NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

/A~

o o) i _1_
COSEF:ITER SCIENCE DEPT, MS-CILS5-81~7
IPCHMICAL REPORT FIER

_ ‘ ... UNIVERSITY O PENNSYLVANIA . :
THE MOORE SCHOOL OF SLECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

‘ e J INVOKING A BEGINNER’S AID PROCESSOR
BY RECOGNIZING JCL GOALS

Jeffrey C. Shrager

Philadelphia, Penmnsylvania

August 1981

A thesis presented to the Faculty of Engineering and Applied Science-
in partial fulfillment of the requirements for the ‘degree of Master of
Science in Engineering for graduate work in Computer and Information
Science.

Timothy W. Finin

Araviand K. Joshi

The work reported here was supported in part by NSF grant
number MCS 79-08401.

"If you are trying to get around the snake...
I can give you a hint but it will cost you ten points."

~= Collosal Czve

Copyright 1981 by Jeff Shrager

Abst r act

Typi cal help processors are invoked explicitly by the user or
inplicitly when an error occurs. Often a beginner will not know that
hé needs hel‘p becauée the ineffi éient uée of cblmmnds wil | gét .the j.o.t.)
"done without raising errors* WZARD is an expert system that
Irecogni zes begi nner m sbehaviors and can automatically start a help

transacti on.

"(he WZARD processor relies on a special purpose, dynanic,
pattern mitcher_ dir_e_cted by a _I_(I_.-_Q]_e_bz_;sed knowl_e_dgg_ net_work._ An
~author studies logs of beginner interactions and develops sequence
rul_és yvhi ch parse and properly identify m sbehavi ors. Ooj ects thai:
drive the parser to understand VAX DCL commands are coded into the
network and a set of semantic .prograrmi.ng utilities is used to perform

actual goal recognition.

This thesis deals primarily with the inplenentation of such a
goal recogni zi ng expert invocation system It is the WZARD
docunent ati on and -fi nal working report. | discuss the motivations for
the design of the system and detail. the know edge base and heuri stics
that support goal recogn.i tion. = Sonme issues of generality are taken up
and potential topics for later research are presented which wll

extend W ZARD S capabilities.

Acknowl edgenent s

| Mbst inportantly, thanks to ny supervisor, TimFinin, for putting
up with ny various crazy ideas and providing invaluable input into all
of them including this one. | - would .Iike to also .thank t.o Ira
Wnston for succeeding where DEC failed in nmaking VM5 a reasonabl e

place to live and Rick Bowen for the figure graphics in this thesis.

Speci al thanks to ny parents wi thout whom| would not have been X
(for any X), to Adele Howe who 1 think cares about me nore than | care

about nmyself, to Steve Bagley for grins, and to Lori for Lori.

Preface

This work borders on several areas of software engineeriﬁg
sometimes associated with the cognitive modeling aspect of artificial
1ntelligen§e. The terminology used to describe portions of the system
includes phrases like "knowledge representation" and "understanding".
It is important that the reader be aware that I have no intention of
trying to relate the data structures or algorithms used by WIZARD to
any supposed actualbprocesses in the mind of a human being. My use of
AI terminology is purely a historical one. I have derived many of
these techniques from research thch does claim some sort of cognitive
reality and the terminclogy was carried along for the sgke of not
renaming the wheel. As far as I am concerned, this work represents
research in software engineering and technique, not cognitive

simulation.

Pt et e ot
e o &

NN ONNOULBT O W =-0

e e & & & e ¢ o s o
e o o
W N -

RN INORNNINDON e e b

.

e 3 e
. *

e o @ e e @ o ¢ 6 ¢ o o e« o o
NNV LS W OPWNR = OSSP W
. o * e * o
£HWN - MmN -

. L] . L]
.
N -

SRS ERSESSEDTULWLLLWWWWWLWOINDRODNND DN

.
p—

Chapter l: Recognizing a User Assistance Loophole.
Common Users Assistance ParadigmsSe « « o o ¢ o &
The Presumptions of Error or Missed Knowledge. .
The Third Paradigm: WIZARD’s Informal
Introductione =« o o o o ¢ o o o ¢ o ¢ o o o o o
Some Terminologye o ¢ o o o o o ¢ o o o o o o o
Goal Recognition HeuristicSe « « « o o o o o o @

Environmental Change Observatione « ¢ o« o o &
The Syntactic Approache .+ ¢ o ¢ ¢ ¢ ¢ ¢ o o &
Goal Recognition by Anticipatione =« o « o o &
COPY+DELETE Detailede « ¢ o« o ¢ o o o o o o o @
Forwarde o o o ¢ ¢ o ¢ o ¢ o o o o o o o ¢ o o o

Chapter 2: Understanding DCL commandS. « « ¢ o o «
What Understanding MeanSe « o« o ¢ o ¢ o o o o o
How a String is Parsed: The Naming Algorithm. .

Objects and Their Parsing Rolese « ¢ o « o o &
Recursive Objects =-- How Parsing Terminates. .
Network Searche o o ¢ o o o o ¢ o o o ¢ o o o
Instantiation of Objects: The Name of a
Commande « o o o o ¢ o o s ¢ o o ¢ o o o o o o
Specializers vs Instances: Access Between
ObjectSe ¢ o o ¢ o o o e o o o o ¢ o o 2 o o o
What to do with Instances After Understanding. .
Problems with the Parsing Algorithm. « + « « o
Case Matching and Abbreviation. .+ « « « ¢ .« &
One Position Lookahead Parsings « « o ¢ o o o
Successful recognition of failed commands. .+ «
Partial Failure of List Operationse. « « ¢ o «
Misunderstanding CommandSe « « o o o o o o o o«

Chapter I: Details of the Object Representation. .

Value L ised Contents of ObjectSe o« o ¢ ¢ o o o o
The (sject Specifications Fielde « « ¢« « o o« &
The 1 1rsing ROleSe « o ¢ ¢ o ¢ e¢'o o o o o o o
The SemantiCSe o« o o o ¢ o o o o o o o o o o o
The Name/Path Maske o o o o « o o o o o o o o

Property Lists of Instances and Specializers. .

The Utility of Recursive Objects: List-of-things

Primitive Network ObjectSe ¢ o o ¢ ¢ ¢ o o o o o

Chapter 4: Designing Goal Recognition Sequences. .
General Approache . o o o o o o o ¢ o o o ¢ o o o
Specializer TemplateSe o« « o o o o o s o o o o o
Construction of Specilizers from Templates. . .
Dealing with Lists of ThingsSe « ¢ ¢« ¢ ¢ o ¢ ¢ o

Unwirding Lists into Multiple Trapse. « « « «
Searching the Net for Matching Objects. =« «
Detaching Parsing ObjectSe « o« o o ¢ ¢ o o o o o
Flow of Control Chartinge ¢ ¢ o« o ¢ ¢ o o ¢ o o
Considerations of Command Ordere « ¢« ¢ o o o o @
Hunting the Coummand History List. o« « o o o« &

vi

L = s

21

23
24
24

c
~

25
26
27
27
29
30
32
32
33
33
34
35
36
37
37
39
40
41
41
42
42
44
46
47

NNNNNOOOD00O0OODQONTANNANNN ARG ANGUESD NSNS
WNRPRPORWEWWWWRONNNRPREEOWNNNNNNNNNFEO©OO®o®

=

=

[N

N

UArWWWWN R

w N

The Form that Hel p Takes. ,
Passing Information in Propertiese
. Extracting Information fromthis I nstance
Tvvo Exanpl es. o S
COPY+DELETE => RENAIVE A
ASSI GN SYS$OQUTPUT+DI R => DI R/ (JJT PUT—

Chapter 5: Detailed Primtive Semantics

hj ects vs Nanes

The Semantic Actions
Fi nding Parts of nbjects
Unwi ndi ng Lists of Things
Creating a New Object.

Naming the Current Instance. o ¢ o ¢ o |

Conmuni cating to Later Steps
Speci fying with Subobjects
Fi nding a Matching Object..
Det achi ng an Obj ect.
Two Exanpl es Detail ed

Chapter 6: COpen Problenms and Loose Ends

| npl enent ation Restrictions (i.e., Bugs).
Conflict of Cbject Form v
Redundant Parsing: An Effici ency Issue.
Problems Wth the DCL Domai n.

Wl dcard Fil ename Conpressi on* «* LK.

Symbol i ¢ Repl acenent and Conmand Fil es.
Theoretical Problens .
Argunents of Deactivation
Persi stence of Dynanmic Obj ects
Ger iral Self-Deactivation
Use: Profiles

Recor ?tructi on of Strlngs for Hel p Messages.

Automat \'c Generation of Semantics

Chapter 7: Postnotivations and Possible Un| ver ses.

Advant ages of Anticipation.
I nterspersed and Intertw ned Oommnds

Knowl edge Representati on.

Advant ages of WZARD as a Hel p Invocatlon

Paradi gm o o .

48
49
49
50
50
52
55
55
56
56
57
57
59
59
60
60
62
63
64
64
65
65
66
67
67
68
68
69
69
70
71
72
74
74
75

76

a7

1.0 Chapter 1: Recognizing a User Assistance Loophole.

No one will argue the utility of a user assistance procéssor.
Such systems are especially useful during initial exploration‘in a new
interactive environment. In this chapter I motivate this work by
showing that there 1s a species of problem not covered by typical user
ald paradigms. My solution, WIZARD, is intrcduced and an outline of

its processing is given.

1.1 Common Users Assistance Paradigms.

Unfortunately, most of the help programs currently available are
annoyingly anti-social. They are of use only if the user explicitly
calls on them or if an error occurs which the system knows how to deal

withe.

Here are a few exam les of the types of interactions that take
place with such aids:

$HELP LOGOUT
#The logout command causeS...

[The "$'" will consistently indicate user input and the "%" will show

the system’s response.]

In the above example, an explicit invocation of the user
assistance processor, two assumptions are made that are relevant to
this discussion: it is assumed that the user knows how to ask for

help and it is assumed that he knows exactly which question to ask.

Following is an exanple of an error-invoked hel p transaction:

o&rror SUCH AND- SUCH occurr ed.
%0 you need hel p?

In this case, the user needn't know how to ask for help. An error
demanded attention inmplicitly. Assunming that the help programis
somewhat clever, the user needn't know exactly how to work with it.
O course, this interaction is predicated on the user héving caused an

e.rror.

Various inprovenents can be nade to the above paradignms but their
assunptions remain an obstacle to conplete user assistance. Follow ng
are several of the nmore common enhanced functions based upon the above
behavi or s:

The '"do what | meant" gane:

$LOGOUT
%.0C0UT is not a |egal command,
Y%per haps you nmeant to type BYE?

The conbi nati on of the major thenes:

$I NFO LOGOUT

WNFO is not a |egal conmand,

%erhaps you neant to type HELP?$yes
%.0OCQUT is not known to the HELP system
%erhaps you neant to type BYE?3yes
%he BYE conmand causese..

Hol di ng the user's hand:

%l corae to VAX/ VM5 at The Moore Schoo
%dype HELP if you need it.

1*2 The Presunptions of Error or Mssed Know edge.

Unfortunately, all of the above interactions depend upon the
Qser's awareness that he is in-need of assistance or the systenis
ability to recognize m stakes (which nmost systenms do) and respond to
them in a helpful manner (which most systens do not). Consider the

foll owi ng exanpl e:

Suppose that a begi nner wi shed to change the name of a file in
the new system Knowi ng about the COPY and DELETE conmmands he m ght
think to change filenane Ato B via:

$COPY A B
$DELETE A

An expert user observing this behavior woul d probably correct him
indicating that he could have sinply typed:

$RENAME A B

to acconplish the sanme result.

Wthout benefit of a consultant the user is burdened with a great
deal of work in order to |earn about such shorthand incantations. He
must :

- Recogni ze the desired function as an unique entity,
(Changing the nane of a file.)

- Guess that the system designers have provided a way of
doing this without having to COPY the file anc DELETE it,
and,

- CQuess how to ask for help about this function.

Even granting the first and second of these obstacles are
surmountable, and assuming that he knew how to invoke the help
processor, what would he have asked about? In this particular case
asking for information on RENAME.would have done the trick but there
is at least one system where the coﬁmand used to perform this exact
operation is CATALOG -- not as likely a guess. [Some of us are
_painfully familiar with "PIP B=A/RE".] He might have asked about
"changing the name of a file" and a sufficiently intelligent processor
might have figured out what was meant. Such cleverness 1is rare. A
simpler way out, assuming again that the beginner thought to ask at
all, would be to ask for a list of all help and then hunt around for

the RENAME command. This is a clear waste of time.

More importantly, the behavior was perfectly valid and did
accomplish the name change. As far as the user is concerned it is
perfectly reasonable to go on indefinitely without the RENAME command.
No errors occurred which might have triggered a help interaction and
there was no reason for the system to think twice about the wvalidity

of this COPY+DELETE sequence.

Thus, in this case, neither the user initiated help processor or
the error initiated help processor would have been any use at all. It
often requires an expert to catch this error of omission. Such
persons have tréined themselves by word~of~m§uth or some other means.
These persons can often be found in the guise of a user consultant or

highly experienced user. [The pen~name for such an individual is a

-4 -

Even granting the first and second of these obstacles are
surmountable, and assuming that he knew how to invoke the help
processor, what would he have asked about? 1In this particular case
asking for information on RENAME.would have done the trick but there
is at least one system where the command used to perform this exact
operation 1s CATALOG =-- mnot as 1likely a guess. [Some of us are
painfully familiar with "PIP B=A/RE".] He mnight have asked about
"changing the name of a file" and a sufficiently intelligent processor
might have figured out what was meant. Such cleverness 1is rare. A
simpler way out, assuming again that the beginner thought to ask at
all, would be to ask for a list of all help and then hunt around for

the RENAME cowmand. This is a clear waste of time.

More importantly, the behavior was perfectly valid and did
accomplish the name change. As far as the user is concerned it is
perfectly reasonable to go on indefinitely without the RENAME command.
No errors occurred which might have triggered a ﬁel; interaction and
there was no reason for the system to think twice about the validity

of this COPY+DELETE sequence.

Thus, in this case, neither the user initiated help processor or
the error initiated help processor would have been any use at all. It
often requires an expert to catch this error of >mission. Such
persons have trained themselves by word-of-mouth or some other means.
These persons can often be found in the guise of a user consultant or

highly experienced user. [The pen-name for such an individual is a

- 4 -

"wizard" thus I have named the system WIZARD and shall refer to it by

that name from here on.]

1.3 The Third Paradigm: WIZARD’s Informal Introduction.

One can imagine a help processor that would "understand" commands
that the user enters and would "recognize'" the goal that they are most
.likely meant to implement. Assuming that the system is clever enough
to see that the COPY+DELETE sequence is meant to be a RENAME, it would
not be very difficult to have it tell the user about the existence of

RENAME or to invoke a separate help processor for this purpose.

The WIZARD interactions might be:
$COPY A B
$DELETE A
%Assuming that you wanted to rename the file A to call

%Zit B you might have siwmply said: $RENAME A B. You can
Zask for HELP on the RENAME command by typing SHELP RENAME.

l.4 Some Terminology.

A "sequence" is any list of commands to the operating system.
[The particular domain of WIZARD is the VAX DCL command language.] I
shall refer to the user’s 1long-winded command sequence as a
"misbehavior". Each sequence 1is said to have a '"goal" which is the
effect that the user wished to achieve through his application of the
sequence. In the above example the goal was something like "change

the name of the file A to B".

W ZARD is said fo "recoghize" the goaluof a squence* -That fs,
given a sequence it can decide from the universe df known goal s which
one(s) were likely intended by the user. The potential mi sbehaviors,
goals, recomended sequences and the rel ationshi ps between then1afe
nmeant to be predefined by the human consultant whose job it s to
control what WZARD will recognize and what advice wll be

di stri but ed.

1.5 Goal Recognition Heuristics.

There are various nethods that have been wused to perform
recognition of the intention fromi nput sequenceé. Most are driven by
pattern matchers of one sort or another. It is clear that sone sort
of parser is required in order to take the first step of understanding
the individual copmands. It is the job of that process to transform
i ndividual input strings into sone internal representation that can be
used to drive the goal r cognition process. This will be detailed in

chapter 2.

