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Abstract

Typical help processors are invoked explicitly by the user or

implicitly when an error occurs. Often a beginner will not know that

he needs help because the inefficient use of commands will get the job

done without raising errors* WIZARD is an expert system that

recognizes beginner misbehaviors and can automatically start a help

transaction.

'Che WIZARD processor relies on a special purpose, dynamic,

pattern matcher directed by a KL-One based knowledge network. An

author studies logs of beginner interactions and develops sequence

rules which parse and properly identify misbehaviors. Objects thai:

drive the parser to understand VAX DCL commands are coded into the

network and a set of semantic programming utilities is used to perform

actual goal recognition.

This thesis deals primarily with the implementation of such a

goal recognizing expert invocation system. It is the WIZARD

documentation and final working report. I discuss the motivations for

the design of the system and detail the knowledge base and heuristics

that support goal recognition. Some issues of generality are taken up

and potential topics for later research are presented which will

extend WIZARD'S capabilities.
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Preface

This work borders on several areas of software engineering

sometimes associated with the cognitive modeling aspect of artificial

intelligence. The terminology used to describe portions of the system

includes phrases like "knowledge representation" and "understanding11.

It is important that the reader be aware that I have no intention of

trying to relate the data structures or algorithms used by WIZARD to

any supposed actual processes in the mind of a human being. My use of

AI terminology is purely a historical one. I have derived many of

these techniques from research which does claim some sort of cognitive

reality and the terminology was carried along for Lhe sake of not

renaming the wheel. As far as I am concerned, this work represents

research in software engineering and technique, not cognitive

simulation.
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1.0 Chapter 1: Recognizing a User Assistance Loophole•

No one will argue the utility of a user assistance processor•

Such systems are especially useful "during initial exploration in a new

interactive environment. In this chapter I motivate this work by

showing that there is a species of problem not covered by typical user

aid paradigms• My solution, WIZARD, is introduced and an outline of

its processing is given*

1.1 Common Users Assistance Paradigms•

Unfortunately, most of the help programs currently available are

annoyingly anti-social. They are of use only if the user explicitly

calls on them or if an error occurs which the system knows how to deal

with.

Here are a few exam les of the types of interactions that take

place with such aids:

$HELP LOGOUT
%The logout command causes...

[The lf$!r will consistently indicate user input and the lf%fl will show

the system's response.]

In the above example, an explicit invocation of the user

assistance processor, two assumptions are made that are relevant to

this discussion: it is assumed that the user knows how to ask for

help and it is assumed that he knows exactly which question to ask.

«•» T « •



Following is an example of an error-invoked help transaction:

%Error SUCH-AND-SUCH occurred.
%Do you need help?

In this case, the user needn't know.how to ask for help. An error

demanded attention implicitly. Assuming that the help program is

somewhat clever, the user needn't know exactly how to work with it.

Of course, this interaction is predicated on the user having caused an

e.rror.

Various improvements can be made to the above paradigms but their

assumptions remain an obstacle to complete user assistance. Following

are several of the more common enhanced functions based upon the above

behaviors:

The lfdo what I meant" game:

$LOGOUT
%LOGOUT is not a legal command,
%perhaps you meant to type BYE?

The combination of the major themes:

$INFO LOGOUT
%INFO is not a legal command,
%perhaps you meant to type HELP?$yes
%LOGOUT is not known to the HELP system,
%perhaps you meant to type BYE?$yes
%The BYE command causes•..

Holding the user's hand:

%Welcorae to VAX/VMS at The Moore School
%Type HELP if you need it.

— 2 —



1*2 The Presumptions of Error or Missed Knowledge.

Unfortunately, all of the above interactions depend upon the

user's awareness that he is in-need of assistance or the system's

ability to recognize mistakes (which most systems do) and respond to

them in a helpful manner (which most systems do not). Consider the

following example:

Suppose that a beginner wished to change the name of a file in

the new system. Knowing about the COPY and DELETE commands he might

think to change filename A to B via:

$COPY A B
$DELETE A

An expert user observing this behavior would probably correct him

indicating that he could have simply typed:

$RENAME A B

to accomplish the same result.

Without benefit of a consultant the user is burdened with a great

deal of work in order to learn about such shorthand incantations. He

must:

- Recognize the desired function as an unique entity,
(Changing the name of a file.)

- Guess that the system designers have provided a way of
doing this without having to COPY the file anc DELETE it,
and,

- Guess how to ask for help about this function.

- 3 -



Even granting the first and second of these obstacles are

surmountable, and assuming that he knew how to invoke the help

processor, what would he have asked about? In this particular case

asking for information on RENAME would have done the trick but there

is at least one system where the command used to perform this exact

operation is CATALOG — not as likely a guess. [Some of us are

painfully familiar with "PIP B=A/RElf. ] He might have asked about

"changing the name of a file" and a sufficiently intelligent processor

might have figured out what was meant. Such cleverness is rare. A

simpler way out, assuming again that the beginner thought to ask at

all, would be to ask for a list of all help and then hunt around for

the RENAME command. This is a clear waste of time.

More importantly, the behavior was perfectly valid and did

accomplish the name change. As far as the user is concerned it is

perfectly reasonable to go on indefinitely without the RENAME command.

No errors occurred which might have triggered a help interaction and

there was no reason for the system to think twice about the validity

of this COPY+DELETE sequence.

Thus, in this case, neither the user initiated help processor or

the error initiated help processor would have been any use at all. It

often requires an expert to catch this error of omission. Such

persons have trained themselves by word-of-mouth or some other means.

These persons can often be found in the guise of a user consultant or

highly experienced user. [The pen-name for such an individual is a

- 4 «.
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"wizard" thu3 I have named the system WIZARD and shall refer to it by

that name from here on.]

1.3 The Third Paradigm: WIZARD'S Informal Introduction.

One can imagine a help processor that would "understand" commands

that the user enters and would "recognize" the goal that they are most

likely meant to implement. Assuming that the system is clever enough

to see that the COPY+DELETE sequence is meant to be a RENAME, it would

not be very difficult to have it tell the user about the existence of

RENAME or to invoke a separate help processor for this purpose.

The WIZARD interactions might be:

$COPY A B
$DELETE A
%Assuming that you wanted to rename the file A to call
%it B you might have simply said: $RENAME A B. You can
%ask for HELP on the RENAME command by typing $HELP RENAME.

1.4 Some Terminology.

A "sequence" is any list of commands to the operating system.

[The particular domain of WIZARD is the VAX DCL command language.] I

shall refer to the user's long-winded command sequence as a

"misbehavior". Each sequence is said to have a "goal" which is the

effect that the user wished to achieve through his application of the

sequence. In the above example the goal was something like "change

the name of the file A to B".

- 5 -



WIZARD is said to "recognize" the goal of a sequence* That is,

given a sequence it can decide from the universe of known goals which

one(s) were likely intended by the user. The potential misbehaviors,

goals, recommended sequences and the relationships between them are

meant to be predefined by the human consultant whose job it is to

control what WIZARD will recognize and what advice will be

distributed.

1.5 Goal Recognition Heuristics.

There are various methods that have been used to perform

recognition of the intention from input sequences. Most are driven by

pattern matchers of one sort or another. It is clear that some sort

of parser is required in order to take the first step of understanding

the individual commands. It is the job of that process to transform

individual input strings into some internal representation that can be

used to drive the goal r cognition process. This will be detailed in

chapter 2.

Less clear is the processing that performs recognition over the

entire user input. This is the algorithm (or heuristic) that will

determine when a help transaction should be invoked. The three

approaches that were considered in the process of WIZARD'S design were

environmental change observation, syntactic analysis, and

anticipation.

-'6 -



1•5•1 Environmental Change Observation.

An interesting approach but one which causes several problems is

to derive the goal by comparing the environment before the operation

with the environment afterward. Thus, the goal "change the name of a

file11 can be discovered by seeing that a filename has been changed.

This is not actually so simple. First, it may be necessary to compare

the entire environment in order to derive the goal. In order to

distinguish between having renamed an existing file and having simply

deleted one file and created an entirely different one it is necessary

to compare at least the contents of the new file with the old.

Another difficulty in this approach is that it is not simple to define

the bounds of the recognition. We must assume that recognition is

occurring all the time (every possible change is being recognized) and

that something outside of this process causes the recognizer to

actually call upon the help system. It is still necessary to have in

hand the command images in order that the recognizer not warn the user

about RENAME after his just having used a RENAME.

Another more difficult problem with this approach is that it

forces the designer to develope a theory of significance in order to

determine which of several simultaneous changes to focus on. For

example, the COPY-fDELETE sequence also updated the creation dates, and

took several seconds of CPU time. Suppose that help were available

for "how to waste CPU time". Would one prefer to invoke that aid or

the help for RENAME?

- 7 -



Environmental information alone is not sufficient and is very

difficult to obtain at times (e.g., the contents of a DELETED file).

Thus, this approach was not considered for very long. It is probably

better applied to text editor environments where the language is

simple and the environment is readily at hand.

1.5.2 The Syntactic Approach.

In many ways, this problem is like that confronting a natural

language understanding system. WIZARD might seek a match for a "goal

pattern11 in much the same way that the rule based execution of a

transformational grammar seeks the base form of a sentence. The

control mechanism may also be the same as a natural language

understanding system; ATN driven parsers can be successfully used in

this work.

A problem with tris approach is multiple sequences may be

intertwined. Consider the following example:

$COPY A B
$COPY C D
$DELETE A
$DELETE C

We would probably want the help (for at least the first of the pair)

to be presented even -hough there is a "noise" command (COPY C D) in

the way. The extra commands could be ignored as noise but then the

second nested sequence would not be recognized. Suppose that we

wanted to warn the user each time he makes this mistake. Then the

~ 8 ~



second sequence (COPY C, DELETE C) need be analyzed as well as the

first. If noise were simply ignored we would lose this second

recognition•

1.5.3 Goal Recognition by Anticipation.

It might be possible to modify some standard parsing algorithm to

handle these problems but a more general approach is suggested by the

above: It seems that two separate and non-communicating processes are

taking place in the intertwined recognition (assuming that we would

like the redundant warnings). Why not simply start the understanding

processes independently of one another. This approach resolves the

noise and intertwining difficulties simultaneously. The

implementation of such independent processes in a parser environment

may be accomplished by anticipation: Entered commands that are

earlier parts of sequences cause the parser to be modified such that

later commands are understood as the following portions of the

sequences under consideration.

To be a bit more detailed: Each time a command is entered it is

intercepted and processed by WIZARD. The first step in this

processing is to force the command to become an individual of some

generic DCL-coramand and parse it accordingly. The parser searches a

semantic net description of the DCL language trying to match, at each

DCL-coramand node, the current command with that generic. If it

matches (i.e., the parse succeeds from that node) then the current

- 9 -



command is instantiated as an individual of that generic DCL-command.

This is the process that I refer to as "understanding"•

The instantiation of an individual causes some set of prescribed

actions to take place. These actions change the structure of the

network which controls the parser• The effect is that of laying traps

for the latter portions of the sequence that is to be recognized. The

last action to be invoked in this recognition process is the

successful recognition of the goal* That action might include the

construction of help text using data that has been passed along in the

semantics of the parsing objects* It is very important to notice that

this method is driven entirely from the syntax of the incoming

commands* No external information is used in the recognition task.

We will see that this is a problem for WIZARD in this particular

domain•

This method of recognition is not unlike Riesbeck's natural

language understanding system [10 and 11] which uses expectation

schema to direct the parsing process although the domain and data

structure are a great deal different. For Riesbeck; "The mechanism

for passing information from one point in the analysis to the other is

the expectation. An expectation consists of a specification of a

situation and a specification of what to do if thet situation is

encountered". This matches my thinking exactly. In fact, I strongly

recommend references [10] and [11] to the reader interested in the

anticipatory recognition approach. Many of the arguments put forth

- 10 -



here are very like Riesbeck's.

1.6 COPY+DELETE Detailed*

Applying this approach to the example above, one can think of the

command "COPY A B" as setting a trap which reads "If the command

'DELETE A' is entered, tell the user that a RENAME command might have

been more appropriate"• Thus, the action attached to

"COPY filel file2" would be "Set a trap that is a DELETE command for

filel with the proper associated actions".

We will see that this is not quite so simple. There are many

problems to be overcome in implementation of a working WIZARD. Both

the constraints of anticipation and the problems of the domain will

mar the apparent simplicity of this approach.

1.7 Forward.

WIZARD is a special purpose program. Its parser includes

knowledge specific to the VAX DCL command language. However, the

design is such that the parser can be easily changed without tearing

apart WIZARD'S internals. This constitutes both effective programming

practice in general and specifically supports the extensibility

required by the anticipation heuristic.

- 11 -



All of the examples that I will mention are in DCL command

language and some understanding of a small subset of that language

might be necessary to properly interpret some of those examples*

Reference [4] may be used as a guide to DCL.

In the following chapters I will lay out the detailed

representations and functions required to support goal recognition and

the algorithms that process the knowledge base. I explain the

motivation for each decision. The purpose of this work was to

experiment with goal recognition in this particular domain and to

decide what primitive actions and data structures can be used to

implement help system invocation as I have described it.

Details of the actual implementation of WIZARD make up the bulk

of this work* There are problems resulting from the chosen

environment and algorithms, that severly limit WIZARD'S utility. I

discuss these problems and talk about possible future, work including

some correction of problems and filling some of the unresolved (or

unprogrammed) holes in the system.

A reading note: The language in which WIZARD is implemented,

Franz LISP, retains case information and thus all the WIZARD code

itself is written in lower case characters. In the interest of

clarity I have used upper case characters in this thesis to

distinguish special names (such as the names of DCL commands). This

becomes troublesome only if the reader is trying to follow along some

- 12 -



of this text with the appropriate appendecies.
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2.0 Chapter 2: Understanding DCL commands*

Here I describe the gory details of the WIZARD parser. It can be

described as a "dynamic, object* driven, knowledge based, command

string parser". Hopefully, after having been through this thesis, the

reader will understand what is meant by that.

The task of WIZARD'S goal recognition algorithm can be divided

into two gross parts: First, the system must input and "understand"

DCL commands. This chapter deals with the method of processing those

commands. Later chapters will deal with the second part: recognition

of goals from sequences of commands.

2.1 What Understanding Means.

I use the terms understanding and recognition in somewhat the

opposite sense that one might think normal. Understanding applies to

the parsing of strings whereas recognition applies to overall goals.

