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ABSTRACT

The ability to specify computations of aggregate data

is very important for mathematically oriented applications

and for manipulating data bases. This report describes the

concepts, syntax, semantics and implementation of the capa-

bility to specify computations through use of matrix and

vector algebra equations, and through equations with

functions that operate on multi-level list and tree structu:

These new capabilities are discussed in the context of

the MODEL language. The MODEL language is a non-procedural

language for specifying computations. The two components o

a specification in MODEL are a set of equations using gener

and boolean algebra, for defining the relations between the

variable, and the description of the structure and organiza

of these variables including bases and reports. The MODEL

processor conducts extensive checks of the mathematical

completeness, non-ambiguity and consistency of a submitted

specification and constructs a program for the computation

the specified variables. The program is optimized to achie

efficiency in us* of the memory and computer time. The fin

product is an efficient and reliable program in PL/1. All

aspects have been extended to the new capabilities for spec

.operations on aggregate data. • .'.

The research re^/rted h"\ ̂  is a component of the joint

Computer Science-Economics project. The objective of the p
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is to investigate and devise a system for the specificat:

simulation and estimation of very large complex economet:

models which typically represent a cooperative developme:

by independent 3 geographically dispersed, groups and ins*

tutions. The new capabilities would greatly ease specif

cations of sets of equations, of complex statistical pro

cedures and of manipulation of data bases•
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OPERATIONS ON ARRAYS AND DATA STRUCTURES IN THE MODEL SYSTI

1. INTRODUCTION . •

1.1 Objectives and Background

The MODEL language is a very high level nonprocedural

specification language for use in computer programming. Tl

MODEL compiler accepts a specification of a computational

task, written in the MODEL language, and translates it intc

a computer program in a conventional programming language:

PL/1* The purpose of this report is to describe the desigi

of extentions to the MODEL language and processor which wi:

enhance the expressive power of the system. The new opera-

tions will offer the use of vector and matrix algebra as w<

as other operations that will be applied to data structure:

including merging and selection of data. These new operat

are needed to obtain ease and economy in expressing comple;

computational tasks*

The research reported here constitutes one of the tas'

in a joint Computer Science-Economics project which'invest,

gates new approaches to performing large and complex compu-

tational tasks, in particular computations in econometri

studies. The awareness of the inadequacy of present metho

and systems is based on the experience with the LINK Inter

national Trade Model at the Economics Department of the

University of Pennsylvania. The LINK project is a coopera

tive effort by 21 institutions which develop each respect:

regional or country econometric models. These models are



integrated at the University of Pennsylvania into a worl<

wide econometric model. The LINK model is very large, coi

sisting at the present of extensive data files on the eco:

omies of the respective regions and countries and approxi:

ately 6,000 equations* To fully realize the results of

this cooperative activity it is necessary to expand the L

model progressively to a level of 20,000 equations. The i

of EINK and the independence in developing respective sub-

models are the main reasons why existing econometric mode

ling systems have not been used in LINK, The computation

tasks involved have required of the economists much skill

in mathematics and programming. Large amounts of effort

and costs have been involved. A most severe problem has

been the difficulties in responding quickly to recent rap:

economic changes. This has. been a serious deterrent to e:

experimentation and investigations. These factors indica*

need to find more powerful techniques.

The objectives of the joint Computer Science-Economi

project at the University of Pennsylvania are as follows:

1) Economy and ease in specifying representation of

data and equations.

2) Deeper analysis of the representation of data

and equations to discover as early as possible

any mathematical ambiguities, incompletenesses

or inconsistencies, and the application of auto-

matic correction to such problems. This is par-



ticularly important in order to reduce the labor

in debugging and obtain reliable computations.

3) Efficiency in execution, especially in estimating

the coefficients and evaluating solutions of very

large equational systems.

*O Modularity and integrability of large scale

computation,and allowing distributed computation,

whereby the respective country or region models

could be computed in the local computers of the

cooperating institutions, and the computers would

communicate in a network to exchange the informat

needed to perform integrated world-wide computati

These objectives of ease of expression, reliability,

efficiency, modularity and distributed processing constitut

key research areas in Computer Science, Hence the cooperat

between Computer Science and Economics* Respective activil

the project have been .'directed to these four objectives.

This report is concerned with the first objective of provid

economy and ease in specifying data structures and equation

Several systems have been developed to date for aiding

economists in econometric modelling. The general approach

in these systems has been: 1) to require use of a standard

data structures for the data files and 2) to perform the con

putation by interpreting equations provided by the user.

Our approach has been to investigate the compilation of a

program in PL/1 or other high level languages , based on



the user's arbitrary data structures and equations* This

approach leads to a greater freedom and economy in speci-

fying computations. It allows much deeper analysis of

the specification and a much greater efficiency in execution

of the computation* To achieve the above objectives we

envisage a new type of a modelling system, based on the com-

pilation approach. The research is based on the MODEL

language and processor that have been developed at the

University of Pennsylvania. " In composing a specification

in MODEL, the user describes the data structures of the

variables and provides equations which define the desired

output variables. In the present MODEL language, the var-

iables in equations must be elements of arrays or fields

(i*e., leaf nodes) in more general data structures.

The objective of the research reported here is to

augment the system with operations on aggregates of the

more elemental variables• By use of matrix algebra an

entire set of equations may be represented as a single

equation. Similarly, complex estimation methods may be

expressed by a single expression using matrix algebra.

Economy in representation of other data manipulation tasks

is achieved by referring directly to structures that repre-

sent entire or major portions of data bases. Such operations

consist of selecting a subset of the data bases, or of

merging data bases or their subsets. All these operations
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may be characterized as concerning higher level data strud

The objective of this report is then to describe the synta

semantics and an algebra for higher level .data structures

their implementation.



1.2 The MODEL System

The MODEL language and processor were selected as the t

for attaining the above objectives. This section briefly re

views the advantages of the MODEL system. Section 2 of this

port presents the MODEL language.

MODEL is a very high level nonporcedural language for

specifying computation tasks. It consists mainly of declare

of data strucutres and of equations that define variables.

'The MODEL language * is "thus -distinguished in being purely

descriptive. The user of MODEL needs- to concentrate on

the mathematical correctness of the specification and may ij

nore to a large extent the efficency of representation or a]

gorithms. The MODEL processor accepts a specification in t*

MODEL language and translates it into a conventional procedi

programming language: PL/1. In this translation it orders

the arbitrarily presented equations into a procedural

sequence of executable statements, and provides missing

instructions, such as reading and writing of..external data,

loop controls of repetitive calculations, etc.

The MODEL processor performs in depth analysis of the

specification to check mathematical consistency and complet-

eness and to achieve efficiency in execution of the compu-

tational task.. Much emphasis is also placed on the effici-

ent utilization of memory space.

The MODEL language is domain independent and a general

language. The language and processor have been demonstrated
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as innovative and useful program construction tools

in several application areas* There is a pronounced en- .

hancement in the ease and naturalness of expressing a task i

MODEL compared to conventional programming languages, and a

distinctly higher reliability of the checked program. The 1

ratio-'of resulting object CPL/1) lines to the number of soui

(MODEL) lines provided by the user is indicative of the amov

of detail which the system spares the MODEL user* The syst€

was thoroughly excercised in business data processing

and proved to be a great asset for managing a family of re-

lated tasks. It stands superior not only to conventional

programming languages but also to other experimental very hi

level languages under investigation.

The dissertation research of J. Gana (19 78) examined tl,

applicability of the MODEL system to econometric studies.

This area is much more mathematically and computationally

oriented than business data processing. Econometric, and

other models, are essentially represented by sets of equatior

which are also the basic elements in a MODEL specification.

will be shown in this report, the MODEL approach is suitable

for further augmenting the ease and economy in specifying cc

plex computation tasks found in complex: modelling. By demor

strating the advantages and promise of the MODEL system in

those two widely differing fields - business data processing



which is data oriented, and modeling which is more com-

putation oriented,— we plan to provide a sound argument for

the universal applicability of the MODEL concept.

The purpose of this report is to describe the augmen-

tations of the MODEL language by additional powerful con-

structs which will enhance the expressive power of the lan-

guage* Some of the new operations will allow easier expres-

sion of typical data processing tasks such as selection of data

merging of files, while the others will afford a compact vector

and matrix notation for the more mathematically oriented

applications. Yet, all these augmentations can be described

under one heading as being operations" on high level structures,

The MODEL language in its current form is' 'element oriented

Even though arbitrarily complex data structures can be describe

in the language, the equations which express the relations be-

tween the variables must all be expressed in terms of variables

which are data elements at the lowest level of the data struc-

tures • Thus to express the fact that an output record is a cop

of an input record, we have to state this repeatedly for each

element of the record. Instead it is proposed to extend the

language to allow expressing directly the equality of

entire data structures. Another example is the merging of

two files. The need of explicitly writing an expression which

will tell us where the ifth element in the merged file comes

from is by no means a trivial task. Thus, we will regard a
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file merge as a global operation, which given two input f:

produces, as though in one transformation, the merged fil<

as a result• Similarly mathematical notation for vector-

matrix operations and expressions will be used to denote

global operations to be applied to a vector or a matrix a:

whole•



1.3 The Extensions to the MODEL System

The extensions are basically in two categories:

matrix and vector algebra, and aggregate data structure

algebra* In addition, to facilitate the use of these

extensions it is proposed to expand somewhat, first, the

present data description syntax and semantics, and second,

assure efficient implementation through expanding the

analysis of variable subscripting. These four areas are

briefly described below.

1. Matrix and Vector Notations' and Operation

This extension enables the user to write equations

and expressions involving vectors and matrices, using

the conventional mathematical notation of matrix algebra.

The matrix (and vector) operations provided are: matrix

(and vectors) addition, subtraction, multiplication,

inversion and transposition. In addition all the component

by component operations such as multiplication by a scalar

are included. The special UNIT matrix is standardly pro-

vided. Unique naming conventions enables the selection of

a vector or a matrix out of structures of higher dimensions.

Thus any row or column of a matrix can be selected to be

treated as (row or column) vector.

2# Aggregate Data Structures Notations and Operation11

These operations consist of structure definition..*and a

number of functions.



Structure' Definition

The simple defining equation

A = B

can be used in the current version of the system only to

denote the definition of the element (field) A by the value

B. In the extended language such definition may be applied

to any high level structures A and B provided they have

similar structures. This definition implies that each

field in A is defined to have the value of the correspond-

ing field in B. Structures in A inherit any attributes

(length, shape and scale) of the corresponding structures

in B.

Functions:

Several structure functions are proposed. The most

important, SELECTION and MERGE are briefly reviewed here*

The SELECTION function selects a subset of components of

an array, a file or other structures, and forms a new

structure of the selected components. The selection can

be done according to any specified condition. Current

operations in MODEL produce structures with dimensions of

the same size as the arguments of the operations. In the

extended system the SELECTION function and MERGE functions

enable the definition of arrays and lists of different size

than the argument. The selected components can be elements

or structures of higher level.



The MERGE function merges two linear structures,

such as files or lists. The criterion by which substructures

are selected from each of the structures may be generally

specifiec by the user. This enables the concurrent use

of two (or more) source files as a single file.

3. Variable Structures

In the current system the composition of a data

. structure is fixed, i.e. it must always consist of the

same substructures or elements. The proposed extension

enables the definition of data structures to describe

several possible alternatives or variants. Each variant

may consist of different substructures or elements. A

special attribute variable, named DISCR, is used to define

for each instance of the data the chosen structure variant.

The variants must be explicitly defined by the user for

input structures and are automatically defined by the system

for output structures.

4. More General Subscript Expressions

Currently MODEL analyzes only subscript expressions

of restricted forms. The analysis enables the system to

decide whether the specification is well defined and to

check the consistencies in shape of data structures. The

analysis also leads to the construction of more efficient.

object code. Under the extension discussed here, subscript

expressions of a more general type are analyzed as well.



This will enable the user to define size modifying trai

formations, in addition to the standard ones to be pro-

vided by the select and merge functions. It will also

enable the system to generate efficient subprograms fo

the thus specified computations.



l.M> Outline of the Report

The reading of this report requires background knowledge

concerning the present version of the MODEL language and

the operation of the processor. Some of the background in-

formation is provided in this report. In particular Sec-

tion 2 describes briefly the present version of the MODEL

language which forms the base for the extensions in this

report. An example of an econometric model specification

is used as an illustration.

Section 3 presents the syntax and semantics of the

proposed extensions with illustrative examples.

Basically the implementation is based on translating

the higher level structure operations and equations into the

more basic MODEL equations. Section 4 describes the

source to source translation, i.e. translation of higher

level assertions into elemental MODEL statements.

The efficiency in the object PL/1 program depends on

the extension of the system to handle indirect subscripting.

The implementation of the indirect subscripting related

analysis is the subject of Section 5. Some background in-

formation on the analysis and scheduling performed in the

MODEL system are provided in this section. For additional

background the reader is referred to a paper by N. Prywes

and N. Pnueli "Compilation of A Nonprocedural Specification'.

Into A Computer Program", October 1980.
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Finally the appendices discuss changes in the

implementation of the syntax analysis, indirect subscripting

variant structures, and other miscellaneous changes. Readin

of the appendices requires prior familiarity with the

documentation on "MODEL Program Generator" by A, Pnueli,

K. Lu and N. Prywes March 1980,

A bibliography of relevant reports and paper on the

MODEL system is provided at the end of the report•



2. THE 'MODEL SPECIFICATION' LANGUAGE - EXCLUDING

THE PROPOSED CHANGES

This section describes briefly the current version

of the MODEL language and processor, which are used as a

basis for the modifications proposed in subsequent sections

of this report* MODEL is a general purpose language for

specifying computation tasks* A specification in the MODEL

language consists of an unordered set of statements* The

statements in the language are primarily of two types :

data description statements and equations which we call

assertions * The data description statements describe the

structure and attributes of the variables participating in

the specification* The assertions define the values of

some variables in terms of other variables* The variables

appearing in a specification are designated in a header

statements as source variables or target variables. The

header statements are used to name the computational task

and the aggregates of source and target data. The values

of the source variables are considered to be available on

external input files* Target variables are to be produced

on external output or update files. Target variables may

alternately be designated as interim, to indicate that they

need not be retained as output. - The two subsections below

describe the syntax and semantics of data and assertion

statements respectively.
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We use in this section a reduced econometric model

of Spain to illustrate the current syntax and capabilities

of the MODEL system. The example is shown schematically in

Figure 2.1 as consisting of three input files and one output

file. The input or source files are:

1) SIMDEF, which consists of the parameters of the

simulation (BEG_YR = beginning year, PD_SIM - number of

simulation periods, NUM_C0 - number of coefficients,

NUM_VAR - number of variables, DELTA - the relative start-

ing period for the solution, and LAG - the maximum lag

periods referenced in equations).

2) COEFF, which consists of coefficients for the

equations. v

3) TIM_SER, which consists of a time series for

eleven variables of which seven will be considered

exogenous and four endogenous•

There is one output, or target file named SOLUTION.

This file is actually a report of the simulated variables

for the periods of the simulation.

The equation bô x in Figure 2.1 specifies the depend-

encies of the target variables on other variables in the

specification.

The schematic diagram of Figure 2.1 is represented in

the header to the MODEL specification shown in Figure 2.2.

There are 3 statements in the header shown in lines 1-5.



BEG YR

PD TS

• TIM^SER

Exogenous Enctogenot 3
variables variables

COEFF

I
Equations

DELTA

SOLUTION

Exogenous
variables

Endogenou
variables

Fig 2 . 1 . Schematic Diagram of Example of a
Small Econometric Model,



/* SPAIN MODULE SPECIFICATION t/

TXTX1

i
2
3
4
5

nnnHm

MODULE
SOURCE

TARGET

: SPAIN
FILES:

FILE:

i;
•SIMBEF,
COEFF,
TIM.SER?

SOLUTION;

/* SPANISH MODEL »/
/• SIMULATION PARAMETER DEFINITION */
/* MODEL EQUATION COEFFICIENTS */
/* TIME-SERIES (HISTORICAL) DATA «/
/* SIMULATION RESULTS */

Fig. 2.2. The Header for the Example Specification
in the MODEL Language.



