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abstract

This paper presents five different LR parser generat
in error recovery nethod which is derived directly fr<
,R parser. The parsers presented i.ncl ude the origina
i parser defined by Knuth, The SLR(l) and LALR(I)

>s defined by DeRener, and the weak and strong
itible LR parsers presented by Pager* Al five parse
been inplenmented by the author using two progranse
ternore, the inplenentation of the SLR(I) parser

rator includes an error recovery nethod and produces

.) parser with error recovery built =n*
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Chapter I

Introduction

It is a well known fact that of all the determ:
tring parsers, the «c¢lass of LR parsers recogn:
.argest class of context free languages [Knu65]. LR ;
lre quite powerful and are able to recognize wvirtua
'rogramming languages in existance today. These
rere first 1introduced by Kaouth [Knué65] with his o
rersion known as an LR(l) parser. Unfortunately, his
requires extensive resources and hence is impractical

‘or parsing any programming language.

Several alternative parsing methods have sinc
yresented which reduce the resource requirement
yroducing more practical LR parsers. Some of these

iccomplish this result by reducing the class of 1la



unmber of parse states built and hence an overall red
n the resource requirenents. The nost comon forns a
ype of LR parser are the SLR(lI) and LALR(I) p
resented by DeRener [DeR69].

Anot her form of resource reduction used by LR p
s a nethod of performng state mnim zation on th€
arser* Two of these state mnimzation nethods have
roposed by Pager [ Pag77a, Pag77b] called weak and
onpati ble LR parsers* In these parsers, he restict
tate reductions to maintain the power of the LR(1)
nd hence the resultant parser recognizes the same els

anguages as the original LR(1) parser*

This paper presents five different LR parser gene
nd an error recovery nethod which is derived direct!
he LR parser. The parsers presented include the ot
R(I) parser defined by Knuth [Knu65], the SK
ALR(l') parsers defined by DeRener [DeR69], and the we
trong conpatible LR parsers presented by Pager [Pa
11 five parsers have been inplenented by the author
WO prograns. Furthernmore, the inplenentation of the
arser generator includes the inplenentation of an
ecovery nmethod and produces an SLR(I) parser witt

ecovery built in.



yatible LR parsers, presented by Pager [Pag?
yrtunately only provides a partial explanation of

yrithms which build these parsers. These algorithams

:ain minor inconsistancies and omissions which tend
rure the basic nature of the algorithms. This p
sents Pager’s algorithms in a modified notation w
y1lifies the comprehension of the code. It also prov
yre complete explanation of the algorithms, and 4incl

»w minor algorithms omitted by Pager.

The problem with LR parsers, when used in a compi
that they are designed as a syntactic method which
.des 1if the given input string belongs to a language

class accepted by the LR parser. Hence, once the f
2gal input symbol is found, the parser stops repor
Lure. However, when a compiler parses a program, i
antageous to have the compiler report as many additi

>TS as possible.

In order to improve the LR parser’s capabilities

in a compiler, this paper also presents a pu
tactic error recovery scheme to recognize additi
DTS . Furthermore, the method has been designed so
can be directly incorporated into the LR parser. He
additional routines are necessary in order to per

or recovery and parse the rest of the input.



>ased on the nethod used by Pennello and DeRener [P&D

:h has a separate error recovery routine that incl
>r correction. The control strategy used is to se
remai nder of the input, starting from the ill
>ol , and verify that it only consists of ‘'lvi

jments” (substrings derivable from its granmmar).

> recovery nethod presented in this paper has

Lemented using the SLR(I) parser as its basis. Howe
method is general enough that the same nmethod c

Lly be applied to any of the other LR parsers prese

his paper.

Chapter two starts by setting up prelimnary nota
context free Ianguages and derivations. This nota
Ised to describe the basic strategy used by LR pars
| ast sections of the chapter ~cover the ac
struction nethods which wll yield the LR(1) parser

result.

Chapter three describes how each of the other
Lemented parser constructors are built. The SLR(1)
1(1) construction nethods are presented using the L
racteristic automaton as their basis for construct
sr's notion of conpatibility, the definitions of
< and strong conpatibility, and the algorithnms use

junction with the construction of these two parsers



described.

Chapter four discusses the error recovery method and
rithm which takes 1in an LR parser and produces an
er with error recovery. It also explains how an
er 1s used to parse an input string and decide if
ng 1s derivable from the grammar used to generate the

er .

Chapter five concludes the paper by discussing brie
two programs used for the implementation. One prog
tructs an SLR(1l) parser with error recovery built
other program, using our modification of Pager’s conc
ompatibility, can build either an LR(l), LALR(l), wea

trongly compatible LR parser.



Chapter 11

The construction of the LR(1) parsing tables

This chapter describes how LR(1) parsing tab
creat ed* In order to do this, let me start out by

up sone prelimnary notation.

1«1 LR(1) G anmmars

A Context-Free Gammuar (denoted CFG G is a
quadruple G» ( N, T, P, S) where

T is a finite al phabet of _term nal synbols;

N is a finite al phabet of nonterm nal synbols;

(NUT) is the finite set of _arammar synbols;

Sis a nonterminal symbol in N called the

start svnbol : and



A production (Aa) wll be denoted in the form A
there is a special start production S -> S wher
S does not occur in any other production in P*
also a special synbol $ 6 T, which denotes th

string being parsed, and does not appear in any

For notational convenience, upper case lett
used to denote nonterm nal synbols, |ower caa
denote term nal synbols, underlined upper case
denote grammar synbols, and underlined | owér caa
denote strings of grammar synbols ( strings iu

The synbol ja will be reserved to denote the enpt

11.1*1 Derivati ons

Gven a FG G« ( N, T, P, S) , let t
«>: (NUT)* x (NUT)* be defined by the set c
{ (eBc.abc) | B 6N ajhjc (NUT)*;

and B -> b in P}
In other words, given any string in (NUT) C
R, wth B a nonterm nal synbol in N at

production B -> b* in P, we say that the string

the string abc in a one step derivation using |

will be denoted as ja§.. »> abc* Also, let s anc

the transitive and transitive reflexive clc



From the above relation, we can define anothe
which i1implies an ordering of the rewrite steps.
* *
new relation =>_ : (N UT) x (N UT) be defined

R
*
{aBe =>p abe | aBc => abc and ¢ 6 T }

In other words, =>R is the one step derivation,

derivation is applied to the rightmost nonterminal

*
in the string aBc. Let i>R and => denotes the

and transitive reflexive closures of => respecti

R’

IT.l.2 Language generated by a context-free gramma

Given a CFG G = ( N , T , P, S ), the 1lang
generated by G is the set of strings

* *
L(G) = { a | S=>a, as&€T }

Note: The order in which => is applied has no eff
resulting terminal string produced. Hence th
L(G), generated by G, could be alternatively be d
the set

*

*
L(G) = { a | s =>- a where g €T bs

Using the above definitiomns, an LR(l) gramma

loosely defined as follows:



.2 & L(G) (derived wvia a rightmost derivat
parsed deterministically in a single scan f£1
right, having the ability to look ahead one

the point of scanning.

ITI.2 Sentential forms and their viable prefixes

An LR(1l) parser, when scanning the input (of
to be parsed), is essentially looking for a mat
or more strings that can be derived from the (
symbol. More formally, the LR(l) parser i

recognize a sentential form which is an element 1

%* *
{ a] s 2> 2 and 8 § (NUT) }

In recognizing a sentential form, the LR(1)
really interested 1in knowing whether it has sc:
of the input string such that a reductionm can be
that is, when the sentential form is the st
where a,b € (N U T)*; c 6 T*; aad B =-> Db 6 1
this information, a reduction of b to B can be
the rightmost derivation string that s came from.
known as finding the handle. The handle is de!

*
pair (|ab|,B => b) such that S => abc. The |:

R
the length of the handle, which states the pos

the string b can be reduced to B using B =-> b.



ab is called the yviable prefix or characte

(A&U77].

Using the above definitions, it 1is fai
characterize what an LR(l) parser does. It sca
from left to right, looking for a viable p
finding it, the string 1is reduced with the
production of the viable prefix. Using the re
derived from the viable prefix coucatenat
unscanned input, the parser repeats the a
looking for another viable prefix. This co
either the input has been reduced to the start

failure occurs by not finding any legal viable

I1.3 LR(l) Characteristic Automaton

It is fundemental result that viable pref
from CFG’s are regular. Therefore a determi

automaton, called the characteristic automaton

can be built to recognize the set of legal via
Furthermore, once the characteristic automat

built, the LR(l) parser can be directly derived

Let a marked production be of the form

where A -> ab is a production in P, and "." is



auction s right hand side has been recognized 1in
ing being scanned. Hence the marked produc
>a . b represents the fact that the LR(l) parser
nned the string sa, where s is some string that occu

ore the string a in the input.

Expanding this to include a set of look-ahead symb
an item be defined as the pair [A -> a . b , LA] w
>a « b is a marked production, and LA is a subset o
>ting the set of all terminal symbols which can fo

production and is called the set of lookahead symb

1s, essentially, describe two things:

i) What portiom of a production’s right hand side

occur at the end of the set of viable prefixes b:

described

1i) What possible symbols can immediately <follow
production’s right hand side (and hence what symt
can follow the viable prefix with the gi

production).

Each state of the characteristic automaton is the
all items with the same viable prefix. When buildin
e, there must be a way to insure that all items, for

n state, are included. For example, if there is an 1



, -> ¢ 1is 1in P, then there must be an item with the
roduction B =-> . ¢ for that state. The viable

‘ormed with the new marked production, will have ¢t
refix as the original item. The process of 1includi
uch 1items is called closing the state. However, i
0 close a state, it is also necessary to describe

yropagate lookaheads to the added items. To do this,

he function first(a) as follows:

*
first(a) = { a | a => ac, a € T}

Using the above definition, the closure of a
.tems I (denoted as closure(Il)) can be constructed us
'ules:

i) Every item in I is also in closure(I)

1ii) If the item [A -> a . Bb , LA] is in closure

and B -> ¢ in P, a & LA
then the item ([B =-> . ¢, first(ba)l

closure(Il).

example 2.1 Let the CFG G have the set of produc

S => A
A ->a A b

A -> ¢

where S => A is the start production. Then the
of the item set {[S =-> . A, {$}]} 41is t

{I[s ">'A’{$}], [A -> . &, {$}]’ [A => . aAb



The characterisitc automaton G is built from the set
es constructed above with the transitions being gran
ols. The path to a given state will then spell a Ile

ix- for sone sentential fornt

The algorithm (shown below) starts by setting
ial state to the closure of the start production, t
ng each state just built, determnes the transit!

the state as foll ows:

i) for each grammar synbol X in (N UT) sete the i
I*> ~> £« Ak > **A *3 *" the state, there is a uni
transition, labeled X, to the state containing the i
[A->aX . b. , LAl obtained by shifting the dot act

the grammar synbol X*

i) if [A->a . , LAl is in the state, then

transition should be produced for that itenf



gorithm for constructing the characteristic automaton

put: aCFGGe+ ( N, T, P, S)

t put : a set C, of states, and the function

GOTO : (set of items) x (NUT) ->(set of items),

defines the characteristic automaton.

