NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

DESIGN REPORT
ON

OPERATIONS ON ARRAYS
AND DATA STRUCTURES

by
A. Pnueli® and N.S. Prywes

Prepared With Support From
The National Science Foundation
Under Grant MCS-79-00298

December 1980
"Joint Computer Science-Economics Project
Department of Computer and Information Science
Moore School
University of Pennsylvania, Philadelphia, Pa. 1910

- ® Prof. A. Pnueli is affiliated with the Weizmann Institut
Rehovot, Israel. The reported research was conducted wh
serving as a consultant to the University of Pennsylvani

ABSTRACT

The ability to specify computations of aggregate data
is very important for mathematically oriented applications
and for manipulating data bases. Tﬁis report describes the
concepts, syntax, semantics and implementation of the capa-
bility to specify computations through use of matrix and
vector algebra equations, and through equations with
functions thaf operate on multi-level list and tree.structu

These new capabilities are discussed in the context of
the MODEL language. The MODEL language 1s a non-procedural
language for specifying computations. The two components o
a specificafion in MODEL are a set of equations using gener
and boolean algebra, for defining the relations between the
variable, and the description of the structure and ofganiza
of these variables including bases and reports. The MODEL
processor coﬁducts extensive checks of the mathematical
completeness, non-ambiguity and consistency of a submitted
specification and constructs a program for the computation
the specified variables. The pr&gram is optimized to achie
efficiency in us¢ .of the memory and coﬁputer time. The fin
product is an efiicient and reliable program.in PL/1. All
aspects have been extended to the néw capabilities for spec
.operations on aggregafe data.

The research rep. rted F~ » is a component of the joint

Computer Science-Economics project. The objective of the p

i1

is to investigate and devise a systemfor the specificat:

simulation and estimation of very |arge conpl ex econonet:

nmodel s which typically represent a cooperative devel opne:

by independent3 geogr aphi cal |y di spersed, groups and ins*
tutions. The new capabilities would greatly ease specif
cations of sets of equations, of conplex statistical pro

cedures and of mani pul ation of data basese

IR V.t

TABLE OF CONTENTS

I NTRCDUCTI ON
1.1 CBJECTI VES AND BACKGROUND

1.2 THE MODEL SYSTEM

1.3 THE EXTENSI ONS TO THE MODEL SYSTEM

1.4 OUTLINE OF THE REPORT

THE MCDEL SPEQ FI CATI ON LANGUAGE - EXCLUDI NG
THE PRCPCSED CHANGES |

2.1 DATA STATEMENTS : .

2.2 ASSERTI ON STATEMENTS ' '

EXTENSI ONS TO THE MODEL LANGQUAGE AND . "
PROCESSCR

3.1 NATRI X AND VECTCR NOTATI ON AND
' OPERATI ONS :

3.1.1 MNATR X OPERATI ONS
3.1.2 NAM NG CONVENTI ONS FCR ARRAYS

3.2 STRUCTURED VAR ABLES NOTATI ON AND
OPERATI ONS

3.2.1 SIMPLE EQJATI ONS FCR STRUCTURED
VAR ABLES |

3.2.2 THE SELECT FUNCTI CN

3.2.3 THE MERGE FUNCTI ON

3.2.4 THE SCRT FUNCTI ON

3.2.5 THE OCOLLECT FUNCTI ON

3.2.6 THE FUSE FUNCTION
3.3 VAR ANT STRUCTURE VAR ABLES
3.4 | NDIRECT SUBSCRI PTI NG

PAGE
1-1
1-1

1-10

1-14

2-1
2-5

2-13

3-1

31
- 3-2

3-6

3-9

3-9

3-12
3-14
3-15
3-16
3-17

+3-18

3-21

LA LY

tiian o MK el cioRbad.

4. SOURCE TO SOURCE TRANSFORMATI ONS

THE TRANSFORVATI ON OF MATRI X AND VECTCR
ALGEBRA ASSERTI ONS

TRANSFORVATI ON G- DATA STRUCTURE
FUNCTI ONS

4.2.1 TRANSLATION OF THE SELECT
FUNCTI ON

4.2.2 TRANSLATI ON OF THE MERGE
FUNCTI ON

4.2.3 TRANSLATION O THE SORT
FUNCTI ON

4.2.4 TRANSLATION OF THE OOLLECT
FUNCTI ON .

4.2.5 TRANSLATION CF THE FUSE
FU\CTI ON

TRANSLATI G\I G- DATA STRUCTURE EQUATI ONS

~-LYS'S AND | I\/PLEI\/ENTATI ON G- | NDI ReCT

-SCRI PTI NG

5.1 EFFECTS CF IND REC_T SUBSCRI PTI NG .
5.2 SCHEDULI NG A MAXI MALLY STRONAY

CONNECTED COMPONENT (MBCC)

5.3 RANGE PRCPAGATI ON THROUGH | NDI RECT

4.1
4.2
43
.
S
AF :NO

SUBSCR PTI NG
X 1. SYNTAX AND SYNTAX ANALYSI S CHECKS

1.1 SYNTAX MDD FI CATI ONS FCR MATRI X

OPERATI ONS

1.2 EXTENSI ONS FOR VAR ANT STRUCTURES

1.2.1 SYNTAX AND SYNTAX ANALYSI S

1.2.2 COVPUTATI ON CE ATTR BUTES ECR
VARI ANT STRUCTURES

1.2.3 S EBLI NG EDGES FOR VAR AI\IT
STRUCTURES

1.2.4 THE DI SCR EDGE, TYPE 22

1.3 SYNTAX ANALYSI S FOR LI ST FUNCTI ONS

4-1

4- 13
4-14

4- 16

4-17

4-18

4-19
4-21

5-9

5-12

5-15
1-1

1-1
1-3
1-3

1-7
1-7
1-9

. TABLE OF CONTENTS/Cont's. | L PAGE

APPENDIX II. IMPLEMENTATION DETAILS - EDGE
o TYPES AND REPRESENTATIONS Il-1

OPERATI ONS ON ARRAYS AND DATA STRUCTURES | N THE MODEL SYsTI

1. 1 NTRCDUCTION . .

1.1 (bjectives and Background

‘ The MODEL | anguage is a very high | evel nonprocedural
specification Ianguagé for use in conputer progranmng. TI
MODEL conpi l er accepts a specification of a conputational

t ask, ﬁritten ih the MDEL | anguage, and transl ates it intc
a conputer programin a conventional programm ng Ianguage:
PL/1* The purpose of this report is to déscribe t he desi gi
of extentions to the MOXDEL Ianguaée and processor which wi:
enhance the expressive power of the systen1 The new oper a-
tions will offer the use of vector and matrix algébra as W
as other operations that wll be épplied to data structure:
incIUding mergi ng and sel ection of data. These new oper at
are needed to obtain easeé and econony in expressing conple;
conput ati onal tasks* | | ’

- The research reported here constitutes one of the tas"
in a joint Conputer Science-Economcs project mhich'invest,
gates new approaches to performng |arge and conpl ex conpu-
tational tasks, in particular conputations in econonetri
studi es. The awareness of the inadequacy of present netho
and systens is_bésed on the experience with the LINK | nter
national Trade Mbdel at.- the Econom cs Departnent of the
Uni versity of Pennsylvania. The LINK project is a coopera
tive effort by 21 institutions which devel op ééph'respecf:

regi onal or country econonmetric nodels. These nodels are

’

integrated at the University of Pennsylvania into a worl
wide econometric model. The LINK model is very large, co:
'sisting at the present of extensive data files on the eco:
‘omies of the respective regions and countries and approxi.
ately 6,000 equations. To fully realize the results of
this cooperative activity it is necessary fo expand the L
model progressively to a level of 20,000 equations. The
of LINK and the independence in developing respective sub
models are the main reasons why existing econometric mode
ling systems have not been used in LINK. The computation
tasks involved have required of the economists muéh skill
in mathematics and programming. Large amounts of effort
~and costs have been involved. A most severe problem has
been the difficulties in responding quickly to recent rap.
economic changes. ‘This has been a serious deterrent‘to e:
ekperimentatioﬁ and investigations. These factors indica
need to find more powerful techniques.

The objectives of the joint Computer Science-Economi

project at the University of Pennsylvania are as follows:

1) Economy and ease in specifying represéntation of
data and equations.

2) Deeper analysis of the representation of data
and equations to discover as early as possible
any mathematical ambiguities, incomplefehésses'
or inconsistencies, and the application of auto-

matic correction to such problems. This is par-

ticularly important in drder to reduce the labor
in debugging and obtain reliable computations.

3) Efficiency in executidn, especially in estimating
the coefficients and evaluating solutions of very
large equational systéms.

4) Modularity and ‘integrability of large scale
computation;and alldwing distributed computation,
whereby the respective country or region models
could be computed in the local computers of the
cooperating instituticns, and the computers would
communicate in a network to exchange the informat

‘ needéa to perforp integrated world-wide computati
" These objectives‘of ease of expression, reliability,
efficiency, modularity aﬁd distfibuted processing constitut
key research areas in Computer Scienge. Hence the cooperat
between Computer Science and Economics. Respective activii
the project have been directed to thesé four objeétives.
This report is concerned with the first objective of provid

- economy and ease in specifying data structures and equation

Several systems have been developed to date for aiding
economists in econometric modelling. The generél aéproéch
in these systeﬁs has been: 1) to reﬁuire use of a standarc
data structures for the data files and 2) to perform the con
putation by interpreting equations provided by the user.

Our approach has been to ihvestigate the compilation of a

program in PL/1 or other high level languages, based on

the user's arbitrary data structures and equations. This
approach leads to a greatér freedom and economy in speci-
fying computations. It allows much deeper analysis of
the specification and a much greater efficiency in execution
of the computation; To achieve the above objectives we
envisage a new type of a modelling system, based on the com-
pilation approach. The research is based on the MODEL
language and processor that have been developed at the
University of Pennsylvania. ~In composing a specification
in MODEL, the user describes the data structures of the
variables and provides equations which define the desired
output variables. In the present MODEL language, the var-
iables in equations must be élements of arrays or fields
(i.e., leaf nodes) in more‘general data structures.

The objective of the research reported here is to
augment the system with operations on aggregates of the
more elemental variables. By use of matrix algebra an |
entire set of equations may be represented as a single
equation. Similarly, complex estimation methods may be
expressed by a single expression using matrix algebra.
Economy in representation of other data manipulation tasks
is achieved by referring directly to structures that repre-
sent entire or major portions of data bases. Such operations
.consist of selecting a subset of the data baseé; or of .

merging data bases or their subsets. All these operations

1= 9

may be characterized as concerning higher level data struc

The objective of this report is then to describe the synt:
‘semantics and an algebra for higher level .data structures

their implementation.

1.2 The MODEL System

The MODEL language and processor were selected as the b
for attaining the above objectives. This section’briefly re
views the advantages of the MODEL system. Section 2 of this
port presents the MODEL language.

MODEL is a very high level nonporcedural language for
specifying computation tasks. It consists mainly of declars
of data strucutres and of equations that define variables.

“The MODEL languape‘is:thus-distinguished in being purely
descriptivé."The user of MODEL needs. to coﬁéentrafe on
the mathematical correctness of the specification and may ig
nore to a large extent the efficency of representation or al
gorithms. The MODEL processor accepts a specification in tt
MODEL language and translates it into a conventional proced
- programming language: PL/l. In this tpaﬁslation if orders
the arbitrarily presented equations into a procedural
sequence of executable statements, and provides missing
instructions, such as reading and writing of external data,
loop controls of repetitive caleculations, etc.

‘The MODEL processor performs in dépth analysis of the
specification to check mathematical consistency and complet
eness and to achieve efficiency in execution of the compu--
tational task.. Much emphasis-is‘also placed on“the effici-
ent utilization of memory space. |

The MODEL language is domain independent and a general

language. The language and processor have been demonstrated

1-7

as innovative and useful program construction tools
in several application areas. There'is a pronounced en-
‘hancement in the ease and naturalness of expressing a task i3
MODEL compared to conventional programming languages, and a
distinctly higher reliability of the checked program. The i
ratiorof resulting object (PL/1l) lines to the number of sou
(MODEL) 1lines proVided by the user is indicative of the amotu
of detail which the system spareé iﬁe MODEL user. The syste
was thofoughly excercised in business data procéssing
and proved‘to“be a great asset for managing a family of re-
lated tasks. It stands superior not only to conventional
programming languages but also to other experimental very hi
level languages under investigation.

The dissertation research of J. Gana (1978) examined tt
applicability of the MODEL system to econometric studies.
This area is much more mathematically and computationally
oriented than business data processiﬁg; Econometric, and
other models, are essentially represented by sets of equatior
which are also the basic elements in a MODEL specification.
will be shown in this report, the MODEL épproach is suitable
for further augmenting the ease and economy in specifying cc
plex computation tasks found in complex modelling. By demor
strating the advantages and promise of the MODEL system in

those two widely differing fields - business data processin;

which is data oriented, and nodeling which is nore com
putation oriented:——me plén to provide a sound argunent for
t he uniyersal applicability of the MODEL concept.' _

The purpose of this report is to describe the augnen-
tations of the NCDEL-Ianguage by additional powerful con-
structs which will enhance the expressive power of the |an-
guage* Sone of the new operations will allow easier expres-
sion of typical data processing tasks such as selection of data
merging of files, while the'othérs wil | afford a conpact vector
and matrix notation for the more mathematically oriented
applications. Yet, all these augnentati ons can be descri bed

under one headi ng as bei ng operations" on hi gh | evel structures,

‘The MODEL language in its current formis' 'efement oriented
Even t hough arbitrarily conpl ex data structures can be describe
in the | anguage, the equations which express the relations be-
tween the variables nust all be expressed.in terns of variables
which are data el ements ét the |lowest level of the data struc-
turese Thus to express the fact that an output record is a cop
of an input record, we have to state this repeatedly for each
el enent of the record. Instead it is proposed to extend the
| anguage to allow expressing directly the equality of
entire data Structureé. Anot her exanple is the nerging.of
two files. The heed of explicitry witing an expression_mhrch
will tell us where the ifth elenment in the nerged fiIe_Cbnes

fromis by no means a trivial task. Thus, we will regard a |

file merge as a global operation;‘which given two input f
produces, as though in one transformation, the merged fil
as a result. Similarly mathematical notation for Qector.
matrix operations and expressions will be used to denote

_global operations té(be applied to a vector or a matrix a

whole.

1.3 The Extensions to the MODEL System

The extensions are basically in two categories:
matrix and vector algebra,and aggregate data structure
algebra. In addition, to facilitate the use of these
extensions it is proposed to.expand somewhat, fifst, the
presentvdata descriptiqn syntax and semantics, and second,
assure efficient implementation through expanding the
analysis of variable subscripting. These four areas are
briefly described below.

1. Matrix and Vector Notations and Operation

This extension enables the user to write equations
and éxpressions involving vectors and matrices, using
the conventional mathematical notation of matrix algebra.
The matrix (and vector) operations provided are: matrix
(and vectors) addition, subtraction, multiplication,
inversion and transposition. In addition all the component
by component opefations such as multiplicétion by a scalar
are included. The special UNIT matrix is standardly pro-
vided. Unique naming conventions enables the selection of
a vector or a matrix out of structures of higher dimensions.
Thus any row or column of a matrix can be selected to be
treated as (row or column) vector.

2, Aggregate Data Structures Notations ‘and Operation’:

These operations consist of structure definition ‘and a

number of functions.

The simple defining equation

A =B
can be used in the current version of the system only to
denote the definition of the.element (field) A by the value
B. In the extended language such definition may be applied
to any high level structures A and B provided they have
similar structures. This definition implies that each
field in A is defined to have the value of the correspond-
ing field in B. Structures in A inherit any attributes
(length, shape and scale) of.the corresponding structures
in B. |

FunCtions:

Several structure functions are proposed. The most
important, SELECTION and MERGE are briefly reviewed here.
The SELECTION function selects a subset of components of
an array, a file or other structures, and forms a new
structure of the selected components. The selection can
be done according to any specified condition. Current
operations in MODEL produce structures with dimensions of
the same size as the arguments of the operations. In the
extended system the SELECTION fﬁnction and ﬁERGE functions
enable the definition of arrays and lists of different size
than the argument. The selected components can be elements .

or structures of higher level.

The MERGE function merges two linear structures,
such as files or lists. The criterion by which substructures
are selected from each of the structures may be generally
specifiec by the user. This enables the concurrent use

_of two (or more) source files as a single file.

3. Variable'Struchres

In the current system the composition of a data
. structure is fiked, i.e. 1t must alway;‘consist of the
same substructures or elements. The proposed extension
enables the definition of data structures to describe
several possible alternatives or variants. Each variant
may consist of different substructures or elements. A
special attribute variable, named DISCR, is used to define
for each instance of the data the chosen structure variant.
The variants mugt be explicitly defined by the user for
input structures and are automatically defined by the system
for output structures.

4. More General Subscript Expressions

Currently MODEL analyzes only subscript expressions
of restricted forms. The analysis enables the system to
decide whether the specification is well defined and to
check the consistencies in shape of data structures. The
analysis also leads to the construction of more efficient.
object code. Undef,the extension discussed here, subscript

expressions of a more general type are analyzed as well.

This will enable the user to define size modifying tra
formations, in addition to the standard.ones to be pro
vided by the select and merge functions. It will als§
enable the system to geﬁerate efficient subprograms fo

the thus specified computations.

l.4 Outline of the Report

The reading of this report requires backgrouﬁd knowledge
concerning the present version of the MODEL language and
the operation of the processor. Some of the background in-
formation is provided in this report. In particular Sec-
tion 2 describes .briefly the present version of the MODEL
language which forms the base for the extensions in this
report. An example of an econometric model specification
is used as an illustration.

‘Section 3 presents the syntax and semantics of the
proposed extensions with illustrative examples.