The task of specifying the econometric model of Spain

in the MODEL language, consists of specifying the five

boxes in Figure 2.1. We will start with the description

of the four file boxes in Section 2.1. This will be

followed with the description of the equations in Section 2.:

2/1 Data Statements

Data in a MODEL specification may be highly struc-

tured* The description of the data structure is tree-

oriented, similar to PL/1 or Cobol. The node at the root

of the data structure tree typically represents a file*

A file may be composed of substructures, each of which

may be further composed of substructures, and so on. A

structure is referred to as the parent of its component

substructures. The latter are referred to as 'descendents«

A data structure is visualized as a tree where structures

form nodes with branches leading to lower level components•

The syntactic definition of data statements is shown in

Figure 2.3. The data name is the name of a node in the

tree. The node type indicates a level in the tree. A

FILE node type may only appear at the root of the tree.

A terminal tree node is denoted as FIELD node type. An

intermediate node in the tree which is also the unit of

transfer of data between input/output and memory is of

RECORD node type, as in PL/1 or Cobol. A GROUP node type

is any other intermediate node in a tree.
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< data statement > : - < data nane > IS < node type > (<argyments>)

• < node type > : = PILE | GR[OU3P | REClORD.] | P[IE]LD+

. <-arguments > : « < file arguments > j < group/record
arguments > | < field arguments >

< group/record arguments > : - < immediate descendent name >
~(< nurrber of repeti t ions>) ]
[5 < immediate descendent name >
[(< nurrfcer of repetitions >)]]*

The square brackets C 1X1 ) denote opt ional i ty ; when
followed by an as ter i sk (Ix]*) they mean zero or more
repe t i t i ons .

+ The node type may be preceded by the key word INT[ERIM]
vhen ;the respective data" .struetiire.- is. target data but
is: not needed on an output .medium.' ; ' ,

Figure 2.3 Major Syntactic Components of Data Statement'



The optional < file arguments > describe the

media of the data. They are unimportant to the discussion

below and will be omitted in the following.

The number of repetitions of a descendant structure

is included as an argument in the statement describing

the parent. If the descendant occurs only once, then the

< number of repetitions > is omitted. If-the <'number of

repetitions > varies, then the minimum and maximum bounds

may be specified. Also, unknown number of repetitions may

be specified by an asterisk (*) in place of a repetition

count. The definition of a variable number of repetitions

is further discussed below.

The field arguments are: data type, size and scale,

with the same meanings these attibutes have in PL/1.

The MODEL specification of the four files of Figure 2.1

is shown in Figure 2.M-. The specification is explained in

the comments on the right-hand side of Figure 2.4. The

discussion below supplements these comments.

The SIMDEF file is described first. The first state-

ment (line 6) "SIMDEF IS FILE (RECORD IS INPUTREC)" means

that the file has the assigned name SIMDEF and it consists

of the record structure INPUTREC, of which there is only

one instance (namely, it does not repeat). The statement

in line 9 shows that INPUTREC is a record and it lists in

parenthesis the names of its constituent fields. Finally,

lines 1 1 - 1 8 , consists of statements describing each one



/* FILE DESCRIPTIONS: */

/• DESCRIPTION OF SIMDEF FILE §/

SIMDEF IS FILE RECORD IS INPUTREC;
7
8

10
11
12
13
14
15
16
17
18

/• DEFINITIONS OF PARAMETERS WHICH «/
/* CONTROL THE SIMULATION «/

INPUTREC IS RECORD(PD-TS,DELTA,BEG-YR,PD.SIM,NUM_VARSJNUM_CO,LAG)5

PD.TS IS FIELD (PIC'999');
DELTA IS FIELD (PIC'999');

8E6.YR IS FIELD (PIC9999')!
PD.SIM IS FiaD (PIC'999');
NUOARS IS FIELD (PIC9999');
NUH_CO IS FIELD (PIC9999');
LAG IS FIELD (PIC'999');

/* NUMBER OF PERIODS OF TIME-SERIES DATA */
/* NUMBER OF PERIODS FROM START OF TIME- */
/* SERIES DATA TO START OF SIMULATION «/
/» YEAR OF START OF TSJDATA •/
/* NUMBER OF PERIODS IN OUR SIMULATION */
/* NUMBER OF VARIABLES IN SIMULATION */
/» NUMBER OF CONSTANT COEFFS. IN MODEL */
/* MAXIMUM NUMBER OF LAG PERIODS IN MODEL*/

/• DESCRIPTION OF COEFF FILE */

19 COEFF IS FILE RECORD IS C0-REC(l:99); /* COEFFICIENTS OF MODEL EQUATIONS */
20 CO.REC IS RECORD(A); :
21 A ISFiaD.(DECFL0AT(10>)5
22 SIZE.CO.REC = NUM.CO; /* fWIBER OF MOECL COEFFICIENTS */

Fig. 2.4. Data Description Statements for Example.



/• DESCRIPTION OF TICLSER FILE */

23 TIH-SER IS FILE RECORD IS TS.RECU:99); /« FILE CONTAINING TIME SERIES */
24 /* DATA FOR SPAIN */
25 TS.REC IS REC0RD(yNA«E,VNUM,NUM_PDS,TS_DATA(l:99))i
26
27 VNAME IS FIELD (CHARM)); /* NAME OF MODEL VARIABLE */
28 VNUM IS FIELD (PIC9999')? /• NUMERIC IDENTIFIER OF VARIABLE */
29 dWLPDS IS FIELD (PIC9999'); /• NUMBER OF PERIODS OF TIME */
30 /t SERIES DATA FOR THIS VARIABLE «/
31 TS-DATA IS FI&D (PICS99.V999'); /* TIME SERIES DATA VALUE */
32 SIZE.TS-REC = NUM-VARS; /• ONE TIME SERIES ARRAY PER MODEL VARIABLE */
33 SIZE.TS.DATA = NUM_PDS; /• ONE DATA VALUE PER PERIOD PER VARIABLE */

/• DESCRIPTION OF SOLUTION FILE */

34 SOLUTION IS FILE GROUP IS S0L.GRPU); /* SIMULATION SOLUTION FILE */
35 S0L.GRP IS GROUP(HDR.REC,SCL.REC); /• EACH SOLUTION GROUP CONTAINS */
36 /» A HEADER AND A BODY */
37 HDR.REC IS REC0RD(SM_PD_ID»SM_YR_ID)5
38
39 SM_PD_ID IS FI&D(PIC/9999'); /* SOLUTION PERIOD NUMBER >/
40 SM-YR-ID IS FIRD(P1C'BB9999')5 /* SOLUTION YEAR «/
41
42 SOL-REC IS RECORD(II,EX,GOV,IMSER,IM01,IM24,IM3,C0NS,INV,IM,GDP);
43
44 CONS IS FIELD <PIC'BB99.V<6)9/>; /* THESE ARE ALL VARIABLES IN */
45 INV IS FIELD (PIC'BB99.V(6)9'); /* OUR ECONOMETRIC MODEL FOR */
46 II IS FIELD (PIC'BB99.V(6)9'); /» WHICH WE MILL DETERMINE */
47 EX IS FIELD (PIC'BB99.V(6)9')5 /* VALUES, ONE VALUE PER PD. •/
48 IN IS FIELD (PIC'BB99.V(6>9'); /* OF OUR SIMULATION */
49 GOV IS FIELD (PIC'BB99.V(6)9');
50 GDP IS FIELD (PIC'BB99.V(6)9/H
51 IMSER IS FiaD (PIC'BB9*?.V(6)9');
52 IM01 IS FIELD (PIC'BB99.V(6)9')5
53 IM24 IS FIELD (PIC'BB99.V(6)9/)5
54 IM3 IS FIELD (PIC'BB99.V(6)9');
55
56 SIZE.SOL.GRP = P0.SIM5 /* ONE SOLUTION RECORD FOR EACH PD. OF SIM. •/
57 T IS SUBSCRIPT; /* T (TIME) IS A COUNTER OF SIMULATION PDS. */



of the fields in INPUTREC. These fields provide the

parameters of the•simulation. They have been explained

above. Each field name is followed by the respective data

type. As shown, we use in this example the PICTURE data

types of PL/1. .

Next is a description of the COEFF file (line 19)

which consists of the coefficients used in the equations*

There is a record CO_REC for each coefficient A (line 20).

The number of corresponding A coefficients may vary

between 1 and 99. The actual size (i.e. number of repe-

titions) of CO_REC (and of A) is provided in the SIMDEF

file in the NUM_C0 (number of coefficients) field. This

relationship is given in the assertion SIZE.CO_REC=NUM_CO

in line 22. The specification of size using an assertion

is discussed further in Section 2.2.

The TIM_SER file description starts on line 23. It

consists of a variable number (1 to 99) of TS_REC records.

Each record consists of the respective variable name,

variable identification number, the number of periods in

the time series for this variable, and the values

of the variable for all the periods. Notice that

the time series values, named TS_JDATA constitute a two-

dimensional array with the dimensions corresponding to

repetitions of TS_REC and TS_DATA. The numbers of repe-

titions or the size, of the two dimensions are also speci-

fied in the SIMDEF file by NUM_VAR and PDJTS, respectively.



The corresponding assertions are shown in lines 32 and

33. They are discussed further in Section 2.2.

Finally, the SOLUTION file is in fact a report that

consists of two parts, a header part (HDR^REC) which

specifies the titles in the report (the period year and

period number), and data part (SOL_REC) with the values

of eleven exogenous and endogenous variables for the

corresponding period. A printed report line must corres-

pond to a record. Therefore, for each period of simulation3

one report line provides the titles (HDR_REC) and the next

line provides the data (SOLJREC). The SOLJREC record con-

sists of the eleven variables for which values are com-

puted for each period of the simulation. Each one of the

variables constitutes a vector with its elements corres-

ponding to the periods of simulation. The size of the

dimension, i.e. the number of simulation periods, is given

in the SIMDEF file by PD_SIM. This is expressed by the

assertion in line 56.

The last line (57) in Figure 2.4 specifies that T

represents a subscript which is used in the equations to

denote a respective simulation period.

As shown, the description of data is simple and

straightforward,listing each structure with its constituent

parts, until all the data has been described.

Although data are pictured in. MODEL (as in PL/1) as

tree structures, it will be more convenient for the dis-



cussion here to refer to data as arrays. There is a

direct correspondence between the tree and array views

of a data structure* For instance, specifying a <number

of repetitions> means that the data structure repeats,

constituting a vector. Generally, a structure, may be

viewed as a multidimensional array, where <number of

repetitions > specifications of own or predecessor nodes

in the data tree give the ranges of respective dimensions.

Thus for instance, TS_DATA in TIM_SER file is viewed as

a two dimensional array. The first, more significant

dimension corresponds to repetitions of TS_REC and the

second dimension corresponds to repetitions of TS^DATA.

Therefore, we refer in the following to the < number of

repetitions > of a node as a size or range specification,

and also as the size or range of the dimension. Viewing

the data as arrays allows referring to a specific instance

of the data as an element of an array which can be identi-

fied by the appropriate indices for each dimension. For

instance TS_DATA (nl,n2) denotes the n2 th TSJDATA of the

nl th TS__REC. Element indices are denoted by free subscript

variables that may assume integer values in the range of

the respective dimension. T, the declared subscript in

Figure 2.4 is such a free subscript variable.

The range of a dimension may depend on the values of

higher order subscripts. Therefore the range of a dimensior

of an array need not have the same value for all higher



order dimension indices. Such an array is not rectangu-

lar and is referred to as a jagged edge array. For ex-

ample, TSJDATA has two dimensions with variable ranges

associated with the repetitions of TSJREC and TSJDATA.

The number of TS_DATA instances is specified by NUM_PDS,

which may vary from one instance of the parent TS_REC to

another. TSJDATA may be viewed as a two dimensional jagged

edge array, with a row corresponding to each instance of

TS_REC and the TS_DATA instances corresponding to elements

of the respective rows. Since the number of TSJDATA in-

stances is specified by NUMJPDS which may vary from row

to row (i.e. from one TSJREC to another), the resulting

matrix is not rectangular, but jagged edge.

The referencing of an element through subscripting,

and the definition of a variable range by use of an

assertion are further discussed below in connection with

the use of assertions.

2.2 Assertion Statement

While the data statements describe the existence

and structure of data to be operated upon, the description

of the transformations applied to the data is given by

the assertions. Rather than give detailed procedural in-

structions on a step-by-step execution, the user of MODEL

identifies relationships between the variables from



which the processor deduces the actual execution sequences.

These relationships are called • assertions in MODEL,

The building blocks for assertions include conventional

arithmetic and boolean expressions and more structured

operations such as IF-THEN-ELSE. This subsection describes

the syntax and semantics of assertions with the aid of the

example in Figures 2*1.

The syntax used for assertions in this paper is

similar to that of computation statements in conventional

programming language* The language allows explicit defining

relations, of the form:

<variable > = Expression >

The variable on the left hand side, the dependent variable

of the assertion, is defined by the expression on the

right hand side* The independent variables for this

assertion are the variables participating in the defining

expression on the right hand side. An expression is built

out of variables and constants to which basic operators and

functions are applied, PL/1 conventions for constants,

variables and boolean and arithmetic operators are used

in composing expressions. These include the IF-THEN-ELSE

operator whose syntax is:

<variable > = IF < condition > THEN < express io"n_l>

ELSE < expression_2>

meaning that if <condition >evaluates to TRUE, then

< expression^! >defines the value of the variable, other-



wise < expression__2> is used*

An assertion statement, though similar in syntax to

an assignment statement in conventional programming

languages, should be regarded by the user quite differ-

ently* The assertion meaning is identical to the math-

ematical notion of equivalence between the two sides of

the equal sign. Namely it is an equation. This aspect

is basic to the difference between procedural and non-

procedural languages* Because of the nonprocedural nature

of MODEL, each variable name may denote only one value.

Also the "historical" values of data, namely those that

would not be needed further in a computation must be

explicitly represented by symbolic names. In contrast,

procedural programming languages allow assigning differ-

ing values to the same variable and "historical" values

may be overwritten if not further needed. For instance,

an assignment statement within a loop: X=X+1 would make

no sense as an equation. In MODEL it would be necessary

to consider each value of X as a separate variable.

Assume that these values constitute a vector, with N

elements. An element is denoted by subscripting: X(T).

T is the subscript variable which can take the value of

an integer in the range of the variable X. The MODEL

equivalent of the above assignment statement is the asser-

tion: X(T)=X(T-1)+1.



Both the dependent and the independent variables

should be subscripted by a list of subscript expressions

corresponding to the dimensions of the variables as spe-

cified in the data description. Any integer valued ex-

pression can be used as a subscript expression for the

variables. The general syntax for subscripted variables

is:

< element of array > ::= < field name >

( <subscript expression> [^subscript expression

The subscript expressions must be ordered according to- the

dimensions. Free subscript variables, as well as other

variables and constants, with arithmetic operators, may

be used in composing subscript expressions.

A free subscript variable may be global to an entire

specification or local to an assertion. The same global

subscript, name in a number of assertions refers to free

subscript variables of the same range. Global subscript

names use the syntax form of FOR_EACH. <data name >.

They may then have any integer value in the range of the

<number of repetitions > associated with the <data name >•

Use of the same local subscript name in different asser-

tions does not imply referring to free subscript variables

of the same range. Local subscript names use the syntax

form of S[UB]<n>. The use of local subscripts is easier

in many cases as the user need not consider the ranges

of dimensions of different data structures. The syntax



of a global subscript name is somewhat awkward and a

shorter global subscript name, such as commonly used

symbols for subscripts, I,J,K etc*, may also be declared.

The syntax for declaring a global subscript name is:

< subscript names>{*|E>SUBSCRIPT (<number of repetitions>)

Figure 2.4- shows such a subscript declaration for T. The

use of global and local subscripts is illustrated below

in the discussion of the assertions for the example of

Figure 2.1.

Subscript expressions are classified into four

types according to use of the following syntactic forms:

1) <free subscript variable>

2) <free subscript variable>-l

3) <free subscript variable>-K, K is integer> 1

4) Any form of arithmetic expression except types

1, 2 and 3 above.