This is due to the unfortunate name, "goal recognition", chosen by my

predecessors in the field, to describe the latter process. I have

tried to keep the terras separate.

The parser of a compiler can be said to accept correct programs

in its language. In WIZARD command understanding is more than simply

parsing the input commands. An author has written into WIZARD

information about the DCL command formats as generic objects in the

knowledge base. WIZARD understands an input string as a particular

- 14 -



DCL command, according to what it knows about DCL commands, and names

this string according to the names associated with the objects in the

database. There is a "meaning" associated with each command in the

form of a LISP expression called the "semantics"* The semantics are

involved in the second half of the process* This will be discussed in

detail later*

For example, The command "COPY A B" matches the form that WIZARD

associates with a "Copy-command". Thus, this particular string is

understood as an instance of "Copy-command" and is parsed according to

the pattern that is associated with that object* An instance is a

duplicate of the generic with specific string parts inserted at its

leaves* It is named and included in the semantic net then the

semantics associated with the Copy-command generic object are invoked•

2.2 How a String is Pai sed: The Naming Algorithm.

Understanding actually takes place in a somewhat upside down way:

the name associated with an input is based upon where the string fits

properly into the net. In order to understand how parsing takes place

one must understand the data structure of the knowledge net from which

WIZARD'S control derives.

- 15 -



2.2*1 Objects and Their Parsing Roles.

Each name that might be used to describe a string exists in a

database which I shall call the "semantic network11 or "knowledge net".

This is a type of representation that relies upon uniquely named

objects and descriptions of the relationships between them. The

network is hierarchically organized. That is, there are "super

objects" which have "sub objects" that are special cases of the

former. These special cases are called "specializers".

This representation is not novel. The terminology and basic

structure that I use were suggested by, but are not identical to those

described by, Brachman in [2] and [3].

Figure 1 shows a portion of the WIZARD semantic net. Each object

is represented by an ellipse. The boxes are "roles" of an object. I

will discuss their use momentarily. Arrows that connect objects are

called "is a" links. In figure X "File-deletion-coiumand" is a

"DCL-command". Arrows that connect lower level roles up to higher

level roles are called "role filling links". Arrows that connect

objects to roles (from the ellipse to a box) are the "role

specifications". Arrows that link roles to objects or specifications

(strings, numbers, etc) are called value restrictions (V/R). Again in

figure 1, the roles of DCL-coramand are "Command-name" and

"Command-argument". The value of command-argument is restricted to

being a "List-of-filenames".

- 16 -
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Figure 1: Part of the Parser's Knowledge of DELETE-COMMAND
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The main object in the WIZARD network is the "DCL-corainand". The

roles of a super object (one that has no further superior) are

expected to be lambda expressions that cause parts of the input string

to be selected and bound to those roles. For example:

Input: "DELETE PHOO,BEAR"
Object: DCL-coramand

Command-name selects: "DELETE"
Command-argument selects: "PHOO,BEAR" (the rest)

"File-deletion-coramand" is a special case of DCL-command. Its

roles (as must the roles of any specializer) indicate constraints upon

the form of the bindings selected by its superior. Thus, continuing

the above example and remaining in figure 1:

DCL-command has parsed:
Command-name: "DELETE"
Command-argument: "PHOO,BEAR"

File-deletion-command requires
Command-narae-"DELETE" (it does)
Command-argument-a List-of-filenames which must match

"PHOO,BEAR"

Now we must proceed back up to the super object "List-of-things"

in order to process the argument of the command and try to fit it into

the slot whose value is constrained to be a List-of-things where each

thing is to be a Filename.

- 18 -



2.2.2 Recursive Objects — How Parsing Terminates.

The object "List-of-things" in figure 1, is a "recursive object".

That is, the value/restriction of one of its roles is an object of the

same type as List-of-things. This could cause the parser to go into

an infinite loop trying to push down into the string with this

recursive specification. I have abritrarily specified two cases in

which parsing will stop: the roles have all been successfully filled

(or some role cannot be filled in which case the parse fails), or,

second, the string runs out. In the latter case, the parse succeeds

and all remaining roles are filled by NIL.

It is not possible to eradicate recursive objects from the

DCL-command language without severely limiting its conciseness. DCL

uses comma-delimited lists frequently. We shall see in the discussion

of semantics that the *>e List-of-things objects play a major role in

the actions that I have .-elected.

2.2.3 Network Search.

The function that drives the parser expects to see only the roles

of the object under consideration. The result of the parse is a

single list in which each role has been paired with the portion of the

input string that was matched by that role. A higher level function

passes the parsing roles to the parsing function and then processes

its result. The order that objects are passed for matching by the



role parser is depth first in the net* That is, before the string is

tried against a particular superior object, all of its specializers

are attempted*

All possible successful parsings of the string are returned but

their order is as discussed just above* Thus, for example, the

command:

$DELETE PHOO,BEAR

would first be parsed as:

Delete-coramand with roles
Command-name: "DELETE"
Command-argument: a List-of-things

Thing: "PHOO"
Rest-of-list: a List-of-things

Thing: "BEAR"
Rest-of-list: NIL

and then also as:

DCL-command with roles
Command-name: "DELETE"
Command-argument: "PHOO,BEAR"

I will discuss the reason that all possible parses are returned

later. Briefly, one means of goal recognition might include scanning

the history of entered commands. One would want to be able to obtain

the most specific interpretation (which would be the CAR of that

element of the history list) at first glance*
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2.2.4 Instantiation of Objects: The Name of a Command.

Each successful parse causes an instance of the generic object,

whose roles were used to drive the-parser, to appear. That is, a new

object is created that represents the particular instance of the

specializer that matches this string. Instances are named by

appending a unique five-digit identifier to the name of the object

which successfully matched the string.

An instance of each of the value restriction objects for this

parse is also created. Figure 2 shows the way that the above delete

command would be instantiated. [Instance objects are doubly lined.]

The application of instantiation to sub objects also occurs depth

first. Thus, the subordinate value/restrictions of an instance are

created before the object itself. Also, each possible parsing of a

command is instantiated individually. Thus, we are left with both

File-deletion~command~00004 and some instance of DCL~command from the

preceeding example. These hold implications that will be discussed in

the section on semantics.
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Figure 2: An Instantiat ion of "DELETE PHOO.BEAR"
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2.2.5 Specializers vs Instances: Access Between Objects,

Every network object is one of:

Top-Level generic: An object with* no more general one above it.
In figure 1, DCL-coramand and List-of-things are Top Level
objects. A Top Level object's IS-A link is NIL.

Specializer: An object that is a special case of a higher level
(possibly Top-Level) object.

Template: An object that is not really in the network but which
looks like a specializer and is used to create new
specializers by copying.

Instance: A very specific object that represents some actually
entered command. Understanding of a coinmand causes an
instance to be added to the network.

A freshly made instance has no specializers, templates, or instances

below it but its name is added to the "instances" list of the object

whose roles parsed this string. The depth first parsing routine looks

only at the specializers in order to process an object. Thus,

instances do not enter into the parsing search. In fi ct, the form of

the instance object is slightly different than that of a specializer

and passing an instance to the parser will result in unpredictable

behavior. Every network object contains within it a pointer to its

superior so that access both upward (always one to one) and downward

(potentially one to many) are achieved. A top level object has no

superiors in the network (the pointer is NIL).
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2.3 What to do with Instances After Understanding.

WIZARD'S general processing scheme can be summarized as follows:

1) Read a command.
2) Try to understand the command as some instance of an object or

objects in the network.
3) Instantiate the objects that represent the command.

At each instantiation evaluate the semantics of the specializer
to which each instance is attached.

4) Add the name(s) of the instance(s) to the command history.
5) Goto (1)

In addition to the parsing roles, each object has a set of

"semantic actions". These are in the form of an s-expression that the

author has attached to a specializer. The process of instantiation

causes the actions associated with the superior to which this instance

was bound to be evaluated. It is this evaluation that drives the goal

recognition process. The actions and support for goal recognition are

discussed in chapters 4 and 5.

2.4 Problems with the Parsing Algorithm.

As mentioned briefly above, the parser is very special purpose

and suffers from difficulties that might make it unusable in other

domains. These problems stem from the simplicity of the parser

relative to the DCL language and from a lack of generality of

communication between DCL and LISP and within DCL itself.
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2.4.1 Case Matching and Abbreviation.

There are two simple difficulties in the current parser. These

are best described as unimplemented sections and code can be easily

added to correct them. First, the internal code of WIZARD expects the

input to be in lower case. Thus, if the user enters commands shifted

they will not be properly understood. A case translation algorithm

can be added to the input control in order to account for this

difficulty. All input would be down shifted to match the internal

form.

The second problem is slightly more trouble but not outstanding;

Some DCL commands can be abbreviated. That is, all of DEL, DELETE,

DELE, etc are valid forms of the DELETE command. The simplest

solution to this difficulty is to cause the matching expression of the

parsing object to accept all the possible abbreviations.

2.4.2 One Position Lool ihead Parsing.

A set of parsing utility functions is provided for use in the

top-level parsing expressions. These functions permit the expression

to read forward one character in the input buffer, look at the next

character in the buffer, skip spaces in the input buffer, drop a

character into the result string, copy characters to the result until

a certain character is seen, or return the remainder of the input

string as the result.
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These functions provide a simple parsing capability which is

inadequate to process some parts of the DCL command set* 1 have

handled some of these as special cases by making use of the possible

predicate expression in the top-level parsing object representation•

For example: in order to distinguish the form "device:filename" from

"filename" without causing filename to be mistaken as a device name

one can define a special function which will look for the ":" in the

input string. This string is available to the parsing expressions as

an exploded list*

2*4*3 Successful recognition of failed commands*

One of the major philosophical premises upon which WIZARD is

based is that the goal recognition is predicated only upon successful

and correctly formed DCL commands* In the ideal case, the sub process

to which WIZARD passes the commands for actual invocation would return

an error code and only those commands which generated no errors would

be considered (parsed etc)* Unfortunately, VMS and LISP do not

communicate well with one another and such error codes are not

immediately available*

If WIZARD were to try to understand syntactically or semantically

incorrect commands the parser, which is not a syntax analyzer, would

try to find a legal place to put these strings even though they do not

necessarily make any sense* The results of the application of the

goal recognition processing to such malformed instances is probably
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unpredictable• Any help generated from such illegal commands used in

goal recognition would certainly be wrong or misleading.

2#4.4 Partial Failure of List Operations•

An additional problem arises from the method of operation of DCL

commands when lists are 'involved. Under some circumstances the

command processor will process list arguments even though some of the

members might cause an error. For example: if the files A and G

exist, but not B, the command:

$DELETE A,B,C

will work for the two existing files but cause an error for the

deletion of B. • Do we or do we not want to accept that command for

processing in WIZARD? It is not trivial to correct or detect the

potential of such an error without duplicating most of the DCL error

logic. This also leads to possible misunderstandings between WIZARD

and DCL.

2.4.5 Misunderstanding Commands.

It is possible that a command will be misunderstood as a simpler

form. That is, for example, suppose that a command to delete a single

file were in the network. It would probably understand commands like

"DELETE WINNING.PHOO" perfectly well but would tend to misunderstand

(that is, match when it should not have) the command

"DELETE WINNING.PHOO,BEAR" as deleting the single file whose name is
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"WINNING" and whose extention is "PUOO,BEAR".

There are two possible means of avoiding this problem. The

easiest is to be sure that there are no such simple objects in the

network* Sometimes objects like that were meant to be later steps in

a recognition sequence and should have been templates rather than

specializers. The other approach is simply to be quite careful about

what objects are in the network and what they will match. The above

example can be avoided by making the expression that parses filenames

clever enough to look for illegal characters in the extent field and

fail if they occur. This takes more time in coding and execution but

is certainly the more general, and recommended, solution.
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3.0 Chapter 3: Details of the Object Representation.

In this chapter I motivate and detail the subparts of network

objects. Some of these parts have been mentioned in chapters 1 and 2.

The motivation for other parts of the objects will not become clear

until semantic actions are discussed. I place this chapter here

because it is too detailed to go very early in the thesis but the

terminology it explains is necessary in order to understand the action

of the goal recognizer.

As indicated in the preface, the objects that WIZARD knows of are

not meant to directly represent concepts in the actual knowledge of

the creator of the network. Therefore, I have chosen to include in

the representation of objects anything that was necessary in order to

support the parser, goal recognition, etc* It turns out that not all

that much information is required.

Objects have both /alue based data (that is, parts of the

object's list representation) and property based information. In

general value based information is static once the object is created

but property based data changes as a result of external network

operations. These are explained separately since they serve different

purposes. In reading this chapter, it might be useful to remove

appendix B, the primary DCL network code, and keep it nearby.
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3.1 Value Based Contents of Objects*

Every object in the WIZARD knowledge base contains exactly the

same parts although some of them are unused in special cases. For

example, instances of a specializer do not use the mask field and this

field is NIL in those objects. Links (arrows in the figures) are made

by including the name of the object to which the link connects.

Value based parts of objects typically are copied in case of

instantiation or creation of a new specializer and are not changed

thereafter. The recursive functions in WIZARD'S internal code deal

with construction and processing of these value based parts directly.

Figure 3 represents the general object schema. Solid lines show

the value based parts of the object (parsing roles, mask, semantics,

etc). The dashed lines indicate information kept in properties

associated with the object (instances and specializers). Figure 4

shows the lisp representation of the general object. Note the

substructure of the various fields. The rest of this chapter

discusses these fields in detail.
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Link to Sc*p«r (ISA)

\

Figure 3: A diagram of the General Object.

(object-name
; "type" specification field
(IS)
(SPECIALIZES super-obj)
(SPECIALIZES super-obj origin)
(INSTANTIATES supe/-object)
(TEMPLATE super-ob ect)
; "parsing roles" :ield (name
((name-of-role

(parsing function)
O
(predicate)
atom
(A sub-object)

[for a top level object]
[for an original specialize!']
[for a dynamic specializer]
[for an instance]
[for a template]

Value/Restriction)

[for a top level]
[indicates "must be empty"]
[to match string directly]
[to match exactly]
[point to a lower object]

; Semantics
(expression to be evaluated)
; Name/path mask
( (name (path specification))

Figure 4: LISP Syntax of the General Object.
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3.1.1 The Object Specifications Field.

