
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

UNIVERSITY OP PENNSYLVANIA
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

CONSTRUCTION METHODS OF LR PARSERS

Karl Max Schimpf

Philadelphia, Pennsylvania

May 1981

A thesis presented to the Faculty of Engineering an̂ Ap
Science of the University of Pennsylvania in partia
fulfillment of the requirements for the degree of Maste
Science in Engineering for graduate work in Computer an
Information Science•

\

Jeah H. Gallier

Aravind Joshi

abstract

This paper presents five different LR parser generat

in error recovery method which is derived directly fr<

,R parser. The parsers presented include the origina

i parser defined by Knuth, The SLR(l) and LALR(l)

>rs defined by DeRemer, and the weak and strong

itible LR parsers presented by Pager* All five parse

been implemented by the author using two programs•

termore, the implementation of the SLR(l) parser

rator includes an error recovery method and produces

.) parser with error recovery built ±n*

ip ter I. : Introduction

ipter II : The construction of LR(1)
parsing tables

11.1 LR(1) grammars

II • 1 •1 Derivations

II. 1.2 Languages generated by context
free grammars

11.2 Sentential forms and their viable prefixes

11.3 LR(1) characteristic automata

11.4 Construction of LR(1) parsers

pter III : Methods for reducing states in
LR(1) parsers

11.1 SLR(l) parsers

11.2 LALR(l) parsers

11.3 Pager's Weak compatibility

11.4 Pager's Strong compatibility

pter IV : An error recovery method for LR parsers

p ter V^ : Implementation

V.I Representation of the parsing tables

7.2 SLR(l) implementation

V.2.1 Input grammar

V.2.2 Running the SLR(l) parser constructor

V.2.3 Interpretation of the output file

V.2.4 Conflict resolution

V.2.5 Size restrictions

V.3 LR(1), LALR(l), weak and strong compatible
parser generators

V.3*l Input grammar

V«3*2 Running the program

endix ^ : Sample PASCAL skeleton for use of the
SLR(l) parsing tables

endix .B : Sample PASCAL skeleton for use of the
LR(1), LALR(l), Weak and Strong
compatibility parser generators

erences

Chapter I

Introduction

It is a well known fact that of all the determ:

string parsers, the class of LR parsers recogn:

.argest class of context free languages [Knu65]. LR]

ire quite powerful and are able to recognize virtua!

programming languages in existance today. These]

rere first introduced by Knuth [Knu65] with his o:

rersion known as an LR(1) parser. Unfortunately, his

requires extensive resources and hence is impractical

lor parsing any programming language.

Several alternative parsing methods have sinci

>resented which reduce the resource requirement;

>roducing more, practical LR parsers. Some of these]

iccomplish this result by reducing the class of lai

umber of parse states built and hence an overall red

n the resource requirements. The most common forms a

ype of LR parser are the SLR(l) and LALR(l) p

resented by DeRemer [DeR69].

Another form of resource reduction used by LR p

s a method of performing state minimization on th€

arser* Two of these state minimization methods have

roposed by Pager [Pag77a, Pag77b] called weak and

ompatible LR parsers* In these parsers, he restict

tate reductions to maintain the power of the LR(1)

nd hence the resultant parser recognizes the same els

anguages as the original LR(1) parser*

This paper presents five different LR parser gene

nd an error recovery method which is derived direct!

he LR parser. The parsers presented include the ot

R(l) parser defined by Knuth [Knu65], the SLR<

ALR(l) parsers defined by DeRemer [DeR69], and the we

trong compatible LR parsers presented by Pager [Pa

11 five parsers have been implemented by the author

wo programs. Furthermore, the implementation of the

arser generator includes the implementation of an

ecovery method and produces an SLR(l) parser witt

ecovery built in.

>atible LR parsers, presented by Pager [Pag7

>rtunately only provides a partial explanation of

>rithms which build these parsers. These algorithms

:ain minor inconsistancies and omissions which tend

:ure the basic nature of the algorithms. This p

sents Pager's algorithms in a modified notation w

)lifies the comprehension of the code. It also prov

>re complete explanation of the algorithms, and incl

iw minor algorithms omitted by Pager.

The problem with LR parsers, when used in a compi

that they are designed as a syntactic method which

Ldes if the given input string belongs to a language

class accepted by the LR parser. Hence, once the f

»gal input symbol is found, the parser stops repor

Lure. However, when a compiler parses a program, i

mtageous to have the compiler report as many additi

)rs as possible.

In order to improve the LR parser's capabilities

in a compiler, this paper also presents a pu

tactic error recovery scheme to recognize additi

Drs. Furthermore, the method has been designed so

can be directly incorporated into the LR parser. He

additional routines are necessary in order to per

3r recovery and parse the rest of the input.

>ased on the method used by Pennello and DeRemer [P&D

:h has a separate error recovery routine that incl

>r correction. The control strategy used is to se

remainder of the input, starting from the ill

>ol, and verify that it only consists of !lvi

jments" (substrings derivable from its grammar).

>r recovery method presented in this paper has

Lemented using the SLR(l) parser as its basis. Howe

method is general enough that the same method c

Lly be applied to any of the other LR parsers prese

:his paper.

Chapter two starts by setting up preliminary nota

context free languages and derivations. This nota

lsed to describe the basic strategy used by LR pars

last sections of the chapter cover the ac

struction methods which will yield the LR(1) parser

result.

Chapter three describes how each of the other

Lemented parser constructors are built. The SLR(l)

1(1) construction methods are presented using the L

racteristic automaton as their basis for construct

sr's notion of compatibility, the definitions of

< and strong compatibility, and the algorithms use

junction with the construction of these two parsers

described .

Chapter four discusses the error recovery method and

rithm which takes in an LR parser and produces an

er with error recovery. It also explains how an

er is used to parse an input string and decide if

ng is derivable from the grammar used to generate the

er •

Chapter five concludes the paper by discussing brie

two programs used for the implementation. One prog

tructs an SLR(l) parser with error recovery built

other program, using our modification of Pager's cone

ompatibility, can build either an LR(1), LALR(l), wea

trongly compatible LR parser*

Chapter II

The construction of the LR(1) parsing tables

This chapter describes how LR(1) parsing tab

created* In order to do this, let me start out by

up some preliminary notation.

II«1 LR(1) Grammars

A Context-Free Grammar (denoted CFG) G is a

quadruple G » (N , T , P , S) where

T is a finite alphabet of terminal symbols;

N is a finite alphabet of nonterminal symbols;

(N U T) is the finite set of grammar symbols;

S is a nonterminal symbol in N, called the

start symbol; and

A production (A,a.) will be denoted in the form A

there is a special start production S -> S' wher

S does not occur in any other production in P*

also a special symbol $ 6 T, which denotes th

string being parsed, and does not appear in any

For notational convenience, upper case lett

used to denote nonterminal symbols, lower caa

denote terminal symbols, underlined upper case

denote grammar symbols, and underlined lower caa

denote strings of grammar symbols (strings iu

The symbol ja will be reserved to denote the empt

11.1*1 Derivations

Given a CFG G « (N , T , P , S) , let t

«> : (N U T)* x (N U T)* be defined by the set c

{ (aBc.abc) I B 6 N; a,,jb,jc (N U T)*;

and B -> b. in P}

In other words, given any string in (N U T) c

âBc., with B a nonterminal symbol in N at

production B -> b^ in P, we say that the string

the string abc in a one step derivation using I

will be denoted as jaBj: »> abc * Also, let *> anc

the transitive and transitive reflexive clc

From the above relation, we can define anothe

which implies an ordering of the rewrite steps*

new relation ->_ : (N U T) x (N U T) be defined

{aBc. • > abc | aBc »> abc and c 6 T >

In other words, *> is the one step derivation,

derivation is applied to the rightmost nonterminal

in the string jiBc. Let *>o and »>- denotes the

and transitive reflexive closures of ar>t)> respecti

II « 1«2 Language generated by ja context-free gramma

Given a CFG G » (N , T , P , S) , the lang

generated by G is the set of strings

L(G) » { a, I S *> a.» £ s T* >

Note: The order in which »> is applied has no eff

resulting terminal string produced. Hence th

L(G), generated by G, could be alternatively be d

the set

L(G) » < a. | S »>R a, where a 6 T }

Using the above definitions, an LR(1) gramma

loosely defined as follows:

. ji S L(G) (derived via a rightmost derivat

parsed deterministically in a single scan fr

right, having the ability to look ahead one

the point of scanning*

II»2 Sentential forms and their viable prefixes

An LR(1) parser, when scanning the input (of

to be parsed), is essentially looking for a mat

or more strings that can be derived from the C

symbol* More formally, the LR(1) parser is

recognize a sentential form which is an element i

{ a | S ->_ a and a 6 (N U T) }

In recognizing a sentential form, the LR(1)

really interested in knowing whether it has sea

of the input string such that a reduction can be

that is, when the sentential form is the sti

where £,jb S (N U T)*; c. 6 T*; and B -> b. € I

this information, a reduction of Jb to B can be

the rightmost derivation string that £ came from.

known as finding the handle * The handle is def

pair (|jabJfB -> b_) such that S «> abc * The |j

the length of the handle, which states the pos

the string b̂ can be reduced to B using B -> b̂ .

ab is called the viable prefix or characte

[A&U77].

Using the above definitions, it is fai

characterize what an LR(1) parser does. It sea

from left to right, looking for a viable p

finding it, the string is reduced with the

production of the viable prefix* Using the re

derived from the viable prefix concatenat

unscanned input, the parser repeats the a

looking for another viable prefix. This co

either the input has been reduced to the start

failure occurs by not finding any legal viable

II.3 LR(1) Characteristic Automaton

It is fundemental result that viable pref

from CFG's are regular. Therefore a determi

automaton, called the characteristic automaton

can be built to recognize the set of legal via

Furthermore, once the characteristic automat

built, the LR(1) parser can be directly derived

Let a marked production be of the form

where A -> ab is a production in P, and ft •" is

auction s right hand side has been recognized in

ing being scanned. Hence the marked produc

> £ . t> represents the fact that the LR(1) parser

nned the string ^a, where £ is some string that occu

ore the string ja in the input.

