7H" means that the item is

an intermediate conclusion (hypothesis) and therefore rules are needed to conclude it

(e.g., the mnemonic labeled RAYES in the major list is an intermediate conclusion).

The switch 7N" indicates that the item is a finding that takes on a numeric value and

the acceptable range is noted by a "RANGE" parameter. An example of a numeric

finding is the item DCO with a valid range noted by (RANGE *:69) that means any

numeric value less than 70.

The third section of the model is the diagnostic rules at the respective

confidence levels of Definite, Probable, and Possible. The rules are grouped by

confidence level where each rule is written using the mnemonic labels. It should be

noted that logical conjunction is noted by the symbol "&" and disjunction is

represented by having choices surrounded by the symbols "[" and "]". For example,

one of the two rules at the probable confidence level indicates in its requirement

component that at least one of three items noted by the mnemonics of MYOSS,

RAYES, or DCO must be satisfied

The fourth and last section of a tabular model in the structured editor format

contains the rules for reaching intermediate conclusions that were referenced in the

major and minor sections. An example is the first rule for concluding the major of

Raynaud's or esophogeal hypomotility and is defined by the choice clause on the

left-hand side of the arrow "->". The right-hand side specifies the mnemonic (i.e.,

RAYES) for the intermediate conclusion. Confidence for these intermediate rules

may be specified by the numeric values which are allowed within the EXPERT

formalism; the valid numeric values are in the range of -1 to 1 where -1 indicates

complete denial of the conclusion and 1 indicates complete confirmation. By

default a confidence value of 1 is assumed when no confidence value is assigned

on an intermediate rule.

This structured editor format of the model is translated into its equivalent

EXPERT representation and is shown in the next section.
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SEEK Editor-Format of Model

TABLE FOR DIAGNOSTIC CRITERIA

emonic and English Description for DIAGNOSIS
TD Mixed connective tissue disease

emonic and English Description for MAJORS
YES/H Raynaud's or esophageal hypomotility
OLH Swollen hands
LDY Sclerodactyly
0/N CO diff capacity, % nl: (RANGE *:69)
OSS/H Myositis, severe

emonic and English Description for MINORS
OPE Alopecia
C/N WBC count, /ami (RANGE *:3999)
EM/H Anemia - <»10 gm% female, <*12 gm% male
EUR Pleuritis
RIC Pericarditis
TH Arthritis <*6 wks, or non-polyarticular
LAR Malar (butterfly) rash
AT/N Platelet count, /cmm (thousands): (RANGE *:99-99)
OSM/H Myositis, mild

les for DEFINITE confidence level

# Majors: k
# Minors:

Req: RNP & ENAVH/H
Excl: SM

ties for PROBABLE confidence level

# Majors: 3
# Minors:

Req: RNP & ENAH/H
Excl:

# Majors: 2
# Minors: 2

Req: RNP & ENAH/H & [1: MYOSS/H, RAYES/H, DCO/N*:69]
Excl:



Rules for POSSIBLE confidence level

# Majors: 3
# Minors:

Req:
Excl:

# Majors: 2
# Minors:

Req: RNP £ ENAM/H
Excl:

# Majors: 1
# Minors: 3

Req: RNP & ENAM/H
Excl:

Rules for intermediate conclusions that are needed in diagnostic rules
RAYES Raynaud's or esophageal hypomotility
[1: RAYN, ESOPH] -> RAYES
ENAM positive ENA, Med titer
[1: ENANP/N100:*, ENANH/N100:*] -> ENAM
ENAH positive ENA, Hi titer
[1: ENANP/N1000:*, ENANH/N1000:*] -> ENAH
ENAVH positive ENA, Very hi titer
[1: ENANP/N4000:*, ENANH/N4000:*] -> ENAVH
MYOSM Myositis, mi Id
AMEM & EMG -> MYOSM
AMEM & [1: PMWM, MBXM] -> MYOSM
MYOSS Myositis, severe
AMES -> MYOSS
PMWS -> MYOSS
MYOSM/H & MBXS -> MYOSS
ANEM Anemia - <»10 gm% female, <as12 gm% male
HGB/N*:10 & FEM -> ANEM
HGB/N*:12 & MALE -> ANEM

B.3. EXPERT Format for a Model

This section shows the overall structure of an EXPERT model in which certain

parts of the tabular model for MCTD are filled in. A valid EXPERT model

description consists of three main sections: hypotheses, findings, and rules.

Hypotheses for describing the conclusions that are to be reached during consultation

are divided into two subsections to contain the final conclusions and intermediate
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conclusions. In this example, the final conclusion of MCTD is placed in the

TAXONOMY subsection while intermediate conclusions such as RAYES are placed in

the CAUSAL and INTERMEDIATE subsection.

