
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

University of Pennsylvania
Department of Computer and Information Science

Moore School of E.lectrical Engineering
Philadelphia, Pennsylvania 19104

Technical Report

MODEL PROGRAM GENERATOR:
SYSTEM AND PROGRAMMING DOCUMENTATION

Fall 1980 version

by

A. Pnueli, K. Lu and N. Prywes

Submitted to
Information System Program
Office of Naval Research

Under Contract N00014-76-0-0416

COMPUTER SCIENCE DEFT,
TECHNICAL REPORT FttM

Moore School Report

UWERSITY
PMYLWNW 15213

nrrr f
X X..U

SECURITY CLASSIFICATION OP THIS PACE (Wh*n Dmf Entered)

REPORT DOCUMENTATION PAGE
1. REPORT NUMOER

4. TITLE (*nd Subtitle)

MODEL PROGRAM GENERATOR:
SYSTEM AND PROGRAMMING DOCUMENTATI
F a l l 1980 V e r s i o n

2, GOVT ACCESSION NO.

ON

7. AUTHORf*)

A. P n u e l i , K. Lu and N. Prywes

9. PERFORMING ORGANIZATION NAME ANO ADDRESS
Department of Computer and Information Science
Moore School of Electrical Engineering
University of Pennsylvania, Philadelphia,PA 19104

11. CONTROLLING OFFICE NAME ANO AOORESS

Information Systems Program
Office of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME 4 A06*£S$(lt dtTurent tram Controlling OHtca)

READ INSTRUCTIONS " ^
BEKORK COMPLETING FORM

3. RECIPIENT'S CAT ALOG NUMBER

5. TYPE OF REPORT & PERlOO COVEREO

Technical Report
6. PERFORMING ORG. REPORT NUMBER j

8. CONTRACT OR GRANT NUMd€Rf«>'

N00014-76-0-0416

tO. PROGRAM ELEMENT, PROJECT, TASK ,
AREA A WORK UNIT NUMBERS

NR 049-153
t2e REPORT OATE

March 1980
U. NUMBER OF PAGES

244
IS. SECURITY CLASS, (ot tht» report) j

Unclassified
15«. OECLASSIFICATION/OOWNGRAOING •

SCHEDULE

16. DISTRIBUTION STATEMENT (ot this Report)

Distribution and Reproduction in Whole or in Part Permitted for
Purposes of the USA Government, • j

17. DISTRIBUTION STATEMENT (ot thm mbettmct Tifred in Block 20, it different irom Report)

IS* SUPPLEMENTARY NOTES

\
19. KEY WORDS (Continue on revetam aide It neceeamry mnd identity by block number)

MODEL
Very High Level Languages Nonprocedural Languages
Program Genera to r s ' Data D e s c r i p t i o n
Compilers . Array Graphs
Graph Ana lys i s

20. ABSTRACT (Continue on reverae tide if neeeeemry' sand Identity by block number) ..

The MODEL system is a program generator. I t accepts as input a
specification of a program, in the nonprocedural Very High Level MODEL
languagef and produces a useable program in the PL/1 High Level language.
The MODEL language.has facil i t ies essentially fors i) declaration of
data structures of source (input) and target (interim and output) data;
ii) equations which define target data. The MODEL system also performs
extensive checking of the user specification and corrects the

DD . 1473 EDITION OF t NOV «S IS OBSOLETE
S/H 0102-014-6601 j

SECURITY CLASSIFICATION OF THIS PAGE (Whit Dstm

*fc.CU*tlTY CLASSIFICATION OF THIS PAOEf'Hhcfj Data Entered)

20. (continued)

specification in many cases of incompleteness, ambiguity, or inconsistency.

The MODEL system consists of four phases: individual statement
syntax and semantic analysis, global semantic analysis, scheduling of
program events and code generation. The global analysis is based on a
graph representation of the specification denoted as Array Graph.