t hod; The two procedures bel ow, initiated by c*

EMS(G) ;

ocedure | TEMS(G);
begin
C :» closure((S -> « S ,{$}]);
{where '$' is a unique symbol in T which dt
the end of the string to parse}
repeat
for each set of itens | in C and each gi
synmbol X such. that J « GOTO(l,X) is not enpl
JEC
dp add J to C

until no more sets of itens can be added to C



unction GOTO(I,X);
begin
let J be the set of items
(A -> aX « b , LA] such that
[A ->a . Xb,LA] is in I;
return closure(J);

end ;

Let the core of a state be the set of items 1in

the two following forms:
i) [S => . 87 , ($}]

ii) [A => b . ¢ , LA] where b # e

It can be shown that by closing the core of a
.e origonal state can be retrieved. Hence, all examp!

is paper will only show the core of each state.



xanple 2. 2 Construction of a, characteristic autonmaton

et the CFG G be defined by the sanme set of production
S in exanple 2.1. Then, the LR(1) characteristi

utomaton of the grammar G is as foll ows:

1: [S=>,A,{5}]

a

@ [Ac>a.Ab,{$}] 2t [S=>Ae,{$}]
a
(4: [A>a Ab,{b>])<) ;
A .
(5: [A->aA b, {$}f) (s: [A->aA b, {b}] )
b b.
\/

q [A-> aAb.,{$}]) (8: [A—>aAb.,{‘_D}])

here the transition ars are defined by GOTO




+4 Construction of LR(l) Parsers

Using the characteristic automaton, the LR(l) p

1 be directly generated. Let an LR(l) parser be de

a quintuple M = ( K, action , goto , G , start ) wh
K is a finite set of parser st.
action : X x T =-> {(shift j | j & K}

U {reduce p | p 6 P} U {error}

defines the parsing actiom table;
goto : K x N => K J {error} defines the
Parsing goto table;
G is a CFG such that L(G) is the class of
‘languages tc recognize;

and gtart is the initial state.

The set of parser states K contains a special s
ept which is the state H, such
fon(H,$) = reduce S => S°. Also, the action and

3ing tables are enough to define an LR(1l) parser.

Using this definition, amn LR(1) parser can

itructed using the following algorithm [A&U77,Gal779]:



Al gorithm for constructing LR(1) parsing tables

[ nput : The characteristic automaton CG * (C, GOTO
for a CFG G

put put t a parsing table (possibly wth conflicts
grammar G is not LR(1))

nethod: Let C* {Il.¢l,, <*¢¢ 1 } be a set of sets of
Erom the <characteristic automaton O3 The states
parser wll be labelled 1>2, eee ' n wher e st
corresponds to the set of itenms | ,» State 1 is the

i
st at e. The parsing actions are:

i) | f [A->_. gh-, LA 61. wher e asST

GOTO(Ii,a) -Ij; then action(i,a) * shift |

i) If [A->c « ,LAl inl,, then for each a 6 L

action(i »a) * reduce A -> £

iii) Al entries of _action not defined by the

rules are set to error«




oto transition for state i is constructed using the ¢t

t) 1if GOTO(Ii,A) = Ij’ where A is a n - nterminal, th

1oto(i,A) = j

.i) All other entries of goto, not defined by the fir:

'ule, are set to error

xample 2.3 Let the LR(1l) characteristic automatomn t
efined as in example 2.2. Using the above algorithrm

he two parsing tables pi’oduced are:



action

a b $

fmm———— e e o e e o e e e e e 2 2 e e e 7 e e o

| shift 3 | error | reduce A

e o 2 o o i e e e e e e e e e e e e e o e

| error | error | reduce S

o i e e s o s o o 2 e 2 o e o e o e 0 o e =} et e o e e o v

I shift 4 | reduce A->e | error

e e o a0 s o e s 2 e e e e e s o o e o e = o o 0 e e e e

] shift 4 | reduce A~->e | error

B e T R Y e e e e T g D

| error | shift 7 ] error

s s m e o e ot e e e o e o et e 0 e

] error | shift 8 | error

A or s o e = e e o e D S, —————— e o o e s o s o o

| error | error | reduce A-

e e e e e o e o o o e e e e e 0 o e e o e o

| error | reduce A->aAb | error

o e m e e o e e 2 e e e e o o e e e e e 2 e e e o e e o o



S A
T R - +
1 | error | 2 |
fommmcnamcncca—— S +
2 | error | error |
X RS ——————— fommmmme———————— +
3| error | 5 |
frmemcec—e—e———— fmmmm—mm——————— +
4 | error | 6 |
tommcecccccecana bmmmrmn————————— +
5 | error | error |
T — Fommccaccacacaas +
6 | error | error |
fonmm e —————— o e 2 o o +
7 | error | error |
formmcma—caaaa S +
8 | error | error |
fomcmcmamaaa o~ bomrmmcm——n—————— +

From the above algorithm, one can tell directly w
FG G does not produce an LR(l) language. This occur
ction is not a function but only a relation, or in
ords, whenever there is more than one possible acti
ome input pair. These multiple entries are kno
onflicts. The two types of conflicts that can exist

hift/reduce and 1ii) reduce/reduce conflicts, whic

espectively denoted as S/R and R/R.



Chapter 11|

Methods for reducing states in LR(1) parsers

LR(1) parsers have the nice property that they ca
ed for parsing nost* progranm ng | anguages. Unf ort una

e parsers produced for these grammars, wusing the tr

scribed in the previous chapter, are too | arge
nsi dered useful . Hence, several nodifications have
oposed which wll reduce the size of the parser prod
is chapter discusses four of these nethods. Two  of

thods (SLR(1) and LALR(!)) reduce the nunber of stat
ducing the size of the |anguage accepted. The other
thods (proposed by Pager [Pag77a]) use conditions
rging states of a LR(1) parser while maintaining the

wer to recognize LR(1) I|anguages.



II.1 SLR(l) parsers

The SLR(l) parsing table counstruction is quite
o that of the LR(1l). The main difference is tt
arser produced is based on a characteristic automator
¥e) lookahead (i.e. an LR(0) automaton).
implification reduces, in general, the total numl

tates creataede.

To build an SLR(1l) parser, redefine an item by re
he lookahead set leaving just the marked production.
his definition, the rules to close a set of SLR it

ecome:
i) every item in I 1is also in closure(I);

ii) If the item A =-> a + B¢ is in closure(I),
and B -> b & P

then the item B => . b is also in closure(I

The procedure to build the characteristic automa:

. 1so simplified. These procedures are as follows:



unction QOTQ1,jQ);

begi n
let J be the set of itens A -> alC_+ b, such that

A-> & « Jk *% *1 * a% 91 js a grammar synbol
return closure(l);

end;

rocedure | TSMS(G) ;
begi n
C :» closure(S ->+« S');

repeat

for each set of itens I in C
and each grammar synbol X such that
J * GOTO(1,X) is not enpty and J $ C
Jio add J to C
until no nore sets of itens can be added to C

end;



GAQI&IEJ-G o @ & et S =2 w4 N ~ LA - AL Al vJ - Ad N
productions in example 2.1, Then an LR

characteristic automaton is:

A
G: [A">30Ab]

a <é: [S—>ATI>
A ‘
<;: [A—>aA.b]:>””“;--N~“‘><E:'[A->aAb.E>

The SLR(l) method does not use a lookahead set
de what reduction to use once a viable prefix has b
gnized. Instead, it uses a method to approximate
aheads, which 1in fact guarantees that the set
aheads will be included. This is done by the funct
oW : N => 2T which computes all symbols which can fol
ven nonterminal symbol. However, in order to comg
OW, the terminal symbol $ must be included. Hence
definition of FOLLOW, it is assumed that there 1is
tional production of the form S°° -> S$ where S°° i

erminal and does not appear in any production in

OW is defined as



where a « first(h)}

exanple 3«2 Using the CFG G described in exanple
the FOLLOW sets are:

FOLLOA(S) - {$}
FOLLONA) - {$, b}

Using the characteristic automaton and the fi
OLLOW the SLR(I) parsing table can be created usd

ol lowi ng algorithm

LR(1) parsing table construction algorithm

nput : the SLR(1) characteristic automaton CG « (C &
for the CFG G

»utput: a parsing table (possibly wth  conflicts |
LR( D) |

| et hod: Let C » {L, e 1 } be the set of sets of
N

N

rom the characteristic aut omat on CG. The states
iarser will be | abeled 1,2, ¢ n where state i corre
;0 the set of items | L, As with LR(1) parsers, |

‘nitial state be state 1.



The parsing actions are defined as follows:

i) If A ->a . bec 6 I, where b € T and

i

GOTO(Ii,b) = I,  then action(i,a)=j

J

ii) If A =-> a « 1is in Ii then for each b ¢

set action(i,b) = reduce A =-> a

1i41) all entries not defined by i) or ii) a:

error

The goto transitions are defined by the following

i) If GOTO(Ii,A) = Ij

then goto(i,A) = j where A € N

i1i) all other entries of goto, not defined by

set to error

example 3.3 Using the LR(0) characteristic a

example 3.1, and the FOLLOW sets in examp:

SLR(1l) parser is defined by the following tal



action

a b $

s s o e 2 e e e o e e e o o e e e e e e e e e o e e e e e

| shift 3 | error | reduce A-

o e e e e e o e e e o e o o e o e e e e o e e e o o o > e o

| error | error | reduce S-

o o o e o o o o o o o o e o o e e o o 2 = = o

| shift 3 | reduce A->e | reduce A-

e e e i e e o e e e et e e 0 0 00 s e e 20 o e 0 e

| error | shift S | error

o e e o e o e o e e 0 o o o o e e o o o o - o

| error | reduce A->aAb | reduce A-:

o e e e o e e e o e e e e e e e e e e e et e e e o e e e

goto

S A

| error | 2 |

e o e o ot e o o e e 2 o e o o o e e

| error | error |

| error | 4 |

| error | error |

S W g g S g R Y &

| error | error |

B N &



LALR(1) Dparsers

A second type of simplification simlar to the  SLR(
he LALR(I) parser invented by DeRemmer [DeR69]* Ma
ithms for computing LALR(I) parsers have sihce be
nt ed [ LLH71, AEH72, A&U77, DeR72, Al p76, Pag77b] . The na
rence from SLR(I) is a concise and more accurate meth
computing the set of | ookaheads than the functi
W The same LR(0) characteristic automaton can be us

nstruct either an LALR(l) of an SLR(I) parser*

The definition of the LALR(I) | ookahead functi
state x P -> {t C T} is defined as follows:
LA(k, A > a)«< t CT | S$ =>- bAc *>- bac

and t * first C)) and the string Qi

a prefix for the state k>

example 3*4 Using the CFG g, and the LR(

characteristic aut omat on, from example 3.3, t

function LA is defined as follows:

LA(1, S->A)-{> LA(l, A->aAb)»{>  LA( 1;A->JB)-<
LA(2, S->A) »<$> LA(2, A->aAb) »{ > LA( 2, A->e,) -<
LA(3, S->A) »<> LA(3, A->aAb)»<} LA( 3, A->.e) *<
LA(4, S->A) »{> LA(4, A->aAb) *<> LA( 4, A>.e) «<