The user is advised to give preference to use of subscript

expressions of types 1, 2 and 3, as the version of the

MODEL system reported here analyses the correctness of

the specification and endeavors to obtain efficiency of

the resulting program more thoroughly when these types of

subscript expressions are used. In our example, we will

refer to lagged variables using "subscript expressions

of types 2 and 3, i.e. T-l, T-2, etc.

The subscripting of variables is a complex task which

is difficult for many users. Subscripts may be implicit in



c^ses which do not lead to ambiguity. Allowing omission

of such subscripts eases the composition of assertions*

Following are the rules when subscripts must be specified:

1) Subscripts used in subscript expressions of

types 2,3 and 4- (see above) must be specified.

2) Subscripts of dimensions that are reduced or

added in an assertion (i.e., where independent variables

have more or less dimensions that the dependent variable)

must be specified.

3) Once a subscript is specified for one variable

in an assertion it must be consistently specified with

the other variables in the assertion where the subscript

applies.

MO Subscripts on the right of any specified sub-

scripts must be specified.

5) Missing local subscripts are assumed inserted in

all variables of an assertion montonically (i.e., S1,S2.#.)

from right to left. Subscripts must be specified in cases

where this assumption is not valid.

Subject to these rules, the MODEL system performs

analysis to insert missing subscripts.

Qualified names may be used in assertions, using a

period (.) to connect individual names (similar to PL/1).

The most common use of a qualified name is to eliminate "

ambiguity through prefixing a name of a higher level
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Another common use of qualified names in MODEL is to elimin-

ate ambiguity in data that are updated. The keywords OLD

and NEW are then used.

There are parameters of the data structures which

depend on values of source or target variables* We refer

to these as' "data parameter variables . Characteristically,

these parameters provide specifications for sizes of arrays,

lengths of character strings, keys for access to files,

etc. They introduce to MODEL the flexibility of variable

size or dynamic structures. The syntax of qualified names

is used for data parameter variables:

< data parameter variables'::= <reserved keywords>• <variable>

Data parameter variables may be explicitly defined

by assertions. They may denote entire arrays and be used

with subscript expressions in the same way as other vari-

ables. These keywords used as prefix in .data parameter

variables are listed below and further discussed in the seque

END. <data name> . denotes whether the named data
element is the last one in the
range of dimension.

ENDFILE.<file name> denotes an end-of-file marker
of the named file.

FOUND.<record name> denotes existence of the record
in an index sequential file that
is accessed through a POINTER

. variable (see POINTER below). "

INITIAL.<variable^ denotes a starting value for an
iterative solution of the variab



LENGTH.<field name> denotes length of the named field

NEXT.<field name> denotes a named variable in the
next adjacent record on the
medium source data.

POINTER.<record name> denotes value of a key used to
reference a keyed record in an
index sequential file. (the
key name is identified in the
FILE statement.)

SIZE.<data name> denotes the range of the lowest
order dimension of the repeating
data structure named in the suffd

These variables are ~ INT fERIMl, i.e., they are not output,

,but are otherwise considered . . . .

description statements for these variables may be provided

optionallyv If not provided, each of these variables will

be automatically assigned the appropriate dimensionality.

These variables are further explained below.

When the range of a dimension is variable, the range

is viewed as denoted by an auxiliary array variable which

may be defined by an assertion. A variable range data

structure X may have its range denoted by a structure named

SIZE.X, of one dimension less than that of X (the rightmost)

and identical ranges, for the other dimensions • Thus if X is m

dimensional the elements of SIZEoX have the values of the

ranges of the lowest order dimension of X for each of the

higher order dimensions indices. Thus Im, the subscript for

the m-th dimension of X(I.••.Im ,,Im) Tnust be in the range

1 \< Im <. SIZE.X( 1-̂ . . .I^-i) • Consequently if the values of

the elements of SIZE.X are not equal, then X is not a rec-



tangular array but -a jagged edge array* The range must

be >. 0. Figure 2.4 shows assertions that specify SIZE.

CO_REC, SIZE.TS_REC, SIZE.TSJ5ATA and SIZE.PRTJ3RP.

Another option for defining the size of structure

X is by an auxiliary boolean array named END.X that has

the same dimensions and ranges as X* A 0 value of an

element of X denotes that it is not the last element within

the range of the rightmost dimension, and a 1 denotes that

it is the last element. When END.X is used for range speci-

fications then the range must be 1 1.

POINTER.<record name >, defines an access key to

an index sequential or random access file. Consider the

assertion: POINTER,X(I)=EXPR(I). The array of records

X is considered as indexed in the order of the elements of

the retrieval keys POINTER.X. Namely, the record retrived

by using EXPR(I) as a key is considered to be the I-th

element in the array X.

Finally, function references may be used within right

hand side expressions of assertions. The built-in functions

of PL/1 may be used with the MODEL program generator that

produces PL/1 pbject programs. Additional functions may

be coded in the object language and placed in the system

function library.

A variable is said to be recursively defined if it is

an element of an array which depends, directly, or through a

chain of assertions, on other elements of the same array.
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J
If an element of this variable depends on elements in the

same array with index values that are smaller than the value

of the subscript for the dependent element, then the variable

elements can be evaluated progressively as the value of the

subscript is incremented from 1 to the end of the range in

steps of 1. This condition is checked, and if it is not

satisfied then a warning message is issued and a Gauss-Seidel

iterative procedure is used in order to evaluate the recursive

dependent array variable elements. * •

Figure 2.5 shows the specification of the equations

for the reduced econometric model of Spain, previously

introduced in Figure 2.1# The assertions in this part

of the specification illustrate subscripting and use of

qualified names in MODEL. The assertions in Figure 2.5

are shown as belonging to four groups as follows:

The first group consists of equations that define the

exogenous variables in the solution file. As shown there

are seven such variables. These equations specify that for

the lag periods (T<LAG) the values of the variables are

copied from the respective TS_DATA time series, and for the

other periods (T>LAG) they will be constant, namely equal

to the value in the previous period (T-l). Note that in

these equations the subscript T is used to denote the appro-

priate period element of the respective variable. The sub-



/* EQUATIONS FOR EXOGENOUS VARIABLES */

58
59
60
61
62
63
64

II
EX
60V

(T)
(T)
(T)

IHSER(T)
IM01
IM24
IH3

(T)
m
(T)

IF CDLAO) THEN II (T-l) &SE TS_DATA( 3,T+DELTA)?
IF (T>LAG) THEM EX (T-l) ELSE TS-BATA( 4,T+DELTA)S
IF (DLAG) THEN GOV (T-l) ELSE TS-BATA( 6,TH>ELTA);
IF (DLAG) THEN IMSER(T-l) aSE TS.DATA( 8,T+0ELTA);
IF (T>LAG) THEN IM01 (T-i) ELSE TS.DATA( 9,T+DELTA);
IF (T>LA6) THEN IK24 (T-l) ELSE TS_DATA<10iT+DELTA)»

(T) = IF (DLAG) THEN IH3 (T-l) ELSE TS_DATA(ii,T+OELTA)?

/* EQUATIONS FOR ENDOGENOUS VARIABLES •/

65 CONS(T) = IF (DLAG) THEN Ad) • A(2)*GDP(T) + A(3)»C0NS(T-l)
66 a S E TS_DATA(l,T+DaTA);
67 INV(T) = IF (DLAG) THEN A(4) + A(5)*6DP(T) + A<6)*GDP(T-1) + IKT)
68 • aSE TS_DATA(2,T+DaTA);
69 IM(T) = IF (DLAG) THEN I«01(T)+IM24(T)+II13(T)+A(61)+A(62)«GDP(T)+IMSER{T)
70 a S E TS_DATA(5iT+DaTA);
71 GDP(T) = IF (DLAG) THEN CONS(T) + INV(T) + EX(T) + 6CW(T) - IH(T)
72 a S E TS-DATA(7,T+DELTA)5

/* EQUATIONS FOR INITIAL VALUES FOR ENDOGENOUS VARIABLES */

73 INITIAL.CONS(T) = IF (T>LAG) THEN CONS (T-l) aSE TS_DATA(1,T+DELTA)?
74 INITIAL.INV (T) = IF (DLAG). THEN INV (T-l) ELSE TSJ3ATA(2,T+r£LTA)!
75 INITIAL.IH (T) = IF (DLAG) THEN IN (T-l) ELSE TS.DATA(5.T+DELTA);
76 INIT1AL.GDP (T) = IF (DLAG) THEN GDP (T-l) aSE TS_DATA(7,T+t€LTA);

/* EQUATIONS FOR REPORT HEADER */

77 SfLPD-ID(T) = T? /* NUMBER OF SOLUTION PERIOD */
78 SH-YR-ID(T) = BEG.YR + T5 /* YEAR OF SIMULATION RESULTS •/

Fig. 2.5. Assertions for the Example.



and for the second dimension the expression T+DELTA. 'Both

subscripts illustrate type M- subscripts. These assertions

are all recursive as the defined variable elements depends

on other elements of the same variable•

The second block of assertions defines the endogenous

variables. Again, for the lag periods (T<LAG) these variable;

are defined to be the same as the data series for TS_DATA

for the respective periods. For the other periods (T>LAG)

these variables constitute a set of simultaneous econometric

structural equations. The system will automatically recog-

nize that these four equations are simultaneous and will

employ an iterative solution method to define these variables

If the method is not specified, the Gauss-Seidel method will

be employed.

The third block of equations defines qualified name

data-parameter variables with the prefix INITIAL and the

endogenous variables as suffix. If these equations were

not provided the system would by default take the initial

values in the iterative solution for the simultaneous equa- \

tions to be zero. This block of equations provides the

system with a better zero order estimate for the solution.

As shown the initial values of the four endogenous variables

involved in the simultaneous equations are defined to be

equal to the corresponding variable element values for the'

previous period (T-l). For the lag periods, the values are

to be copied from the respective TS DATA time series data.
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The last block of equations defines the report titles

for SM_PD_IB - the simulation period, and SMJtTRJCD-the

simulation year.

This concludes the specification of the reduced model

of Spain. As shown the specification consists of a total

of 60 statements. The program generated based on this

specification amounts to approximately 50(J PL/1 statements.

In addition, the MODEL processor produces documentation

consisting of a cross-reference and attribute report,

analysis of shapes of variables and finally a flow chart

showing in schematic form the order of execution of state-

ments in the program that is produced.

In the following sections additional examples will

be given of MODEL statements in order to illustrate the

proposed enhancements to the MODEL language. These will

provide additional illustration of the use of the MODEL

language.

Note that, unlike most econometrics software systems

available to date, we require an explicit indication of

how to compute the exogenous variables and the initial

values for endogenous variables. The reason for this

requirement is that we allow arbitrary 'source and target

data structures while the econometric software available

to date requires standard data structures for both' the time

series and the solution. A second reason is that the impli-
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This section describes in detail the proposed extensions

to the MODEL language, including the syntactic forms, the

meanings of the new constructs, and the advantages they

offer to the user. The extensions are illustrated by

examples. The extentions are presented below in respec-

tive subsections according to four categories: matrix

and vector notation and operations, structure variables

notation and operations, variable data structures and in-

direct subscripting. The last two categories support the

constructs in the first two categories.

3.1 Matrix and Vector Notation and Operations

The purpose of this notation is to enable the user to

write equations dealing with vectors and matrices in a form

which is very similar to the mathematical notation for these

equations. As indicated above, this capability is of'

great importance in econometric modelling for specifying

correlation and estimation methods, and for generally expressi

ordinary and partial differential equations in mathematically

oriented applications. At the present, MODEL allows the

user to represent matrix and vector operations in terms of

their elements. Also the language presently allows omit-

ting the subscripts associated with these variables. In

the following, the proposed extensions are defined in terms

Some matrix operations are already available under

existing MODEL language facilities. Consider for



exampxe iae aata, aescnption siaiementb lor xaree

F, H and G:

F IS GROUP (M(*))
M IS GROUP (X(*))
X IS FIELD

H IS GROUP (PC*))
P IS GROUP CZC*))
•Z IS FIELD

G IS GROUP CNC*))
N IS GROUP CYC*))
Z IF FIELD

X,Y,Z are field components of these structures. They repre-

sent two dimensional arrays or matrices. The statement

Z = X+Y

is interpreted in MODEL as the subscriptless version of

Z (I,J) = X(I,J) + YCI,J)

Thus, even without the proposed extensions, the

present MODEL system possesses the capabilities for addition,

subtraction, and for element by element multiplication and

division. The extensions concern more complicated matrix

operations, namely: matrix multiplicaion (inner product),

matrix inversion and transposition. To attain these opera-

tions we add new operations, symbols and naming conventions.

3,1,1 Matrix Operations

The following symbol combinations denote the new

matrix operations: • ..

ff* Matrix multiplication,

11 / Unary or Binary matrix inversion,

ff^ Matrix transposition.
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In addition the reserved.word UNIT denotes a unit

matrix variable.

Matrix Multiplication

The meaning of the matrix multiplication:

Z s X"*Y

is equivalent to the subscripted MODEL statement:

Z (I,J) = SUM (X(I,K) * Y(K,J), K)

The SUM function sums the values of the first parameter

along the dimension of the subscript of the second parameter

Consider the following structure K in addition to the

above F, H3 G structures:

T IS GROUP (U<*), V(*))
U IS 'FIELD
V IS FIELD

U and V are one dimensional arrays which are interpreted

here as row vectors. Thus:

V = Uff*X

is interpreted as

V(J) = SUM (U(K) * X(K,J), K)

Let A be a scalar. A matrix multiplication notation

may be used to compute the scalar A:

A = Ufl*ff*V

having the interpretation:

A = SUMCUCK)* V(K), K)

Note that V is transposed before multiplication.

Matrix Transposition:



Z = X

is interpreted as

Z (I,J) = X(I,J),

z = ?f^x
is interpreted as

ZCI,J) = XCJ,I).

When applied to vectors it transforms a row vector ir

.a column vector and vice versa.

Matrix Inversion:

This operation can be used as a unary or as a binary

operation. As a unary operation it produces the inverse c

the matrix to which it applies:

Z = "/X

is interpreted as

Z(I,J) = M(I,J)

where M = X~ (the inverse matrix).

As a binary operation it's right argument must always be c

(non singular) matrix. In general:

yti/x = Yfl*ff/X

that is, the left argument is matrix multiplied into the

inverse of its right argument. The use of "/ as a binary

operation is illustrated in representing a linear set of

equations:

SUM(X(L)*A(L,J),J) =: B(J)

which can be'expressed mathematically by

X"*A=B



The solution of this system is given by:

X = B "/ A

Where X is the solution (row) vector, 13 is the vector of

right hand side values and A the matrix of coefficients•

Another appropriate example here is the estimation

of the coefficients of a single linear equation based on

a number of observations of its variables. The equation

may be represented as

Y(K) = SUM(B(I)*X(I5K),I) + U(K)

K and I are observation and variable indices respectively.

There are also more observations than variables. U is the

residual. This can be stated as

Y = B;1 *x+u
2

The least square method determines B such that SU is minimi:

corresponding to the conventional matrix algebra expression:

B = Y*XT(X*XT)-1

The UNIT Matrix:

A standard unit matrix is provided using the reserved

array name UNIT. Its definition is given by

UNIT (I,J) = IF I=J THEN 1 ELSE 0

The shape .of the UNIT matrix is.implied from the sizes

of the dimensions of the matrices in the equation where it

is referred to. As an example consider the expression

Z = "/ (UNIT - LAMBDA*X)

equivalent to the mathematical expression:

Z = (I- XX)""1



Z and Y are matrices and LAMBDA is a scalar. The shape of

UNIT is that of X or Z.

3.1.3 Naming Conventions for Arrays

There are three ways to designate variables as vectors

or matrices (to which the matrix operations can be applied):

The subscriptless form - using an element symbolic

name with subscripts omitted.

Use of asterisk subscripts - indicating the matrix or

vector dimensions by asterisks (*) as subscripts.

Using higher level structure names.

These three ways are explained below.

The subscriptless form. Any variable which appears

without any subscripts in an expression with matrix opera-

tions is considered to be a vector or a matrix, depending

on its dimensions as described in the data statements..

If it is described as a scalar (i.e. no repetitions of its

structure and above'it) it is treated as a scalar. If it is

a one dimensional array it is considered to be a row vector.