This report concerns the system organization and individual algorithms
used in the Fall 1979 version of the MODEL system. • .

' SECURITY CLASSIFICATION OF THIS PAGEfW»#n Dmtm Enfrmd)

PREFACE AND ACKNOWLEDGEMENT

The MODEL version described in this report represents
a revision and enhancement of previous versions. Its primary
new capability is the accepting of equations where a dependent
array variable depends on other elements in the same array.
This capability is however supplemented by several other
capabilities. The MODEL language has been supplemented with
declaration of subscripts. Many checking and correction
procedures have been added, particularly in the areas of
dimensional analysis of array and in use of subscript. The
scheduling and code generation phases are entirely new.

This report is organized similar to documentation of
previous versions of the MODEL system and some parts have been
incorporated in this report.

TABLE OF CONTENTS

PAGE

1. OVERVIEW 1

2, SYNTAX STATEMENT ANALYSIS 10

201 EBNF, SAPG, AND THE SAP 10

2.1.1 SPECIFICATION OF MODEL USING EBNF AND

THE SAPG 10

2.1.2 HOW THE SAPG PRODUCES THE SAP 18

202 SUPPORTING SUBROUTINES FOR EBNF OF MODEL 20

2«2O1 THE LEXICAL ANALYZER 20

2.2.2 STATEMENT SEMANTIC ANALYSIS 22

2c2.3 ERROR MESSAGE STACKING ROUTINES 26

2*2.4 ENCODING USER STATEMENTS 29

2.2*5 STATEMENT STORAGE ROUTINES 35

2,,2.6 HOUSEKEEPING ROUTINES 42

2,2.7 AN INDEX TO SAP ROUTINES 4 2

2.3 THE STRING STORAGE AND RETRIEVAL SUB-SYSTEM 42

2.3ol INTRODUCTION 42

2.3,2 THE DIRECTORY AND STORAGE STRUCTURE 4 5

2. 3.3 STORAGE ENTRIES FORMAT AND TABLES FOR

MODEL STATEMENTS 47

2»3.4 THE STORE PROCEDURE 49

ALGORITHM STORE: THE STORE PROCEDURE 5 2

2*3.5 THE RETRIEVE PROCEDURE 53

ALGORITHM RETRIEVES THE RETRIEVE PROCEDURE 55

TABLE OF CONTENTS (continued)

PAGE

2.3.6 STORAGE STRUCTURES FOR ASSERTION STATEMENTS 57

2.3,6.1 THE SYNTAX TREE FOR AN ASSERTION 57

2.3.6.2 THE STRUCTURE OF NON-TERMINAL

NODES 58

2.3.6.3 THE STRUCTURE OF TERMINAL NODES 60

2.3.7 THE SYNTAX TREE CONSTRUCTION ROUTINES 63

2.4 CROSS REFERENCE AND ATTRIBUTE REPORT (XREF) 65

3. ANALYSIS OF MODEL SPECIFICATION 67

3.1 INTRODUCTION AND BACKGROUND 67

3.1.1 AN ILLUSTRATIVE EXAMPLE ' 6 7

3.1.2 THE ARRAY GRAPH 69

3.1.3 REPRESENTATION OF EDGES 72

3.1.4 EDGES AND THEIR TYPES IN THE ARRAY GRAPH 76

3.2 OVERVIEW OF SUB-PHASES IN NETWORK CREATION AND

ANALYSIS 85

3.3 SUB-PHASES OF NETWORK CREATION AND ANALYSIS 88

3.3.1 CREATING A DICTIONARY OF NAMES AND NUMBERS

OF NODES 88

ALGORITHM CRDICT: CREATING THE DICTIONARY 91

ALGORITHM CREASIM: CREATE SIMPLE DICTIONARY 92

ALGORITHM SIMPLE#: SEARCH A UNIQUE LIST 92

3.3.2 CREATING THE ARRAY GRAPH AND ENTERING

PRECEDENCE RELATIONSHIPS WITHIN IT 93

ALGORITHM CRADJMT: CREATING THE EDGE MATRIX 94

3.3.3 ENTERING HIERARCHICAL RELATIONSHIPS 95
ii

TABLE OF CONTENTS (continued)