Expanding this to include a set of look-ahead symb

a n item be defined as the pair [A -> a. . b. , LA] w

> a. . JD is a marked production, and LA is a subset o

>ting the set of all terminal symbols which can fo

production and is called the set of lookahead symb

as, essentially, describe two things:

i) What portion of a production's right hand side

occur at the end of the set of viable prefixes b<

described

ii) What possible symbols can immediately follow

production's right hand side (and hence what symi

can follow the viable prefix with the gj

production)•

Each state of the characteristic automaton is the

all items with the same viable prefix. When buildin

e, there must be a way to insure that all items, for

n state, are included. For example, if there is an i

\ -> £ is in P, then there must be an item with the

iroduction B -> • £ for that state* The viable]

'ormed with the new marked production, will have tl

•refix as the original item* The process of includii

;uch items is called closing the state. However, ii

:o close a state, it is also necessary to describe 1

tropagate lookaheads to the added items* To do this,

:he function first(^a) as follows:

first(a.) * { a | a, »> ac,, a S T>

Using the above definition, the closure of a :

.terns I (denoted as closure(I)) can be constructed us:

rules:

i) Every item in I is also in closure(I)

ii) If the item [A -> a, • Bb, , LA] is in closure

and B -> c in ?, a S LA

then the item [B -> • c,, first(b.a)] :

closure (I)•

example 2.1 Let the CFG G have the set of produc

S -> A
A -> a A b

A -> e.

where S -> A is the start production. Then the <

of the item set < [S -> • A , <$}]} is tl

{[S -> • A ,{$>], [A -> . JB f {$>], [A -> • aAb

The characterisitc automaton G is built from the set

es constructed above with the transitions being gran

ols. The path to a given state will then spell a le

ix for some sentential form*

The algorithm (shown below) starts by setting

ial state to the closure of the start production, t

ng each state just built, determines the transit!

the state as follows:

i) for each grammar symbol X in (N U T) s•t• the i

I*> ~> £. • 2Lk. > **A] *3 *n the state, there is a uni

transition, labeled X,, to the state containing the i

[A -> aX . b. , LA] obtained by shifting the dot act

the grammar symbol X*

ii) if [A -> a. . , LA] is in the state, then

transition should be produced for that item*

gorithm for constructing the characteristic automaton

put: a CFG G • (N , T , P , S)

tput: a set C, of states, and the function

GOTO : (set of items) x (N U T) ->(set of items),

defines the characteristic automaton.

thod; The two procedures below, initiated by c*

EMS(G);

ocedure ITEMS(G);

begin

C :» closure((S -> • S',{$}]);

{where ff$fl is a unique symbol in T which dt

the end of the string to parse}

repeat

for each set of items I in C, and each gi

symbol X such that J • GOTO(I,X) is not empl

J £ C

djp add J to C;

until no more sets of items can be added to C

end ;

unction GOTO(I,X);

begin

let J be the set of items

[A ~> aX • J> , LA] such that

[A -> a, • XJb,LA] is in I;

return closure(J);

end;

Let the core of a state be the set of items in

: the two following forms:

i) [S -> . S' , {$}]

ii) [A ~> b. • jc , LA] where b, t £

It can be shown that by closing the core of a

ie origonal state can be retrieved. Hence, all examp.

is paper will only show the core of each state*

xample 2 . 2 Construction of a, characteristic automaton

et the CFG G be defined by the same set of production

s in example 2.1. Then, the LR(l) characteristi

utomaton of the grammar G is as follows:

V
[A->aA.b,{$}f)

QL
b

V
-> aAb

(4: [A->a.Ab,{b>]

\/
[A->aA.b,{b}]

[A->aAb

here the transition ars are defined by GOTO

• 4 Construction of LR(1) Parsers

Using the characteristic automaton, the LR(1) p

i be directly generated. Let an LR(1) parser be de

a quintuple M * (K , action , goto , G , start) wh

K is a finite set of parser s t,

action : K x T -> {shift j | j 6 K>

U {reduce p | p G P> U {error)

defines the parsing action table;

goto : K x N -> K U {error) defines the

parsing goto table;

G is a CFG such that L(G) is the class of

languages to recognize;

and start is the initial state*

The set of parser states K contains a special s

apt which is the state H, such

Lon(H,$) * reduce S -> S'• Also, the action and

sing tables are enough to define an LR(1) parser*

Using this definition, an LR(1) parser can

(tructed using the following algorithm [A&U77,Gal 79J :

Algorithm for constructing LR(1) parsing tables

Input: The characteristic automaton CG * (C,GOTO)

for a CFG G;

putput t a parsing table (possibly with conflicts

grammar G is not LR(1))

nethod: Let C * {I.tIn, ••• ,1 } be a set of sets of

Erom the characteristic automaton CG* The states

parser will be labelled 1>2, ••• ,n where st

corresponds to the set of items I • State 1 is the

state. The parsing actions are:

i) If [A ->c . ajb , LA] 61± where a S T

GOTO(I ,a) -I.; then action(i,a) * shift j

ii) If [A -> c • ,LA] in I,, then for each a 6 L

action (i »a) * reduce A -> £

iii) All entries of action not defined by the

rules are set to error«

oto transition for state i is constructed using the t

L) if GOTO(Ii>A) - I , where A is a nonterminal, th

goto(l.A) - j

.i) All other entries of goto, not defined by the firs

ule, are set to error

xample 2•3 Let the LR(1) characteristic automaton t

efined as in example 2«2« Using the above algorithm

he two parsing tables produced are:

action

a b $
+ + +

1 I shift 3 | error | reduce A-
+ + + ,—

2 | error | error | reduce S-
4.-.. *-. + 4.

3 I sh i f t 4 I reduce A->jEt | error
+ - + —+

4 I shift 4 1 reduce A->£ | error
+ -*-——.——+ .—--—• +

5 I error | shift 7 | error
+- .— + «•— .+ ,. :~,

^ I error | shift 8 | error
+ + +

7 I error | error | reduce A-:
4. ; —4.—,— +

8 I error | reduce A->aAb | error
4. H —4.

S A

1 | error 1 2 |

2 I error 1 error |

3 | error | 5 |

4 | error | 6 |

5 | error | error |

6 I error | error |

7 I error | error |

8 I error | error |

From the above algorithm, one can tell directly w

FG G does not produce an LR(1) language. This occur

ction is not a function but only a relation, or in

ords, whenever there is more than one possible acti

ome input pair. These multiple entries are kno

onflicts. The two types of conflicts that can exist

hift/reduce and ii) reduce/reduce conflicts, whic

espectively denoted as S/R and R/R.

Chapter III

Methods for reducing states in LR (1) parsers

LR(1) parsers have the nice property that they ca

ed for parsing most* programming languages. Unfortuna

e parsers produced for these grammars, using the tr

scribed in the previous chapter, are too large

nsidered useful. Hence, several modifications have

oposed which will reduce the size of the parser prod

is chapter discusses four of these methods. Two of

thods (SLR(l) and LALR(l)) reduce the number of stat

ducing the size of the language accepted. The other

thods (proposed by Pager [Pag77a]) use conditions

rging states of a LR(1) parser while maintaining the

wer to recognize LR(1) languages.

II.1 SLR(l) parsers

The SLR(l) parsing table construction is quite $

o that of the LR(1). The main difference is tt

arser produced is based on a characteristic automatoi

o lookahead (i.e. an LR(0) automaton),

implification reduces, in general, the total numl

tates created*

To build an SLR(l) parser, redefine an item by r«

he lookahead set leaving just the marked production,

his definition, the rules to close a set of SLR it

ecorae:

i) every item in I is also in closure(I);

ii) If the item A -> a. . Be, is in closure(I),

and B -> b 6 P

then the item B -> • b. is also in closure(Ii

The procedure to build the characteristic automai

ilso simplified. These procedures are as follows:

unction GOTO(I,jC);

begin

let J be the set of items A -> aJC • b. such that

A -> &. • JLk *s *n * anc* 2[is a grammar symbol

return closure(I);

end ;

rocedure ITSMS(G);

begin

C :» closure(S -> • S');

repeat

for each set of items I in C,

and each grammar symbol X such that

J * GOTO(I,X) is not empty and J $ C

jio add J to C;

until no more sets of items can be added to C

end ;

x C J • A JUCU a

productions in example 2«1« Then an LR

characteristic automaton is:

a

3: [A->a.Ab]

4: [A->aA.b

(2: ts->A.f)

5: [A->aAb.

The SLR(l) method does not use a lookahead set

de what reduction to use once a viable prefix has b

gnized* Instead, it uses a method to approximate

aheads, which in fact guarantees that the set

aheads will be included. This is done by the funct

T
OW : N -> 2 which computes all symbols which can fol

ven nonterminal symbol*- However, in order to comp

OW, the terminal symbol $ must be included* Hence

definition of FOLLOW, it is assumed that there is

tional production of the form S'' -> S$ where S'' i

erminal and does not appear in any production in

OW is defined as

where a « first(b)}

example 3«2 Using the CFG G described in example

the FOLLOW sets are:

FOLLOW(S) - {$}
FOLLOW(A) - {$,b}

Using the characteristic automaton and the fi

OLLOW the SLR(l) parsing table can be created usd

ollowing algorithm:

LR(1) parsing table construction algorithm

nput: the SLR(l) characteristic automaton CG « (C,GC

for the CFG G.

»utput: a parsing table (possibly with conflicts j

LR(D)

lethod: Let C » { L , ••• ,1 } be the set of sets of
_ _ _ ^ ^

rom the characteristic automaton CG. The states

iarser will be labeled 1,2, ••• ,n where state i corre

:o the set of items I • As with LR(1) parsers, I

.nitial state be state 1.

The parsing actions are defined as follows:

i) If A ->a • be 6 I. where b 6 T and

GOTO(I ,b) * I then action(i,a)«j

ii) If A -> a . is in I then for each b 6

set action (i ,b) » reduce A -> £

iii) all entries not defined by i) or ii) ar

error

The goto transitions are defined by the following

i) If GOTO(Ii,A) - I

then goto(i,A) • j where A 6 N

ii) all other entries of goto, not defined by

set to error

example 3.3 Using the LR(0) characteristic at

example 3«1, and the FOLLOW sets in examp]

SLR(l) parser is defined by the following tal

action

1 1

2 1

4 !

5 1

a

shift 3

error

shift 3

error

error

b

I error

1 error

1 reduce A->e

1 shift 5

I reduce A->aAb

i

i

i

i

1

reduce A

reduce S

reduce A

error

reduce A-

i i

2 1

3 1

4 1

5 1

s
error

error

error

error

error

i

i

i

i

A

2

error

4

error

error

LALR(1) parsers

A second type of simplification similar to the SLR(

he LALR(l) parser invented by DeRemmer [DeR69]* Ma

ithms for computing LALR(l) parsers have since be

nted [LLH71,AEH72,A&U77,DeR72,Alp76,Pag77b] . The ma

rence from SLR(l) is a concise and more accurate meth

computing the set of lookaheads than the functi

W* The same LR(0) characteristic automaton can be us

nstruct either an LALR(l) of an SLR(l) parser*

The definition of the LALR(l) lookahead functi

state x P -> {t C T} is defined as follows:

LA(k,A •-> a)«< t C T | S$ *>- bAc *>- bac

and t * first C^) and the string bji

a prefix for the state k>

example 3*4 Using the CFG g, and the LR(

characteristic automaton, from example 3.3, t

function LA is defined as follows:

LA(1, S->A)-{> LA(l,A->aAb)»{> LA(1 f A->JB)-<
LA(2,S->A)»<$> LA(2,A->aAb)»{ > LA (2 , A->e,) -<
LA(3,S->A)»<> LA(3,A->aAb)»<} LA (3 , A->.e) *<
LA(4,S->A)»{> LA(4,A->aAb)*< > LA(4 , A->.e) «<
LA(5,S->A)»<> LA(5,A->aAb)»{$,b> LA(5 , A->,e) *<

he construction of the LALR(l) parser is exactly the

s an SLR(l) except that the action function is compi

ollows:

i) If A -> £ . ab G I. where a 6 T and

then action(i»a)«j

ii) If A ->a, • is in I± then for each

a 6 LA(i, A-> A_) set action(i ,a) « reduce 1

iii) all entries not defined in i) and ii) are se

error

example 3*5 Using the LR(0) characteristic autoau

example 3«1, and the function LA as defined in €

3#4, the LALR(l) parsing tables are:

action

b

error1 I
+

2 |

3 I
+

4 |

shift 3 reduce A-

error 1 error
j. _.

| reduce A->je

reduce S-
_

errorshift 3

error
—
error

| shift 5 error

reduce A->aAb | reduce A->

[O tO

S A
+i —••—+— ^ ——+

1 | error | 2 |
+-* + , >+

2 | error | error |
+- + +

3 I error I 4 |
4- + . +

4 I error | error |
+ + +

5 I error | error |
4.——.-.—.—•„ + 4.

The set of languages defined by SLR(l), LALR(l)

1(1), are known to form a hierarchy as follows:

rager s weatc compaciDincy

In the previous two sections, restrictions on the c

languages were imposed to reduce the number of state

LR(1) parser. Pager [Pag77a] shows that the number

tes may be reduced without affecting the class

guages accepted*

The modification introduced by weak compatibility i

construction of the LR(1) characteristic automaton

tion II.3). In the algorithm for constructing

omaton there is the statement:

for each set of items I in C, and each grammar symt

such that GOTO(I,X.) is not empty and J 0 C

do add J to C;

this statement if two states are similar in form,

be represented by a single state, and therefore sin

ies of a state can be removed. The criterion

iding whether two states can be combined is ce

patibility criterion and the action of combining

tes called a merge. For the LR(1) construction,

tes are compatible if they are similar in form, that

y contain the same set of items. Pager has founc

er forms of compatibility which he calls weak and st

patibility.