Given an object name (or value) one can decide whether it is a

top level, specializer, template, or instance and if not a top level,

exactly what object is the given's superior. The specifications field

has a constant "type" that is one of "IS", "INSTANTIATES", "TEMPLATE"

or "SPECIALIZES". The superior is the second element if the object is

a specializer, template, or instance.

The action of updating the parser dynamically (due to the

evaluation of some semantic action at some point) can cause new

specializers to be created. This is done by copying from a template

object. An object that was created in this way includes a pointer

back to the template from which it was kloned. This pointer is the

third optional elemant of the specification field. It is used by the

"object matcher" (discussed later).

3.1.2 The Parsing Roles.

Chapter 2 discussed in detail the use of the parsing roles in

command understanding. The roles are kept in an association list

between the name of the role and its value restriction. That value

restriction is a parsing function in the case of an IS type object.

In non-top-level objects, if the V/R is a list then it is a pointer to

the name of the object whose roles will be used to subspecialize this

role or a function which will be a predicate applied to the string
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under consideration. A slight inconsistency between the form of an

instance vs a specializer occurs here in that this list will have the

form "(A name)11 for a specializer but the form "(name)" for an

instance. The purpose of the "ATI is to differentiate predicates (that

may begin with LAMBDA) from pointers to sub object. Functions cannot

occur in an instance so the "A" keyword is not needed. This notation

was suggested by Finin [9].

If the V/R is NIL then the string that is being matched must be

empty. The remaining case, an atom, gives the exact value that the

string must match.

3.1.3 The Semantics.

The semantics field is simply an expression that will be

evaluated whenever an instance of this specialize r is created. A

disscussion of its use will make up the better part ox the remainder

of this thesis. The semantic expression is the main controller for

the goal recognition process.

3.1.4 The Name/Path Mask.

It is often necessary to extract subparts of an instance that may

be below the particular node in hand. It is possible to uniquely

specify any sub-element of an instance (that is not arbitrarily deep

in a List-of-things) by a path through the roles of this object and
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its inferiors. For example, in figure 2, the instance of

File-deletion-command, we might want to refer to the first filename in

the List-of-filenames that is its Command-argument. We would have to

specify the path:

(Command-argument Thing)

in order to access it. The name/path mask is a shorthand list which

associates names with paths. It simply eases the task of access to

parts of objects by letting the author specify the name instead of

having to enter the whole path list.

3.2 Property Lists of Instances and Specializers.

The lists of the instances and specializers of objects are

typically updated and scanned rather than being constructed and

decomposed. Thus, they are not a part of the object itself but,

rather, are kept in tl 2 properties INSTANCES and SPECIALIZERS on the

name of the super object. These are simply lists of names (pointers).

The action of instantiation adds the name of the instance to the

front of the INSTANCES property of the superior. Likewise,

dynamically created SPECIALIZERS are added to the front of the

specializers property oi the superior.
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3.3 The Utility of Recursive Objects: List-of-things.

DCL-commands make heavy use of lists of things. For example,

most commands that apply to a single filename, like DELETE, apply also

to a list of such names in the way that MAP applies to a list in LISP.

It is necessary to be able to understand and work with such lists in a

uniform manner. Finin [12] discusses the necessity of such lists and

much of the design of WIZARD deals specifically with this topic.

In the semantic network, a list of things is a sequence separated

by commas. If one wants to understand lists separated by something

besides a comma, a new parsing object can be easily created. Commas

appear most frequently as DCL-coiamand list separators. [For the sake

of consistency the PRINT command can have a list of things in which

the delimiter is a plus-sigu (+)•]

The recursive object List-of-things has, as its last role, a

pointer that must be another instance of List-of~f lings (or NIL to

terminate the list). The normal action of the parser (as discussed in

the previous chapter) will understand commands by separating the input

string into separate "things" and building an instance of such a

recursive list. Figure 2 (in chapter 2) shows how the list-of-things

breaks up a list of filenames.
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The semantic actions of an object can access either the entire

list (by specifying a path to its head) or can extract any desired

element if the exact position in the list of that element is known.

It turns out to be more useful to simply select the entire list and

then use special mapping utilities to process the members

individually•

3.4 Primitive Network Objects.

Appendix B is a listing of some of the objects that are

predefined in the semantic network. I have written their forms

manually. Examples of WIZARD'S processing will refer to these objects

by name as the superiors of special parsing objects.

As previously noted, the main object is "DCL-command11. This is

"main" because it is the node that is passed to the parser in order to

begin the process of understanding a command. All command forms have

this object as their ultimate top level.
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4.0 Chapter 4: Designing Goal Recognition Sequences•

In this chapter I deal with the high-level form of the semantic

actions that drive WIZARD'S goal recognition. The semantics portion

of objects is used to write goal recognition "programs11. These

actually have much the same flavor that standard programs have. One

can think of this section as an introduction to programming concepts

for programmers that will be using the WIZARD semantics language. I

will speak in terms of actions in the semantic network (like changing

the values of variables in Pascal) and of flowcharts for goal

recognition that are somewhat analogous to flowcharting in an

iterative language.

4.1 General Approach.

As was previously mentioned, the parser that undertakes the

understanding of DCL-commands is dynamic. That is, it can be updated

by the addition or deletion of objects that understand commands.

Since understanding is controlled solely by the objects in the

semantic network, addition and deletion of objects will affect the

operation of the parser.

If a specializer is added to the network in the correct place, it

will act to understand commands that match its form (as discussed in

chapter 2). If an extant specializer is detached from the network

then commands that it would have understood are no longer understood
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as they would have been before that object was deleted.

It should be clear that only the addition and removal of

specializers affects the understanding process• The addition and

removal of instances or templates would not serve any purpose since

they do not take part in the understanding search. Top level objects

should not be deleted.

The human author, who is responsible for WIZARD'S functionality,

writes goal recognition sequences by specifying the objects that will

understand command strings and the actions that are to be performed

upon successful matching. The actual process of the recognition of a

goal takes place as a direct result of understanding some command.

That command is usually the last in a particular sequence. This last

command will be referred to as the "terminal command11 for the

recognition sequence. A help transaction is usually invoked by the

semantics of a terminal object. Take, for example, the degenerate

sequence which contains only one command: fl$LOGOUTff. The goal of

this sequence is to terminate the session. If our only purpose in

recognizing this sequence was to bid farewell to the user who is about

to be logged off, we could embed a print in the semantics of the

object which will recognize the LOGOUT command and have it say "see

you later".
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4.2 Specializer Templates.

Sequences are typically longer than one command in length. The

method of dealing with longer sequences is to manually plant in the

network the object which will understand the first command in the

sequence. It will be that object's job to activate the objects that

will understand the latter commands in the sequence. Objects are

activated by being copied from a template.

A template is an object that does not itself match any string but

can be duplicated and modified so that it will match something. The

reason that a template does not act to match anything is that it is

not a specializer, in the sense of being named in some superior's

SPECIALIZERS list, until it is kloncd.

For example: Suppose that we wanted to match the sequence:

$PRINT <filename~x>
$DELETE <filename-x>

where the same filename is to be specified. [This sequence might

actually be used to match a misbehavior for PRINT with the /DELETE

qualifier.] The author must have put the following objects into the

network:

Print-command: Match "$PRINT <filenarae>lf

Make a new copy of Delete-coramand replacing t:he hole for
a filename with the <filenarae>.

Delete-command [template] : Match ff$DELETE tf

Tell the user that he could simply type ff$PRINT/DELETEfl
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The successful matching of Print-command will cause activation of

its semantics. They specify the creation of a new object from the

template Delete-coramand, derived by filling the hole (indicated above

by lf ") with a filename. That process will cause the template to be

copied to a new object which is a specializer. This new object now

exists in the network and successful matching of it will cause the

activation of its semantics to print the warning. The activation of

that Delete-coramand copy is what we would refer to as the successful

recognition of the goal under consideration.

4.3 Construction of Specilizers from Templates.

In the above example it was necessary to have in hand the actual

name of the file that was printed in a form that would enable us to

make a specilizer of the correct form to match that name. This is

done by extracting V/R objects from the instance of Print-command that

was that particular PRINT command and inserting these into the

unfilled positions in the new object under construction. parts of

instances are accessed by paths that are named as discussed in the

previous chapter. The template (or one of its superiors) has a

name/path field also and a part of the semantic capability is to

insert a particular at a named location in the new object. That

particular would have been selected by name from the instance of

Print-command that was in activation at that moment.
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4.4 Dealing with Lists of Things.

Life is not quite as simple as the above example might suggest.

Most of the complications derive from the occurrence of lists of

things in the command* Consider the following two sequences:

$PRINT FILE1,FILE2,FILE3
$DELETE FILE2

$PRINT FILE2
$DELETE FILE1,FILE2,FILE3

In both cases we would like to be able to inform the user that

the simpler: "PRINT FILE2/DELETE" would have sufficed. No simple

command anticipation scheme will match the second of the set of

commands to activate goal recognition. In WIZARD, such cases are

handled by two mechanisms that are essentially complimentary.

4.4.1 Unwinding Lists into Multiple Traps.

The first method deals with the first of our examples.

Specifically, the list of filenames that is the command argument of

the print command is unwound in the semantics of Print-command into as

many new Delete-command copies as as are required to cover all the

possible deletions. This is done by mapping the template copying

operation over the List-of-filenames that was formed from the parsing

of Print-command. The result of this process is three new

Delete-command specializers in the network, one for each of the files

named in the first argument of the PRINT command.
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4.4.2 Searching the Net for Matching Objects.

The method of handling the second problem case (in which a list

is used in a command for which there might be an individual trap) is

to again map through the list of filenames. This time instead of

copying a template for each filename, we see whether there is a

parsing object in the net that will match the formed object.

Presumably such an object has been created by some previous activation

(such as the just previous PRINT command). If such an object is found

then its semantic expression is activated as if the object had matched

an incoming string. Since each new object (formed from a template)

includes a pointer to the template from which it came, it is a simple

matter to tell which objects should be sought as a match for the

current object.

4.5 Detaching Parsing Objects.

In addition to adding new parsing objects to the network, it must

be possible to delete objects. We can see this need in the following

undersirable behavior of WIZARD:

$RENAME A B
$COPY C D
$DELETE G
%You can use RENAME...
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Obviously, the user knows about the RENAME command so he roust

have had some non-obvious motive for issuing the second and third

commands* We do not want to suggest the use of RENAME if he already

has demonstrated knowledge of that command.

The way I have chosen to deal with this is to permit the

semantics of the object that would match a RENAME command to

deactivate the object which would match COPY and begin the recognition

of the COPY+DELETE sequence above.

Another example in which object deactivation serves us is in

preventing multiple activation of the assistance message. That is,

suppose there would be reason to issue the same command several times•

If this command matches the terminal object for some goal recognition

then the user is going to cause the activation of the help system each

time the command is issued. This is somewhat undesirable (although it

would certainly get the oint across).

In this case, the g neric object that was activated to recognize

the goal would remove itself from the network. Perhaps it would also

act to remove all other traps from the net that would give, now

redundant, aid by telling the user the same thing.
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4.6 Flow of Control Charting.

I have found it personally useful to diagram the semantic actions

that I will apply to a goal recognition task. Figure 5 shows the

"flowchart" (for lack of a better term) that represents the

recognition of the PRINT+DELETE sequence discussed above. I will use

this informalism to illustrate all recognition examples. This is not

meant to be a detailed description of the recognition process but

merely a visual aid indicating the sort of action that will take

place.

The actions are represented by arrows in the figure 5. Solid

arrows indicate the creation of a dynamic specilizer to match later

commands in the sequence. Crossed arrows (—^—>) indicate

deactivation of a parsing object. Note that all the dynamically

created objects are self deactivating. A dashed arrow ( >)

indicates object search rather than object creatioi. Wherever list

unwinding takes place there is a one-co-many mappin; via solid or

dashed arrows. Lists of things are denoted by sequences followed by

an elipsis (5r>, ... )• Objects that are in the initial network (not

created dynamically) are noted to the left by a double arrow ( ~ > ) .



$P?.INT/c|ual/cjual/..
/i \

s^$ PRINT/DELETE

SPRINT / n , / n t . . .

NOTIFY

Figure 5: Flowchart for the PRINT+DELETE Recognition.

If the command PRINT/DELETE has ever been used, we need to

deactivate the normally potential recognition of the PRINT+DELETE

sequence. It would obviously not make much sense to tell the user

what he knows already. This particular step is not so simple since it

is difficult to recognize PRINT/DELETE. It might have had intervening

qualifiers (such as: "PRINT/NOFLAG/DELETE11 etc. In order to perform

this task, it is necessary to unwind the list-of-qualifiers to the

PRINT command and search in the network for a PRINT/DELETE object.

The semantics of THAT object will cause the deactivation of the

recognition sequence head ~ not the general print command activation.
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4*7 Considerations of Command Order.

One of the advantages that WIZARD holds over a straight pattern

matcher is its that it will automatically ignore anything that it has

not been told about• This turns out to be of use in many cases where

commands that might intervene between parts of the sequence might not

affect it in any way. For example, if the user interspersed a TYPE

command between the COPY and DELETE commands above then we would

probably want to ignore it even if the file typed was one of those

copied. If we did not want to ignore commands that accessed those

files, that capability exists as well by simply placing a parsing trap

for that filename.

It is not always the case that we can tell syntactically whether

a command will have an effect on our sequence recognition. Consider

the following example of redirecting the output of the DIRECTORY

command:

$ASSIGN S.TMP SYS$OUTPUT
$DIRECTORY *.*
$DEASSIGN SYS$OUTPUT

Should be recognized as attempting to capture the output of the DIR
command in a file. The /OUTPUT** qualifier can be used in order to
do this as follows:

$DIRECTORY/OUTPUT=S.TMP

In this case, commands that intervene betweea the two end

commands affect the result only in case they generate output. It

would be ludicrous to have the semantics of the ASSIGN command lay
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traps for every command that might generate output. An approach

beyond straight expectation is required to correctly recognizing this

sequence•

4.7.1 Hunting the Command History List.

As was mentioned: a command history is retained which contains a

list of all the interpretations of the commands entered. The way

chosen to approach the general problem suggested above is by pattern

matching against the command history list. Each member of the history

list is a list of the names of the instances created for each parsed

command. Thus, the commands in the \SSIGN+DIR example above might

create the following history:

( (assign-command-00001
dcl-command-00003)

(dir-command-00005-00008
del-comma id-00010)

(deassign- :oramand~00006~00012
dcl-comms id-00013)

)

This data is stored in the global variable lfcmd-historylf.