Less clear is the processing that perforns recognition over t he
entire user input; This 1is fhe al gorithm (or heuristic) that wll
determ ne when a help transactionb should be invoked. The three
approaches that were considered in the process of WZARD S design were
envi ronnent al change observation, -syntactic anal ysi s, and

antici pation:

1.5.1 Environmental Change Observation.

An interesting approach but one which causes several problems 1is
to derive the goal by comparing the enviroﬁment beforehghé operation
with the environment afterward. Thus, the goal "change the name of a
file" can be discovered by seeing that a filename has been changed.
This is not actﬁally so simple. First, it may be necessary to compare
‘the entire environment in order to derive the goal. 1In order to
distinguish between having renamed an existing file and having simply
deleted one file and created an entirely different one it is necessary
to compare at least the contents of the new file with the old.
Another difficulty in this approach is that it is not simple to define
the bounds of the recognition. We must assume that recognition is
occurring all the time (every possible change is being recognized) and
that something outside of this process causes the recognizer to
actually call upon the help system. It is still necessary to have in
hand the command images in order that the recognizer not warn the user

about RENAME after his just having used a RENAME.

Another more difficult problem with this approach is that it
forées the designer to develope a theory of significance in order to
determine which of several simultaneous changes to focus on. For
example, the COPY+DELETE sequence also updated the creation dates, and
took several seconds of CPU time. Suppose that help were available
for "how to waste CPU time". Would one prefer to invoke that aid or

the help for RENAME?

Environmental information alone is not sufficient and 1is very
difficult to obtain at times (e.g., the contents of a DELETED file).
Thus, this approach was not comsidered for very long. It is probably

better applied to text editor environments where the language is

simple and the environment is readily at hand.

1.5.2 The Syntactic Approach.

In many ways, this problem is like that confronting a natural
language wunderstanding system. WIZARD might seek a match for a "goal
patterﬁ" in much the same way that the rule based execution c¢f a
transformational grammar seeks the base form of a sentence. The
control mechanism may alsoc be the same as a natural language
understanding system; ATN driven parsers can be successfully used in

this work.

A problem with ttis approach is multiple sequences may be
intertwined. Consider the following example:
$COPY A B
$COPY C D
$DELETE A
$DELETE C
We would probably want the help (for at least the first of the pair)
to be presented even ~hcugh there is a "noise" command (COPY C D) in
the way. The extra commands could be ignored as noise but then the

second nested sequence would not be recognized. Suppose that we

wanted to warn the user each time he makes this mistake. Then the

-8 -

second sequence (COPY C, DELETE C) need be analyzed as well as the
first. If noise were simply ignored we would lose this second

recognition.

1.5.3 Goal Recognition by Antiéipation.

It might be possible to modify some standard parsing algorithm to
‘handle these problems but a more general approach is suggested by the
above: It scems that two separate and non-communicating processes are
taking place 1in the intertwined recognition (assuming that we would
like the redundant warnings). Why not siwmply start the understanding
processes independently of one another. This approach resolves the
noise and intertwining difficulties simultaneously. The
implementation of such inde#endent processes in a parser environment
may be accomplished by anticipation: Entered commands that are
earlier parts of sequences cause the parser to be modified such that
later commands are understood as the following portions of the

sequences under consideration.

To be a bit more detailed: Each time a command is entered it is
intercepted and processed by WIZARD. The first step in this
processing is to force the command to become an individﬁal of some
generic DCL-command and parse it accordingly. The parser searches a
semantic net description of the DCL language trying to match, at each
DCL-command node, the current command with that generic. If it

matches (i.e., the parse succeeds from that node) then the current

-9 -

command is instantiated as an individual of that generic DCL-command.

This is the process that I refer to as "understanding".

The instantiation of an individual causes some set of prescribed
actions to take place. These actions change the structure of the
network which controls the parser. The effect is that of laying traps
for the latter portions of the sequence that is to be recognized. The
last action to be invoked in this recognition process 1is the
successful recognition of the goal. That action might include the
construction of help text using data that has been passed along in the
semantics of the parsing objects. It 1is very important to notice that
this method is driven entirely from the syntax of the incoming -
commands. No extérnal information is uéed in the recognition task.
We will see that this is a problem for WIZARD in this particular

domain.

This method of recognition 1is not wunlike Riesbeck’s natural
language wunderstanding system [10 and 11] which uses expectation
schema to direct the parsing process although the domain and data
structure are a great deal different. For Riesbeck; "The mechanism
for passing information from one point in the analysis to the other is
the expectation. An expectation consists of a specification of a
situation and a specification of what to do if thet situation 1is
encountered". This matches my thinking exactly. In fact, I strongly
recommend references [10] and [ll] to the reader interested in the

anticipatory recognition approach. Many of the arguments put forth

- 10 -

here are very like Riesbeck’s.

1.6 COPY+DELETE Detailed.

Applying this approach to the example above, one can think of the
command "COPY A B" as setting a trap which reads "If the command
'DELETE A’ is ehtered, tell the user that a RENAME command might have

‘been more appropriate". Thus, the action attached to
"COPY filel file2" would be "Set a trap that is a DELETE command for

filel with the proper associated actions".

We will see that this is not quite so simple. There are many
problems to be overcome in implementation of a working WIZARD. Both
the constraints of anticipation and the problems of the domain will

mar the appareﬁt simplicity of this approach.

1.7 Forward.

WIZARD is a special purpose programe. Its parser includes
knowledge specific to the VAX DCL command language. However, the
design is such that the parser can be easily changed without tearing
apart WIZARD’s internals. This constitutes both effective programming
practice 1in general and specifically supports the extensibility

required by the anticipation heuristic.

- 11 -

All of the examples that I will mention are in DCL command
language and some understanding of a small subset of that language
might be necessary to properly interpret some of those examples.

Reference [4] may be used as a guide to DCL.

In the following chapters I will 1lay out the detailed
representations and functions required to support goal recognition and
the algorithms that process the knowledgé base. I explain the
motivation for each decision. The purpose of this work was to
experiment with goal recognition in this particular domain and to
decide what primitive actions and data structures can be used to

implement help system invocation as I have described it.

Details of the actual implementation of WIZARD make up the bulk
of this work. There are problems resulting from the chosen
environment and algorithms, that severly limit WIZARD's wutility. I
discuss these problems and talk about possible future work including
some correction of problems and filling some of the wunresolved (or

unprogrammed) holes in the system.

A reading note: The language in which WIZAﬁD is implemented,
Franz LISP, retains case information and thus all the WIZARD code
itself is written in 1lower case characters. In the interest of
clarity I have wused upper case characters in this thesis to
distinguish special names (such as the names of DCL commands). This

becomes troublesome only 1f the reader is trying to follow along some

- 12 -

of this text with the appropriate appendecies.

13 -

2.0 Chapter 2: Understanding DCL connandsf

Here | describe the gory details of the WZARD parser. It can be
described as a "dynamic, object* driven, know edge based, command
string parser". Hopefully, after having been through this thesis, the

reader will understand what is meant by that.

The task of WZARD S goal recognition algorithm can be divided
into two gross parts: First, the systemnust input and "understand"
DCL commands. This chapter deals with the nethod of processing those
commands. Later chapters will deal with the second part: recognition

of goals fromsequences of comands.

2.1 \What Understandi ng Means.

| use the terns understanding and recognition in sonewhat the
opposite sense that one might think normal. Understandi ng épplies to
the parsing of strings whereas recognition applies to overall goals.
This is due to the unfortunate name, "goal recognition", chosen by ny
predecessors in the field, to describe the latter process. I have

tried to keep the terras separate.

The parser of a conpiler can be said to accept correct prograns
in its language. |In WZARD conmmand understanding is nmore than sinply
parsing the input conmands. An author has mwittén into W ZARD
information about the DCL command formats as generic objects in the

knowl edge base. W ZARD understands an input string as a particular

- 14 -

DCL command, according to what it knows about DCL commands, and names
this string according to the names associated with the objects in the
database. There 1s a "meaning" associated with each command in the
form of a LISP expression called the "semantics". The semantics afe
involved in the second half of the process. This will be discussed in

detail later.

For example, The command "COPY A B" matches the form that WIZARD
associates with a "Copy-command". Thus, this particular string is
understood as an instance of "Copy-command" and is parsed according to
the pattern that 1is assoclated with that object. An instance is a
duplicate of the generic with specific string pafts inserted at its
leaves. It is named and included in the semantic net then the

semantics associated with the Copy~command generic object are invoked.

2.2 How a String is Paised: The Naming Algorithm.

Understanding actu:lly takes place in a somewhat upside down way:
the name associated with an input is based upon where the string fits
properly into the net. In order to understand how parsing takes piace
one must understand the data structure of the knowledge net from which

WIZARD’s control derives.

--15 =

2.2.1 Objects and Their Parsing Roles.

Each name that might be used té describe a string exists in a
database which I shall call the "semantic network" or "knowledge net".
This is a type of representation that relies upon uniquely named
objects and descriptions of the relationships between them. The

network is hierarchically organized. That 1s, there are '"super

-objects" which have "sub objects" that are special cases of the

former. These special cases are called "specializers".

This representation is not novel. The terminology and basic
structure that I use were suggested by, but are not identical to those

described by, Brachman in [2] and [3].

Figure 1 shows a portion of the WIZARD semantic net. Each object
is represented by an ellipse. The boxes are "roles" of an object. I
will discuss their use momentarily. Arrows that coanect objects are
called "is a" 1links. In figure 1 "File-~deletion-command" is a
"DCL-command". Arrows that connect lower level roles up to higher
level roles are called "role f£filling links". Arrows that connect
objects to roles (from the ellipse to a box) are the “"role -
specifications". Arrows that link roles to objects or specificatiomns
(strings, numbers, etc) are called value restrictions (V/R). Again in
figure 1, the roles of DCL-command are '"Command-name" and
"Command-argument'. The value of command-argument is restricted to

being a "List-of-filenames".

- 16 -

DCL-Command

/ &
Cotnmand- D

name

Command
ch‘gumenf

File-cleletion-
command

<&,
/v,a %\ // N

“ODELETE”

List-of-
filenames

Figure 1l: Part of the Parser’s Knowledge of DELETE~COMMAND

- 17 -

The main object in the WIZARD network is the "DCL-command". The
roles of a super object (one that has no further superior) are
expected to be lambda expressions that cause parts of the-input string
to be selected and bound to those roles. For example:

Input: "DELETE PHOO,BEAR"
Object: DCL-command
Command-name selects: "DELETE"
Command-argument selects: "PHOO,BEAR" (the rest)

"File-deletion-command" is a special case of DCL-command. Its
roles (as must the roles of any specializer) indicate constraints upon
the form of the bindings selected by its superior. Thus, continuing
the above example and remaining in figure 1:

DCL-command has parsed:
Command-~name: "DELETE"
Command~-argument: "PHOO,BEAR"
File-deletion=-command raquires
Command-name="DELETE" (it does)
Command-argument=a List-of-filenames which must match
'"PHOQ , BEAR"

Now we must proceed back up to the super object "List-of-things"

in order to process the argument of the command and try to £it it into

the slot whose value is constrained to be a List-of-things where each

thing is to be a Filename.

- 18 -

2.2.2 Recursive Objects -- How Parsing Terminates.

The object "List-of-things" in figure 1, is a "recursive object".
That is, the value/restriction of one of its roles is an object of the
same type as List—-of-things. This could cause the parser to go into
an infinite loop trying to push down into the string with this
recursive specification. I have abritrarily specified two cases in
which parsing will stop: the roles have all been successfully filled
(or some role cannot be filled in which casé the parse fails), or,
second, tﬂe string runs out. In the latter case, the parse succeeds

and all remaining roles are filled by NIL.

It is not possible to er;dicate recursive objects from the
DCL-command language without severely limiting its counciseness. DCL
uses comma-delimited lists frequently. We shall see in the discussion
of semantics that these List-of-things objects play a major role in

the actions that I have selected.

2.2.3 Network Search.

The function that drives the parser expects to see only the roles
of the object under consideration. The result of the parse is a
single list in which each role has been paired with the portion of the
input string that was watched by that role. A higher level function
passes the parsing roles to the parsing function and then processes

its result. The order that objects are passed for matching by the

-'19 -

role parser is depth first in the net* That is, before the string is
tried against a particular superior object, all of its specializers

are attenpted*

Al'l possible successful parsings of the string are returned but
their order is as discussed just above* Thus, for exanple, the
comand:

$DELETE PHOO, BEAR
woul d first be parsed as:
Del ete-coramand with roles
Conmand- nane: " DELETE"
Command- ar gunent : a List-of-things
Thi ng: " PHOO'
Rest-of -1ist: a List-of-things
Thi ng: " BEAR'
Rest-of-list: NL
and then al so as:
DCL- command with roles
Conmand- nane: " DELETE"
Conmand- ar gunent : " PHOO, BEAR"

I will discuss the reason that all possible parses are returned
| ater. Briefly, one neans of goal recognition mght include scanning
the history of entered commands. One would want to be able to obtain

the nost specific interpretation (which would be the CAR of that

elenent of the history list) at first glance*

2.2.4 1Instantiation of Objects: The Name of a Command.

Each successful parse causes an instance of the generic object,
whose roles were used to drive the- parser, to appear. That is, a new
object is created that represents the particular instance of the
specializer that maﬁches this string. Instances are named by
appending a unique five-digit identifier to the name of the object

which successfully matched the string.

An instance of each of the value restriction objects for this
parse 1is also created. Figure 2 shows the way that the above delete
command would be instantiated. [Instance objects are doubly 1lined.]
The application of instantiation to sub objects also occurs depth
first. Thus, the suvordinate value/restrictions of an instance are
created before the object itself. Also, each possibie parsing of a
command is instantiated individually. Thus, we are left with both
File~deletion-command-~00004 and some instance of DCL~:ommand from the
preceeding example. These hold implications that wili be discussed in

the section on semantics.

- 21 -

File -deletion-
Command

List-of-
fi tenamcs

File-deletibn-
command
000OO0OH

“PELETEY

Li.$t-of -~

flit mames
0

Filen gme
00000

Filename
[sXeRef-1

Figure 2. An Instantiation of "DELETE PHOOBEAR'

- 22 -

2.2.5 Specializers vs Instances: Access Between bjects,

Every network object is one of:
Top-Level generic: An object with* no nore general one above it.
In- figure 1, DO.-coramand and List-of-things are Top Level
objects. A Top Level object's ISSAlink is NI L.

Specializer: An object that is a special case of a higher |eve
(possi bly Top-Level) object.

Tenpl ate: An object that is not really in the network but which
| ooks like a specializer and is used to create new
speci ali zers by copying.
Instance: A very specific object that represents sone actually
entered conmand. Understandi ng of a coinnand causes an
instance to be added to the network.
A freshly nade ‘i nstance has no specializers, tenplates, or instances
below it but its name is added to the "instances" list of the object
whose roles parsed this string. The depth first parsing routine |ooks
only at the specializers in order to process an object. Thus,
i nstances do not enter into the parsing search. |In fi ct, the form of
the instance object is slightly different than that of a specializer
and passing an instance to the parser wll result in unpredictable
behavi or. Every network object contains within it a pointer to its
superior so that access both upward (always one to one) and downward
(potentially one to nmmny) are achieved. A top |evel object has no

superiors in the network (the pointer is NIL).

2.3 What to do with Instances After Understanding.

WIZARD’s general processing scheme can be summarized as follows:
1) Read a command.)
2) Try to understand the command as some instance of an object or
objects in the network.
3) Instantiate the objects that represent the command.

At each instantiation evaluate the semantics of the specializer

to which each instance is attached.

4) Add the name(s) of the instance(s) to the command history.
5) Goto (1)

In addition to the parsing roles, each object has a set of
"semantic actions". These are in the form of an s-expression that the
author has attached to a specializer. The process of instantiation
causes the actions associated with the superior to which this instance
was bound to be evaluated. It is this evaluation that drives the goal

recognition process. The actions and support for goal recognition are

discussed in chapters 4 and 5.

2.4 Problems with the Parsing Algorithm.

As mentioned briefly above, the parser is very special purpose
and suffers from difficulties that might make it unusable in other
domains. These problems stem from the simplicity of the parser
relative to the DCL language and from a lack of generality of

communication between DCL and LISP and within DCL itself.

- 24 =

2.4.1 Case Matching and Abbreviation.

There are two simple difficulties in the current parser. These
are best described as unimplemenped sections and code can be easily
added to correct them. First, the internal code of WIZARD expects the
input to be in lower case. Thus, if the user enters commands shifted
they will not be properly understood. A case traunslation algorithm
can be added to the input control in order to account for this
difficulty. All input would be down shifted to match the internal

form.

The second problem is slightly more trouble but not outstanding;
Some DCL commands can be abbreviated. That is, all of DEL, DELETE,
DELE, etc are valid forms of -thé DELETE .command. The simplest
solution to this difficulty is to cause the matching expression of the

parsing object to accept all the possible abbreviations.