Unfortunately, changing the compatibility cri

rom the LR(1) case can cause problems. In particular

wo states satisfy Pager's compatibility criteria, m

lie states may necessitate a propagation of lookahe

tates already created, which in turn will modify the

tate which caused the original propagation. However,

roblems can be resolved using the following algorithm

Algorithm for constructing an LR compatible

characteristic automaton

nput: a CGF G and a compatibility function compatibl

utput: a set C, of states, and the function

OTO : (set of items) x (N U T) -> (set of items), whi

efines the characteristic automaton*

ethod: the three procedures below, initiated by call

TEMS'(G);

unction GOTO(I,jC);

begin

let J be the set of items

[A -> aX • £ , LA] s .t*

[A -> ja . Xjb , LA] is in I;

return closure(J);

end ;

rocedure ITEMS'(G);

begin

C :» closure([S -> . S' , {$>]);

repeat

for some set of items I in C,

and each grammar symbol X such that

J » GOTO(I,3:) is not empty

if there exists a state K in C

such that compatable(K,J)

then insert(J,K,C)

else add J to C

until no more sets can be added to C;

end ;

{merges S. into S~ and updates C accordingly}

begin

S :» merge(S1,S2) ;

if S. C S

then

replace the items of state S^ in C

by the items of S;

for each grammar symbol X,

such that GOTO(S2,j[) already define*

do insert(closure(GOTO(S9X)),

GOTO(S2,X),C)

SA

£1

end ;

Two states can be merged if and only if they

>ame set of marked productions in their respecti^

•art. Under this condition, the compatibility criter:

:hat merging the states (and therefore the lookahea<

fill not introduce any R/R conflicts in the resulting

inless the language is in fact not LR(1)» Foi

compatibility, the test is solely based on the two

>eing merged, while strong compatibility also uses i

)f productions of the CFG associated with the LR(1)]

Let the function merge be defined as follows:

merge(Sl,S2) » {[A ->a. • b, , LAj U LA2J |

[A -> a, • b, , LA^ S Sl

[A -> a. . b. , LA£] S S2

and for all items [A -> a • b , LA,] 6 S,

there exists an item [A -> â • b. , LAJ S S~

for all items [A -> a, . b. , LA2] S S2

there exists an item [A -> ja • b, , LA,] S S,}

en, according to Pager's definition, two states S. an

e weakly compatible if

i) S, and S^ only have common marked productions i

their item part. That is, if [A -> a. • b, , LA.] 6

then there exists an item [A->' a, • ̂b , LA2] « S2

if item [A - > £ .] > , LA2] S S2 then there exists

item [A -> a, . .b , LA.] 6 S.

ii) for each pair of items [A -> a, • Jb , LA.] 6 S.

[B -> jc • d[, LA2] S S2, then at least one of the

following is true:

a) LAxr\ LA2 » 0

b) LA- C\ LA^ £ 0 and there exists an item

[B -> c, • ̂d , LAj'] 6 S, such that

O ' t 0

[A -> a, • b, , LA2'] 6 S2 such that

O LA,/ * 0/

Condition a) states that if there are no items 1

;he states which have a common lookahead symbol, tl

lerge can not produce any conflicts, and in particul<

tot produce a R/R conflict. (Note: it is also impc

;o introduce S/R conflicts since the states will be

>nly if they have common marked productions. Therefoi

'esult of merging would only produce a S/R conflict

ixisted in one of the unmerged states before merginj

:ondition b) and c) the set of conditions is:

[A -> a, • Jb f LA1]f[B -> c, • d, , LA^] S Sl

[A -> a . b , LA.],[B -> c . d , LA '3 S So

LAj^fN LA2 + 0 and either L A ^ LA^ ^ 0 or

LA2 P\LA2' ^ 0

Since LA, C\ LA- ^ 0, the only possible conflict

L/R conflict arising from merging the lookaheads

iroductions A -> a^ and B -> jĉd* However, this can

inly if b̂ »>R w and d̂ *>R w, producing a common si

rhere both productions will be reducible. By condit:

-A, f\ LA/ jfc 0, if in addition b »:> w and d t>o w, j

:hen there must already exist a state with a R/R confi

tome symbol a G LA. (\ LA '• Similarly for condit:

[ence, if the language is indeed LR(1), then it must 1

that JD *> w; d^ »>_ w' ; w>w' S T ; and w + w' ,

efore conditions a),b) and c) are sufficient to inss

conflicts will be produced if the language generated

grammar is indeed LR(1)«

For example, let a CFG be defined with the set

uctions in figure 3»1* The LR(1) characteris

maton contains 38 states (shown in part in figure 3*

r weak compatibility, states 8 and 12 can not be mer

e the items [X->a*AE,{d}] S 12 and [Y->a#Bf{d}] S 8 h

common lookahead symbol d« However, for example, ata

nd 33 are in fact weakly compatible.

It can be shown that the size of a weak compata

) parsing table will contain a number of states that

where between that of LALR(l) and LR(1) parsing table

s ->
S' ->
S' ->

z ->
c ->

S'
aZa
bZc
aC
aDF

S'
S'
X
A
D
F

-> aXb
-> bXd
-> aAE
-> aDF
-> d
-> e

figure 3.1

S' ->
S' ->
Y ->
B ->
E ->

aYd
bYa
aB
b
e

S'->a.Xb,{$>]
S'->a.Yd,{$>]

(29: [X->aDE.,<b}A
'A

: [X->aDE. ,

U6: [X->aA.E, : [X->aA. E,

X->a.AE,]
Y->a.B,<d>]
Z->a.C,

2: [X->a.AE,{
28: [B->b.,<a}J^ b~~l [Y->a.B,{

20: [B->b. ,

C7: [A->a.DF,<
CC->a.Df,<

[A->a.DF,{b
[C->a.Df,{

25:[Y->aB.,

33: [A->aD.F,{[A->aD.F,<b
[C->aD.f, 8: tZ->aC. ,

(26: [Z->aC.,

: [C->aD£ • , < c(j6: [C->aDf . ,

f igure 3 .2

Ill.4 Strong compatibility

Pager's strong compatability adds one condition

:ompatibility which guarantees the production of a '

larser if the language generated by the grammar is L<

)therwise it will produce an LR(1) parsing table w:

lumber of states greater than the number of states p

>y the LALR(l) method but less than the number prodi

:he LR(1) method.

Strong compatibility requires that no two sta

lerged if they have a common descendant in th>

characteristic automaton which will introduce R/R coi

rhen the two states are merged.

For example, the grammar presented by figu

creates (in part) the LR(1) characteristic autom<

ligure 3.2. States 8 and 12 are not weakly com;

>ecause the items [X->a.AE,{d}] G 12 and [Y->a.B,{

lave a common lookahead symbol lfdlf. If these two sta

nerged (and hence causing merges of states (20,28), (

U7,25), (16,24), (29,32), (31,34), (30,33), (19,27),

ind (35,37) where each pair are common descendan

resulting states of the automaton would have no con

ience these two states, according to Pager's definiti

Ln fact strongly compatible.

On the other hand, let the grammar be that of figt

which creates (in part) the LR(1) characterisi

laton in figure 3.4. Merging states 7 and 10 (and hei

.ng common descendants 14 and 18 to be merged) woi

.t in two R/R conflicts on the symbols "a" and "b"

tescendant state. Hence these states will not be merj

1 strong compatibility.

S -> S' S'-> aXd S'-> bXa
S'-> aYa S'-> bYb X -> aB
Y -> ab B -> b

figure 3.3

1: [S->.S',{$>]

: [S'->a.Xb,{$>A
[S*->a.Yb,<$)]J

:[X->a.B,{b
[Y->a.b,<a>3

4:[Y->ab.,{a>]

('

fit):

/l8:

[S ' - > b . X a , { $

a
>

b
>

L * *** ^ a o • • \ D J

j Q «• ̂ o # » \ a J

figure

The way in which two items (from different states

roduce a common state with a R/R conflict is if twc

an derive the same substring. That is, if the two

1 and S^ are to be merged such that there exists twc

A ~> A • Jl > L A ^ 6 S, and [B -> c. . d. f LA2] S S2

6 LA. C\ LA0; b_ *> ŵ and d[«> w, . then the two

ave common descendants such that a merge will introdi

onflicts•

f) could not be merged is that the items [X->a*B,{d>

i [Y->a.b,{d>] S 10 have a common lookahead symbol d,

i strings B and b both rewrite to the string b*

The search for a common substring between two st-

»n necessary to try all possible combinations of rewr

solves as much work as building all descendant st

/ever, it is not necessary to expand all pos

abinations of rewrite rules* This fact can be see

ierstanding how expansion of the nonterminals is perf

building the characteristic automaton* That is, whe

sm [A -> a, • Xb, , LA] is closed, where X -> £ in

3 LA, it will create the item [X -> . c, , first(bd)].

k
a> e, it is clear that the elements in the lookahea

K
will be propagated to the new item. On the other

b. £> e,, the definition of the function first indi

it any element d 6 LA is not in first(J2.d) • Hence, in

se, the lookaheads defined by first(b/i) are independe

and does not effect states derived from the new

ated differently, the only rewrites that shoul

rformed are those which are applied to the nonterm

Lch occur at the end of marked productions*

3triction on the number of possible derivations to

, is what Pager calls a strong rightmost deriv

anoted *>«„) and is defined as:

i) £ « je

ii) aBc »>-> abc

Pager has derived a procedure [Pag 77a] which chec

wo items, having a common lookahead symbol, will prc

hared descendant containing a R/R conflict* The

eels that the algorithm presented by Pager is opac

ell as slightly incorrect, and that the algorithm ir

aper (see page 49) has been corrected and modii

larify its nature*

The algorithm is presented using two co-rec

rocedures which tries all possible strong rij

erivations to see if the two given marked productions

common descendant state where two different prodi

pill be reduced (since this is the only way that <

onflict can be produced). The procedure CHECK loc

rivial cases (i.e. cases where no rewrites are nee

o determine the result) while the procedure nontrivi*

:hecks those cases requiring rewrites in order to del

he wanted criteria.