Basically the implementation is based on translating
- the higher'level struéture'oberations and equations into the
more basic MODEL equations. Section 4 describes the
source to source translation, i.e. translation of higher
level assertions into elemental MODEL statements.

The efficiency in the object PL/1l program depends on
the extension of thevsystem to handle indirect subscripting.
The implementation of the indirect subscripting related
analjsis is the subject of Section 5. Some background in-
formation on the analysis and écheduling performed in the
MODEL system are provided in this section. For additional
background the reader is referred to a paper by N. Prywes
and N. Pnueli "Compilation of A Nonprocedural Specification

Into A Computer Program", October 1980.

1-15

Finally.the appendices discuss changes in the
implementation of the syntax analysis, indirect subscripting
variant structures, and other miscellaneous changes. Readin

~of the appendices requires prior familiarity with the
doéuﬁentation on "MODEL Program Generator™ by A. PnUeli;
K. Lu and N. Prywes March 1980.
A bibliography of relevant reports and paper on the

MODEL system is provided at the end of the report.

?. THE ‘"MODEL SPECIFICATION LANGUAGE - EXCLUDING

THE PROPOSED CHANGES

This section describes briefly the éurrent version
of the MODEL language and‘processor, which are used as a
basis for the modifications proposed in subsequent sections
of this report. MODEL is a general purpose language for
specifying computation tasks. A specification in the MODEL
language consists of an unordered set of statements. The
statements in the language are primarily of two types:
data description statements and equations which we call

assertions. The data description statements describe the

structure and attributes of the wvariables participating in
the specification. The assertions define the values of
some variables in terms of other variables. The variables
appearing in a specification are designated in a header
statements as §gggg§“variables or target variablies. The
header statements are used to name the computational task
and the aggregates of source and target data. The values
of the source variables are considered to be available on
external input files. Target variables are to be produced
on external éutput or update files. Target variablés may
alternately be‘designated as ihterim; to indicate that they
need not be retained as output.. The two subsections below
describe the syntax and semantics of data and &ssertion

statements respectively.

2-2

We use in this section a reduced econometric model
pf Spain to illustrate the current syntax and capabilities
of the MODEL system. The example is shown schematically in
Figure 2.1 as consisting of three input files and one output
file. The input or source files are:

1) SIMDEF, which consists of the parameters of the
simulation (BBG YR = beglnnlng year, PD SIM - number of
simulation periods, NUM_CO - number of coefficients,
NUM_VAR - number of variables; DELTA - the relative start-
ing period for the solution, and LAG - the maximum lag
periods referenced in equations).

2) COEFF, which consists of coefficients for the
equations.

3) TIM;SER, which consists of a time series for
eleven variables of which seéven will be considered
exogenous and four endogenous: |

There is one output, or target file named SOLUTION.
This file is actually a report of the simulated variables
for the periods of the simnlation;

The equation box in Figure 2;1 specifies the depend-
encies of the target variables on other variables in the
specification;

The schematic diagram of Figure 2.1 is represented in
the header to the MODEL specification shown in Figure 2. 2.

There are 3 statements in the header shown in lines 1-5.

BEG_YR

» TIMANSER

PO_TS |

Exogegglus Enctoggrllot:B 1
(=
variables variables TELTA
J SOLUTI ON
LAz
Exogenous _
1 variables variables
Equat i ons N

Fig 2.1. Schematic Diagram of Example of a

Small Econometric Model,

- 2=4

JHEEE R R A R B R R R R R/

[SPAIN MCDULE SPECIFICATION tf
:r. #;(f;;,;-g-;:,*,:rnq‘ """"""" “HEEFHHHE IR FH L M R R
| MODUE: SPAIN: p PANISH © | MODEL -
2 SOURCE FI LES: +SI MBEF, /» SMULATION PARAMETER DEFINITION
3 _ COEFF, d . MODEL EQUATION COEFFICIENTS
4 - TIMSER? [* TIME-SERIES (HISTORICAL) DATA
)

"TARGET FILE: SQLUTION ~ /+ SMULATION RESULTS

Fig. 2.2. The Header for the Example Specification-

in the M(CH. Language.

* 3

a >
= I I =

>+
-

The task of specifying the econometric model of Spain.
in the MODEL language, consists of specifying the five
"boxes in Figure 2.1. We‘will start with the description
of the four file boxes in Section 2.1. This will be
followed with the description of the equations in Section 2.

2.1 Data Statements

Data in a MODEL specification may be highly struc-
tured. The description of the data structure is tree-
oriented, similar to PL/1 or Cobol. The node at the root
of the data structure tree typically represents a file.

A file may be composed of substructures, each of which

may be further composed of substructures, and so on. A

substructures. The latter are referred to as descendents.

A data structure is visualized as a tree where structures
form nodes with branches leading to lower level components.
The syntactic definition of data statements is Shown in
Figure 2.3. The data name is the name of a node in the
tree. The node type indicates a level in the tree. A
FILE node type may only appear at the root of the tree.

A terminal tree node is denoted as FIELD node type. An
intermediate né&e in the tree which is also the unit of
transfer of data between input/output and memory is of
RECORD node type, as in PL/1 or Cobol. A GROUP node type

is any other intermediate node in a tree.

2-6

< data name > IS < node type > (<argu@ents$)
FIE | GR[ovlp | REC[ORD] | F[IEILD*

< data statement > :

< node type > :

. <argurents > = < file arguménts ?'[< group/record
arguments > | < fileld arguments >

< group/record argurents > : = < Immediate descendent name >
[(< nuber of repetitions>)]
[s < immediate descendent name >
[(< number of repetitions >)]1¥

The square brackets ([X]) dénote optionality; when
followed by an asterisk ([X]*) they mean zero or more
repetitions. .

+ The node type may be précéded by the kéy,word INT[ERIM]

when the respective data Structure is target data but
is: not needed on an output .medium, - T

Figure 2.3 Major Syntactic Components of Data Statement

The optional < file argumenté > .describe the N
media of the data. They are unimportant to the discussion
.below and will be omitted in the following.

The number of repetitions of a descendant structure
is included as an argument in the statement describing
the parent. If the descendant occurs only once, then the
< number of repetitions > is omitted. If-the < number of
repetitions > varies, then the minimum and maximum bounds
may be specified. Also, unknown number of repetitions may
be specified by an asterisk (*) in place of a repetition
count. The definition of a variable number of repetitions
is further discussed below.

The field arguments are: data type, siée and scale,
with the same meanings these attibutes have in PL/1.

The MODEL specification of the four files of Figure 2.1
is shown in Figure 2.4. The specification is explained in
the comments on the right-hand side of Figure 2;&. The
discussion below supplements these comments.

The SIMDEF file is described first. The first state-
ment (line 6) "SIMDEF IS FILE (RECORD IS INPUTREC)" means
that the file paé the assigned name SIMDEF and it consists
of the record structure INPUTREC, of which there is only
one instance (namely, it does not repeat). The statement
in line 9 shows that INPUTREC is a record and if lists iﬁ
parenthesis the names of ifs constituent fields. Finaily,

lines 11 - 18, consists of statements describing each one

lmamum%mamm&ﬂuaumﬂmnn{

/* FILE DESCRI PTI ONS: *]

!mmmmuu&m;mm%uﬂmaumnﬂnf

JHHHHHHH S R T R R R R R R 58

[DESCR PTION CF SIMDEF FILE 8

[A R R I R R S H TR A R IR A R R R/

& SINDEF IS FILE RECORD IS INPUTREC, /+ DEFINITIONS CF PARAMETERS WH CH «/

! [* CONTROL THE S| MULATI ON «

8 o :

; | NPUTREC 1S RECORD(PD- TS, DELTA, BEG- YR, PD. SI M NUM VARSNUM 00 LAG 5

1

11 PD.TS ISFIELD (PIC 999'); ; NIVBER CF PERI DS CF TIME- SERI ES DATA *
12 " NUVBER CF PERI CDS FROM START CF TI ME-
13 DELTA - ISFIELD (FIC999'):) "oe £ aTA TO START CF S MLLAT N«
14 8E6. YR ISFIELD (PIC9999")! /» YEAR CF START CF TSIDATA .
15 PD.SIM ISFiaD (PIC999'): /* NMBER (F PERCDS IN OR SIMLATION *
16 NUOARS |'S FIELD (PI C9999'); /* NMBER (F VAR ABLES IN SIMLATION ~ *
17 NH.CO ISFIELD (PIC9999'): [» NMBER CF CONSTANT COEFFS. INMODEL *
18 LAG ISFIED (PIC999'): [* NAXI MM NUVBER CF LAG PERI CDS |N MCDEL*

JE R PR R S R S R AR R/

/e DESCR PTI QN OF COEFF FILE */

JR R R B R S R B S R R E R R R R R E

19 QCEFF IS FILE RECCRD IS C0-REC(I 99) [* OCEFFI O ENTS CF MCDEL EQUATI ONS */

2 SIZECOREC = NUMCO,

Fi g.

20 . COREC | SRECRD(A):
21 A ISFiaD.(DECFLOAT(10>)5

2.4 Data Descripti on Statements for Exanpl e.

[* fWIBER OF MOECL COEFFICIENTS

¥

/
¥
/
/
|
/
/
/

[ER R AR IR R R R R S R R R R R R SRR/

/¥ ' DESCRIPTION OF TIM.SER FILE &/

R R R R R R R R R R R R R R R R R R BN R R R R AL R R H

23 TIM_SER IS FILE RECORD IS TS_REC(1:99); /% FILE CONTAINING TIME SERIES #/

24 /% DATA FOR SPAIN t/
5 TS-REC IS RECORD{VNAME., VNUM, NUM_PDS, TS_DATA(1:99))3

26

27 VNAME IS FIELD (CHAR(4))3 /% NAME OF MODEL VARIABLE R
28 VNUM IS FIELD (PIC’9999/)s /% NUMERIC IDENTIFIER OF VARIABLE #/
2 MUM_PDS IS FIELD (PIC’9999/)s /% NUMBER OF PERIODS OF TIME ¥/
30 /% SERIES [ATA FOR THIS VARIABLE #/
3t TS_DATA IS FIELD (PIC’S99.V9997)3 /# TIME SERIES DATA VALLE #

2 SIZE.TS_REC = NUM_VARS: /% ONE TIME SERIES ARRAY PER MODEL VARIABLE #/
K SIZE.TS_DATA = NUM_PDS; /# ONE DATA VALUE PER PERICD PER VARIABLE #/

JEE R R R
/% DESCRIPTION OF SOLUTION FILE &/
[R

3 SOLUTION IS FILE GROLP IS SOL_GRP(#)3 /% SIMULATION SCLUTION FILE &/
H SOL_GRP 1S GROUP(HDR_REC,30L_REC)3 /% EACH SCLUTION GROUP CONTAINS #/

K /# A HEADER AND A EODY %/
37 HDR_REC IS RECORD(SM.PD.ID,SM_YR.ID): :
38

39 SMPD.ID IS FIELD(PIC’9999); /% SOLUTION PERIOD NUMBER #/
40 SM.YR_ID IS FIELD(PIC’BR9%99’)3 /% SOLUTION YEAR ¥/
41 -

42 SOL_REC IS RECORD(II,EX,GOVs IMSER, IMO1, IM24, IM3, CONS, INV, IM, GDP);
43

44 CONS 1S FIELD (PIC’BB99.V(6)97)s /% THESE ARE ALL VARIABLES IN #/

45 INV IS FIELD (PIC’BB99.V(6)97)3 /% OUR ECONOMETRIC MODEL FOR #/

L) IT IS FIELD (PIC’EB39.V(6)9)s /% WHICH WE WILL DETERMINE &/

47 EX IS FIELD (PIC/BR99.V(6)77)3 /% VALUES, ONE VALUE PER PD. %/

48 IM IS FIELD (PIC’BB?9.V(6)97)5 /% OF OUR SIMULATION ¥/

49 GOV IS FIELD (PIC/BBY9.V(6)97)3

0 GDP IS FIELD (PIC/BB79.V(619/)3

51 IMSER IS FIELD (PIC/BE®7.V(6)7)3

32 IMO1 IS FIELD (PIC/BB%9.V(£)9/)3

i3 IM24 IS FIELD (PIC/BR99.V(6)9)3

A IM3 IS FIELD (PIC/BB99.V(6)9)3

H o

% SIZE.SOL_GRP = PD_SIM; /% ONE SOLUTION RECORD FOR EACH PD. OF SIM. #/
37 T IS SUBSCRIPT; /% T (TIME) IS A COUNTER OF SIMULATION PDS. #/

of fhe fields in INPUTREC. These fields provide the

. parameters of the simulation. They have been explained
above. Each field name is followed by the respective data
type. As showﬁ, we use in this example the PICTURE data
types of PL/1.

Next 1is a description of the COEFF file (line 19)
which consists of the coefficients used in the equations.
There is a record CO_REC for each coefficient A (line 20).
The number of corresponding A coefficients may vary
between 1 and 99. The actuél size (i.e. number of repe-
titions) of CO_REC (and of A) is provided in the SIMDEF
file in the NUM_CO (number of coefficients) field. This
relationship is given in the assertion SIZE.CO_REC=NUM_CO
in line 22. The specification of size using an assertion
is discussed further in Section 2.2.

The TIM_SER file description starts on line 23. It
consists of a variable number (1 to 99) of TS_REC records.
Each record consists of the respective variable name,
variable identification number, the number of periods in
the time series for this variable, and the values
of the variable for all the periods. Notice that
the time series values, named TS_DATA constitute a two-
dimensional array with the dimensions corresponding to
repetitions of TS_REC and TS_DATA. The numbers of repe-
titions or the sizéAof the two dimensions are also speci-

fied in the SIMDEF file by NUM_VAR and PD_TS, respectively.

The correspondi ng assertions are shown in lines 32 and
33. They are discussed further in Section 2.2.

Finally, the SOLUTION file is in fact a report that
consists of two parts, a header part (HDR*REC) which
specifies the titles in the report (the pefiod year and
peri od number), ahd data part (SO._REC) with the val ues
of el even exogenous and endogenous variables for the
corresponding period. A printed report line nust corres-
pond to a record. Therefore, for each period of sinmnulation;
one report line provides the titles (HDR_REC) and fhe next
line provides the data (SOLJREC). The SOLJREC record con-
sists of the eleven variables for which values are com
puted for each period of the simulation. Each one of the
variabl es constitutes a vector wwth its elenments corres-
ponding to the periods of simulation. The size of the
dimension, i.e. the nunber of simulation periods, is given
inthe SIMXEF file by PDSIM This i s expressed by the
assertion in line 56. '

The last line (57) in Figure 2.4 specifies that T
represents a subscript which is used in the equations to
denote a respective si mul ation period.

As shown, the description of data is sinple and
strai ghtforward, |isting each structure with its consti tuent-
parts, until all the data has.been descri bed. N _ -

Al though data are pictured in. MDEL (as in PL/1) as

tree structures, it will be nore convenient for the dis-

cussion here to refer to data as arrays. There is a
direct correspondence between the tree and array views
'of a data structure. For instance, specifying a <number
of repetitions> means that the data structure repeats,
constituting a vector. Generally, a structure, may be
viewed as a multidimensional array, where <number of
repetitions > specifications of own or predecessor nodes
in the data tree give the rangesxof respective dimensions.
Thus for instance, TS_DATA in TIM SER file is viewed as
a two dimensional array. The first, more significant
dimension corresponds to repetitions of TS_REC and the
second dimension corresponds to repetitions of TS_DATA.
Therefore, we refer in the following to the < number of

repetitions > of a node as a size or range specification,

and also as the size or range of the dimension. Viewing

the data as arrays allows referring to a specific instance
of the data as an element of an array which can be identi-
fied by tﬁe appropriate indices for each dimension. For

instance TS_DATA (nl,n2) denotes the n2 th TS_DATA of the

nl th TS_REC. Element indices are denoted by free subscript

variables that may assume integer values in the range of
the respective dimension. T, the declared subscript in
Figure 2.4 is such a free subscript variable.

The range of a dimension may depend on the values of
higher order subscripts. Therefore the range of a dimensior

of an array need not have the same value for all higher

order dinension indices. Such an array is not rectangu-

lar and is referred to as a jagged édge array. For ex-

anpl e, TSIDATA has two dinensions with variabl e ranges
associated with the repetitions of TSIREC and TSJDATA
The nunber of TS DATA instances is specifi ed by NUM_PDS,
which may vary fromone instance of the parent TS_REC to
anot herl. TSIDATA nmay be viewed as a two di nensional jagged
edge array, with a row corresponding to each instance of
TS _REC and the TS DATA instances corresponding to el enments
of the respective rows. Since the nunber of TSJIDATA i n-
stances is specified b.y NUMIPDS which may vary fromrow
torow (i. e. fromone TSIREC to anot her), the resulting
matrix is not rectangul ar, but jagged edge.

The referencing of an el enent through subscripting,
and the definition of a variable range by use of an

assertion are further ‘discussed bel ow in connection with

t he use of assertions.

2.2 Assertion Statenent

Wil e the data statenments describe the existence
and structure of data to be operated upon, _the descri ption
of the transformations applied to the data is given by
the assertions. Rather than give detailed procedural in-
structions on a step-by-step execution, the user ‘of MODEL

identifies relationships between the variabl es from

which the processor deduces the actual execution sequences.

These relationships are called . assertions in MODEL.

' The building blocks for assertions include conventional
arithmetic and boolean expressions and more structured
operations such as IF-THEN-ELSE. This subsection describes
the syntax and semantics of assertions with the aid of the
example in Figures 2.1.