2.4.2 One Position Loot ithead Parsing.

A set of parsing utility functions is provided for wuse 1in the
top-level parsing expressions. These functions permit the expression
to read forward one character in the input buffer, look at the next
character in the buffer, skip spaces 1in the input buffer, drop a
character into the result string, copy characters to the result until
a certain character 1is seen, or return the remainder of the input

string as the result.

-.25 =

These functions provide a simple parsing capability wﬂich is
inadequate to process some parts of the DCL command set. I have
handled some of these as special cases by making use of the possible
predicate expression in the top~iével parsing object representation.
For example: in order to distinguish the form "device:filename" from
"filename" without causing filename to be mistaken as a device name
‘one can define a special function which will look for the ":" in the
input string. This string is available to the parsing expressions as

an exploded 1list.

2.4.3 Successful recognition of failed commands.

One of the major philosophical premises wupon which WIZARD is
based 1is that the goal recognition is predicated only upon successful
and correctly formed DCL commands. In the ideal case, the sub process
to which WIZARD passes the commands for actual invocation would return
an error code and only those commands which generated no errors would
be considered (parsed etc). Unfortunately, VMS and LISP do not
communicate well with one another and such error codes are not

immediately available.

If WIZARD were to try to understand syntactically or semantically
incorrec; commands the parser, which 1s not a syntax analyzer, would
try to find a legal place to put these strings even though they do not
necessarily make any sense. The results of the application of the

goal recognition processing to such malformed instances 1is probably

- 26 =~

unpredictable. Any help generated from such illegal commands used in

goal recognition would certainly be wrong or misleading.

2.4.4 Partial Failure of List Operations.

An additional problem arises from the method of operation of DCL
commands when lists are °involved. Under some circumstances the
command processor will process list arguments even though some of the
members might cause an error. For example: if the files A and C
exist, but not B, the command:

$DELETE A,B,C
will work for the two existing files but cause an error for the
deletion of B. - Do we or do we not wanﬁ to accept that command for
processing in WIZARD? It 1is not trivial to correct or detect the
potential of such an error without duplicating most of the DCL error
logic. This also leads to possible misunderstandings between WIZARD

and DCL.

2.4.5 Misunderstanding Commands.

~ It is possible that a command will be misunderstood as a simpler
form. That is, for.example, suppose that a command to delete a single
file were in the network. It would probably understand commands 1like
"“"DELETE WINNING.PHOO" perfeétly well but would tend to misunderstand
(that is, match when it should not have) the command

"DELETE WINNING.PHOO,BEAR" as deleting the single file whose name is

- 27 =

"WINNING" and whose extention is "PHOO,BEAR".

There are two possible means of avoiding this problem. The
easiest 1is to be sure that therg are no such simple objects in the
network. Sometimes objects like that were meant to be later steps in
a recognition sequence and should have been templates rather than
speclalizers. The other approach is simply to be quite careful about
what objects are in the network and what they will match. The above
example can be avoided by making the expression that parses filenames
clever enough to look for illegal characters in the extent field and
fail if they occur. This takes more time in coding and execution but

is certainly the more general, and recommended, solution.

- 28 =

3.0 Chapter 3: Details of the Object Representation.

In tﬁis chapter I motivate and detail the subparts of network
objects. Some of these parts have been mentioned in chapters 1 and 2.
The motivation for other parts of the objects will not become clear
until semantic acéions are discussed. I place this chapter here
because it is too detailed to go very early in the thesis but the
terminology it explains is necessary in order to understand the action

of the goal recognizer.

As indicated in the preface, the objects that WIZARD knows of are
not meant to directly représent concepts in the actual knowledge of
the creator of the network. Thefefore, I have chosen to include in
the represeatation of cbjects anything that was necessdry in order to
support the parser, goal recognition, etc. It turns out that not all

that much information is required.

Objects have both ralue based data (chaf is, parts of the
object’s 1list representation) and property based information. In
general value based information is static once the object 1s created
but property based data changes as a result of external network
operations. These are explained separately since they serve different
purposes. In reading this chapter, it might be useful to remove

appendix B, the primary DCL network code, and keep it nearby.

-29 -

3.1 Value Based Contents of bjects*

Every object in the WZARD knomﬁedge base contains exactly the
sane parts although sone of themare unused in special cases. For
exanmpl e, instances of a specializer do not use the nmask field and this
field is NIL in those objects. Links (arrows in the figures) are nade

by including the name of the object to which the link connects.

Val ue based parts of objects typically are copied in case of
instantiation or creation of a new specializer and are not changed
thereafter. The recursive functions in WZARD S internal code dea

with construction and processing of these value based parts directly.

Figure 3 represents the general object schema. Solid lines show

the value based parts of the object (parsing roles, mask, semantics,

etc). The dashed lines indicate information Kkept in properties
associated with the object (instances and specializers). Figure 4
shows the 1lisp representation of the general object. Note the
substructure of the various fields. The rest of this chapter

di scusses these fields in detail.

/ﬂk to Super (ISA)

e AN ek

((=C(N Semantic Specializers Iis;;;:)
(=)= Actions P e
Mask [] E]
Parsing Roles
Figure 3: A diagram of the General Object.
(object-name
; "type" specification field
(IS) [for a top level object]
(SPECIALIZES super-obj) [for an original specializer]
(SPECIALIZES super-obj origin) [for a dynamic specializer]
(INSTANTIATES supe --object) [for an instance]
(TEMPLATE super-ob ect) [for a template]
s "'parsing roles" ‘ield (name Value/Restriction)
((name-of-role
(parsing function) [for a top level]
O [indicates “must be empty'"]
(predicate) [to match string directly]
atom [to match exactly]
(A sub-object) [point to a lower object]
)
(eee) oes)

s Semantics

(expression to be evaluated)

s Name/path mask

((name (path specification)) «e«.)

Figure 4: LISP Syntax of the General Object.

- 31 -

3.1.1 The hject Specifications Field.

G ven an object name (or value) one can decide whether it is a
top level, specializer, tenplate, or instance and if not a.top | evel
exactly what object is the given's superior. The specifications field
has a constant "type" that is one of "IS", "INSTANTIATES", "TENPLATE"
or "SPECIALIZESA. The superior is the second element if the object is

a specializer, tenplate, or instance.

The action of updating the parser dynamically (due to the-
evaluation of sone senantic actionl at some point) can cause new
specializers to be created.. This is done by copying from a ténplate
obj ect. An object that was created in this way includes a pointer
back to the tenplate fromwhich it was kloned. This pointer 1is the
third optional elemant of the specification field. It is used by the

"object matcher" (discussed |ater).

3.1.2 The Parsing Rol es.

Chapter 2 discussed in detail the use of the parsing roles in
command under st andi ng. The roles are kept in an association |ist
between the name of the role and its value restriction. That val ue
restriction is a parsing function in the case of an IS type object.
In non-top-level objects, if the VVRis a list then it is a pointer to
the nane of the object whose roles will be ysed to subspecialize this

role or a function which will be a predicate applied to the string

under consi deration. A slight inconsistency between the form of an
instance vs a specializer occurs here in that this list wll have the
form "(Aname)!* for a specializer but the form "(name)" for an
instance. The purpose of the "A" is to differentiate predicates (that
nmay begin with LAMBDA) frompointers to sub object. Functions cannot
occur in an instance so the "A' keyword is not needed. This notation

was suggested by Finin [9].

If the VIRis NIL then the string that is being natched nust be
enpty. The renmmining case, an atom gives the exact value that the

string must match

3.1.3 The Semanti cs.

The semantics field is sinply an expression that wll be
eval uated whenever an instance of this specializer is created. A
di sscussion of its use will nake up the better part oXx the renmainder
of this thesis. The semantic expression is the main controller for

the goal recognition process.

3.1.4 The Nane/Path Mask.

It is often necessary to extract subparts of an instance that may
be below the particular node in hand. It is possible to uniquely
specify any sub-elenent of an instance (that is not arbitrarily deep

in a List-of-things) by a path through the roles of this object and

its inferiors. For example, in figure 2, the instance of
File~-deletion-command, we might want to refer to the first filename in
the List-of-filenames that is its Command-argument. We would have. to

specify the path:

(Command-argument Thing)

in order to access it. The name/path mask is a shorthand 1list which
associates names with paths. It simply eases the task of access to
parts.of objects by letting the author specify the name instead of

having to enter the whole path list.

3.2 Property Lists of Instances and Specializers.

The lists of the instances and specializers of objects are
typically updated and scanned rather than being counstructed and
decomposed. Thus, they ire not a part of the object itself but,
rather, are kept in tl 2 properties INSTANCES and SPECIALIZERS on the

name of the super object. These are simply lists of names (pointers).

The action of instantiation adds the name of the instance to the
front of the INSTANCES property of the superior. Likewise,
dynamically created SPECIALIZERS are added to the front of the

specializers property oif the superior.

- 34 -

3.3 The Utility of Recursive Objects: List-of-things.

DCL-commands make heavy use of lists of things. For example,
most commands that épply to # single filename, like DELETE, apply alsd
to a list of such names in the way that MAP applies to a list in LISP.
It is necessary to be able to understand and work with such lists in a
uniform manner. Finin [12] discusses the necessity of such lists and

much of the design of WIZARD deals specifically with this topic.

In the semantic network, a list of things is a sequence separated
by commas. If one wants to understand lists separated by something
besides a comma, a new parsing object can be easily created. Commas
appear most frequently as DCL-command list separacors. [For the sake
of consistency the PRINT command can have a list of things in which

the delimiter is a plus=-sign (+).]

The recursive object List-of~things has, as it: 1last role, a
pointer that must be another instance of List-of~!.1ings (or NIL to
terminate the list). The normal action of the parser (as discussed in
the previous chapter) will understand commands by separating the input
string into separate "things" and building an instance of such a
recursive 1list. Figure 2 (in chapter 2) shows how the list-~of-things

breaks up a list of filenames.

- 35 =

The semantic actions of an object can access either the entire
list (by specifying a path to its head) or can extract any desired
element if the exact position in the list of that element is known.
It turns out to be nore useful to sinply select the entire |ist and
t hen use speci al .nappi ng utilities to process t he nenber s

i ndi vi dual I ye

3.4 Primtive Network Objects.

Appendix B is a listing of some of the objects that are
predefined in the senmantic network. I have witten their forns
manual ly. Exanples of WZARD S processing will refer to these obj ects

by nanme as the superiors of special parsing objects.

As previously noted, the main object is "DCL-conmmand. This is

mai n" because it is the node that is passed to the parser in order to
begin the process of understanding a command. All command fornms have

this object as their ultimate top |evel

4.0 Chapter 4: Designing Goal Recognition Sequences.

In this chapter I deal with the high-level form of the semantic‘
actions that drive WIZARD;S goal recognition.” The semantics portion
of objects is used to write goal recognition '"programs". These
actually have much the same flavor that standard programs have. One
can think of this section as an introduction to programming concepts
‘for programmers that will be using the WIZARD semantics language. I
will speak in terms of actions in the semantic network (like changing
the values of variables in Pascal) and of flowcharts for goal
recognition that are somewhat analogous to flowcharting in an

iterative language.

4.1 General Approach.

As was previously mentioned, the parser that undertakes the
understanding of DCL-commands is dynamic. That is, it can be updated
by the addition or deletion of objects that understand commands.
Since wunderstanding i1s controlled solely by the objects in the
semantic network, addition and deletion of objects will affect the

operation of the parser.

If a specializer is added to the network in the correct place, it
will act to understand commands that match its form (as discussed in
chapter 2). If an extant specializer is deatached from the network

then commands that it would have understood are no longer understood

- 37 -

as they would have been before that object was deleted.

It should be clear that only the addition and removal of
specializers affects the understanding process. The addition and
removal of instances or templates would not serve any purpose since
they do not take part in the understanding search. Top level objects

’

should not be deleted.

The human author, who is responsible for WIZARD’s functionality,
writes goal recognition sequences by specifying the objects that will
understand command strings and the actions that are to be performed
upon successful matching. The actual process of the recognition of a
goal takes place as a direct result of understanding some command.
That command is usually the last in a particular sequence. This last
command will be referred to as the '“terminal command" for the
recognition sequence. A help tramnsaction is usually invoked by the
semantics of a terminal object. Take, for example, the degenerate
sequence which contains only one command: "$LOGOUT". The goal of
this sequence is to terminate the session. If our only purpose in
recognizing this sequence was to bid farewell to the user who is about
to be logged off, we could embed a print in the semantics of the
object which will recognize the LOGOUT command and have it say "see

you later".

- 38 -

4.2 Specializer Templates.

Sequences are typically longer than one command in length. The
method of dealing with longer sequences is to manually plant in the
network the object which will understand the first command i1in the
sequence. It will be that object’s job to activate the objects that
will understand the latter commands in the sequence. Objects are

activated by being copied from a template.

A template is an object that does not itself match any string but
can ‘be duplicated and modified so that it will match something. The
reason that a template does not act to match anything is that it 1is
not a specializer, in the sense of being named in some superior’s

SPECIALIZERS list, uuntil it 1is kloned.

For example: Suppose that we wanted to match the sequence:
$PRINT <filename-x>
$DELETE <filename-x>
where the same filename is to be specified. [This sequence might
actually be used to match a misbehavior for PRINT with the /DELETE
qualifier.] The author must have put the followiné objects into the
network:
Print-command: Match "$PRINT <filename>"
Make a new copy of Delete-command replacing the hole for

a filename with the <filename>.

Delete-command [template}: Match "$DELETE ---"
Tell the user that he could simply type "$PRINT/DELETE"

-39 -

The successful matching of Print-command will cause activation of

its semantics. They specify the creation of a new object from the
template Delete-command, derived by filling the hole (indicated above
by "-==") with a filename. That process will cause the template to be
copied to a new object which is a specializer. This new objebt now
exists in the network and successful matching of it will cause the
activation of its semantics to print the warning. The activation of
‘that Delete-command copy is what we would refer to as the successful

recognition of the goal under consideration.

4.3 Construction of Specilizers from Templates.

In the above example it was necessary to have in hand the actual
name of the file that was printed in a form that would enable us to
make a specilizer of the correct form to match that name. This 1is
done by extracting V/R objects from the instance of Print-command that
was that particular PRINT command and inserting these into the
unfilled positions in the new object under construction. Parts of
instances are accessed by paths that are named as discussed in the
previous chapter. The template (or one of 1its superiors) has a
name/path field also and a part of the semantic capability is to
insert a particular at a named 1location in the new object. That
particular would have been selected by name £from the instance of

Print-command that was in activation at that moment.

- 40 -

4.4 Dealing with Lists of Things.

Life is not quite as sinple as the above exanple mght suggest.
Most of the conplications derive from the occurrence of lists of
things in the command* Consider the following two sequences:

$PRI NT FI LEL, FI LE2, FI LE3
$DELETE FI LE2

$PRI NT FI LE2
$DELETE FI LE1, FI LE2, FI LE3

In both cases we would like to be able to inform the wuser that

the sinmpler: ~"PRINT FILE2/DELETE" would have sufficed. No sinple
command anticipation scheme will match the second of the set of
commands to activate goal recognition. In WZARD, such cases are

handl ed by two nechanisns that are essentially conplinmentary.

4.4.1 Unwinding Lists into Miultiple Traps.

The first nethod deals wth the first of our exanpl es.
Specifically, the list of filenames that is the command argunment of
the print command is unwound in the semantics of Print-comand into as
rrany. new Delete-conmand copies as as are requiréd to cover all the
possible deletions. . This is done by mapping the tenplate copying
operation over the List-of-filenames that was formed from the parsing
of Print-command. The result of this process is three new
Del et e-conmand specializers in the network, one for each of the files

named in the first argunent of the PRI NT conmand.

4.4.2 Searching the Net for Mtching Objects.

The nethod of handling the second problemcase (in which a |ist
is used in a command for which there might be an individual trap) is
to again map through the list of filenanes. This tinme instead of
copying a tenplate for each filename, we see whether there is a
parsing object in the net that wll wmtch the formed object.
Presumably such an object has been created by sone previous activation
(such as the just previous PRINT command). |f such an object is found
then its senmantic expression is activated as if the object had matched
an incomng string. Since each new object (formed from a tenplate)
includes a pointer to the tenplate fromwhich it came, it is a sinple
matter to tell which objects should be sought as a nmatch for the

current object.

4.5 Detaching Parsing Objects.

In addition to adding new parsing objects to the network, it nust
be possible to delete objects. W can see this need in the follow ng
under sirabl e behavi or of W ZARD:

$RENAME A B
$COPY C D

$DELETE G
%/ou can use RENAME. .