One possibility that procedure CHECK handles is

.s impossible for two items, with or without rewrit

•roduce a common descendant. That is, let (1) A -:

md (2) B -> c.bYg be two marked productions where

ii) X ± Y * £

iii) I,& ?>R e.

ume that these two marked productions can derive a co

string which will produce a R/R conflict* Then it

* *

the case that Xf »>_ w and Yg »>- w . Since both f a

not derive e, the lookaheads can not propagate throu

£• But then, by the way LR(1) parsers are genera

string derived from X will be reduced to X be

nning the string derived from £• Hence any st

ived from X£ must be of the form]££. Similarly,

ing derived from jf£ must be of the form Y£« Theref

ce ^ r X> ^c *-s impossible for any items of this fox

duce a common substring (and hence a common descend

ch will produce R/R conflicts.

The second trivial check in the procedure CHECK, is

two marked productions immediately indicate a cc

cendant which will produce R/R conflicts if merged,

if the two items are of the form (1) A -> â bjnff anc

> ji.bJCZĵ where

i) ItA *>R A

ii) X G (N 0 T) and X ?:> e,

iii) W,Z S N and W,Z ->. e

is clear, under the above conditions, that the closui

: items (3) [A -> abX . W£ , LA13 and

abX • Z£ , LA~] will produce the items (

. e. , Q] and (6) [Z -> . e. , Q] where Q * LAL C\ LA

this case will produce a common descendant whe

Lets will be produced.

Ln all other cases, some rewriting is necessary a

iure nontrivialcheck is called to handle these cases.

)ne possibility, that requires rewriting, is when t

aarked productions are of the form (1) A->ji.b,X<f and (

)Yg where

L) X 6 N and X «>R £

LD I ->R e

Lii) 1 6 (N U T) ; Y& ?>R e. and Y + X

Ls case, X must rewrite to some string derivable fr

i order to produce a common string (and hence a comm

idant). However, this the same as testing if the

3 a production X -> li where]i ̂ ̂ e such that the ite

and B->j^#Y£ will share a common descendant which c

:e R/R conflicts.

k second possibility handled in nontrivialcheck a

of the form (1) A-^.bXf. and (2) B->c .bZg where

ii) Z 6 (N U T); Z& *>R e. and X

iii) f »>R e

iv) no production X->]i, where h.^> exists such

X->.Ji and B->j2j£.Zj» will have a common descendant

this case,, because of condition iv) and that X̂ j£,

mon string derivable from Xj[must be of the form X£ x*

common string derivable from Z& must be of the form

this implies that they can not derive the same st

hence can not have a shared descendant.

The last possibility checked checked by the proce

trivialcheck is the case wb<sn the marked productions

the form (1) A->jL.bX and (?> 5->c«bY where X,Y 6 N

• The only way that t ,̂ o two marked productions

ive a common descendant xs if X *:> w and Y *>

ever, this is the sama as testing if there exists

ductions of the form X->£ and Y->£ such that either

ked productions A->-a-b.X aid Y->.£, or X->.£ and B->̂ c

1 produce a common descendant which can contain an

flict from merging.

For efficiency, the procedure nontrivialcheck us*

cial global function

tried : N x (marked productions) -> boolean,

ore the top call to procedure CHECK is made, the func

set to false for all possible inputs, and it will re

alse the first time it is called with any given

Eter that, anytime the function is again called wi

ame set of arguments, it will return true. Therefore

mction will prevent the procedure nontrivialchec

lecking if a nonterminal will rewrite to match

articular marked item.

Finally, it is assumed that on the top level ca

3ECK(A -> a. . a/ , B -> b. . V) the following

Dnditions hold:

i) A -> a, . at' + B -> ID . b.'

ii) jLa' + e. and bjb' ,' <e

Co-recursive procedures to check

for a shared descendant

procedure check(A -> a . a,a~»«*a ,
-—__«— ... I C XL

B -> b • b , b o . . . b) : boolean;
— i z m ——————

{note: a l f b ± 6 (N U T) ; A,B 6 N; £fb> 6 (N U T) *

begin

s : «• maximum i s«t« a.a. ..•••a f>- e:
i i i n K —"t:* maximum i s«t« b.b.L,«.«b ?>« e;
x i"p l m K "*

match:- maximal i s*t« a. * b ;

if match+l<min(s,t)

then check:^false

else if match> max(s,t)

then check:»true

else

if. s>t

then check :=snontrivialcheck(

B -> b • b tb o . • .b f t
— 1 2, m

A -> a • a.ao*#«a ,s,match

else check:*nontrivialcheck(

A -> â • a.a^«««a ,sB -> b • b-b o . . « b ,t,match
*—" 1 I m

end;

procedure nontrivialcheck (A -> a • a^.^.a ,s,— _ _ _ _ _ i z n

B -> b • b .bo . • .b , t,
"-" i z m

match) : boolean;

{note: s £ t}

begin

terminate:*false;

repeat

if (match -(s-1)) < 0) ojr (s»t)

then

nontrivialcheck:»false; terminate:=true

else if (a 6 N) or
not tried(a ,B -> bb,*..b - • b ...b)— — s — 1 s —1 s m

then

for each production C -> c^ 6 P

a aC, ĉ £ £, and

C -> .

B —> bb 1««*b t • b •••b— 1 s — 1 s m

if check(C - > • € . ,

B -•> bb-»««b , • b •••b)— 1 s — 1 s n

then

nontrivialcheck:*true;

terminate:»true

fi

else if (s-t) and (match-las) and b S N

and check(B -> bb.***b , • b • ••b ,
• — 1 s — 1 s n

A -> aa,• • . a t • a •••a)
—* 1 s — 1 s n

then

nontrivialcheck:-true; terminate;»true

111

a:-s+l;

until terminate;

end;

Using the above, two states S. and S 2 ar

compatible if

i) If the item [A -> a. • JbjLA,] G S, then ther

an item [A -> a, . b>,LA23 S S 2 and if

[A -> a, • b^LAjJ S S 2 then there exists

[A -> a, . ib,LA1] S SL

ii) for each quadruple of items

[A -> i • b>»LA1],[B -> c, • itLAj] S S ^

[A -> a, . bifLA2],[B -> c, • l.LAj] S S 2

either

a) weak compatibility between the items h

b) b̂ and jd do not share a descendant*

Chapter IV

An Error Recovery Method for LR Parsers

In the previous two chapters, five dif

onstructions were discussed, all of which produ

arsers* The downfall of all LR parsers is that the

esigned only to decide if the given input is legal

s, belongs to the language generated by its grammar,

auses the unfortunate result that when such a pat

sed in a compiler, once the first illegal terminal

s found, the parse stops with failure. However, it

e more desirable to have the parse report as

dditional errors as possible.

Several people have proposed various error re

chemes for LR p

G&R75,D&R77,P&D79,O'H76,Pen77,P&D78]. This chapter

nlv de^l with one such method, which is a tnodtf icat

ilgorithm presented here differs from thiers in tha

Incorporated into the LR parser and does not attempt

:orrection*

In order to describe error recovery, we first d<

low an LR parser works* Let a path be a sequence of

IQq •••q such that for each state q . , one of the fo

:onditions hold:

i) go to (q . ,X) » q^.i for some X S N

ii) action (q »a) » q 1 + 1 for some a 6 T.

^ path will be denoted as [qQsa,]* That is, if ji * a,

/here a 6 (N U T) then the path [qo:.a] is the sequ

states such that either action(q . , a) «• q

^oto(q, ..a.) * q,» Also, let the result of the f

:op : path -> state be defined as the state q whe

>ath is qQq<j«««q • Finally, whenever the path [q:aj

:rom the start state (of the LR parser) it will sim

ienoted as [ji] •

The basic control of a LR parser can be defined

decision function df : path x T -> (path U<rej ect,a

is follows:

i) df([a,],b) - [a.b] if action(top([a]) tb) • shif

some state j S K.

ii) df ([aw] ,b) » df ([a.A] ,b)

if action(top(Caw]),b) * reduce A

av ^ S when b » $

iii) df([S],$) « accept

if action(top([S]),$) » reduce S -> S'

iv) df is defined as reject for all pairs

(tjilsb) not defined by rules i) throug

The algorithm to implement the above decisi

is simply as follows:

procedure parse(df,input);

begin

path:«[start» e] ;

repeat

t:»next terminal symbol from input;

path:*df(path,t) ;

until (path » accept) or (path » reject) ;

print path;

i that the variable path is implicitly used as a s

:h holds the prefix of sentential forms being recogn

:he parser.

The error recovery strategy describes what to do if

5e of an input results in reject. As can be seen

previous algorithm, LR parsers have the nice prop

: they stop reading input immediately after the i

Lng is found to be illegal. The best recovery from

error would be if the parse could somehow be resta

i that all other errors made in the input could be pi

Unfortunately, this strategy is really unfeasible s

carries the implicit assumption of knowing what

ter meant when he wrote the string to be parsed.

A much more conservative approach is to only state

aining substrings of the input are impossible accor

the given grammar. That is, if the remaining input a

error Is. a string w € T and there doesn t exi

*
htmost derivation such that S «>. awe for

J\ ———

(N U T) and £ 6 T , then the substring w shoul

orted as an error.

rur example, cuasiutr uie two paeuau rdo^AL pro<

<stmt> -> FOR <var> :* <exp> TO <exp> DO <stmt>

<stmt> -> WHILE <exp> DO <stmt>

with the erroneous input

FOR X:-l 5 DO BEGIN J:»X; L:-X END;

where the terminal symbol "TO11 has accidently been 1<

Using an LR parse, parsing would stop after rea<

symbol lf5lf. As one Looks for subsequent errors, it :

that "5" is a valid substring derivable from S* It

clear that 5 can occur at the following points in thi

productions

<stmt> -> FOR <var> :* lf<exp>tf TO <exp> DO <stm

<stmt> -> FOR <var> ;* <exp> TO fl<exp>tf DO <stm

<stmt> -> WHILE fl<exp>1f DO <stmt>

By expanding the substring to include the next input

the next possible substring to test would be "5 DO11

the number of possible positions of this string h

reduced to

<stmt> •-> FOR <var> : * <exp> TO "<exp> DO11 <stm

<stmt> -> WHILE ft<exp> DO11 <stmt>

Continuing this process, it is clear that the subst

DO BEGIN J:*X; L:*X END" can correspond to the f

positions in the productions:

<stmt> -> FOR <var> :* <exp> TO "<exp> DO <stmt

<stmt> «•> WHILE ff<exp> DO <stmt>!l

g implies that a reduction should be performed by c

e above productions* One possibility is to take t

g recognized before the reject point, and to either a

lete symbols to produce a match and therefore dec!

reduction to choose* This type of error recovery

act the error correction method used by [P&D79

er, the one chosen by the author assumes that t

ring "5 DO BEGIN J:»X; L:»X END'1 is the maxin

ministic string that could be recognized, and hen

e it from further consideration* That is, it wi

rt the parse starting with the semicolon.