PAGE

ALGORITHM ENHRREL: ENTER HIERARCHICAL
AND STRUCTURAL RELATIONSHIPS 96

ALGORITHM ENT_HIER_ADJ ENTERING HIER-
ARCHICAL DATA STRUCTURES IN ADJACENCY
MATRIX 97, 98

3*3.4 NODE ATTRIBUTE TABLE 101

3.3*5 ENTERING DEPENDENCY RELATIONSHIPS 116

ALGORITHM ENEXDP: ENTER EDGES FOR EXPLICIT

VALUE DEPENDENCIES o 117

3.3.6 PROCEDURE DOASS 119

3.3.7 SUBPROCEDURE SCAN 120

ALGORITHM DOASS 121

ALGORITHM SCAN (ROOT,LEFT,LEVEL,PARTYPE) 122-125

ALGORITHM RENUMBER 126

3.3.8 FINDING IMPLICIT PREDECESSORS (ENIMDP) 127

3*3.9 DIMENSION PROPAGATION (DIMPROP) 131

ALGORITHM DIMPROP: DIMENSION PROPAGATION 139

ALGORITHM EXTEND_STRUCTURE 141, 142

ALGORITHM DRAWJEDGES ' 143

3.3.10 FILLING MISSING SUBSCRIPTS IN EDGES AND
ASSERTIONS (FILLSUB) 144

ALGORITHM FILLSUB 149, 150

3.3.11 RANGE PROPAGATION (RNGPROP) 153

ALGORITHM RNGPROP 157

3.3.12 GRAPH ANALYSES (AMANAL) 164

3.3.13 CYCLE DETECTION (CYCLES) 166

iii

TABLE OF CONTENTS (continued)