LA(5, S->A) »<> LA(5, A->aAb) »{$, b> LA( 5, A-> €) *<



he construction of the LALR(l) parser is exactly the
/
s an SLR(1l) except that the action function is compt

ollows:

i) If A -> ¢ . ab € I where a 6 T and
GOTO(Ii,a)=Ij
then action(i,a)=]j

ii) 1If A ->a . 1is in I, then for each

a 6 LA(i, A-> A_) set action(i,a) = reduce !/

ii1i) all entries not defined in i) and ii) are sc¢

error

example 3.5 Using the LR(0) characteristic autom:

example 3.1, and the function LA as defined in e

3.4, the LALR(l) parsing tables are:



action

a b $
tom e mm - ——————— o mm——————————— e
[ shift 3 I error | reduce A-
+-------—-—----_+ --------------- + -----------
2| error 1 error | reduce S
---------------- j . et
3 | shift 3 | _reduce A>je | errar
g i il e o e b T T
4 | error | shift 5 ] err.or
e e e ———————————— tmmmmm——————
5 i error | reduce A->aAb | reduce A->
bommm——— e ——————— o o o e w0 e v e Fm—————————
ot O
S A
—|—| RN WY R N\ JRE—
1] error | 2 |
+- * + , >+
2 | BBk | =Y aT |
+- +
3 | ~et-f-or I 4 |
4 + .
4 | “erTor | =TT |
+ + +
5 | error | error |
4, —- . ——=, + 4

The set of |anguages defined by SLR(I), LALR(1)

1(1), are known to form a hierarchy as follows:

a4 e m ”~



In the previous two sections, restrictions on the c
| anguages were inposed to reduce the nunber of state
LR(1) parser. Pager [Pag77a] shows that the nunber
tes may be reduced wthout affecting the «class

guages accepted*

The nodification introduced by weak conpatibility i

construction of the LR(1) characteristic automaton
tion 11.3). In the algori.thm for constructing
omaton there is the statenent:

for each set of items | in C and each grammar sym

such that GQOTQl,X.) is not enpty and J 0 C

do add J to C

this statenment if tw states are simlar in form

be represented by a single state, and therefore sin
iles of a state can be renpved. The criterion

iding whether tw states <can be conbined 1is ce

patibility criterion and the action of conbining

tes <called a nerge. For the LR(1) construction,
tes are conpatible if they are simlar in form that
y contain the sane set of itens. Pager has founc
er forns of conpatibility which he calls weak and st

patibility.



Unfortunately, changing the compatibility cri
rom the LR(l) case can cause problems. In particular
wo states satisfy Pager’s compatibility <criteria, n
he states may necessitate a propagation of lookahe
tates already created, which in turn will modify the
tate which caused the original propagation. However,

roblems can be resolved using the following algorithn

Algorithm for constructing an LR compatible

characteristic automaton

nput: a CGF G and a compatibility function compatibl

utput: a set C, of states, and the function
0TO : (set of items) x (N U T) => (set of items), whi

efines the characteristic automaton.

ethod: the three procedures below, initiated by call

TEMS’ (G) ;



unction GOTO(I,X);
begin
let J be the set of items
(A -> aX . b, LA] s.t.
(A ->a . Xb , LA] is in I;
return closure(J);

end;

rocedure ITEMS’ (G);

begin
C := closure([S => . S7 , {($}1);
repeat
for some set of items I in C,
and each grammar symbol X such that
J = GOTO(I,X) is not empty

do
if there exists a state K in C

such that compatable(K,J)

then insert(J,K,C)

else add J to C

ed

until no more sets can be added to C;




{mer ges S, i nto Sy and updates C accordi ngly}
beain

S :» merge(S:, S,) ;

if s. Cs

t hen

replace the itens of state S"_ in C
by the itens of S
for each grammar synbol X
such that (I)quzlj[) al ready define*
do insert(closure(GOTO SeX) ),
GOTO( S, X), ©)

SA

Two states can be nerged if and only if they ha
>ane set of marked productions in thei.r respecti”
eart. Under this condition, the conpatibility criter:
chat nmerging the states (and therefore the | ookahea<
fill not introduce any R'R conflicts in the resulting
infless the language is in fact not LR(1)» Foi
conpatibility, the test is solely based on the two
>ei ng mérged, while strong conpatibility also uses i

)f productions of the CFG associated with the LR(1) ]



Let the function merge be defined as follows:

merge(sl,sz) = {(A ->a . b, LA, U LAZJ |

1

[A =>a .b, LAl &5,

(A ->a .b, La,] &5,

and for all items [A =-> a . b , LA1] & S1

there exists an item (A -> a . b , LAZI € 82

for all items (A =-> a . b , LAZ] € S

2
there exists an item [A =-> a . b , LAl] e Sl]
en, according to Pager’s definition, two states Sl ar

e weakly compatible 1if

i) S1 and 52 only have common marked productions :

their item part. That is, if [A -> a . b , LAl] ¢

then there exists an item (A -> a . b , LAZI e 82

if item (A =-> a . b , LA2] 6 S, then there exists

2

item [A -> a . b , LAl] 2) S1

ii) for each pair of items [A =-> a . b , LA1] € s

(B =>¢ . 4d , LA2] € S then at least one of the

2’
following is true:

a) La, N\ L4, = ¢

b) ]'..A.1 F\LAZ # @ and there exists an iten

[B =>¢ . 4, LAl'] € S, such that

LAlf\ LA, # @



(A =>a .b , LA,’] €58

2 such that

2

LAZ(\ LA," # 0

Condition a) states that 1f there are no items 1
he states which have a common lookahead symbol, t!
lerge can not produce any conflicts, and in particul:
ot produce a R/R conflict. (Note: it is also impc
o introduce S/R conflicts since the states will be
nly i1if they have common marked productions. Therefo:
asult of merging would only produce a S/R conflict
xisted 1in one of the unmerged states before mergin;
ondition b) and ¢) the set of conditions is:

[A =>a .b, LA],[B->c .d, LA"] 65

1 1

s LAZ'] ¢ S

4
N La.” # ¢ or

LAI(\ LA, # ¢ and either La

LAzr\LAZ' £ g

Since LAI(\ LA2 # @, the ouly possible conflict
./R conflict arising £from merging the lookaheads

roductions A =-> ab and B -> cd. However, this can

+

nly 41if b = g ¥ and d

4+

>2 ¥, producing a common S

there both productions will be reducible. By condit:

-+
w and d =>_ W, I

A, (\La” # 9, if 1n addition b 3>, w Q@ H

1

‘hen there must already exist a state with a R/R conf.

,ome symbol a €& LAl(\ LA Similarly for condit:

l L ]
[ence, if the language is indeed LR(1l), then it must |



%

t hat J_I_Dt>_ W, d'\+»>_l\’ : W' S T ; and w + w

efore conditions a),b) and c) are sufficient to inss
conflicts w1l be produced if the |anguage generated

granmmar is indeed LR(1)«

For exanple, let a CFG be defined wth the set
ucti ons in figure 3»1* The LR(1) characteris
mat on contains 38 states (shown in part in figure 3*
r weak conpatibility, states 8 and 12 can not be ner
e the itens [X->a*AE, {d}] S 12 and [Y->a#B;{d}] S 8 h
common | ookahead synbol d« However, for exanple, ata

nd 33 are in fact weakly conpati bl e.

It can be shown that the size of a weak conpata
) parsing table will contain a nunber of states that

where between that of LALR(lI) and LR(1) parsing table

-> S S -> aXb S -> avd
§' -> aZa S -> bXxd S -> bYa
S' -> bZc X -> aAE Y -> aB
7z -> aC A -> aDF B ->b
c -> abr D ->d E -> ¢

F -> ¢

figure 3.1



l:[S->-S',{$}]

b
S'->a.Xb,{$>] (29 [X->aDE.,<b}A s ->b.Xd <
S'->a.Yd,{$>] (S"=~>b.Ya,{
§°=>a.Za,{$§} (S =>b .22,

Gz [X->aDE. {d}]}
p

a Qe [x- >aA.E,{b_}]) L [X->aA. E,{d}] a

A A
! / ,

\‘___f(é: '[X—>a.AE,{

28: [B->b.,<a}J™ b— [Y->a.B,{
N

X->a.AE,<b>]
Y->a.B,<d>]

Z->3.C . {a}] (Z=>a.C,{
2 20: [B->b ,{d}) li
[A->a.DF,{b }1 7: [A->a.DF,<
[C->a.Df,{ &} CC->a.Df,<
G?: {Y-)aB-,{d@
L Jo

B

[D-)d.,{b,f}) @:[D-)d.,{d,

@5:[Y->aB_, {al}l

D

[A->aD.F,<b }

B 2t GS: [A->aD.F,{
->aD.f,{a

{C">_3D - f ,{

F F

67: [A—>aDFr.,{
£ £
(J'r63 [C->aDf . ,{Q 63: [C->aD£ -, <c9

figure 3.2

[A-)aDF.,{b@ (56: [Z->aC.,{c}]




.II.4 Strong compatibility

Pager’s strong compatability adds one condition
ompatibility which guarantees the production of a
yarser if the language generated by the grammar is L
)therwise it will produce an LR(l) parsing table w
lumber of states greater than the number of states p
)y the LALR(l) method but less than the number prod

he LR(l) method.

Strong compatibility requires that no two sta
1erged 1if they have a common descendant in th
haracteristic automaton which will introduce R/R co

7hen the two states are merged.

For example, the grammar presented by figu
reates (in part) the LR(l) characteristic autom
‘igure 3.2. States 8 and 12 are not weakly com
)ecause the items [X=>a.AE,{d}] & 12 and [Y->a.B,{
1ave a common lookahead symbol "d". If these two sta
terged (and hence causing merges of states (20,28), (
(17,25), (16,24), (29,32), (31,34), (30,33), (19,27),
and (35,37) where each pair are common descendan
resulting states of the automaton would have no con
lence these two states, according to Pager’s definiti

in fact strongly compatibdle.



Oh the other hand, let the grammar be that of figt
which creates (in part) the LR(1) characterisi
laton in figure 3.4. Merging states 7 and 10 (and hei
.ng comon descendants 14 and 18 to be nerged) woi
.t in tw RR conflicts on the synbols "a" and "b"

tescendant state. Hence these states will not be rmerj

! strong conpatibility.

S -> & S-> axd S -> bXa
S -> aVYa S-> bYb X -> aB
Y -> ab B ->b

figure 3.3



l: [S">'S”{$}]
a b

T[S’ =>a.Xb,{S$}] %:[S°=>b.Xa,{
_[S°=>a.¥b,{$}] [S =>b.Yb,

: .
4

L:[X->a.B,{b}]
__[Y'>a'b9 {a}]

| BPVP |

b b
S \Jr *}
4: [Y->ab.,{a}] 18: (Y=>ab.,{b}]
[B->b.,{b} | [B->b.,{a} |
figure 3.4

The way in which two items (from different state:
roduce a common state with a R/R conflict is 1if twe
.an derive the same substring. That is, if the two

;1 and S2 are to be merged such that there exists tw«

+

4
b => w and d =>_ w, then the two

6 LAI(\ LA 2 2

23

,ave common descendants such that a merge will introd:

.onflicts.