The above example in fact characterizes the en

ery method described in this chapter* To state t

d more explicitly, let me start by defining an en

as a set of LR parser states, where each error sta

ins the set of LR parser states that the parse might

^ke restart state as a special error state containd

he LR parser states*

The first shift, in error recovery, is a forced shi

gh the illegal terminal symbol that produced t

tion* This shift can be viewed as a parallel shift,

error symbol a, from all LR parser states I in t

rt state to all states J such that action (I,a) * J.

then try to parse the input where the parse will stai

ter the forced shift through the illegal symbol. Ii

ie way, any of these parses produce an error, it wd

•opped from further consideration for simultaneous p^

One possible result of the above process is the

.rses will be dropped from the set of simultaneous j

tder this condition, it is clear that there j

trivation such that S • >_ awe for the parsed ii

tnce, it is quite legal to assume that the next

'mbol input can not occur, and report it as an

,nce this is an error, the algorithm will then restai

icovery method on the next input symbol. Note ti

.rst action on any error is a forced shift. This ii

> guarantee that the remaining input is parsed.

:ror recovery should not continue if the illegal t<

'mbol was the end of string marker $.

The second problem is that if the above error n

rocess is to be merged into the LR parser, the p<

irses have to be made deterministic. There is no j

Lth the action function for a set of states, if the

>r all possible inputs is a shift entry. In this c<

\ clear that the action is deterministic, since re*

:ates can be lumped into a new set of states and

reating a new error state. The same is true for tl

motion. Therefore, nondeterminism can only occur :

ion, for a set of states to be simultaneously par

tain either

i) shifts and reductions for the same input symbol

ii) reductions for different productions for the

input symbol (as shown in the previous example)

ortunately, neither of these cases seem to be resolv

erministically. If, in either case, the parse

owed to continue and the next action was performed,

ult would produce two different paths. That is,

ve two conditions would result in disjoint senten

fixes• Such conditions will be called overdefi

ever, some decision still has to be made so that

aining input can be parsed. Again, the conserva

roach was taken* Whenever the input string being pa

omes overdefined, the parser assumes that it is

imal substring it can recognize, and restarts the *a

or recovery process on the next input symbol.

By merging the error-recovery into the LR parser, a

parser with error recovery c n be built* If a

sing table is the t

(K ,actian , goto , G , start) , then let the

ser with error recovery be defined as the t

» (K , K' , action , goto , G , s tart , init-ei

re

K,G, and start are defined as in M,

K' is a set of new states called error recovery

init-error is a state in K' denoted as the

state of the error recovery method

goto : (K U K') x N -> K U K' U {error}

action : (K U K') x T ->

{shift k | k 6 K} U {error.overde

{reduce p | p S P}

Furthermore, the Inlt-error state will be so defin

for each b G T, action (init-error,b) • shift j f

state j. Each recovery state is a set of parsing st

K, such that it is the set of states that c

simultaneously for the input string being parsed*

Using the above definition, LR parsers wit

recovery can be built by the following algorithm:

Construction of LR parser with error recovery

input: LR parsing table M » (K,action,goto,G,start)

output: LR parsing table M' » (K , K' »action , got

start , Init-error)

nethod :

begin

{initialize state init-error}

set K' to the single state containing the set {

and label it as init-error;

for each a 6 T do

let s be the set

{j 6 K I actlon(l.a) » shift j

for all i 6 init-error);

if s is a singleton

then set s' to the element of s

else if s G K*

then set s' to that state in K'

else add s to K' and label the new state

fj.

set action (init-error^a) * s'

od

for each X 6 N do

let s be the set

<j 6 K | goto(t.X) » j

for all t 6 init-error};

if s is empty

then set goto(init-error,X) * error

else

if s is a singleton

then set s' to that element of s

else if s G K'

then set s' to the state in K' cont

s

else add s to K', and set s' to its

£1

set goto(init-error,X) • s';

fjL

2A

{build each general error state}

repeat

for each state i 6 K' such that the parsing

for that state is still undefined do

for each a 6 T do

if s is empty

then set action (i,a) * error

else

if s is a singleton

then set s' to the element in s

else if s 6 K '

then set s' to the state in K'

containing s

else add s to K', setting s' as tl

label of the added state;

£i

set action(i,a) * shi* <n s'

tt

fJL

od.

for each X S N do

let s be the set <j 6 K | goto(t ,X) * j

for all t S i>;

if s is empty

then set goto(i «X) « error

if there exists two states S,,S2 6 i s«t«

[A -> a, . , LA.] S S, where a S LA,

[B -> c. . d, , LA2] 6 S 2

where first (jd) * a

then set action (i »a) » overdefined

else if there exists two states

S 1,S 2 6 i s. t.

[A -> a, . ,LA,] S S,

[B -> b. . ,LA2] S S 2

where a S LA, LA^ and A - ^ ^ B - ^

then set action(i,a) * overdefined

else if there exists a state s 6 i s.t«

[A -> w • ,LA] S s where a S LA

then set action (i, a) • reduce A -> jw

else

let s be the set

<j 6 K | action(t,a) - shift j

for all t S i>;

if s is a singleton

then set s' to the element in s

else if s 8 K'

then set s' to the state in K'

containing s

else add s to K', and set s' to

label

Hi

set goto(i»X) » s'

fj,

od.

od

until no more states can be added to K'

end

Using the resulting LR parser with error recovery,

sic control can be handled using the decision fun

' : path x T -> path as follows:

i) df'([q:aj,b) » [q:£b]

when action(top([q:a])>b) * shift j for some

j S (K U K')

ii) df'([q:aw] ,b) » d-'([q:a,A] ,b)

w ^ e n action(top(rqtav])«b) * reduce A -> w, and

av « S then b $ $

iii) df * ([lnit-error :wl-.b) « df * ([init-error:A] tb)

when action(top([init-error:w]), b)

58 reduce A -> aw,

where ĵ ̂ je and b ^ $

iv) df'([S] ,$) - accept

v) df*([init-error:S1 ,$) - Reject

if action(top([init-error:S]) »$) «• accept or

overdefined

vi) df ' ([q:aj ,$) - reject

w ^ e n action(top([g:a]),$) « error

vii) df* ([init-error:a] ,b) - [init-errortbI

where b £ $, and

action(top([init-error^a])>b) « overdefined

viii) d£'([q:jj*b) » [init-error:b1

where b ^ $ and action(top([q:a])tb) • error

that cases vi) or viii) represent that an error h

found in the string being parsed. Hence, any err

ges produced are produced at these points.

Finally, an LR parser with error recovery can

mented simply by calling the procedure parse % using c

e decision function.

Chapter V

Implementation

This chapter discusses two programs* The first prc

ates an SLR(l) parser, with error recovery. The se

gram creates either an LR(1), LALR(l), weakly compat

a strongly compatible LR parser. The first sec

cusses the representation of the parsing tables built

h programs. The second section describes

lementation of the SLR(l) parser constuctor and how

tern is used while the third section does the same fot

ond parser constructor.

The representation of the parsing tables nat

iiggest using arrays. For uniformity of both acce

alues held in the arrays, all terminal symbols, nonte

pmbols, and productions are provided with an interna

£ integers by both programs* For terminal symbols

odes are defined by the set

{i | CKi^n where n is the number of distinct term

symbols occurring in the productions}

lere 0 is reserved for the special terminal symb

Dnterminal symbols are encoded using the set

{i | -mjci^-l where m is the number of distinct

nonterminals occurring in the productions}

tiere the start symbol S will always be given the cod

roductions are coded using the set

{i | lj£i.<p where p is the number of productions

in the grammar}

here the production S -> S' is always given the code

In representing the action and goto functions,

on-error values are kept internally since the vast ma

f the function values are in fact error« The rem

alues are saved in groups, one for for each state,

tates having the same set of non-error values wi

epresented by a single copy of the groups.

For example, the grammar

S ->
E ->
E ->
T ->

E
E * T
T
T + F

T
F
F

-> F
-> id
-> (E)

i produce the following SLR(l) parsing tables:

Action table

H H 1 1 1 H

I $ I * I + | id | (|

L I I I | S 3 | S 2 |

M I I | S 3 | S 2 |

i 1 F->id | F->id | F->id | | |

\ | T->F | T->F I T->F | | |

> | E->T | E->T | S 8 | | | E-

) | S->E | S 9 | I I I

M I S 9 | | I IS

M I I | S 3 | S 2 |

M I I | S 3 | S 2 |

. | T->T+F | T->T+F | T->T+F | I | T->T

._+ . + + + + +

I | E->E*T | E->E*T | S 8 | I | E->E

1 | | S 9 | S 8 | S 3] S 2 | S

> i 0 | 0 | 0 I S 3 1 S 2 ! 0

i | S->E | S 9 | I I | S

> I 0 | 0 | S 8 | | | S

' I 0 | 0 | 0 | I I
. - + + + + + +
rhere shift j is represented by S j,

reduce p is represented by p,
overdefined is represented by 0, and
error is omitted.

I S I E I T | F |

1 1 1 I 6 | 5 | 4 |
+ _-H 1— + _--—+ 1-

I 2 | | 7 | 5 | 4 |

1 3 1 | | | |

I 4 | | | | |
+ +——--.—+ + + +

I 5 | | | | |

I 6 | | | I |

I 7 | | | | |
I 9 | | | 12 | 4 |
+ _+ + + + +
I 10 I I | | |

+ + — + — + + +
I U I I I I I
+ + + + + +
I 12 I | | | |

+ + + + - (. (.
I 13 | | | | |

+ + + + + +

I 14 | | 15 | 16 | 17 |

I 15 I I | | |

I 16 | I I | |
+ + + + + +
I 17 I | | | |

+ + + + + +
where g o t o (i , X) « error has been omitted

By elimination of the error values, 58.8% of th<

tables does not need to be saved. Also, states 1,2,

in the previous action table all have the same same

values •

Each non-error value of the action table wil

presented as follows:

i) action(i,a) « shift j will be represented

by the pair (x,j) where x is the code of

terminal symbol a.

ii) action(i »a) * reduce A .-> w will be represent€

by the pair (x,-p) where x is the code of

terminal symbol a and p is the code c

production A -> w*

iii) action(i ,a) « overdefined will be represented

by the pair (x,0) where x is the of the tet

symbol a«

The non-error values of the goto table, for

ate i, will be represented as the pair (x,j)

tjo(i,A) * j and x is the code of the nonterminal A.

For efficiency in retrieving the values from the a

d goto tables the integer pairs corresponing to each

e sorted using the relation </ where

(a,b) </ (c,d) iff either a<c, or a»c and b<d.

Four integer arrays are used to represent the valv

e two parsing tables. The array parsetable is a

ray, for some n, which holds all of the non-error A

the two parsing tables. The arrays actionlis

tolist are s x 2 arrays, where s is the number of

ates, and are used to define where the values c

tion and goto functions are saved in the array parset

ch element in these two arrays is the pair (b,t) wt

the starting position of the values saved for that

ile t is the number of non-error values of the fut

r that state. The last array productionlist is a

ray where p is the number of productions and, foi

oduction A -> *r it holds the pair (x,|w;|) where x is

de of A and Iw| is the length of the string w.

Returning to the previous example, let the codes c

rminals, nonterminals, and productions be as follows:

terminals nonterminals productions

$
*

id

0 S : -1 1
1 E : -2 2
2 T : -3 3
3 F : -4 4
4 5
5 6

7

S->E
E->E*T
E->T
T->T+F
T->F
F->id

ally be rep

ctionlist

1:2
1:2
9:4

13:4
17:4
21:2
23:2
1:2
1:2

28:4
32:4
36:4
40:5
45:6
54:3
57:4
61:4

resen ted as

gotolist

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

roductionlist

-1:1
-2:3
-2: 1
-3:3
-3:1
-4:1
-4:3

or example, the

3:3
6:3

13:0
17:0
21:0
23:0
25:0
25:1
26:2
32:0
36:0
40:0
45:0
51:3
57:0
61:0
65:0

action

follows:

: parsetable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
o a.