The syntax used for assertions in fhis paper is
similar to that of computation statements in conventional
programming language. The language allows explicit defining
relations of the form:

<variable > = <expfession >
The variable on the left hand side, the dependent variable
of the assertion, is defined by the expfession on the

right hand side. The independent variables for this

assertion are the variables participating in the defining
expression on the right hand side. An expressibn is built
out of variables and coﬁstants to which basic operators and
functions are applied. PL/1 conventions for constants,
variables and boolean and arithmetic operators are used
in composing exﬁressions. These include the IF-THEN-ELSE
operator whose syntax is:

<variable >= IF < condition > THEN < expression_1>

ELSE < exbfession_2$

meaning that if <conditioﬁ >evaluates to TRUE, then |

< expression_1l >defines the value of the variable, other-

‘Wi se < expression_ 2> is used*
An assertion statenent, though simlar in syntax to

an assignnment statement in conventional progranm ng

| anguages, should be regarded by the user quite differ-
ently* The assertion neaning is identical to the math-
ematical notion of equival ence between the two sides of
the equal sign. Narmely it is an equation. This aspect
Is basic to the difference between procedural and non-
procedural |anguages* Because of the nonprocedural nature
of MODEL, each variable name may denote only one val ue.
Al'so the "historical" values of data, nanely those that
woul d not be needed further in a conputation nust be
explicitly.represented by synbolic nanes. |In contrast,
procedural programm ng | anguages allow assigning differ-
ing values to the sane variable and "historical" val ues
may be overwitten if not further needed. For i nstance,
an assignneht statenent within a |loop: X=X+1 woul d nake
no: sense as an'equation. In MODEL it woul d be necessary
to consider each value of X as a separate vari abl e.
Assune that these values constitute a vector, with N
elements. An elenent is denoted by subscripting: X(T).
T is the subscript variable whi ch can take the val ue of
an integer in the range of the variable X The MODEL
equi val ent of the above assignnent'statenent is the asser-

tion: X(T)=X(T-1)+1.

Both the dependent and the independént variables
should be subscripted by a list of subscript expressions
’corresponding to the dimenéions of the variables as spe-
cified in the data description. Any integer valued ex-
pression can be used as a subscript expression for the
variables. The general syntax for subscripted variables
is:

< element of array > ::= < field name >

(<subscript expression>,[§3ubscript expression?
The subscript expressions must be ordered according to. the
dimensions. Free subscript variables, as well as other
variables and constants, with arithmetic operators, may
be used in eomposing subscript expressions.

A free subscript variable may be global to an entire
specification or local to an assertion. The same global
subscript name in a number of assertions refers to free
subscript variables of the same range. Global subscript
names use the syntax form of FOR_EACH. <data name>.

They may then have any integer value in the range of the
<uumber of repetitions> associated with the <data name>.
Use of the same local subscript name in different asser-
tions does not imply referring t6 free subséript variables
of the same range. ’Local subscriﬁt names use the syntax
form of S[UB]« > The use of local subscripts is easier
in.many cases as the user neéd not consider the ranges

of dimensions of different data structures. The syntax

.
-t

of a global subscript name is somewhat awkward and a
shorter global subscript name, such as commonly used
‘synbols for Subscripts, |,J,K etc*, may al so be_declared._
The syntax for declaring a global subscript nane is:
< subscript names>{;|¢>SUBSCRI PT (<nunber of repetitions>)
Figure 24 shows such a subscript declaration for T. The
use of global and local subscripts is illustrated bel ow
in the discussion of the assertions for the exanpl e of
Figure 2.1.
| Subscript expressions are classified into four

types according fo use of the follow ng syntactic fornmns:

1) <free subscri pt variablé>

2) <free subscript vari abl e>-

3) <free subscript variable>K, Kis integer> 1

4) Any formof arithmetic expression except types

1, 2 and 3 above.

The user is advised to give preference to use of subscri pt
expressions of types 1, 2 and 3, as the version of the
-MODEL systemreported here anal yses the correctness of
the specification and endeavors to obtain efficiency of
the resulting prbgran1nnre thoroughly when these types of
subscript expressions are used. In our exanple, we wll
refer to lagged variables using "subscript expressions
of types 2 and 3, i.e. T-1, T-2, etc. | "; |

The subscripting of vériablés Is a conplex task mhich

is difficult for many users. Subscripts may be inblicit in

cases which do not lead to ambiguity. Allowing omission
of such subscripts eases the composition of assertions.
' Following are the rules when subscripts must be specified:

1) Subscripts used in subscript expressions of
types 2, 3 and 4 (see above) must be specified.

2) Subscripts of dimensions that are reduced or
added in an assertion (i.e., where independent variables
have more or less dimensions that the dependent variable)
must be specified.

3) Once a subscript is specified for one variable
in an assertion it must be consistently specified with
the other variables in the assertion where the subscript
applies.

4) Subscripts on the right of any specified sub-
scripts must be specified. . |

5) Missing local subscripts are assumed inserted in
all variables of an assertion montonically (i.e., S1,S2...)

~from right to left. Subscripts must be specified in cases

where this assumption is not valid.

Subject fo these rules, the MODEL system performs
analysis to insert missing subscripts.

Qualified names may be used in assertions, using a
period (.) to connect individual names_(similar to PL/1).

The most common use of a qualified name is to eliminate"

ambiguity through prefixing a name of a higher level

L=13I

Another common use of qualified names in MODEL is to elimin-
ate ambiguity in déta that are updated. The keywords OLD
"and NEW are then used. |

There are parameters of the data structures which
depend on values of source or target variables. We refer

to these as>data parameter variables. Characteristically,

these parameters provide specifications for sizes of arrays,
iengths of character strings, keys for access to files,
etc. They introducé to MODEL the flexibility of wvariable
size or dynamic structures. The syntax of qualified names
is used for data parameter variables: .
< data parameter variable> ::= <reserved keyﬁbrds>.<mariable>
Data parameter variables may be explicitly defined
by assertions. They may denote entire arrays and be used
with subscript expressioné in the same way as other vari-
ables. These keywords used as prefix in data parameter

variables are listed below and further discussed in the seque

END. <data name> . denotes whether the named data
: element is the last one in the
range of dimension.

BNDFILE.<filé name> denotes an end-of-file marker
' ‘ of the named file.

FOUND.<record name> denotes existence of the record
in an index sequential file that
-is accessed through a POINTER
variable (see POINTER below). -

INITIAL.gvariable> ~ denotes a starting value for an
- iterative solution of the variab

LENGTH. <field name> denotes length of the named fielc

NEXT. <field name> denotes a named variable in the

‘ next adjacent record on the
medium source data.

POINTER. <record name> denotes value of a key used to
reference a keyed record in an
index sequential file. (the
key name is identified in the
FILE statement.)

SIZE.<data name> denotes the range of the lowest
order dimension of the repeating
data structure named in the suffj

These variables are INT ERIM, i.e., they are not output,

_but are otherwise considered

description statements for these variables may be provided

optionally. If not provided, each of these variables will

be automatically assigned the appropriate dimensionality.

These variables are further explained below.

When the range of a dimension is variable, the range

is viewed as denoted by an auxiliary array variable which

may be defined by an assertion. A variable range data

structure X may have its range denoted by a structure named

SIZE.X, of one dimension less than that of X (the rightmost)

and identical ranges for the other dimensions. Thus if X is m

dimensional the elements of SIZE.X have the values of the

ranges of the lowest order dimension of X for each of the
higher order dimensions indices. Thus I, the subscript for

" the m-th dimension of X(I .;.Im_l;Im) must be in the range

1
1< I, < SIZE.X(I7...Ip-1). Consequently if the values of

the elements of SIZE.X are not equal, then X is not a rec-

tangul ar array but -a_Jagged edge array The range mnust

be > 0. Figure 2. 4 shoms assertlons that specify Sl ZE.
CO REC, Sl ZE.ITS_REC, Sl ZE. TSJI5ATA and Sl ZE. PRTJ3RP.
Anot her option for defining the size of structure
Xis by.an auxi liary bool ean array naned END. X that has
the sane dinensions and ranges as X* A 0 value of an
el ement of X denotes that it is not the last elenent wthin
the range of the rightnost dinmension, and a 1 denotes that
it is the last element. Wen END. X is used for range speci -
fications then the range nmust be 1 1. |
PAQ NTER <record nane >, defines an access key to
an index sequential or randomaccess file. Consider the
assertion: PCthER,X(I):EXPR(I). The array of records
Xis considered as indexed in the order of the el ements of
the retrieval keys PONTER X. Nanely, the record retrived
by using EXPR(I) as a key is considered to be the I-th
“element in the array X
Finally, function refarencéa may be used mﬁthin right
hand side expressions of assertions. The built-in functions
of PL/1 may be used with the NCEEL progran1generatorlthat
produces PL/1 pbject prograns. Addi tional functions nay
be coded in the object |anguage and placed in the syspenw
function library. ' |
A variable is said to be.recursively definad ifoit is.
_an elenment of an array which depends, directly, or through a

chain of assertions, on other elenments of the sane array.

2-22 -

_ = J
If an elenment of this variable depends on elenents in the

‘sane array with index values that are snmaller than the val ue
of the subscript for the depehdeﬁt el ement, then the variable
el ements can be eval uated progressively as the value of the
subscript is increnented from1 to the end of the range in
steps of 1. This condition is checked, and if it is not
satisfied then a warning nessage is issued and a Gauss- Sei del
iterative procedure is used in order to evaluate the recursive

depéndent array variable elenents. ' ' * e

Figure 2.5 shows the specificatidn of the eqﬁations
for the reduced édohonétrié nodel of Spain, previously
introduced in Figure 2.1; The assertions in this part
of the specification illustrate subscripting and use of
“qualified names in MODEL. 'The assertions in Figure 2.5
are shown as belonging to four groups as follows:

The first group consists of equations that define the
exogenous variables in the solution file. As shown there
are seven such variables. These equations specify that for
the lag periods (T<LAG the values of the variables are
copied fromthe respective Ts;DATA tine series, and for the
ot her periods (T>LAG they wll be conétant, nanel y equal
to the value in the previous period (T-I), Note that in
t hese equati ons thé subscript T is used to denotefhe apbro-

priate period el ement of the respective variable. The sub-

R R F E R SR E R R S S R R R R R R R R R R

/% EQUATIONS FOR EXOGENOUS VARIABLES 8/

SRR R R R R R R R R R R B R R R R R R R R R AR S R R B R/

F (TOLAG) THEN I (T-1) ELSE TS_DATA(3,T+DELTA)3

3 I Mm=1

39 EX (T) = IF (TOLAG) THEN EX (T-1) ELSE TS_DATA{ 4, T+LELTA)3
60 GOV (T) = IF (TOLAG) THEN GOV (T-1) ELSE TS_DATA(&,T+LELTA)3
61 IMSER(T) = IF (T>LAG) THEN IMSER(T-1) ELSE TS_DATA(8,T+DELTA);
62 IMO1 (T) = IF (TLAG) THEN IMO1 (T-1) ELSE TS_DATA(9,T+DELTA);

63 IM24 (T) = IF (TOLAG) THEN IM24 (T-1) ELSE TS_DATA(10,T+LELTA)S
4 I3 (T) = IF (T>LAG) THEN IM3 (T-1) ELSE TS_DATA(i1,T+DELTA)S

JE R R R R
/% EQUATIONS FOR ENDOGENOUS VARIABLES 8/

[R R R R R R A R R R R R R R R R R S R A R R/

85 CONS(T) = IF (TOLAG) THEN A(1) + A(Z)EGDP(T) + A(3)2CONS(T-1)

8 ELSE TS_DATA(1, THDELTA):

67 INT) = IF (TXLAG) THEN AC4) + A(SIGDR(T) + A(O)EGDR(T-1) + IIT)

t8 : ELSE TS_DATA(2, THIELTA)3

89 IMTY = IF (TXLAG) THEN IMOL(T)+IN24(T)+IM3(T)+A(61)+A(62)4GDP(T)+IMEER(T)
70 ELSE TS_DATA(S, T+DELTA)3

70 GOP(T) = IF (TSLAG) THEN CONS(T) + INVAT) + EX(T) + GOV(T) = IM(T)

7! ELSE TS_DATA(7, THDELTA)3

SRR R R R R R R R S R R R R R RS E R ERE R R R R R R R SRS ER RS ESERERE/

/% EQUATIONS FOR INITIAL VALUES FOR ENDOGENOUS VARIABLES 74

SRR R R R R R R R R RS LR R E R R AR RS R R R R R IR R PR AR H R B R AR E R R RS/

IF (TALAG) THEN CONS(T-1) ELSE TS_DATA(1,T+DELTA)S
IF (TOLAG) THEN INV (T-1) ELSE TS_DRTA(2, T+LELTA)S
IF (TOLAG) THEN IM (T-1) ELSE TS_DATA(S, T+DELTAIS
IF (T>LAG) THEN GDP (T-1) ELSE TS_DATA(7,T+[ELTA):

73 INITIAL. CONS(T)
74 INITIAL. INV (T)
5] INITIAL.IM (T)
76 INITIAL.GDP (T)

(R R R R R R R R R R R R/
/% EQUATIONS FOR REPORT HEALER ¥/
R R S AR 588/

77 SLPDUIDT) = T3 : /% NUMBER OF SOLUTION PERIOD #/
78 SM_YR_ID(T) = BEG_LYR + T3 ' /% YEAR OF SIMULATION RESULTS #/

Fig. 2.5. Assertions for the Example.

and for the second dinension the éxpression T+DELTA. 'Both
subscripts illustrate type M subscripts. These assertions
‘are all recursive as the defined vari abl e el enents depends
on ot her elenents of the éane vari abl ee

‘The second bl ock of assertions defines the endogenous
variables. Again, for the |ag periods (T<LAG these variabl e;
are defined to be the sane as the data series for TS _DATA
for the fespective periods. For the other periods (T>LAGQ
these variables constitute a set of sinmultaneous econonetric
structural equations. The systemw || automatically recog-
nize that these four equations are simultaneous and wil|
enploy an iterative solution nmethod to define these variabl es
If the nethod is not specified, the Gauss- Sei del nethod\MiI
be enpl oyed.

The third bl ock of equations defines qualified nane
dat a- paraneter variables with the pfefix I NI TIAL and the
endogenous vafiables as suffix: I f these equations wer e
not provided the systemwoul d by default take the initial
values in the iterative solution for the sinmultaneous equa- \
tions to be zero. This block of equations provides the
systemwith a better zero order estimate for thé sol ution.
As shown the iﬁitial val ues of the fbur endogenous variables
i nvolved in the sinultaneous_equations are defined to be
equal to the corresponding variable el enment values for t he'
previous period (T-1). For the | ag peri ods, thé val ues are

to be copied fromthe respective TS_DATA tine series data.

. 2=25

The last block of equations defines the report titles
for'SM_PD_ID - the simulation period,and SM_YR_ID-the
'simulation year.

This concludes the specification of the reduced model
of Spain. As shown the specification consists of a total
of 60 statements. The program generated based on this
specification amounts to approximately 500 PLL/1 statements.
In addition, the MODEL processor produces documentation
consisting of a cross-referenée and attribute report,
analysis of shapes of variables and finally a flow chart
showing in schematic form the order of execution of state-
ments in the program that is produced.

In the following sections additional examples will
be given of MODEL statements in order to illustrate the
proposed enhancements to the MODEL language. These will
provide additional illustration of the use of the MODEL
language. |

Note that; unlike most econometrics software systems
available to date, we require an explicit indication of
how to compute the exogenous variables and the initial
values for endogenous variables. The reason for this
requirement is that we allow arbitrary‘soufce and target
data structures while the econometric software available
to date requires standard data structures for both the time

series and the solution. A second reason is that the impli-

o | Xi ensi uns .U e H\WULli LJCIIIE_LIGE,!:: L= e A o i =)

This section describes in detail the proposed extensions
to the MODEL | anguage, including the syntactic forns, the
nmeani ngs of the neMIConstructs; and t he advant ages t hey
offer to the user. The extensions are illustrated by
exanpl es. The extentions are presented bel ow in respec-
tive subsections according to four categories: matrix
and vector notation and operationsl structure vari abl es
notation and operations, variable data structures and in-
direct subscripting. The last two categories support the

constructs in the first two categories.

3.1 Matrix and Vector Notation and Qper at i ons

The purpose of this notation is to enable the user to
wite equations dealing with vectors and matrices in a form
which is very simlar to tHe mat hemati cal notation for these
equations. As’'indicated above, this capability is of'
great inportance in econonetric nndélling for specifying
correlation and estinmation nethods; and for generally express
ordinary and partial differential equations in nmathematically
orientéd applications. At the present, NCbEL all ows the
user to represent matrix and vector operations in_terns of
their elenents. A so the |anguage presently allows omt-
ting the subscripts associ ated with these vari abl es. I n

the foll owing, the proposed extensions are defined in terns

Sone matrix operations are already avail able under

exi sting MODEL | anguage facilities. Consi der for

CAQiIpPlLT LIIC Udta UCoLL'LpLliUll cltalLdlcilio LUL LIWLTCT oll UL idltce
F, H and G:
F IS GROUP (M(#*))
"M IS GROUP (X(*))
X IS FIELD
H IS GROUP (P(#*))
P IS GROUP (Z(*))
.2 IS FIELD
G IS GROUP (N(*))
N IS GROUP (Y(%*))
Z IF FIELD
X,Y,Z are field components of these structures. They repre-
sent two dimensional arrays or matrices. The statement
Z = X+Y
is interpreted in MODEL as the subscriptless version of
Z (I,J) = X(1I,J3) + ¥Y(I,)
Thus, even without the proposed extensions, the
present MODEL system possesses the capabilities for addition,
subtraction, and for element by element multiplication and 4
division. The extensions concern more complicated matrix
operations, namely: matrix multiplicaion (inner product),

matrix inversion and transposition. To attain these opera-

tions we add new operations, symbols and naming conventions.

3.1.1 Matrix Operations

The following symbol combinations denote the new
matrix operations:

"% Matrix multiplication.

"/ Unary or Binary matrix inversion.

"y, Matrix transposition.

3-3

In addition the reserved.word UNIT denotes a unit
matri x vari abl e.