+) could not be merged is that the items ([X->a.B,{d}
I [Y->a.b,{d}] 6 10 have a common lookahead symbol 4,

> strings B and b both rewrite to the string b.

The search for a common substring between two st
in necessary to try all possible combinations of rewr
rolves as much work as building all descendant st
vever, it 1is not necessary to expand all pos
nbinatious of rewrite rules. This fact can be see
lerstanding how expansion of the nonterminals is perf
building the characteristic automaton. That is, whe
2m (A -> a « Xb , LA] 1is <closed, where X -> ¢ in
3 LA, it will create the item (X -> . ¢ , first(hd)].

J
=> e, 1t is clear that the elements in the lookahea

R

will be propagated to the new item. On the other

b ;>R e, the definition of the function first indi
it any element d & LA is not in first(bd). Hence, in
se, the lookaheads defined by first(bd) are independe
and does not effect states derived from the new
ited differently, the only rewrites that shoul
rformed are those which are applied to the nonterm
ich occur at the end of marked productions.

striction on the number of possible derivations to

, 1s what Pager «calls a stronmg rightmost deriv

enoted =>SR) and is defined as:



i)e =¢

ii) aBg¢ =>2 abe

Pager has derived a procedure[Pag77a] which chec
wo 1items, having a common lookahead symbol, will prc«
hared descendant containing a R/R conflict. The
eels that the algorithm presented by Pager 1s opac¢
'ell as slightly incorrect, and that the algorithm ir
aper (see page 49) has been <corrected and modif

larify its nature.

The algorithm 1s presented wusing two co=-rec
rocedures which tries all possible strong ri;
erivations to see if the two given marked production:

common descendant  state where two differént prodt
111 be reduced (since this is the only way that
onflict <can be produced). The procedure CHECK 1loc
rivial cases (i.e. cases where no rewrites are nec
0o determine the result) while the procedure nontrivi:
hecks those cases requiring rewrites in order to de!

he wanted criteria.

One possibility that procedure CHECK handles 1is
s 1impossible for two items, with or without rewrit
roduce a common descendant. That is, let (1) A -=:

nd (2) B =-> c.b¥g be two marked productions where



ume that these two nmarked productions can derive a co

string which wll produce a RR conflict* Then it

* *

the case that Xf »> w and Yg »>--W . Since both f a
not derive g, the | ookaheads can not propagate throu
£« But then, by the way LR(1) parsers are genera
string derived from )? wi || be reduced to ;(-be
nning the string derived from £ Hence any st
ived from )?E must be of the form]éE. Simlarly,
I ng de&i ved froijE must be of the form -\'(E« Ther ef
€ A1 X> A% *® inpossible for any items of this fox
duce a common substring (and hence a common descend
ch will produce R'R conflicts.

The second trivial check in the procedure CHECK, is

two marked productions imediately indicate a cc
cendant which will produce R'R conflicts if merged,
if the two itens are of the form (1) A -> a‘joff anc
> 1.0 N where

i) 1tA=>z A

ii) XG(NOT) and X ?2>. ¢

iii) WZ SNand Wz >, e
is clear, under the above conditions, that the closui

itens (3) [A -> abX . W , LA3 and



abX . 2g , LAZ] will produce the items (
. e, Ql and (6) (2 => . & , Q] where Q = LAl(\ LA
this case will produce a common descendant whe

lcts will be produced.

[n all other cases, some rewriting 1s necessary a

iure nontrivialcheck is called to handle these cases.

)ne possibility, that requires rewriting, is when ¢t

narked productions are of the form (1) A->a.bXf and (

)Yg where
*
L) X € N and X =>: &
%
i) £ =>_ e

R—
iii) ¥ 6 (N U T); XYg §>R e and Y # X

Ls case, X must rewrite to some string derivable fr
1 order to produce a common string (and hence a comm
1dant). However, this the same as testing 1f the
5 a production X =-> h where h # e such that the 1ite
and B->cb.¥Yg will share a common descendant which ¢

e R/R conflicts.

A second possibility handled in nontrivialcheck a

of the form (1) A->a.bXf and (2) B=->c.bZg where



ii) 26 (NUT); Z& *>zre and X # Z
i) f »>pe
iv) no production X>]i, where _h."> exists such
X>Ji_ and B3Z£24x wll have a common descendant
this case,, because of condition iv) and that XYE&
nmon string derivable from X[ nmust be of the form XE x*
common string derivable from Z& nust be of the form
this inplies that they cdn not derive the same st

hence can not have a shared descendant.

The last possibility checked checked by the procé
trivialcheck is the case w<sn the marked productions
the form (1) A>LbX and (?> 5->c«pY where XY 6 N
. The only way that t~-,”0 two marked producti ons
ive a commn descendant xs if X *>_ w and Y *>
ever, this is the sama as testing if there exists
ductions of the form X->£ and Y->£ such that - either
ked productions A>ab. X aid Y->. £, or X-> £ and B>c
1 produce a common descendant which can contain an

flict from merging.

For efficiency, the procedure nontrivialcheck us*

cial global function
tried : N x (marked productions) -> bool ean,
ore the top call to procedure CHECK is nmade, the func

set to false for all possible inputs, and it wll re



alse the first tinme it is <called wth any given

Eter that, anytime the function is again called wi
ane set of argunents, it will return true. Therefore
mction wll prevent the procedure nontrivial chec
lecking if a nonterminal wll remwite to match

articular marked item

Finally, it is assuned that on the top |evel ca
3ECK(A -> a. ._al , B->Db _V t he foll ow ng
Dndi tions hol d:

i) A->a . & +B->p. b

i) jle +e andbib '



Co-recursive procedures to check

for a shared descendant

- a o LI
procedure check(A => a ala2 an,

B ~->b « b,b ...bm ) : boolean;

= 172
*
{note: ai’bi € (NUT); A,B 6 N; a,b & (N UT)
begin
s:= maximum 1 s.t. aja 08y :>R e;
t:= maximum i s.t. bibi+l°"bm ;>R &;

match:= maximal i s.t. ai = bi;
if match+1l<min(s,t)
then check:=false

else if match> max(s,t)

then check:=true

else

£f s>t

then check:=nontrivialcheck(

B =>D « bybyessb ,t

A =-> a . alaz...an,s,match
else check:=nontrivialcheck(

A =-> a . aa,

B -> _b_ . blbzoovbm’t,match

a S
¢ o0 n,



procedure nontrivialcheck (A -> a « ja”"; *. ap,s,

_ B->b e« b.by. *.b ,t,
" iz m

match) : bool ean;

{note: s £ t}

begi n
term nate: *fal se;
Tepeat
if (match -(s-1)) < 0) gr (s»t)

t hen

nontrivi al check: »f al se; term nat e: =true

else if (a 6 N or
not tried(g ,B ->bb*..bo 4 <+ by...b)

t hen

for each production C ->c2 6 P

i

a?®C, c ££, and

s.t.
C->. ¢ ¥
b

B —

i««*bst—l . bsooobm

Lf check(C ->+€_,
B - @'1»«@5—’1 . bS“.bn)

Lhen

nontrivialcheck:*true;:

term nate: »true



else if (s=t) and (match-1=s) and bt € N

and check(B =-> bb

looobs_l . bscoobn,
A => éaloo.as_l . asoooan)
then

nontrivialchecki=true; terminate:=true

until terminate;

end;

Using the above, two states § and S ar

compatible if

i) If the item [A -> a & Q,LAII € S, then ther

1
an item [A => a . Q,LAZ] ) S, and if
(A => a . Q,LAZI =) S2 then there exists

[A -> a . b,LA;] &8,

11i) for each quadruple of items

(A =>a . b,LA],[B => ¢ . d,LA]] 6 5,

(A -> a . Q,LAZI,[B -> ¢ . Q,LAE] ¢ s,

either
a) weak compatibility between the items h

b) b and d do not share a descendant.



Chapter IV

An Error Recovery Method for LR Parsers

In the previous two chapters, five dif
onstructions were discussed, all of which produ
arsers. The downfall of all LR parsers is that the
esigned only to decide if the given input is legal
s, belongs to the language generated by its grammar.
auses the unfortunate result that when such a par
sed in a compiler, once the first i1illegal terminal
s found, the parse stops with failure. However, 1{it
e more desirable to have the parse report as

dditional errors as possible.

Several people have proposed various error re
chemes for LR I
G&R75,D&R77,P&D79,0°H76,Pen77,P&D78]. This chapter

nlvw daal with one ci1tech method whisech 1 a mods fieat



11gorithm presented here differs from thiers in tha
.ncorporated into the LR parser and does not attempt

rorrection.

In order to describe error recovery, we first d
10w an LR parser works. Let a path be a sequence of
1gdy°++9, such that for each state q;» one of the fo
tonditions hold:

i) goto(qi,X) = Q4 for some X € N

ii) action(qi,a) for some a & T.

TS
\ path will be denoted as [qozil. That 1is, if a = a,
there a, @ (N UT) then the path [qozg} is the sequ
3tates such that either action(qi_l,ai) = q
oto(q, _;>a;) = q, - Also, let the result of the f
:op ¢ path => state be defined as the state 9, whe
yath is SV L PEERL S Finally, whenever the path [q:a]

‘rom the start state (of the LR parser) it will sim

lenoted as [a].

The basic control of a LR parser can be defined
lecision function df : path x T =-> (path U{reject,a

3s follows:

i) df([al,b) = [ab]l if action(top([al),b) = shif

some state j €& K.



ii) df([{aw],b) = df((aAl,b)
if action(top((awl]),b) = reduce A

aw ¥ S when b = §

ii1) d£((S],$) = accept

if action(top([(S]),$) = reduce S =-> S’

iv) df 1s defined as reject for all pairs

({2l ,b) not defined by rules i) throug

The algorithm to implement the above decisi

is simply as follows:

procedure parse(df,input);

begin

path:=(start,e];

repeat

t:=next terminal symbol from input;
path:=df(path,t);
until (path = accept) or (path = reject);

print path;



i that the variable path is inplicitly used as a s
h holds the prefix of sentential fornms being recogn

‘he parser.

The error recovery strategy describes what to do if
5e. of an input results in reject. As can be seen
previous algorithm LR parsers have the nice prop

they stop reading input imediately after the i
Lng is found to be illegal. The best recovery from
error would be if the parse could sonehow be resta
i that all other errors made in the input could be pi

Unfortunately, this strategy is really unfeasible s
carries the inplicit assunption of know ng what

ter neant when he wote the string to be parsed.