Note that the latter command have two id numbers since they were

matched by dynamically created objects that had their own numbers.

The rule of name generation causes an additional id number to be

appended to the parsing object's name. Also note that the most

specific interpretation is the first in the sublist. DCL-coramand will

be the last interpretation in any sublist since it is the start node
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for the depth-first-search and succeeding in matching any input.

Utilities for matching against the command history list are not

provided as WIZARD primitives but it is a reasonably simple matter to

map down the Mcmd-historyfl variable with any desired search. Thus, an

additional criterion for the activation of the recognition (attached

to the last command: DEASSIGN) in the ASSIGN+DIR example would be

that the locations of the commands instantiated were next to one

another. There are any number of other codings for this test even to

the point of having some list of the commands that create output and

seeing that one of them was not between the understanding objects.

4.8 The Form that Help Takes.

This work deals primarily with activation of the help processor

rather than the form that the help itself will take. I have

specifically avoided this topic but there are issues i1 the design of

those interactions that rely heavily upon the corara* id understanding

stages. In particular, it is important to know, for example, which of

several possible filenames was the one which activated the help

request. The availability of this type of information can help

improve the help interactions by clarifying the context in which the

goal recognition succeeded.
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WIZARD provides a way of accessing parts of instance objects.

This can be used in one of two ways to pass the context of the

recognition to later steps •

4.8.1 Passing Information in Properties.

The most straightforward method of passing context information is

to simply stuff it into a property attached to the newly created

parsing objects• For example, when the list of filenames in the COPY

command that began a COPY+DELETE sequence is unwound, the name of the

file at hand in each step of the unwinding can be put onto the

property list of the DELETE parsing object created for that filename*

Then all that the recognition process need do is get that name (and

any other information that was squirreled away for its benefit)*

4.8.2 Extracting Infort ation from this Instance.

The other means of gaining context information is to lookup

specific strings from the instance objects by simply using the WIZARD

path access utility to dig out the proper leaf. This method can only

be applied if the desired data is a part or subordinate of the object

in hand. Such things as the time of day of the initial command match

are clearly not going tc be accessible in this manner and will have to

be passed in a property.
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4*9 Two Examples•

Here I include two examples of semantic programming techniques•

We have seen these.before as examples throughout this work and will

see them again in detail in the next chapter• The treatment here is

more concerned with the style of semantic programming needed to

support their recognition* I apply techniques discussed throughout

this chapter*

4.9.1 COPY+DELETE => RENAME

This first example is to recognize the sequence from which the

idea of WIZARD first came* That is, recognize when a user is renaming

a file by application of the COPY command and subsequent deletion (by

DELETE command) of one of the source files from the copy. Figure 6

represents this recognition program. It is much the same problem as

the PRINT-fDELETE sequence mentioned earlier in this chapter.
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^RENAME

i
$COPY fn,fnt... fn

/ n

I
.*•

I
NOTIFY

Figure 6: Flowchart for the COPY+DELETE Recognition.
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If the user ever uses a RENAME command then remove the potential

to begin this recognition (since he clearly already knows what we have

to tell him)• When a COPY command is encountered, set traps for a

possible deletion of each individual file. Also, whenever a delete

command is encountered, unwind the list of files to be deleted and

search the net for an extant DELETE command parsing object which will

match the filenames in the list* Each delete command object detaches

itself upon activation.

We would like to present some specifics about the context of the

recognition if one of the delete objects is activated. Thus, we will

have to pass along the name of the file that was copied and the name

to which it was copied. The way that these are actually passed will

be detailed later.

4.9.2 ASSIGN SYS$OUTPUT+DIR ~> DIR/OUTPUT«

This is a three step recognition program. It is rather complex.

The reader should refer to figure 7, the flowchart for this process.
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fn SYS$OUTPUT

\JVEKSS1GH SY$$OUTPUT

\
NOTIFY

Figure 7: Flowchart for the ASSIGN+DIR Recognition.

The initial object for this sequence lays two traps, branching

two possible paths of continuation. The first, the expected path, is

a trap for a DIR command that does not have /OUT- as e qualifier. If

this is located, then a trap for the terminal D£/» >SIGN command is

laid. Activation of that terminal trap will cause activation of the

notification (for the DIR/OUT=) command, only if there was only one

command between the ASSIGN and DEASSIGN commands. Thus, if there were

any other commands between the two, the user aid is not invoked. In

any case, activation of the terminal DEASSIGN command detaches itself.
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The other path spawned from the initial ASSIGN command is a trap

for a matching DEASSIGN command. Should that take place, the trap

created for the DIR command is deactivated along with this DEASSIGN

command trap. Thus, if an ASSIGN+DEASSIGN pair occurs without having

an interposed DIR command, the DIR trap is removed. If it were not

removed there would be the possibility of a spurious recognition in

the case of a later application of DIR command and a DEASSIGN command.

Note that the name of the DIR command must be passed to this DEASSIGN

command trap in order for this deactivation to take place.

This DEASSIGN trap will be activated in addition to the DEASSIGN

trap from the other path in case a DIR command was issued. This is

convenient, in this case, because it causes the cleanup of the DIR

command trap for both paths.
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5.0 Chapter 5: Detailed Primitive Semantics.

Whereas the previous chapter might be subtitled "The Art of

Semantic Programming (volume I)" f this chapter might bear the title
 ftA

WIZARD programmer's manual11* Once the recognition plan has been

outlined as discussed in Chapter 4, the author can apply the specifics

in this chapter to make WIZARD perform the intended recognition.

Since the base programming language for semantic programs is LISP

it is necessary that the author of WIZARD recognition programs be

familiar with LISP. I will assume such familiarity in this chapter.

Although the semantic actions are reasonably simple to use, they are

only utilities and need to work with some amount of user written LISP

code.

5.1 Objects vs Names.

Every object in the network has a unique name. Thus, given the

name of an object one can get its body (the value). The opposite is

also true (see chapter 3). As far as the semantic actions are

concerned, a name is as good as its value and vice versa. The

utilities all subscribe to the philosophy that no matter how many

times the author is told to use a name here or a value there he will

reverse them at some point. Thus, the first thing that each action

utility does is to force the argument passed to be of the type that

that function needs regardless of its initial form. I will use the
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terra "object" always to refer to the thing to be passed.

5.2 The Semantic Actions.

The semantic actions are a set of utility functions that are used

by the author to write goal recognition programs. They are used as

parts of the "semantics" expression. The particular functions

provided are:

(lookup object path)
Find a subobject of something by path specification.

(apply-to-list object function)
Map the specified function over the given List-of-things
binding the name of each thing to the function argument.

(new-copy template bindinglist)
Create a dynamic parsing object by copying a template object
replacing subparts by specifics from the bindinglist.

(find-copy template bindinglist)
Make an object (as in new-copy) but instead of adding it to
the net search for a matching object already extant.

(detach object)
Remove an object from the network.

5.2.1 Finding Parts of Objects.

Given an object in the network it is possible to extract the

subobjects or specifics that make it up. The LOOKUP function provides

the means of finding parts of objects by path specification. The form

of a path has been explained in section 3.1.4. Handed an object and a

path list, this function will return the thing (an object or atom)

that resides at the end of the path.
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5.2.2 Unwinding Lists of Things*

Paths obviously cannot be used to specify arbitrarily deeply

nested things in a List-of-things. The way lists are handled is to

unwind them. LOOKUP is used to find the top of the list and then this

is passed to APPLY-TO-LIST. That function acts somewhat like MAPCAR:

it takes the list and a function (typically a LAMBDA expression) and

applies that function to each thing in the list.

APPLY-TO-LIST continues through the list until the result of some

application fails to return NIL. That is, if the result of the

application of the function to the thing is non-NIL then that value is

returned as the result of the entire application and the APPLY-TO-LIST

terminates, This provides a convenient way of using list unwinding to

search through the list for sorae single object using the applied

expression as a predicate. If the end of the list is reached,

APPLY-TO-LIST returns NIL.

5.2.3 Creating a New Object.

New parsing objects are dynamically created specializers in the

network. They are created by copying a template object and replacing

holes in that template with specifics. Template objects must have

been put into the network previously. The template should contain

paths to each hole in its name/path mask field. Each hole should have

a name/path pair. The second argument to the NEW-COPY function is a
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list associating each name in the name/path mask with the value which

is to fill that hole*

For example: consider the name/path mask which might be in a

DELETE command template that will match the deletion of a specific

file*

( (name (Command-argument Name))
(ext (Command-argument Ext)) )

This might be bound by the bindinglist:

%( (name ,(lookup instancel
' (Command-argument First-thing Name))

)
(ext ,(lookup instancel

'(Command-argument First-thing Ext))

The above example demonstrates many techniques commonly applied

in the U3e of the semantic actions* First, note the use of LOOKUP to

select the specific to be bound into the object under construction.

[It may be supposed that they are being selected from a COPY command

where the two arguments to the command were parsed into a First-thing

and a Second-thing*] The backquote macro comes in quite handy in these

constructions since it permits us to form the bindinglist almost

directly.

In the above case, the COPY command from which the filename parts

are being selected is supposed to be a copy of only one filename. If

we wished to have a new copy of the DELETE command object formed for

each instance of a filename in a list of filenames (a List-of-things
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where each thing is a filename) then we would have to embed the entire

construction in an APPLY-TO-LIST as follows:

(apply-to-list
(lookup this-instance '(Command-argument First-thing))
'(lambda (obj)

(new-copy Delete-template
%((name ,(lookup obj '(Name)))

(ext ,(lookup obj '(Ext)))
))

() ; result must be NIL

Notice that a NIL is returned by the LAMBDA expression. This is

so that APPLY-TO-LIST continues to process the entire list.

5.2.3.1 Naming the Current Instance.

The value of the global THIS-INSTANCE in the above expression is

bound for the duration of the semantic evaluation, to the object that

was instantiated in orde* to cause this evaluation. This is needed in

order to access portions of the command that was just entered.

5.2.3.2 Communicating to Later Steps.

NEW-COPY returns the name of the newly created specializer. If

we wished to pass some information to the semantics of that potential

activation, we could enclose the application of NEW-COPY in a PUTPROP

expression and hang associated information onto it at will. For

example, if we wished to pass the current time of day to the latter

activation, we might write:
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(putprop (new-copy ...) 'tiine-of-day (timeexpr))

5.2.3.3 Specifying with Subobjects.

In all of the above examples, I have been filling the template

holes with specific parts of an extant object selected out by LOOKUP.

It is important to note that this does not work quite as simply if the

object with which we are filling the holes is another specializer

(say, a complete Filename). Recall that the form of an instance (such

as that which is the value of THIS-INSTANCE) is different from that of

the specilizer that is under construction. It may be necessary to

embed object names in lists that begin "(A . . . ) " in order that the

parser properly process the specializer.

This is also necessary if new copies are to be embedded within

other new copies. This particular embedding of new copy applications

is typically not necessary since the template should be a complete

object with all sub specifiers in place.

5.2.4 Finding a Matching Object.

Exactly analogous to NEW-COPY; one can hunt the network for an

extant parsing object instead of creating one. This is used

specifically in unwinding lists "backward11 to see whether some trap

has been set for a particular subcommand issued as a result of a

list-of-things used within the current command.
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For example, we wished to be able to cause the following

behavior:

$COPY A B
$DELETE X,A,Y .• .
%If you are trying to change the name of A.••

The semantics of the COPY command laid traps for the specific

command "DELETE Afl but this command never appeared. Rather, it was

embedded in the list deletion of the three files X,A,Y. In the

semantics of that latter command we would want to put the expression:

(apply-to-list (lookup this-instance '(Command-argument))
*(lambda (fname)

(find-copy Delete-template
%((name ,fname))

o

Here a subobject of the instance (the Filename object that was

bound by the mapping act '.on of APPLY-TO-LIST) is replaced for the NAME

specifier in the same t« aplate from which the delete parsing object

was created* The FIND-COPY utility will attempt to match all extant

objects which were derived from Delete-template with this virtual

object ("virtual11 in the sense that it is not actually named and

attached to the net but, rather, is simply being used to match extant

objects)•
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The objects to be tested can be found via the ORIGIN field in the

specification element of network objects (see chapter 3). Only the

objects hanging from the template's superior need to be searched and

only those that originated from the Delete-teinplate itself•

5.2.5 Detaching an Object.

The DETACH utility is used to remove an object from the network.

It is given the object and returns NIL. That object is REMOBed from

the LISP workspace and extracted from the property lists of its

parent. Objects below the one being detached are not REMOBed

explicitly although their existence will not affect the speed of the

parser unless they have been explicitly arranged as specializers of

some other father. If such is the case then the author might wish to

arrange to have these extra objects explicitly detached.

In order to perform self detachment, we must know the name of the

parsing object which matched causing the instantiation of the current

object. This name is kept in the global variable: PARSING-OBJECT

which has a value for the duration of the evaluation of that object's

semantics.
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5.3 Two Examples Detailed.

Appendix C contains a slightly stripped form of the semantics

code that performs the recognitions for the COPY+DELETE and ASSIGN+DIR

goals. This appendix together with Appendix B, the primary network

objects, form a complete and functional knowledge base for those

recognitions. These recognizers are stripped in the sense that they

only perform the recognition on complete command names (e.g., "del11 is

not an acceptable substitute for "delete").

there are several points to note in reading this code:

The ASSIGN+DIR recognition is invoked only if the original
ASSIGN command is exactly 2 commands from the terminal DEASSIGN
command thus handling the problem of interposing commands.

The VMS DELETE command requires a version number on the filename.
This must be ignored in order to properly match with the filenames
from the COPY command. Since it is not specified in the object
sl-fileform, and it is not forced to any value (or NIL) by the
semantics of sl-copy-coiumand, it will be properly ignored in
parsing or matching.

The filename (name.ext) is constructed by the sl-copy-command
semantics and passed in the property 'filename' to the DELETE
command. This is then used in the help message. That name
could have just as simply been pulled out of the DELETE parsing
object at notification time.
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6.0 Chapter 6: Open Problems and Loose Ends*

In case it is not yet obvious to the reader, WIZARD is not

perfect in concept or implementation. I can wave my hands at some of

the difficulties and include them in "future directions11. The more

practical problems (sometimes known as design errors or, more

concisely, bugs) are more difficult to explain away.