Matrix Multiplication

The meaning of the matrix nultiplication:

Z's X'*Y |
Is equivalent to the. subscri pted MDEL st at enment

Z (1,3) = SWM (X(1,K. * Y(K, J), K

The SUM function suns the values of the first paraneter
al ong the dinmension of thé subscript of the second paraneter

Consider the followng structure Kin addi.tion to the
above F, H; G structures:

T 1S GROP (U<H), V(%))

UIS'HHBED
VIS FIELD

U and V are one di nensional érrays which are interpreted
here as row vectors. Thus:

V= U™*x
is interpreted as

V(J) = SIM (UK * X(KJ), K

Let Abe a scalar. A matrix nultiplication notation
nmay be used to conpute the scalar A

A = U'*ffxy '
having the interpretation:

A = SUMCUCK) * V(K), K)
Note that V is transposed before nultiplication.

rix _Tran ition:

Z = X
"is interpreted as
2 (I,3) = X(I,T),
Z = "X |
is interpreted as
2(I,J) = X(J,I).
Wﬁen applied to vectors it transforms a row vector ir

.a column vector and vice versa.

This operation can be used as a unary or as a binary
operation. As a unary operation it produces the inverse «
the matrix to which it appliesi

zZ = "/X
is interpreted as

Z2(I,J) = M(I,J)
where M = X% (the inverse matrix).

As a binary operation it's right argument must always be :
(non singular) matrix. In general:

Yn/X = ym&n/x
thét is, the left argument is matrix multiplied into the
inverse of its right argument. The use of."/ as a binary
operation is illustrated in representing a linear set of
equations:

SUM(X(L) #A(L,J) ,J) = B(J)

which can be expressed mathematically by

X"*A=B

The solution of this system is given by:
X=B" A
Where X is the solution (row) vector, B is the vector of
right hand side values and A the matrix of coefficients.
Another appropriate example here is the eétimation
of‘the coefficients of a single linear equation based on
a number of observations of its variables. The equation
may be represented as 7
Y(K) = SUM(B(I)*X(I,K),I) + U(K)
K and I are observation and variable indices respectively.
There are also more observations than variables. U is the
residual. This can be stated as
Y = B™ERHU
The least square method determines B such that su? is minimi:
XMEMX "/ (XTETAX)
corresponding to the conventional matrix algebra expression:

B = Y*RT(RexT)=l

The UNIT Matrix:

A standard unit matrix is provided‘using the reserved
array name UNIT. Its definition is given by

UNIT (I,J) = IF I=J THEN 1 ELSE O

The shape .of the UNIT matrix is implied from the sizes
of the dimensions of the matrices in the equation where it
is referred to. As an example éohsider the expression

Z = "/ (UNIT - LAMBDA#X) |
equivalent to the mathematical expression:

7 = (I-ax)~1

Z and Y are matrices and LAMBDA is a scalar. The shape of

UNNT is that of X or Z

3.1.3 Nam ng Conventions for Arrays

There are three ways to designate variables as vectors
or matrices (to which the matrix operations can be applied):
The subscriptless form- using an el enment synbolic
name with subscripts omtted. '

Use of asterisk subscripts - indicating the matrix or
vector dinensions by asterisks (*) as subscripts.

Usi ng hi gher |evel structure nanes.

Thesé three ways are exp[ained bel ow.”

The subscriptless form Any variable which appears

Wi t hout any subscripts in an expression with matri x opera-
tions is considered to be a vector or a matri x, depending
on its dinmensions as described in the data statenents..
If it is described as a scalar (i.e. no repetitions of its
structure and above'it) it is treated as a scalar. If it is
- a one dinensional array it is considered to be a row vector.
If it has more than one dimension then it is considered to
be a matrixs where the matrix operations apply to the two
| onest order dinmensions. Al dinensions of higher order
are treated as indicating higher or der repetitions of the
matri x.

As an exanpl e considef X and Y defined as above and the

additional three dinensional arrays Wand T:

The expressi on:
W= X%T * Y(I,I)
I's interpretedlas fol | ows:
W1, J, K =SUM X(J,L)*T(I,L,K,L) * Y(I,.I)
Y(I,1) is a séalar. The matrix multiplication'of X and T

is performed on the two | owest order subscripts. The high-

est order subscript | indexes Wand T which are three di nen-
si onal ° '
Use of asterisk subscript list: In some conplicated

cases the user may want to specify the exact di nensi ons
to which the matrix operations apbly’ - unlike the above form
wher e the_Ib\Aest order dinensions were inplied. This can
be achi eved by specifying a subscri pt _' list wwth sone (at
nost two) of its elenents bei ng an asterisk: ''&".
Thus the expression: |
WL, *™) = X., T<*2AD* Y(I,*)
is interpreted as: '
WI,J,K) = SUMX(J, L) * T(L,K, D) * Y(I,K)
Note that this notation enables us to treat rows aid col urms
of a matrix as vectors. Thus to forma matrix of all inner

products of the rows in a matrix we could wite:

HN Ay s - X3 S-9R ™ ce s w Fev -

of course the same computation can be written more com-
'pactly as

Z = X"EMMY

The rules for interpréting an asterisk supscript list
is that the mafrix or vector active subscripts replace the

asterisks from right to left. If there are two asterisks

the operation variable is interpreted as a matrix, while if
there is only one the operation variable is interpreted as
a row vector.

Use of higher level structure names. Another option

for designation of the dimensions for matrix operétions is
the use of.an ancestor data name of the elements of the
matrix or vector. Each intermediate level in a structure,
and hence each dimension, is associated with a data name
which 1s in general a group or a record. We call these

higher level variables - structure variables. They name a

structure rather than the individual fields or elements.
By using the name of a structure variable in a matrix ex-
pression we mean thét the name denotes the complete structure
Thus in the declaration of X above, F is the name of the
matrix X(I,J). Alternately the.vecfor M(I)-refers to the
matrix X(I,J) as M(I) is the name of the vector X(J).
Consequently we may write:

Z(I,J) = MCI)"e"M(J)
for the matrix of all cross pfoducts of rows in X. In con-

trast with the previous options where the dimensions of the

array are determined by the repetitions ‘above a variable,
here the dimensions are determined by the dimension below.
the structure variable.

3.2 Structured Variables Notation and Operations

The purpose of this notation is to enable the user to
write equations where the variables are entire data structures.
It is particularly important for manipﬁlating
operations seléct
tures. Section 3.2.1 discusses structure variables and their
use in equations. The remaining subsections discuss

ture variables functions: SELECT, MERGE, SORT, COLLECT and FU

A structure variable is denoted by the name of the
respective structure. The data statements define a tree
like structure in which the nodes are designated as
fields or elements and the root (file type) and intermedi-
ate nodes (group or record types) are the structure variables.
Thus in the example below:

F IS FILE (Gl, G2)

Gl 'IS GROUP (A(*),B) .
A IS GROUP (C,D(1:5))
C IS FIELD
D IS FIELD
B IS FIELD
G2 IS GROUP (X(2))
X IS FIELD |
F, G1, G2, and A are structure variables. B, C, D and X
are field variables. Qualified names may, be used to fully

name a variable instance, such as:

F. Gl. A(I)

Note that since A is repeating a subscript is needed in order
toAdesignate the exéct instance. A structure variable is the
.root of the structure below it.ﬂ A structure operation operate
oﬁ the structure as a whole. The simplest structure opera-
tion is that of defining one structure to have avvalue
identical to that of another structure. This implies a
definition of each component of the defined structure. Con-

sider for example the.structure: I

L IS FILE (K,H(*))
K IS GROUP (X,Y(1:5))
H IS GROUP (Z,U(1:100))
(X,Y,Z,U) ARE FIELDS
The equation
K = A(2)
defines the structure K as having a field values equal to
that of the structure of A(2). In order for a structure

definition to be valid it is required that the defined

structure (K) and the defining structure (A(2)) be compatible.

This means correspondence of roots and subtrees in the defined
and defining structures, including the same data types of
respective fields.
The user cah express correspondence of nodes in the
respective structures iﬁ a nuﬁber of ways.
1) The correspondence is based oﬁ node positions, i.e.
level of the tree and the node position (from left
to right)'in the level, in the respectivé.dataAtrees.
2) If subtrees in the defining structure are to be

omitted in the defined structure (then the position

. 3-11

does not define tge corresponding of subfrees

in the two structures) then the corresponding

subtrees which are not omitted must use the

same names.
3) Correspondence may be expressed by using the

same field names in the defined structure as the

corresponding fields in the defining structure.
In all these cases,to be compatible the corresponding
. nodes must have same dimensionality in respect to the respec-
tive structure roots, and if fields, same data type.
Having such correspondence, the meaning of a structure
definition can be taken as the definition of each component
in the defined structure by the value of its corresponding
component in the defining structure. Thus the statement above
K=A(2)) is equivalent to the following set of field defining
equations:

- X = A.C(2)

Y(I) = A.D(2,I)

SIZE.Y = SIZE. A.D(2) or

'END.Y(I) = END.A.D.(2,I).
Note that the defined structure inherits not only the values
of all components in the source structure, but also.any
variable attributes of the structure such as SIZE, END,
LEN etc.

The form of an equation which defines a structure is

vector of numeric elements, and 'expr' is a

vector or matrix expression (see subsection 3.1)

.2) A =[IF cond 1 THEN] A,[ELSE [IF cond THEN] A, I*

where A is a compatible structure with Al’[A2'°"

3) A = structure function(----)

- The last form will be further discussed in more detail.

The above forms may;be compounded by conditional state-
ments or conditional expressions used in MODEL.

3.2.2 The SELECT function

The SELECT function is list oriented. Namely, it

treats a one dimensiocnal set of data structures as an orderec

list... It forms an output sublist of structures which
satisfy a given condition, preserving the original order

between the selected structures.

Consider the following F source and E target files:

F IS FILE (G(X))

G IS GROUP (K,X)
K IS FIELD (CHAR)
X IS FIELD (NUM)

E IS FILE (H(*))

H IS GROUP (KEY,Y)
KEY IS FIELD (CHAR)
Y IS FIELD (NUM)

Where G and H are compatible structures. There are two

forms to the SELECT function, differing in the structure
level of the target variable.

E = SELECT (G(I), cond (I) [,I])

H(L) = SELECT (G(I), cond (I,L) [,ID]

In the first format the target is the parent E of the
repeating structure H. E therefore refers to a list of H

el fwibdet bl fm e el et e Sl s Ve B et S ANA Y - S m=es 0O X

G Cond(l) is tested in order to deternine whether 1)

shoufd'be selected. The optiohal paraneter | denotes the
di mension used in the selection.

An exanpl e of use'of this function is the case where
ohly G groups in which X is positive are to be sel ected.
This is defined by the assertion:

E = SELECT <G(1), XCD >0)

In general, the target list of fhé SELECTI ON FUNCTION i s
shorter than the source list. SIZE o" END attributes for
the target list are autonafically defined by the SELECT
function. The optional paraneterll denotes the subscri pt
of fhe sour ce subStchtures. If this paraneter is absent
the right subscript (i.e. of G(D) is selected.

In the second fornat the target variable is a structure
on the sanme |level as the source repeating structure. It
appears subscripted by L. The subscript L must be distinct
fromany subscript appearing in the source structure G(1).

L nay'appear_also as an argunent in the condition fcond(l, L)?
This adds power to our selection capability. Consi der the
above E and F structures. Assune also that Fis sorted on
the field K Iﬁ the follow ng exanpfe we sel ect enly t he

first of every consecutive structures G which have a conmon

- value of K The desired sel ection can be expreSSed'as:

H(L) = SELECT (G(1), KEY(L-1)n=K(1))
Note that L-1 refers to the elenent preceding the el ement

which is referenced.

NS Lk e A el b N A K Unir=wil. X Vil

The MERGE fuﬁction is also list oriented. |Its: mltiple
~source lists are nerged into a target list by interleaVing
el enents (structures) of the source lists. Each of the |
lists is separately indexed. Atest of a condition is applie
to el ement candidates fromeach list to determine which
structure is selected as the next nenber of the target |ist.
Wien one of the source lists is exhauéted, el ements are
taken only fromthe remaining |lists.

The followi ng exanple illustrates thé use of the
MERCE function. Let F be the target group and G and H
the source groups. ' ,

F'IS'GR(IP(ACk))

G1S GROP CBC))

HI1S GROP Cocr))
Assuﬁe also that Ais conpatible with both B and C. L, |
and J are used bel ow as subscripts of A B and C respect-
ively. Again, the MERGE function has two formats where
t he target structure is represented by an entire list or-
typical element of the list. These formats are:

F = MERGE(B(1), C(J), Cond(1,J) C1,J1)

A(L)=MERCGE (B(l) ,QJ), Condd,J,L [,1,3d,])

- -In the first formF is the parent of the nerged |ist.
fCondCl 3J) " depends in general on B(l) and C(J). The con-
dition determnes which structure is next selected to be in
the merged output |ist.

In the second format, the target structure is a variable

ACL), an elenent; of F, and the condition nay al so depend on L

function is nmerging two sorted lists to forma new sortéd
elist. Assume A, B, C ARE FIELDS(NUM . Then either of the
asserti ons:.

F=MERGE(C(1), B(J), Q1) <sB(J))

ACL) = MERGE(CO),B(J), (1) sB(J))
nmerges the strings of C and B el enents* The next (Lth)
elenent of Fis the one with the lower value. This pro-
duces a sorted list provided G and H are sorted.

The MERCGE function automatically defines the attributes
of the target structures

3.2.4 The' 'SORT function

Thi s function rearrahges the order of the structures in
a source list to forma target list of conpatible structures
whi ch are ordered by increasing or decreasing val ues of cer-
tain fields. Assune the source and target structures.

FIS GROP (ACH));

AlS GROP (X, Y_Z)'

GIS GROP (B(*) ;
BIS GROP (U, 'V, W;

The forn"at of SORT function |s t hen:
B(lg,..,.1x) = SORT(A(l1, 'K »###Im > I NCDECS (X5
I NC or DEC are used for sorting by increasing or de-
creasing values of the fields in Aindicated in the next
argunent. The soriing by a nultiple key nmay be indi_cat ed by <
*list of fields of A, i.e. X Yetc, with the ordér in the Ii.s'i
indicating the priority, i.e. order first on X, and then wth:
XonY, etc. As shown above,‘.let:, | Y

di m(A) = K+tmand di nCB) = K, di n{A) >di ﬁ(B) ,

o= LD

i. e the sortrng IS perforned for each pernutation of

A1##% AK_g ™ L dipensions. The selec{Tcn of sort algorithns
is automatic and is discussed further in connection with the
i npl enentation of this function. |

3,2.5 - The: COLLECT function

" The OOLLECT function is used in order to convert a
list (or a file) which is a one dinensional array of struc-
tures into a two dinmensional jagged edge array, or list of
lists. |

Consi der the structures:

F IS FILE (4*))

GIS QROP (X(*))

H 1S FILE (Y(*>)
where X and Y are assuned to be conpati bl e structures.

X may be defined as: |

X(1,L) = COLLECT(YCJ), Cond(l,J, L))

Its neaning Is that the list Y(J) is subdivided into
a list of sublists with I the index of the sublist and L
the index of an elenent in a sublist. The first elenment Y(I)
forms X(I,1). Subsequently an elenent Y(J) forms an el enent
X(1,L) if ~ondCljJjL)T holds, otherwise it forns the el enent
X(.1+1,1), i.e. the first menber of the next sublist.

Thi s function Is useful in the case that we w sh to
viewa file (a I|st) which is a honogenous streamof records
as consrstrng of groups of records The elenents in each
group nmay share sone conmmon characteristic such as having

a common ranae of kevs. The source file (YY) is described

dimensional representafion according.to an arbitrary
grouping criterion. |

In the present MODEL language if the user desires to .
refer to an operand in an assertion as being multidimen-
sional then the corresponding file must be described as
being structured in this manner. This violates the prin-
ciple of data independence, namely the independence of
external data description on how the data is actually re-
ferenced in a desired transformation. The COLLECT function
allows specifying internal structures‘with the desired
dimensionality, without forcing this structure on the ex-
ternal file.

The function COLLECT is redundant since a very similar
effect may be obtained by using the SELECT function:

X(I,L) = SELECT(Y(J), cond(I,J))

The difference between the uses of SELECT and COLLECT
is that of efficiency. The specification of SBLECT implies a
scan of the complete source string of ¥ in order to select
the appropriate records that correspond to the index I.
The COLLECT function explicitly states that only one scan
of the source stfing Y is required. This aspect is further
discussed later in connection with the implementation of the
COLLECT and SELECT functions.

3.2.6 " The TFUSE function

The FUSE function is the inverse of the COLLECT funection

It takes as input a two dimensional jagged edge array which

wlil WVe LVIIDLUTLTU A L9 L VA WU d £ L QUi LV LU A= D-LJ.LEJ.C
fused list. For example consider the source structure:

F IS FILE (G(#*))
G IS GROUP (R(%*))

and the target structure:
H IS FILE (R(%*))
Then:
H = FUSE(F.R(I,J) [, I,J 1)
defines the list H, which consist-of the following sequence
of structures:
R(1,1),..R(1,SIZE.R(1)), R(2,1)...R(SIZE.G,SIZE.R(SIZE.G)

3.3 " Variant Structure Variables

At the present a MODEL data statements must specify for
each structure variable (FILE, RECORD or GROUP) a unique
set of components. It is possible to indicate an alternate
possibility of components, based on some condition, through
the artificial description of the alternate components as
optional components.
Thus for example:

F IS FILE (G(%*))
G IS GROUP (A(0:1), B(0:1))

means that G conéists of a sequence of alternate A and B
components which are optionally repeating either 0 or 1 times.
To choose only one of these it is necessary to explicitly de-
find SIZE.A and SIZE.B so that either A or B exiéts but ﬂevér
both. This is a roundabout:way of saying that G consists of a
sequence each of whose elements is either of the structure A

or alternately of the structure B.