A much nore conservative approach is to only state
aining substrings of the input are inpossible accor
the given grammar. That is, if the remaining input a

error Is. a string w€T and there doesn‘t exi

*

ht nost deri vati on such t hat S «>.- awe for
\}\ -

(NUT and £ 6 T , then the substrinngshouI

orted as an error.



rur example, cuasiutr uie two paeuau rdo™AL pro<
<stnt> -> FOR <var> :* <exp> TO <exp> DO <stnt>
<stnmt> -> WHI LE <exp> DO <stnt>
with the erroneous input
FOR X: -1 5 DO BEG N J:»X; L: - X END;
where the terminal synbol "TO! has accidently been 1<
Using an LR parse, parsing would stop after rea<
synbol ''5'".  As one Looks for subsequent errors, it
that "5" is a val-id substring derivable from S* It
clear that 5 can occur at the following points in thi
producti ons
<stm> -> FOR <var> :* '"<exp>'' TO <exp> DO <stm
<stmi> -> FOR <var> ;* <exp> TO "'<exp>'' DO <stm
<stm> -> WH LE "'<exp>Y DO <stm.>
By expanding the substring to include the next input
the next possible substring to test would be "5 DO
the nunber of possible positions of this string h
reduced to
<stmt>-e-> FOR <var> : * <exp> TO "<exp> DO" <stm
<stnm> -> WHI LE "'<exp> DO! <stnt>
Continuing this process, it is clear that the subst
DO BEG@N J:*X L:*X END" can correspond to the f
positions in the productions:
<stnt> -> FOR <var> :* <exp> TO "<exp> DO <stnt

<stmt> <> WHI LE "'<exp> DO <stnt>"



g 1implies that a reduction should be performed by c
e above productions. One possibility is to take t
g recognized before the reject point, and to either =
lete symbols to produce a match and therefore deci

reduction to choose. This type of error recovery
act the error correction method wused by [P&D7¢
er, the one chosen by the author assumes that ¢t
ring "5 DO BEGIN J:=X; :=X END" is the maxin
ministic string that could be recognized, and her
e it from further consideration. That 1is, it w1

rt the parse starting with the semicolon.

The above example 1in fact <characterizes the er:
ery method described 1in this chapter. To state 't
d more explicitly, let me start by defining an er:

as a set of LR parser states, where each error ste

ins the set of LR parser states that the parse might

The restart state as a special error state containi

he LR parser states.

The first shift, in error recovery, is a forced shi
gh the 1illegal terminal symbol that produced t
tion. This shift can be viewed as a parallel shift,
error symbol a, from all LR parser states I in
rt state to all stétes J such that action(I,a) = J.

then try to parse the input where the parse will sta:



ter the rorced sniit througn the 1lilegal SymbOL. 11
e way, any of these parses produce an error, it wi

opped from further consideration for simultaneous p:

One possible result of the above process 1is th:
.rses will be dropped from the set of simultanmneous
.der this «condition, it 1is <clear that there
rivation such that § = awe for the parsed i

R

nce, it is quite legal to assume that the next
'mbol input canl not occur, and report it as an
nce this is an error, the algorithm will then resta:
.covery method on ﬁhe next input symbol. Note tli
.rst action on any error is a forced shift. This 1{:
)} guarantee that the remaining 1input is parsed.

'ror recovery should not countinue if the illegal ¢t

'mbol was the end of string marker $.

The second problem is that if the above error re
'ocess 1s to be merged into the LR parser, the p:
rses have to be made deterministic. There is no
.th the action function for a set of states, if the
)T all possible inputs is a shift entry. 1In this «c:
3 clear that the action is deterministic, since re:
ates can be lumped into a new set of states and
‘eating a new error state. The same is true for t!

immction. Therefore, nondeterminism can only occur



I on, for a set of states to be sinultaneously par
tain either

i) shifts and reductions for the sanme input synbol

11) reductions for different productions for the

I nput synbol (as shown in the previous exanple)
ortunately, neither of these cases seem to be resolv
ermnistically. I f, in either case, the parse
owed to continue and the next action was perforned,
ult would produce two different paths. That 1is,
ve two conditions would result in disjoint senten
fixese Such conditions wll be called overdefi
ever, sonme decision still has to be made so that-
aining 1input can be parsed. Agai n, the conser va
roach was taken* \henever the input string being pa
ones overdefined, the parser assunes that it is
imal substring it can recogni;e, and restarts the *a

or recovery process on the next input synbol.

By nerging the error-recovery into the LR parser, a

parser wth error recovery ¢ n be built* |[If a

si ng tabl e IS t he t
( K,actian , goto , G, _start) , t hen let the

ser wth error recovery be defined as t he t

» (K, K , action , goto , G, start , init-ei

re



K,G, and start are defined as in M,
K’ is a set of new states called error recovery

init-error is a state in K’ denoted as the

state of the error recovery method
goto : (K U K’) x N => KUK’ U {error}
action : (K UK’) x T =>

{shift k | k 6 K} U {error,overde

{reduce p | p 6 P}
Furthermore, the init-error state will be so defin

for each b € T, action(init-error,b) = shift j f

state j. Each recovery state is a set of parsing st
K, such that it 1s the set of states that c

simultaneously for the input string being parsed.

Using the above definition, LR parsers wit

recovery can be built by the following algorithm:

Construction of LR parser with error recovery

input: LR parsing table M = (K,action,goto,G,start)

output: LR parsing table M’ = (K , K° ,action ,got

start , init-error)




nethod:

begin

{initialize state init-error}

set K° to the single state containing the set {

and label it as init=-error;

for each a 6 T do

let s be the set

{j 6 K| action(i,a) = shift j
for all 1 6 init-error};

f s i

———

(]

a singleton

hen set s’ to the element of s

ct

else if s 6 K’

then set s’ to that state in K’
else add s to K° and label the new state
£1

’

set action(init-error,a) = s




for each X &€ N do

let s be the set

{j 6 K | goto(t,X) = j
for all t 6 init-error}:
f s is empty

then set goto(init-error,X) = error

f s is a singleton

then set s’ to that element of s

else if s € K’

then set s’ to the state in K’ cont

else add s to K°, and set s’ to its
£1

’

set goto(init-error,X) = s”;

od

{build each general error state}

repeat
for each state i € K’ such that the parsing
for that state is still undefined do

or each a € T do



if s is empty

then set action(i,a) = error

else
if s is a singleton
then set s° to the element in s

else if s 6 K’

then set s’ to the state in K’
containing s
else add s to K’, setting s’ as t]

label of the added state;

set action(i,a) = shi* . s’

£1
od
or each X & N do

let s be the set {j 6 K | goto(t,X) = j

for all t & 1i};
if s is empty

then set goto(i,X) = error



if there exists two states 8,95, 6 1 s.t.

(A =->a . , LA1] € S, where a 6 LA

1
(B ->¢ .d, LA, ] 65

1

2
where first(d) = a

then set action(i,a) = overdefined

else if there exists two states

Sl’SZ € i s.t.

(B =>b . ,LA,] 65

2

1 LA, and A->a # B->D

then set action(i,a) = overdefined

where a & LA

else if there exists a state s 6 i s.t.
(A ->w . ,LA] & s where a & LA

then set action(i,a) = reduce A -> w

else
let s be the set
{3 6 K| action(t,a) = shift j

for all t & 1i};



1f s is a singleton

then set s' to the elenent in s

el se s 8 K

if

then set s' to the state in K
containing s
else add s to K, and set s' to
| abel

Hi

sef gato(i»X) » s

i,
od
ad

until no nore states can be added to K

end

Using the resulting LR parser with error recovery,
sic control can be handled using the decision fun

" . path x T -> path as foll ows:

i) df"([g:aj,b) » [q:£b]
when action(top([q:a]l)>b) * shift j for sone

i S (KUK)



i1) df°([q:awl,b) = d°’([q:aA]l,b)

when action(top(‘q:aw]),b) = reduce A -> w, and

aw = S then b # §

iii) df’([init-error:wl,b) = df’([init-error:Al,b)
when action(top((init-error:w]),b)
= reduce A -> aw,

where a # € and b # $

iv) df“([S],$) = accept

v) df‘’([init-error:S],$) = Reject
if action(top((init-error:S]),$) = accept or

overdefined

vi) df“([q:a],$) = reject

when action(top((q:al),$) = error

vii) df‘“([init-error:al,b) = [init-error,b]

where b # §, and

action(top((init-error,al),b) = overdefined

viii) df”([q:al,b) = [init-error:b]

where b # $§ and action(top((q:al),b) = error



that cases vi) or viii) represent that an error h
found in the string being parsed. Hence, any err

ges produced are produced at these points.

Finally, an LR parser wth error recovery can
mented sinply by calling the procedure parses using c

e decision function.



Chapter 'V

| npl ement ati on

This chapter discusses two progranms* The first prc
ates an SLR(Il) parser, with error recovery. The se
gram creates either an LR(1), LALR(Il), weakly conpat
a strongly conpatible LR parser. The first sec
cusses the representation of the parsing tables built
h programs. The second section descri bes
l ementation of the SLR(lI) parser constuctor and how
tern is used while the third section does the same fot

ond parser constructor.



The representation of the parsing tables nat
iggest using arrays. For wuniformity of both acce
alues held in the arrays, all terminal symbols, nonte
ymbols, and productions are provided with an interna
f integers by both programs. For terminal symbols
>des are defined by the set

{i | 0<i<n where u is the number of distinct term

symbols occurring in the productions}
1ere 0 is reserved for the special terminal symb
onterminal symbols are encoded using the set

{1 | =-m<i<-l where m is the number of distinct

nonterminals occurring in the productions}
nere the start symbol S will alwéys be given the cod
roductions are coded using the set

{i | 1<i<p where p is the number of productions

in the grammar}

here the production S => S’ is always given the code

In representing the action and goto functions,
on-error values are kept internally since the vast ma
f the function values are in fact error. The rem
alues are saved 1in groups, one for for each state,
tates having the same set of non-error values wi

epresented by a single copy of the groups.



For exanple, the grammar

S -> E T ->F
E->E* T F -> id
E->T F->( E)
T->T+ F

i produce the following SLR(lI) parsing tables:
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shift j is represented by S j,
reduce p is represented by p,

there

and

overdefined is represented by O,

error is omitted.
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error has been omitted

where goto(i,X) =

58.8% of the

error values,

By elimination of the

states 1,2,

does not need to be saved. Also,

tables

in the previous action table all have the same same



values.

Each non-error value of the action table wi!

presented as follows:

i) action(i,a) = shift j will be represented
by the pair (x,j) where x 1is the code of

terminal symbol a.

i1i) action(i,a) = reduce A =-> w will be represente
by the pair (x,=-p) where x 1s the code of
terminal symbol a and p 1is the <code «

production A -> w.

1ii1i) action(i,a) = overdefined will be representec

by the pair (x,0) where x is the of the te:

symbol a.

The non-error values of the goto table, for
ate 1, will be represented as the pair (x,j)

to(i,A) = j and x is the code of the nonterminal A.

For efficiency in retrieving the values from the ;
d goto tables the integer pairs corresponing to each

e sorted using the relation <’ where



(a,b) </ (c,d) iff either a<c, or a»c and b<d.