In this chapter, I will try to lay out what WIZARD might have

been as well as what it cannot be without completely abandoning the

anticipation method of goal recognition. I claim no excuse for having

failed to implement something as "cleanly11 or "correctly" as it might

have been. Sometimes considerations of time prevented such revamping.

Sometimes a minor restructuring in one area would demand a major

restructuring in another and so the burden of the difficulty was left

to the author/user.

6.1 Implementation Rest ictions (i.e., Bugs).

I begin the discussion of problems with those that are most

clear: the bugs. These are not bugs in the sense of causing LISP

error traps but rather misconsidered design of parts of the WIZARD

system. Some of these problems have been discussed already in chapter

2 with relation to the simplicity of the parsing scheme. I will not

reiterate those particular problems here.
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6*1.1 Conflict of Object Form.

As discussed briefly in chapter 3, the form that an object takes

differs between a specializer (or template) and an instance. We might

often wish to attach a sub object that is not atomic to a hole in a

template. This template will later be copied into a specializer.

Herein lies the bug: the form of a sub object role filler in an

instance is a list whose sole element is the name of the sub instance.

In the case of a specializer, however, sub object role fillers are

formed by a list like "(A . . . ) " • The "A" form is necessary in order

to distinguish a LAMBDA expression from a sub object. Instances

should also be in this "A" format so that, as far at the matcher and

parser are concerned, an instance object is not different from a

specializer V/R. Currently, if one wishes to use an instance derived

sub object to fill a hole in a template, it is necessary to create a

new copy of that object as well and insert atomicly selected parts of

the object in hand ir/.o that new copy. Only template derived

specializers are valid parsing objects.

6.1.2 Redundant Parsing: An Efficiency Issue.

A problem with efficiency of the WIZARD parser lies in the action

of the depth first search system. The current implementation begins

all the way down at the leaves and backs up to the leaf's superior to

preparse the string. This process is repeated for each leaf in the

net. That is, for example, Copy-command and Delete—command are both
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DCL commands* Thus, the expressions in the roles of the DCL-command

objects are run for both of those sub specializations and each

evaluation of DCL-command will clearly return the same result—a

redundant and time-consuming operation.

There are two ways of avoiding this redundancy. The first

involves recoding the parser so that as depth first search proceeds

down (looking for a leaf at which to begin grinding) it will parse the

string with the superior objects and pass the predigested selections

to the leaf when one was finally found* Thus, the leaf parsing would

not need to go to its superior before attempting to sub specialize its

role bindings* The bindings would be immediately available*

The second method of fixing this inefficiency is somewhat less

clean but does not involve rewriting the parser* That is to use

memoing of some sort in order to have to evaluate the lexical

functions of the superiors only once for each string*

6.2 Problems With the DCL Domain.

Next I will discuss some of the more difficult problems stemming

from the chosen environment and the assumption of totally syntactic

goal recognition. It turns out that only very limited recognition can

be done on that basis due to non-transparent syntactic structures

which expand into other structures* There are several areas in which

information must be imported into the recognition process*
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6.2.1 Wildcard Filename Compression.

DCL supports "wild card" filename specifications. That is,

certain forms of filename are a shorthand for a whole list of actual

files. For example, if one's directory contains the files "PHOO.BEAR"

and "POO.BAR11 the form: "p*.B*ff is replaced internally with both

those names. WIZARD has no provision for importing information such

as the contents of the user's directory and would have to provide a

pattern expansion function to handle such cases.

This particular type of imported information is not actually

totally unreasonable and, in fact, work to handle exactly this

expansion is currently in progress.

6.2.2 Symbolic Replacement and Command Files.

Another feature of DCL is the ability to replace any command word

(actual or fictitious) with some other string. This information is

kept in internal DCL tables and is not immediate.;/ available to

WIZARD. Along with this facility, the more advanced user can write

complete files whose contents are performed in place of a command (via

an t!@" prefix which is usually hidden in a string macro replacement)•

For example, the user might create a file, CONFUSE.COM whose

contents are a PRINT command followed by a DELETE command (as in a

previous example)• Then he might specify that whenever he used the

command: "RENAME" it was to execute the C0NFUSE.COM file. Thus, the
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sequence:

$RENAME PHOO

would actually issue:

$PRINT PHOO
$DELETE PHOO

This would clearly confuse WIZARD entirely if it could not first

get to the symbolic replacement tables which specify that

RENAME«@CONFUSE.COM and, secondly, read that file and interpret its

contents*

6.3 Theoretical Problems.

I now turn to more interesting problems. These are less like

deficiencies and more like things that I did not think very hard

about. In research, such things are qualified as either "not within

the domain of this thesis" or as "future directions". In keeping with

tradition, I mention here some of each.

6.3.1 Arguments of Deactivation.

In the current design of WIZARD, the only way that help

transactions which would normally occur will not be invoked is if some

other activation has caused the objects which would have generated

those messages to be explicitly detached from the network. There are

some simple rules that have been suggested for some sort of implicit

deactivation. These rules have been argued in specific cases but they
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have not been implemented because it is not clear that they will not

cause undesirable effects in other cases. Some of the rules are:

6*3*1*1 Persistence of Dynamic Objects.

Once a COPY command has been issued, how long should the trap for

a subsequent DELETE command remain? It would be somewhat unnerving to

return three weeks later and issue the terminal DELETE so that the

COPY+DELETE goal actions are invoked. In the mean time the user has

probably learned of RENAME (either himself or via WIZARD) and needn't

see that help message. That trap is simply taking up space and time

and is meaningless after some number of sessions.

First, it should be clear that the mechanisms are available in

WIZARD to store pointer to all the DELETE trapping objects in some

global variable and then detach them all when a RENAME command is

issued. This would correct the difficulty if the user figures out

rename without the aid of WIZARD.

6.3.1.2 General Self-Deactivation.

It has been argued that all dynamically created objects should be

restricted by some general deactivation rules. These are that every

dynamic object detach itself upon its activation (so that it is not

accidentally reactivated, causing the same help message or hanging a

duplicate new object into the network) and that all objects created as
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a result of a given unwinding process deactivate all its brothers when

it is activated. These suggestions are both aimed at specifically

avoiding redundancy of help messages and in some cases they seem to

improve WIZARD'S behavior•

It is not clear, however, that we would want such rules in all

cases* Consider the case in which the node which would be deactivated

is not a terminal node but, rather, spawns new objects that are

dependent upon the input form. If this object were to self

deactivate, only the first of the possible activations of that interim

step would be actually executed*

6.3.1.3 User Profiles.

Closely associated with the duration of dynamic objects is the

question of what knowledge should be preserved from session to session

or over longer periods or time. It is not even clear that, in the

case of our COPY+DELETE sequence having been detached by the use of a

RENAME command, that sequence should not be restored. If the user

still persists in using COPY+DELETE misbehaviors then we might either

question his memory or question the potential of our misunderstanding

some side effect of that sequence.

The stored knowledge base becomes a profile of the knowledge of

the user and can be analyzed to determine how far along he has come or

how quickly he is progressing. It also provides a log of all commands
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issued and can thus be used in protocol analysis to, perhaps, actually

teach WIZARD about this particular user.

6*3*2 Reconstruction of Strings for Help Messages•

WIZARD is really a help processor invocation system* I have not

been especially concerned with the actual help interactions* This is

primarily because I do not think that I could have done justice to

both topics* There are, however, some simple applications of the

WIZARD data structure and logic that might be useful in the

construction of the actual help senarios.

All the context information that the help processor needs must

either be passed along with the WIZARD program (in properties) or else

extracted from the object whose activation invoked the help

interaction. It is sometimes necessary to break apart objects in

order to extract their p irts for the help messages* For example, in

order to print a prc ?erly formed filename in the C0PY4-DELETE help

message it was necessary to extract the first part of the name and the

extension separately and rebuild the filename manually (via string

concatentation)•

This should not be necessary. All the information exists in the

objects in the network to reconstruct them into strings by simply

reconconcatentating the parts in some uniform way. A list of

filenames is a list-of-things where each thing is a filename. Thus,
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in order to make the string from which a list of filenames was

derived, simply insert commas between the reconstructed filenames.

The process is not quite this simplistic because the top-level

expressions might lose information (although probably not anything

relevant) and there would have to be some rebuilding function that

performed the catentations. Otherwise, we would have to go in and

invert the operation of the LISP expressions that parsed the strings

to begin with and this is certainly not a simple task.

6.4 Automatic Generation of Semantics.

Given that the WIZARD paradigm is the perfect user assistance

frontend (of course), it remains only to clean up some of the messy

programming that is involved ia making it work properly. The reader,

by this time, has probably reached the conclusion that it takes some-

very careful planning and a great deal of experience in order to write

working WIZARD programs. It would be nice if an author could simply

enter his flowchart in some higher level language and have it

automatically converted into parser objects, templates, and associated

semantics. In fact•, it is a short hop from some less lispy object

syntax to the actual network objects. The conversion is rather less

well defined for semantic actions. One would have to include

provisions for passing information on the side in properties. It is

not beyond speculation, however, that a programming language could be

designed which was compiled into wizard objects complete with
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semantics*

The next, more interesting and difficult step, is to provide an

"author's workbench11. This utility would permit an author to review

logs of beginner sessions and simply indicate which parts of the

interaction are misbehaviors and what the distinguished sequence

should be. The workbench utility would then code the WIZARD programs

itself.
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7*0 Chapter 7: Postmotivations and Possible Universes*

Although the goals of WIZARD are modest the general topic of the

application of goal recognition to user assistance is in much need of

research* I think that many of the ideas argued in this thesis, those

ideas for which WIZARD is a test bed, deserve more thought than the

industry or academia have yet put forth* In this, last, chapter, I

try to justify (to myself as well as the reader) the time spent on

this research and to demonstrate that such research is actually of

some interest*

7*1 Advantages of Anticipation*

The goal recognition approach used here is not a novel technique*

The use of anticipation to recognize tactics has been applied to

natural language understanding (a la Riesbeck) among other areas* It

is generally accepted as a reasonable approach in some cases* I

originally chose this te :hnique for several reasons* One is that it

works particularly well in a non-iterative task domain (like a command

language)* Another reason is that it is simpler and more general, to

my mind, to construct programs in order to recognize things than to

design large and hairy patterns that are matched against entire sets

of user logs.
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7.1*1 Interspersed and Intertwined Coramands

One specific advantage of the anticipatory approach over, for

example, a pattern matcher is that ignorance of coramands that do not

affect the recognition is a built in feature. For example, as far as

WIZARD is concerned the following are identicals

$COPY A B $COPY A B
$PRINT C $DELETE A
$DELETE A

Additionally, overlapping goal recognition programs are

automatically handled as in the following example:

$COPY A B
$PRINT C
$DELETE A
%The RENAME command may be used...
$DELETE C
%The PRINT/DELETE command...

Another reasons for choosing the anticipatory scheme was that it

is reasonably simple to describe the sequencing that becomes the goal

recognition program. That is, an expert user can act illy anticipate

mibehaviors of beginners in the same sort of I/O behavior that WIZARD

seems to use. Often a tutor will be able to anticipate what his

student will do wrong before the mistake is made. WIZARD'S heuristic

depends upon this exact type of anticipatory ability.

A human being (a tutor of some lesson) learnr to anticipate

misbehaviors by having experienced them many times• WIZARD is taught

explicitly which misbehaviors to seek out and recognize. It is not
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too far an imaginative leap to think of WIZARD learning about such

common mispractices by observation. I think that this might be

accomplished by extension of WIZARD'S knowledge and perception to

include changes in the environment and by having WIZARD learn which

commands effect which changes•

7*2 Knowledge Representation•

My final major motivation for the use of anticipation was that it

fits well into the scheme of knowledge representation. KL-One is a

system whose properties have always fascinated me but for which I had

found little utility. The need for a dynamically modifiable pattern

matcher gave me the opportunity explore knowledge representation. I

do not think that it is a necessary feature of WIZARD. Snobol might

be made to do somewhat the same type of recognition but the

descriptions of the DCL language would have been much more complex and

the unavailability of the power of a built in programming language

would have made the anticipation programs that much more difficult.

The semantic network is designed to be extensible, simple and

easy to use due to the natural way in which objects are described. I

have found it to be a more than adequate tool for exactly the type of

pattern matching that this work required. The ease with which I was

able to describe DCL commands and have WIZARD understand them proved

out the thesis that KL-One like data descriptions are useful and

interesting.
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Another feature of which I did not take full advantage is the

capability of building a detail model of what a user, who has been

running under WIZARD, knows about the command environment. It is my

feeling that this is a virtually unlimited area of exploration in the

user assistance area.

7.3 Advantages of WIZARD as a Help Invocation Paradigm.

If nothing else is gained from this thesis, it is my hope that

the reader will recognize the importance of goal recognition in user

assistance. Although I stated in the preface that I would avoid

speculation about psychology, I do think that the general recognition

paradigm is useful in describing the behavior of a real user

consultant (I do not think that consultants use anticipatory methods

but that is not important to this point).

Clearly, when one human being helps another with anything, the

helper has some idea c: what his student is trying to do. Trial and

error training is useful only to a point. That point comes when the

user knows how to get the job done and avoid silly errors (that is,

syntax and trivial semantics). There is only so far that an entirely

trial and error taught individual can go in an environment as rich as

an operating system and after a time it is useful to have an expert

suggest appropriate techniques of efficiency and cleanliness.
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Goal directed help systems can be applied much more generally

than I have done here. Imagine interactive programing environments

that give the user a bit of programming guidance. These are not

particularly novel ideas. I have concentrated on a very specific

domain in hopes of being able to get interesting behavior. WIZARD is

a functioning, albeit slow, implementation of exactly what I had

imagined this work to produce.
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Appendix A^

The WIZARD Code

It is not necessary to read code in order to understand WIZARD'S
functionality* The bulk of this thesis discusses the algorithms
implemented by the functions detailed in this appendix. I do,
however, feel that it is important to people interested in working on
WIZARD that the LISP code be properly documented and explained in
detail.

The functions are divided into major sections of the system.
Each section is briefly discussed and then the functions detailed. A
short discussion of how the function fits into the WIZARD framework is
included. If LIS? scares you, simply ignore the code and read the
comments. I have tried to be consistent about code style and
commenting. Some functions are commented internally in order to
explain non-transparent techniques. Comments always describe the code
immediately following the comment.

WIZARD was developed and runs under John Foderaro's Franz LISP
environment from Berkeley as modified by Lars Ericson at Carnegie
Mellon. The system must be run in that environment.