Obviously, the user knows about the RENAME command so he nmust
have had some non-obvious motive for issuing the second and third
commands. We do not want to suggest the use of RENAME if he already

has demonstrated knowledge of that command .

The way I have chosen to deal with this 1is to permit the
semantics of the object that would match a RENAME command to
deactivate the object which would match COPY and begin the recognition

of the COPY+DELETE sequence above.

Another example in which object deactivation serves us 1is in
preventing multiple activation of ;he assistance message. That is,
suppose there would be reéson to issue the same command several times.
If this command matches the terminal object for some goal recognition
then the user is going to cause the activation of the help system each
time the command is issued. This is somewhat undesirable (although it

would certainly get the -oint across).

In this case, the g meric object that was activated to recognize
the goal would remove itself from the network. Perhaps it would also
act to remove all other traps from the net that would give, now

redundant, aid by telling the user the same thing.

- 43 -

g R <t R R TS, O QI N et oo N AR VNI SR Y RS BRI 4 - g " e sh o g e

4.6 Flow of Control Charting.

I have found it personally useful to diagram the semantic actions
that I will apply to a goal recognition task. Figure 5 shows the
"flowchart" (for 1lack of a bet;er term) that represents the
recognition of the PRINT+DELETE sequence discussed above. I will use
this informalism to illustrate all recognition examples. This is not
meant to be a detailed description of the recognition process but
merely a visual aid indicating the sort of action that will take

place.

The actions are represented by arrows in the figure 5. Solid
arrows iIndicate the creation of a dynamic specilizer to match later

commands in the sequence. Crossed arrows (—%) indicate

deactivation of a parsing object. Note that all the dynamically
created objects are self deactivating. A dashed arrowv E---3)
indicates object search rather than object creatioi. Wherever list
unwinding takes place there is a one-to-many mappin; via solid or
dashed arrows. Lists of things are denoted by sequences followed by
an elipsis (S.,..). Objects that are in the iﬁitial network (not

created dynamically) are noted to the left by a double arrow (==3>).

- 44 -

= $P1?}'=l’\\l\T/qual/qucl/...
vy
=> $PRINT /DELETE

= $PRINT #n,fn,...

@ELETE fn[*] ==-$DELETE fn',,f;r:,...
~

v...,’// \
S~ Pl *

NOTIFY — - -~

Figure 5: Flowchart for the PRINT+DELETE Recognition.

If the command PRINT/DELETE has ever been used, we need to
deactivate the normally potential recognition of the PRINT+DELETE
sequence. It would obviously not make much sense to tell -the user
what he knows already. This particular step is not so simple since it
is difficult to recognize PRINT/DELETE. It might have had intervening
qualifiers (such as: '"PRINT/NOFLAG/DELETE" etc. In order to perform
this task, it is necessary to unwind the 1list-of=-qualifiers to the
PRINT command and search in the network for a PRINT/DELETE object.
The semantics of THAT object will cause the deactivation of the

recognition sequence head -~ not the general print command activation.

- 45 =

4*7 Considerations of Command Order.

One of the advantages that VVZARb holds_over a straight pattern
matcher is its that it wll autonqtically‘ignore anything that it has
not been told aboute This turns out to be of use in many cases where
commands that might intervene between parts of the sequence m ght not
affect it in any way. For exanple, if the user interspersed a TYPE
command between the COPY and DELETE commands above then we woul d
probably want to ignore it even if the file typed was one of those
copi ed. If we did not want to ignore commands that accessed those
files, that capability exists as well by sinply placing a parsing trap

for that fil enane.

It is not always the case that we can tell syntactically ‘whether
a comand wll have an effect on our sequence recognition. Consider
the followi ng exanple of redirecting the output of the DI RECTORY
command:

$ASSIGN S. TMP SYS$QUTPUT

$DI RECTORY *. *

$DEASSI GN SYS$OQUTPUT
Shoul d be recognized as attenpting to capture the output of the DR

command in a file. The /QJIPUT** qualifier can be used in order to

do this as follows:

$DI RECTCORY/ QUTPUT=S. TMP

In this case, conmands that intervene betweea the two end
commands affect the result only in case they generate output. It

woul d be ludicrous to have the semantics of the ASSIGN comand |ay

-46 -

traps for every command that might generate output. An approach
beyond straight expectation is required to correctly recognizing this

sequence.

4.7.1 Hunting the Command History List.

As was mentioned: a command history is retained which contains a
list of all the interpretations of the commands entered. The way
chosen to approach the general problem suggested above is by pattern
matching against the command history list. Each member of the history
list is a list of the names of the instances created for each parsed

command. Thus, the commands in the ASSIGN+DIR example above might

create the following history:

((éssign-command-OOOOI
dcl=-command~G0003)

(dir-command-00005-00008
dcl-comma1d-00010)

(deassign- :ommand-00006-00012

decl-comme 1d-00013)
)

This data is stored in the global variable "emd-history".

Note that the latter command have two id numbers since they were
matched by dynamically created objects that had their own numbers.
The rule of name generation causes an additional id number to be
appended- to the parsing object’s name. Also note that the most
specific interpretation is the first in the sublist. DCL-command will

be the 1last interpretation in any sublist since it is the start node

- 47 -

for the depth-first-search and succeeding in matching any input.

Uilities for matching against the_cqpnapq histO(y Iis;_largl not
provided as WZARD primtives but it is a reasonably sinple matter to
map down the “crmd-history’' variable %Ath any desired search. Thus, an
additional criterion for the activation of the recognition (attached
to the last command: DEASSIGN) in the ASSIGWDIR exanple would be
that the locations of the conmands instantiated were next to one
another. There are any nunber of other codings for this test even to
the point of having sone list of the commands that create output and

seeing that one of themwas not between the understandi ng objects.

4.8 The Formthat Help Takes.

This work deals prinmarily with activation of the help processor
rather than the form that the help itself wll take. | have
specifically avoided this topic but there are issues il the design of
those interactions that rely heavily upon the coaa: id understanding
stages. In particular, it is inportant to know, for exanple, which of
several possible filenames was the one mhich' activated the help
request. The availability of this type of information can help
inprove the help interactions by clarifying the context in which the

goal recognition succeeded.

W ZARD provides a way of accessing parts ‘of instance objects.
This can be wused in one of tw ways to pass the context of the

recognition to later steps-

4.8.1 Passing Information in Properties.

The nost straightforward nethod of passing context information is
to sinply stuff it into a property attached to the newy created
parsing objectse For exanple, when the list of filenanmes in the COPY
command that began a COPY+DELETE sequence is unwound, the nane of the
file at hand in each step of the unwinding can be put onto the
property list of the DELETE parsing object creafed for that filenane*
Then all that the recognition process need do is get that nane (and

any other information that was squirreled away for its benefit)*

4.8.2 Extracting Infort ation from this Instance.

The other neans of gaining context information is to |ookup
specific strings fromthe instance objects by sinply using the WZARD
path access utility to dig out the proper leaf. This nethod can only
be applied if the desired data is a part or subordinate of the object
in hand. Such things as the time 6f day of the initial comand match
are clearly not going tc be accessible in this manner and will have to

be passed in a property.

4.9 Two Examples.

Here I include two examples of semantic ‘programming techniques.
We have seen these before as examples throughout this work and will
see them again in detail in the next chapter. The treatment here 1is
more concerned with the style of semantic programming needed to
support their recognition. I apply techniques discussed throughout

this chapter.

4.9.1 COPY+DELETE => RENAME

This first example is to recognize the sequence from which the
idea of WIZARD first came. That'is, recognize when a user is renaming
a £ile by zpplication of the COPY command and subsequent deletion (by

DELETE command) of one of the source files from the copy. Figure 6
represents this recognition program. It is much the same problem as

the PRINT+DELETE sequencr. mentioned earlier in this chapter.

- 50 -

=» $RENAME

=»> $COPY #n, fm,... Fn

$DELETE fn =>$DELETE £n, fn,...
'L *< ’ V—-—’If"\
\\\ ,/’ Sa
NOTIFY TN ————— - -~

Figure 6: Flowchart for the COPY+DELETE Recognition.

- 51 -

If the user ever uses a RENAME command then remove the potential
to begin this recognition (since he clearly already knows what we have
to tell him). When a COPY command is encounteréd, set traps for a
possible deletion of each individual file. Also, whenever a delete
command is encountered, uﬁwind the list of files to be deleted and

search the net for an extant DELETE command parsing object which will

match the filenames in the list. Each delete command object detaches

itself upon activation.

We would like to present some specifics about the context of the
recognition 1f one of the delete objects is activated. Thus, we will
have to pass along the name of the.file that was copied and the name
to which it was copied. The way that these are actually passed will

be detailed later.

4.9.2 ASSIGN SYS$OUTPUT+DIR => DIR/OUTPUT=

This is a three step recognition program. It is rather complex.

The reader should refer to figure 7, the flowchart for this process.

- 52 -

=$ASSIGN fn SYSSOUTPUT

$DIR[/OUT]

"
GDEASSIGN SYS$OUTPUT “-$DEASSIGN SYSSOUTPUT

Y

NOTIFY

Figure 7: Flowchart for the ASSIGN+DIR Recognition.

The initial object for this sequence lays two traps, branching
two possible paths of continuation. The first, the expected path, is
‘a trap for a DIR command that does not have /OUT= as & qualifier. If
this 1s 1located, then a trap for the terminal DEA3SIGN command is
laid. Activation of that terminal trap will cause activation of the
notification (for the DIR/OUT=) command, ounly if there was only one
command between the ASSIGN and DEASSIGN commands. Thus, if there were
any other commands between the two, the user aid is not invoked. 1In

any case, activation of the terminal DEASSIGN command detaches itself.

- 53 -

The other path spawned from the initial ASSIGN command is a trap
for a matching DEASSIGN command. Should that take place, the trap
created for the DIR command is deactivated along with this DEASSIGN
command trap. Thus, if an ASSIGN+DEASSIGN pair occurs without haviné
an interposed DIR command, the DIR trap is removed. If it were not
removed there would be the possibility of a spurious recognition in
the case of a later application of DIR command and a DEASSIGN command.
Note that the name of the DIR command must be passed to this DEASSIGN

command trap in order for this deactivation to take place.

This DEASSIGN trap will be activated in addition to the DEASSIGN
trap from the other path in case a DIR command was issued. This is
convenient, in this case, because it causes the cleanup of the DIR

command trap for both paths.

- 54 -

5.0 Chapter 5: Detailed Primitive Semantics.

Whereas the previous chapter might be subtitled “The Art of
Semantic Programming (volume I)", this chapter might bear the title "A
WIZARD programmer’s manual®. Once the recognition plan has been
outlined as discussed in Chapter 4, the author can apply the specifics

in this chapter to make WIZARD perform the intended recognition.

Since the base programming language for semantic programs is LISP
it 1is necessary that the author of WIZARD recognition programs be
familiar with LISP. I will assume such familiarity in this chapter.
Although the semantic actions are reasonably simple to use, they are
only utilities and need to work with some amount of user written LISP

code.

5.1 Objects vs Names.

Every object in the network has a unique name. Thus, given the
name of an object one can get its body (the value). The opposite is
also true (see chapter 3). As far as the semantic actions are
concerned, a name 1is as good as its value and vice versa. The
utilities all subscribe to the philosophy that no matter how many
times the author 1s told to use a name here or a value there he will
reverse them at some point. Thus, the first thing that each action
utility does 1is to force the argument passed to be of the type that

that function needs regardless of its initial form. I will use the

- 55 =~

terra "object” always to refer to the thing to be passed.

5.2 The Semantic Actions.

The semantic actions are a set of utility functions that are used
by the author to wite goal recognition programs. They are used as
parts of the "semantics" expression. The particul ar functions
brovided are:

(I ookup object path)

Find a subobject of sonething by path specification
(apply-to-list object function) :

Map the specified function over the given List-of-things

bi nding the name of each thing to the function argunent.
(newcopy tenplate bindinglist)

Create a dynanmic parsing object by copying a tenplate object

repl aci ng subparts by specifics from the bindinglist.
(find-copy tenplate bindinglist)

Make an object (as in new copy) but instead of adding it to

the net search for a matching object already extant.
(detach obj ect)

Rermove an object from the network.

5.2.1 Finding Parts of Objects.

G ven an object in the network it 1is possible to extract the
subobj ects or specifics that make it up. The LOOKUP function provides
the means of finding parts of objects by path specification. The form
of a path has been explained in section 3.1.4. Handed an object and a
path list, this function will return the thing (an object or atom

that resides at the end of the path.

T e R AT 4 A s e — = —

5.2.2 Unwinding Lists of Things.

Paths obviously cannot be used to specify arbitrarily deeply
nested things in a List-of-things. The way lists are handled is to
unwind them. LOOKUP is used to find the top of the list and then this
is passed'to APPLY~-TO-LIST. That function acts somewhat like MAPCAR:
it takes the list and a function (typically a LAMBDA expression) and

applies that function to each thing in the list.

APPLY-TO-LIST continues through the list until the result of some
application fails to return NIL. That 1is, 1f the result of the
application of the function to the thing is non-NIL then that value is
returned as the result of the entire application and the APPLY—TO;LIST
terminates. This provides a convenient way of Qsing list unwinding to
search through the 1list for some single object using the applied
expression as a predicate. If the end of the 1list 1is reached,

APPLY-TO-LIST returns NIL.

5.2.3 Creating a New Object.

New parsing objects are dynamically created specializers in the
network. They are created by copying a template object and replacing
holes in that template with specifics. Template objects must have
been put into the netvork previously. The template should contain
paths to each hole in its name/path mask field. Each hole should have

a name/path pair. The second argument to the NEW-COPY function is a

- 57 -

list associating each name in the name/path mask with the value which

is to £i1ll1l that hole.

For example: consider the name/path mask which might be 1in a
DELETE command template that will match the deletion of a specific

file.

((name (Command-argument Name))
(ext (Command-argument Ext)))

This might be bound by the bindinglist:

*((name » (lookup instancel
. ‘ (Command-argument First-thing Name))

)
(ext ,(lookup instancel
’ (Command-argument First-thing Ext))
)

)

The above example demonstrates many techniques commonly applied
in the use of the semantic actions. First, note the use of LOOKUP to
select the specific to be bound into the object under coanstruction.
[It may be supposed that they are being selected from a COPY command
where the two arguments to the command were parsed into a First-thing
and a Second-thing.] The backquote macro comes in quite handy in these
constructions since it permits wus to form the bindinglist almost

directly.

In the above case, the COPY command from which the filename parts
are being selected is supposed to be a copy of only one filename. If
we wished to have a new copy of the DELETE command object formed for

each instance of a filename in a list of filenames (a List-of-things

- 58 =

where each thing is a filename) then we would have to embed the entire
construction in an APPLY-TO-LIST as follows:
(apply-to~list ‘
(lookup this-~instance ‘(Command-argument First-thing))
‘(lambda (obj))
(new~copy Delete~template
*((name ,(lookup obj ‘(Name)))

(ext ,(lookup obj “(Ext)))

))
() ; result must be NIL

Notice that a NIL is returned by the LAMBDA expression. This is

so that APPLY~-TO-LIST continues to process the entire list.

5.2.3.1 Naming the Current Instance.

The value of the global THIS—INSTANCE in the above expression is
bound for the duration of the semantic evaluation, to the object that
was instantiated in orde - to cause this evaluation. This is needed in

order to dccess portions of the command that was just entered.

5.2.3.2 Communicating to Later Steps.

NEW~-COPY returns the name of the newly created specializer. 1f
we wished to pass some information to the semantics of that potential
activation, we could enclose the application of NEW-COPY in a PUTPROP
expression and hang associated information onto it at will. For
example, if we wished to pass the current time of day to the latter

activation, we might write:

- 59 -

(putprop (newcopy ...) 'tiine-of-day '(tineexpr))

5.2.3.3 Speci fyi_ ng with Subobjects.

In all of the above examples, | have been filling the tenplate
holes with specific parts of an extant object selected out by LOOKUP.
It is inportant to note that this does not work quite as sinply if the
object with which we are filling the holes is another specializer
(say, a conplete Filenane). Recall that the formof an instance (such
as that which is the value of TH S-1NSTANCE) is different from that of
the specilizer that is under construction. It may be necessary to
enbed object nanes in lists that begin "(A. . .) " in order that the

parser properly process the specializer.

This is also necessary if new copies are to be enbedded within
other new copies. This particular enbedding of new copy applications
is typically not necessary since the tenplate should be a conplete

object with all sub specifiers in place.