Four integer arrays are used to represent the valv

e tw parsing tables. The array parsetable is a

ray, for some n, which holds all of the non-error A
the two parsing tables. The arrays actionlis
tolist are s x 2 arrays, where s is the nunber of
ates, and are wused to define where the values c
tion and goto functions are saved in the array parset
ch element in these tw arrays is the pair (b, t) w

the starting position of the values saved for that

ile t i1s the nunber of non-error values of the fut
r that state. The last array productionlist is a

ray where p is the nunber of productions and, foi
oduction A -> *r it holds the pair (x,|w]|) where x is

de of A and IwW is the length of the string w

Returning to the previous exanple, let the codes c

rm nals, nonterm nals, and productions be as foll ows:

term nal s nont erm nal s productions
$3: 0 S : -1 1 : S>E
1 E : -2 2 3 E->E*T
+ : 2 T : -3 3 : E>T
id ¢+ 3 F: -4 4 : T->T+F
( 4 5 : T->F
Yy ¢+ 5 6 ¢+ F->id
7 ¢« F=>(E)



ally Dbe represented as rfollows:

ctionlist gotolist
1:2 1 3:3
1:2 2 6:3
9:4 3 13:0
13:4 4 17:0
17:4 5 21:0
21:2 6 23:0
23:2 7 25:0
1:2 8 25:1
1:2 9 26:2
28:4 10 32:0
32:4 11 36:0
36:4 12 40:0
40:5 13 45:0
45:6 14 51:3
54:3 15 57:0
57:4 16 61:0
61:4 17 65:0
roductionlist

-1:1

-2:3

-2:1

-3:3

-3:1

-4:1

-4:3

or example,

the action values held in the
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above tab]

ate 5 start at position 17 in the array parsetable ar

non-error values.

tion values:

$

Positions 17 through

: reduce E->T

20

represer



reduce E=>T

+

shift 8

) ¢ reduce E=->T

2 SLR(1) implementation

This section describes how to use the SLR(l)
nstructor with error recovery. This implementati
e restriction that no production <c¢anm be of the
-> e. Included in this section is a brief descript:
e input grammar, how to run the system, and h

terpret the output produced.

2.1 Input Grammar

The input for the program is the set of produ
fining the CFG which the SLR(1l) parsing table is
nstructed from. The input will be parsed in a free
rmat, that is, no formatting by columns or line boun
.11 be used. The end of line character will be treat.

blank character and each symbol on the input file m

parated by one or more blanks.



>nolanic string, or 1: cnaraccers or less not oegi nnm
Le character ™!'f; and is not one of the netas
o-.>" "$", and "+'")+ In the event that the user may u

the metasynbols used by the program or a nonbl ank
Aginning with a "'<M the quote synbol has been
>ecial nmeaning* If the quote 1is followed by a
| aracter, it will be treated as a termnal s
herwise, if the quote is followed by a honbl ank s

le string followng the quote will be treated as th

the term nal synbol.

Nont er m nal synbols are represented as cha
:rings, of 15 characters or |less, enclosed by the s
c" and ">". The first synbol of the string, if no
apty string, nmust begin with a nonblank character but
| aracters can appear anywhere &else in the string*
rogram also accepts the string "<>" which repres

>nt erm nal synbol whose name is the enpty string*

Productions are represented by witing themin th
->w where Ais a nontermnal, \*¥ is a sequence of ¢
rnbols, and "->" is a netasynbol recognized by the pr
ich production 1is separated from the next usin

et asynbol and after the last production, the neta
2" nust appear* The productions can be entered

:der except that the first production, on the input



For example, the grammar presented im V.l cou
presented by the following piece of input:

<S> => <e> .

<e> => <Ke> * <t> . <e> => <t> .

KE> => <t> + Kf> o« <t> => <K£f> .
<f> => 4id . <f> => ( <e> ) $§

A shorthand notation also exists for productions |
e same left hand side (i.e. productions of th
-> w where A remains constant between the product.
these <cases, the productions can be entered in th
-> w, ! ¥, P oeee ) v, where there exists the produ

-> W ,A‘)W 'Y LI ,A‘)

For example, the grammar 1ian section V.l could
ternatively been written as:
<S> => <Ke> .
<e> => 2> * <t> ! <t> ,
I

<E> => <t> + <f> <f> .
<f> => 4d !} ( <e> ) $

The order in which productions are found in the
le corresponds to the order in which they will be
ternally. In a similar manner, the terminal
nterminal symbols will be coded in the order corresp

their first appearance in the set of productions.



.2.2 Running the SLR(1) parser constructor

The system can be run on the Vax-11 in the
: hool by entering the followng nonitor |evel pro
al | :

$<3[ karl] sl rbnf
Eter invocation, the procedure will ask the wuser fo

Lies used by the program and run the program

The first file to be requested is the file cont
le set of productions, and is requested with the pron

i nput :

The second file request is for the output file
ill contain all diagnostic and informatory nessages,
aguested with the pronpt:

out put :

The third file request is for the file that the c
LR(1) parsing tables should be saved on, and is req
ith the pronpt:

internal representation:

The last two file requests are for tenporary file

an be used by the program and are both requested w

ronpt:



n. The program will not produce any output, on the
reen, nor will it ask the user for any futher infor
less the SLR(1l) parsing table was created and co

nflicts (see section V.2.4 for handling this case).

This paper will not mention how to use the
ntaining the SLR(1) parsing tables except for a

ogram skeleton in appendix a.

2.3 Interpretation of the output file

The output can be broken into two major sections
e first section describes how the program parsed the
ammar and the second section prints the built
rsing tables. However, the second section wi
oduced only 1f there were no errors detected in the

:Ction.

The first page of the output is a copy of the
ing parsed, along with any error messages indi
legal syntax. If there were no syntactic mistakes 1
put grammar, then this page will be an exact duplic
e input file. Otherwise, portions of the input file
- written, and will be interspersed with syntactical

cognized by the program.



For exanple, the erroneous input:

<SS > <A> e <A> ->a<A>b. A->ab$
ould produce the follow ng output:

<SS -> <A> e <A> -> a <A> b e A***il.legal LHS

a this exanple, the program is reporting t hat

roduction has a termnal synbol on the left hand s

tie producti on.

The next three subsections of the output report
oding scheme of termnals, nonterm nals, and produ

sed by the progrant
For exanple, the input:

<§> => <E> ,

<B> -> <B> * <> J <> .
<T> => <T> + <F> | <F> ,
<F> ->id! ( <B) $



TERMINAL

1. *
2. +
3. 1id
boe (
5 )

NODES:

NONTERMINAL NODES:

-1l. <8>
-2. <E>
-3. <T>
-4. <F>

PRODUCTIONS:

- en wn e mn = an w» e - s =

1.
2.
3.
4o
5.
6.
7.

<S>
<E>
<E>
<T>
<T>
<F>
<F>

-> <E> ‘<EOF MARKER>
-> <E> * <T>

-> <I>

-> <T> + <F>
-> <F>

-> id

-> ( <e> )

The program provides additional information

with

t

g schemes, that is, if the string "*undef*" procedes

rminal,

then that nonterminal does not occur

on

t



2ft hand side of any production recognized while p

e input file.

Below the coding scheme is a diagnostic summmary
211 the program did in parsing the given input bn
7erything is acceptable to the program, it will oprin
:ssage '"successful parse" and ‘attempt to coastru
.R(1l) parsing tables. Otherwise, it will give an
immary of why it thought the input was wrong, and abo

irther calculations.

Should the input grammar be successfully parsed
rogram then attempts to build the SLR(1l) parsing t
> begin with, it computes the first and follow set
ach nonterminal, aud prints out these sets. Seco
rints out the sets of SLR(l) items defining the co

1ch state.



For example, the previous input grammr would

itput for the first five states as follows:

1> <S> -» . <BE> '<EOF MARKER>

oy ey
e e
oy e
e e

4) <T> -> <T> ¢ + <>

p

STA

STA

STA

STA

The | ast section of the output, for a run,

i adable form of the produced parsing table foll owed

.ze of the array parsetablec Non-error val ues, o]
irsing tables, for each state are listed separatel

i e

action values preceeding the gotgo val ues.



ing values for the first state would be as follows:

STATE 1
id SHIFT TO 3

( SHIFT TO 2

<F> GO TO 4
<T> GO TO 5

<E> GO TO 6

4 Conflict Resolution

Sometimes, when a CFG G is provided as input to
‘1) parser constructor it can not produce a SLR(l) pa
G since L(G) is not in the class of languages of SLR

such cases, the <construction method has prod

‘licts in the action table.

For example, the grammar in figure 5.1 is an exampl
1atural grammar for arithmetic expressions with opera
1d *. The LR(O) characteristic automaton, for
qomar, and the follow sets are shown in figure 5.2.

-es 9 and 10, there will exist S/R conflicts on



ymbols + and * if the SLR(l) parser is built fr
raracteristic automaton. This can also be seen i

atput produced by the program for such an input (see

03)0
S => E E =-> id
E -> E + E E -> ( E)
E -> E * E
figure 5.1
Q=X
id E
tE=->id. 4:S->E.

E'>Eo*
) )

4"‘...> * : "

tE->(E.) + 6:E~->E+.E 7:E->E*,
E->E.+E ~—— X B

E->E.*E id
+ E + * E

) *
v z A
LE:iEEZ) 9:E->E+E. (10:E->E*E
E=>E.+E E->E.+
E->E.*E E->E.*

FOLLOW(S) = {$) FOLLOW(E) = {$,+,%,)}

figure 5.2



------------------- emmeemeemeeeeeeeewe~e== STATE : O

<E> => <E> + <E> .
<E> => <E> . + <E>
<B -> <B « * <B

JCE/ SH FT CONFLICT ON SYmBOL +

CRY: -2 CONFLI CTI NG ENTRY: 6

| CE/ SH FT CONFLICT ON SYMBOL *

CRY: -2 CONFLI CTI NG ENTRY: 7
----------------------------------------- STATE : 10

<E> => <E> . + <E>
<BE -> <B> * <B> o
<B -> <B . * <B>

| CE/ SH FT CONFLICT ON SymMBOL +

' RY: -3 CONFLI CTI NG ENTRY: 6

| CEf SH FT CONFLI CT ON SymBOL *

' RY: -3 CONFLI CTI NG ENTRY: 7
fiqure 5.3

turns out that these conflicts can be resolved i

of either a shift or a reduce action by know ng th

ince and associativity of these tw operators* Fo

i, | ooking at state 9 and the operator *, the parse



.ng E * E and reduce it to the string E producing the
;ential form

E + E

Should the grammar in the input file produce confli
program will arbitrarily pick one of the ac
.nitions for the symbol causing the conflict in.the s
discard all other conflicting entries. This choice

yrted to the user as shown in figure 5.3. 1In each ¢

"OLD ENTRY: xx" represents the entry chosen by
sram while the '"CONFLICTING ENTRY: yy" states
rarded entrye. Hence, in state 9, the arbitrary cho

the symbol *, was to reduce on the production labell

2e E->E+E).

To allow the user to change the arbitrary choice
the program, the program will also become interactiv
conflicts arise in building t"2 SLR(1l) parser. That
program will prompt the user with the prompt:

ENTER STATE TO RESOLVE:

this response, two choices are available.