If it has more than one dimension then it is considered to

be a matrix5 where the matrix operations apply to the two

lowest order dimensions. All dimensions of higher order

are treated as indicating higher order repetitions of the

matrix. . . . .

As an example consider X and Y defined as above and the

additional three dimensional arrays W and T:



L IS GROUP (B(*))
B IS GROUP (Q(*))
Q IS GROUP (W(*))
W IS FIELD

P IS GROUP (C(*)>
C IS GROUP (R(*))
R IS GROUP (T(*))
T IS FIELD

The expression:

W = X%T * Y(l,l)

is interpreted as follows:

W(I,J,K)=SUM(X(J,L)*T(I,L,K),L) * Y(l,l)

Y(l,l) is a scalar. The matrix multiplication of X and T

is performed on the two lowest order subscripts. The high-

est order subscript I indexes W and T which are three dimen-

sional •

Use of asterisk subscript list: In some complicated

cases the user may want to specify the exact dimensions

to which the matrix operations apply - unlike the above form

where the lowest order dimensions were implied. This can

be achieved by specifying a subscript list with some (at

most two) of its elements being an asterisk: tf&".

Thus the expression:

W(I,*^) = X":, T < * ^ D * Y(I,*)

is interpreted as:

W(I,J,K) = SUM(X(J,L) * T(L,K,D) * Y(I,K)

• Note that this notation enables us to treat rows arid columns

of a matrix as vectors. Thus to form a matrix of all inner

products of the rows in a matrix we could write:



of course the same computation can be written more com-

pactly as

Z = X"*"^X

The rules for interpreting an asterisk subscript list

is that the matrix or vector active subscripts replace the

asterisks from right to left. If there are two asterisks

the operation variable is interpreted as a matrix, while if

there is only one the operation variable is interpreted as

a row vector.

Use of higher revel' structure' names. Another option

for designation of the dimensions for matrix operations is

the use of an ancestor data name of the elements of the

matrix or vector. Each intermediate level in a structure5

and hence each dimension, is associated with a data name

which is in general a group or a record. We call these

higher level variables - structure variables. They name a

structure rather than the individual fields or elements.

By using the name of a structure variable in a matrix ex-

pression we mean that the name denotes the complete structure

Thus in the declaration of X above, F is the name of the

matrix X(I,J). Alternately the vector M(I) refers to the

matrix X(I,J) as M(I) is the name of the vector X(J).

Consequently we may write:

Z(I,J0 = M(I)fVf*M(J)

for the matrix of all cross products of rows in X. In con-

trast with the previous options where the dimensions of the



array are determined by the repetitions' above a variable,

here the dimensions are determined by the dimension below,

the structure variable.

3.2 Structured Variables Notation and Operations

The purpose of this notation is to enable the user to

write equations where the variables are entire data structures,

It is particularly important for manipulating

operations select

tures. Section 3.2.1 discusses structure variables and their

use in equations. The remaining subsections discuss

ture variables functions: SELECT, MERGE, SORT, COLLECT and FU

3.2.1 Simple' Equations' for Structure Variables

A structure variable is denoted by the name of the

respective structure. The data statements define a tree

like structure in which the * nodes are designated as

fields or elements and the root (file type) and intermedi-

ate nodes Cgroup or record types) are the structure variables.

Thus in the example below:

F IS FILE CGI, G2)
Gl "IS GROUP (AC*),B) •
A IS GROUP CC,DC.1:5))
C IS FIELD
D IS FIELD
B IS FIELD
G2 IS GROUP (X(2))
X IS FIELD

F, Gl, G2, and A are structure variables. B, C, D and X

are field variables. Qualified names ma.y be used to fully

name a variable instance, such as:

F. Gl. A(I)



Note that since A is repeating a subscript is needed in order

to designate the exact instance. A structure variable is the

root of the structure below it. A structure operation operate

on the structure as a whole* The simplest structure opera-

tion is that of defining one structure to have a value

identical to that of another structure. This implies a

definition of each component of the defined structure. Con-

sider for example the .structure : ••-- *•*-

L IS FILE (K,H(*))
K IS GROUP (X,Y(1:5))
H IS GROUP (Z,U(l:100))
(X,Y,Z,U) ARE FIELDS

The equation

K = A(2)

defines the structure K as having a field values equal to

that of the structure of A(2). In order for a structure

definition to be valid it is required that the defined

structure (K) and the defining structure (A(2)) be compatible.

This means correspondence of roots and subtrees in the defined

and defining structures, including the same data types of

respective fields.

The user can express correspondence of nodes in the

respective structures in a number of ways.

1) The correspondence is based on node positions, i.e.

level of the tree and the node position (from left

to right) in the level, in the respective data trees.

2) If subtrees in the defining structure are to be

omitted in the defined structure (then the position
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does not define the corresponding of subtrees

in the two structures) then the corresponding

s-ubtrees which are not omitted must use the

same names.

3) Correspondence may be expressed by using the

same field names in the defined structure.as the

corresponding fields in the defining structure.

In all these cases ,to be compatible the corresponding

nodes must have same dimensionality in respect to the respec-

tive structure roots, and if fields, same data type*

Having such correspondence, the meaning of a structure

definition can be taken as the definition of each component

in the defined structure by the value of its corresponding

component in the defining structure. Thus the statement above

K=A(2)) is equivalent to the following set of field defining

equations:

X = A.CC2)

SIZE.Y = SIZE. A«D(2) or

END.Y(I) = END.A.D. (2,1) .

Note that the defined structure inherits not only the values

of all components in the source structure, but also any

variable attributes of the structure such as SIZE, END,

LEN etc.

The form of an equation which defines a structure is



vector of numeric elements, and fexpr? is a

vector or matrix expression (see subsection 3.1)

2) A = [IF cond 1 THEN] A-^ELSE [IF condk THEN]

where A is a coTi^atible structure with A , CA2

3) A = structure function^ )

The last form will be further discussed in more detail.

The above forms may be compounded by conditional state-

ments or conditional expressions used in MODEL.

3.2.2 The SELECT function

The SELECT function is list oriented. Namely, it

treats a one dimensional set of data structures as an orderec

list*-, It forms an output sublist of structures which

satisfy a given condition, preserving the original order

between the selected structures.

Consider the following F source and E target files:

F IS FILE (G(X))
G IS GROUP (K,X)
K IS FIELD (CHAR)
X IS FIELD (NUM)

E IS FILE (H(*))
H IS GROUP (KEY,Y)
KEf IS FIELD (CHAR)
Y IS FIELD (NUM)

Where G and H are compatible structures. There are two

forms to the SELECT function, differing in the structure

level of the target variable.

E = SELECT (6(1), cond (I) [,l])

H(L) = SELECT (6(1), cond (I,L) [ ,1 ])

In the first format the target is the parent E of the

repeating structure H. E therefore refers to a list of H
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G, Cond(I) is tested in order to determine whether G(I)

should be selected. The optional parameter I denotes the

dimension used in the selection.

An example of use of this function is the case where

only G groups in which X is positive are to be selected.

This is defined by the assertion:

E = SELECT <G(I), XCD >0)

In general, the target list of the SELECTION FUNCTION is

shorter than the source list. SIZE or" END attributes for

the target list are automatically defined by the SELECT

function. The optional parameter I denotes the subscript

of the source substructures. If this parameter is absent

the right subscript (i.e. of G(D) is selected.

In the second format the target variable is a structure

on the same level as the source repeating structure. It

appears subscripted by L. The subscript L must be distinct

from any subscript appearing in the source structure G(I).

L may appear also as an argument in the condition fcond(I,L)1

This adds power to our selection capability. Consider the

above E and F structures. Assume also that F is sorted on

the field K. In the following example we select only the

first of every consecutive structures G which have a common

value of K. The desired selection can be expressed as:

H(L) = SELECT (G(I), KEY(L-l)n=K(I)) .

Note that L-l refers to the element preceding the element

which is referenced.
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The MERGE function is also list oriented. Its multiple

source lists are merged into a target list by interleaving

elements (structures) of the source lists. Each of the

lists is separately indexed. A test of a condition is applie

to element candidates from each list to determine which

structure is selected as the next member of the target list.

When one of the source lists is exhausted, elements are

taken only from the remaining lists.

The following example illustrates the use of the

MERGE function. Let F be the target group and G and H

the source groups.

F IS GROUP (AC*))
G IS GROUP CBC*))
H IS GROUP CCC*))

Assume also that A is compatible with both B and C. L, I

and J are used below as subscripts of A, B. and C, respect-

ively. Again, the MERGE function has two formats where

the target structure is represented by an entire list or

typical element of the list. These formats are:

F = MERGE(B(I),C(J), Cond(I,J) C,I,J1)

A(L)=MERGE (B(I) ,C(J) , CondCI,J,L [,I,J,])

In the first form F is the parent of the merged list.

fCondCl3J)
f depends in general on B(I) and C(J). The con-

dition determines which structure is next selected to be in

the merged output list.

In the second format, the target structure is a variable

ACL), an element, of F, and the condition may also depend on L



function is merging two sorted lists to form a new sorted

•list. Assume A, B, C ARE FIELDS(NUM). Then either of the

assertions:

F=MERGE(C(I),B(J),C(I) <sB(J))

ACL) = MERGE(CCl),B(J),C(I) sB(J))

merges the strings of C and B elements* The next (Lth)

element of F is the one with the lower value. This pro-

duces a sorted list provided G and H are sorted.

The MERGE function automatically defines the attributes

of the target structure•

3.2.4 The' SORT function

This function rearranges the order of the structures in

a source list to form a target list of compatible structures

which are ordered by increasing or decreasing values of cer-

tain fields. Assume the source and target structures.

F IS GROUP (AC*));
A IS GROUP (X,Y,Z);
G IS GROUP (B(*) ;
B IS GROUP (U,V,W);

The format of SORT function is then:

B(I1,..,.IK) = SORT(A(I1,
 IK>Jl»###Jm)> I N C DEC> ( X > "

INC or DEC are used for sorting by increasing or de-

creasing values of the fields in A indicated in the next

argument. The sorting by a multiple key may be indicated by <

* list of fields of A, i.e. X, Y etc, with the order in the lisi

indicating the priority, i.e. order first on X, and then with:

X on Y, etc. As shown above, let: '...•"

dim(A) = K+m and dimCB) = K, dim(A) >dim(B) ,



i. e. the sorting is performed for each permutation of

^1 # # # ^K—1 m+"L dimensions. The selection of sort algorithms

is automatic and is discussed further in connection with the

implementation of this function.

3,2.5 The COLLECT function

The COLLECT function is used in order to convert a

list (or a file) which is a one dimensional array of struc-

tures into a two dimensional jagged edge array, or list of

lists.

Consider the structures:

F IS FILE (G(*))
G IS GROUP (X(*))
H IS FILE (Y(*>)

where X and Y are assumed to be compatible structures.

X may be defined as:

X(I,L) = COLLECT(YCJ)v Cond(I,J,L))

Its meaning is that the list Y(J) is subdivided into

a list of sublists with I the index of the sublist and L

the index of an element in a sublist. The first element Y(l)

forms X(l,l). Subsequently an element Y(J) forms an element

X(I,L) if ^ondCljJjL)T holds, otherwise it forms the element

X(.I+1,1), i.e. the first member of the next sublist.

This function is useful in the case that we wish to

view a file (a list) which is a homogenous stream of records

as consisting of groups of records. The elements in each

group may share some common characteristic such as having

a common range of kevs. The source file (Y) is described



dimensional representation according to an arbitrary

grouping criterion.

In the present MODEL language if the user desires to

refer to an operand in an assertion as being multidimen-

sional then the corresponding file must be described as

being structured in this manner. This violates the prin-

ciple of data independence, namely the independence of

external data description on how the data is actually re-

ferenced in a desired transformation. The COLLECT function

allows specifying internal structures with the desired

dimensionality, without forcing this structure on the ex-

ternal file.

The function COLLECT is redundant since a very similar

effect may be obtained by using the SELECT function:

X(I,L) = SELECT(Y(J), cond(I,J))

The difference between the uses of SELECT and COLLECT

is that of efficiency. The specification of SELECT implies a

scan of the complete source string of Y in order to select

the appropriate records that correspond to the index I.

The COLLECT function explicitly states that only one scan

of the source string Y is required. This aspect is further

discussed later in connection with the implementation of the

COLLECT and SELECT functions.

3.2.6 The FUSE function

The FUSE function is the inverse of the COLLECT function

It takes as input a two dimensional jagged edge array which
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fused list. For example consider the source structure:

F IS FILE (G(*))
G IS GROUP (R(*))

and the target structure:

H IS FILE (R<*))

Then:

H = FUSE(F.R(I,J) [, I,J ])

defines the list H, which consist*of the following sequence

of structures:

R(l,l) ,. .R(1,SIZE.R(D) , R(2,l) .. .R( SIZE .G3 SIZE. RC SIZE* G)

3.3 Variant Structure Variables

At the present a MODEL data statements must specify for

each structure variable (FILE, RECORD or GROUP) a unique

set of components. It is possible to indicate an alternate

possibility of components, based on some condition, through

the artificial description of the alternate components as

optional components.

Thus for example:

F IS FILE (G(*))
G IS GROUP (A(0:l), B(0:D)

means that G consists of a sequence of alternate A and B

components which are optionally repeating either 0 or 1 times.

To choose only one of these it is necessary to explicitly de-

find SIZE.A and SIZE.B so that either A or B exists but never

both. This is a roundabout way of saying that G consists of a

sequence each of whose elements is either of the structure A

or alternately of the structure B.
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•. The following modification is proposed in order to

make the selection between variant components much easier.

Presently the syntax of description of a structure variable

is :

<structure variables : = <name> is {GROUP[RECORD} (<component l i s t >)

The proposed ex tens ion c o n s i s t s of a s e p a r a t o r f / r

denoting a l t e r n a t i v e components in the fol lowing way:

<structure variable>::=<nanes> IS {GROUP[RECORD }

(<component l ist> £/<component list>]*)

Thus, the d e f i n i t i o n above for dec l a r i ng G t o be e i t h e r

A or B can be simply r ep re sen t ed a s :

G IS GROUP (A / B).

A more complicated example i s :

G IS GROUP (A, B ( * ) , C(2) / D, E ( l : 2 ) )

where G either consists of the components A, B and C or

of D and E.

To determine the choice of the alternative, it is

necessary also to define a qualified name variable with

the prefix keyword DISCR and the suffix name of the parent,

i.e. DISCR.G. The value of this "discriminator" variable

determines the choice of numbered alternatives, i.e. the firs

alternative is chosen if DISCR.G is.l, and the second alter-

native of DISCR. G is 2, etc. The dimensions and ranges of tJ"

DISCR prefixed variable are the same as the'variable named ir

the suffix.'
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specifications of personnel records in which if a person is

divorced the record includes the date of divorce while if

married the name of the spouse is included* A description

of such a record might be given by

PERSON IS RECORD (NAME, MARITAL_STATUS, ADD_INFO)

ADD.INFO^IS GROUP (DIV_DATE / SPOUSEJNAME)

For source variables the DISCR data-parameter has to be

explicitly defined:

DISCR.ADDJQfFO = IF(MARITAL_STATUS = fDIVORCED1) THEN 1

ELSE

IF(MARITAL_STATUS = f MARRIED1) THEN 2

High level data structure equations (i.e. definition of a

high level structure by a single equation) can be used only

when the operand data structures do not consist of components

which have variant structures. The case where there are struc

variants require the user to explicitly match source or targei

variants with other variables. This can be done by writing

directly the elemental equations as shown in the discussion

of source to source translation of high level data structure

equations in Section 4.2.

To avoid circular definitions the DISCR data-parameter

for source structures cannot depend on information which is

contained in the variant structures themselves.

The variant structure concept resembles the variant recor<

concept of PASCAL. It is somewhat more general in being able

to specify an arbitrary discriminating condition.