3-19

The following modification is proposed in order to
make the selection between variant components much easier.
.Presently_the syntax of description of a structure variable
is:

<structure variable>::=<name> is {GROUP|RECORD} (<component list >)

The proposed extension consists of a separator '/!
denoting alternative components in the following way:

<Structure variable>::=<names> IS {GROUP|RECORD }

(<component list> {/<component list>1%)

Thus, the definition above for declaring G to bé either
A or B can be simply represented as:

G IS GBOUP (A / B).
A more complicated example is:

G IS GROUP (A, B(*), C(2) / D, E(1:2))
where G either consists of the components A, B and C or
of D and E.

To determine the choice of thé alternative, it is
necessary also to define a qualified name variable with
the prefix keyword DISCR and the suffix name of the parent,
i.e. DISCR.G. The value of this "discriminator" variable
determines the choice of numbereq alternatives, i.e. the firs
alternative is chosen if DISCR.G is 1, and the second alter-
native of DISCR.G is 2, etc. The dimensions and ranges of tr
" DISCR prefixed variable are the same as the variable named ir

the suffix.

sHEEE S8 SLsReRkLaLER MELVE MY &t EasiipLs WL tus
specifications of pérsonnel records in which if a person is
‘divorced the record includes the date of divorce while if
married the name of the spouse is included. A description
of such a record might be given by
PERSON IS RECORD (NAME, MARITAL: STATUS, ADD_INFO)
ADD.INFO.IS GROUP (DIV_DATE / SPOUSE_NAME)
For source variables the DISCR data=parameter has to be

explicitly defined:

DISCR.ADD_INFO = IF(MARITAL_STATUS 'DIVORCED') THEN 1
ELSE

IF(MARITAL_STATUS 'MARRIED') THEN 2

High level data structure equations (i.e. definition of a
high level structure by a single equation) can be used only
when the operand data structures do not consist of components
which have variant structures. The case where there are struc
variants require the user to explicitly match source or targe
variants with other variables. This can be done by writing
directly the elemental equations as shown in the discussion
of source to source translation of high level data structure
_equations in Section 4.2.

. To avoid circular definitions the DISCR data-parameter
for source structures cannot depend on information which is
contained in the vériant structures themselves.

The variant stfucture concept reseﬁbles the variant recor
concept of PASCAL. It is somewhat more general in being able

to specify an arbitrary discriminating condition.

e

3.4 Indirect Subscripting

The implementation of the list fﬁnctions described in
.Section 3.2 is baéed on expressingrthese functions by simpler
statements in the current MODEL language. Additionally, the
efficient implementation of these functions requires extending
the subscript expression analysis performed by the MODEL
processor. As noted in Section 2, presently the MODEL
processor analyses three types of subscript expressions of the
forms of I, I-1, I=K (K>1), where I is a subscript and K a
positive integerAconstant. All cher forms of subscript
expressions afe denoted as being of type 4 and are not further
analyzed. The proposed extension consists of adding the
analysis of subscript expréssions of the form A(I) where A
is a variable which is used to subscript another variable B,
i.e. B(A(I)). This form of subscript expression is referred
to as indirect subscripting, where a secondary array (A) defin
the subscript value used to subscript the main array (B).

Indirect subscripting may be used in the left hand side
dependent variable:

B(I, ,====I _ 3A(I,====T_ I))=C(I},===Ip,-==)

-1
or in a right hand side independent variable

B(I ,===-I)=C(I jmm==T 4 ,ACT ymmmnIp 3T) ymmmmee).
These two forms are referred to as left and right indirect
subscripts, respectively.

Generally the produced program is made more -efficient

both in computing and memofy use if the scope of loops

1s enlarged. 1n the present MUDLL SyStem, SubSCI1ipT €XpreSS-
ions of typesll, 2 and 3 are analyzed to determine such sets
of statements where in each set apﬁ:opriate respective sub-
script expressions have compatible ranges so that these
statements can be computed in a single program loop. Also
the variable arrays in these statements require only a

single range specification for the respective subscripted
dimension. Type 4 subscript expressions indicate that the
statement must be computed in a separate loop for the respecti
subscript.and never in the same loop as the one that computeé
the variable in which the type subscript appears. This re-
quires also that the array which is subscripted by a type 4
expression must be placed in memory. The proposed analysis

of indirect subscripts will allow the inclusion of more

statements in the same loop.
- extension of the analysis

As will be shown below, tﬁié
to indirect suberipts will also allow the user to compose
list oriented specifications which will be checked more
thoroughly and implemented more efficiently.

The secondary array used in indirect subscripting
must be integer valued with positive entries. The system
will analyze indirect subscripts only if the secondary array
A(I) is sublineaf, namely if it is:

a) Monotoﬁic: i.e. for I>J=>(A(..I)3A(..J)

b) Grows slower than I, i.e. A(..I) ;I

The system will test the secondary array automatically:
to determine if it is sublihear by applying the following

simple criteria. In the assertion that defines the second-

- J - -——J aaN ¥ 9 = b -e s - ¥ e Ww W mEsR = T T T T T D " -

with clauses of conditionals) must be either 0 or 1 for
I=1 and must be equal to A(..I-1) or A(..I-1)+1 for I>l.
Thus the system will examine the assertion to check
if A(I) is in the form:
A(I) = IF I=1 THEN (1 | 0) ELSECA(C...I-1) [A(C....I-1)+1))
.This extension not only makes possibie the checking and
implementation of the 1list oriented functions, but also the
user composition of list oriented applications. Consider
the followingwexample:
Let IN be a source file as follows
IN IS FILE (R(%*))
R IS RECORD (ACCT#, NAME, ACTIVITY)

(ACCT#, ACTIVITY) ARE FIELDS (NUM)
NAME IS FIELD (CHAR)

It is sorted by ACCT#. It is desired to edit this

file to obtain a report with the following requirements:

a) Every new ACCT# (the file is sorted on this field)
should start on a new page.

b) There would be a line in the report for each
record R. |

¢) An account which extends beyond 60 Records should
have a new page every 60 1lines.

d) Each new page should have a header which lists the
ACCT#, a global page number (accumulative), and a -
local page number for/the current account.

A separate HEADER source fiie contains just header records

as follows:

HEADER 1S FILE (HD(*))

HD |'S RECORD (CC, ACCT#, LOCAL_PAGE, GLOBAL_PAGE)
CC I'S FIELD (CHAR(D) -

(ACCT#, LOCAL_PAGE, GLOBAL_PAGE) ARE FIELDS (NOV)
“The output file will I be a merge of the IN and HEADER fil es.

REPORT IS FILE (Q*))
GIS GROWP (P|HD)

The index of records (P or HD) in the REPORT file is
denoted by the subscript |. NEWACCT(I) and NEW PAGE(!)
are bool ean vari abl es whi ch denote whether the Ith record of
REPCRT represents a new account nunber, and start of a new
page, respeétivel y. OCNT60(1) denotes the sequence nunber of c
record Rin its page,

A(l) is a secondary array which denotes the index of a
record Rin INwhich corresponds to thellth line(PjHD) in
REP(RT Note that since the out put file uses both header M
records and i nput records,-”AU> I ncreases slower than I.
Thus |

ACl) =1F 1=1 THEN 1

ELSE IF NEW_PAGE() THEN A(l-I)
ELE ACI-D+1 or i

NEW_ACCT() =((1=2)|(A(1-1)>1S IN.ACCT#(A(I-1))-I=IN.ACCT#

8CONT60C - 1) >0) |

NEW PAGECI) = NEW ACCMI(1) | (ONT60(I-1) =60)

| ONT60(1) = IF NEV\LPACE(I) THEN O ELSE CNT60(I—I) +1
HD. ACCT#(1) = | N. ACCT#(A(D)
HD. LOCAL_PAGE(]) = | F NEW_AOONT(1) THEN 1
' ELSE | F NEW PAGE(D THEN H!I). LOCAL_PACE
ELSE HD. LOCAL PAGE(I-1) |

3-25

HD. GLOBALJPAGE(1). = IF le« 1 THEN 1

ELSE | F NEW PAGE(I) THEN HD. GL.CBA

ELSE HD. . GLOBALPAGE(| - 1)
REPORT. Q1) = | F NEWPAGE(]) THEN HD (I)

ELSE IN. R(ACI) -1)

Wiere the declarations of the secondary variables are
gi ven by

AUX 1S INTER M FILE (GR(*))

QR IS GROP (NEW_ACOOUNT, . NEW PAGE, CNT60, A)
(NEWVCCOUNT, NEW PAGE) ARE FI ELD (BOOLEAN)
(A, CONT60) - ARE FI ELD (NUM

Also CCis the indicator of a new page: CC="l".

4. 'Source to Source Transformations

As already stated in the previous section, the
principal met hod for inplenmenting the extension of MODEL
with high level data structure assertions is to transform
such assertions into assertions containing only operations
on data elenents. Nanely the source high |evel data
structure assertions will be replaced by equival ent ele-
nental data assertions. The latter type'of assertions are
already inplenented in the current version of the MIXDEL
processor. - ‘The transformation of high level structure
assertions into the elenental data assertions is divided
below as follows: Section 4.1 deals wth matrix and
vector al gebra assertions, Section 4.2 deals with the
data structure al gebra, ahd finally Section 4.3 deals
W th data structure equati ons.

The MIDEL processor architecture contains a nunber
of phases, as described in the MODEL docunentétion
(A Pnueli, L. Lu, and N Prywes "MXDEL Program Generator"
March 1980)« -The processor consists of the foll ow ng

phases:

Phase 1. Syntéx-Analysis of the NCDEL Specification

In this phase, the provided MODEL Specification is
anal yzed to find syntactic and* some semantic errors. This
phase of the Processor is itself gener at ed anbnaticalfy'
by a neta-processor called a Syntax Anal ysis Progranicbn-

erator (SAPG), whose input is a table of syntax rules provid

a formal description of the MODEL language in an extended
BNF language. In this manner, changes to the syntax of
MODEL during development can be made more easily.

A further task of this phase is to store the

statements in a simulated associative memory for ease

in later search, analysis, and processing. Some needed
corrections and warnings of possible errors are also
produced in a report for the user. Also, a cross-refer-

ence report is produced.

Phase 2: Analysis of MODEL Specification

In this phasé, dependency relationships between
statements are determined from analysis of the MODEL -
data and assertion statements. The specification is
analyzed to determine the c¢onsistency and completeness

of the statements. Each MODEL statement is first considered

independently and checked for syntactic correctness. Thé or
of fhe user's statements is of no.consequence. The state-
ments are(pepresented by nodes, and the dependency relation-
éhips are represented by directed edges in an array

*'graph on which completenéss,.consistency, ambiguity and
feasibility of constructing a program éan'be checked."
Various ommissions or errors are corrected automatically,

especially in conhection with use of subscripts. Reports

are pfoduced for the user indicating the data,‘assertions,
or decisions that have been inadequately described, assump-
tions that have been made by the Processor, or contradic-
tions that have been found. In addition, a report showing

the range of each subscript is generated.

Phase 3: Automatic Program Design and Generation of

Sequencing Control.

This phase of the Processor determines the sequence
of execution of all the events and the iterations imﬁlied by
the specification. Subsequently it determines the sequence
and control logie ef the desired program. The result of
this phase is a flow of events, sequenced in the order of
execution. Thus, the output of this pahse is similar to
a program flowchart of the desired program. It is sub-
sequently used to produce a flowchart—like report. At the
end of this phase it is'also possible to produce a formatted
report of the specification.

ey

Phase 4: Code Generation.

At this point in the process it is necessary to
generate, tailor, and insert the code into the entries
of the flowchart to produce the program. In parficular,
read and write iﬁput/eutput commands are generated when-
ever the flowchart indicates the need for moving records.
The assertions are developed into PL/1 assignment state-
ments. Wherever program iterations and other control

]

e T e e R T e e T RTINS SREE R e T R TS —-———__ P

s T TR Tt Tw W N AW de

them is generated. Declarations for object program data struc-
tures and variables are generated. Code is also generated for
recovery from program failures when béd- data is encoun-

tered during program executibn." The proddct of this phase

is a complete program in a high level language, PL/1,

ready for compilétion and execution. A listing of the
generated program is produced.

The current version of the MODEL processor already
utilizes the techniques of generating.source MODEL state-
ments where a user specificétion is incomplete and fhe
missing data and assertions stateménts are generated to
correct the specification. However the analysis.:in the
presently considered transformations'Isifirjmore complex
It is proposed therefore to add procedures in phase 2 of
the MODEL processor to handle the transformations. This
in fact creates a new subphase within'phase 2.

The new subphase has to come in phase 2 after the attribu
of all data stfuctufes have been computed, because it
needs to know for its execution the dimensions of variables
as well as their structure. On the other hande it has to
precede the present analysis of the assertions as this
analysis should be appl}ed also to the statements genéfated in
the subphase. Consequently the ideal location would be-
between the procedures ENHRREL which analyzes the data

‘statements and constructs the data nodes and edges and

ENEXDP which analyzes assertions.

The statenent generator subphase nust be organized
i n several further subphases whi ch have to be followed
in a certain order, because the earlier subphases pro-
duce assertions which may be further t ransf or med by |ater
subphases. Note al so that sone Of the statenents gener at ed
are data statenents.

The output of the statenent generator subphase is a
set of additional MODEL statenents replécing sone of the
original assertions in the specification. .These new MODEL
‘'statenents have to be reanalyzed and properly represented
as though they were part of the_original speci fication input
and the original statenments which were, replaced nust be
del eted from the associative nenory. The sinplest but some-
what inefficient method is to maintain the specification
on an external file, and to edit this external file. This
facilitates deleting old assertions and inserting new ones.
After this phase.we nay restart the mhore translation from
t he begi nni ng, presehting SAP with the edited version of
the specification. A nore efficient nethod is to perform
the transformation at the assertion analysis reveI/\incIud-
i ng t he reapplication of the previous phases, such as

dictionary updating, etc. as appropriate.

U1l The Transformation of Mtrix and Vector Al gebra

Assertions.

Thi s subphase scans the assertions and interprets the

"matrix and' vector assertions into nore elenental state-

ments. If this transformation is successful, the original

- assertion is repléced by one or more assertions produced by
the transformation. If the assertion does not contain any
matrix or vector operations then the assertion is,unchanged._

The heart of the transformation ané analysis algorithms

is the recursive algorithm MATRIFY described below. This
algorithm has two inputs. It accepts an expression, from
an assertion that was identified as being a matrix or
vector assertion, and a list 5f two subscripts. It -
attempts toﬁfranslaﬁe,the.inputs.into elemental asser-

. tions. It Analyies the input expressions in the assertion.
tree in the associative memory, expression by expression.
If successful, it returns the transformed expression with
the information of the dimension of the resulting expressfon.

It may also return an indication of failure.

PROCEDURE MATRIFY:

Input Parameters:

EXP - The expression to be translated.

SUBl, SUB2 - The names of the subscripts to be used

for translation.

Output Parameters

TEXP - The translated expression.

SHAPE = Can assume one of the values:

'MAT' - for
- 'ROW' - for
'COL' - for
'SCL' - for

The SHAPE parameter
expression,

Algorithm

a matrix

a row vector

a column vector
a scalar.

reports the shape of the translate

The algorithm analyzes each expression to determine

one of five cases:

1. The expression is a variable - then this is case !}

2. The expression is a unary operation followed

by an expression (0P EXP)-then this is case M2

"3. The expression is a binary operation

(EXP1 OP EXP2)-then this is case M3

4, The-expression is a function with arguments

(F(ARGl, ---))-then this is case Mu‘A;

5. The expression is equality: (the top level of an

assertion) EXPl=

EXP2)~-then this is case M5

M. OonS|der flrst t he case t hat EXPls avarlable

MI.l Let EXP = Awhere Ais af|eld Let dbe i ts dinensio:
If d=0 return TEXP = A, SHAPE = ' SO’
| F d=I return TEXP = ACSUB2), SHAPE = ' ROW
IF d*2 return TEXP = A(SUBL, SUB2).SHAPE = ' MAT .
M.2 Let EXP = AC",.-.' J,T);'n1>0 where Ais a field.
Return TEXP = EXP , SHAPE = 'SQ'.
M.3 Let EXP = A(J", ..J"") , O where Ais a field.
Return TEXP = ACJj,..~, SUB2), SHAPE = ' ROW
M.4 Let BXP = A(Ji, .. Jdmrdml) . nfOwhere Alis a field

Return TEXP = A(*1e,_,.. Jn SUBJ , Jpmi1), SHAPE = 'COL' .
M. 5 Let_EXP.:AC,__.‘. %I»olong_»Jimz where Ais afield.

Return TEXP=A(. .. SUB2, .. JIm1, Jy2>, SHAPE =' ROM.
"M.6 Let EXP = AC..*,..ft,..) where Ais afield. Then

Return TEXP = A(,..SUB1,..SUB2,..) , SHAPE =' NVAT“
M. 7 Let EXP :.AC", .. N), 0 where \Ais a REC[GRClP and

- it has only one descendant field X Let d = di mX)-

dim{A). Then

If d=0 return TEXP =. X(Je..Jn, SHAPE = 'SC

If d=I return TEXP = X(Jy..Jm SUB2), SHAPE ' ROW

I f d=2 return TEXP=X (J"._ . Jm SUBL, SUB2), SHAPE = 'NMNAT
M.8 If EXP = UNIT, the special nane for the unit matrix ,

return TEXP = | F(SUBL=SUB2) THEN 1 ELSE 0, . SHAPE =

' VAT .