27
28
29
30
31
32
33

3:3
4:2

-4:4
-3:5
-2:6
-4:4
-3:5
-2:7
0:-6
l:-6
2:-6
5:-6
0:-5
l:-5
2:-5
5:-5
0:-3
l:-3
2:8
5:-3
0:-l
1:9
1:9
5: 10

-3: 12
— A • L

-3: 12
0:-7
l:-7
2:-7
5:-7
0:-4
l:-4

values held in the

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
SQ
j ?

60
61
62
63
64
65

2:-4
5:-4
0:-2
l:-2
2:8
5:-2
1:9
2:8
3:3
4:2
5: 10
0:0
1:0
2:0
3:3
4:2
5:0

-4:17
-3: 16
-2: 15
0:-l
1:9
5:10
0:0
1:0

^ • o
5:0
0:0
1:0
2:0
5:0
:

above ta

ate 5 start at position 17 in the array parsetable ar

non-error values. Positions 17 through 20 represer

tion values:

$: reduce E->T

* : reduce E->T

+ : shift 8

) : reduce E->T

2 SLR(1) implementation

This section describes how to use the SLR(l)]

nstructor with error recovery. This implementati*

e restriction that no production can be of the

-> je. Included in this section is a brief descript:

e input grammar, how to run the system, and h<

terpret the output produced.

2.1 Input Grammar

The input for the program is the set of produ<

fining the CFG which the SLR(l) parsing table is

nstructed from. The input will be parsed in a free

rmat, that is, no formatting by columns or line bourn

11 be used. The end of line character will be treat*

blank character and each symbol on the input file mi

parated by one or more blanks.

>noianic string, or i: cnaraccers or less not oeginnm

Le character M<lff and is not one of the metas

•-.>","$", and " • ' ") • In the event that the user may u

: the metasymbols used by the program, or a nonblank

^ginning with a fl<M, the quote symbol has been

>ecial meaning* If the quote is followed by a

laracter, it will be treated as a terminal s

:herwise, if the quote is followed by a nonblank s

le string following the quote will be treated as th

: the terminal symbol.

Nonterminal symbols are represented as cha

:rings, of 15 characters or less, enclosed by the s

c" and ">". The first symbol of the string, if no

apty string, must begin with a nonblank character but

laracters can appear anywhere else in the string*

rogram also accepts the string "<>" which repres

>nterminal symbol whose name is the empty string*

Productions are represented by writing them in th

-> w; where A is a nonterminal, * is a sequence of g

rmbols, and "->" is a metasymbol recognized by the pr

ich production is separated from the next usin

•tasymbol "." and after the last production, the meta

?ff must appear* The productions can be entered

:der except that the first production, on the input

For example, the grammar presented in V.I con'.

presented by the following piece of input:

<f> -> id . <f> -> (<e>) $

A shorthand notation also exists for productions 1

e same left hand side (i.e. productions of th<

-> w where A remains constant between the product:

these cases, the productions can be entered in th<

-> w. ! wo ! ... ! w where there exists the produ<-"I —^ —n

-> w. , A -> wo , ... , A -> w

For example, the grammar in section V.I could

ternatively been written as:

<e> -> <e> * <t> 1 <t> .
<t> -> <t> + <f> ! <f> .
<f> -> id ! (<e>) $

The order in which productions are found in the

le corresponds to the order in which they will be

ternally. In a similar manner, the terminal

nterminal symbols will be coded in the order corresp<

their first appearance in the set of productions.

.2.2 Running the SLR(1) parser constructor

The system can be run on the Vax-11 in the

:hool, by entering the following monitor level pro

all:

$<3[karl]slrbnf

Eter invocation, the procedure will ask the user fo

Lies used by the program, and run the program.

The first file to be requested is the file cont

le set of productions, and is requested with the prom

input:

The second file request is for the output file

ill contain all diagnostic and informatory messages,

aquested with the prompt:

output:

The third file request is for the file that the c

LR(1) parsing tables should be saved on, and is req

ith the prompt:

internal representation:

The last two file requests are for temporary file

an be used by the program, and are both requested wi

romp t:

n. The program will not produce any output, on the 1

reen, nor will it ask the user for any futher infori

less the SLR(l) parsing table was created and coi

nflicts (see section V«2.4 for handling this case).

This paper will not mention how to use the

ntaining the SLR(l) parsing tables except for a ;

ogram skeleton in appendix a*

2.3 Interpretation of the output file

The output can be broken into two major sections

e first section describes how the program parsed the

ammar and the second section prints the built i

rsing tables. However, the second section wi:

oduced only if there were no errors detected in the

iction.

The first page of the output is a copy of the

ting parsed, along with any error messages indi<

.legal syntax. If there were no syntactic mistakes ii

iput grammar, then this page will be an exact duplic;

ie input file. Otherwise, portions of the input file

t written, and will be interspersed with syntactical «

^cognized by the program.

For example, the erroneous input:

<S> -> <A> • <A> -> a <A> b . A -> a b $

ould produce the following output:

<S> -> <A> • <A> -> a <A> b • A ***illegal LHS

a this example, the program is reporting that

roduction has a terminal symbol on the left hand s

tie production.

The next three subsections of the output report

oding scheme of terminals, nonterminals, and produ

sed by the program*

For example, the input:

<E> -> <E> * <T> J <T> .

<F> -> id ! (<E>) $

TERMINAL NODES
« » aa» «•» mm mm • • • am «•• mm mm «•• • • « • •

1 . *

2 . +

3 . i d

4 . (

5 .)

NONTERMINAL NODES:

-1. <S>

-2. <E>

-3. <T>

-4. <F>

PRODUCTIONS:

'<EOF MARKER>
2. <E> -> <E> * <T>
3. <E> -> <T>
4. <T> -> <T> + <F>
5. <T> -> <F>
6. <F> -> id
7.

The program provides additional information with t

g schemes, that is, if the string "*undef*" procedes

rminal, then that nonterminal does not occur on t

ift hand side of any production recognized while p

le input file*

Below the coding scheme is a diagnostic summmary

ill the program did in parsing the given input bn

rerything is acceptable to the program, it will prin

»ssage "successful parse" and attempt to constru

-R(l) parsing tables. Otherwise, it will give an

immary of why it thought the input was wrong, and abo

irther calculations*

Should the input grammar be successfully parsed

rogram then attempts to build the SLR(l) parsing t

3 begin with, it computes the first and follow set

ich nonterminal, and prints out these sets. Seco

rints out the sets of SLR(l) items defining the co

ich state*

For example, the previous input grammar would p

itput for the first five states as follows:

STA

STA

STA

STA

STA

3) <E> -> <T> •

4) <T> -> <T> • + <F>

7

6

5

>

)

)

)

<F>

<F>

<T>

-»

->

->

->

(.

id

<F>

E> '<EOF

<E>)

•

MARKER>

The last section of the output, for a run,

iadable form of the produced parsing table followed

.ze of the array parsetable • Non-error values, o

irsing tables, for each state are listed separatel

ie action values preceeding the goto values.

ing values for the first state would be as follows

STATE 1

id SHIFT TO 3

(SHIFT TO 2

<F> GO TO 4

<T> GO TO 5

<E> GO TO 6

>4 Conflict Resolution

Sometimes, when a CFG G is provided as input to

[I) parser constructor it can not produce a SLR(l) pa

G since L(G) is not in the class of languages of SLR

such cases, the construction method has prod

:licts in the action table*

For example, the grammar in figure 5.1 is an exampl

latural grammar for arithmetic expressions with opera

id *• The LR(0) characteristic automaton, for

nmar, and the follow sets are shown in figure 5«2.

:es 9 and 10, there will exist S/R conflicts on

Symbols + and * if the SLR(l) parser is built fr

aaracteristic automatoa. This can also be seen i

utput produced by the program for such an input (see

.3).

S -> E
E -> E + E
E -> E * E

E -> id
E -> (E)

figure 5.1

IO:E->E*E
E->E.+
E->E.*

E-OE.+E
E->E.*E

f9:E->E+E,
E->E#+E
E->E.*E.

FOLLOW(S) » {$} FOLLOW(E) - {$,+,*,)}

figure 5.2

STATE : 9

<E> -> <E> • * <E>

JCE/SHIFT CONFLICT ON SYMBOL +
CRY: -2 CONFLICTING ENTRY: 6

ICE/SHIFT CONFLICT ON SYMBOL *
CRY: -2 CONFLICTING ENTRY: 7

<E> -> <E> * <E> •

<E> -> <E> . * <E>

ICE/SHIFT CONFLICT ON SYMBOL +
:RY: -3 CONFLICTING ENTRY

ICE/SHIFT CONFLICT ON SYMBOL *
:RY: -3 CONFLICTING ENTRY

figure 5.3

STATE : 10

: turns out that these conflicts can be resolved i

of either a shift or a reduce action by knowing th

ince and associativity of these two operators* Fo

i, looking at state 9 and the operator *, the parse

.ng E * E and reduce it to the string E producing the

:ential form

E + E

Should the grammar in the input file produce confli

program will arbitrarily pick one of the ac

.nitions for the symbol causing the conflict in the s

discard all other conflicting entries. This choic

>rted to the user as shown in figure 5.3* In each c

"OLD ENTRY: xx" represents the entry chosen by

jram while the "CONFLICTING ENTRY: yyfl states

:arded entry* Hence, in state 9, the arbitrary cho

the symbol *, was to reduce on the production labell

»• E->E+E)•

To allow the user to change the arbitrary choice

the program, the program will also become interactiv

conflicts arise in building the SLR(l) parser. That

program will prompt the user with the prompt:

ENTER STATE TO RESOLVE:

this response, two choices are available*

If the user responds with the number 0, the pro

L stop so that the user can look at the output fil

ar to identify all existing conflicts in building

(1) parser* If the user feels that these conflicts

should rerun the program and when getting the a

ipt, he should resolve the conflicts by using the se

.on.

The second option in responding to the above prompt

i in the state that the user wants to resolve. After

: completes his answer, the program will print out

> of the state, for verification, and will ask the

Lt is the state he wanted*

The next request by the program is for the user

ride the integer code of the terminal symbol causing

:lict using the prompt:

ENTER SYMBOL NUMBER TO RESOLVE:

ibove, the program will verify the user's response

iting out the terminal's name and asking the user i

the correct terminal symbol* Again, a ftNfl response

3e the program to reprompt for a state to resolve whi

response will have to program continue processing

Dlution•

The next request, aftar the symbol request, is for

ion function's value for the state and symbol with

apt:

ENTER NEW ACTION TO TAKE:

the value provided by the user is a positive integer

hence a shift action), the program will print out

of the state the shift is to. If the value given

user is negative (and hence a reduce entry), th€

will print out the production associated with tt

provided by the user. In either case, it will thet

user if this was what the user wanted and again vei

user's input*

The.program will provide the user one last

after the conflict resolution has been specif

disregard the conflict resolution. A "Ylf response

user will cause the resolution to be processed whi

response will disregard the resolution provided by t

In either case, the program will than request fox

conflict resolution with the prompt:

ENTER STATE TO RESOLVE:

At this point, the whole process repeats unJ

user responds with a 0. If a 0 is typed in by t

then no more conflict resolutions will be processed

program will build the SLR(l) parser. Note that th€

will not produce an SLR(l) parser unless at l€

conflict has been resolved.