5.2.4 Finding a Matching Object.

Exactly anal ogous to NEW COPY; one can hunt the network for an
ext ant parsing object instead of creating one. This is wused
specifically in unwinding lists "backward? to see whether sonme trap
has been set for a particular subcomand issued as a result of a

list-of-things used within the current command.

.- 60 -

For example, we wished to be able to cause the following

behavior:
$COPY A B - '
$DELETE X,A,Y -
ZIf you are trying to change the name of A...

The semantics of the COPY command laid traps for the specific
command "DELETE A" but this command never appeared. Rather, it was
embedded in the list deletion of the three files X,A,Y. In the
semantics of that latter command we would want to put the expression:

(apply-to-list (lookup this-instance ‘(Command-argument))
‘(lambda (fname)
(find-copy Delete~template

*((name ,fname))

0
)

Here a subobject of the instance (the Filename object that was
bound by the mapping act .on of APPLY-TO-LIST) is replaced for the NAME
specifier in the same te¢ aplate from which the delete parsing object
was created. The FIND-COPY utility will attempt to match all extant
objects which were derived from Delete-~template with this wvirtual
object ("virtual" in the sense that it is not actually named and
attached to the net but, rather, is simply being used to match extant

objects).

- 61 -

DA e i

The objects to be tested can be found via the ORIGIN field in the
specification element of network objects (see chapter 3). Only the
objects hanging from the template’s Superior need to be searched and

only those that originated from the.Delete-template itself.

5.2.5 Detaching an Object.

The DETACH utility is used to remove an object from the network.
It 1is given the object and returns NIL. That object is REMOBed from
the LISP workspace and extracted from the pProperty 1lists of itsg
parent. Objects below the one being. detached are gég REMOBed
explicitly although their existence will not affect the speed of the
Parser unless they have been explicitly arranged as specializers of
Some other father. If such is the case then the author might wish to

arrange to have these extra objects explicitly detached.

In order to perform self detachment, we must know the name of the
parsing object which matched causing the instantiation of the current
object. This name is kept in the global wvariable: PARSING-OBJECT

which has a valye for the duration of the evaluation of that object’s

semantics.

- 62 -

Ty . - R o

5.3 Two Examples Detailed.

Appendix C contains a slightly stripped form of the semantics
code that performs the recognitions for the COPY+DELETE and ASSIGN+DIR
goals. This appendix together with Appendix B, the primary netwbrk
objects, form a complete and functional knowledge base for those
recognitions. These recognizers are stripped in the sense that they
.only perform the recognition on complete command names (e.g., "del" is

not an acceptable substitute for "delete").

there are several points to note in reading this code:

The ASSIGN+DIR recognition is invoked only if the original
ASSIGN command is exactly 2 commands from the terminal DEASSIGN
command thus handling the problem of interposing commands.

The VMS DELETE command requires a version number on the filename.
This must be ignored in order to properly match with the filenames
from the COPY command. Since it is not specified in the object
sl-fileform, and it is not forced to any value (or NIL) by the
semantics of sl-copy-command, it will be properly ignored in
parsing or matching.

The filename (name.ext) is constructed by the sl-copy-command
semantics and passed in the property ‘filename’ to the DELETE
command. This is then used in the help message. That name
could have just as simply been pulled out of the DELETE parsing
object at notification time.

- 63 -

6.0 Chapter 6: Qpen Problenms and Loose Ends*

In case it is not yet obvious to the reader, WZARD is not

perfect in concept or inplenmentation. | can wave ny hands at sone of
the difficulties and include themin "future directions®. The nore
practi cal problens (sonetines known as design errors or, nore

conci sely, bugs) are nmore difficult to explain away.

In this chapter, | will try to lay out what WZARD night have
been as well as what it cannot be without conpletely abandoning the
anticipation nethod of goal recognition. | claimno excuse for having

failed to inplement something as "cleanly™ or "correctly" as it mght
have been.. Sonetines considerations of time prevented such revanping.
Sonmetimes a mnor restructuring in .one area would demand a mmjor
restructuring in another and so the burden of the difficulty was |eft

to the author/user.

6.1 Inplementation Rest ictions (i.e., Bugs).

| begin the discussion of problems wth those that are nost
clear: the bugs. These are not bugs in the sense of causing LISP
error traps but rather m sconsi dereq design of parts of the WZARD
system Sone of these problens have been di scussed already in chapter
2 with re;l ation to the sinplicity of the parsing schene. | wll not

reiterate those particular problens here:

6.1.1 Conflict of Object Form.

As discussed briefly in chapter 3, the form that an object takes
differs between a specializer (or template) and an instance. We might
often wish to attach a sub object that is not atomic to a hole in a
template. This template will 1later be copied into a specializer.
Berein lies the bug: the form of a sub object role filler in an
instance is a list whose sole element is the name of the sub instance.
In the case of a specializer, however, sub object role fillers are
formed by a list like "(A ...)". The "A" form is necessary in order
to distinguish a LAMBDA expression from a sub object. Instances
should élso be in this “A" format so that, as far at the matcher and
parser are concerned, an instancé object 1is not different from a
specializer .V/R. Currently, if one wishes to use an instance deriyed
sub object to f£f11ll a hole in a template, it is necessary to create a
new copy of that object as well and insert atomicly selected parts of

the object in hand ir‘o that new copy. Only template derived

specializers are valid parsing objects.

6.1.2 Redundant Parsing: An Efficiency Issue.

A problem with efficiency of the WIZARD parser lies in the action
of the depth first search system. The current implementation begins
all the way down at the leaves and backs.up to the leaf’s superior to
preparse the string. This process is repeated for each leaf in the

net. That is, for example, Copy-command and Delete-command are both

- 65 -

DCL commands. Thus, the expressions in the roles of the DCL-command
objects are run for both of those sub specializations and each
evaluation of DCL-commarnd will clearly return the same result--a

redundant and time-consuming operation.

There are two ways of avoiding this redundancy. The first
involves recoding the parser so that as depth first search proceeds
down (looking for a leaf at which to begin grinding) it will parse the
string with the superior objects and pass the predigested selections
to the leaf when one was finally found. Thus, the leaf parsing would
not need to go to itsrsupetior before attempting to sub specializé its

role bindings. The bindings would be immediately available.

The second method of fixing this inefficiency is somewhat less
clean but does not 1involve rewriting the parser. That is to use
memoing of some sort in order to have to evaluate the lexical

functions of the superiors only once for each string.

6.2 Problems With the DCL Domain.

Next I will discuss some of the more difficult problems stemming
from the chosen gnvironment and the assumption of totally syntactic
goal recognition. It turns out that only very limited recognition can
be done on that basis due to non-transparent syntactic structures
which expand into other structures. There are several areas in which

information must be imported into the recognition process.

- 66 -

s RIS B P e L e

6.2.1 Wildcard Filename Compression.

DCL supports "wild card" filename specifications. That 1is,
certain forms of filename are a shorthand for a whole list of actual
files. For example, if one’s directory contains the files "PHOO.BEAR"
and "“POO.BAR" the form: "P*.B*" is replaced internally with both
those names. WIZARD has no provision for importing information such
as the contents of the user’s directory and would have to provide a

pattern expansion function to handle such cases.

This particular type of imported information is not actually
totally unreasonable and, 1in fact, work to handle exactly this

expansion 1s currently in progresse.

6.2.2 Symbolic Replacement and Command Files.

Another feature of DCL is the ability to replace any command word
(actual or fictitious) with some other string. This information is
kept in internal DCL tables and 1is not immediate.y available to
WIZARD. Along with this facility, the more advanced user can write
complete files whose contents are performed in place of a command (via

an "@" prefix which is usually hidden in a string macro replacement).

For example, the user might create a file, CONFUSE.COM whose
contents are a PRINT command followed by a DELETE command (as in a
previous example). Then he might specify that whenever he wused the

command: "RENAME" it was to execute the CONFUSE.COM file. Thus, the

- 67 =

TR, 1. Y AR 7 e g . g e A PR A R T N N W I S o -

sequence:

$RENAME PHOO
woul d actually issue:

$PRI NT PHOO

$DELETE PHOO

This would clearly confuse WZARD entirely if it could not first

get to t he synbol i ¢ repl acement tables which specify that
‘RENANE«@ECNFUSE.OOM and, secondly, read that file and interpret its

cont ent s*

6.3 Theoretical Problens.

| now turn to nmore interesting problens. These are less like
deficiencies and nore Ilike things that | did not think very hard

about. In research, such things are qualified as either not wthin
the donmain of this thesis" or as "future directions". In keeping with

tradition, | nention here sone of each

6.3.1 Argunments of Deactivation

In the current design of WZARD, the only way that help
transacti ons which would normally occur will not be invoked is if sone
other activation has caused the objects which wuld have generated
those nessages to be explicitly detached fromthe network. There are
sormre sinple rules that have been suggested for sone sort of inplicit

deactivation. These rules have been argued in specific cases but they

- 68 -

have not been implemented because it is not clear that they will not

cause undesirable effects in other cases. Some of the rules are:

6.3.1.1 Persistence of Dynamic Objects.

Once a COPY command has been issued, how long should the trap for
a subsequent DELETE command remain? It would be somewhat unnerving to
return three weeks later and issue the terminal DELETE so that the
COPY+DELETE goal actions are invoked. In the mean time the user has
probably learned of RENAME (either himself or via WIZARD) and needn’t
see that help message. That trap is simply taking up space and time

and is meaningless after some number of sessions.

First, it should be clear that the mechanisms are available in
WIZARD to store pointer to all the DELETE trapping objects in scue
global variable and then detach them all when a RENAME command is
issued. This would correct the difficulty if the user figures out

rename without the aid of WIZARD.

6.3.1.2 General Self-Deactivation.

It has been argued that all dynamically created objects should be
restricted by some general deactivation rules. These are that every
dynamic object detach itself upon its activation (so that it 1is not
accidentally reactivated, causing the same help message or hanging a

duplicate new object into the network) and that all objects created as

- 69 -

a result of a given unwinding process deactivate all its brothers when
it is activated. These suggestions are both aimed at specifically
avoiding redundancy of help messages and in some cases they seem to

improve WIZARD’s behavior.

It is not clear, however, that we would want such rules in all
cases. Consider the case in which the node which would be deactivated
is not a terminal node but, rather, spawns new objects that are
dependent upon the 1nput form. If this object were to self
deactivate, only the first of the possibleJactivations of that interim

step would be actually executed.

6.3.1.3 User Profiles.

Closely associated with the duration of dynamic objects is the
question of what knowledge should be preserved from session to session
or over longer periods o° time. It is not even clear that, in the
case of our COPY+DELETE sequence having been detached by the use of a
RENAME command, that sequence should not be restored. If the wuser
still persists in using COPY+DELETE misbehaviors then we might either
question his memory or question the potential of our misunderstanding

some side effect of that sequence.

The stored knowledge base becomes a profile of the knowledge of
the user and can be analyzed to determine how far along he has come or

how quickly he is progressing. It also provides a log of all commands

- 70 -

T T I O s, 0 A TR, T, SN RN, AR TS b M ALY s T e e A P I SO 5 P01 5 7 g ey S W

issued and can thus be used in protocol analysis to, perhaps, actually

teach WIZARD about this particular user.

6.3.2 Reconstruction of Strings for Help Messages.

WIZARD is really a help processor invocation system. I have mnot
been especially concerned with the actual help interactions. This is
primarily because I do not think that I could have done justice to
both topics. There are, however, some simple applications of the
WIZARD data structure and logic that might be wuseful 1in the

construction of the actual help senarios.

All the context information that the help ﬁrocessor needs must
either be passed along with the WIZARD program (in properties) or else
extracted from the object whose activation invoked the help
interaction. It 1is sometimes necessary to break apart objects in
order to extract their pirts for the help messages. For example, iIn
order to print a prcerly formed filename in_the COPY+DELETE help
message it was necessary to extract the first part of the name and the
extension separately and rebuild the filename manually (via string

concatentation).

This should not be necessary. All the information exists in the
objects 1in the network to reconstruct them into strings by simply
reconconcatentating the parts in some uniform way. A 1list of

filenames is a list-of-things where each thing is a filename. Thus,

-7 -

in order to make the string from which a 1list of ‘filenames was
derived, simply insert commas between the reconstructed filenames.
The process 1s not quite this simplistic because the top-level
expressions might lose 1information (although probably not anything
relevant) and there would have to be some rebuilding function that
performed the catentations. Otherwise, we would have to go in and
invert the operation of the LISP expressions that parsed the strings

‘to begin with and this is certainly not a simple task.

6.4 Automatic Generation of Semantics.

Given that the WIZARD paradigm is the perfect user assistance
frontend (of course), it remains only to clean up some of the messy
programming that is involved in making it work properly. The reader,
by this time, has probably reached the conciusion that it takes some
very careful planning and a great deal of experience in order to write
working WIZARD programs. It would be nice if an author could simply

" enter his flowchart 1n2 some higher 1level 1language and have it
automatically converted into parser objects, templates, and associated
semantics. In fact, it is a short hop from some 1less 1lispy object
syntax to the actual network objects. The conversion is rather less
well defined for semantic actioms. One would have to include
provisions for passing information on the side in properties. It is
not beyond speculation, however, that a programming language could be

designed which was compiled into wizard objects complete with

-72 -

T T 437 Ty L A W S e e e ST eI T SR M AT s T SETNA T

T T g TR 8 N 5 C e h 6 m s 341

semantics.

The next, more inceresting and difficult step, is to provide an
"author’s workbench". This utility would permit an author to review
logs of beginner sessions and simpiy indicate which parts of the
interaction are misbehaviors and what the distinguished sequence
should be. The workbench utility would then code the WIZARD programs

itself.

- 73 =

7.0 Chapter 7: Postmotivations and Possible Universes.

Although the goals of WIZARD are modest the general topic of the
application of goal recognitionAto user assistance is in much need oﬁ
research. I think that many of the.ideas argued in this thesis, those
ideas for which WIiARD is a test bed, deserve more thought than fhe
industry or academia have yet put forth. 1In this, last, chapter, I
try to justify (to myself as well as the reader) the time spent on
this research and to demonstrate that such research is actually of

some interest.

7.1 Advantages of Anticipation.

The goal recognition approach used here is not a novel technique.
The use of anticipation to recognize tactics has been applied to
natural language understanding (a la Riesbeck) among other areas. It
is generally accepted as a reasonable approach in some cases. I
originally chose this te :hnique for several reasons. One is that it
works particularly well in a non-iterative task domain (like a command
language) . Another reason is that it is simpler and more general, to
my mind, toc construct programs in order to recognize things than to
design large and hairy patterns that are matched against entire sets

of user logs.

-7 =~

7.1.1 Interspersed and Intertwined Commands

One specific advantage of the anticipatory approach over, for
example, a pattern matcher is that ignorance of commands that do not
affect the recognition is a built in feature. For example, as far as

WIZARD is concerned the following are identical:

$COPY A B $COPY A B
$PRINT C $DELETE A ’
$DELETE A

Additionally, overlapping goal recognition programs are

automatically handled as in the following example:

$COPY A B

$PRINT C

$DELETE A

#The RENAME command may be used...
$DELETE C

%#The PRINT/DELETE commande..

Another reasons for chocsing the anticipatory scheme was that it
is reasonably simple to describe the sequencing that becomes the goal
recognition program. That is, an expert user can act ally anticipata
mibehaviors of beginners in the same sort of I/0 behavior that WIZARD
seems to use. Often a tutor will be able to anticipate what his

student will do wrong before the mistake is made. WIZARD’s heuristic

depends upon this exact type of anticipatory ability.

A human being (a tutor of some lesson) learns to anticipate
misbehaviors by having experienced them many times. WIZARD is taught

explicitly which misbehaviors to seek out and recognize. It 1is not

- 75 -

too far an inmaginative leap to think of WZARD | earning about such
common mispractices by observation. I think that this mght be
acconplishéd by extension of WZARD S know edge and perception to
i ncl ude changes in the environnent and by having WZARD I|earn which

commands effect which changese

7*2 Know edge Representatione

My final major notivation for the use of anticipation was that it

fits well into the schene of know edge representation. KL-One is a
systemwhose properties have always fascinated me but for which | had
found little wutility. The need for a dynamically nodifiable pattern

mat cher gave nme the opportunity explore know edge representation. I
do not think that it is a necessary feature of VVZARD. Snobol ni ght
be nade to do sonewhat the sane type of recognition but the
descriptions of the DCL |anguage woul d have been nuch nore conplex and
the unavailability of the power of a built in progranmng |anguage

woul d have nade the anticipation prograns that much nore difficult.