The WIZARD Top-Level.

When WIZARD begins execution, the user seems to be talking
directly to VAX DCL. The "$" DCL prompt is generated by WIZARD'S top
level control function and input is- passed thru to the command system*
The goal recognition subsystem "watches" commands as they are passed
to DCL* A major assumption is made here that the command in not in
error. There is no straight-forward way of retrieving error codes
from DCL commands and thus I do not do so.

Since characters that are special to LISP (such as brackets and
periods) are a normal part of the DCL command syntax, WIZARD
temporarily replaces the LISP reader syntax array with a modified
array in which those characters are treated as normal characters*
This essentially kills LISP for use after WIZARD has been activated.
That is only a problem if there is an error. The system supporter
should be able to use LISP if an error occurs in WIZARD. In order to
correct this problem, the old version of the syntax array is copied
into a prog variable and the error demon knows to replace it in case
of error.

The top level controller simply reads strings, issues the DCL
command, and calls the grinder (parser) passing it the input command
string and the BCL-command network object to process the string
against as described in chapter 2. The list of successful parses for
this string is then appended to the command history and a nav command
is read.

(setq crad-history ())

; >» wizard <«

5

; The read-eval(del)-print[not really] loop for the wizard system.
; The reader has to be screwed with in order to get all the chars
; that DCL wants to see |[]| etc. The error processors are also
; fixed so that the read tables are replaced on break or error.

(defun wizard ()
(prog (hold-break table-holder hold-err)

; Save the old read "able in case we want to put it back* This is
; primarily for debugging purposes*
(setq table-holder (raakereadtable ()))
; Fix the reader to accept all chars.
(set-wizard-reader)
; set up error handler so that WIZARD recovers properly (sort of)



(setq hold-break (getd 'break))
(putd 'break (getd 'wizard-break))
(setq hold-err (getd 'err))
(putd 'err (getd 'wizard-error))
; The MAIN LOOP !!!

input
(patom "

$")
; Translate the input line into a del command
; and run it thru the wizard processor•
(ZARDOZ (list—->dcl (lineread '$)))
(go input)

))
• 9

; » ZARDOZ «
9

; This is the wizard main driver* Run the command and try to insert it
; into the semantic net if no execution errors are detected* The error
; detection logic is currently non-existent•

(defun ZARDOZ (cmd)
(prog ()
; Issue the command thru Ira's DCL link*
(del crad)
; If an error occurs then simply return*
(cond ((del-error) (return ())) )
; OKAY — insert the command in the net (this is where WIZARD processing
; takes effect!) and then append the list of applicable parsings into the
; command object history list*
(setq cmd-history (append cmd-history (list (sn-insert 'del-command cmd))))

; » list—>dcl «
»
; Translates a list of atoms to the string representation of the entire list
; as a sentence with intervening spaces*
9

(defun list—>dcl (1)
(cond ((equal (length 1) 1) (car 1))

(t (concat (car 1)
(concat " " (list—>dcl (cdr 1))) ))

))
9

; » del-error «
9

I This function SHOULD return fltft if a command error was detected so that
$ WIZARD knows not to parse commands that were in error, but the linkage is
; not yet in so it is currently a stub.



(defun del-error () nil)
9

; » set-wizard-reader «

; This function fixes the characters that should be inputtable to DCL but
; that LISP wants to use specially•.
t

(defun set-wizard-reader ()
(setsyntax
(setsyntax '
(setsyntax '
(setsyntax '
(setsyntax '
(setsyntax '
(setsyntax '
(setsyntax '
(setsyntax '

'1
tl
] |
.1
,1
; |
(1
"1
) |

2)
2)
2)
2)
2)
2)
2)
2)
2)

(setsyntax ' |/| 2)

» wizard-error «

Fix the error controller so that we return with life reset when an error
occurs•

(defun wizard-error fexpr (a)
(apply 'iasg a)
(putd 'err hold-err)
(putd 'break hold-break)
(setq readtable ta"de-holder)
(apply 'err a)

» wizard-break «

(defun wizard-break fexpr (a)
(apply 'wizard-error a)



Parser Control.

These functions are the parser controller and parse utility
functions for use in top level selector functions. Lexical functions
have the exploded string in a variable called STRING and the result is
constructed in the variable RESULT. The utilities available are:

GRAB - Returns the next character in the string and removes
that character from the input.

PEEK - Also returns the next input character but does not remove
it.

DROP <c> - Put a character into the output string (RESULT).
SEEK <c-list> - Perform GRABs until the first character in the

string is one of those in the list of characters (c-list).
REST - Copies all the rest of the characters into RESULT.

This also stops processing of this parsing function.
DONE - Stop processing this parsing function and return RESULT.
SKIP-SPACES - Drops chars until the first character in STRING is

not a space*

The RESULT of parsing is passed back via THROWS and CATCHs so the
author of a lexical function needn't return a result from the
function. The use of REST or DONE will terminate the parsing function
properly. If an attempt is made (via PEEK* GRAB, etc) to get a
character beyond the end of the string a DONE is forced.

> » parse < «

The main driver. Explodes the string and the applies the parsing
routine. Results are collected and returned with the names of the
routines. This function actually takes a list of the names of the
parsing routines and the string.

(parse '(name equal args) "string")

In actual use, the names will more likely be lambda exprs.

(defun parse (proc-list string)
(prog (result)
(setq string (explodec string))
(return (parsesubr proc-list))



> » parsesubr < «
y

; The recursion thru this routine applies the eating functions.
; Parsing stops when we either run out of string or run out of pattern.

(defun parsesubr (p)
(setq result ())

; If we're out of parsing functions then halt,
(cond ((null p) ())

; If we're out of string then fill out the remainder of the roles
; with the empty string,
((null string)
(cons (list (car p) lllf)

(parsesubr (cdr p))))
; Actually parse the current string against the next role function.
(t (cons (list (car p)

; The parser will throw us a result from the application
; of the named (or larabdaed) lexical routine.
(copy (catch (apply (car p) ()) 'parser-result)))

(parsesubr (cdr p))

; Parse utility routines.
9

; Use the following primitives to recognize and "suck up" input characters
9

; 1. Peek at the next character in the input stream (peek)
2. Suck up the next character in the input stream (grab)
3. Return with the string as is and the portion of the input that

was matched as the result of the function, (done)
4. Take in the rest c .' the input string, (rest)

The functions use the global variables STRING and RESULT to represent
incoming string and the string to be returned.

> » peek < «

Look at the next character of input without removing it from the
list.

(defun peek ()
(cond ((null string) (dine))

(t (get_pname (cac string)))

>» grab <«



9

; Return the next char and remove it from the list.
9

(defun grab ()
(cond ((null string) (done))

(t (get_jpname (car (list (car string) (setq string (cdr string)) ))) )

; >» done <«
9

I Return RESULT from this parse proc by throwing it to the waiting catch.
; This is done so that we can get out of any prog loops that the caller
; has jammed in the way when the string runs out.
•
9

(defun done () (throw (get_jmame (implode result)) parser-result))
9

I >» rest <«

; Copy the remainder of string onto the result list.
9

(defun rest () (setq result (append result string)))
9

; The following aaxilliary functions are also provided for convenience of the
; procedures:
•
9

; (skip-spaces) ... Skip over and throw out spaces in the input string.
; (drop char) ..« Add the named character Co what will be the result
; of this application.
; (seek char) ... Do (drop (grab)) until the named char is seen. That
; char will be left in the first po ition of the input
; string (for the next peek or grab;.
•
9

; >» skip-spaces <«
9; Luse all spaces in the front of the string.
9

(defun skip-spaces ()
(do ((c (peek) (progn (grab) (peek))))

((not (equal c " ")) ())

9

; >» drop <«
»
; Put a character into the result string.
9

(defun drop (c) (setq result (append result (list c))) )
9

>» seek <«;



9

; Look thru the string for any of the characters named and drop all the
; characters in the way into the result.
; If the user calls this with an atomic result, it is clever enough to
; listify the atom.
•>
(defun seek (c)

; If the wip gave up an atom then make it a list for member*
(cond ((atom c) (seek (list c)) )

(t (do ((x (peek) (progn (drop (grab)) (peek))))
((member x c) ())).)



Object Access Utilities «

This set of functions is like InterLISP record descriptions for
the parts of objects. They are value based selectors and selection
and update functions for property based information. The FORCE-TYPE
object/name coersion utility is also here. That is used in the
semantic actions to force a name to be the object or vice versa.

; Functions to decompose objects

; > » object-name < «
t

; Each object has a unique identifier that locates it's top preciscely in
; the network. This function takes an object body to its name.
•
(defun object-name (obj)

(car obj)
)

; >» specs <«
•
i

; The object's specification section indicates whether this is an instance of
; or a specializer of some other (higher) object. If not then the specs list
; will be simply (is).
f

(defun specs (obj)
(cadr obj)

; > » spec-type < «

; Passed an object body, this function tells exactly the type of
; specification one of: SPECIALISES, IS, or INSTANTIATES.

(defun spec-type (obj)
(car (specs obj))

; »> super-object < «
9

; For a non-generic object, this function tells which object the current
; one is an instance of if any.
>
(defun super-object (obj)

(cadr (specs obj))



9

; > » origin < «

; The third element of the specifications list (if there is a third element)
; will contain the name of the object from which this object was constructed•
; Presumably the construction was performed by (new-copy). This exists mainly
; for the efficiency of the function (find-copy) so that only the objects that
; have an appropriate origin tag need be searched.
•
9

(defun origin (obj)
(caddr (specs obj))

; » > parse-body < «
9

; Every object has a description of the expressions that can be used by the
; parser and specialization logic to match string elements to this object. In
; the case of a generic (IS) these functions must be lexical analyzers. See
; the net-manager and parser for a more detailed discussion.
•
f

(defun parse-body (obj)
(caddr obj)

)
9

; > » semantics < «

; Given an object, this function indicates what the side effect of making
; an instance of this object is. Every object has semantics although they
; may be nil in many cases.
•
9

(defun semantics (obj)
(cadddr obj)

; > » mask < «
>
; The mask is used to locate lower parts of an
; object by associating an externally available name with a path by which
; the lookup processors can get to parts of the object.
9

(defun mask (obj)
(caddddr obj)

)
9

I »> specializers < «
9

; Now we are into the things that hang near objects but are not part of
; them per-se. Most of these associated things are in the PLIST of the



; object and thus these functions require the NAME of the object rather than
; the body.

9

; specializers are the sub-concepts that hang from a generic. They are also
; generics. The contents of this property are arranged at net main loading
; time by the net loading functions or by action of (new-copy).
• *
9

(defun specializers (obj)
(get obj 'specializers)

; > » instances < «
«
; Instances are much like specializers execept that the parser does not see
; instances in the paring process and instances are created at run time rather
; than at load time. The parser makes an instance of a generic when the parse
; succeeds.
•
$
(defun instances (obj)

(get obj 'instances)

Functions to update objects

» > add-specializer < «

The name of the specializer is added to the front of the name of its father,
specializers are specializers that will be searched by the parser.

(defun add-specializer (object-name cpecializer-narae)
(property-update object-name specializer-narne 's >ecializers)

; > » add-instance < «

; An instance is exactly like a specializer expect that they are not scanned
; by the MSS parser. This adds the name of the instance genned by the parser
; to the father node.
•
9

(defun add-instance (object-name instance-id)
(property-update object-name instance-id 'instances)

» property-update «

A utility that jams a new name on the front of the property specified in the
object specified. Used by add-specializer and add-instance.

(defun property-update (object-name x property)



(putprop object-name
(cons x (get object-name property))
property

$
; >» set-obj < «

(defun set-obj (name specs parse semantics mask)
(set name

(list
name
specs
parse
semantics
mask

> » force-type < «

; Used to coerce a name to its object or vice versa. The first arg is the
; name of the var to be forced (via set) into the type specified by the
; second arg. That is, either "name" or "object". This is used primarily
; in the semantics in order to protect authors frcra naking stupid errors«
; I have avoided using it within the WIZARD code because it would be too
; slow and, more importantly, if there is a mismatch within WIZARD then
; something might be screwed up and I'd prefer it bomb out.

(defun force-type fexpr (a)
; If the given is an atom .•.

(cond ((atom (eval (car a)))
; ... and caller wants name then leave it alone,

(cond ((equal (cadr a) 'name) ())
; Otherwise its wrong and has to be coerced!
(t (set (car a) (eval (eval (car a)))))

; For lists ... (i.e., objects)
; ... if caller wants a name the get the name from the list.

(t (cond ((equal (cadr a) 'name)
(set (car a) (object-name (eval (car a)))))

; else ok — leave her alone.
(t ())



Network Management<

These are the DCL network Intializer functions and the parse
grinder that puts incoming strings into the network as instances* The
first few functions (net-construct, etc) are simply used at WIZARD
startup to put the original objects into the net. Each object is
hooked into the net properly and the properties that point an object
to it children (instances or specializers) are updated properly. It
is important that the father go into the network before its children
so that the updating occur correctly.

The set of functions beginning with GRIND are the real heart of
WIZARD. They process a string against the DCL-coramand object in the
network and cause the parsing and instantiation to occur* The grinder
also causes the evaluation of the semantics to occur thus running the
goal recognition system.

; > » net-construct < «

; The function that inserts objects into the net. The objects are
; simply setqed into their respective names. Each object gets arranged
; with a property 'specializers, which will contain a list cf all objects that
; directly specialize this object, and a property 'instances which will
; contain all objects parsed by the object in hand*
; The generics must be input before their specializations.
•
9

(defun net-construct fexpr (nlist)
; Map over the list of passed objects and insert each into the net.
(mapcar 'net-insert nlist)

; » net-insert «

; The work routine for net-construct. Takes one object at a time and jams
; them into the network.
«$
(defun net-insert (n)

; Put it into the net.
(set (object-name n) n)
; Set up the specializers and instances lists to NIL initally.
; Since get returns nil if there was nothing there this is a bit
; redundant but cleaner. It also permits reloading the net in order
; to clean it out.
(putprop (object-name ri) () 'specializers)
(putprop (object-name n) () 'instances)



} If this object specializes something else* add its name to
; it father's specializers list*
(cond ((equal 'specializes (spec-type n))

(add-specializer (super-object n) (object-name n)) )
)

; > » sn-insert < «
9

; This function takes a pointer to the top node in the net of the type
; of object to be analyzed and a string. A Bottom-up search is performed
; on the entire structure below the named object and the string's parse is
; inserted as an instance of ALL successful parses 1
•
(defun sn-insert (startobj string)

; Insertsub expects to be getting a list of specializers. This {list)
; makes it think that the start-obj is the only child of some virtual
; higher concept. Like religion,
(insertsub (list startobj))

» insertsub «

The depth first search is driven by this function. Standard hack: first
do the kiddies then do the parent then to the brothers.