PAGE

5.6.1 DO_REC 2 30

ALGORITHM BYTEjCALC (LENGTH,TYPE,#BYTES) 231

5.6.2 UNPACKING VARIABLE STRUCTURE RECORDS
(UNPACK) 235

5.6.3 UNPACKING GROUPS (DO_GRP) AND FIELDS

(DO_FLD) 237

5.7 GENERATING THE PROGRAM ERROR FILE 238

5.8 GENERATING PL/1 DECLARATIONS (GPL1DCL) 240

5.8.1 DECLARING A STRUCTURE (DECLARE_STRUCTURE) 241

5.8.1.1 DCL STR (N.LEVEL,SUX) 241

5.9 OTHER CODE-GENERATION SUPPORTING ROUTINES 243

5.10 CODE GENERATION SUMMARY 243

Vi

LIST OF FIGURES

PAGE

FIGURE 1 THE OVERALL PROCEDURE FOR USE OF MODEL 2

FIGURE 2 PHASES OF THE MODEL II PROCESSOR 4

FIGURE 3 MAJOR MODULES OF THE MODEL PROCESSOR . 8

FIGURE 3a INDEX OF MAJOR MODULES 9-9a

FIGURE 4 BLOCK DIAGRAM OF SAPG AND SAP 11

FIGURE 5 DEFINITION OF MODEL LANGUAGE IN EBNF/WSC 13-17

FIGURE 6 MORE DETAILED VIEW OF SAPG AND SAP WITH

SUPPORTING SUBROUTINES 21

FIGURE 7 SAMPLE DIRECTORY AND STORAGE ENTRIES 48

FIGURE 8 EXAMPLE OF RETRIEyAL MECHANISM 56

FIGURE 9 SYNTAX TREE FOR EXAMPLE - ASSERTION 6 2

FIGURElOa MODEL SPECIFICATION OF THE MINSAE

EXAMPLE 68-68a

FlGURElOb STATEMENTS ADDED BY THE MODE:,, SYSTEM 68a

FIGURElOc CROSS REFERENCE REPORT OF THE MINSALE

SPECIFICATION 69a
FIGURE11 ARRAY GRAPH FOR THE EXAMPLE OF FIGURE 10

(EDGES OF TYPES 10,11, 12 and 18 OMITTED 71

FIGURE12 CYCLE ENUMERATION OF A SAMPLE DIGRAPH 16 9

FIGURE13 OVERVIEW OF THE CODE .GENERAT-ION PHASE 205

FIGURE14 COMPONENTS OF GENERATING PL/I CODE 207

vii

LIST OF TABLES

PAGE

TABLE 1 CHARACTER CLASSES FOR MODEL LANGUAGE 23

TABLE 2 STATE TRANSITION MATRIX FOR MODEL LEXICAL

ANALYZER 24

TABLE 3 LEXICAL ANALYSIS ACTIONS 25

TABLE 4 SEMANTICS CHECKING ROUTINES 27-28

TABLE 5 ERROR MESSAGE STACKING ROUTINES 30-34

TABLE 6 ENCODING/SAVING ROUTINES 36-41

TABLE 7 STORING ROUTINES 43

TABLE 8 HOUSEKEEPING ROUTINES 44

TABLE 9 STORAGE ENTRIES FORMAT FOR MODEL 50-51

TABLE 10 STEPS IN NETWORK CREATION AND ANALYSIS 86

TABLE 11 INPUT OUTPUT TRANSFORMATIONS FROM FLOWCHART
TABLE TO PL/1 232-234

viii

1 OVERVIEW

This document describes the algorithms and mechanisms of

the MODEL Processor, which is a software system performing a

program writing function. The MODEL Processor (hereafter called

the Processor) has been designed to automate the program design,

coding and debugging of software development, based on a non-

procedural specifications of a program module in the MODEL language.

As shown in Figure 1, a program module is formally described and

specified in the MODEL language, whose statements are then submitted

to the Processor. The set of MODEL statements describing a program

module is referred to as a specific at ion» The Processor, performs

the analysis (including checking for the completeness and consistency

of the entire specification), program module design (including

generating a flowchart-like sequence of events for the module) f and

code generation functions, thus replacing the tasks of an application

programmer/coder. The Processor's capability to process a non-

procedural specification language is built on application of graph

theory to the analysis of such specifications and to the program

generation task.

Another important function of the Processor is to interact

with the specifier to indicate necessary supplements or changes to

the submitted statements•

The Processor produces a complete PL/1 program ready for

compilation as well as various reports concerning the specification

•Another version of the system produces COBOL code•

Source Data

Q g*
PROGRAM

Stepi

Data Processing
Requirements

USER

Targ8t Data

Step 2:

Compose
MODEL Statements

Keyboard
Term'inal

Computation
Description

Data Description

Header

Step 3:
Key In

and run MODEL

Step 4! Analysis of
Incompletenesses
Ambiguities
Inconsistencies

and Program Documentation

PROGRAM
COMPILATION

Step 5!
Compile and Load

Step 7 I

Changs Specification
for A Revised

Requirement

Step 6!
run Program

Sourcs
Data

Program
Module

PROGRAM

b Target
Data

Figure 1 The Overall Procedure For Use of MODEL

and the generated program. The Processor output reports include

a listing of the specification, a cross-reference report, subscript

range report, a flowchart-like report of the generated program,

and a listing of the generated program, all to be described fully

later.

Processing of a specification written in MODEL by the

Processor consists of four phases shown in the system flowchart

of Figure 2f which is the first refinement of Figure 1. Some

of these phases represent adaptations of known but state-of-the-art

technology, while other phases involve more novel innovations in

analysis of the specification and in the design and code-generation

for the application program.

Each of the four phases depicted in Figure 2 is discussed

below.