3.4 Indirect Subscripting

The implementation of the list functions described in

Section 3.2 is based on expressing these functions by simpler

statements in the current MODEL language* Additionally, the

efficient implementation of these functions requires extending

the subscript expression analysis performed by the MODEL

processor* As noted in Section 2, presently the MODEL

processor analyses three types of subscript expressions of the

forms of I, 1-1, I-K (K>1), where I is a subscript and K a

positive integer constant. All other forms of subscript

expressions are denoted as being of type 4 and are not further

analyzed. The proposed extension consists of adding the

analysis of subscript expressions of the form AC I) where A

is a variable which is used to subscript another variable B,

i.e. B(A(D). This form of subscript expression is referred

to as indirect subscripting, where a secondary array (A) defin

the subscript value used to subscript the main array (B).

Indirect subscripting may be used in the left hand side

dependent variable:

B(Ii'-—VrA<Ii'—Vi-V'^"!'-1--'
or in a right hand side independent variable

B( *i >—V = c< x i . — V i >A( xi'—V-i. V '
These two forms are referred to as left and right indirect

subscripts, respectively. .

Generally the produced program is made more -efficient

both in computing and memory use if the scope of loops



is enlarged. In the present MODEL system, suDscripx express-

ions of types 1, 2 and 3 are analyzed to determine such sets

of statements where, in each set appropriate respective sub-

script expressions have compatible ranges so that these

statements can be computed in a single program loop. Also

the variable arrays in these statements require only a

single range specification for the respective subscripted

dimension. Type 4 subscript expressions indicate that the

statement must be computed in a separate loop for the respecti

subscript.and never in the same loop as the one that computes

the variable in which the type subscript appears. This re-

quires also that the array which is subscripted by a type 4

expression must be placed in memory. The proposed analysis

of indirect subscripts will allow the inclusion of more

statements in the same loop.

As will be shown below, this extension of the analysis

to indirect subscripts will also allow the user to compose

list oriented specifications which will be checked more

thoroughly and implemented more efficiently.

The secondary array used in indirect subscripting

must be integer valued with positive entries. The system

will analyze indirect subscripts only if the secondary array

A(I) is sublinear, namely if it is:

a) Monotonic: i.e. for I>J= >(A(.. I)2>A( . . J)

b) Grows slower than I, i.e. A(..I) si

The system will test the secondary array automatically-

to determine if it is sublinear by applying the following

simple criteria. In the assertion that defines the second-



with clauses of conditionals) must be either 0 or 1 for

•1 = 1 and must be equal to AC..I-1) or AC..1-1)+1 for I>1.

Thus the system will examine the assertion to check

if A(I) is in the form:

A(I) ="IF 1=1 THEN (1 | 0) ELSE(AC.-.I-l) | AC I-D+D)

This extension not only makes possible the checking and

implementation of the list oriented functions, but also the

user composition of list oriented applications. Consider

the following example:

Let IN be a source file as follows

IN IS FILE (R(*))
R IS RECORD (ACCT#, NAME, ACTIVITY)
(ACCT#, ACTIVITY) ARE FIELDS CNUM)
NAME IS FIELD (CHAR)

It is sorted by ACCT#. It is desired to edit this

file to obtain a report with the following requirements;

a) Every new ACCT# (the file is sorted on this field)

should start on a new page.

b) There would be a line in the report for each

record R.

c) An account which extends beyond 6 0 Records should

have a new page every 6 0 lines.

d) Each new page should have a header which lists the

ACCT#, a global page number (accumulative), and a •

local page number for the current account.

A separate HEADER source file contains just header records

as follows :



HEADER IS FILE (HD(*))
HD IS RECORD (CC,ACCT#,LOCAL PAGE,GLOBAL_PAGE)
CC IS FIELD (CHAR(D)
(ACCT#, LOCAL_PAGE,GLOBAL_PAGE) ARE FIELDS (NUM) _

"The output file will be a merge of the IN and HEADER files.

REPORT IS FILE (G(*))
G IS GROUP (P|HD)

The index of records (P or HD) in the REPORT file is

denoted by the subscript I. NEW_ACCT(I) and NEW_PAGE(I)

are boolean variables which denote whether the Ith record of

REPORT represents a new account number, and start of a new

page, respectively. CNT60(I) denotes the sequence number of c

record R in its page.

A(I) is a secondary array which denotes the index of a

record R in IN which corresponds to the Ith line(PjHD) in

REPORT. Note that since the output file uses both header

records and input records, AU> increases slower than I.

Thus

AC I) = IF 1=1 THEN 1

ELSE IF NEW_PAGE(I) THEN A(I - l )

ELSE ACI-D+1 or i

NEW_ACCT(I) = ((I=1) | (A(I-1)>1S IN.ACCT#(A(I-1) )-l=IN.ACCT#(

8CCNT60CI-1)>0)

NEW_PAGECI) = NEW_ACCMT(I) |(CNT60(I-l) = 60)

CNT60(I) = IF NEW_PAGE(I) THEN 0 ELSE CNT60(I-l)+1

HD.ACCT#(I) = IN.ACCT#(A(D)

HD.LOCAL_PAGE(I) = IF NEW__ACCNT(I) THEN 1

ELSE IF NEW_PAGE(D THEN HD.LOCAL_PAGE

ELSE HD.LOCAL PAGE(I-l)
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HD.GLOBALJPAGE(I). = IF I•« 1 THEN 1

ELSE IF NEW_PAGE(I) THEN HD. GLOBA

ELSE HD..GLOBALPAGE(I-1)
REPORT.G(I) = IF NEW_PAGE(I) THEN HD

ELSE IN.R(ACI) -1)

Where the declarations of the secondary variables are

given by

AUX IS INTERIM FILE (GR(*))

GR IS GROUP (NEW__ACCOUNT, NEW__PAGE, CNT60,A)

(NEWJVCCOUNT, NEW_PAGE)ARE FIELD (BOOLEAN)

(A, CNT60) ARE FIELD (NUM)

Also CC is the indicator of a new page: CC = fl'.



4. Source to Source Transformations

As already stated in the previous section, the

principal method for implementing the extension of MODEL

with high level data structure assertions is to transform

such assertions into assertions containing only operations

on data elements. Namely the source high level data

structure assertions will be replaced by equivalent ele-

mental data assertions. The latter type of assertions are

already implemented in the current version of the MODEL

processor. The transformation of high level structure

assertions into the elemental data assertions is divided

below as follows: Section 4.1 deals with matrix and

vector algebra assertions, Section 4.2 deals with the

data structure algebra, and finally Section 4.3 deals

with data structure equations.

The MODEL processor architecture contains a number

of phases, as described in the MODEL documentation

(A. Pnueli, L. Lu, and N. Prywes "MODEL Program Generator"

March 19 80)• -The processor consists of the following

phases:

Phase 1: Syntax-Analysis of the MODEL Specification

In this phase, the provided MODEL Specification is

analyzed to find syntactic and* some semantic errors. This

phase of the Processor is itself generated automatically

by a meta-processor called a Syntax Analysis Program Gen-

erator (SAPG), whose input is a table of syntax rules provid



a formal description of the MODEL language in an extended

BNF language. In this manner, changes to the syntax of

MODEL during development can be made more easily.

A further task of this phase is to store the

statements in a simulated associative memory for ease

in later search, analysis, and processing. Some needed

corrections and warnings of possible errors are also

produced in a report for the user. Also, a cross-refer-

ence report is produced.

Phase 2: Analysis of MODEL Specification

In this phase, dependency, relationships between

statements are determined from analysis of the MODEL

data and assertion statements. The specification is

analyzed to determine the consistency and completeness

of the statements. Each MODEL statement is first considered

independently and checked for syntactic correctness. The or

of the userTs statements is of no consequence. The state-

ments are represented by nodes, and the dependency relation-

r

ships are represented by directed edges in an array

graph on which completeness, consistency, ambiguity and

feasibility of constructing a program can be checked. *

Various ommissions or errors are corrected automatically,

especially in connection with use of subscripts. Reports



are produced for the user indicating the data, assertions,

or decisions that have been inadequately described, assump-

tions that have been made by the Processor, or contradic-

tions that have been found. In addition, a report showing

the range of each subscript is generated*

Phase 3: Automatic-1 Program Design and Generation of

Sequencing Control*

This phase of the Processor determines the sequence

of execution of all the events and the iterations implied by

the specification. Subsequently it determines the sequence

and control logic of the desired program* The result of

this phase is a flow of events, sequenced in the order of

execution. Thus, the output of this pahse is similar to

a program flowchart of the desired program. It is sub-

sequently used to produce a flowchart-like report. At the

end of this phase it is also possible to produce a formatted

report of the specification.

Phase U: Code Generation.

At this point in the process it is necessary to

generate, tailor, and insert the code into the entries

of the flowchart to produce the program. In particular,

read and write input/output commands are generated when-

ever the flowchart indicates the need for moving records.

The assertions are developed into PL/1 assignment state-

ments . Wherever program iterations and other control
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them is generated. Declarations for object program data struc-

tures and variables are generated. Code is also generated for

recovery from program failures when bad data is encoun-

tered during program execution. The product of this phase

is a complete program in a high level language, PL/1,

ready for compilation and execution. A listing of the

generated program is produced.

The current version of the MODEL processor already

utilizes the techniques of generating.source MODEL state-

ments where a user specification is incomplete and the

missing data and assertions statements are generated to

correct the specification. However the analysis-;in the

presently considered transformations*is far;more complex

It is proposed therefore to"add procedures in phase 2 of

the MODEL processor to handle the transformations. This

in fact creates a new subphase within phase 2.

The new subphase has to come in phase 2 after the attribu

of all data structures have been computed, because it

needs to know for its execution the dimensions of variables

as well as their structure. On the other hande it has to

precede the present analysis of the assertions as this

analysis should be applied also to the statements generated in

the subphase. Consequently the ideal location would be-

between the procedures ENHRREL which analyzes the data

statements and constructs the data nodes and edges and

ENEXDP which analyzes assertions.



The statement generator subphase must be organized

in several further subphases which have to be followed

in a certain order, because the earlier subphases pro-

duce assertions which may be further transformed by later

subphases. Note also that some of the statements generated

are data statements.

The output of the statement generator subphase is a

set of additional MODEL statements replacing some of the

original assertions in the specification. .These new MODEL

statements have to be reanalyzed and properly represented

as though they were part of the original specification input

and the original statements which were, replaced must be

deleted from the associative memory. The simplest but some-

what inefficient method is to maintain the specification

on an external file, and to edit this external file. This

facilitates deleting old assertions and inserting new ones.

After this phase we may restart the whole translation from

the beginning, presenting SAP with the edited version of

the specification. A more efficient method is to perform

the transformation at the assertion analysis level/.includ-

ing the reapplication of the previous phases, such as

dictionary updating, etc. as appropriate.

U.I The Transformation of Matrix and Vector Algebra

Assertions.

This subphase scans the assertions and interprets the

matrix and'vector assertions into more elemental state-



ments. If this transformation is successful, the original

assertion is replaced by one or more assertions produced by

the transformation. If the assertion does not contain any

matrix or vector operations then the assertion is unchanged•

The heart of the transformation and analysis algorithms

is the recursive algorithm MATRIFY described below. This

algorithm has two inputs. It accepts an expression, from

an assertion that was identified as being a matrix or

vector assertion, and a list of" two subscripts. It -

attempts to translate., the. inputs into elemental asser-

• tlbns* It analyzes the input expressions in the assertion.

tree in the associative memory, expression by expression.

If successful, it returns the transformed expression with

the information of the dimension of the resulting expression.

It may also return an indication of failure.



PROCEDURE MATRIFY:

Input Parameters:

EXP - The expression to be translated.

SUB1, SUB2 - The names of the subscripts to be used

for translation.

Output Parameters

TEXP - The translated expression.

SHAPE = Can assume one of the values:

fMATf - for a matrix

•ROW1 - for a row vector

fCOLf -" for a column vector

fSCLf - for a scalar.

The SHAPE parameter reports the shape of the translate

expression.

Algorithm

The algorithm analyzes each expression to determine

one of five cases;

1. The expression is a variable - then this is case I

2. The expression is a unary operation followed

by an expression (OP EXP)-then this is case M2

3. The expression is a binary operation

(EXP1 OP EXP2)-then this is case M3

4. The- expression is a function with arguments

(FCARG1, ))-then this is case M4

5. The expression is equality: (the top level ofan

assertion) EXPl=EXP2)-then this is case M5



Ml. Consider first the case that EXP is a variable.

M.I.I Let EXP = A where A is a field. Let d be its dimensio:

If d=0 return TEXP = A, SHAPE = 'SCL'

IF d=l return TEXP = ACSUB2), SHAPE = 'ROW

IF d^2 return TEXP = A(SUB1,SUB2).SHAPE = 'MAT'.

Ml.2 Let EXP = AC^,.. Jm), m>0 where A is a field.

Return TEXP = EXP , SHAPE = 'SCL'.

Ml.3 Let EXP - A( J^ ,.. J^^) , msO where A is a field.

Return TEXP = ACJj,..^, SUB2), SHAPE = 'ROW.

Ml.4 Let EXP = A(Ji,..Jm,ft,Jm+l) , m^O where A is a field.

Return TEXP = A( *!•,_,.. Jm, SUBl,Jm+1), SHAPE = 'COL'.

Ml. 5 Let EXP = AC,.. * »• • Jm+i»
J
in+2

) where A is a field.

Return TEXP=A(...SUB2,...Jm+1,J + 2>, SHAPE ='ROW».

"Ml.6 Let EXP = AC..*,..ft,..) where A is a field. Then

Return TEXP = A(,..SUB1,..SUB2,..) , SHAPE -'MAT4.

Ml. 7 Let EXP = A C ^ , . . ^ ) , m>.0 where A is a REC [GROUP and

it has only one descendant field X. Let d = dim(X)-

dim(A). Then

If d=0 return TEXP =. X(Jl9..Jm), SHAPE = 'SCL'

If d=l return TEXP = X(J1}..Jm, SUB2), SHAPE 'ROW

If d=2 return TEXP=X (J^..Jm. SUB1,SUB2), SHAPE = 'MAT

Ml.8 If EXP = UNIT, the special name for the unit matrix ,

return TEXP = IF(SUB1=SUB2)THEN 1 ELSE 0, SHAPE =

'MAT'.

In all other cases where EXP is a variable, report an

error condition.



M2. Consider now the case that EXP is an expression formec

out of a unary operation and a subexpression, i^e..

EXP = OP EXP1

M2.1 If OP is an elementaloperation, i.e. a non matrix

operation then

Call MATRIiT (EX^l,SUB1,SUB2,TEXP1,SHAPED

Return TEXP=OP TEXP1,SHAPE = SHAPE1

M2.2 If OP = w<\s a transposition, then

Call MATRIFY (^XPl,SUB2,SUB1,TEXP1,SHAPED

Return TEX? = T.1XP1 and

SHAPE = IF SHAP):i='SCLf | fMATf THEN SHAPE1

ELSE IT SHAPEl='COLf THEN 'ROW1

ELSE X? SHAPEl='ROWf TffEN« 'CO'L'

M2.3 If OP = •/, inversion, then

Call MATRIFY (FXP1,SUB1,SUB2,TEXP1,SHAPED

If SHAPEl i 'MAT' report an error.

Describe new auxiliary arrays AUX and INV by issuing

the statements:

G IS GROUP (R(*))

R IS-RECORD (AUX(^), INV(^))

(AUX,INV) ARE FIELD (NUM)

The names G,R,AUX,INV5 should be unique to each

specification,

Alao generate the" assertions:

AUX (SUB1,SUB2) = TEXP1

"" *v - INV = MATINV (AUX\SIZE.AUX) and return with



TEXP = INV(SUB1,SUB2), SHAPE = 'MAT'

MATINV will be a run-time provided procedure

for inverting a matrix.

M.3 Consider next the case that EXP is a binary

expression:

EXP = EXP1 OP EXP2

M3.1 If OP is an elemental operation, i.e. a non matrix or

vector operation then:

Call MATRIFY (EXP1,SUB1,SUB2,TEXP1,SHAPED

Call MATRIFY (EXP2,SUB1,SUB2,TEXP2,SHAPE2) and return

TEXP = TEXP1 OP TEXP2 and

SHAPE = IFCSHAPE1 = SHAPE 2)THEN SHAPE1 ELSE

IF (SHAPE2 = 'SCL') THEN SHAPE1 ELSE

IF (SHAPE1 = fSCL!) THEN SHAPE2 ELSE

'MAT'.