Size Restrictions

lis program contains several size restrictions whic

follows:

) No more than 100 terminal symbols may be used.

i) No more than 200 nonterminal symbols may be used*

ii) No more than 300 productions may appear in tin

nput •

v) No terminal or nonterminal name may exceed 1

haracters•

) For each production A -> w, £ can not be a string

£ terminal and nonterminal names, exceeding a lengt

f ten names*

i) The number of parse states, created by the prograi

mst not exceed 600.

'ii) The number of SLR(l) items, excluding the items <

:he form A -> . w, must not exceed 9,999*

the dimensions of 10,000 x 2.

V»3 LR(1), LALR(l), Weak and Strong Compatibility

parser generators

This section describes how to use the program which

.d either LR(1), LALR(l), weak compatible, or st

>itable parsing tables. Included in this section i

if description of the input grammar, "how to run

;ram, and how to interpret the output*

LL Input Grammar

The input for the program is the set of product

Lning the CGF from which the parsing tables are t

luced. These productions can be optionally prece

I a list of terminals and nonterminals, allowing the

3pecify the integer codes given to these symbols.

The input will be parsed in a free style format,

no formatting by columns or line boundaries wil

i. The end of line character will be treated as a b

t UUC

In general, a terminal symbol is any nonempty strin;

dank characters which does not begin with the chara<

However, it can not be any of the metasymbols (

"•", "#", "->". "'", or "e")- In the event that

' wants to use one of the metasymbols or a st

.nning with a ft<ff, as a terminal symbol, the quote syi

: preceed the nonblank string*

Nonterminal symbols are represented as any chara

.ng enclosed by the symbols ff<lf and ">"• The charac

>osing the name of the nonterminal can be any chara

rluding the blank) except the symbol fl>ff, and incl

name composed by the empty string ("<>")•

Productions are represented by writing them in the

• w where A is the name of a nonterminal, w is a sequ

:erminal and nonterminal names, and fl->ft is a metasy

>gnized by the program* The symbol ffelf has been rese

represent the empty string so that productions of

a A -> ji can be written.

Productions are separated from each other using

isymbol "•", and no symbols should follow the

iuction. Productions having the same left hand s

of the form A -> £•, A -> w^, •• , A -> w , ca

metasymbol lf | ft is treated as an "or" symbol

For example, the grammar

S -> A A -> aAb A ~> e.

be entered with the input:

<start symbol> ->
<A> -> a <A> b I e

Productions, when parsed, will be coded inte

sing the order in which they appear on the input. Th

astriction on the order in which the production

ritten is that the start production must appear first

Unlike the SLR(l) parser constructor, this p

ptionally allows the user to specify the coding sch

tie nonterminal and terminal symbols • That is, befor

tart production the user is allowed to provide a 1

arminals, followed by a list of nonterminals, follow

lie metasymbol lf#". It is not necessary that all ter

ad nonterminals appear in these lists, and either o

ist may be empty. Elements in these lists will be 1

a the order that they are found (1 for the first ter

for the second terminal etc. and -1 for the

onterminal, -2 for the second nonterminal etc.).

emaining terminals, or nonterminals, not specified by

ists will be labelled according to the order of

>pearance in the set of productions*

For example, assume using the previous grammar th

>er wants the terminal b to be labelled 1 and termina

» labelled 2. This could be done by using the input:

b a #
<start symbol> -> <A> .
<A> -> a <A> b | e

The program described by this section in fact has

le SLR(l) parsing tables (produced by running the

rogram described in section V«2) to parse the inpu

lis program* Hence, the description of the input rul

» formally described by the set of rules used in cr

le SLR(l) parsing tables which are as follows:

<> -> <input grammar> •
<input grammar> -> <start prod> '• <other prods>

i <symbol defns> <start prod>
' • <other prods> •

<start prod> -> nonterminal '-> nonterminal •
<other prods> -> <production>

! <other prods> '• <production> •
<production> -> nonterminal '-> <rhs> •
<rhs> -> e-rule

! <symbols>
1 <rhs> | e-rule
! <rhs> I <symbols> .

<symbols> -> terminal
I nonterminal
1 <symbols> terminal
! <symbols> nonterminal •

<symbol defns> -> <terminals> <nonterminals> #
! <terminals> #
J <nonterminals> # •

<terminals> -> terminal
! <terminals> terminal •

<nonterminals> •> nonterminal
! <nonterminals> nonterminal $

3* 2 Runing the program

The program can be run on the Vax-11 in the

ihool by entering the following monitor level pro

ill:

@ [karl]runnewbnf

:ter invocation, the procedure willask the user fo

>les used by the program, and then run the program*

The first file requested by the procedure is the

second file is request is for the output file which 1

;ain all diagnostic and informatory messages, an<

Lested with the prompt:

OUTPUT FILE:

last request is for the file to save the parsing ta

ited and is requested with the prompt:

TABLE:

Upon completion of the file requests, the program

After the program finishes reading the input bnf f

program will request the user to specify what type

ser should be created with the prompt:

ENTER OPTION
0 - COMPUTE FIRSTS ONLY
1 - BUILD LR(1) PARSE TABLE
2 - BUILD LALR(l) PARSE TABLE
3 - BUILD WEAK COMPATIBLE LR PARSE TABLE
4 - BUILD STRONG COMPATIBLE LR PARSE TABLE

Once the user responds, the program will build

responding parse table, printing out "BUILDING STAT

it tries to build state X. This completes

fraction the program has with the user.

The first page of the output file is a copy of

tit being parsed, along with any error messages descri

egal syntax*

For example, the erroneous input:

<S> -> <A> • <A> -> a <A> b . A -> e

produce the following output:

INPUT PARSE OF PRODUCTIONS:

<S> -> <A> • <A> -> a <A> b • A -> e

*** 32) PRODUCTION DEFINITION EXPECTED

bove error is stating that at the beginning on coli

f the previous input line, the program was expecting

a production but found something else (i.e. t

nal symbol A).

The next three subsections of the output file, aft

parse of the input, reports the coding scheme of t

nals, nonterminals, and productions used by t

am*

For example, the input:

a b #
<start symbol> ->
<A> -> a <A> b | e

TERMINALS:

0. EOF
1. a
2. b

NON-TERMINALS:

-1. <start symbol> *START SYMBOL* *UNIQUE*
NOT USED ON RHS

-2. <A>

PRODUCTIONS:

l<start symbol> -
2<A> -> a <A> b
3<A> -> e

As can be seen by the above example, add!

lformational messages about nonterminal symbol

rovided, and are as follows:

START SYMBOL - States tha^ the nonterminal symb

been recognized as the start symbols

UNIQUE - States that the start symbol does not

anywhere else in the productions and hence

valid start symbol.

NOT UNIQUE - States that the start symbol occur

another production besides the start prod

and hence is an invalid start symbols

NOT USED ON RHS - states that the nonterminal n

appears on the right hand side of any produc

NT NOT REACHABLE - States that the nonterminal

not appear in any of the sentential form

hence need not be part of the input grammar*

NT REPRESENTS NO TERMINAL STRINGS - States that

is not any terminal strings derivable fro

nonterminal*

NT NOT DEFINED - States that the nonterminal do

appear on the left hand side of any prod

recognized from the input file.

After the coding schemes, the program will prin

Lrst set of each nonterminal*

Finally, if the user selects to have a

.terns) and non-error action and goto values.

For example, using the input grammar used above,

ie user chose to build a strong compatible LR p

ible, the parse tables printed would be as follows:

STRONG COMPATIBLE L R (1) CHARACTERISTIC

. STATE : 1

l)<start symbol> -> .
LOOKAHEADS:

EOF

CABLE ENTRIES:

?EOF$ REDUCE BY 3
i SHIFT TO 3
CA> GO TO 2

, STATE

l)<start symbol> -
LOOKAHEADS:

EOF

CABLE ENTRIES:

?EOF$ REDUCE BY 1
STATE

2)<A> -> a . <A> b
LOOKAHEADS:

EOF
b

rABLE ENTRIES:

a SHIFT TO 3
b REDUCE BY 3
<A> GO TO 4

STATE

2)<A> -> a <A> . b
LOOKAHEADS:

EOF
b

ABLE ENTRIES:

SHIFT TO 5

2)<A> -> a <A> b
LOOKAHEADS:

EOF
b

ABLE ENTRIES:

EOF$ REDUCE BY 2
REDUCE by 2

STATE

Appendix Jk

Sample PASCAL skeleton for use of SLR(l) parsing tab]

ogram doparse(table, {any other files used by program

nst
numberstates * x; {x£ of actual parse state
parsetablesize » y; {ŷ . actual size of

array parsetable)
numberproductions * z; {ẑ > actual number

of productions)
errorvalue * n; {n value not in set of labe

{the path will be represented as a stack
using a linear list}

parsestack * ~stacknode;
stacknode « record

topstate : integer;
next : parsestack

end;

table : file of integer; {file containing
parsing tables}

nction push(stack : parsestack;

nevstate : integer) : parsestack;

{returns stack with new state added in front}

X temporary : parsestack;

new(temporary) ;
with temporary** djD begin

tons tate:»newstate:

motion pop(stack : parsestack) : parsestack;

{removes the top element of the stack)

n
pop:»stack~«next;
dispose(stack)

Li;

tnction top(stack : parsestack) : integer;

{returns state on top of stack)

top:=stack~«topstate

Li;

tnction empty(stack : parsestack) : parsestack;

{returns an empty stack)

n
while stackonil djD stack : *pop (stack) ;
empty:«nil

Li;
mction gettoken : integer;

{This routine returns the label of the next terminal
occuring in the input file)

Li;

'ocedure semantics(stack : parsestack;
production : integer);

{does any semantic routines associated with reducinj
the given production)

Li;

-ocedure errormessages (state , symbol : integer);

{prints out message corresponding to error value
for state and symbol)

Li;

function parse : boolean;

{parses input, returns true if no parsing err-
are found in parsing the input}

const eoftoken • 0;

type

{representation of an entry in parsetable)

tableentry * record
symbol , value : integer

end;

{representation of a reference to a group of en
in parsetable}

stateentry a record
startposition , size : integer

end ;

{representation of a production in productionli

productionentry « record
lhssymbol , rhslength : integer

end;

var

parsetable : array [1 .• parsetablesize] oj[t

actionlist , gotolist : array [1 .. numberstat
of stateentry;

productionlist : array [1 •• numberproductions
of productionentry;

{other parameters passed with parsing tables}

topstate, {actual number of parse states}
parsestart, {start state}
errorstart, {forced shift state on error re
errorcontinue, {init-error state}
topoftable, {actual size of parsetable}
productioncount {actual number of productions}

: integer;

{local variables}

token : integer ; {next terminal from input}

value : integer; {next action to take in parsing in]

stop : boolean; {true when have parsed whole input}

parseerror : boolean; {true if any parsing errors}

stack : parsestack; {holds path}

procedure getparsetable;

{reads in parsing tables}

var index : integer;

procedure get in(var invalue : integer);