(defun insertsub (obj)
; If father had no specializers then I must be a figment of the DFS's
i imagination. Pop back so that it can do my father now*

(cond ((null obj) ())
; Inskeep retains the search results.

; Do the kids of the first node...
(t (inskeep (insertsub (specializers (car obj)%)

; Exapand-obj instantiates the results of the grinder.
; The grinder is the parsing controller,

(inskeep (expand-obj (grind (car obj) (eval (car obj)) string))
; Lastly do the following brothers,

(insertsub (cdr obj))

» inskeep «

$
; This is used primarily to conconcatentate only successful parses into the
; history list. It flattens the funny looking things that can come out
; of the DFS algorithm.



(defun inskeep (item rest)
(cond ((null item) rest)

((null rest) (list item))
((atom item) (cons item rest))
(t (append item rest))

; > » grind < «
»
; This function does the legendary bottora-up top down search that is the
; parsing algorithm. It is bottom up in the sense that it begins from
; some object that is subspecifies a higher object and goes after the
; objects above for the parser driving functions. It is top down in
; that it goes depth-first into the object's own roles. Hand this function
; a string and and the name of some object in the net* Every object is
; either a generic (begins with "is") or a specializer (begins with
; "specializes")• If it is a specializer then we parse the string at
; hand according to the superconcept and then reparse it according to
; the "with" restirctions of the roles on this object.
«
9

; The main grind function sets a catch in case there is a mismatch deep
; in the net. If there is then the pattern matcher will fail and throw
} back to this level.
• •

(defun grind (name object string)
(catch (grind-sub name object string) 'grinder-flag) )

t

; » grind-sub «
•
(defun grind-sub (name object string)
(cond ((null string) ()

; If this is a to^ level then simply stop here and parse the
; roles at this level. Return the result for specialization by the
; caller if it so desires.
((equal 'is (spec-type object))

; Parse-driver only wants to see the roles.
(cons name (parse-driver (parse-body object) string)) )
; If this object specializes another object then go and parse its
; father then apply the additonal role restrictions at this level to
; the father's parsed roles.
((equal 'specializes (spec-type object))
(cons name

; specialization is done by matching the roles of the object
; at hand to the result of the grind of this object's father,
(specialize

(cdr (grind-sub (super-object object)
(eval (super-object object))



string

))
; Feed the roles to the specializer as well,
(parse-body object)

; » parse-driver «
•
t

; This function is called to run an object and a string thru the parser.
; it constructs a parse list and then unconstructs the parsed pieces into
; just the names of the roles and the items that they match.

9

(defun parse-driver (p s)
; Rewind the parse result. ; Unwind the roles for parsing.
j I.e., reinsert the names. ; ((name lex)...) — > (lex lex...)
(disembed-parse-list (parse (mapcar 'cadr p) s) p)

)
9

; » disembed-parse-list «
9

; Reconstructs the result of parsing with the names replaced for the lex
; functions.
9

(defun disembed-parse-list (1 p)
(cond ((null p) ())

(t (cons (list (caar p) (cadar 1))
(disembed-parse-list (cdr 1) (cdr p))

9

; »> specialize < «
9

; Take the result of a ground string and process each parsed element
; by applying the context of the with clause included in this specialization*
; With parts are either an atom which must be equal the ground data, ()
; which means that the ground data must be empty, or a list which indicates
; that the grinder should be called recursively to grind this string with
; the named object. These lists are in the form (a <objectname>). The
; "a11 is just for show.
•
9

(defun specialize (r s)
(cond ((null r) ())

; For each element in the result of the parse, if there is a special
; role to be applied, apply that role restiction.
((assoc (caar r) s)



; specsub does the actual role/value restriction.
(cons (list (caar r) (specsub (cadr (assoc (caar r) s))

(cadar r)

(specialize (cdr r) s) •

>>
j If no specializer is named for this role then simply accept it and
; go on to the next one*
(t (cons (car r)

(specialize (cdr r) s) ))

; » specsub «
•
; This does the real work of specialization. The second member of the role
; restiction is one of;
; () - indicating that this role must be unfilled,
; atomic - indicating that an exact match is required,
; a list of the form lf(a . . . ) " indicating that "•••"
; is the name of an object which this will be
; subprocessed by, or,
; another list which is assumed to be a monadic predicate
; which will test the string.
9

(defun specsub (sp st)
; If the spec is () then the string roust be empty,

(cond ((null sp) (cond ((equal "u st) lflf)
(t (grind-fail)) ))

; If the string is nil then something's wrong. Since the spec was
; not also ""• This is a succeding match beleive it or not!
((equal "» st) ())
; If the spec is atomic then they have to be equal,
((atom sp) (cond ((equal sp st) sp)

(t (grind-fail)) ))
; Aha! Is there a sub object to do further grinding? If so then go.
((equal 'a (car sp))
(grind-sub (cadr sp) (eval (cadr sp)) st))
; I don;t understand it so simply try to apply the predicate and hope
; that they luser knows what he's doing*
(t

(cond ((apply sp (list st)) st)
(t (grind-fail)) ))

» grind-fail «



; Called when a grind mismatch occurs. This causes the grinder to stop cold
; and go on to the next possible parsing object.

(defun grind-fail () (throw () grinder-flag) )

>» expand-obj <«

After the grinder has decided exactly where to put

the object, this function takes the compacted form of the instance
(as returned from the grinder) and instantiates each object on the correct
superconcepts. The result is a pointer to the top node.

The object comes into this function in the form:

(name (rolename filler) (rolename filler)...)

(defun expand-obj (r)
; If the grinder failed then forget it.

(cond ((null r) ())
; Do the roles FIRST. Then...

; ... do the top.
(t (make-instance (car r) (expand-roles (cdr r))) )

» expand-roles «

The roles are each analyzed and either instantiated in place (if they are
not lists) or are recursively attached to sub instances.

(defun expand-roles (roles)
(cond ((null roles) ())

; If this filler is a list then expand its sub concept,
((listp (cadar roles))

; Reattach the name to the sub concept instance,
(cons (list (caar roles) (list (expand-obj (cadar roles))))

; And then do the rest of the roles,
(expand-roles (cdr roles)) ) )

; Atomic or string values needn't have instances made of them.
(t (cons (car roles) (expand-roles (cdr roles)) ) )

>» make-instance <<<

Make-instance and set-instace form an instance name from a gensym
value and the name of this object. It is then attached to the generic.

(defun make-instance (super roles)



(set-instance
super
roles
(gen-name super)

; » set-instance «
>
(defun set-instance (super roles instance)

(set-obj instance j object name
(list 'instantiates super) ; specifier
roles ; parse expr
() j semantics
() ; mask

)
(add-instance super instance)
; When the object is instantiated... execute the semantic
; component. The semantics have the var "parsing-object11

; available in order
; to name the particular superior specializer under consideration.
; Also, Hthis-instancelf is the name of this particular instance,
(eval-semantics super instance (semantics (eval super)))
; Return the name of the new instance from this function
instance

; » eval-semantics <<

(defun eval-saraantics (parsing-object this-instance semantics)
(eval semantics)

; » gen-name «

; Takes the prefix that you would like to see on the new name and adds a
; unique 5 digit numerical tag to it.

(defun gen-name (prefix)
(implode (append (explode prefix)

(cons '- (cdr (explode (gensyin))))



Semantic Action Utilities

These are the programmers utilities for goal recognition
processing. They are discussed in detail in chapter 5. Each function
demands arguments that are network objects or names in a certain fornw
The FORCE-TYPE function (from the record package) is used to perform
coersiou when it is needed.

; >» lookup <«

; Given an object and a path list, this function will go down the object
; and extract the value that matches the path specification. For example,
; in the object that matched "del a,bfl the list-of-filenames ffa,btf would
; be found at the path specified as '(command-argument).
•

(defun lookup (object path)
; Make sure that the object is not a name. This is typically a result
; of having called it from an apply-to-list but might be an error,
(force-type object object)

; If we've run out of path then this is it!
(cond ((null path) object)

; If there is more path to travel, select the correct branch
; from this point and then continue processing at that role.
(t (lookup-step (cadr (assoc (car path) (parse-body object)))

(cdr path)

; » lookup-step «

; If we are at the end of the line for this role then simply return the
; atom that it at the end of the search path. This might be a failure
; but currently is not error flagged.

(defun lookup-step (role path)
; A role out of steam will have an atomic binder,

(cond ((atom role) role)
; Otherwise get the next level object and recur.
(t (lookup (eval (car role)) path))

>» apply-to-list <«



; This is a version of apply that applys the function to all the elements
; of a list-of-things. It continues down the last role of the object until
; the value of the function is t* If it hits the end then it returns nil.
; The fn should take one arg that will be applied to the atom that is the
; name of the "thing" role filler*
f

(defun apply-to-list (object fn)
(cond ((null object) ())

; Apply fn and stop if it returns anything but ().
(t (cond ((apply fn (cadar (parse-body object))))

; Otherwise select the next "thing" from the list and recur.
(t (apply-to-list (eval (caadadr (parse-body objeat))) fn) )

> » new-copy < «

Given any object and a binding list
this function will make a new object and insert it into the network.
The binding list is in the form ((name replacement) (name replacement)...)
The names are matched to the mask names in the object passed and then
the replacement objects are put in the new object in the places indicated
by the mask paths associated with each name.

(defun new-copy (obj binders)

(make-copy obj (super-object obj) (path-expand binders obj))

)

; » path-expand «

; The binding list (as n ime-replacement pairs) has to be translated
; into path-replacement »airs. This function performs that conversion by
; mapping through the list of bindings and doing a get-path on each name.
; The path search is anchored at the current object and proceeds up to the
; top level super concept.

(defun path-expand (bindlist obj)
(mapcar '(lambda (binding)

; get-path does most of the work here.
(cons (cadr (get-path obj (car binding)))

(cdr binding)

bindlist

>
; >» get-path «<



9

; This function takes an object and a path identifier that is an element:
; of. a mask in one of the object's superiors. If the name is not found in
; that object or in one of it's superiors up to the IS concept then nil is
; returned• The path is returned otherwise* The search is performed from the
; bottom up so there may be multiple occurrences of a name that are chenged
; toward the base*
•
(defun get-path (obj pathid)

; If the path name is in the current element then simply return
; the rolename-rolefiller pair*

(cond ((assoc pathid (mask obj)))
j See if the top is this one* If so then an illegal path has been
} specified and an error SHOULD be returned (but nil is instead)•
((equal 'is (spec-type obj)) ())
; Try to get the path from this guy's father*
(t (get-path (eval (super-object obj)) pathid) )

; » make-copy «
•
f

; This function takes an object and an expanded bindingpath-replaceraent list
; It copies the old object into all new instances by instantiating this node
; and then instantiating each of the parse-body-role nodes that represent the
; subconcepts that make up this concept*

(defun make-copy (node super bindlist)
(set-special

(object-name node)
super
; Expand the roles of this object into s^ecializers as well.
(copy-roles (parse-body node) bindlist)
; A new name is genned for this parsing object. Thus any
; instances of this object will have double numbers when they
; have names genned.
(gen-name super)
; The semantics of the old node are copied.
(semantics node)

«
9

; » set-special <<«
*
; Called in order to add a parsing object to the network. The new object
j is assumed to specialize its super* This is NOT an instance.

(defun set-special (origin super roles name semantics)
(set-obj name



(list 'specializes super origin)
roles
semantics

0
)

; Add the name of the new parsing object as a specialier of the
; parent so that the parsing search finds it.
(add-specializer super name)
; This function returns the name as a result•
name

} » copy-roles «

; Go thru each member of the parse-body of this object and expand each role
; by either returning the object that is its replacement (if there is one
; specified) or a copy of the sub concept to which this role expands.
•$
(defun copy-roles (roles bindlist)
(cond ((null roles) ())

; If a binding has been specified for this role then insert that value
; in place of whatever the author originally had in this place*
((find-binding (caar roles) bindlist)

(cons (list (caar roles)
; find-binding is repeated (sorry) and could probably be
; replaced by some metnoing or a lambda bind later,
(find-binding (caar roles) bindlist) )

; Do the rest of the roles as well
(copy-roles (cdr roles) bindlist)

))
; If the specification of this role is a sub-ot ject (a ) then make
; a new copy of that object as well and reinser: that name here,
((and (listp (cadar roles)) (equal 'a (caadar i^les)) )

(cons (list (caar roles)
(list 'a

; Recursively call make-copy on the subobject
(make-copy (eval (cadadar roles))

; Make-copy needs the super of the sub also,
(super-object (eval (cadadar roles)))
; Pass only those bindings that apply to this role,
(applicable-binders (caar roles) bindlist)

)
) ; close (list 'a*..)

)
; Again, be sure to do the rest of the roles,
(copy-roles (cdr roles) bindlist)

))
; There are no applicable bindings and there is no subobject. This
; role is probably filled by either an atom or some lambda expr.



; Just copy it as is.
(t (cons (car roles) (copy-roles (cdr roles) bindlist)))

» applicable-binders «

This takes a role name and the binding list and returns only those binders
that might apply to this name. The cdr of the paths of those binders
is returned so that it can be reused immediately.