Phase 1; Syntax Analysis of the MODEL Module Specification

In this phase, the provided MODEL Specification is analyzed

to find syntactic and some semantic errors., This phase of the

Processor is itself generated automatically by a meta-processor

called a Syntax Analysis Program Generator (SAPG), whose input

is syntax rules provided through a formal description of the MODEL

language in the EBNF language (yet to be discussed). In this

manner, changes to the syntax of MODEL during development can

be made more easily.

A further task of this phase is to store the statements in

a simulated associative memory for ease in later search, analysis,

and processing. Some needed corrections and warnings of possible

errors are also produced in a report for the user. Also, a cross-

reference report is produced.

MODEL
STATEMENTS

PHASE I
SYNTAX ANALYSIS
STORAGE &

CODING

REPORTS

CROSS REFERENCE
SOURCE STATEMENTS
SYNTAX ERRORS (HALT IF ANY)

PHASE II I
NETWORK GENERATION

ANALYSIS

PHASE III
SEQUENCE AND ITERATION
ANALYSIS FLOWCHARTING

PHASE IV
CODE GENERATION

DIAGNOSTICS (HALT IF ERRORS)
RANGE REPORT

FLOWCHART
FORMATTED SOURCE LISTING

PL/1 LISTING

FIGURE 2 Phases of t h e MODEL I I P r o c e s s o r

A description of the Syntax and Statement Analysis phase is

covered in detail in Section 2*

Phase 2; Analysis of MODEL Specification

In this phase, precedence relationships between statements are

determined from analysis of the MODEL data and assertion statements.

The specification is analyzed to determine the consistency and

completeness of the statements* Each MODEL statement may be con-

sidered to be an independent stand-alone statement* The order of

the user's statements is of no consequence* However, in analysis of

the statements, precedence relationships are determined based on

statement components. These relationships are used to form the

nodes and directed edges of an array ffraph (yet to be discussed)

on which completeness, consistency, ambiguity, and feasibility

of constructing a program can be checked* Various omissions or

errors are corrected automatically, especially in connection with

use of subscripts. Reports are produced for the user indicating

the data, assertions, or decisions that have been inadequately

described, assumptions that have been made by the Processor, or

contradictions that have been found. In addition, a report

showing the range of each subscript is generated.

Explanation of this process is covered in Section 3*

Phase 3: Automatic Program Design and Generation of Sequence and

Control Logic.

This phase of the Processor determines the sequence of execution

of all events and iterations implied by the specification, using

graph theory techniques. It determines also the sequence and control

logic of the desired program* The result of this phase is a flow

of events, sequenced in the order of execution. Thus,

the output of this phase is similar to a program flowchart of the

desired program. It is subsequently used to produce a flowchart-like

report* At the end of this phase it is also possible to produce a

formatted report of the specification. This phase is presented in

detail in Section 4.

Phase .4 %
% Code Generation

At this point in the process it is necessary to generate,

tailor, and insert the code into the entriea of the flowchart to

produce the program. In particular, read and write Input/output

commands are generated whenever the flowchart indicates the

need for moving records. The assertions are developed into PL/I

assignment statements. Wherever program iterations and other

control structures are necessary, program code for them is generated.

Declarations for object program data structures and variables

are generated. Code is also generated for recovery from program

failures when bad data is encountered during program execution. The

product of this phase is a complete program in a high level language,

PL/1, ready for compilation and execution. A listing of the

generated program is produced.