The semantic network is designed to be extensible, sinple and
easy to use due to the natural way in which objects are described. |
have found it to be a nore than adequate tool for exactly the type of
pattern matching that this work required. The ease with which | was
able to describe DCL commands and have W ZARD understand them proved
out the thesis that KL-One Ilike data dgscribtions are useful and

i nteresting.

Another feature of which I did not take full advantage 1s the
capability of building a detaill model of what a user, who has been
running under WIZARD, knows about the command environment. It is my

feeling that this is a virtually unlimited area of exploration in the

user assistance area.

7.3 Advantages of WIZARD as a Help Invocation Paradigm.

If nothing else is gained from this thesis, it is my hope that
the reader will recognize the importance of goal recognition in user
assistance. Although I stated in the preface that I would avoid

speculation about psychology, I do think that the general recognition

paradigm 1is useful in describing the behavior of a real user
.consultant (I do not think that consultants use anticipatory methods

but that is not important to this point).

Clearly, when one human being helps another with anything, the
helper has some idea ¢! what his student is trying to do. Trial and
error training is useful only to a point. That point comes when the
user knows how to get the job done and avoid silly errors (that is,
syntax and trivial semantics). There is only so far that an entirely
trial and error taught individual Ean go in an environment as rich as
an operating system and after a time it is useful to have an expert

suggest appropriate techniques of efficiency and cleanliness.

-77 -

Goal directed help systems can be applied much more generally
than I have done here. Imagine interactive programing environments
that give the user a bit of programming guidance. These are not

particularly novel ideas. I have concentrated on a very specific

domain in hopes of being able to get interesting behavior. WIZARD is
a functioning, albeit slow, implementation of exactly what I had

imagined this work to produce.

- 78 =~

Appendix A
The WIZARD Code -

It is not necessary to read code in order to understand WIZARD’s
functionality. The bulk of this thesis discusses the algorithms
implemented by the functions detailed in this appendix. I do,
however, feel that it is important to people interested in working on
WIZARD that the LISP code be properly documented and explained in
detail.

The functions are divided into wmajor sections of the system.
Each section is briefly discussed and then the functions detailed. A
short discussion of how the function fits into the WIZARD framework is
included. If LISP scares you, simply ignore the code and read the
comments. I have tried to be consistent about code style and
commenting. Some functions are commented internally in order to
explain non-transparent techniques. Comments always describe the code
immediately following the comment.

WIZARD was develcped and runs under John Foderaro’s Franz LISP
environment from Berkeley as modified by Lars Ericson at Carnegie
Mellon. The system must be rum in that environment.

The W ZARD Top- Level .

When W ZARD begi ns execution, the user seens to be talking
directly to VAX DCL. The "$" DCL pronpt is generated by WZARD S top
| evel control function and input is- passed thru to the command systent
The goal recognition subsystem "watches" commands as they are passed
to DCL* A mmjor assunption is made here that the command in not in
error. There is no straight-forward way of retrieving error codes
fromDCL commands and thus | do not do so.

Since characters that are special to LISP (such as brackets and
periods) are a normal part of the DCL conmmand syntax, W ZARD
temporarily replaces the LISP reader syntax array wth a nodified
array in which those characters are treated as normal characters*
This essentially kills LISP for use after WZARD has been activated
That is only a problemif there is an error. The system supporter
should be able to use LISP if an error occurs in WZARD. In order to
correct this problem the old version of the syntax array is copied
into a prog variable and the error denon knows to replace it in case
of error. :

The top level controller sinply reads strings, issues the DCL
command, and calls the grinder (parser) passing it the input comrand
string and the BCL-command network object to process the string
against as described in chapter 2. The list of successful parses for
this string is then appended to the command history and a nav conmand
i s read.

setq crad-history ())

>» W zard <«

[LN T

; The read-eval (del)-print[not really] loop for the wizard system
; The reader has to be screwed with in order to get all the chars
; that DCL wants to see |[]| etc. The error processors are also
fixed so that the read tables are replaced on break or error.

[P

(defun wi zard ()
(prog (hol d-break table-holder hold-err)
; Save the old read “able in case we want to put it back* This is
; primarily for debuggi ng purposes*
(setq tabl e-hol der (raakereadtable ()))
; Fix the reader to accept all chars.
(set-wi zard-reader)
; set up error handler so that WZARD recovers properly (sort of)

(setq hol d-break (getd 'break))
(putd 'break (getd 'wi zard-break))
(setq hold-err (getd 'err))

(putd 'err (getd 'wizard-error))

; The MAIN LOOP !!!
i nput
(patom " i

$)

: ; Translate the input line into a del conmand
; and run it thru the wizard processore
(ZARDZ (list—>dcl (lineread '$)))

(go input)
))

..g
; » ZADY «
This is the wizard main driver* Run the conmand and try to insert it

into the semantic net if no execution errors are detected* The error
detection logic is currently non-existents

o~ = = o

defun ZARDCZ (cnd)
(prog () _
: Issue the coommand thru Ira's DCL |ink*

(del crad)

; If an error occurs then sinply return*

(cond ((del-error) (return ()))) S '

i OKAY —insert the conmand in the net (this is where WZARD processing

; takes effect!) and then append the list of applicable parsings into the
; command object history list*

(setq cnd-history (append cnd-history (list (sn-insert 'del-comand cmd))))
-]

)

)
;
; » list—dcl «
»
Translates a list of atoms to the string representation of the entire list
as a sentence with intervening spaces*

(defun I'ist—dcl (1)
(cond ((equal (length 1) 1) (car 1))
(t (concat (car 1)
(concat " " (list—dcl (cdr 1)))))

9))

; ' » del-error «

9

| This function SHOULD return "t™ if a command error was detected so that

$ W ZARD knows not to parse commands that were in error, but the |inkage is
; not yet in so it is currently a stub. :

defun dcl-error () nil)
>> get-wizard-reader <<

This function fixes the characters that should be inputtable to DCL but
that LISP wants to use specially._

we W Ve Ve we W o we

(defun set-wizard-reader ()
(setsyntax “|7| 2)
(setsyntax “|[]| 2)

(setsyntax “|]1]| 2)
(setsyntax “|.| 2)
(setsyatax “|,| 2)
(setsyntax “|;| 2)
(setsyntax ‘| (]| 2)
(setsyntax “|"]| 2)
(setsyntax “|)| 2)
(setsyntax “|/| 2)
)

>> wizard-error <<

H
H
; .
s Fix the error controller so that we return with life reset when an error
3 occurs. '
H

(

defun wizard-error fexpr (a)
(apply ‘msg a)
(putd ‘“err hold-err)
(putd ‘break hold=break)
(setq readtable ta’vle-holder)
(apply ‘err a)

>> wizard-break <<

A~ Vs we we

defun wizard-break fexpr (a)
(apply ‘wizard-error a)
)

T YU AN T AN S | S A BT TN, 0 O KT Py) T TATIL MA s MENRR ST S B S TR0 P i, Y Yo e S o e T e SRD v 8

Parser Control.

These functions are the parser controller and parse utility
functions for use in top level selector functions. Lexical functions
have the exploded string in a variable called STRING and the result is
constructed in the variable RESULT. The utilities available are:

GRAB - Returns the next character in the string and removes
that character irom the input.
PEEK - Also returns the next input character but does not remove
it.
DROP <c> =~ Put a character into the output string (RESULT).
SEEK <c-1list> = Perform GRABs until the first character in the
string is one of those in the list of characters (c-list).
REST - Copies all the rest of the characters into RESULT.
This also stops processing of this parsing function.
DONE - Stop processing this parsing function and return RESULT.
SKIP-SPACES - Drops chars until the first character in STRING is
not a space. PR

The RESULT of parsing is passed back via THROWs and CATCHs so the
author of a 1lexical function uneedn’t return a result from the
function. The use of REST or DONE will terminate the parsing function
properly. If an attempt is made (via PEEK, GRAB, etc) to get a
character beyond the end of the string a DONE is forced.

>>> parse <<<
The main driver. Explodes the string and the applies the parsing
routine. Results are collected and returned with the names of the
routines. This function actually takes a list of the names of the
parsing routines and the string.

(parse ‘(name cqual args) 'string")

In actual use, the names will more likely be lambda exprs.

e Ve Vo Ve Ve We Ve Ve Ve WE we we

(defun parse (proc-list string)
(prog (result)
(setq string (explodec string))
(return (parsesubr proc-list))
)
)

.
s

>>> parsesubr <<<

The recursion thru this routine applies the eating functions.
Parsing stops when we elther run out of string or run out of pattern.

we we we Wo wo

(defun parsesubr (p)
(setq result ()) -
'3 If we’re out of parsing functions then halt.
(cond ((null p) ())
;3 If we’re out of string then fill out the remainder of the roles
s with the empty string.
((null string)
(cons (list (car p) ")
(parsesubr (ecdr p))))
s Actually parse the current string against the next role function.
(t (cons (list (car p)
' o 3 The parser will throw us a result from the application
3 of the named (or lambdaed) lexical routine.
(copy (catch (apply (car p) ()) ‘parser-result)))
(parsesubr (cdr p))
)) -

Parse utility routines.
Use the following primitives to recognize and "suck up" input characters:

1. Peck at the next character in the input stream (peek)

2. Suck up the next character in the input stream (grab)

3. Return with the st :ing as is and the portion of the input that
was matched as the result of the function. (dcne)

4. Take in the rest ¢ the input string. (rest)

The functions use the global variables STRING and RESULT to represent
incoming string and the string to be returned.

>>> peek <<<

Look at the next character of input without removing it from the
list. '

Ve Ve Ve Ve Ve Ve We Ve W WL e WE W Ve Us Vs Be We We W/

(defun peek ()
(cond ((null string) (done))

(t (get_pname (cac string)))
)

we we

>>> grab <<<

5 .
: Return the next char and renove it fromthe |ist.
9
(defun grab ()
(cond ((null string) (done))

(t (get_jpnane (car (list (car string) (setq string (cdr string))))))
) '

>» done <«

' Return RESULT from this parse proc by throwing it to the waiting catch.
; This is done so that we can get out of any prog |oops that the caller
has jammed in the way when the string runs out.

9
(defun done () (throw (get_jmane (inplode result)) parser-result))
9

| >» rest <«

; Copy the remainder of string onto the result list.
9
(defun rest () (setq result (append result string)))
9

The follow ng aaxilliary functions are also provided for convenience of the
pr ocedures:

; (ski p-spaces) ... Skip over and throw out spaces in the input string.
(drop char) ..« Add the named character Co what will be the result
; of this application.
(seek char) ... Do (drop (grab)) until the naned char is seen. That
; char will be left in the first po ition of the input
; string (for the next peek or grab;.

(]
9

; _ >» ski p-spaces <«
9 Luse all spaces in the front of the string.

9
(defun skip-spaces ()

(do ((c (peek) (progn (grab) (peek))))
) ((not (equal ¢ ")) ())

)

9
; >» drop <«
»

; Put a character into the result string.

9

(defun drop (c) (setq result (append result (list c))))
9

>» seek <«

: .
s Look thru the string for any of the characters named and drop all the
3 characters in the way into the result.

3 If the user calls this with an atomic result, it is clever enough to
3 listify the atom.

H

(

defun seek (c)
;3 If the wip gave up an atom then make it a list for member.
(cond ((atom c) (seek (list c)))
(t (do ((x (peek) (progn (drop (grab)) (peek))))
((member x ¢) ())))

Object Access Utilities.

This set of functions 1is like InterLISP record descriptions for
the parts of objects. They are value based selectors and selection
and update functions for property based information. The FORCE-TYPE
object/name coersion utility 1is also here. That 1is used in the
semantic actions to force a name to be the object or vice versa.

Functions to decompose objects
>>> object-name <<<

H

H

H

H

H

3 Each object has a unique identifier that locates it’s top preciscely in
s the network. This function takes an object body to its name.

H

(

defun object-name (obj)
(car obj)

>>> specs <<<

or a specializer of some other (higher) object. If not thea the specs list

)

H

5

H

; The object’s specification section indicates whether this is an instance of
H

s will be simply (is).

H

(

defun specs (obj)
(cadr obj)
>>> spec~type <<<

Passed an object body, this function tells exactly the type of
specification one of: SPECIALISES, IS, or INSTANTIATES.

AN\ Ve e Ve Ve we we

defun spec—type (obj)
(car (specs obj))
>>> super-object <<<

For a'non-generic object, this function tells which object the current
one is an instance of if any. '

PN Ve Ve Ve Ve we we

defun super-object (obj)
(cadr (specs ob3i))

T O LA PR BN en o g

>>> origin <<<

)

H

H

b

;5 The third element of the specifications list (if there is a third element)

5 will contain the name of the object from which this object was constructed.
;s Presumably the construction was performed by (new-copy). This exists mainly
3 for the efficiency of the function (find=-copy) so that only the objects that
s have an appropriate origin tag need be searched.

H
(

defun origin (obj)
(caddr (specs obj))

>>> parse-body <<<

parser and specialization logic to match string elements to this object. 1In
the case of a generic (IS) these functions must be lexical analyzers. See

)
H
H
H
3 Every object has a description of the expressions that can be used by the
H
H
3 the net-manager and parser for a more detailed discussion.

H

(

defun parse=-body (obj)
(caddr obj)

>>> semantics <<

an instance of this object is. Every object has semantics although they

)
H
H
H
;3 Given an object, this function indicates what the side effect of making
3
3 may be nil in many cases.

H

(

defun semantics (obj)
(cadddr obj)

>>> mask <<<

object by associating an externally available name with a path by which

)

H

5

H

3 The mask is used to locate lower parts of an

H

s the lookup processors can get to parts of the object.
; :

(

defun mask (obj)
(caddddr obj)

>>> specializers <<<

Now we are into the things that hang near objects but are not part of
them per-se. Most of these associated things are in the PLIST of the

e we we we wo

object and thus these functions require the NAME of the object rather than
the body.

specializers are the sub-concepts that hang from a generic. They are also
generics. The contents of this property are arranged at net main loading
time by the net loading functions or by action of (new-copy).

P\ Ve Ve We Ve Ve we W

defun specializers (obj)
(get obj “specializers)

>>> instances <<<

Instances are much like specializers execept that the parser does not see
instances in the paring process and instances are created at run time rather
than at load time. The parser makes an instance of a generic when the parse
succeeds.

PN\ Ve we Ve We Ve we Ve e

defun instances (obj)
(get obj ‘instances)
Functions to update objects
>>> add=-specializer <<«

The name of the specializer is added to the front of the name of its father.
specializers are specializers that will be searched by the parser.

AN\ Ve e Ve wr we wWe Ve N\

defun add-specializer (object-name cpecializer-name)
(property~update object-name specializer-name °

¢ recializers)

>>> add-instance <<<

by the MSS parser. This adds the name of the instance genned by the parser

)
H
H
H
3 An instance is exactly like a specializer expect that they.are not scanned
H
3 to the father node.

H

(

defun add~instance (object-name instance-id)
(property-update object-name instance~id “instancas)

>> property-update <<

)
H
H
t
3 A utility that jams a2 new name on the front of the property specified in the
; object specified. Used by add-specializer and add-instance.

H

(

defun property-update (object-name x property)

)
(

PN Ve Ve NE Ve Ve We We Ve Ve Ve Vo

T R T 3 N 0 WL 1 SN, e ot

(putprop object-nanme
(cous x (get object-name property))
property

>>> set=-obj <<<

defun set-obj (name specs parse semantics mask)

(set name
(1list
' name
specs
parse
semantics
mask

>>> force-type <<<

Used to coerce a name to its object or vice versa. The first arg is the
name of the var to be forced (via set) into the type specified by the
second arg. That is, either '"name" or "object". This is used primarily
in the semantics in order to protect authors from making stupilid srrors.
I have avoided using it within the WIZARD code because it would be too
siow and, more importantly, if there is a mismatch within WIZARD then

something might be screwed up and 1°d prefer it bomb out.

defun force=-type fexpr (a)

s 1f the given is an atom ...
(cond ((atom (eval (car a)))
$ e+. and caller wants name then leave it alone.
(cond ((equal (cadr a) ‘name) ())
s Otherwise its wrong and has to be coerced!
(t (set (car a) (eval (eval (car a)))))
))
;s For lists «.. (1.e., objects)
3 eee if caller wants a name the get the name from the list.
(t (cond ((equal (cadr a) ‘name)
(set (car a) (object=-name (eval (car a)))))
; else ok =- leave her alone.
(t)
))

Network Management.