The findings which are to be asked during consultation are placed in the

**F/ND/NGS section of an EXPERT model. The findings in all models used by

SEEK are organized into a questionnaire which the model designer prepares—this is

shown below the **F/ND/NG label.

The third section of an EXPERT model contains the rules. This is noted by

the **RULES label that appears below the questionnaire. The rules for reaching all

intermediate conclusions are included in order as they were specified in the SEEK

editor; these rules for intermediate conclusions appear before the rules for the final

diagnostic conclusions. The last group of rules that conclude MCTD are listed and

include the rules for possible MCTD (noted by the .4 confidence values), probable

MCTD (.7 confidence values), and definite MCTD (.9 confidence values).

**HYPOTHESES
*TAX0N0MY
MCTD Mixed connective tissue disease

*CAUSAL and INTERMEDIATE HYPOTHESES
RAYES Raynaud's or esophageal hypomoti1ity
ENAM positive ENA, Med titer
ENAH positive ENA, Hi titer
ENAVH positive ENA, Very hi titer
MYOSM Myositis, mild
MYOSS Myositis, severe
ANEM Anemia - <»10 gm% female, <»12 gm% male
MJMCT Majors for MCTD
MNMCT Minors for MCTD
RD102 Requirement 1 for Definite MCTD
ED102 Exclusion 1 for Definite MCTD
RR102 Requirement 1 for Probable MCTD
RR202 Requirement 2 for Probable MCTD
RS102 Requirement 1 for Possible MCTD



^FINDINGS
*begin questionnaire
*checklist
General Findings:
MALE Patient is male
FEM Patient is female

^checklist
Presumptive Diagnosis:
DXMCT Mixed Connective Tissue Disease
DXRA Rheumatoid Arthritis
DXSLE Systemic Lupus Erythematosus
DXPSS Progressive Systemic Sclerosis
DXPM Polymyositis
DXPRA Primary Raynaud/s
DXSJ Sjogren's
*end questionnaire

**RULES

Ci:F(RAYNfT) ,F (ESOPH,T) ]->H (RAYES,1 •)
[1 :F (ENANP,100:*) ,F (ENANH, 100:*) ]->H (ENAM,1.)
[1:F (ENANPf1000:*) ,F (ENANH, 1000:*) ]->H (ENAH, 1.)
[1:F(ENANP,4OOO:*) fF (ENANH,4000:*) ]->H (ENAVH, 1.)
F (AMEM,T) SF (EMG,T) ->H (MY0SM, 1 •)
F (AMEM,T) S[1 :F (PMWM.T) ,F (MBXM,T) ]->H (MY0SM,1.)
F(AMES,T)->H(MY0SS,1.)
F(PMWS,T)->H(MY0SS,1.)
H(MYOSM,.9:*) SF(MBXS,T)->H (MYOSS,1•)
F (HGB,*:10)SF (FEM,T)->H (ANEM,1.)
F (HGB,*: 12) £F (MALE ,T) ->H (ANEM, 1.)
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Mixed connective tissue disease
:H(RAYES,.9:1.) ,F(SWOLH,T) ,F(SCLDY,T) ,F(DCO,*:69) ,H (MYOSS,.9:
->H(MJMCT, .1)

:F(ALOPE.T),F(WBC,*:3999),H(ANEM,.9:1.),F(PLEUR.T),F(PERIC,T) ,
: (ARTH.T),F(MALAR,T),F (PLAT,*:99-99),H (MYOSM,.9:1.)]->H(MNMCT,.1)

WP.T) 6H (ENAVH, . 9 : * ) ->H (RD102,1 .)
>M,T)->H(ED102,1.)
*NP,T)6H(ENAH,.9:*)$
Ii :H (MYOSS, . 9 : * ) ,H(RAYES, . 9 : * ) ,F (DCO,*:69)]->H (RR102.1.)
INP.T) 6H (ENAH, . 9 : * ) ->H (RR202,1.)
INP.T) &H (ENAM, -9 : * ) ->H (RS 102,1 . )
UMCT,.1;*)£H (MNMCT,.3:*)6H(RS102,.9:*)->H (MCTO,.k)
UMCT, . 2 : * ) SH (RS102, . 9 : * ) ->H (MCTD, .k)
UMCT,.3:*)~>H(MCTD,.i»)
UMCT, . 2 : * ) 6H (MNMCT, . 2 : * ) 6H (RR102, .9s*) ->H (MCTD, .7)
UMCT,. 3: *) 5H (RR202,. 9: *) ->H (MCTD,. 7)
UMCT, .!»:*) &H (RD102, . 9 : * ) 6H (ED102 . -1 . : .05) ->H (MCTD, .9)
ID RULES
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