M3.2 If OP = "* - i.e. matrix multiplication. Let K be a new

system generated subscript.

Call MATRIFY (EXP1,SUB1,K,TEXP1,SHAPED

Call MATRIFY (EXP2,K,SUB2,TEXP2,SHAPE2)

If SHAPE! = 'COL* and SHAPE2 = 'MAT' or

SHAPE1 = 'MAT' and SHAPE2 = 'ROW or

SHAPE1 = SHAPE2 and SHAPE1 i 'MAT', report an error,

otherwise return

TEXP = SUM(TEXP1*TEXP2,K), and

SHAPE - IF SHAPE2 ~ 'MAT' THEN SHAPE1 ELSE

IF SHAPE1 = 'MAT' THEN SHAPE2 ELSE



IFCSHAPE1 = 'ROW')THEN 'SCL' ELSE

' ' * " 'MAT'

M3.3 If OP = "/, matrix division,

Call MATRIFY (EXP1,SUB1,SUB2,TEXP1,SHAPED

Call MATRIFY (EXP2,SUB1,SUB2,TEXP2,SHAPE2)

If SHAPE1 = 'SCL' or SHAPE1 = 'COL' or

SHAPE2 t 'MAT' report an error.

Declare a two dimensional array AUX(*,*)

.and issue the assertion:
AUX(.S.UB1,SUB2). = TEXP2

Now distinguish between the following two subcases :
M3.3.1. If SHAPE1 = 'ROW then declare two one dimensional

arrays LEFTC*), SOL(*) and form the assertions

LEFT(SUB2) * TEXP1

SOL = SOVEQ(LEFT,AUX)

Return TEXP = S0L(SUB2)

SHAPE = 'ROW

SOLVEQ (b,A) is a run time provided procedure which

for a row vector.a and b matrix A finds the row vector

solution x of the linear system

b..= xA

M3.3.2. If SHAPE1 = 'MAT' then declare two two dimensional

arrays LEFT(*,*), SOLC*,*) and form the assertions

LEFT(SUB1,SUB2) = TEXP1

SOL- SOLVMATCLEFT,AUX)

Return TEXP = SOL(SUB1,SUB2)

SHAPE = 'MAT'



SOLVMAT (B,A) is a run time provided procedure which

for matrices B and A finds the matrix solution X to

the linear system:

B = XA

Consider next the case that EXP is -a function

EXP : F(ARG1,..ARGR)

For each ARG^9 i=l..R

Call MATRIFYC ARG± ,SUB1 ,SUB2 , i ^

Return

TEXP = F(TEXPl5..TEXPR) and

SHAPE = SHAPE]_ if all SHAPEi are equal to one another

If all the npn scalar SHAPE^ are equal to one another^*]

let- SHAPE be that non scalar value*

Otherwise let SHAPE = fMATf.

M5. Finally consider an equality;

EXP ; ̂ TARGET = SEXP1

Where SEXP is the source expression of an assertion.

Then:

Call MATRIFY (TARGET,SUB1, SUB2,TEXP1,TSHAPE)

Call MATRIFY (SEXP,SUB1,SUB2,SOURCE,SSHAPE)

-MS.lIf TEXP1 = fERR0Rf or SOURCE = fERROR1

and SEXP contains matrix operations this is an

error condition*

M5.2 If TEXP1 = fERR0Rf or SOURCE = fERROR1 and SEXP does

not contain matrix operations the assertion just

cannot be interpreted as a matrix assertion and return

TEXP = EXP, the original assertion.
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M5.3 If TSHAPE = SSHAPE or SSHAPE = TSCLf

or TSHAPE = fMATf return

TEXP = TEXP1 = SOURCE

MS. 4 Otherwise check if SEXP contains matrix operations.

If it does it is an error situation", else return

TEXP = EXP, again with no translation

End of Algorithm

4.2 Transformation Of Data Structure Functions

Another check performed during the scanning of the

assertions is for the presence of high level data structure

functions: SELECT, MERGE, SORT, COLLECT and FUSE. By re-

quirement these functions can only appear at the top level

of the right hand side expression of an assertion tree.

Thus detection in this case is relatively easy. Each

assertion which utilizes one of these functions is then

translated in this subphase into a set of elemental asser-

tions.

These functions operate on source lists of data

structures to define a target list of structures. One

form of the assertion using the functions is:

TC...L) = f(Sl(,,.I), S2( ,..J) ,. .Cond(I,J,. . . ,D)

where the structure T must be compatible with the struc-

tures SI, S2, etc. Compatibility has been defined in

Section 3.2.1. T,S1,S2 etc. may not include components

which are structure variants. Characteristic to the

the. free subscript L which



There exists an alternate format in which the left

hand side variable is the parent of T and the subscript L

does not appear• For example if:

P is GROUPCT(I) )

the alternate format is:

PC.) = f(Sl(,..I),S2(..J),..cond(I,J,...))

Thus in scanning assertions containing data structure

functions it is necessary to determine first which of the

two formats is used. The determination is based on check-

ing compatibility between the target structure (lhs) and

the source structures (rhs). For example in the above

cases P and T cannot both be compatible with SI, S2, etc.

The first format is assumed as more general, and

assertions using the second format will first be converted

into the first format. ....

4.2.1 Translation of the SELECT Function

Consider the assertion:

A(I-,*.,I ,L) = SELECT(B(J ,...,J, ,1), cond (K ,..K
JL m l K 1 m

First a check must be made if the structure of A is

compatible with B.

••• Two versions of the translation are presented

below for the*cases where the selection condition

does and"does-not depend on L* Assume first that

a function does not depend on L, then assertions must be .

generated to define a secondary array X, it!s*last ele-

ment condition END.X, the dependent variable A and its

range SIZE.A, as follows:



(a) X(I1..,..Im,I) =

IF 1 = 1 THEN IT cond (K ,..K ,1) THEN 1
l m

ELSE 0

ELSE IF c o n d C ^ ^ - K ^ I ) THEN
X(I. , . . I , I - D + l1 m

ELSE X ( I l 5 . . I m , I - l )

This defines a sublinear secondary vector X through

which the dependence of A upon B will be expressed.

Next the assertion defining A is:

<b) A(I1,..Im,X(I1,..Im,I) ) = IF condCK^.K^I

THEN B(Jl5..Jk5I)

The next assertion defines the size of the target

array A* ' w •• ̂  * ^'

( c ) S I Z E . A ( I 1 5 . . I m ) = I F E N D . l k

THEN X ( I l 5 . - I m > I )

A l s o '

( d ) E N D . X ( I 1 5 . . I ,I> s END.BCJ. , . . J , 1 )

( c ) c an n o t b e r e p l a c e d by an a s s e r t i o n ( c f ) fc

END.A

( c f ) END.ACI. , . . . 1 5 D = END.BCJ. , . . J , , 1 )
1 m 1 k

as A is shorter than B and this assertion may cause

multiple definitions in the END.A array*

The other case of where the condition depends

explicitly on L is discussed next. In this case (a)

and (b) are replaced by(af) and(b!):



IF 1=1 THEN IF cond (K^. .Km,l,l) THEN 1

ELSE 0

ELSE IF condCK-L,..!^,!, XC.,I-1)+1)

THEN X(I,...Im,I-l)+l

ELSE X(I,...Im,I-l)

(b«): A(I1,..Im,X(I1,..Im,I) ) = IF (1=1 S cond

6

THEN BC^,..^,!)

4.2.2 Translation of the MERGE Function

Let the MERGE assertion be:

A(..,L) = MERGE (B(,..I), C( ..,J), Cond(..1,J,L) )

In this case two secondary arrays X and Y are needed, both

being sublinear such that whenever B is elected it is

Subscripted by X and whenever C is selected it is subscriptec

by Y. In addition we use the following arrays:

B_DONE denotes that the B list is exhausted.

C_DONE denotes that the C list is exhausted.

SEL denotes that B is selected.

The main assertion is

A( ,L) = IF SEL(L) THEN B(..,X(L)) ELSE C(..,Y(L) •]

The additional variables are:

B_D0NE(..,L) = L>1S(B_DONE(..,L-1) |

(END.BC. ,X(L-1) ) S SEL(..,L-1) ) )

C__DONE(. . ,L) = L>1S(C__DONE(. . ,L-1) |

(END.CC..,Y(L-1) ) g "* SELC...L-1) ) )

XC.L) = IF L=l THEN 1 ELSE



IF SELC • ,L-D S ̂ B JDONEC . • . ,L> THEN X( . . ,L-1> +:
: ELSE,X(...,L-1)
YC..L) = IF L=l THEN 1 ELSE

IF (SEL(..b-l)j; CJDONE(..,L) ) THEN YC..,L-1) .

ELSE YC..,L-1)+1

SEL(..,L) = CJ3ONEC-. ,L)|C-B_DONEC.. ,L) 8

• ., Oond(..,XC.,L),Y<.,,L),L>> •

END.AC..L) = (BJ>ON£(.«.*IJ 6 END.CC . . ,Y(L) ) 8 "'SELC

CCJ)ONE(.. ,L) 6 END.BC..,XCD ) S SELC..,L) )

4,2.3 Implementation of the SORT Function

Unlike the other functions, there is little advantage

in efficiency in translation of the SORT function into more

elemental assertions. The reason is that the other functions

can be performed in most cases in a simple pass over the

source data. Also in such cases it suffices to locate one

record at a time and not keep the entire source data in main

memory. The program loop that implements a pass over the

records or groups in the source data may also include

other computations5 thereby further improving efficiency.

This is not the case in sorting where multi-passes over

the data are necessary and major portions of source""3ata

must be located in main memory. For these reasons SORT

may be implemented by substituting for it appropriate sub-

programs during the Code Generation phase* If the data

which is the argument of the function is input then it is

advantageous to presort the data before other computations



are performed. Similiarly, if the target of the assertion

is output data then it is advantageous to post-sort the data

after the appropriate computations. Note that sorting may

also be achieved by repeated use of the SELECT function, to

select progressively the lowest/highest value substructures.

The format of an assertion with a SORT function is

B(L ,...,1, )=SORT(A(ln .. ,1, ,J. ,J ),INC|DEC,(X,...) )
-L k 1 K m

The sort function reduces the lowest order dimensions (J ....J

of A, which are in excess of the dimensions of B.

If A is source data on an external medium then pre-

sorting is indicated and B will be a source data on an exter-

nal medium. If A is target data on an external medium then

post-sorting is indicated. Any computation that depends on

B must be scheduled after the sorting and an analysis must

be conducted of the feasibility of such computation. If A

or B are interim data, the implication is that they must be

entirely located in memory.

*4.2.4 Translation of the COLLECT function

The COLLECT function creates a two dimensional struc-

ture A from a one dimensional structure B. The condition argu

ment defines the first element in a' next "row" structures of A

The form of an assertion-with a COLLECT function is:

A(..I,L) = COLLECT(B(..J), cond(I,J,L) )

Two secondary arrays X(J) and Y(J) are needed to

subscript A in the generated substitute assertion:

A C , X(J), Y(J)) = B(..,.J)
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X(J) denotes I and Y(J) denotes the values of L for each

value of I. Y(J) by itself is not monotonic, only within

I, and (X(J),Y(J) ) is lexicographically monotonic. The

successor of A(..I,L) may be either A(..I,L+1) if Cond(I,J,I

is ..false or A C . 1+1,1) if it is true.

then the generated assertions that define X and Y are.

X(J) = IF J=l THEN 1 ELSE

IF Cond(X(J-l>,J,Y(J-l) ) THENX(J-1)+1

ELSE X(J-l)

Thus X is stepped only if the condition

Y(J) = IF J=l THEN 1 ELSE

IF Cond(X(J-l),J,Y(J-l). ) THEN 1

ELSE Y(J-1)+1

Also let the row name (parent) of A be AA then

END.AA(X(J) ) = IF cond(X(J),J,Y(J) ) THEN END.B(J)

END.A(X(J),Y(J) ) = cond (X(J),J,Y(J) )

fr.2.5 Translation of the FUSE Function

The FUSE function assertion has the form:

A(..L) = FUSE(B(..I,J) )

Here the two auxiliary arrays

X(L) and Y(L) denote the indices of B:

A(..L) = B(X(L),Y(L) )

This last assertion is generated in addition to

the definitions of X(L) and Y(L):



X(L) = IF L=l THEN 1 ELSE

If END.B(X(L-1),Y(L-1) ) THEN X(L-1)+1

ELSE X(L-l)

Y(L) = IF L=l THEN 1 ELSE

If END.B(X(L-1),Y(L-1) ) THEN 1

ELSE YCL-D+1

END.A(L) = END.BB(XCL) ) where BB is parent of B



U.3 Translation of Data Structure Equations

This section concerns assertions of the general form:

A = IF Condi THEN B ELSE

IF Cond2 THEN C ELSE

• « • •

Where A,B,C... are of record or group node type (not fields)

A,B,C... may be multidimensional with n ,ru,n.. .dimensions
a o c

respectively. The objective is to substitute for the above

assertion one or more assertions that define the components

of A in terms of the components of B,C... .

A must be compatible with B,C... • Compatibility here

means either of the following two casesCin order of priority):

1. For each field in A there is a unique matching

field in B,C... with the same name, same dimen-

sionality in respect to the root of A,B,C.., re-

spectively, and same data type.

2. For each node in A there is a unique matching

node in B,C... with the same data tree level in

respect to the root of A,B,C.., respectively, either

the same name or otherwise of the same sibling positi

. (in order of sibling node's from, left to right) , same

node type (i.e. either record/group or field), and.if

the node is a field, also the same data type.

As noted A,B,C... may be-multidimensional. The respect-

ive subscripts expressions of these variables will be



retained as entered by the user. Subject to the restrictions

listed in Section 2, the subscripts may be omitted by the

userj whereupon they will be automatically inserted by the

system. These subscripts will be omitted below, to simplify

the presentation here. To further simplify the presentation

we will consider the form

A = B

with the understanding that when 'Cond THEN...ELSE1 clauses

exist then the rules concerning A and B must also apply to

A and each of the other variables following the ELSE(i.e.C,

etc.). Note that the operands in the conditional clauses

must be fields..

In previous scanning of the assertions, those assertions

that have the above form and the operands are of record or

group node types are passed as arguments to the translation

of data structure equations. Basically this process is

viewed as consisting of the following two steps:

1. Matching the nodes in A with corresponding nodes

in B (and C,...if there are corresponding condi-

tionals). We will refer to this stage as either

MATCH_BY_NAME (assertion) for case 1 above, or

MATCHJBY^STRUCTURE (assertion) for case 2 above.

2. Translation of the equation into an equation with

lower level data structure operands (the lower

level nodes may be record/group or field node types)

This stage will be referred to as TR(assertion,



list of matched components)•

In many cases SIZE and END attributes are propagated

automatically from other operands in the same assertion for

which the user has defined these attributes* In these cases

it is not necessary to define attributes.

Applicability of compatibility by name (case 1) is

checked first.- If the check is negative then compatibility

by structure (case 2) is checked. The algorithm for case 1

is as follows:

1) MATCH_BY_NAME(A=B) consists of checking of each

field in A for a unique field in B with the same

name, dimensionality (in respect to roots of A

and B) and data type*

2) If the check is successful and the fields in A

are X ....X then the translation stage TR(A=B,
1 Jc

A.X^* B.X. for i=l to k) is called to generate

assertions of the form

A.XCI.....I )=B.X (I.,....I K) for i=l to k£ 1 na 1 no

(for the more general case the assertions will

be: A.X# = IF Condi THEN B ^

IF Cond2 THEN C.X± ELSE etc.)

Later in the MODEL analysis phase these assertions will

be analyzed for consistency of ranges of variable arrays.

Normally* the specified ranges of respective dimensions"

(from right to left) for B.X. will be passed to A.X^ or



vice versa. If there is an inconsistency the user is

requested (in an error message) to specify the missing

range definition.