These are the DCL network intializer functions and the parse
grinder that puts incoming strings into the network as instances. The
first few functions (net-construct, etc) are simply used at WIZARD
startup to put the original objects into the net. Each object is
hooked into the net properly and the properties that point an object
to it children (instances or specializers) are updated properly. It
is important that the father go into the network before its children
so that the updating occur correctly.

The set of functions beginning with GRIND are the real heart of
WIZARD. They process a string against the DCL-command object in the
network and cause the parsing and instantiation to occur. The grinder
also causes the evaluation of the semantics to occur thus runaning the
goal recognition system.

>>> net-construct <<<

The function that inserts objects into the net. The objects are

simply setged into their raspective names. Each object gets arranged

with a property ‘specializers, which will contain a list cf all objects that
directly specialize this object, and a property ‘iastances which will
coutain all objects parsed by the object in hand.

The generics must be input before their specializations.

PN\ Ve We We W Ve Ve We Ve e e

defun net-construct fexpr (nlist) :
s Map over the list of passed objects and insert each into the net.
(mapcar ‘net-insert nlist)

>> net-insert <<

The work routine for net-construct. Takes one object at a time and jams
them into the network.

defun net-insert (n)
s Put it into the net.
(set (object-name n) n)
Set up the specializers and instances lists to NIL initally.
Since get returns nil if there was nothing there this is a bit
redundant but cleaner. It also permits reloading the net in order
to clean it out.)
(putprop (object-name n) () ‘specializers)
(putprop (object-name n) () “instances)

we We Ve wo

3 If this object specializes something else, add its name to-
; it father’s specializers list.
(cond ((equal “specializes (spec-type n))

(add-specializer (super-object n) (object-name n)))

>>> sn-insert <<<

)
H
H
H
3 This function takes a pointer to the top node in the net of the type

;s of object to be analyzed and a string. A Bottom-up search is performed
3 on the entire structure below the named object and the string”’s parse is
3 inserted as an instance of ALL successful parses!

>
(

defun sn-insert (startobj string)
s Insertsub expects to be getting a list of specializers. This {list)
s makes it think that the start-obj is the only child of some virtual
s higher concept. Like religion.
(insertsub (list startobj))

>> insertsub <<

The depth first search is driven by this function. Standard hack: first
do the kiddies then do the parent then to the brothers.

defun insertsub (obj)
3 If father had no specializers then I must be a figment of the DFS’s
3 imagination. Pop back so that it can do my father now.
(cond ((null obj) ())
; Inskeep retains the search results.
; Do the kids of the first nodes..
(t (inskeep (insertsub (specializers (car obj)’)
; Exapand-obj instantiates the results of the griander.
s The grinder is the parsing controller.
(inskeep (expand-obj (grind (car obj) (eval (car obj)) string))
; Lastly do the following brothers.
(insertsub (cdr obj))

>> inskeep <<
This is used primarily to conconcatentate only successful parses into the

history list. It flattens the funny looking things that can come out
of the DFS algorithm.

LB S RN N R L 2 AT ST T T s e B M Suashe et an e as

P AT

’ - .
(defun inskeep (item rest)
(cond ((null item) rest)
((null rest) (list item))
((atom item) (cons item rest))
(t (append item rest))
)

>>> grind <<<

This function does the legendary bottom-up top down search that is the
parsing algorithm. It is bottom up in the sense that it begins from

some object that is subspecifies a higher object and goes after the
objects above for the parser driving functions. It is top down in

that it goes depth-~first into the object’s own roles. Hand this function
a string and and the name of some object in the net. Every object is
either a generic (begins with "is") or a specializer (begins with
"specializes"). If it is a specializer then we parse the string at

hand according to the superconcept and then reparse it according to

the "with" restirctions of the roles on this object.

The main griand function sets a catch in case there is a mismatch deep
in the net. If there is then the pattern matcher will fail and throw
back to this level.

WO Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve Ve We W W

(defun grind (name object string)
(catch (grind-sub name object string) ‘grinder-flag))

>> grind-sub <<

we we we

(defun grind-sub (name ot ject string)
(cond ((null string) ()

s If this 1is a to, level then simply stop here and parse the

s roles at this level. Return the result for specialization by the

s caller if it so desires.

((equal ‘is (spec-type object))
s Parse-driver only wants to see the roles.

(cons name (parse-driver (parse-body object) string)))
If this object specializes another object then go and parse its
father then apply the additonal role restrictions at this level to
the father’s parsed roles.
((equal ‘specializes (spec-type object))
(cons name

s specialization is done by matching the roles of the object

3 at hand to the result of the grind of this object’s father.

(specialize

(cdr (grind-sub (super-object object)
(eval (super-object object))

we we we

T T S B TR Y AN TR IV ST L RN I o T L M BN M A - . ot s o

string
))

3 Feed the roles to the specializer as well.
(parse-body object)

))

>> parse-driver <<

This function is called to run an object and a string thru the parser.
it constructs a parse list and then unconstructs the parsed pileces into
just the names of the roles and the items that they match.

PN\ Ve We Ve Ve Ve Ve Ve

defun parse~driver (p s)
s Rewind the parse result. ; Unwind the roles for parsing.
s I.e., reinsert the names. ; ((name lex)«..) ==> (lex lexXe...)
(disembed-parse~list (parse (mapcar ‘cadr p) s) p)

>> disembed=-parse-list <<

Reconstructs the result of parsing with the names replaced for the lex
functions.

e we Vo Ve we wo W

(defun disembed~parse-list (1 p)
(cond ((null p))
(t (cons (list (caar p) (cadar 1))
(disembed-parse~list (cdr 1) (cdr p))
))

>>> specialize <<<

Take the result of a ground string and process each parsed element

by applying the context of the with clause included in this specializatiomn.
With parts are either an atom which must be equal the ground data, ()

which means that the ground data must be empty, or a list which indicates
that the grinder should be called recursively to grind this string with

the named object. These lists are in the form (a <objectname>). The

"a" is just for show.

Ve Ve Ve W Ve Ve We W Ve Ve v

(defun specialize (r s)

(cond ((null r) ())
;3 For each element in the result of the parse, if there is a special
; role to be applied, apply that role restiction.
((assoc (caar r) s)

; specsub does the actual role/value restriction
(cons (list (caar r) (specsub (cadr (assoc (caar r) s))
(cadar r)
)
)

(specialize (cdr r) s) -
S>>
j If no specializer is naned for this role then sinply accept it and
go on to the next one* '
(t (cons (car r)
) (specialize (cdr r) s)))

» specsub «

- - e ,.uo.v

This does the real work of specialization. The second nenber of the role
: restiction is one of;

; () - indicating that this role nust be unfilled,
' atomc - indicating that an exact match is required,
alist of the form'f(a . . .) " indicating that "eee"

is the nane of an object which this will be
subprocessed by, or, '
another list which is assumed to be a nonadic predicate
which will test the string.

Pt N

defun specsub (sp st)
; If the spec is () then the string roust be empty,
(cond ((null sp) (cond ((equal "“ st) '
(t (grind-fail))))
; If the string is nil then sonmething's wong. Since the spec was
; not also ""e« This is a succeding natch beleive it or not!
((equal "» st) ())
; If the spec is atomc then they have to be equal
((atomsp) (cond ((equal sp st) sp)
(t (grind-fail))))
; Aha! |s there a sub object to do further grinding? If so then go.
((equal "a (car sp))
(grind-sub (cadr sp) (eval (cadr sp)) st))
| don;t understand it so sinply try to apply the predicate and hope
; that they luser knows what he's doing*
(t
(cond ((apply sp (list st)) st)
(t (grind-fail)))) -

» grind-fail «

W W WE e

T T e Sl T T e T e B 1 B ST A T TS S T e e g T i
———

; Called when a grind msmatch occurs. This causes the grinder to stop cold
; and go on to the next possible parsing object.

(defun grind-fail () (throw () grinder-flag))
>» expand-obj <«

After the grinder has decided exactly where to put

the object, this function takes the compacted form of the instance
(as returned fromthe grinder) and instantiates each object on the correct
superconcepts. The result is a pointer to the top node.

The object comes into this function in the form

(nanme (rolenane filler) (rolenane filler)...)

AN ME W WY M P B We VE W e e

defun expand-obj (r)
; If the grinder failed then forget it.
(cond ((null r) ())
; Do the roles FIRST. Then..

; ... do the top.
(t (nmake-instance (car r) (expand-roles (cdr r))))
)

)
H .
H » expand-roles «
: :
3 The roles are each analyzed and either instantiated in place (if they are
$ not lists) or are recursively attached to sub instances
>

(defun expand-rol es (roles)
(cond ((null roles) ())
; If this filler is a list then expand its sub concept,
((listp (cadar roles))
; Reattach the nane to the sub concept instance,
(cons (list (caar roles) (list (expand-obj (cadar roles))))
; And then do the rest of the roles,
(expand-roles (cdr roles))))
; Atomic or string values needn't have instances nade of them
(t (cons (car roles) (expand-roles (cdr roles))))

>» make-instance <<<

Make-instance and set-instace forman instance nanme from a gensym
val ue and the nane of this object. It is then attached to the generic.

defun make-instance (super roles)

R BT At yote i gnrh © B TRy ey A i e T e T T D e et

(set-instance

super
roles
(gen-name super)
)
)
; .
H >> set-instance <<
?
(defun set-instance (super roles instance)
(set-obj instance 3 object name
(1ist ‘instantiates super) ; specifier
roles 3 parse expr
Q) ; semantics
O 3 mask

)
(add-instance super instance)
When the object is instantiated... execute the semantic
component. The semantics have the var "parsing-object"
s available in order
s to name the particular superior specializer under consideration.
3 Also, "this-instance" is the name of this particular instance.
(eval-semantics super instance (semantics (eval super)))
3 Return the name of the new instance frow this function
instance

we we

)
H
H >> eval-semantics <<
H
(

defun eval-semantics (pairsing-object this-instance semantics)
(eval semantics)

>> gen-name <<

)
H
H
;
s Takes the prefix that you would like to see on the new name and adds a
; unique 5 digit numerical tag to it.
H
(defun gen-name (prefix)
(implode (append (explode prefix)
(cons ‘- (cdr (explode (gensym))))
)

Semantic Action Uilities

These are the programmers wutilities for goal recognition
processing. They are discussed in detail in chapter 5. Each function
demands argunents that are network objects or nanes in a certain fornw
The FORCE-TYPE function (from the record package) is used to perform
coersiou when it is needed. :

; >» | ookup <«

; Gven an object and a path list, this function will go down the object

; and extract the value that matches the path specification. For exanple,

;. in the object that matched "del a, b the list-of-filenames "a b'" woul d
; be found at the path specified as ' (command-argunent).

(defun | ookup (object path)
; Make sure that the object is not a name. This is typically a result
; of having called it froman apply-to-list but mght be an error,
(force-type object object)
; If we've run out of path then this is it!
(cond ((null path) object)
; If there is nore path to travel, select the correct branch
; fromthis point and then continue processing at that role.
(t (!l ookup-step (cadr (assoc (car path) (parse-body object)))
(cdr path)
))

; » | ookup-step «

; If we are at the end of the line for this role then sinply return the
; atomthat it at the end of the search path. This mght be a failure
but currently is not error flagged. '

—~ - -

defun | ookup-step (role path)
; Arole out of steamw |l have an atom c binder,
(cond ((atomrole) role)
; Oherwise get the next |evel object and recur.
(t (lookup (eval (car role)) path))

>» apply-to-list <«

W WA R et

; This is a version of apply that applys the function to all the el enents
; of alist-of-things. It continues down the last role of the object unti
; the value of the function is t* |If it hits the end then it returns nil.
; The fn should take one arg that will be applied to the atomthat is the
; nane of the "thing" role filler*

f
(defun apply-to-list (object fn)
(cond ((null object) ())
; Apply fn and stop if it returns anything but ().
(t (cond ((apply fn (cadar (parse-body object))))
; Otherwise select the next "thing" fromthe list and recur.
“(t (apply-to-list (eval (caadadr (parse-body objeat))) fn))
))

>» new copy <«

G ven any object and a binding Ilist

this function will nmake a new object and insert it into the network.

The binding list is in the form ((name replacement) (nane replacenent)...)
The nanmes are matched to the mask nanes in the object passed and then

the replacement objects are put in the new object in the places indicated
by the mask paths associated with each nane.

WA W M W WM W W W W

(defun new copy (obj binders)
(nake-copy obj (super-object obj) (path-expand binders obj))

» pat h- expand «

The binding list (as ninme-replacenent pairs) has to be translated

; into path-replacenent »airs. This function perforns that conversion by
; mapping through the list of bindings and doing a get-path on each nane.

; The path search is anchored at the current object and proceeds up to the
; top level super concept.

(defun pat h-expand (bindlist obj)
(mapcar ' (lanbda (binding)
; get-path does nost of the work here.
(cons (cadr (get-path obj (car binding)))
(cdr bi ndi ng)
)

)
bi ndl i st

VAR

; >» get-path «<

?
3 This function takes an object and a path identifier that is an element

; of a mask in one of the object’s superiors. If the name is not found in

; that object or in one of it’s superiors up to the IS concept then nil is

s returned. 7The path 1s returned otherwise. The search is performed from the
s bottom up so there may be multiple occurrences of a name that are chenged

s toward the base. .

H

(

defun get-path (obj pathid)
s If the path name is in the current element then simply return
s the rolename~rolefiller pair.
(cond ((assoc pathid (mask obj)))
s See if the top is this one. If so then an illegal path has been
3 specified and an error SHOULD be returned (but nil is instead).
((equal “is (spec~-type obj)) ())
;s Try to get the path from this guy’s father.
(t (get-path (eval (super-object obj)) pathid))

we Vo

>> make=-copy <<

’
3 This function takes an object and an expanded bindingpath-replacement list
s It copies the old object into all new instances by instantiating this ncde
35 and then instantiating each of the parse~body-role nodes that represent the
3 subcoucepts that make up this concept.

H

{

defun make~copy (node super bindlist)

(set-special
{object-name node)
super
3 Expand the roles of this object into sjyecializers as well.
(copy~roles (parse=-body node) bindlist)
s A new name is genned for this parsing object. Thus any
s instances of this object will have double numbers when they
s have names genned.
(gen-name super)
; The semantics of the old node are copied.
(semantics node)

>> set-special <<

)
;
H
H]
3 Called in order to add a parsing object to the network. The new object
s is assumed to specialize its super. This is NOT an instance.

H

(

defun set-special (origin super roles name semantics)
(set-obj name

we e We Ve Ve we W

(list ’specializes super origin)
roles
semantics
0
)
Add the name of the new parsing object as a specialier of the
parent so that the parsing search £inds 1it.
(add-specializer super name)
3 This function returns the name as a result.
name

ve we

>> copy-roles <<

Go thru each member of the parse-body of this object and expand each role
by either returning the object that is its replacement (if there is one
specified) or a copy of the sub concept to which this role expands.

(defun copy~roles (roles bindlist)

(cond ((null roles) ())

s If a binding has been specified for this role then insert that value
s in place of whatever the author originally had in this place.
((find~binding (caar roles) bindlist)
(cons (list (caar roles)
3 find-binding is repeated (sorry) and could probably be
s replaced by some memoing or a lambda bind later.
(find-binding (caar roles) bindlist))
s Do the rest of the roles as well
(copy-roles (cdr roles) bindlist)
)
3 If the specification of this role is a sub-ol ject (a =--=) then make
3 a new copy of that object as well and reinser: that name here.
((and (listp (cadar roles)) (equal “a (caadar 1>les)))
(cons (list (caar roles)
(list ‘a
s Recursively call make~copy on the subobject
(make-copy (eval (cadadar roles))
s Make~copy needs the super of the sub also.
(super-object (eval (cadadar roles)))
;s Pass only those bindings that apply to this role.
(applicable~binders (caar roles) bindlist)
)
) ;3 close (list “a...)
)
s Again, be sure to do the rest of the roles.
(copy-roles (cdr roles) bindlist)
))
There are no applicable bindings and there is no subobject. This
role is probably filled by either an atom or some lambda expr.

s we

3 Just copy it as is.
(t (cons (car roles) (copy-roles (cdr roles) bindlist)))

>> applicable-binders <<

This takes a role name and the binding list and returns only those binders
that might apply to this name. The cdr of the paths of those binders
is returned so that it can be reused immediately.

Ve We we We WE Ve Ve o/

(defun applicable~binders (name bindlist)
{cond ((null bindlist) ())

s The binders in role "foo" that start "(foo ---=)" are selected and...

((equal (caaar bindlist) name)
3 ese "foo" is pulled out of the path list.