{reads in next integer from file table}

begin
invalue:*table~;
get(table)

end ;

begin
reset (table);
getin(topstate);
getin(parsestart);
getin(errorstart);
getin(errorcontinue);
getin(topoftable);
getin (productioncount);
for index:*! Ĵ o topstate dk>. begin

with actionlist [index] jd£ begin
getin(startposition);
getin(size)

end ;
with gotolist[index] do begin

getin(startposition);
getin(size)

end
end;

for index:»l jt£ topoftable do
with parsetable [index] d̂o begin

getin(symbol);
get in(value)

end ;
for index:»l jtjo productioncount do

with productionlist [index] dj£ begin
getin(rhslength);
getin(lhssymbol)

end
end ;

function clear(stack : parsestack;
newbottom : integer) : parsest

{empties stack and put value on bottom of s

begin
clear:*push(empty(stack),newbottom)

end;

function popelements(stack : parsestack;
amount : integer) : pc

{takes the requested amount of states off t

begin
if (amount • 0) jor, (stack - nil)

then popelements:»stack
else* popelements:-popelements(pop(stack),

pred (cot
end;

function popoffproduction(stack : parsestack;
count : integer) : pi

{takes the requested amount of states off t
but if stack underflow occurs, it resets
the bottom state}

begin
stack:'"popelements (stack, count) ;
if stack • nil

then popoffproduction:*push(stack,errorcot
else popoffproduction:»stack

end;

function findvalue(entry : stateentry;
testsymbol : integer) : int

{Looks up the value of the function, for
the given state and symbol}

var found : boolean;
index , outofrange : integer;

begin
findvalue:aerrorvalue;
found : =*f alse ;
with entry d̂ho begin

index:*startposition;
outofrange:*startposition+size

end ;
while (index < outofrange) and not found do

with parsetable [index] djo^
if testsymbol > symbol

then index:«succ(index)
else if testsymbol * symbol

then begin
found:*true;
findvalue:»value

end
else index:-outofrange

end ;

function overdefined(stack : parsestack;
var token : integer) : parsestac

{handles overdefined actions}

begin
if token * eoftoken

then begin
overdefined:»empty(stack);
stop:*true

end
else begin

overdefined:»push(clear(stack,errorcontinu
findvalue(actionlistterrorstar

token));
token:»gettoken

end
end;

function unknown(stack : parsestack;
var token : integer) : parsest

{handles error actions)

begin
parseerror:*true;
errormessages(top(stack),token);
unknown:-overdefined(stack,token)

end ;

function doshift (stack : parsestack;
shiftaction : integer;
var token : integer) : parses

{handles performing a shift action}

begin
doshift:-push(stack,shiftaction);
token:-get token

end;

function doreduction(stack 2 parsestack;
production : integer;
var token : integer) : parsest

{handles performing a reduction}

var gotovalue : integer;

begin
gotovalue:-findvalue(gotolist[top(stack)],

productionlist[production]•lhssymb
if gotovalue « errorvalue

then doreduction:-unknown(stack,token)
else begin

semantics(stack,production);
doreduction:-push(popoffproduction(stack,

productionlist[produc
• rhsle

gotovalue)
end

end;

sgin
getparsetable;
stack:s«push(nil,parsestart);
stop:*false;
errorvalue:» -succ(productioncount);
parseerrorj»false;
token:»gettoken;
repeat

value:»findvalue(actionlist [top(stack)] ,token) ;
if value • errorvalue

then stack:»unknown(stack, token)
else if value < -1

then stack:adoreduction(stack,-value,token
else if value • -1

then stop:*true
else if value » 0

then stack:-overdefined(stack,token)
else stack:*doshift(stack,value,toke

until stop;
parse:* not parseerror

nd;

Appendix J3

Sample PASCAL skeleton for use of the

LR(1), LALR(l), weak compatible, and

stong compatible parsing tables

ogram doparse(table, {any other files used by prograt

nst

numberstates * x; {x >. # °f actual parse states
parsetablesize » y; {y j> actual size of

array parsetable}
numberproductions * z; {z j> actual number of

productions >

{the path will be represented as a stack
using a linear list}

parsestack » ~stacknode;
stacknode * record

topstate : integer;
next : parsestack

end;

table : file oj! integer; {file containing
parsing tables)

nction push(stack : parsestack;

newstate : integer) : parsestack;

{returns stack with new state added in front)

jr temporary : parsestack;
gin
new(temporary);
with temporary'* dji begin

topstate:*newstate;
next:*stack

end ;
push:»temporary

i;

action pop(stack : parsestack) : parsestack;

{removes the top element of the stack}

pop:*stack^.next;
dispose(stack)

L ;

iction top(stack : parsestack) : integer;

{returns the top of the stack)

in
top:»stack.topstate

ction empty(stack : parsestack) : parsestack;

{returns an empty stack)

In
while stack <> nil jdjo stack:*pop(stack);
empty t^nil
•
9

ction gettoken : integer;

{This routine returns the label of the next termina
occuring in the input file)

rocedure semantics(stack : parsestack;
production : integer);

{Does any semantic routines associated with reduc
the given production)

Li;

rocedure errormessages(state , symbol : integer);

{prints out message corresponding to error
value for state and symbol}

mction parse : boolean;

{Parses input. Returns true if no parsing errors
are found in parsing the input}

>nst eoftoken * 0 ;

{representation of an entry in parsetable)

tableentry » record
symbol , value : integer

end ;

{representation of a reference to a group of entrie
in parsing table}

stateentry * record
startposition , size : integer

end ;

{representation of a production in productionlist}

productionentry * record
lhssymbol,rhslength : integer

end ;

var

parsetable : array [1 .• parsetablesize] oj[tat

actionlist , gotolist : array [1 •• numberstates
of stateentry;

productionlist : array [1 •• numberproductions]

of productionentry;

topstate : integer; {actual number of parse state

{other local variables)

token : integer; {next terminal from input}

errorvalue : integer; {made up number for error \

value : integer; {next action to take in parsing)

stop : boolean; {true when have finished parsing)

parseerror : boolean; {true if any parsing error

stack : parsestack; {holds path)

procedure getparsetable;

{reads in parsing tables)

var index , j : integer;

procedure getin(var invalue : integer);

{gets in next integer from file)

begin
invalue:»table~;
get(table)

end;

begin
getin(topstate) ;
for index:*l Ĵ o topstate jd£ begin

with actionlist [i] dj£ begin
getin(startposition);
getin(size) ;
for j:*startposition Ĵ o size do

with parsetable [j] jd£ begin
getin(symbol);
getin(value)

end
end ;
with gotolist [index] d̂D begin

getin(startposition);
getin(size);
for j:*startposition Ĵ o size do

with parsetable [j] djD begin
getin(symbol);
getin(value)

end
end

end
end ;

function popproduction(stack : parsestack;
count : integer) : parse

{takes the requested amount of states off

begin
while count>0 d̂o begin

stack:*pop(stack);
count:*pred(count)

end
end ;

function findvalue(entry : stateentry;
testsymbol : integer) : integei

{looks up the value of the function, for
the given state and symbol}

var found : boolean;
index , outofrange : integer;

begin
findvalue j^errorvalue;
found:*false;
with entry d̂̂ begin

index:*startposition;
outofrange:»startposition + size

end ;
while (index < outofrange) and not found do

with parsetable[index] djD
if testsymbol > symbol

then index:»succ(index)
else if testsymbol * symbol

then begin
found:*true;
findvalue:*value

end
else index:-outofrange

end ;

function doshift(stack : parsestack;
shiftaction : integer;
var token : integer) : parsest

{handles performing a shift)

begin
doshift %»push(stack,shiftaction);
token:*gettoken

end ;

function doreduction(stack : parsestack;

production : integer) : parsest

{handles performing a reduction}

aj: gotovalue : integer;

begin
gotovalue:*findvalue(gotolist[top(stack)],

productionlist[production]• Ihssy:
if gotovalue * errorvalue

then begin
doreduction: *empty (stack) ;
parseerror:*true;
s top:*t rue

end
else begin

semantics(stackfproduction);
doreduction :a»push(popoffproduction(stackJ

productionlist [prodt
• rhs]

gotovalue)
end

end;

begin
getparsetable;
stack:*push(nil,l);
stop:»false;
parseerror:*false;
errorvalue * 0;
token:»gettoken;
repeat

value:»findvalue(actionlist [top(stack)],token);
if value • errorvalue

then begin
stack:»empty(stack);
parseerror:*true;
stop:»true

end
else if value < -1

then stack:«doreduction(stack,-value)
else if value * -1

then stop:*true
else stack:*doshift(stack,value,token)

until stop ;
parse:38 not parseerror

nd;

References

[AEH72] Anderson, T.; Eve, J.; and Horning, J. - Effi
LR(1) parsers, Acta Informatica 2, pl2-39 (IS

[Alp76] Alperb, Bowen, Martin Chaney, Micheal Fay, Tt
Pennello, and Rachel Radin. - Translator writ
system for the Burroughs B57OQ. Information S
, UC Santa Cruz, Santa Cruz, CA. (1976)

[A&U77] Aho, A* V. and Ullman, J. D. - Principles of
compiler design. Addison-Wesley Publishing Cc
Reading Mass* (1979)

[DeR69] DeRemer, F. - Practical translators for LR(k)
languages* Ph.D. thesis, Dept. of Electrical
Engineering, M.I.T, Cambridge, Mass. (1969)

[DeR71] DeRemer, F. L. - Simple LR(k) grammars. Comm.
p453-460 (1971)

[DeR72] DeRemer, F# - XPL distribution tape containir
translator writing system. Information Scienc
UC Santa Cruz, CA. (1972)

[D&R77] Druseikis, F. and Ripley, G. D. - Extended SI
parsers for error recovery and repair. Dept.
Computer Science, Univ. of Arizona, Tuscon
Az.(1977)

[Gal79] Gallier, J. H. - Class notes for CSE341, Dept
Computer and Information Science, University
Pennsylvania, Philadelphia, PA. (1979)

[G&R75] Graham, S. and Rhodes, S. - Practical syntact
error recovery. Comm. ACM 18, p639-650 (1975]

[Knu65] Knuth, D. E. - On the translation of language
left to rigth. Information and Control 8, p6(

[LLH71] LaLonde, W. R.; Lee, E. S.; and Horning, J. v
T A T Q / 1, \

6] O'Hare, M. F. - Modification of the LR(k) parsing
technique to include automatic syntactic error
recovery. Senior thesis, UC Santa Cruz, Santa Cruz
CA. (1976)

7a] Pager, D. - A practical general method for
constructing LR(k) parsers. Acta Informatica 7,
p249-268 (1977)

7b] Pager, D. - The lane tracing algorithm for
constructing LR(k) parsers and ways of enhancing i
efficeincy. Information Sciences 12, pl9-42 (1977)

7] Pennello, T. J. - Error recovery for LR parsers.
Master's thesis, Tech. Rpt. 77-7-002, Information
Sciences, UC Santa Cruz, CA (1977)

8] Pennello, T. J. and DeRemer, F. - Practical error
recovery for LR parsers. Tech. Rpt. 78-1-002,
Information Sciences, UC Santa Cruz, Santa Cruz,
CA (1977)

9] Pennello, T. J. and DeRemer, F. - Practical error
recovery for LR parsers. Submitted for publication
in TOPLAS, march 1979