In case 2 the matching and translation are performed

recursively one level at a time. Namely the assertion A=B

is translated into assertions for the corresponding immedi-

ate descendents of A and B, respectively* The process will

be repeated if the latter are records or groups, until the

respective corresponding descendents are fields,

1) The MATCH JBY_STRUCTURE(assertion) process is as

follows: The immediate descendents of A:A-••.A are

examined first if they each have the same names as ai

immediate descendents of B:B . ..B . The same
1 m

named components A. and B« are then candidates

for further matching. If there is no name corres-

pondence then A, and B.5 for i=l to k, are candi-

dates for further matching.

The candidate pairs are then checked for the same

dimensionality (within A and B respectively) and

if they are fields, for the same data type, to

determine if they all match.

2) In case of a match the translation process is

called:

TR(A=B, A£5B-; f° r all k components of A)

to generate the assertions.



A.= Bj for all the matching sets•

If A* and B. are repeating, and the user inserted

subscripts with A^and &, then a subscript on

the right must be added by generating instead

the assertions:

Ai(..,SUB1) = B.C..,SUB1)

If A. or B. are not fields, then the matching

and translation processes are called recursively.

The insertion of appropriate subscripts and determina-

tion of ranges of dimensions are performed in latter parts

of the analysis phase called 'dimension propagation and range

prop-agation respectively, which are described in the MODEL

Program Generator documentation. These processes are also

briefly reviewed in the next sections.



•5. Analysis and Implementation of Indirect Subscripting

The significance of indirect subscripting is in improv-

ing the efficiency of the produced program* The understand-

ing of how efficiency is improved and the associated analysis

requires knowledge of two subprocesses of the MODEL system:

range propagation and scheduling. These processes are

briefly described below. For further explanation the reader

is referred to the documentation on "MODEL Program Generator".

A. Pnueli, K. Lu and N. Prywes, March 1980, or to a more

general paper "Compilation of Nonprocedural Specifications

Into Computer Programs" by N.Prywes. and A. Pnueli, October

1980.

Much of the information needed for generating a program

is implicit in the MODEL specification. It is therefore

necessary to perform the analysis to make such information

explicit. As a first step a MODEL specification is repre-

sented in a convenient form, based on which implicit informa-

tion may be derived and entered, checks be conducted and

finally a schedule of program execution be derived. The

usual approach to such analysis has been to use a form of a

directed graph to represent dependencies between the different

elements of the specification. "We have developed a generalize

type of directed graph wich we termed array graph, where a

single node represents an aggregate of elements and a single'

edge an aggregate of edges or dependences between the

belonging respectively.to the two nodes.



The nodes in an array graph represent potential process!

steps associated with accessing and evaluating array variable

Each data structure and each equation are represented

by a node. Each node is potentially compound, namely it

represents the instances of the data structure or equation

for all the array elements from 1 to N. Information on dimen

sionality and ranges must therefore be associated with the

nodes in the array graph, A node that corresponds to a

data structure has associated with it subscripts corres-

ponding to its dimensions. A node that represents an

assertion (i.e. equation) has associated with it subscripts

corresponding to the union of subscripts of the variables

appearing in the assertion. Thus a compound m dimensional

node A represents the elements from A(l,l,...l) to A(N-. ,

NO...N ) where N ...N are the ranges of dimensions 1 to m,
l m 1 m

respectively.

Similarly a directed edge may be compound in that it

represents all the instances of dependencies among the array

elements of the nodes at the ends of the edge. These depen-

dencies imply precedence relationships in the execution of

the respective implied actions. There are several types of

dependencies or precedences. For example, a hierarchial

precedence refers to the need to access a source structure

before its components can be accessed or, vice versa, the



need to evaluate the components before a structure is stored

away. Data dependency precedence refers to the need to

evaluate the independent variables of an equation before the

dependent variable can be evaluated. Similarily, data para-

meters of a structure (range, length, etc.) must be evaluated

before eyâ ,ua,ting the ^espectiya structures, These edges

are determined based on the analysis of the information in

statements associated with the respective end nodes. Since

each edge may be compound it is necessary to associate with

it information on dimensionality and ranges.

An array' graph AG is then a pair (N,E) where N is

a set of cdmpound nodes and E is a set of compound edges.

The array graph AG=(N,E) represents an underlying graph

UG=(N ,E ) which is a conventional directed graph obtained

by considering each of the elements of array nodes as indi-

vidual nodes:

1 < I <: No,..where A(I n,I o, I )SN}
2 ^ i. l m

Similarily

E = {A(I , 2 , 1 , 2

|l £ I <, N , 1 ^ I <Ry iWhere A(I , I 2 , , ; l

The analysis of a MODEL specification is based on the

respective array graph. Consistency can be checked in a

three step process. The first step, dimension propagation,

traces the array graph in order to determine consistent



dimensionality of the nodes. Next comes insertion of sub-

scripts in assertions where they have been omitted. The

last step, ran ge" propagation, identifies the ranges of

dimensions of arrays, for which the user has not provided

specifications, with corresponding user specified ranges

of dimensions of other arrays. This process also detects

and reports conflicting, redundant, or missing range speci-

fications .

It would be cumbersome for the user to define the

range of each dimension of each node. Therefore, in the

absence of a range specification for a dimension of a

variable, the assertions where the variable is used are

analyzed for implications of the range. For example, the

assertion

X(I ...I ) = Y(I ...I.)m i m l

may imply that the ranges of the dimensions in X and Y

referred to by the same subscript name are the same.

This is referred to as range propagation. The range in

this case is defined through propagation of the range from

another node for which the range is known. The function of

the range propagation process is also to determine the range

sets, namely the sets of nodes and respective dimensions that

have a common range definition. Consider an edge e: s«-p.

The correspondence of respective dimensions in nodes p and s

is given in the subscript entries associated with the edge e.



For subscript expression of types 1,2 and 3 (I, 1-1 or I-K)

and in the absence of contradictory range specifications ,

the indicated corresponding subscripts in p and s are

assumed to have the same range and be members of a corres-

ponding range set. By repeated propagations, a range set

is determined, consisting of node-number and position-number

pairs which have only one common range specification. Note

that in the current version of MODEL the range is not prop-

agated where a subscript expression is of type 4 (i.e. con-

stant or any other form differing from types 1,2 and 3).

One necessary extension to the MODEL system is to allow

propagation of a range where indirect subscripts are used.

This is further explained below.

The other extension concerns scheduling of program

events. There are two special interdependent problems that

must be coped with in scheduling execution of a node in the

array graph. First, the array graph may contain cycles

which prevent ordering the nodes in accordance with the

edges. A maximally strongly connected component (MSCC)

results from cycles in the array graph. Secondly, each node

represents an array of data or equations and it is necessary

to assure that all the elements are individually accessed

and evaluated. Consider the simple example of a sin;gle node

consisting of assertion a:

a: AC I. I )=f(B(I ...I, ,J,...J ))
1 n : a b* 1 m
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The I and J subscripts are distinct. Ia....I, is a sub-

set of I.....I . Assume that Condi....Cond]^ recognize the

last elements in the ranges of *T«••!_• T o evaluate all

the elements of assertion a it may be bracketed by iteration

statements for all it!s subscripts. The elements will then

be evaluated while progressively varying the indices in each

dimension from 1 to the last element defined by cond I.

The general approach to scheduling consists of crea-

ting a component graph which consists of all the MSCCs in

the array graph and the edges connecting the MSCCs. The

component graph is therefore an acyclic directed graph.

It is then topologically sorted, resulting in a linear

arrangement of the components which can be regarded as a

gross level representation of the flowchart. The subscripts

for each component are determined and appropriate iterations

for these subscripts bracket the respective components.

An attempt is made to decompose a MSCC by deleting

appropriate edges. Consider the simple example of a two node

MSCC consisting of a one dimensional array X and the assertion

a: X(I) = IF 1=1 THEN 1 ELSE X(I-1)+1

N is the range of I. Therefore the schedule would be:

. • do' 1 from 1 to N.

MSCC consisting of nodes a and X

end I x



The edge a«-X has associated with it a subscript I of type

2, (1-1). It indicates that evaluation of the 1-1 th ele-

ment of X must precede the evaluation of the I th element.

But this is already assured by the order of iterations for

I from 1 to N. Therefore this edge may be deleted, which

may cause decomposition of the MSCC and allow for its

scheduling. More generally, to decompose a multi-node

MSCC it is necessary to:

1) Find a dimension position in each node of

the MSCC. These positions must all have a

common range that can be given a corresponding

common subscript name to use in an iteration

statement. The iteration statement will than

bracket the entire block of nodes that constitues

2) Find edges that represent dependencies on lower

index elements of the selected subscript; these

edges are deleted and may cause decomposition of

the component.

For complex MSCCs the decomposition and scheduling

may be performed recursively until all the cycles are opened.

The second extension concerns deleting edges in an

MSCC in some cases where indirect subscripts are used.

The last extension has an important effect on the

use of memory. If a variable is only referenced inside the

same program loop in which it is computed, and the subscrj



expressions for the variable are of the forms I, I-1,I-K (K>0)

then only K+l elements of the dimension associated with I need

be co-located in memory at any time during program execution.

We want to extend the MODEL system to allow similar savings

in memory when indirect subscripts are used as well. If all

the elements along a dimension denoted by I of a variable

X( •• ,1,••-••) must be co-located in memory, we refer to the

dimension I of X as physical. Otherwise, if only K+l elements

need to be co-located at any time in the main memory, then

we refer to such a dimension I of X as virtual.

General, implications of using indirect subscripting

are discussed further in Section 5.1. Section 5,2 dis-

cusses scheduling of assertions with indirect subscripts

when the respective nodes are in an MSCC. Additional infor-

mation on the design of the extensions associated with in-

direct subscripting analysis and program design is given in

Appendix II.

Indirect subscripts are subscript expressions of the

form A(.,X(I);.), where the secondary array X(I) is

sublinear, i.e.

X(I) <I and X(I) * X(I+1).

It is possible to check whether a secondary array is sub-

linear by checking i ts definition. A sufficient condition

for sublinearity is that the definition is of the form:

X(I> = IF I = l' THEN(l|(3)ELSE IF cond THIN X(I-l)

ELSE XCI-D+1



5.1 Effects of Indirect Subscripting

Four possibilities of instances of indirect subscript-

ing within a maximally strongly connected component (MSCC)

are considered below.

a) A variable A is defined by an assertion

a: A(..1) - •. .

and all its rhs usages are of th ; form

= ..A(.•,1 -c, •.)

This situation is handled in the rresent system. The

edge A( •. ,I-c,. )-*a may be de; eted decomposing the MSCC

and A may be virtual*

b) A variable A is def. led by an assertion

a i J\\ t j i j • / — ••

and some of its rhs usages are indirect, i.e. of the form

It is still possible to delete the € e A( . . ,X(I-c)-d,. . )-*a

since by the assumption of sublineai ity I>X( . ,I-c,.)- d

and an element is not accessed before it is evaluated.

However, under these circumstances A, must be physical since

X(..,I,.#) may lag arbitrarily far behind I requiring

the storage of 'all the elements

A(.MX(I),.), A(..,X(I)+1,..).. A(..,I,).

These elements have been evaluated but not yet.used.

In scheduling a program loop on I which consists of the

nodes of a MSCC we may remove edges of the following types:



B(..,X(.,!,•),. )«-A(. ,X( • . ,I[-c],. .)-d>..) c,d>o

B( . ,I,.)«-A(. .X(. ,H>c]j .)-d,..) c,d>o

Also it is proposed trust the user and remove edges

of the types:

B( .. ,X( •,1,.),.)*A( »,X( •• ,I-c..),..) c>o

B( • • ,1, •..)«-A(•.5 •5I-c,..),..) c>o

These latter edge. re not guaranteed to refer to previous

instances of A, since there may be cases in which X(.jl,..)=

X(..,I-c,.). however, we will rely on the user in such cases

to refer to X(.,I,«.) instead of X(.,I-c,*,)*

c) A variable A is defined by an assertion

and some of its usages are direct, i.e. of the form

= . .A(. . ,1 C-c], *.)

these assertions can not be scheduled in a loop on I, since it

is possible that X(Il<IC-c] and an edge may be deleted only

if A(I) depends on lower index elements of A.

d) A variable A is defined by an assertion

and al l i t s usages are indirectly subscripted, i . e . of the fo:

. . .3 . . .AC.. . X(. . ,I[-cl)C-d], . .)

As stated in (b) above, the user is trusted to assure that:

XCI) > XClC-cDC-d]

Also:

max CXCI) - X(I[-cp C-d3)=c+d
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The index of A on the lhs is greater than on the rhs.

The rhs value of the element of A is evaluated prior to

the evaluation of the assertion defining the lhs element

of A. The edge

A C , X(I[^c]).|>d]ye--)^a

may be deleted thus decomposing the MSCC. Furthermore

the maximum number of elements of A needed to be co-located

in memory is c+d+1* Therefore the dimension I of A may

ve virtual, and we may schedule the generation and usages

of the variable in the same loop.

To summarize:

Case a * as A\«««,-L,«*«/ = • •«A\»«,-L—c,»«»J

The edge A(. •. ,I-c, •. • )->a may be deleted, the MSCC

decomposed (if possible) and if all references to A

can be placed in a program loop then A may be virtual

in the dimension of I.

Case b: a: A(..,I,...) = A(.•,X(I[-c])C-d],...)
_ — _ . §

The edge A(. . ,X( I[-c]) f-d] , • . . )-*a may be deleted and

the MSCC decomposed. However, A must be physical in

the dimension of I*

Case c; a: A(•.•,X(I),..•) = ....A(•..,I[-c],•.•)
u . . . . . .

The edge A(. . • ,I[-c] ,. • )->a may not be deleted.



Case d: a: A( •. ,X(.I) ,..) = .-. .A( .. ,X(IE-c]) C-d] ,. .)

The edge A(...,X(I^c])C-d],...)->a may be deleted and

A may be virtual in the dimension of I#

5,2 Scheduling a Maximally Strongly Connected Component (MSCC

The process of scheduling a MSCC calls for propagation of

a range to at least one dimension of each assertion and each

variable in the component. The resulting range set must consd

of only one dimension of every node in the MSCC, barring

the case where a range can be propagated to more than one

dimension of a node. If such a range set is found, then the

nodes in the MSCC may be scheduled in a program loop for the

respective subscript.

Note that any instance of the above case(b) implies that

a certain dimension of an array must be physical. This

should be used in computing the storage penalty associated

with the loop candidate subscript I# If several subscripts

are legal loop candidates we pick the one with the lowest

penalty•

' Consider the assertion: .

o i • • j l j • • / = ... A v « . . } • •

If I appears in a position of B which was selected for

the range set, it must also appear in the position of A which

was selected for the range set and it cannot be 'in the form

of a type 4- subscript expression.



These conditions can be extended to cases of the asser-

tions of the forms:

or

provided I appears in the range set selected position of X,

and XC., I,;•) Is inthe range set selected positions of A and

B, respectively.

Consider again case (c) above, where an assertion

defines A in the form:

and A is used on the Ihs of the same or another assertion a

of the form:

then these assertions cannot be scheduled in a loop, without

some changes. In the case that such a situation is detected,

conceivably I may be replaced in a by X(I) to obtain:

a1: B(,.,X(I),.•) = •.A(..,X(I),..)

This replacement should of course be carried out for all

instances of I in af•

As a result of this replacement the new variable B is

defined by indirect indexing. Consequently it may be

necessary to replace I by X(I) also in other assertions

which use B(.5I,.,) on the rhs, •

This sequence of replacements may:

1. Terminate, in which case we are assured that no



more instances of case(c) exist. We may then

proceed with the scheduling.

2. There is continuous replacement in a loop. This

becomes evident when we apply the replacement

twice to the same assertion. Consider for example

the assertion:

A(X(D) = f(A(I-l))

Applying a replacement to it yields:

A(X(X(I)))=f(A(X(I)-D)

which is again case(c) and doubly indirect. The

appearance of doubly indirect subscripting is a

sign of a cycle of replacements which may continue

forever. Consequently on the detection of a newly

created double indirect subscript expression we con-

clude that the subscript candidate cannot be selecte

for a loop for the MSCC.

There is also another problem associated with the appears

of an indirect subscript on the lhs of an assertion. Con-

sider the assertion:

af: AC.^XCI)>..) = ...