The remainder of this report expands on the above phases. Figure 3

provides a tree diagram of the major modules, as well as the overlay

structure of the Processor. The names of the modules in this

diagram are referenced throughout the remainder of this report

wherever the corresponding task is explained. As seen at the top

of Figure 3, a MONITOR governs the execution of the different

phases of the Processor, and does not allow succeeding phases to

proceed without the success of the previous phases9 At the second

level of Figure 3, the major phases of the Processor are named

(1) SAP (Syntax Analysis Program), Section 2; (2) NETGEN (Network

Generation) & NETANAL (Network Analysis), Section 3; (3) SCHEDULE

(Schedule events and generate flowchart), Section 4;

and (4) CODEGEN (Code Generation), Section 5. Below this level

of Figure 3, the diagram shows the names of the modules subordinate

to each of these phases. Each of these subroutines is discussed

at length throughout this report*Figure 3a provides an alphabetic

index of the names of the major modules and the sections in which

they are discussed.

In order to exemplify the nature of the Processor phases

throughout the analysis, design, and program generation phases, a

sample case problem is described in Section 3 and specified in

MODEL. The processing of that sample problem is followed through-

out the various phases for tutorial purposes.

Flp«TO 3 ttit.ior Mod**lc* of tit* UODKL

ftnsr\ pt»ASE I, SynU*
U:;c

SAPC

INITIAJ

JLJ
TAP

UEX

xur.K

• Z I L
AI.PIIIIXR

surt.rn

!.<- - - - K)ov o/ Dati

Flo>o6f Conire

PHASE I l |
Spcclflrotinn
(Nciwor ;)
Analyst*

I Hinr.KN

aitticr

IIKTANAI.

en A fWfiir

r
u*.

-tE^K:
LKIIKKKL

x

VHASZ IfX 1

Prof rota fc Flowrhtrt

SCHE-
DULE'

FLOW
OPT

->

(Y

AMANAI,
DIM
PROP

FILL
SUB

i •
RNG
PROP

CYCLE;

l « l

I

H

ITBL

RLTltlEVi ' (Retrieve 1« cnHtd bvA »11 olh«r

IMIASC IV;
Cod« Con^ratlon

t»

Major Modules Section

ADDJTOJWHILE
AMANAL
B-YTE_CALC
CGSUM
CHECK_VIRT
CODEGEN
CRADJMT
CREASIM
CRDICT
CRSVAR
CYCLES
DECLAREJSTRUCTURE
DIMPROP
DOASS
DO_FLD
DO^GRP
DO_REC
DRAWJBDGES
ENEXDP
ENHRREL
ENIMDP
ENT_HIER_ADJ
ERRLIB
EXTEND_STRUCTURE
EXTRACT_COND
FIELDPK
FILLSUB
FLOWOPT
FNDISRC
GENASSR
GENDO
GENEND
GENERATE
GENXOCD
GENITEM
GEN_NODE
GFLTRPT
GPL1DCL
LEX
MERGPL1
NETANAL
NETGEN
OPTIMIZE_LIST
PRINT
RENUMBER

5.5.3
3.3.12
5.6.1"
5.10
5.3
5.5.1
3.3.2

5.3.2
3.3.13
5o8
3o3 .9
3,3.6
5.6O3
5.6.3
5 .6.1
3.3.9
3,3.4,3.3 .5
3.3e3
3.3.8
3 o3.3
2.2.3
3.3.9
5.5.2
5.4.1
3.3 .10
4 .2
3 .3 .6
5-5
5.1.3
5*1.4
5 .1 .2
5O6
5.4
5.2
4.3
5.8
2.2,1
5.9
3.3.9
3.3
4 .21
5.5.3
3.3.7

Figure 3a
Index of Major Modules

9a

Major Modules

RETRIEVE
RNGPROP
SAP
SAPG
SCAN
SCHEDULE
SCHEDULEJ30MP0NENT
SCHEDULE_GRAPH
SEARCHC
SIMPLES
STORE
STRONG
SUPLIB
UNPACK
XREF
$

Section
tv"

2.3
3,3
2.1
2.1
3.3
4.1
4.1
4.1,
4.1
3.3
2.3
4.1,
2.2
5.6
2.4
5.3.4

5
11

7,5.5

2
1
5
1
4
5
2,2.2.4,2.2.5
2

Figure 3a
Index.of Major Modules

10

2. SYNTAX STATEMENT ANALYSIS

The first phase of the MODE! processor analyzes the syntax

and other local semantics of indi^ idual statements. Advanced

state-of-the-art syntax analysis techniques are used here which

have proved to be invaluable. Specifically, the capability to

generate the parser automatically has enabled rapid development

changeso In addition to checking the MODEL statements for

* syntactic and $ome semantic errors, this phase also stores the

statements in an internal associative form for later processing.