(defun applicable-binders (name bindlist)
(cond ((null bindlist) ())

; The binders in role flfoofl that start "(foo )ft are selected and..<
((equal (caaar bindlist) name)

; . •• "foo" is pulled out of the path list,
(cons (cons (cdaar bindlist) (cdar bindlist))

(applicable-binders name (cdr bindlist))

))
; Skip any that don't begin "(foo ) "
(t (applicable-binders name (cdr bindlist)) )

9

; » down-level «
•
; Used to move to the next position in the paths listed in the bindlist.
; Each path is CDRed.
J
(defun down-level (bindings)

(mapcar '(lambda (b) (cons (cdar b) (cdr b))) b. ndings)

J
; » find-binding «
9

; Searchs throught the bindlist and returns either () or the object to act
; to replace the current sub-part.
9

(defun find-binding (name bindlist)
(cond ((null bindlist) ())

; The qualifications for being a valid binder are that it is of the
; form exactly "(foo)11 for role "foo11. Longer lists are for deeper
; paths.
((and (equal 1 (length (caar bindlist)))

(equal name (caaar bindlist)) )
(cadar bindlist))
(t (find-binding name (cdr bindlist)))



; > » detach < «

9

; Removes an object from the network* This is typically used in the semantic
; actions in order to stop the processing of traps. Note that only specializers
; can be removed from the net and this function assurase that it has been handed
; a specializer [type:(specializes foo)].
•
9

(defun detach (object)
; Make sure that the author passed us an object rather than a name*
(force-type object object)
; Tell daddy that we're leaving home.
(remove-specializer (super-object object) (object-name object))
; Remove the name itself thus unhooking all the lower stuff.
(remob (object-name object))

; » remove-specializer «

9

; This is used to remove the name of a specializer that is going to be reramed
; from the specializer property of its father. It is pretty straightforward.
9

(defun remove-specializer (super- obname)
(putprop super

(rera-name-from-list (get super 'specializers) obname)
'speciaiixers

; » ;:em-name-frora~list <<

; Standard pull an atom Jrora a list of atoms by name.
; This should be a stand .rd lisp function.

»
(defun rem-name-from-list (1 n)
(cond ((null 1) ())

((equal n (car 1))
(cdr 1))
(t (cons (car 1) (rem-name-from-list (cdr 1) n)) )

9

; > » find-copy < «

9

; This is like new-copy except that instead of instantiating a specializer
; in the place specified it tries to match the new object with existing
; specializers hanging from the superior that the new copy would be hung from.
; The 'origin' field of the object specification is used to decide which
; specializers of the superior are to be tested• Only ones that were derived



; from this particular spec are tried for reasons of efficiency.
; If it matches then the sematics of the object that is matched are evaled.
; The "parsing-object" variable is set temporarily to the name of the
; specializer being activated so that its semantics work properly.
9

; It is important to note that this function is comparing the content of
; an instance with the content of a specializer so it has to be real careful
; about the form of the roles of the specifier vs the binders.

(defun find-copy (obj binders)
; Make sure that the author gave us the right type,
(force-type obj object)

; Use the names in the mask field to replace the named parts
; with their paths for processing*

(find-copy-sub (path-expand binders obj)
; Pass the list of objects to be searched. I.e., the kids of
; the superior to this object.
(specializers (super-object obj))
(object-name obj)

» find-copy-sub «

Map down the list of the "brethren11 of the matching node and compare the
ones that derived from this specializer.

(defun find-copy-sub (bindlist searchlist restriction)
(cond ((null searchlist) ())

(t (match-object (car searchlist)
; Make the name into an object.
(eval (car searchlist))
; Restrict the matcher so that • nly those objects
; whose origin was the node with which we are doing
; the comparison are compared.
restriction
bindlist

)
; As always... cdr down the list.
(find-copy-sub bindlist (cdr searchlist) restriction)

» match-object <<

If the object under consideration matches the object in hand then do
the semantics of the EXISTING object. Note that only the binders are
really relevant to this comparison since the object in hand derived from



; the object under consideration by application of the same set of binders.

(defun match-object (name obj restriction bindlist)
; This is restricted to only those whose origin is the object in hand,

(cond ((equal (origin obj) restriction)
(cond ((corapare-obj (parse-body obj) bindlist)

; Bind the name of the. super object to "parsing-object"
; and nil to
; "this-instance" then eval the semantics of the super•
(eval-semantics name () (semantics obj)))
(t ())

(t ())

; » compare-obj «
•
f

; this guy does the control work for matching two objects. It takes the
j parse bodies of the two objects and the binding replacement list and does
; the comparison.

9

(defun compare-obj (roles bindlist)
(cond ((null roles) t)

; If you can find a binder for this role then match the role's value
; with the bind replacement value,
((find-binding (caar roles) bindlist)

; Match the binder value with the role it matched,
(and (match-binder

(parse-body (eval (find-binding (caar roles) bindlist)))
(parse-body (eval (cadadar roles)))

)
; Be sure to consider the goodness of fit of the rest of the
; roles as well,
(compare-obj (cdr roles) bindlist)

))
; If there's no binder then try to rest of the roles and dive into
; this one's value cell.

; Comparing the rest of the roles. This is done first beacuse
; the job of diving might be considerable in a list of things•

(t (and (corapare-obj (cdr roles) bindlist)
; Trying to match role values. If the role has a list cadr
; then dive into it and compare some more.
(cond ((listp (cadar roles))

(corapare-obj (parse-body (eval (cadadar roles)))
; Take the binders that matter with you.
(applicable-binders (caar roles) bindlist)



(t t)

; » match-binder «
*
; The actual comparison between two objects is done here. Remember that
; objl is an instance and obj2 is a specializer that theoretically
; bound that instance. Thus there is all sorts of cruft in obj2 that won't
; be in obj1 but that has to be check anyhow. If there is no role in one
; that matches the other then it is an unspecified role and matches by
; definition.
•>
(defun match-binder (objl obj2)

(cond ((null objl) t )
(t (and (match-binder (cdr objl) obj2)

; This is the relevant line. Compare the value of this role
; with the value of the things that bound it.
(match-role (car objl) (assoc (caar objl) obj2))

; » match-role «

(defun match-role (rl r2)
; They can be directly equal or...

(cond ((equal rl r2) t)
; If r2 is nil then this rde was unspecified
((null r2) t)
; If not lists then they are just plain wrong here and now.
((not (listp (cadr rl))) ())
; ...we have to dive into their subobjects.
(t (match-binder (parse-body (eval (cadr rl)))

(parse-body (eval (cadadr r2)))



Appendix Ji

Primary DCL Network Objects

(net-construct

Main generic decriptions:

del-command
list-of-things
filename (and fileform)
list-of-filenames

(del-command (is)
( (command-name

(lambda ()
(prog (c)

(skip-spaces)
loop (setq c (peek))

(or (equal c " ")
(equal c "/")
(null (drop (grab)))
(go loop)

)
(done)

))
) ; Close command-name

(command-qualifier
(lambda ()

(prog (c)
(skip-spaces)

loop (setq c (peek))
(cond ((not (equal c "/")) (done)) )

iloop (drop (grab))
(skip-spaces)
(seek '(" lf "«"))
(skip-spaces)
(cond ((equal fl«M (peek)) (go iloop)))
(go loop)

))
) ; Close coramand-qualifier

(command-argumen t
(lambda ()

(skip-spaces)
(rest)



(done)

)
) ; close command-argument

) ; close parsing body

() j semantics

() ; mask

) ; close del-command
(list-of-things (is)

( (thing
(lambda () (seek ",") (done))

) ; close thing

(rest-of-list
(lambda () (grab) (rest) (done))

) ; close rest-of-list
) ; Close parsing body

() ; Semantics
O ; mask

) ; close list-of-things

(list-of-filenames (specializes list-of-things)
( (thing (a filename))

(rest-of-list (a list-of-filenames))

() ; Semantics
() ; mask

(fileform (is)
( (device (lambda ()

(cond ((not (member *|:| string)) (done)))
(seek ":")
(grab)
(done)

(location (lambda ()
(cond ((not (equal "[" (peek))) (done)))
(grab)
(seek "I")
(grab)
(done)



(name (lambda ()
(seek ".") (grab) (done))

)
(ext (lambda ()

(seek '("." ";")) (grab) (done))
)

(version (lambda () (rest) (done)) )
) ; Close parsing body

() ; Semantics
() ; mask

) ; close fileform

The relation between fileform and filename is a function of the operation
of the net searcher. It assumes that all sub-objects have some super and
will only take lexical scanning fns from the father. Thus, in order to
make the parser process down the string into subpieces we have to give
it a father node to get lexical fns from. Fileform is that father.

(filename (specializes fileform)
()
0
0
) ; close filename

>
) ; close net-construct



Appendix £

Example Complete Parsing Objects

This appendix includes the actual code of the COPY+DELETE and one
possible construction of the ASSIGN+DIR sequence recognition programs.
Their description can be found in chapter 5. Normally, these objects
would be surounded by a NET-CONSTRUCT call in order to place thier
object parts into the network. Note that these are stipped down
versions of the actual objects. They take only the full form of the
command names and some of the communications has been removed in order
to clarify the semantic actions a bit.

I maintain a labeling convention in which each sequence
recognition program has a "sequence number11 that is prefixed to all
objects that take part in that recogntion. Thus, the COPY+DELETE
sequence is "si". Some objects are more general than only a
particular sequence but not sufficiently general to include in the
primary network objects. These are not prefixed with a sequence
number (e.g., Pair-of-things)•

The COPY/DELETE misbehavior that we speak of so often

The commands captured by this sequence are:

$COPY <> ...
$DELETE <>

and warn of the RENAME command. Also, the use of a rename command
deactivates the top trapping copy.

(sl-copy-coramand (specializes del-command)
( (command-name !lcopyff)

(command-qualifier ())
(command-argument (a copy-pair))

) ; Close parsing body

(progn (apply-to-list (lookup this-instance '(command-argument first-thing))
'(lambda (name)

(putprop
(new-copy s1-single-file-delete-command
^((narae ,(lookup (eval name) '(name)))

(ext ,(lookup (eval name) '(ext)))



) ; close new-copy
(concat (lookup name '(name))

(concat "•" (lookup name '(ext))))
'filename
) ; Close putprop
() ; force apply-to-list to continue

) i close lambda
) ; close apply-to-list

) ; close progn

() ; mask

)
«

(pair-of-things (is)
( (first-thing

(lambda ()
(seek " ")
(done)

)
)

(second-thing
(lambda ()

(skip-spaces)
(rest)
(done)

)
)

) ; Close parsing body

() ; Semantics
() ; mask

J
(copy-pair (specializes pair-of-things)

( (first-thing (a list-of-filenames))
(second-thing (a list-of-filenaraes))

)

() ; Semantics
() ; mask

(delete-command (specializes del-command)

( (command-name "delete") ) ; Parsing body
() \ Semantics
() ; mask



(file-deletion-command (specializes delete-corainand)
( (command-qualifier ()) ; Parsing body

(command-argument (a list-of-filenames))
) ; Close Parsing body

(progn (apply-to-list (lookup this-instance '(command-argument))
*(lambda (name)

(find-copy s1-single-file-delete-command
*((file ,name))

)
0
)

) ; close apply-to-list
) ; close progn

((filenames (command-argument))) ; mask

(sl-single-file-delete-command (template delete-command)
( (command-name "delete")

(command-qualifier ())
(command-argument (a sl-filename))

)
(progn
(patom "The RENAME command can be used to change the name of ")
(print (get parsing-object 'filename))
(patom "

Look into $HEL? RENAME for more info.")
(detach parsiag-object)
)

((file (command-argument))
(name (command-argument name))
(ext (command-argument ext))

»
(sl-filename (template fileform)

0
0
0
) ; close filename

(sl-rename-coramand (specializes del-command)
( (command-name "rename")

(command-argument (a copy-pair))



(detach si-copy-command)
0

i
; Assign sys$output sequence

; This misbehavior is meant to recognize coromand streams like:

; $assign s.tmp sys$output
; $dir
j $deassign sys$output
•
I The distinguished sequence in this case is ffdir/output=s

I
(s2-assign-command (specializes del-command)

( (command-name "assign11)
(command-qualifier ())
(command-argument (a s2-assign-pair))

(prog (s2-temp)
(putprop (setq s2-temp (new-copy s2-dir-command () ))

(length cmd-history)
'where)

(putprop (new-copy s2-general-deassign
()) s2-temp 'dircmnd)

0
) ; close s2-assign-command

(s2-assign-pair (special .zes pair-of-things)
( (first-thi.ig (a filename))

(second-tb .ng ltsys$outputfl)

0
0

) ; close s2-assign-pair

$
(s2-dir-command (template del-command)

( (command-name ffdirlf)
(command-qualifier ())

)
(progn

(putprop
(new-copy s2-deassign-coramand () )
(get parsing-object 'where)
'where)

0



f

(s2-deassign-command (template del-command)
( (command-name "deassign11)

(command-argument flsys$outputlf)
)

(progn
(cond ((equal 2 (- (length cmd-history) (get parsing-object 'where)))

(patom "The /out^filename option can be used to direct the
output of the DIR command to a file.
See HELP DIR/OOT for more info.'1)))

(detach parsing-object)
)
0

(s2-general-deassign (template del-command)
( (command-name "deassign11) )
(progn (detach (get parsing-object 'dircmnd))

(detach parsing-object)
)
0



Bibliography

[I] Ball, Eugene, and Phil Hayes; "Representation of Task-Specific
Knowledge in a Gracefully Interacting User Interface"; CMU
CS dept., in AAAI August 1980.

[2] Brachman, Ron, et al.; "KL-One Reference Manual";
BBN Report no. 3848, July 1978.

[3] Brachman, Ron; "A Structural Paradigm for Representing
Knowledge"; BBN Report no. 3605, May 1978.

[4] Digital Equipment Corp.; "VAX/VMS Command Language User's
Guide"; DEC Order no. AA-D023B-TE, March 1980.

[5] Foderaro, John K. [edited by Lars Ericson] "The FRANZ LISP
Manual"; by Berkeley and CMU, 1980.

[6] Mark, William; "Rule Based Inference in Large Knowledge
Bases"; USC/Information Sciences Institute, published
in AAAI August 1980.

[7] Genesereth, Michael R.; "The Role of Plans in Automated
Consultation"; Laboratory for Computer Science, MIT.

[8] Sacerdoti, Sari D.; "A Structure for Plans and Behavior";
SRI project report no. 3805; August 1975.

[9] Finin, Timothy; "The Semantic Interpretation of Nominal
Compounds"; University of Illinois Coordinated Science
Laboratory research report no. T-96; 1980

[10] Riesbeck, C. and R. Schank; "Comprehension by Computer:
Expectation Based Analysis of Sentences in Context";
Yale University CS research report no. 84.

[II] Riesbeck, C; "Computational Understanding: Analysis of
Sentences and Context"; 1974 working paper from Institute
per gli Studi Semantici e Cognitivi; Castagnola,
Switzerland.

[12] Finin, Tim, et al; "Jets: Achieving Completeness Through
Coverage and Closure"; IJCAI-79.

[13] Bagley, Steven and Jeff Shrager; "LISP: An Introduction";
Moore School Computing Facility, University of Pennsylvania,
1980.