Such a statement in a loop on I implies inefficiency

since it will b*e executed for each I regardless of whether

X(I)=X(I-1)> .in .which., case."it is^a duplication of a com-

putation performed before. The problem is not only that of

efficiency, but if instead of an assertion we have a record

node R(.;XCI),..).



We do not want to h-ave it read for each I but only

when X(I) increases. Consequently we may add a condition

to such assertions in the form:

a": A(..,X(I),..) = IF(I=1SX(1)=1> [ (I>1 & X(I)>X(I-1))

THEN ....

Typically several statements will all have such a common

condition and can be grouped into one block. The condition

will then be tested only once for the complete block.

5,3 Range Propagation Through Indirect Subscripting

Consider an . assertion

a: A(X(I) ) = ..BCD..

In the absence of conflicting range specifications we infer

that the ranges of B and of A are associated. This is differ

ent than saying that A and B have identical ranges. We can

say that the range of A is associated through X with that of

B. Thus in the event of an assertion:

C(J) = A(J)+B(J)

unless an independent range specification is given for C, it

is not known whether J should range up to ND, the range of
D

B, or up to X(Ng) which is the range of A.

In the case of two other assertions: •

E(J)=C(J)+D(J)

the range of E is associated through X with that of B, i.e.

if the size of B is N then the size of E is X(Nn).
B B

In the present version of MODEL a range specification



(i.e. a termination condition for the respective loop) can

be direct — covering the cases:

1. A fixed value specified in the data statement.

2. END.A

3. SIZE.A

4. END.A implicitly defined by end of file for a

record or a group above the record level in an

input file.

Consider the assertion

The termination condition may be propagated indirectly from

A to B. The pointer RANGEP points from node (A) to node (B

implying RANGE(A) = RANGE(B). This indirect range specifi-

cation must be exteded to an assertion of the form B(X(I))=

An indirect pointer INDR is added to each node data. This

indirect field, if not empty, points to a secondary array X

which relates the range of B to the range of A, i.e.

RANGE(B) = X(RANGE(A))

.RANGEP(B)=A

INDR(B)=X

If the assertion is of the form:

B(I)=A(X(D)

Then (through backwards propagation)

RANGEP(A)=B, INDR(A)=X, RANGE(A)=X(RANGE(B))

representing the fact that

X(RANGE(B)) <; RANGE(B)



The concepts of a range set should also be extended

to the situation where two nodes may be put into the same

loop, even though their ranges are not identical but are

associated through a secondary array.



APPENDIX I

Syntax and Syntax Analysis Checks

In this Appendix we discuss the modifications which

are necessary in the syntax definition of the language.

We will also consider the needed revisions in the process-

ing following immediately after the syntax analysis.

Consider first the syntactic changes needed in order

to implement the matrix operations:

T.I Syntax Modifications for Kafrix Operations

The first step is to cause the syntax analyzer to

recognize the symbol combinations for the new operations

which are "* for matrix multiplication, ff* for matrix trans-

position and "/ for matrix division and inversion. The

simplest modification would be to change the syntactic defir

tion of <term> and <factor> into

<term>::= <mfactor> [ <mops> <mfactor>]*

where

<mops> :: = *|/|»*|»/

<mfactor>::=<unop> <mfactor> | <factor>

where

<unop> : : = " ̂  |V

This extends the class of binary multiplication operate

to include also ff* and fV and introduces a new class of unai

operators "^ and fV. The definition is such that it will

allow multiple unary operators to be applied to a single

argument, such as:

t f/ f l*A or fla*ff/B



It will also correctly interpret a sequence of a binary

operator followed by a unary operator:

In fact the actual EBNF/WSC will be of the following form:

<term>::= /WRTERMl//SVTERM/<mfactor>/SVCMPl/

[<mops>/SVNXOP/<mfactor>/SVNXCMP/]*/STALL/

<mops>::= /MOPREC/

<mfactor>::= /WRMFAC//SVMFAC/<unop>/SVOPl/

<mfactor>/SVCMP1//STALL/I<factor>/STALL/

<unop>::= /UNOPREC/

In the above:

MOPREC is the routine for recognizing multiplication

operators and it' should be extended to recognize tf* and "/

as well. In the internal representation of delimiters we

should allocate some numbers to these operators. It is

suggested to have (see page 59 in the Documentation Manual)

25 - "*

26 - "/

27 - "<\,

The internal type assigned to <mfactor> should be iden-

tical to that of <factor> namely 11.

WRMFAC-Should be a new error stacking routine. It should

stack the error message —

"EXPECTING A FACTOR"

SVMFAC - Is a node saving (and presetting) routine for initi

ating a node to be of type <mfactor>•



Since the internal type is 11 the same as <factors

we may replace WRHFAC and SVMFAC by WRFAC and SVFAC respect-

ively* In this case no new error and saving routines are

needed.

UNOP - This new routine is necessary. It is similar in

operaticns to MOPREC and should recognize and derive the in-

ternal representation of the unary matrix operations tf /

and "*•

The system should recognize the reserved name UNIT

denoting the unit matrix.

1.2 Extensions for Variant Structures

1.2.1 Syntax and Syntax Analysis

The syntactical definition of the list of substructures

into which a record or a group breaks is currently given by tl

variable <iteinJList>• This variable appears in the definite

of <group_start> and of <record_start> . Consequently it is

sufficient to modify the following definitions:

<record_start>::=<record>/MEMINIT/C(<alt_item_list>)]

/STREC/

<group_start>::=<group>/MEMINIT/[(<alt_iteinJList>)]

[,TABULATED/SVTAB/3/STGRP/

where

<alt_item_list>::=/ITEM02/<item_list>

[//SVALT/<item list>]*



Thus we add an additional level to the description

of the substructure of a record or a group* Consequently

the storage entry structure associated with the record or

group described will have to be changed. A relatively easy

and compatible modification will be to add a tag field to

the auxiliary description structure associated with the
a.

storage entry CRECGRP Structure). This tage will contain

the value fSEQf if the members listed in RECGRP are the

substructures into which the current structure breaks. It

will contain the value 'ALT1 if the listed members are the

alternatives or variant terms which.the current structure may

assume. This restricts the representation to describe

either a sequential breakdown or a list of variants but

not both. Consequently a statement such as

G IS GROUP (A,B /C)

will have to be represented by the system as though it

were presented with two statement's:

G IS GROUP ($ST /C)

$ST IS GROUP (A,B)

The newly introduced name $ST is system generated name

and should be entered into the associative memory as well

as represented by an appropriate storage entry.

In order to manage the acquisition of an <al't_item_list>

we maintain a double storage area. The first area stores

names of variants while the second area stores a sequence



of substructures. We will refer to them as the variant

and sequence area respectively. Any item list encountered

will be entered first into the sequence area. On encountering

a f/f.we cheak whether the sequence area contains one or more

items. If it contains a single item this item is moved into

the variant area. Otherwise let the sequence area contain

the sequence A,B,.. . Then we create a new name $ST and

simulate the storage of the data declaration

$ST IS GROUP (A,B,..)

In this case we move $ST into the variant area. In both

cases we clear the sequence area. The task of managing this

acquisition is shared between the following routines:

MEMINIT - Should initialize the double area.

SVALT - A new routine. It is called on encountering

an f/f« It performs the movement of an item list from

the sequence area into the variant area, as described

above.

STREC, STGRP - They finalize the storing of entries for

record and group respectively. If they find that the

variant area is still empty, a regular storage entry

is created by moving the sequence area into RECGRP and

setting the tag field to fSEQf. If the variant area

is not empty we call on SVALT one more time to move the

last sequence area into the variant area. We then de-

fine RECGRP by moving the variant area into it and



setting the tag field to '

The system should recognize the special prefix DISCR

applied to groups which are declared to be described by

variants•

1.2.2 Computation of Attributes For Variant Structures

The routine ENHRREL computes certain attributes of

declared data structures. Some modification in the com-

putation is necessary in order to allow for variant struc-

tures. Following is a list of the attributes which are

affected:

LEN-DAT - The length (size) of the:structure. If the

structure is a variant, its size in bytes" is com-

puted by taking the maximum of the sizes of its

variant substructures.

VARS - This attribute marks structures which have

varying substructures. It is used in deciding whether

a structure can be moved in one statement or has to

be broken into a sequence of statements moving each

of its substructures. If a structure is defined by

a variant, it must be marked (as well as all its

ancestors) as varying, i.e. VARS=flfB.

BROTHER - This attribute points at a node which is the

right brother of a given node, both nodes sharing the

same father. Even though variants do not follow one •

another sequentially. ' The BROTHER link should be

established for siebling variants.



DISCRB - This new attribute is set to flfB for all

groups or records A such that the attribute variable

DISCR.A is the target of some assertion.

1.2.3 Siebling Edges for Variant Structures

In general when several structures form the sequential

decomposition of a higher structure, dependency edges of

type 8 are drawn between them is the array graph. The

purpose of these edges is to delay the processing of a

later n*de until its predecessor has been processed. If

the str ^tures are variants, i.e. form a parallel decompo-

sition of a higher structure these edges should not be drawn

since only one variant will be available at any time. Thus,

type 8 edges should not be drawn between nodes whose father's

tag is fALTf. This modification should also take place in

ENHRREL.

1.2.4 The DISCR Edge, type 22

Associated with each variant structure A there is an

data-parameter DISCR.A. This, integer valued variable.

has the values 1,2,.. according to whether the first,

second, etc. variant is to be chosen for A. There is an

obvious precedence order which says that DISCR.A has

to be computed before any of the fields in the variants of

A can be accessed. This dependency relation is represented

by a type 22 edge. The natural form of this edge would have

been:

A(U ,..U ) i DISCR.A(U , ..U-.)
K l k -*•



Unfortunately, in some cases the DISCR attribute may depend

on values of the variant fields themselves. Consider the

example:

A IS GROUP (B/C)

B IS RECORD (X,Y)

C IS RECORD (X,Z)

(X,Y) ARE FIELD (NUM)

Z IS FIELD ( CHAR(IO))

a \ DISCR.A = X

Here B and C are variant records. Both begin with common

numeric field X which has the value 1 for B and 2 for C.

The continuation of B and C differs after the similar X

field. It is clearly feasible to read the record A, retriev

the field X without knowing if it belongs to B or C and

then usirg the assertion for DISCR.A in order to decide if

B or C ax implied. Drawing the 22 edge between DISCR.A and

A would lead in the above case to a cycle involving:

X I A I2. DISCR.A I a J X

Hence we must have a more complicated rule:

let A : (B-/B / ,../ B )
1 2 m

And let each B. be describable as
i

Y

i.e. all the B structures have identical initial segment
i

X , ..X and then different continuations Y?; - ,. • dependent
1 K K + JL

on i. Then we may allow DISCR.A to depend on the common

prefix X-j^.X}^ Correspondingly we will draw the edges;



i 22
Y + DISCR.A for i=l,..m.
k+1

In the example above there would be two edges:

Y 22 DISCR.A and

Z 22 DISCR.A
In order to draw the 22 edges we have to perform concurrent

analysis of B ,. . B to find the smallest k such that at
1 m

least two of them disagree on

In this and later applications we have to form an

exact definition of when two structures agree and to con-

struct a recursive algorithm for checking for agreement.

Def. Two structures A and B agree (have similar

structures) if:

A and B are identically named (assuming no multiple

definitions) , or

A and B are both fields with the same type and same

fixed attributes (repetition, length, precision, etc.),

or

A: (X-/,./X ), B: (Y /,./Y ), A and B have the same type

.and same fixed repetition attribute, and X^ agrees

with Y. for i=l,..k..

1,3 Syntax Analysis For List Functions

No syntax modifications are required for the list func-

tions. The table of recognizable standard functions should
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be extended to include the new functions

SELECT, MERGE, SORT, COLLECT, FUSE.
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APPENDIX II

Implementation Details -Edge Types and Representations

The representation of assertions with indirect index-

ing calls for the extension of the structures representing

the edges, as well as for some new types of edges. The

representation of the edges for a given node in the current

system includes a list of subscripts for the left hand side

which is assumed common to all edges. This list is built

out of a linked list of elements called L0CAL_SUB. The righ

hand side of each edge consists of a linked list of structur

called EDGE_SUBL. Both structures have to be extended by th

addition of a pointer field called INDIRECT. This field if

empty (NULL) means that subscripting is direct, otherwise it

points to an additional structure called INDEXP which descri

the subscript list of the indirect expression.

The structure INDEXP consists of the following:

EDGE SUBL.

INDEXP: SOURCE

SUBX

NXT SUBL

LOCAL SUB#

APR MODE

INDIRECT



The SOURCE field of INDEXP is the node number of the •

secondary array and the list of EDGE_SUBL describes its sub

script expressions (from right to left). Similarly to the

extension of EDGEJ3UBL, the structure L0CAL__SUB is extended

by adding the field INDIRECT,

Consider the representation of the edge:

• In this representation we will refer to n(Z) as the

node number of Z. '

We start by the representation of the left hand local

subscript list:

NXTJ..OCSUB :

-REDUCED:

SUBTYPE:

SUBID:

IDWITH:

RANGE:

-

-

-

^

-

-

INDIRECT:

Corr. to J/XCI^iX^

S INDEXP
SOURCE:

*a(x)
SUBX:

—te* NXT_LOCSUB ••

t

t

t

f

t

INDIRECT:

Corr. to I
EDGE SUBL . ]

• •

!XT_SUBL:

LOCAL SUB#:l

APR MODE:1

INDIRECT:

-

EDGE SUBL

NXT_SUBL:J

LOCAL SUB&2

APR mm a

INDIRECT:-
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Note that the first L0CAL_SUB actually represents both

X(I,J) and J. Its representation of X(I,J) is given by

its INDIRECT field pointing to the INDEXP structure. On

the other hand it is associated with J in that everywhere

else the first local subscript is J (including in the descriDt

of INDEXP structure). Also the identification of the subscript

range for J will be done in the IDWITH and RANNGE fields

of the first LOCAL^SUB structure. Consider next the repre-

sentation of the edge itself:

EDGE

SOURCE

TARGET

: n(B)

:yt(A)

EDGE_TYPE:t

DIMDIF

SUBX:

: -

INDEXP

SOURCE: Y\.(Y)

SUBX:

EDGE SUBL

NXT SUBL:

LOCAL SUB#:2

APR MODE:

INDIRECT:-

1+2

< J-l

EDGE SUBL

NXT SUBL: -

LOCAL SUB#:1

APR MODE: 3

INDIRECT:

EDGE SUBL

* NXT SUBL:

LOCAL SUB#r 1

APR MODE: 2

INDIRECT: -

,1,,

EDGE SUBL

NXT_SUBL: -

L0CAL_SUB#:2

APR MODE: 1

INDIRECT: -



Note that Y(I,J-l)-2 is of node i'pe 3 on the

outer level (K-2), and node type 2 (K-l) on the inner

level.

We have to introduce a new type of edge for express-

ing the dependence of an assertion a on an index array. Let

at ....A(}*.X( J 5. ?J }1)}..).«

1 m

where A may appear on the left or right hand side of a.

Then we draw an. edge of new type 2^

24: a(..) %7 X(Jn,..J ,1)
"•*• m

The subscript list for a on the left hand side will be the

local subscript list of a.

Consider next the drawing of edges type 3 and 7 and

their reverses in the virtual case:.

Let a be an assertion defining the variable A which

may assume any of the forms

a: A(I ,»,I ) = .. or '

a* J\\ • $ j\\ y •} -in • / $ • . / " - . .

Regardless of the form we will always have the follow-

ing edge :

and the reverse, virtual edge

a(U, ,.. U ,.. UL) J A(UV 5..UJC m x Jx m
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Here we have to distinguish between three cases:

We draw

a C I ] ^ ) + B ( J
n>-

and if I is a virtual subscript, identified with J we
m i

draw the reverse edge
18

I 1 ) ( I I 1 1 )

If

a:

we draw
3
^ BC..XC..I m) fm

and its reverse

18
B( • . X( • • I m) • •) +. a( Ij^ 3 • • Ij

If

a: A(Ik,. .Y( • f I m ) , . .1̂ )̂ =

we draw

and its inverse
18

B ( X ( I ) )

similarly for

c i v A v l k 3 • • X v • • l j w • • ) • • ) ~ 1 i 3 ( « » • jti5 • •
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