2.1 EBNF, SAPG, and the SAP

2>1.1 Specification of MODEL using EBNF and the SAPG.

The Syntax Analysis Program (SAP) for the MODEL statements

is generated automatically by a Syntax Analysis Program

Generator (SAEG)• As shown in Figure 4, the SAPG produces the

Syntax Analysis Program (SAP) for analyzing MODEL statements, based

on a specification of the MODEL language expressed in the EBNF/WSC

(Extended Backus Normal Form with Subroutine Calls) meta language.

The EBNF/WSC includes the traditional concepts of BNF. BNF

uses sequences of characters enclosed in angle-brackets < >

called non-tergiinals to give names to grammatical units, for which

substitutions may be made. It also uses sequences of characters

not enclosed in brackets which are in the object language (in

this case MODEL). BNF consists of a series of production rules

or substitution rules of the form "As%*B"• "A" is a single non-

terminal symbol and tfB" is one or more alternative sequences of

terminal or non-terminal symbols that can be substituted for A.

11

• B

EBNF/
WSC

of
MODEL

MDDEL

I

r«ents

SAPS

•

1 P
Specifications Listing
Syntax Diagi'.ostics and
Cross-Ref-3rsr.ce Repcrr

>-Encoded and Stccsd
Statements

Block DJo^ram of SAPG o.nd SAP

12

Th alternatives are separated by the meta-symbol "|". To

facilitate language description, BNF was extended to EBNF with

two more well-known meta-symbolss [] representing optionality

and [] representing zero or more repetitions.

The specification of MODEL that is input to the SAPG consists

not only of the syntax specification of MODEL, but also of sub-

routine names embedded within the EBNF; therefore the name "EBNF

with Subroutine Calls" (EBNF/WSC). The SAPG provides a capability

to branch to these subroutines upon successful recognition of a

syntactic unit. Thus, they can complete the SAP to enable it to

check some of the statement semantics, to encode/ to produce

error messages, and to store t KODEL statements for later retrieval

The invocations of these subro in >s are generated automatically

by the SAPG, while the supporting subroutines themselves are

written manually. The definition of the MODEL language in EBNF/WSC

appears in Figure 5« The subroutines to be invoked are indicated

between slashes (/•••/). Note thit subroutine calls are made

after the successful recognition of syntactic units up to that point.

The SAP generated by the SAPG according to the EBNF/WSC is

supplemented and linked with the routines. The SAP accepts state-

ments in MODEL and checks them for syntactical correctness, and

local semantics. It produces a listing of the statements, syntax

diagnostics, an encoded stored version of the MODEL statements,

syntax trees for the assertions and a cross-reference report.

13

1 <MODEL_SPECIFICATION>: : = < "<KODE L_BOD Y_ST!*TS > /CL*ERRF/
2 / S T ^ T ^ F L / <HOQEL_SPt.ClFICATION>~
3 <MOOeL_fcODY_STKTS>r:« " /UNRECS/
4 MODULE <MODULE-NA«£ S T M >
5 ISOURC? <SOURCE~FILtS_ST.M>
t |TARGfcT <T4RGET~FILES~STrtT>
7 | 3,' E\'D^ /ENDINP/
8 I <FILE_STMT>
9 | / A ' S S I N I T / <ASSERTICNS> / S T R H S /