Inall other cases V\lnere EXP is a variable, report an

error condltlon

M2. Consider now the case that EXP isban expression formec
out of a unary operation and a subexpression, i.e..
EXP = OP EXP1
M2.,1 If OP is an elementaloperation, i.e. a non matrix
operation then .
Call MATRIIY (EXPl,SUBl,SUBZ,TEXPI,SHAPEI)
Return TEXP=0P TEXP1,SHAPE = SHAPEl
M2.2 If OP = ™n, a *ransposition, then
Call MATRIFY (F¥¥XP1,SUB2,SUB1,TEXP1,SHAPELl)
Return TEX? = 71T.IXP1 and
SHAPE = IF SHAPi1='SCL' | 'MAT' THEN SHAPE1
ELSE I" SHAPE1l='COL' THEN 'RCW'
E.SE F SHAPE1="ROW' THEN= 'COL'
M2.3 If OP = '/, inversion, then -
Call MATRITY (PXPl,SUBl,SUB?,TEXPl,SHAPEl)
If SHAPEl # '"MAT' report an error.
-Describe new aux111ary&§rrays AUX and INV by issuing
the statements: 4 ’
G IS GROUP (R(%)) |
"R IS-RECORD (AUX(#), INV(#))
(AQX,INV) ARE FIELD (NUM)
The names G,R,AUX,INV, should be unique to each
specification.
Also . generate the “assertions:
AUX (SUBl,SUBé) = TEXP1

INV = MATINV (AUX,SIZE.AUX) and return with

TEXP = INV(SUBL,SUB2), SHAPE = 'MAT'
MATINV will be a run-time provided procedure
for inverting a matrix.
M.3 Consider next the case that EXP is a binary
expression:
EXP = EXP1 OP EXP2
M3.1 If OP is an elemental operation, i.e. a non matrix or
vector operation then: | | |
Call MATRIFY (EXPl,SUBl,SUBZ,TEXPl,SHAPEl)
Call MATRIFY (EXP2,SUB1,SUB2,TEXP2,SHAPE2) and return
TEXP = TEXP1 OP TEXP2 and /
SHAPE = IF (SHAPE1l = SHAPE 2)THEN SHAPEi ELSE

IF (SHAPE2 = 'SCL') THEN SHAPEl ELSE
IF (SHAPE1l = 'SCL') THEN SHAPE2 ELSE
'MAT'.

M3.,2 If OP = "* - i,e., matrix multiplication. Let K be a new
system generated subscript. |
Call MATRIFY (EXP1,SUB1,K,TEXP1l,SHAPE1)
Call MATRIFY (EXP2,K,SUB2,TEXP2,SHAPE2)
If SHAPE1l = 'COL' and SHAPE2 = 'MAT' or
SHAPE1l = 'MAT' and SHAPE2 = 'ROW' or
SHAPE1l = SHAPE2 and SHAPEl ¢.'MAT', report an error.
otherwise return
TEXP = SUM(TEXP1*TEXP2,K), and

SHAPE = IF SHAPE2 'MAT' THEN SHAPEl ELSE

n

IF SHAPEl 'MAT' THEN SHAPE2 ELSE

M3.3 If OP

IF(SHAPEL = 'ROW') THEN 'SCL' ELSE
'MAT'

"/, matrix division,

Call MATRIFY (EXP1l,SUB1,SUB2,TEXP1,SHAPEl)

Call MATRIFY (EXP2,SUB1,SUB2,TEXP2,SHAPE2)

If SHAPE1l = 'SCL' or SHAPEl = 'COL' or

SHAPE?

£ '"MAT' report an error.

Declare a two dimensional array AUX(H®,%)

~and issue the assertion:

AUX(SUB1,SUB2) = TEXP2

Now.diétiﬁguish'betWeen the following two subcases:

M3.3.1. If

arrays

Return

SOLVEQ

SHAPE1l = 'ROW' then declare two one dimensional
LEFT(#*), SOL(*) and form the assertions ‘
LEFT(SUB2) = TEXP1l

SOL = SOVEQ(LEFT,AUX)

TEXP SOL(SUB2)
SHAPE = 'ROW'

(b,A) is a run time provided procedure which

for a row vector.a and b matrix A finds the row vector

solution x of the linear system

b.= %A

M3.3.2. If SHAPEl = 'MAT' then declare two two dimensional

arrays

Return

LEFT(#%*,%), SOL(*,*) and form the assertions
LEFT(SUB1,SUB2) = TEXP1l
SOL = SOLVMAT(LEFT,AUX)

TEXP = SOL(SUB1,SUB2)

SHAPE = 'MAT'

Mu,

MS.

'Msol

M5.2

SOLVMAT (B,A) is a run time provided procedure which
for matrices B and A finds the matrix solution X to
the linear system:

B = XA

Consider next the case that EXP is a function

EXP : F(ARGl,..ARGR) |

For each ARG;, i=1..R

Call MATRIFY(ARGi,SUBl,SUBQ,TEXPi,SHAPEi)

Return

TEXP = F(TBXPl,..TEXPR) and

SHAPE = SHAPEj if all SHAPE; are equal to one another
If all the non scalar SHAPEi are equal to one anotheratl]
let. SHAPE be that non scalar value.

Otherwise let SHAPE = 'MAT'.

Finally consider an equality:

EXP ; ITARGET = SEXP1

Where SEXP is the source expression of an assertion.
Then:

Call MATRIFY (TARGET,SUBl, SUB2,TEXP1l,TSHAPE)

Call MATRIFY (SEXP,SUB1,SUB2,SOURCE,SSHAPE)

If TEXP1 = 'ERROR' or SOURCE = 'ERROR'

and SEXP contains matrix operations this is an

error condition.

If TEXP1 = 'ERROR' or SOURCE = 'ERROR' and SEXP does
not contain matrix operations the assertion just
carinot be interpreted as a matrix assertion and return

TEXP = EXP, the original assertion.

4-13

M5.3 1If TSHAPE

SSHAPE or SSHAPE = 'SCL'

or TSHAPE

'MAT' return
TEXP = TEXP1 = SOURCE
M5.4 Otherwise check if SEXP contains matrix operations.
If it does it is an error situation, elée return
TEXP = EXP, again with no translation
End of Algorithm

4.2 Transformation Of Data Structure Functions

Another check performed during the scanning of the
assertions is for the presence of high level data structure
functions: SELECT, MERGE, SORT, COLLECT and FUSE. By re-
quirement these functions can only appear at the top level
of the right hand side expression of an assertion tree.
Thus detection in this case is reiatively easy. Each
assertion which utilizes one of these functions is then
translated in this subphase into a set of elemental asser-
tions.

These functions operate oﬁ source lists of data
structuresbto define a target list of structures. One
form of the assertion using the functions is:

T(...L) = £(S1(,..I), 82(,;.J),..Cond(I,J;...,L))
where the structure T must be compatible with the struc-
tures S1, S2, etc. Compatibility has been defined in
Section 3.2.1. T,S1,S2 etc. may not include components
which are structufe variants; Characteristie to the

T - +k~ ~macanna Af the free subscript L which

There exists an alternate format in which the left
hand side'variabLe is the parent of T and the subscript L
does not appeare For exanple if:
Pis GROUPCT(I))
the alternate forhat I'S:
PC.) =f(SI(,..1),S2(..J),..cond(l,J,...))
Thus in scanning assertions containing data structure
functions it is necessary to determne first which of the
-two formats is used. The determnation is based on check-
ing conpatibility between the target structure (lhs) and
the source structures (rhs). For exanple in the above
cases P and T cannot both be conpatibl e mfth SI, S2, etc.
The first format is assumed as nore general, and
assertions using the second format will first.be converted
into the first format. e

4.2.1 Translation of the SELECT Function

Consi der the assertion:
A(lil*"lnTL) = SELECT(B(Jr,...,J,K,l) , cond (ki,..anI
First a check nust be made if the structure of Ais
cmmmime\MthB. |
« Two versions of the translation are presented
bel ow for the*cases where the sel ection condition
does and"does-not depend on L*. Assume first t hat
a function does not depend en L, then assertions nust be .
generated to define a secondary array X, it's*l ast ele-
ment condition END. X, the dependent variable A and its

range SIZE. A, as follows:

(a) X(Il'f"Im’I) z
IF I = 1 THEN IF cond (Kl,..Km ,1) THEN 1
ELSE O

ELSE IF cond(Ky,..Kp,I) THEN.
I, I-1)+1
m
ELSE X(Iy,..I,I-1)
This defines a sublinear secondary vector X through
which the dependence of A upon B will be expressed.
Next the assertion defining A is:
(b) A(Il,..Im,X(Il,..Im,I)) = IF cénd(Kl,..Kn,I)
THEN B(J7p,..Jd%,I)

The next>assertion defines the size of the target

.. Y
l.\ . IR

array A. ‘-

J, ,I)

(c) SIZE.A(Il,..Im) = IF END.B(Jl,.. X?

THEN X(Il,..Im,I)
Also
(d) END'X(Il"'IHRI)g END.BFJI;..Jk,I)

(c¢) can not be replaced by an assertion (c') fc

END.A -

i)

I ,I) = END.B(J ,..J

l’o_c m, k,

as A is shorter than B and this assertion may cause

(c¢') END.A(I

multiple definitions in the END.A array.
The other case of where the condition depends
explicitly on L is discussed next. In this case (a)

and (b) are replaéed by(a® and(b'):

I - T "‘_-‘L'?"_m’_'
|F 1=1 THEN | F cond (K”. .Kn1,1) THEN 1

ELSE 0
ELSE [F condCK-L,.. !~ 1, XC., 1-1)+1)
THEN X(1,...1;m1-1)+
ELSE X(1,...1m!1-1)
(b«): A(l1,. . ITmX(11,..1ml1)) =1F(1=1 S cond
(Ky50.K ,1,10)[(I>1 6 .cond(Ky,..Ky,I,X(I,. +Ips T
THEN BC™, .. 7, 1)

4.2.2 Translation of the I\/ERGE Funct i on
Let the MERCE assertion be: |
A(..,L) = MERGE (B(,..l), C(..,J), Cond(..1,J,L))
In this case two secondary arrays X and Y are needed, both
bei ng subl i near such that whenever B is elected it is |
Subscripted by X and whenever Cis selected it is subscriptec
by Y. In addition we use fhe follow ng arrays:
B DONE denotes that the B list is exhausted.
C DONE denotes that the C | | ét i s exhaust ed.
SEL denotes that B is sel ected.
The rraih assertion is _
A ,L) = IFSEL(L) THENB(..,X(L)) ELSE .. ,Y(L).-]
 The additional variables are: -
B DONE(..,L) = L>1S(B DONE(..,L-1) |
(END. BC. ,X(L-1)) SSEL(..,L-1)))
C_DON. .,L) =L>1§(C_DONE(. ., L-1) |
(END.CC..,Y(L-1)) g"* SELC...L-1)))
XC.L) = IF L=l THEN 1 ELSE

IF SEL(G.,lr1) €7 B_pONE(...,L) THEN X(..,L-1)+

N ,:. : ELSE‘X(.O.,L_l)
Y(..L) = IF L=1 THEN 1 ELSE .

IF (SEL(.L-D)| C_DONE(..,L)) THEN ¥(..,L-1)
) | ELSE Y(..,L-1)+1
SEL(..,L) = C_DONE(..,L)|(~B_DONE(..,L) &
- Cbnd(..,X(.,L),Y(..,Li,L))
END.AC..L) = (B_DONE(..,L) & END.C(..,¥(L)) & ~ SEL(..
(C_DONE(..,L) & END.B(..,X(L)) & SEL(..,L))

4.2.3 Implementation of the SORT Function

Unlike the other functions,lthere is little advantage
in efficiency in translation of the SORT function into more
elemental assertions. The reason is that the other functions
can be performed in most cases in a simple pass over the
source data. Also in such cases it suffices to locate one
record at a time and not keep the entire source data in main
memory. The program loop that implements a pass over the
records or groups in the source da%a may also include
other computations, thereby further improving efficiency.
This is not the case in sorting where multi-passes over

the data are necessary and major portions of sourde data
must be located in main memory. TFor these reasons SORT
may be implemented by substituting for it appropriate sub-
programs during the Code Generation phase. If the data
which is the argument of the'function is input then it is

\

. advantageous to pr%%ort the data before other computations

=to

_are performed. Simliarly, if the target of the assertion
.is output data then it is advantageous to post-sort the data
~after the appropriate conputations. Note that sorting may
al so be achi eved by repeated use of the SELECT function, to
sel ect progressively the |owest/highest value substructures.
The format of an assertion with a SORT function is

B(L_,L,...,lk):SCRT(A(IT. ’1|'< ,J. ﬁ]1), INJQDEC (X ...))
The sort function reduces the |owest order dimensions (JJ
of A, which are in excess of the dinensions of B.

If Ais source data on an external nediumthen pre-
sorting is indicated and B will be a source data on an exter-
nal medium |f Ais target data on an external medi umthen
post-sorting is indicated. Any conputation that depends on
B nust be scheduled after the sorting and an anal ysis mnust
be conducted of the feasibility of such corrbut ation. If A
or Bare interimdata, the inplication is that they nust be

-entifely | ocated in nenory.

*A 24 Trapnslation of the CAIECT function

The CCOLLECT function creates a two di nensional struc-
ture A froma one dinensional structure B. The condition ar gu
ment defines the first elenment in a next "row' structures of A

The formof an assertion-with a COLLECT function is:

A(..1,L) = COLLECT(B(..J), cond(l,J, L))

Two secondary arrays X(J) and Y(J) are needed to
subscript A in the generat ed substitute asserti'on:
AC, X(J), Y(J)) =8B(..,.J)

4-19

X(J) denotes | a_nd Y(J) denotes the values of L for each
value of I. Y(J) by itself is not nonotonic, only within
 |, and (X(J),Y(J)) is lexicographically nmonotonic. The
successor of A(..l,L) may be either A(..Il,L+1) if Cond(I,J,!|
is..faseor AC. 1+1,1) if it is true.

then the generated assertions that define X and Y are.

X(J) = 1FJ=l THEN 1 ELSE
I F Cond(X(J-1>,3,Y(J-1)) THENX(J-1)+1
ELSE X(J-1)

Thus X is stepped only if the condition
Y(J) = IFJ=l THEN 1 ELSE

|F Cond(X(J-1),3,Y(3-1).) THEN 1~ -

_ ELSE Y(J-1)+1
Also let the row né;re'(pafent) of A be AA then
END. AA(X(J)) = IFéond(X(J),J,Y(J)) THEN END. B(J)
END. A(X(J),Y(J)) = cond (X(J),J,Y(J))

fr.2.5 Transl ati on of the FUSE Functi on

The FUSE function assertion has the form
A(..L) = FUSE(B(..1,Jd) ")

Here the two auxiliary arrays

X(L) and Y(L) denote the indices of B:

A(..L) = B(X(L),Y(L)) |

Thi s | ast as$ertion is generated in additli on to

the definitions of X(L) and Y(L):

X(L) = IF L=1 THEN 1 ELSE

If END.B(X(L-1),Y(L-1)) THEN X(L-1)+1
ELSE X(L-1)
Y(L)

IF L=1 THEN 1 ELSE
If END.B(X(L-1),Y(L-1)) THEN 1

ELSE Y(L-1)+1
END.A(L) = END.BB(X(L)) where BB is parent of B

U3 Translation of Data Structure Equations

This section concerns assertions of the general form
A = 1F Condi THEN B ELSE |
| F Cond2 THEN C ELSE

o (Ko o

Were A B, C... are of record or group'node type (not fields)
A B, C... may be multidimensional with n ,ru,n.. .dinensions
a o c

respectively. The objective is to substitute for the above
assertion one or nore assertions that define the conponents
| of Ain terns of the conponents of B,C...”

A nmust be compatible with B,C... « Conpatibility here
nmeans either of the following two casesGn order of priority):
1. For each field in Athere is a unique matching
field in B,C... with the sane nane, sane di nen-
sionality in respect to the root of A B,C. ., re-

- spectively, and sane data type.

2. For each node in Athere is a unique matching
node in B,C... with the sane data tree-level in
respect to the root of A B,C.., respectively, either
the same nanme or otherw se of the -same sibling positi
{in order of sibling node's from left to right) , sane
node type (i.e. either record/grOUp_or field), and.if
the node is a field, also the sane data type. |

As noted A B, C... may be-multidinensional. The respect-

Ive subscripts expressions of these variables will be

retained as entered by the user. Subject to the restrictioné
listed in Section 2, the subscripts may be omitted by the
user, whereupon they will be automatically inserted by the
system.v These subscripts will be omitted below, to simplify
the presentation here. To further simplify the presentation
we will consider the form
| A =3B
with the understanding that when 'Cond THEN...ELSE' clauses
exist then the ruleé concerning A and B must also apply to
A and each of the other variables following the ELSE(i.e.C,
etc.). Note that the operands in the conditional clauses
must be fields.
In previous scanning of the assertions, those assertions
that have the above form and the operands are of record or
group node types are passed as arguments'to the translation
of data structure equations. Basically this process is |
viewed as consisting of the following two steps:
1. Matching the nodes in A with corresponding nodes
in B (and C,...if there are corresponding condi-
tionals). We will refer to this stage as either
MATCH_BY NAME (assertion) for éase 1 above, or
MATCH_BY_ STRUCTURE (assertioni for case 2 above.

2. Translation of the equation into an equation with
lower level data structure operands (the lower
level nodes may be record/group or field node»typesl

This stage will be referred to as TR(assertion,

list of matched components).

In many cases SIZE and END attributes are propagated

automatically from other operands in the same assertion for

which the user has defined these attributes. In these cases

it is not necessary to define attributes.

Applicability of compatibility by name (case 1) is

checked first.: If the check is negative then compatibility

by structure (case 2) is checked. The algorithm for case 1

is as follows:

1

2)

MATCH_BY_ NAME(A=B) consists of checking of each
field in A for a unique field in B with the same
name, dimensionality (in respect to roots of A
and B) and data type.
If the check is successful and the fields in A
are Xl....thhen the translation stage TR(A=B,
A.X5, B'Xi for i=1 to k) is called to generate
assertions of the form

A.xiCIl...;Ina)=B.x (Iyse-..I4) for izl to k
(for the more general case the assertions will
be: A.X = IF Condl THEN B.X;ELSE

i
IF Cond2 THEN C.X; ELSE etec.)

Later in the MODEL analysis phase these assertions will

be analyzed for consistency of ranges of variable arrays.