(cons (cons (cdaar bindlist) (cdar bindlist))
(applicable~binders name (cdr bindlist))

))
s Skip any that don’t begin "(foo =-=)":
(t (applicable~binders name (cdr bindlist)))

>> dowvm=level <<

Used tc move to the next position in the paths listed in the bindlist.
Each path is CDRed.

PO Be we We we Ve W

defun down-level (bindings)
(mapcar ‘(lambda (b) (cons (cdar b) (cdr b))) b.ndings)

>> find-binding <<

Searchs throught the bindlist and returns either () or the object to act
to replace the current sub-part.

e We Ve Ve Ve Ve

(defun find-binding (name bindlist)
(cond ((null bindlist) ())
; The qualifications for being a valid binder are that it is of the
; form exactly "(foo)" for role "foo'". Longer lists are for deeper

s paths.
((and (equal 1 (length (caar bindlist)))
(equal name (caaar bindlist)))

(cadar bindlist))
(t (find-binding name (cdr bindlist)))

LA e ok e

PN\ Ve Ve e Ve Ve W Ve we

N\ Ve we we Ve we we

ve wo wo W

weo ‘a0 wo

>>> detach <<«

Removes an object from the network. This 1is typically used in the semantic
actions in order to stop the processing of traps. Note that only specializers
can be removed from the net and this function assumse that it has been handed
a specializer [type:(specializes foo0)]. '

defun detach (object)

s Make sure that the author passed us an object rather than a nane.
(force~type object object)

s Tell daddy that we’re leaving home.

(remove-specializer (super-object object) (object-name object))

s Remove the name itself thus unhooking all the lower stuff.

(remob (object-name object))

>> remove-specializer <<

This is used to remove the name of a specializer that is going to be remmed
from the specializer property of its father. It is pretty straightforward.

defun rewmove-specializer (super- obname)

(putprop super
(rem-name-from—-list (get super “specializers) obnane)
‘specializers

>> rem—-name-from-list <<

Standard pull an atom r1rom a list of atowms by name.
This should be a stand :rd lisp function.

(defun rem—-name-from-list (1 n)

we wo we we we Ve Ve we

(cond ((null 1) ())

((equal n (car 1))
(cdr 1))
(t (cons (car 1) (rem—name~from-list (ecdr 1) n)))

>>> find-copy <<<

This is like new~copy except that instead of instantiating a specializer

in the place specified it tries to mat¢h the new object with existing
specializers hanging from the superior that the new copy would be hung from.
The ‘origin’ field of the object specification is used to decide which
specializers of the superior are to be tested. Only ones that were derived

from this particular spec are tried for reasons of efficiency.

If ir matches then the sematics of the object that is matched are evaled.
The "parsing-object" variable is set temporarily to the name of the
specializer being activated so that 1its serantics work properly.

It is important to note that this function 1s comparing the content of
an instance with the content of a specializer so it has to be real careful
about the form of the roles of the specifier vs the binders.

PNV Ve Ve Ve We Ve We Ve Vo

defun find-copy (obj binders)

s Make sure that the author gave us the right type.

(force-type obj object)
3 Use the names in the mask field to replace the named parts
s with their paths for processing.

(find-copy-sub (path-expand binders obj)
s Pass the list of objects to be searched. I.e., the kids of
3+ the superior to this object.
(specializers (super-object obj))
(object-name obj)

>> find-copy=-sub <<

Map down the list of the "brethren" of the matching node and compare the
ones that derived from this specializer.

“we Ve Ve Ve e we W/

(defun find~copy=-sub (bindlist searchlist restriction)
"(cond ((null searchlist) ()) ‘
(t (match-object (car searchlist)
s Make the name into au object.
(eval (car searchlist))
Restrict the matcher so that ..aly those objects
whose origin was the node with which we are doing
the comparison are compared.
restriction
bindlist

we weo we

)

;s As always... cdr down the list.
(find-copy-sub bindlist (cdr searchlist) restriction)
)

>> match-~object <<

If the object under consideration matches the object in hand then do
‘the semantics of the EXISTING cbject. Note that only the binders are
really relevant to this comparison since the object in hand derived from

Ve we We Ve Ve we

35 the object under consideration by application of the same set of binders.
5
(defun match-object (name obj restriction bindlist)

s This is restricted to only those whose origin is the object in hand.

(cond ((equal (origin obj) restrictiomn)

(cond ((compare-obj (parse-body obj) bindlist)
Bind the name of the.super object to "parsing-object”
and nil to
"this-instance" then eval the semantics of the super.
(eval-semantics name () (semantics obj)))

(t)

we W o

)
)
(t)

>> compare=-obj <<

this guy does the control work for matching two objects. It takes the
parse bodies of the two objects and the binding replacement list and does
the comparison.

we we we Ve Yo Vo we W

(defun ccmpare-obj (roles bindlist)
(cond ((null roles) t)
3 If you can find 2 binder for this role then match the role’s value
s with the bind replacement value.
((find=binding (caar roles) bindlist)
;s Match the binder value with the role it matched.
(and (match-binder
(parse-body (eval (find-binding (caar roles) bindlist)))
(parse-body (eval (cadadar roles)))
)
;s Be sure to consider the goodness of fit of the rest of the
3 roles as well.
(compare-obj (cdr roles) bindlist)
))
If there’s no binder then try to rest of the roles and dive into
this one’s value cell.
s Comparing the rest of the roles. This is done first beacuse
; the job of diving might be considerable in a list of things.
(t (and (compare-obj (cdr roles) bindlist)
s Trying to match role values. If the role has a list cadr
; then dive into it and compare sowe more.
(cond ((listp (cadar roles))
(compare-obj (parse-body (eval (cadadar roles)))
; Take the binders that matter with you.
(applicable~binders (caar roles) bindlist)

.
’
.
H

(t ©)
))

>> match-binder <<

The actual comparison between two objects 1s done here. Remember that
objl is an instance and obj2 is a specializer that theoretically

bound that instance. Thus there is all sorts of cruft in obj2 that won’t
be in objl but that has to be check anyhow. If there is no role in one
that matches the other then it is an unspecified role and matches by
definition.

e Ve Ve Ve Ve We Ve Ve We Ve W

(defun match-binder (objl obj2)
(cond ((null objl) t)
(t (and (match-binder (cdr objl) obj2)
" 3 This is the relevant line. Compare the value of this role
3 with the value of the things that bound it.
(match-role (car objl) (assoc (caar objl) obj2))

))
)
)
H
: >> match-role <<
;-
(defun match-role (rl r2)

s They can be directly equal or...
(cond ((equal rl r2) t)
3 If r2 is nil then this rcle was unspecified
((null r2) t)
3 If not lists then they are just plain wrong here and now.
((not (listp (cadr rl))) (O))
3 seswe have to dive into their subobjects.
(t (match-binder (parse~body (eval (cadr rl)))
(parse-body (eval (cadadr r2)))
))

Appendi x Ji_
Primary DCL Network Objects

(net - construct

Mai n generic decriptions:

H

H

H

H

$ del - command

3 list-of-things
3 filename (and fileform
$ list-of-filenanes

H
(

del -command (i s)

((comand- nane
(lambda ()
(prog (c)

(ski p- spaces)
| oop (setq ¢ (peek))
(or (equal ¢ " ")
(equal ¢ "/")
(nul'l (drop (grab)))

(go | oop)
) .
(done)
))
) ; O ose comand- nanme

(command- qual i fier
(lanbda ()
(prog (c)
(ski p- spaces)
| oop (setq c (peek))
-(cond ((not (equal ¢ "/")) (done)))
il oop (drop (grab))
(ski p- spaces)
(seek " ("' "«"))
(ski p- spaces) :
(cond ((equal "'«™ (peek)) (go iloop)))
(go | oop)
))

) ; O ose coramand-qualifier

(conmmand- ar gunent
(lambda ()
(ski p- spaces)
(rest)

R iR 1 - . e B R T AR Ty SR L e Rt s w = R e e S e e s a gL te TP O MR T R LT T P

(done)
)
) ; close command-argument
) ; close parsing body

() ; semantics
() ; mask

) ; close dcl-command
(list-of-things (is)
((thing
(lambda () (seek ",") (done))
) ; close thing

(rest-of-list
(lambda () (grab) (rest) (done))
) ; close rest-of-list
) ; Close parsing body

() ; Semantics
() ; mask

) ; close list-of-things
H
(list=-of-filenames (specializes list-of-things)
((thing (a filename))
(rest-of-list (a list-of-filenanes))

)
() ; Semantics
() ; mask
)
(fileform (is)

((device (lambda ()
(cond ((not (member ‘|:| string)) (dome)))
(seek ":'™)
(grab)
(done)

)
)
(location (lambda ()

(cond ((not (equal "[" (peek))) (domne)))
(grab)

(seek u]n)

(grab)

(done)

B AT TN RSN S e N AL 2 AT B, L A e A AR e T YT TSRS T 5 7 LIS W £ A4 e Ok S Akt et 2 83 e e

)
(name (lambda ()
(seek ".") (grab) (done))
)

(ext (lambda ()
(seek “("." ";"™)) (grab) (done))
) }
(version (lambda () (rest) (domne)))
) ; Close parsing body

Semantics
mask

0
0

wve Vo

) 3 close fileform

3
3 The relation between fileform and filename is a function of the operation
s of the net searcher. It assumes that all sub-objects have some super and
3 will only take lexical scanning fns from the father. Thus, in order to

s make the parser process down the string into subpieces we have to give

3 it a father node to get lexical fns from. Fileform is that father.

3

(

filename (specializes fileform)

0O
0O
0O

) 3 close fileaame

H
") 3 close net-construct

Sa

Appendix C

Example Complete Parsing Objects

This appendix includes the actual code of the COPY+DELETE and one
possible construction of the ASSIGN+DIR sequence recognition programs.
Their description can be found in chapter 5. Normally, these objects
would be surounded by a NET-CONSTRUCT call in order to place thier
object parts into the network. Note that these are stipped down
versions of the actual objects. They take only the full form of the
command names and some of the communications has been removed in order

to clarify the semantic actions a bit.

I maintain a labeling convention in which each sequence
recognition program has a "sequence number" that is prefixed to all
objects that take part im that recogntion. Thus, the COPY+DELETE
sequence 1is "sl". Some objects are more general than only a
particular sequence but not sufficiently general to include in the
primary network objects. These are not prefixed with a sequence
number (e.g., Pair-of-things).

The COPY/DELETE misbehavier that we speak of so often
The commands captured by this sequence are:

SCOPY <> ees
$DELETE <>

and warn of the RENAME command. Also, the use of a rename command
deactivates the top trapping copy.

P S Ve Ve Ve We Ve W We Ve Ve Ve Ve

sl-copy~command (specializes dcl~-command)

((command-name "copy")
(command~qualifier ())
(command-argument (a copy-pair))

) ; Close parsing body

(progn (apply-to-list (lookup this-instance ‘(command-argument first-thing))

‘(lambda (name)
(putprop
(new-copy sl-single-file~delete-command
*((name ,(lookup (eval name) “(name)))
(ext ,(lookup (eval name) °(ext)))
)

) ; close new copy
(concat (Il ookup nanme ' (nane))
(concat "¢" (lookup name '(ext))))

"filename
) ; Cose putprop
() ; force apply-to-list to continue

) i close |anbda
) ; close apply-to-list

) ; close progn
() ; mask
)
«
(pair-of-things (is)
((first-thing
(lambda ()
(seek " ™)
(done)
)
(second-t hi ng
(lambda () -
(ski p- spaces)
(rest)
(done)
)
)
) ; O ose parsing body
() ; Semantics
() ; mask
)
J
(copy-pair (specializes pair-of-things)
((first-thing (a list-of-filenanes))
(second-thing (a list-of-filenaraes))
)
() ; Semantics
() ; mask
)
(del et e-conmand (speci al i zes del - cormand)
(. (conmmand- nane "delete")) ; Parsing body
O \ Semanti cs
() , mask

’
’
(file-deletion-command (specializes delete-command)
((command-qualifier ()) ; Parsing body
(command-argument (a list-of-filenames))
) ;3 Close Parsing body

(progn (apply-~to-list (lookup this-instance ‘(command-argument))
‘(lambda (name)
(find-copy sl-single~file~delete-command
*((file ,name))
)

9
)
} ;3 close apply-to-list
) ; close progn

’

((filenames (command-argument))) ; mask

)

b4
(sl-single-file-delete-command (teuwplate delete~command)
((command—~name ''delete)
(command-qualifier ())
(command-argument (a2 sl-filename))

)
(progn
(patom "The RENAME command can be used to change the name of ")
(print (get parsing-object “filename))
(patom "
Look into S$HELP? RENAME for more info.")

(detach parsiag=-object)
)

((file (command-argument))

(nane (command-argument name))

(ext (command-argument ext))

)
)
Zsl-filename (templéte fileform)
O
O
O

) ; close filename

H
(sl-rename-command (specializes dcl-command)
((command-name '"rename'')

(command-argument (a copy=-pair))

)
(detach sl-copy-command)

0

This misbehavior is meant to recoénize command streams like:

H
H
’
;
H
H $assign s.tmp sys$output
H $dir
3
H
H
H
(

$deassign sys$output

The distinguished sequence in this case is "dir/output=s.tmp"

s2-assign-command (specializes dcl=-command)
((command-name "assign'")
(command-qualifier ())

(command-argument (a s2-assign-pair))

)
(prog (s2-temp)

(putprop (setq s2-temp (new-copy s2-dir-command ()))

(length cmd~history)
‘where)
(putprop (new-copy s2--genersl-deassign
()) s2-temp ‘dircamnd)
)

0
) ; close s2-assign-command
H
(s2-assign~pair (special .zes pair=~-of~things)
((first-thi.g (a filename))
(secound-tk .ng "sys$output™)
)

0
0
) ; close s2-assign-pair

’

(s2-dir-command (template dcl-command)

((command~-name "dir")
(command--qualifier ())
)
(progn
(putprop

(new-copy s2-deassign-command ())
(get parsing-object “where)
‘where)

0O

Assign sys$output sequence

i AR it v e I T B = e e £ o«

)
;
(s2-deassi gn-command (tenplate del - command)

((conmand- name " deassi gn'?)
(command- ar gunent "'sys$out put'")
) g R

(progn .
(cond ((equal 2 (- (length cmd-history) (get parsing-object 'where)))
(patom "The /out”~fil enanme option can be used to direct the
output of the DIR command to a file.
See HELP DIR/ OOT for nore info.'?%))
(detach par si ng- obj ect) '
) .

0
)

(s2-general -deassign (tenplate del-conmrand)
((command- nane "deassign'')) -
(progn (detach (get parsing-object 'dircmmd))
(detach parsi ng-object)
)
0

3 L O wEm e N n e - e o 3 Tl P ST e W TR T i T T TR R L s Nt AR . P Y L e N

Bibliography

[1) Ball, Eugene, and Phil Hayes; "Representation cf Task-Specific
Knowledge in a Gracefully Interacting User Interface'; CMU
CS dept., in AAAT August 1980.

[2] Brachman, Ron, et al.; "KL-One Reference Manual';
BBN Report no. 3848, July 1978.

[3] Brachman, Ron; "A Structural Paradigm for Representing
Knowledge"; BBN Report no. 3605, May 1978.

[4] Digital Equipment Corp.; "VAX/VMS Command Language User’s
Guide"; DEC Order no. AA-D023B-TE, March 1980.

[5] Foderaro, John K. [edited by Lars Ericson] "The FRANZ LISP
Manual"; by Berkeley and CMU, 198G.

[6] Mark, William; "Rule Based Inference in Large Knowledge
Bases'"; USC/Information Sciences Institute, published
in AAAI August 1980.

[7] Genesereth, Michael R.; "The Role of Plans in Automated

Consultation"; Laboratory for Computer Science, MIT.

{8] Sacerdoti, Earl D.; "4 Structure for Plans and Behavior'";

SRI project report no. 3805; August 1975.

[9] Finin, Timothy; "The Semantic Interpretation of Nominal
Compounds"; University of Illinois Coordinated Science
Laboratory research report no. T-96; 1980

[10] Riesbeck, C. and R. Schank; "Comprehension by Computer:
Expectation Based Analysis of Sentences in Context';
Yale University CS research report no. 84.

[11] Riesbeck, C; "Computational Understanding: Analysis of
Sentences and Context'; 1974 working paper from Instituto
per gli Studi Semantici e Cognitivi; Castagnola,
Switzerland.

{12] Finin, Tim, et al; "Jets: Achieving Completeness Through
Coverage and Closure"; IJCAI-79.

[13] Bagley, Steven and Jeff Shrager; "LISP: An Introduction";
Moore School Computing Facility, University of Pennsylvania,
1980.