If the user responds with tke number 0, the pro
l stop so that the user can look at the output fil
2ar to identify all existing conflicts 1in building

(1) parser. If the user feels that these conflicts



should rerun the program and when getting the a
ipt, he should resolve the conflicts by using the se

0N«

The second option in responding to the above prompt
t+ in the state that the user wants to resolve. After
completes his answer, the program will print out
* of the state, for verification, and will ask the

lt is the state he wanted.

The next request by the program is for the  user
ride the integer code of the terminal symbol causing
Ilict using the prompt:

ENTER SYMBOL NUMBER TO RESOLVE:
ibove, the program will verify the wuser’s response
1iting out the terminal’s name and asking the user i
the correct terminal srmbol. Again, a "N" response
se the program to reprompt for a state to resolve whi

response will have to program continue processing

>lution.

The next request, aft=2:r the symbol request, is for
ion function’s value f£for the state and symbol with
npt:

ENTER NEW ACTION TO TAKE:

the value provided by the user is a positive integer



hence a shift action), the programw | print out
of the state the shift is to. If the value given
user s negative (and hence a reduce entry), th€
will print out the production associated wth tt
provided by the user. In either case, it wll thet
user if this was what the user wanted and again \Vvei

user's input*

The. program will provide the user one |ast
after the conflict resolution has been specif

disregard the conflict resolution. A "Y' response

user will cause the resolution to be processed whi
response will disregard the resolution provided by t
In either case, the program will than request fox

conflict resolution with the pronpt:

ENTER STATE TO RESOLVE:

At this point, the whole process repeats unJ
user responds wth a O. If a O is typed in by t
then no nore conflict resolutions wll be processed
programw Il build the SLR(lI) parser. Note that th€
wll not produce an SLR(l) parser wunless at |€

conflict has been resol ved.



Size Restrictions

lis program contains several size restrictions whic

foll ows:
) No nore than 100 term nal synbols nmay be used.
i) No nore than 200 nonterm nal synbols may be used*

ii) No nmore than 300 productions nmay appear in tin

nput e

v) No terminal or nontermnal nanme nmay exceed 1

har act er se

') For each production A ->_w £ can not be a string
£ termnal and nonterm nal nanes, exceeding a |engt

f ten nanes*

‘i) The nunber of parse states, created by the progra

mst not exceed 600.

"ii) The nunber of SLR(l) itenms, excluding the itenms <

he formA -> . w nust not exceed 9, 999*



the dimensions of 10,000 x 2.

V.3 LR(1), LALR(1), Weak and Strong Compatibility

parser generators

This section describes how to use the program which
.d either ©LR(l), LALR(l), weak compatible, or st
yitable parsing tables. Included in this section i
f description of the 4input grammar, how to run

;ram, and how to interpret the output.

.1 Input Grammar

The input for the program is the set of product
.ning the CGF from which fhe parsing tables are t
luced. These productions <can be optionally prece
1 a list of terminals and nonterminals, allowing the

specify the integer codes given to these symbols.

The input will be parsed in a free style format,
no formatting by columns or line boundaries wil

i. The end of line character will be treated as a b



e G UUC ™ == &k &3 & &

In general, a termnal synbol is any nonenpty strin;
dank characters which does not begin with the chara<
However, it can not be any of the netasynbols (
Me, M#M, M->". "'" or "e")- In the event that

' wants to wuse one of the netasynbols or a st

.nning with a "'<'f, as a terminal synbol, the quote syi

preceed the nonbl ank string*

Nonterm nal synbols are represented as any chara
.ng enclosed by the symbols f'<' and ">"+« The charac
>0sing the nanme of the nonterm nal can be any chara
rluding the blank) except the symbol ">, and incl

name conposed by the enpty string ("<>")e

Productions are represented by witing them in the
« wwhere Ais the nane of a nontermnal, wis a sequ
cerminal and nontermnal names, and "->" is a nmetasy:
>gni zed by the progrant The synbol 'fe'' has been rese
represent the enpty string so that productions of

a A->ji can be witten.

Productions are separated from each other using
I synbol e and no synbols should follow the
i uction. Productions having the sane left hand s

. of the form A -> £¢, A ->w\, e¢  A->Ww  ca
L - -n



1e metasymbol "|" is treated as an "or" symbol.
For example, the grammar
S =-> A A => aAb A -> e

>uld be entered with the input:

<start symbol> => <A> .

RA> => a <A> b | e

Productions, when parsed, will be <coded 1inte
sing the order in which they appear on the input. Th
agtriction on the order in which the production

ritten is that the start production must appear first

Unlike the SLR(l) parser coanstructor, this p
ptionally allows the user to specify the coding sch
he nonterminal and terminal symbols. That is, befor
tart production the wuser is allowed to provide a 1
erminals, followed by a list of nonterminals, follow
he metasymbol "#". It is not necessary that all ter
nd nonterminals appear in these lists, and either o
ist may be empty. Elements in these lists will be 1
n the order that they are found (1 for the first ter

for the second terminal etc. and -1 for the
onterminal, -2 for the second nonterminal etc.).
emaining terminals, or nonterminals, not specified by

ists will be labelled according to the order of



ypearance in the set of productions.

For example, assume using the previous grammar th
3er wants the terminal b to be labelled 1 and termina
> labelled 2. This could be done by using the input:

b a #

<start symbol> => <A> .

KA> => a <A> b | e

The program described by this section in fact has
1e SLR(1l) parsing tables (produced by éunning the
rogram described in section V.2) to parse the inpu
11s program. Hence, the description of the input rul

» formally described by the set of rules used in cr

1e SLR(1l) parsing tables which are as follows:



<> => <input grammar> .
<input grammar> => <start prod> ‘. <other prods>
! <symbol defns> <start prod>
‘e <other prods> .

<start prod> => nonterminal ‘“-> nonterminal .
<other prods> => <production>

! <other prods> ‘. <production> .
<production> =~> nonterminal “-> <rhs> .
<rhs> => e=-rule

! <symbols>
! <rhs> | e=rule
! <rhs> | <symbols> .

<symbols> => terminal
! nonterminal
<symbols> terminal
<symbols> nonterminal .
<symbol defns> => <terminals> <nonterminals> #
! <terminals> #
! <nonterminals> # .
<terminals> => terminal
! <terminals> terminal .
<nonterminals> -> nonterminal
! <nonterminals> nonterminal $

3.2 Runing the program

The program can be run on the Vax-1l1l 1in the
hool by =entering the following monitor level pro
111:

@{karl]runnewbnf
‘ter invocation, the procedure willask the wuser fo

.les used by the program, and then run the program.

The first file requested by the procedure is the



second file is request is for the output file which
rain all diagnostic and informatory messages, an
lested with the prompt:

OUTPUT FILE:

last request is for the file to save the parsing ta
ited and is requested with the prompt:

TABLE:

Upon completion of the file requests, the program
» After the program finishes reading the input bnf £
program will request the user to specify what type
ser should be created with the prompt:

ENTER OPTION

0 - COMPUTE FIRSTS ONLY

1 - BUILD LR(1) PARSE TABLE

2 - BUILD LALR(1l) PARSE TABLE

3

4

- BUILD WEAK COMPATIBLE LR PARSE TABLE
- BUILD STRONG COMPATIBLE LR PARSE TABLE

Once the user responds, the program will build
responding parse table, printing out "BUILDING STAT
it tries to build state X. This completes

araction the program has with the user.

The first page of the output file 1is a copy of
ut being parsed, along with any error messages descri

egal syntax.



For example, the erroneous input:
<S> => <A> . A> => a <A> b« A =-> e

produce the following output:

INPUT PARSE OF PRODUCTIONS:

<S> => <A> o« <A> => a <A> b . A => e

-~

*%%* 32) PRODUCTION DEFINITION EXPECTED

bove error 1is stating that at the beginning on colt
f the previous input line, the program was expecting
a production but found something else (i.e. 1

nal symbol A).

The next three subsections of the output file, aft
parse of the 1input, reports the coding scheme of
nals, mnonterminals, and productions used by 1

am.
For example, the input:

ab #
<start symbol> => <A> .
<A> => a <A> b | e



TERMINALS:

0. S$EOFS
l. a
2. b

NON-TERMINALS:

*START SYMBOL* *UNIQUE*

-l. <start symboi>
*NOT USED ON RHS*

PRODUCTIONS:

I<start symbol> => <A>
2<A> =-> a <A> b
3<A> => e

As can be seen by the above -example, addi

1formational messages about nonterminal symbol
rovided, and are as follows:
the nonterminal symb

*START SYMBOL* - States tha~n

been recognized as the start symbol.

*UNIQUE* - States that the start symbol does not

anywhere else in the productions and hence

valid start symbol.



*NOT UNIQUE* - States that the start symbol occur
another production besides the start prod

and hence is an invalid start symbol.

*NOT USED ON RHS* - gtates that the nonterminal n

appears on the right hand side of any produc

*NT NOT REACHABLE* - States that the nonterminal
not appear in any of the sentential form

hence need not be part of the input grammar.

*NT REPRESENTS NO TERMINAL STRINGS* - States that
is not any terminal strings derivable fro

nonterminal.

*NT NOT DEFINED* - States that the nonterminal do
appear on the left hand side of any prod

recognized from the input file.

After the c¢oding schemes, the program will prin

lrst set of each nonterminal.

Finally, 1if the wuser selects to have a

T VS S | = o~ > YA S DS T wvd 11 A ot wir At AP o AearmmA e d



.terns)  and non-error action and goto val ues.

For exanple, using the input grammar used above,
e wuser chose. to build a strong conpatible LR p

ible, the parse tables printed would be as follows:

STRONG COWPATIBLE L R (1) CHARACTERI STIC
STATE : 1

| )<start synbol> -> . <A>
L OOKAHEADS:
$ECFS$

CABLE ENTRI ES:

?ECF$ REDUCE BY 3
i  SHIFT TO 3
> @O TO 2
, STATE ¢ 2 ===m=-ccccemcmcceaan--

|)<start synbol> -> <A> .
L OOKAHEADS:,
$SECF$
CABLE ENTRI ES:

?ECF$ REDUCE BY 1

--------------------- STATE : 3 =~=c-wmemsomccccacaoan
2)<A> ->a . <A> b
L OOKAHEADS:
$SECFS$
b

r ABLE ENTRI ES:

a SHFT TO 3
b REDUCE BY 3
<A> @& TO 4



‘ABLE ENTRI ES:

SH FT TO 5
--------------------- STATE
2)<A> -> a <A> b .