Normally, the specified ranges of respective dimensions

(from right to left) for B.Xi will be passed to A.Xi or

vice versa. If there.is an inconsistency the user is
requested (in an efror message) to specify the missing
‘range definition.

In case 2 the matching and translation are performed.
recursively one level at a time. Namely the assertion A=B
is translated into assertions for the corresponding immedi-
ate descendents of A and B, respectively. The process will
be repeated if the latter are records or groups, until the

respective corresponding descendents are fields.

1) The MATCH_BY_STRUCTURE(assertion) process is as
follows: The immediate descendents of A:Al“'A};are
examined first if they each have the same names as ai
immédiate descendents of B:Bl...Bm. The same
named components Ai and Bj are then candidates
for further matching. If there is no name corres-
pondence then Ai and B., for i=1 to k, are candi-
dates for further matching. |
The candidate pairs are then checked for the same
dimensionality (within A and B respectively) and
if they are fields, for the same data type, to
determiﬁe if'they all match.

2) 1In casé of a match the tranélation process 1s
called: |
TR(A=B, A, ,B.

J
to generate the assertions.

for all k components of A)

A =B for all t he mat chi ng setse
I'f A} and Bj

subscripts wth A%and & then a subscript on

are repeating, and the user inserted

the right nmust be added by generating instead
the assertions: |
A(..,SuUBl) = BjC..,SUBl)
| f A:. or Bj are not fiel ds_, t hen t he nat ching
and translation processes are called recursively.
' The insertion of appropriate subéc’ri pt s gnd det er m na-
tion of ranges of dinensions are perfornmed in latter parts

of the analysis phase called 'dinension propagati on and range

prop-agation respectively, which are described in the MOXDEL

Program CGenerat or docunentation. These processes are also

briefly reviewed in the next secti ons.

“e5, Analysis and | npl enmentati on of Indirect Subscripting

The significance of indirect subscripting is in inprov-
ing the efficiency of the produced programt The under st and-
ing of how efficiency is inproved and the associated anal ysis
requi res knowl edge of two subprocesses of the MODEL system

range propagation and scheduling. These processes are

briefly described below. For further explanation the reader
Is referred to.the docunent ati on on "MXDEL Program Generator".
A. Pnueli, K Luand N. Prywes, March 1980, or to a nore
general paper "Conpilation of Nonprocedural Specifications
Into Conputer Prograns" by N Prywes. and A Pnueli, October
1980.

Mich of the information needed for generating a program
is inplicit in the MDEL specification. It is therefore
necessary to performthe analysis to nake such information
explicit. As a first step a MDEL specification is repre-
sented in a'convenient form based on which inplicit infornma-
tion nay be derived and entered, checks be conducted and

finally a schedul e of program execution be derived. The
usual approach to such analysis has been to use a formof a

directed graph to represént dependencies bet ween the different
el enents of the specification. "W have devel oped a generalize

type of directed graph wich we t er med array graph, where a

singl e node represents an aggregate of elements and a single
edge an aggregate of edges or dependences between the

bel ongi ng respectively.to the two nodes.

“The nodes in .an array graph represént potential process!

steps associated with accessing and evaluating array variable

Each data structure and each equation are represented

by a node. Each node is potentially'conpound; nanmely it
represents the instances of the data structure or equation
for all the array elenments froml to N Information on dinen
sionality and ranges nust therefore be associated with the
nodes in the array graph, A node that corresponds to a
data structure has associated with it subscripts corres-
ponding to its dinmensions. A node that represents an
assertion (i.e. equation) has associated with it subscripts
correspondi ng to the union of subscripts of the variables
appearing in the assertion. Thus a conpound m di mensi onal
node A represents the elenents fromA(l,l,...l) to A(an,

hb "Nr% wher e hﬁ...Nn]are the ranges of dinensions 1 to m

respectively.

Smlarly a directed edge may be conpound in that it
represents all the instances of dependencies anong the array
el ements of the nodes at the ends of the edge. These depen-
dencies inply precedence relationships‘in t he execution of
the respective inplied actions. There are several types of
dependenci es or precedences. _Fdr exanple, a thLaLgnLaL,
precedence refers to the need to access a source structure

before its conponents can be accessed or, vice versa, the

need to evaluate the components before a structure is stored

away. Data dependenCy precedence refers to the need to

evaluate the independent variables of an equation before the
dependent variable can be evaluated. Similarily, data para-
meters of a structure (range, length, etc.) must be evaluated
before evaluating the respectiye structures, These edges |
are determined based on the analysis of the iﬁformation in
Statements associated with the respective end nodes. Since
each edge may be compound it is necessary to associate with
it information on dimensionality and ranges.

An array graph AG is then a pair (N,E) where N is

a set of cdmpognd nodes and E is a set of compound edges.

The array graph AG=(N,E) represents an underlying graph

UG=(Nu,Bu) which is a conventional directed graph obtained
by considering each of the elements of array nodes as indi-

vidual nodes:

N ={A(T;,I,00.I) | 11 s N

2 1 1°

1 < 12 < N2,..where A(Il,Iz,....Im)sN}
Similarily

Eu = {A(Il,Iz,....)+B(El,E2...)
|1 < ;l < Nl, 1< IzsN?.;where A(Il,Izt;;

The analysis of a MODEL specificdtion is based on the

)+B(El,E2

respective array graph. Consistency can be checked in a

three step process. The first step, dimension Egopagation,

traces the array graph in order to determine consistent

dimensionality of the nodes. Next comes insertion of sub-

scripts in assertions where they have been omitted. The

last step, range propagation, identifies the ranges of

dimensions of arrays, for which the user has not provided
specifications, with corresponding user specified ranges

of dimensions of other arrays. This process also detects
and reports conflicting, redundant, or missing range speci-
fications.

It would be cumbersome for the user to define the‘
range of each dimension of each node. Therefore, in the
absence of a range specification for a dimension of a
variable, the assertions where the variable is used are
analyzed for implications of the range. For example, the
assertion

X(Im...Il) = Y(Im“‘Il)
may imply that the ranges of the dimensions in X and Y
referred to by the same subscript name are the same.

This is referred to as range propagation. The range in

this case is defined through propagation of the range from
another node for wﬁich the range is known. The function of
the range propagation process is also to determine the range
- sets, namely the sets of nodes and respective dimensions that
have a common range definition. Consider an edge e: s<p.
The correspondence of respective dimensions in nodes P and s

is given in the subscript entries associated with the edge e.

For subscript expression of types 1,2 and 3 (I, 1-1 or I-K)

and in the absence of contradictory range specifications,

the indicated correspondi ng subscripts in p and s are

assuned to have the sane range and be nenbers of a corres-

pondi ng range set. By repeated propagations, a range set

is determned, consisting of node-nunmber and position-nunber
pairs which have only one common range specification. Note
that in the current version of MODEL the range is not prop-
agat ed where a subscript expression is of type 4 (i.e. con-
stant or any other formdiffering fromtypes 1,2 and 3).

e necessary extension to the MODEL systemis to allow
propagati on of a range where indirect subséripts are used.
This is further explained bel ow.

The ot her extension concerns scheduling of program
events. There are two special interdependent problens that
nmust be coped with in scheduling execution of a node in the
array graph. First, the array graph may contain cycles
whi ch prevent ordering the nodes in accordance with the
edges. A maximally strongly connected conponent (MsCC)
results ffon1cyc|es in the array graph. .Secondly, each node
represents an array of data or equations and it is nécessary
to assure that all the elenments are individually accessed
and eval uated. Consider the sinple exanple of a sﬂtgle node
consi sting of assertion a:

a. ACIl.. . I):f(B(f by, 3,0000))
1 n Soa b* 1 m

The I and J subscripts are distinet. I

a....Ib is a sub-

set of I,...I . Assume that CondIl...CondIm recognize the
last elgments in the ranges of Il...Im. To evaluate all

the elements of assertion a it may be bracketed by iteration
statements for all it's subscripts. The elements will then

be evaluated while progressively varying the indices in each
dimension from.l to the last element defined by cond I.

The general approach to scheduling coﬁsists of crea-
ting a component graph which consists of all the MSCCs in
the array graph and the edges connecting the MSCCs. The
component graph is therefore an acyclic directed graph.

It is then topologically sorted, resﬁlting in a linear
arrangemenf of the components which can be regarded as a
gross level representation of the flowchart. The subscripts
for ‘each component are determined and appropriate iterations
for these subscripts bracket the respective components.

An atfempt is made to decompose a MSCC by deleting
appropriate edges. Consider the simple example of a two node
MSCC consisting of a one dimensional array X and the assertion

a: X(I) = IF I=1 THEN 1 ELSE X(I-1)+1
N is the range of I. Therefore the schedule would be:

" do I from 1 to N. .
MScCC cbnsisting of nodes é and X

end I L £ 1-]

The edgé a+«X has associated with it a subscript I of type
2, (I-1). It indicates that evaluation of the I-1 th ele-
ment of X must precede the evaluation of the I th element.
But this is already assured by the order of iterations for
I from 1 to N. Therefore this edge may be deleted, which
may cause-decomposition of the MSCC and allow for its
scheduling. More generally, to decompose a multi-node
MSCC it is neceésary to:
i) Find a dimension position in each node of
the MSCC. These positions must all have a
common range that can be given a corresponding
common subscript name to use in an iteration
statement. The iteration statement will than
bracket the entire block of nodes that constitues
2) Find edges that represent dependencies on lower
indéx elements of the selected subscript; these
edges are deleted and may cause decomposition of
the component.
For complex MSCCs the decomposition and scheduling
may be performed recursively until all the cycles are opened.
The second extension concerns deletiﬁg edges in an
MSCC in some cases where indirect subscripts are used.
The last extension has an important effect on the
use of memory. If'a variable is only referenced‘iﬁside fhe

same program loop in which it is computed, 'and the subsecr:

“expressions for the variable are of the forms I, I-1,I-K (K>0)
then only K+l elements of the dimension associated with I need
be co-located in memory at any time during program execution.
We want to extend the MODEL system to allow similar savings
in memory when indirect subscripts are used as well. If all
the elements along a dimension denoted by I of a variable
X(.ee3I,....) must be co-iocated in memory, we refer to the
dimension I of X as physical. Otherwise, if only K+l elements
need to be co-located at any time in the main memory, then
we refer to such a dimension I of X as virtual.

General implications of using indirect subscripting
are discussed further in Section 5.1. Section 5.2 dis-
cusses schéduling of assertions with indirect subscripts
when the respective nodes are in an MSCC. Additional infor-
mation on the design of the extensions associated with in-
direct subscripting analysis and program design is given in
Appendix II.

Indirect subscripts are subscript expressions of the
form A(.,X(I),.), where the secondary array X(I) is
sublinear, i.e.

X(I) <I and X(I) < X(I+1).
It is possible to check whether-a secondary.array is sub-
linear by checking its definition. A sufficient condition
for sublinearity is that the definition is of thé form:

X(I) = IF I = 1 THEN(_:L]O)ELSE IF cond THEN X(I-1)

ELSE X(I-1)+1

5.1 Effects of Indirect Subscripting

Four possibifities of instances of indirect subscript-
ing wthin a maximally strongly connected conponent (NBCC)
are consi dered bel ow.

a) Awvariable Ais defined by an assertion
a: A(..1) - .. |
and all its rhs usages are of th; form
=..A(.*,1-c,.)

This situation is handled in the rresent system The
edge A(*. ,I-c,.)-*a may be d€; eted deconposi ng the NMSCC
and A may be virtual * '

b) A wvariable A fs def. led by an assertion
ai a0t Ty — ..

and sone of its rhs usages are indirect, i.e. of the form

- At 7 - - L - 3
It is still possible to delete the € e A(. ., X(I-c)-d,. .)-*a
since by the assunption of sublineai ity I>X(. ,I-c,.)- d

and an el ement is not accessed before it is eval uated.
However, under these circunstances A, nust be physical since
X(..,1,.%) may lag arbitrarily far behind | requiring

the storage of 'all the elenents

ACwX(E) 52) s AC L XC)+1,00) o AL L)

These el enents héve been eval uated but not yet. used.

In scheduling a progfan1|oop on | which consists of the

nodes of a MSCC we may renove edges of the follow ng types:

B(..,X(.,!,-),.)«-.A(.,'X(-.,I[-c],..)-d>..)c,d>o
B(.,lI,.)«A. .X(.,H>c]j.)-d,..) c,d>0

Also it is proposed trust the user and renove edges
of the types: , |
DB X, L),) FAC w X(ee L l-C.l), L) ©>0
B(eo,1, 0.)«As.5 osl-C,..),..) c>0

These latter edge. re not guaranteed to refer to previous

I nstances of A, since there may be cases in which X(.jl,..)=
X(..,l-c,.). however, we will rely on the user in such cases
torefer to X(.,l,«) instead of X(.,I-c,*,)*

C) ‘A variable Ais defined by an assertion
P et TNy .
and sone of its usages aré direct, i.e. of the form
= AL 1Cc]. %) |
these assertions can not be scheduled in a loop on I, since it
is possible that X(lI<IC-c] and an edge may be deleted only
if A(l) depends on lower index elements of A.

d) A variable A is defined by an assertion
- AT v’ - Y Y -
- and all its usages are indifectly subscripted, i..e. of the fo:
...3...AC... X(..,1[-cl)C-d],..) ' '
As stated in (b) above, the user is trusted to assure that:
XCl) > XCIC-cDC-d] . o
Also: '

mx CXQ) - X (I[-cp C-d3)=c+d

5-11

The index of A on the lhs is greater than on the rhs.
The rhs value of the element of A is evaluated prior to
the evaluation of the assertion defining the lhs element
of A. The edge
AC.., X(I[-e1)[-d],...)>a
may be deleted thus decomposing the MSCC. Furthermore
vthe maximum number of elements of A neeaed to be co-located
in memory is c+d+l. Therefore the dimension I of A may
ve virtual, and we may schedule the generation aﬁd usages
of the variable in the same loop.
To summarize:
Case a:i a: A(...,I,...) = ...AC. ., I-cy...)
The edge A(...,I-c,...)+a may be deleted,'the MSCC
decomposed (if possible) and if all references to A
can be placed in a program loop then A may be virtual
in the dimension of I.
Case b: a: A(..,I,...) =A(..,X(I[—c])[—d],...)
The edge A(..,X(I[—c])ffdl,...)+a may be deleted and
the MSCC decomposed. However, A must be physical in
the dimension of I. |
Case c: a: A(...,x<1>,...>'=A(...,I[ele)

The edge A(...,I[cl,..)=»a may not be deleted.

“Gaseda ACe. X 1),) = A X(TEc]) Cd] . L)
The edge A(...,X(I1”c])Cd],...)->a may be deleted and

A may be virtual in the dinension of I#

5,2 Scheduling a Maximally Strongly Connected Conponent (MSX

The process of scheduling a MSCC calls for propagation of
a range to at |east one dinension of each assertion and each
variable in the conponent. The resulting range set nust consd
of only one_dinension of every node in the MSCC, barring
t he case mheré.a range can be propagated to nore than one
di rension of a node. If such a range set is found, then the
nodes in the MSCC may be sbheduled in a programloop for the
respective subscript.

Note that any instance of the above case(b) inplies that
a certain dinension of an array nust be physical. This
shoul d be used in conputing the storage penalty associ ated
with the loop candidate subscript I, If several subscripts
are legal |oop candidates we pick the one with the | owest
penal tye

" - Consi der the assertion:

Bife o Tjeed = 0 A«)
I'f | appears in a position of B which was selected for
the range set, it nust al so appear in the position of A which
was selected for the range éet and it cannot be 'in the form

of a type 4- subscript expréssion.

These conditions can be extended to cases of the asser-
tions of the forms:

BCe.o,X(e3Iye)yes) =

or

ee = ACLXC(.,T50),00)
provided I appears in the range set selected position of X,
and X(.,I,.) is inthe range set selected positions of A and
B, respectively.

Consider again case (c) above, where an assertion
defines A in the form:

AC, ,X(I),.) = ..
and A is used on the lhs of the same or another assertion a
of the form?

a: B(...,I,..) = .. AC..,I,..)
then these assertions cannot be schéduled in a loop, without
some changes. In the case that such a situation is detected
conceivably I may be replaced in a by X(I) to obtain:

a': B(..,X(I),..) = ..AC(..,X(D),..)

This replacement should of course be carried out for all
instances of I in a'.

Aé a result of this replacement the new variable B is
defined by indirect indexing. Consequently it may be
necessary to repléce I by X(I) also in other assertions
which use B(.,I,..) on the rhs.

This sequence of replaceménts may :

1. Terminate, in which case we are assured that no

more instances of case(c) exist. We may then
proceed with the scheduling.

2. There is continuous replacement in a loop. This
becomes evident when we apply the replacement
twice to the same assertion. Consider for example

the assertion:
A(X(I)) = f(A(I-1))

Applying a replacement to it yields:
A(X(X(I)))=£f(AX(I)-1))

which is again case(c) and doubly indirect. The

appearance of doubly indirect subscripting is a
sign of a cycle of replacements which may continue

forever. Consequently on the detection of a newly

created double indirect subscript expression we con-

clude that the subscript candidate cannot be selecte

for a loop for the MSCC.

There is also another problem associated with the appear:

of an indirect subscript on the lhs of an assertion. Con-
sider the assertion:

a': A(.,X(D,..) = ...

Such a statement in a loop on I implies ineffiéiency
since it will be executedvfof each.I'regardless of whether
X(I)=X(I~l),.in‘whichqcase[it‘is?a duplication of a com-
putation performed before. The problem ié not only that of
efficiency, but if instead of an assertion we have a record

node R(.,X(I),..).

We do not want to have it redd for each I but only
when X(I) increases. Consequently we may add a condition
to such assertions in the form:

a": AC..,X(I),..) = IF(I=1&X(1)=1) [(I>1 & X(I)>X(I-1))

THEN

- Typically several statements will all have such a common
condition and can be grouped into one block. The cbndition
will then be tested only once for the complete block.

5.3 Range Propagation Through Indirect Subscripting

Consider an . assertion

a: A(X(I)) = ,.B(I)..
In the absence of conflicting range specifications we infer
that the ranges of B and of A are associated. This is differ
ent than saying that A and B have identical ranges. We can
say that the range of A is assoéiated through X with that of
B. Thus in the event of an assertion:

Cc(J) = A(J)+B(J)
unless an independent range specification is given for C, it
is not known whether J should range up to NB’ the range of
B, or up to X(Np) which is the range of A.

~ In the case of two other assertions:

C(X(I))=..B(I)..

E(J)=C(J)+D(J)
the range of E is associated through X with that of B, i.e.
if the size of B ierB then the size of E is R(Ng) .

In the present version of MODEL a range specification

(i.e. a termination condition for the respective loop) can
be direct -- covering the cases:

1. A fixed value specified in the data statement.

2. END.A

3. SIZE.A

4, END.A implicitly defined by end ofifile for a

record or a group above the record level in an
input file.

Congidep the assertion

B(X(I))=A(I)
The termination condition may be propagated indirectly from
A to B. The pointer RANGEP points from node (A) to node (B
implying RANGE(A) = RANGE(B). This indirect range specifi-
cation must be exteded to an assertion of the form B(X(I))=
An indirect pointer INDR is added to each node data. This
indirect field, if not empty, points to a secondary array X
which relates the range of B to the range of A, ie.

RANGE(B) = X(RANGE(A)) |

_RANGEP(B)=A

INDR(B) =X
If the assertion is of the form:

B(I)=A(X(I))
Then (through backwards propagation)

RANGEP(A)=B, INDR(A)=X, RANGE(A)=X(RANGE(B))
representing the féct that |

X(RANGE(B)) < RANGE(B)

The concepts of a range set should al so be extended
to the situati on where two nodes may be put into the sane
| oop, even though their ranges are not i dentical but are

associ ated through a secondary array.

APPENDIX I

Syntax and Syntax Analysis Checks

In this Apperidix we discuss the modifications which
are necessary in the syntax definition of the language.
We will also consider the needed revisions in the process-
ing following immediately after the syntax analysis.
Consider first the syntactic changes needed in order
to implement the matrix operations:

T.1 Syntax Modifications for Matrix Operations

The first step is to cause the syntax analyzer to
recognize the symbol combinations for the new operations
which are "* for matrix multiplication, "~ for matrix trans-
position and "/ for matrix division and invefsioﬂ;v The
simplest modification would be to change the syntactic defir
tion of <term> and <factor> into

<terms>::= <mfactor> [<mops> <mfactor>]%

where

<mops> :: = :':I/l":'gln/
<mfactor>::=<unop> <mfactor> | <factor>
where

<unop>::=" "‘l"/

This extends the élass of binary multiplication operat:
to include also "* and "/ and introdﬁces a new class of una:
operators "~ and "/. The definition is such that it will
allow multiple unary operators to be applied to a single'
argument, such as: |

"/ "N‘A or ",\‘"/B

It will also correctly interpret é sequence of a binary
operator followed by a unary operator:

A& B
In fact the actual EBNF/WSC will be of the following form

<termp::= /WRTERM // SVTERM <nf act or >/ SVCMP! /

[<nmops>/ SVNXOP/ <nf act or >/ SYNXCMP/ | */ STALL/
<nmops>::= [MOPREC/

<nfactor>::= [WRMFAC/ / SVMFACI <unop>/ SVOPI /

<nf act or >/ SVCWP1/ /| STALL/ Il<f actor>/ STALL/
<unop>:: = [UNOPREC/

In the above:

MOPREC is the routine for recognizing nultiplication
operators and it' should be extended to recogniZé " and "/
as well. In the internal representation of delimters we
shoul d al | ocate some nunbers to these operators. It is

suggested to have (see pége 59 in the Docunentation Manual)

25 - "
26 - "
27 - "4,

The internal type assigned to <nfactor> should be iden-
tical to that o‘f- <factor> namely 11. | |
VWRMFAC- Shoul d be a new error stacking routine. It should
stack the error nmessage — '

"EXPECTI NG A FACTCR' '

SVWFAC - |s a node saving (and presetting) routine for. initi

ating a node to be of type <nfactor>

Since the internal type is llfthe same as <factor>.
we may replace WRMFAC and SVMFACbe WRFAC and SVFAC respect-
ively. In this case no new error and saving routines are
needed.
UNOP - This new routine is necessary. It is similar in
‘operatiens to MOPREC and should recognize and derive the in-
ternal representation of the unary matrix operations " /
and ", |

The system should recognize the reserved name UNIT
denoting the unit matrix.

I.2 Extensions for Variant Structures

I.2.1 Syntax and Syntax Analysis

" The syntactical definition of the list of substructures
into which a record or a group breaks is currently given by tt
variable <item list>. This variable appears in theldefinitj
of <group_start> and of <record_start> . Consequently it is
sufficient to modify the following definitions:>

<record_§tart>::=<record>/MEMINIT/t(<alt_item_;ist>)]
/STREC/ |
<group_§tart>::=<group>/MEMINIT/[(<alt;item_;ist>)]

[,TABULATED/SVTAB/1/STGRP/
where
<alt_item_list>::=/ITEMO02/<item list>

[//SVALT/<item list>]%*

Thus we add an additional level to the description
of the substructure of a record or é group. Consequently
the storage entry structure associated with the record or
group described will have to be changed. A relatively easy
and compatible‘modification will be to add a tag field to
the auxiliary description structure associated with tgf
storage entry (RECGRP Structure). This tége will contain
the value 'SEQ' if the members listed ih RECGRP are the
substructures into which the current structure breaks. It
will contain the value 'ALT' if the listed members are the
alternatives or variant terms which the current structure may
assume. This restricts the representation to describe
either a séquential breakdown gé a list of variants but
not both. Consequently a statement such as

G IS GROUP (A,B /C)
will have to be represented by the system as though if
were presenﬁed with two statements:

G IS GROUP (ST /C)

$ST IS GROUP (A,B)

The newly introduced hame $ST is system generated name
and should bebentered into the associative memory as well
as represented by an appropriaté storage enfry.

In order to manage the acquisition of an <alt_item list>
we maintain a double'storage area. The first area stores

names of variants while the second area stores a sequence

of substructures. W will refer to themas the variant
and sequence area respectively. Any itemlist encountered
will be entered first into the sequence area. (n encountering
a /. we cheak whether the sequence area contains one or nore
itens. If it contains a single itemthis itemis noved into
the variant area. Qherwise |let the sequence area contain
the sequence A,/ B,.. . Then we create a new nanme $ST and
sinulate the storage df the data declaration
$ST IS GROP (AB,..)
In this case we nmove $ST into the variant area. In both
cases we clear the sequence area. The task of managing this
acquisition is sharéd bet ween the follow ng routines:
MEMNT - Should initialize the double area.
SVALT - Anewroutine. It is called on encountering
an "/T« It performs the novenent of an itemlist from
the sequence area into the variant area, as described
above. | | |
STREC, STGRP - They finalize the storing of entries for
record and groUp respectively. If they find that the
variant area is still enpty, a regular storage entry
s creéted by novi ng the sequence area into RECGRP and
setting the tag field to "SEQ. |If the variant area
is not enpty we call on SVALT one nore time to nove the
| ast sequence area into the variant area. W then de-

fine RECGRP by'aning the variant area into it and

setting the tag field to 'ALT'.

The system sh§uld recognize the special'prefix DISCR
applied to groups which are declared to be described by
variants.

I.2.2 Computation of Attributes For Variant Structures

The routine ENHRREL computes certain attributes of
declared data structures. Some modification in the com-
putation is necessary in order to allow for variant struc-
tures. Following is a list of the attributes which are
affected: |

LEN-DAT - The length (size) of the :structure. If the

structure is a variant, its sizé in b&tes is com-

puted by taking the maximum of the sizes of its
variant substructures.

VARS - This attribute marks structures which have

varying substructures. It is used in deciding whether

a structure can be moved in one statement or has to

be broken into a sequence of statements moving each

of its substructures. If a structure is defined by

a vafiant, it must be marked (as weil as all its

ancestors) as varying, i.e. VARS='1'B.

BROTHER - This attribute points'at a node which is the

right brother of a given node, both nodes sharing the

same father. Even though variants do not follow one
another sequentially. The BROTHER link should be

established for siebling variants.

DISCRB - This new attribute is set to '1'B for all
groups or records A such that the attribute variable
DISCR.A is the target of some assertion.

I.2.3 Siebling Edges for Variant Structures

In general when several structures form the sequential
decomposition of a higher structure, dependency edges of
type 8 are drawn between them is the array graph. The
purpose of these edges is to delay the processing of a
later n.de until its predecessor has been processed. If
the str ~tures are variants, i.e. form a parallel decompo-
sition of a higher structure these edges should not be drawn
since only one variant will be available at any time. Thus,
type 8 edges should not be drawn between nodes whose father's
tag is 'ALT'. This modification should also take place in
ENHRREL.

I.2.4 The DISCR Edge, type 22

Associated with each variant structure A there is aﬁ
data-parameter DISCR.A. 'This‘integer valued variable .
has the values 1,2,.. according to whether the first,
second, etc. variant is to be chosen for A. There is an
obvious precedence order which says that DISCR.A.has
to be computed before any of the fields in the variants of
A can'be accessed. This dependency relation 1s represented
by a type 22 edge. The natural form of this edge»ﬁould‘have
been: |

: 22
A(Uk,..Ul) < DISCR.A(Uk,..Ul)

- X

Unfortunately, in some cases the DISCR attribute may depend
on values of the variant fields themselves. Consider the
éxample:

A IS GROUP (B/C)

" B IS RECORD (X,Y)

C IS RECORD (X,Z)

(X,Y) ARE" FIELD (NUM)

Z IS FIELD {(CHAR(10))
~a\ DISCR.A = X
Here B and C are variant records.v Both begin with common
numeric field X which has the value 1 for B and 2 for C.
The continuation of B and C differs after the similar X
field. It is clearly feasible to read the record A, retriev
the field X without knowing if it belongs to B or C and
then usirg the assertion for DISCR.A in order to decide if
B or C a. implied. Drawing the 22 edge between DISCR.A and
‘A would lead in the above case to a cycle involving:

x 1A 2Zpiscra 1 a 2 x

Hence we must have a more complicated rule:

let A : (Bi/Bz/"'/ B)

m
And let each Bi be describable as

. - i
Bi.xl,xzz". Xk’ Yk+1,..)
i.e. all the B structures have identical initial segment
i .
l,..Xk and then different continuations Y;+l"' dependent

on i. Then we may allow DISCR.A to depend on the common

prefix Xl,..Xk. Correspondingly we will draw the edges:

i 22 .
Y « DISCR.A for 1=1,..m.

k*l
In the example above there would be two edges:

Y 22 DISCR.A and

Z 22 DISCR.A |
In order to draw the 22 edges we have to perform concurrent
analysis of Bl,.. Bm fo find the smallest k such that at
least two of them disagree on vl

k+1”

In this and later applications we have to form an
exact definition of when two structures agree and to con-
struct a recursive algorithm for checking for agreement.

Def. Two structures A and B'Egggg;(have similar

structures) if:

A and B are identically named (assuming no multiple

definitions) , or

A and B are both fields with the same type and same

fixed attributes (repetifion, 1éngth, precision, etc.),

or

A: (Xlé./Xk), B: (YlA./Yk), A and B have the same type

.and same fixed repetition attribute, and X; agrees

with Yi for i=1,..k.

No syntax modifications are required for the list func-

tions. The table of recognizable standard functions should

I-10

- ‘be extended to include the new functions:

SELECT, MERGE, SORT, COLLECT, FUSE.

[1-1
APPENDI X 11

Inpl ementation Details - Edge Types and Representations

The representation of assertiohs with indirect index-
ing calls for the extension of the structures representing
the edges, as well as for sone newtypes of edges. The
representation of the'edges for a given node in the current
systen1includeé a list of subscripts for the left hand side
whi ch is assumed common to all edges. This list is built
out of a linked list of elenents called LOCAL SUB. The righ
hand side of each edge consists of a linked list of structur
called EDGE SUBL. Both structures have to be extended by th
addition of a pointer field called INDIRECT. This field if
enpty (hLLL)'neans t hat éubscripting i's direct,lothermjse it
points to an additional structure called | NDEXP which descri
the subscript list of the i ndi rect expression.

The structure |NDEXP consists of the foll owi ng:

o | EDGE_SUBL.
| NDEXP: SOURCE / NXT_SUBL —
SUBX LOCAL_SUBH
APR_MODE
| NDI RECT

The SOURCE field of INDEXP is the node nunber of the
secondary array and the list of EDGE_SUBL describes its sub-
SCr | pt expressions (fromri ght toleft). Simlarly to the
extensi on of EDGEJ3UBL, the structure LOCAL__SB is extended
by addi ng the field | NDI RECT,

Consi der t he representation of the edge:

ACILX(I,0)) & B(Y(I,J-1)-2,T+2) |

* Inthis representation we will refer to n(Z) as the

node nunber of Z

W start by the representation of the' | eft hand | ocal

subscript list:

-REDUCED: - . t

SUBTYPE: - t
- SUBID: - _ t

IDWITH: - f

RANGE: - t

' INDIRECT: —~ , INDIRECT: - -
Corr. to J/IXCIMiXA™ - ' _
Corr. to |
S INDEXP EDGE SUBL .]EDGE_SUBL

SOURCE: | NXT_SUBL: b——8mNXT SUBL:]
/ LocAL_SUB#I| . |LOCAL_SUB&

APR_MODE:1 ARR Mma

INDIRECT: - INDIRECT:-

- II-3

Note that the first LOCAL_SUBvactually represents both

X(I,J) and J;- Its representation of X(I,J) is given by

its INDIRECT field poiﬁting to the INDEXP structure. On

the other hand it is associated with J in that everywhere

else the first local subscript is J (including in the descript
of INDEXP structure), Also the identification of the subscript
range for J will be done in the IDWITH and RANNGE fields

of the first LOCAL_SUB structure. Consider next the repre-

sentation of the edge itself:

EDGE 'EDGE_SUBL EDGE_SUBL
SOURCE: n(B) | NXT_SUBL: — | NXT SUBL: -
TARGET :\i(A) LOCAL_SUBH :2 LOCAL SUB#:1

EDGE_TYPE:t APR_MODE: U APR MODE: 3
DIMDIF: - INDIRECT: - INDIRECT:
SUBX: | I+2 Y(I,J-1)=2
INDEXP EDGE SUBL EDGE SUBL
SOURCE : V() / NXT SUBL: ————>~ NXT_SUBL: -
SUBX: ~ LOCAL_SUB#: 1 | LOCAL_SUB#:2

¢ o : APR_MODE: 2 | APR MODE: 1

INDIRECT: - INDIRECT: -

ro—

. J-1 I

Note that Y(I1,J-1)-2 is of node i'pe 3 on the
outer level (K-2), and node type 2 (K—I) on the inner.
| evel . |

V¢ have to' I ntroduce a new type of edge for express-
ing the dependence of an assertion a on an i ndex array. Let

at AP X(J s 2d T L) L«
1 m

where A nmay appear on the left or right hand side of a.
Then we draw an. edge of new type 2”7

24: a(..) W X(Jn..J 1)

m

The subscript list for a on the left hand side will be the
|l ocal subscript list of a. |

Consi der next the drawi ng of edges type 3 and 7 and
their reverses in the virtual case:. |

Let a be an assertion defining the variable A which
may assune any of the forns

_ 1 o

a. A((l V»,l)" =% .. Y - or _ '
* L

a* I\ e $j\\ ye}-ine/ $e . /"

Regardl ess of the formwe will always have the foll ow
ing edge. ' 7 :
g _9 - AU ;..U & all,. . Up).

and the reverse, virtual edge

AUy Upeo U) 3 A(Ug . U 21,0

10.

- II=5

Here we have to distinguish between three cases:

B a: A(Ik"'Il)=" B(Jn,..J)

1
-3 We draw
3
and if Im is a virtual subscript, identified with Jl we

draw the reverse edge _

B(J eIy Ty) % allp,..Ig=1,..17)
If '

a: A(Ip,..Ip,..I7) = ..BC..XC.5Ip)..)
we draw

alIp,eeTpye I) 2 BC..KC. . I ,.)

and its reverse v
18

BC..XCo I) L8 a(qy,..I-1,..1p)
If |

ar AlT,..Y(,Ind,..T7) = . BC.,X(.,I),..)
we draw

alIp,..¥(..I)..T) % BC..X(..I)..)

and its inverse
18
B(..X(..Im..)..) « alIp,.,v(..I-1..),..I7)
similarly for

alACTx, . XCouTpeu)oa) = LuBC...Ip,.)

REFERENCES

Gana, J.E., "An Automatic Program Generator For Model
Building In Social and Engineering Science," Technical
Report, Submitted to ONR, Ph.D. Dissertation In
Computer Science, Unlver81ty of Pennsylvania, October
1978.

"MODEL II - Automatic Program Generator, User Manual,"
Revisionf of Version III, July 1978.

Pnueli, A., Lu, K., and Prywes, N., "Model Program
Generator: System and Programming Documentation"
Fall 1980 Version.

Prywes, N., Pnueli, A., and Shastry, S., "Use of a
Non-Procedural Specification Language and Associated
Program Generator In Software Development," TOPLAS,
October 1979,

Sangal, R., "Modularity In Non-Procedural Languages
Through Abstract Data Types", The Moore School of
Electrical Engineering, Unlver81ty of Pennsylvania,
August 31, 1980.

"Verification and Correction Of Non-Procedural Speci-
fication In Automatic Generation of Programs",
Technical Report, Ph.D. Dissertatign. In Computer
Science , University of ennsylvania, 1978.