L OOKAHEADS:
$SECFS
b

ABLE ENTRI ES:

EOF$ REDUCE BY 2
REDUCE by 2



Appendix A
Sample PASCAL skeleton for use of SLR(l) parsing tab]

ogram doparse(table, {any other files used by prograr

nst
numberstates = x; {x> of actual parse state
parsetablesize = y; {y> actual size of
array parsetable}
> actual number
of productions}
errorvalue = n; {n value not in set of labe

numberproductions

]
N
e
~”~
N
Vv

I

{the path will be represented as a stack
using a linear list}

parsestack = “stacknode;
stacknode = record
topstate : integer;
next : parsestack
end;

i

table : file of integer; {file containing
parsing tables}

nction push(stack : parsestack;
newstate : integer) : parsestack;

{returns stack with new state added in frount}

r temporary : parsestack;

gin
new(temporary);
with temporary”™ do begin
topstate:=newstate:’



motion pop(stack : parsestack) : parsestack;

{renobves the top elenent of the stack)

aip
pop: »st ack~«next ;
.dispose(stack)

Li:
+Ret-ef top(stack : parsestack) : integer;
{returns state on top of stack)
gl
t op: =st ack~«t opst ate
Li:

tnction enpty(stack : parsestack) : parsestack

{returns an enpty stack)

gl
whilse stackoni|l dbD-stack: *pop (stack) ;
enpty: «ni
Li:
nction gettoken : integer;

{This routine returns the |abel of the next terninal
occuring in the input file)

Li:

' ocedure semantics(stack : parsestack
production : integer);

{does any semantic routines associated with reducinj
the given production)

Li:
-ocedure errornessages (state , synbol : integer);

{prints out nmessage corresponding to error value
for state and synbol)

Li:



function parse : bool ean;

{parses input, returns true if no parsing err-
are found in parsing the input}

const eof token « O;

type

{representation of an entry in parsetable)

tableentry * record

synbol , value : integer
end;

{representation of a reference to a group of en
in parsetabl e}

stateentry ? record

startposition , size : integer
end ;

{representation of a production in productionl

productionentry « record

| hssynbol , rhslength : integer
end;.

var

——

parsetable : array [ 1 . parsetablesize ] g t

actionlist , gotolist : array [ 1 .. nunberstat
: of. stateentry;

productionlist : array [ 1 e« nunberproductions
of productionentry;

{other paraneters passed with parsing tables}

t opst at e, {actual nunber of parse states}
parsestart, {start state}

errorstart, {forced shift state on error re
errorconti nue, {init-error state}

t opof t abl e, {actual size of parsetable}

producti oncount {actual nunmber of productions}
I nt eger;



{local variables}
token : integer ; {next terminal from input}
value : integer; {next action to take 1in parsing in
stop : boolean; {true when have parsed whole input}
parseerror : boolean; {true if any parsing errors}
stack : parsestack; {holds path}
procedure getparsetable;
{reads in parsing tables}

var index : integer;

procedure getin(var invalue : integer);

{reads in next integer from file table}

begin
invalue:=table™;

get(table)
end;

begin
reset(table);

getin(topstate);
getin(parsestart);
getin(errorstart);
getin(errorcontinue);
getin(topoftable);
getin(productioncount);
for index:=1 to topstate do begin
with actionlist[index] do begin
getin(startposition);
getin(size)
end;
with gotolist[index] do begin
getin(startposition);
getin(size)




for index:=1 to topoftable do
with parsetable(index] do begin
getin(symbol);
getin(value)
end;
for index:=1 to productioncount do
with productionlist[index] do begin
getin(rhslength);
getin(lhssymbol)
end

end ;

function clear(stack : parsestack;
newbottom : integer ) : parsest

{empties stack and put value on bottom of :

begin
clear:=push(empty(stack),newbottom)
end;

function popelements(stack : parsestack;
amount ¢ integer ) : p¢

{takes the requested amount of states off |

begin
if (amount = 0) or (stack = nil)
then popelements:=stack A
else popelements:=popelements(pop(stack),
pred(cot
end;

function popoffproduction(stack
count

: parsestack;

: integer ) : p:
{takes the requested amount of states off |
but if stack underflow occurs, it resets

the bottom state)}

begin
stack:=popelements(stack,count);

if stack = nil
then popoffproduction:=push(stack,errorcor
else popoffproduction:=stack

o
fe]
a,




function findvalue(entry : stateentry;
testsymbol : integer ) : int

{Looks up the value of the function, for
the given state and symbol}

var found : boolean;
index , outofrange : integer;

begin

findvalue:=errorvalue;
found:=false;
with entry do begin
index:=startposition;
outofrange:=startposition+size
end ;
while (index < outofrange) and not found do
with parsetable[index] do
if testsymbol > symbol
then index:=succ(index)
else if testsymbol = symbol
then begin
found:=true;
findvalue:=value

else index:=outofrange

end;

function overdefined(stack : parsestack;
var token : integer ) : parsestac

{handles gverdefined actions}

begin
if token = eoftoken

then begin
overdefined:=empty(stack);
stop:i=true

end

else begin
overdefined:=push(clear(stack,errorcontinu

findvalue(actionlist[errorstar
token));
token:=gettoken
end

end;




¢ parsestack;
: integer ) : parsest

.

function unknown(stack
var token

{handles error actions}

begin
parseerror:=true;
errormessages(top(stack),token);
unknown:=overdefined(stack,token)

end ;
function doshift(stack : parsestack;

shiftaction ¢ integer;
¢ parses

var token : integer ) :

{handles performing a shift action}

begin
doshift:=push(stack,shiftaction);
token:=gettoken

end;
¢! parsestack;

function doreduction(stack :
' production : integer;
: parsest

var token : integer ) :

{handles performing a reduction}

¢ integer;

var gotovalue
begin
gotovalue:=findvalue(gotolist(top(stack)],
productionlist(production].lhssymb
if gotovalue = errorvalue
then doreduction:=unknown(stack,token)
else begin
semantics(stack,production);
doreduction:=push(popoffproduction(stack,
productionlist{produc
« rthsle

gotovalue)




:gin
getparsetable;
stack:=push(nil,parsestart);
stop:=false;
errorvalue:= ~-succ(productioncount);
parseerror:=false;
token:=gettoken;

repeat
value:=findvalue(actionlist[top(stack)],token);

if value = errorvalue
then stack:=unknown(stack,token)
else if value < =1
then stack:=doreduction(stack,-value,token
else if value = -1
then stop:=true
else if value = 0
then stack:=overdefined(stack,token)
else stack:=doshift(stack,value,toke
until stop;
parse:= not parseerror
nd ;



Appendi x J3
Sanpl e PASCAL skeleton for use of the

LR(1), LALR(!l), weak conpatible, and

stong conpatible parsing tables

ogram doparse(table, {any other files used by prograt

nst
nunber st at es * x; {x > # °f actual parse states
par set abl esi ze » Yy, {y j> actual size of

array parsetabl e}
nunber productions * z; {z j> actual nunber of

producti ons>
he

{the path will be represented as a stack
using a linear |list}

parsestack » ~stacknode;
stacknode * record
topstate : integer;
next . parsestack
end;

r

table : file g! integer; {file containing
parsing tables)



nction push(stack
newstate

parsestack;
integer) : parsestack;

.
.
.
.

{returns stack with new state added in front}
I temporary : parsestack;

gin
new(temporary);

with temporary”™ do begin
topstate:=newstate;
next:=stack

end;

push:=temporary

i3

action pop(stack : parsestack) : parsestack;
{removes the top element of the stack)

iin

pop:=stack”.next;

dispose(stack)
Ls

iction top(stack : parsestack) : integer;

{returns the top of the stack}

i

top:=stack.topstate
3

ction empty(stack : parsestack) : parsestack;
{returns an empty stack}

in

while stack <> nil do stack:=pop(stack);
empty:=nil

3
ction gettoken : integer;

{This routine re"urns the label of the next termina
occuring in the input file}



rocedure semantics(stack : parsestack;
production : integer);

{Does any semantic routines associated with reduc
the given production)

Li:

rocedure errornessages(state , synbol : integer);
{prints out nessage corresponding to error
value for state and synbol}

nction parse : bool ean;

{Parses input. Returns true if no parsing errors
are found in parsing the input}

>nst. eoftoken * 0
‘pe
{representation of an entry in parsetable)

tableentry » record
synbol , value : integer

end,;

{representation of a reference to a group of entrie
in parsing table}

stateentry * record
startposition , size : integer
end ;

{representation of a production in productionlist}
productionentry * record

| hssynbol , rhsl ength : integer
end;



var
parsetable : array [ 1 .. parsetablesize | g[ tat

actionlist , gotolist : array [ 1 e+ nunberstates
of stateentry;

productionlist : array [ 1 ¢ nunberproductions ]
‘of productionentry;

topstate : integer; {actual nunber of parse state

{other |ocal variables)

token : integer; {next termnal from input}

errorvalue : integer; {made up nunber for error \

value : integer; {next action to take in parsing)

stop : boolean; {true when have finished parsing)

parseerror : boolean; {true if any parsing error

stack : parsestack; {holds path)

procedure getparsetabl e;

{reads in parsing tables) .

var index , j : integer;

procedure getin(var invalue : integer);
{gets in next integer fromfile)

DEQI n

i nval ue: »t abl e~;
___get(table)
end:;



beqi n
getin(topstate);
for index:*l JQ topstate jdf beqgin
with actionlist [i] d£f bedin
getin(startposition);
getin(size); .
for j:*startposition J9 size do
with parsetable[j ] LdE bedin
getin(synbol);
getin(val ue)
end
end;
with gotolist [index] dD bedin
getin(startposition);
getin(size),;
for j:*startposition ¥ size do
with parsetable[j ] dD bedin
getin(synbol);
getin(val ue)

end
end
end
end;
function popproduction(stack : parsestack;

count : integer ) : parse

{takes the requested anmount of states off

beqi n
while count>0 dvo begin
stack: *pop(stack);
count: *pred(count)

end

end;

function findvalue(entry : stateentry;
testsynbol : integer ) : integei

{l ooks up the value of the function, for
the given state and synbol}

var found : bool ean;
i ndex , outofrange : integer;



begin
findvalue:=errorvalue;

found:=false;

with entry do begin
index:=startposition;
outofrange:=startposition + size

end;
while (index < outofrange ) and not found

with parsetable[index] do
if testsymbol > symbol
then index:=succ(index)
else if testsymbol = symbol
then begin
found:=true;
findvalue:=value

nd
else index:=outofrange

1]

nd ;
function doshift(stack : parsestack;
shiftaction : integer;

var token : integer) : parsest

(13

{handles performing a shift}

begin
doshift:=push(stack,shiftaction);
token:=gettoken

end
function doreduction(stack : parsestack;
production : integer) : parsest

{handles performing a reduction}

ar gotovalue : integer;



begin
gotovalue:=findvalue(gotolist{top(stack)],

productionlist[production] .lhssy:
if gotovalue = errorvalue
then begin
doreduction:=empty(stack);
parseerror:=true;
stop:=true
end
else begin
semantics(stack,production);
doreduction:=push(popoffproduction(stack,
productionlist[prodt
« rhsl
gotovalue)
end

end;

begin
getparsetable;

stack:=push(nil,1l);
stop:=false;
parseerror:=false;
errorvalue = 0;
token:=gettoken;
repeat
value:=findvalue(actionlist[top(stack)],token);
if value = errorvalue
then begin
stack:=empty(stack);
parseerror:=true;
stop:=true
nd ‘
else if value < =1
then stack:=doreduction(stack,~-value)
else if value = -1
then stop:=true
else stack:=doshift(stack,value,token)

®

until stop;
parse:= not parseerror
nd;
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