1 0 < A S S E R T I O N S > : : = / £ R K A S S / < C O N O I T

12 < M < 1 S > / S W N A O P / M < < O D L OH KHS>
13 < C 0 N D I T 1 0 f * A L > : : - I F / S V A A S 1 / / S V 0 P 1 / " / $ £ IB I T/ / S E T S R / / E R * B O O L /
1 4 . < P O O L £ A N _ E X P K F S S I CN> / S \ ^ C V P 1 / / E
15 TH£.« / S V N X O P / < S 1 J » P L £ . A S S E R T 1 O N >
U i ^ E L S E /SVNX-OPy <ASSfeRT10N> / S VfcX C M P / " { / S T A L L /
1 7 < A S S F R T I O ^ > : : • / S f t i r A S S / < C O K D I T l G M A t > I < S I h P L £ _ A S S E R T 2 G N >
1£

I / E R M R H S / < l * * T C A S > / S t t S R / < 3 0 0 L E A N . c X P R E S S I 0 N > / S V N X C M P /

^ 2 < S i f t P L £ - a S $ £ R T I C N > : ; - / S E T T G / / S V A S A E 1 < S U Q . V A R I A B L E >
i 3 / S V C M P 1 / / E R f f Q / = 7 S V N ») I O P / / S E T S R /
2 A < 6 C C L f c A N ^ E X P S t S S I 0 N > / S V N X C h P / / S T A L L / < E N D C H A R >
^ 5 < S U 8 _ V A R ! A D L F > : : = < E A C h R > / S V E A C H / / S E T y / A R / / A O L F * / / S T R . C O N /
i : ^ " I / E A C H I N T / / S E T S U 3 V / < V A R > / S V C M P 1 / / S V T 6 5 R /
i7 . i H i / S V ; , X (; P / / I ^ C L ^ V L / / : h T SI T / /f RM &A C H/
i:8 < B G 0 L £ A N ^ E X P R E S S I O N > / S V * \ X C M P / (, / S V N X Q p /
2 9 < B G O L E k H _ £ X P k E S S i O N > / S V N X C h P / " < -
3 0 ' • ' / E R K E R F /) / D E C l E V L / M { / S T A L L /
3 1 < b C C L E A N - E X P f ? £ S S I O N > : : = / V R b £ 1 /

i 3 < M < o R > / S V N X O P / < 8 0 0 L c A N ^ T E R M > / S V N X C M P / " C *
i A / i T A L L /
35 < C O U D ^ E X P > : : * I F / S V C O N O / / C U N ' D B L / <&OOLE *:>*.£ X PRE S i IOW> / S V C M P 1 /
i d / T h E N C E / T H E N / $ V N X C P / : < f c 0 0 L E * N . E X P R E S S I O K > / S V N X C l ^ P /
3 7 / E L S E C E / E L S c / S V N X C P / < B O O L E J » f c * E X F » P E $ $ I O N > / S V N X C M P / / S T A L L /
3 £ < 0 R > : : = / Q R _ R E C /
3 ? < f a O C L £ A N - T E R ? - > : : = / w R f e T I / Z i V o T I / < E 0 O L 6 * N . F A C T O R > / S V C * V P 1 /
4 0 " < " i / S V N X O P / < P O O L E A N _ F A C T O & > / S V N X C ^ P / " < * / S T A L L /
4 1 < B O G L £ A N ^ F A C T O R > : : - / * R £ E 1 / / S V B F 1 / < C O M C A T £ N A T I C N > / S V C M P 1 /
4 2 * < M < R £ L A T I O N > / S V N X C P / < C 0 N C A T c N A T l O N > / $ V N X C t f P / M < * / S T A L L /
4 3 < R E L * T I O N > : : * / R F L R E C /
4 4 < C O N C A T I L S H T I O N > : : - / u R C C M / / S V C C N / < A R I T H - . E X P > / S V C ^ P I /
4 5 < " < C O N C A T > / S V N X O P / < A R I T h _ E X P > / S V N X C ^ P / M < * / S T A L L /
* 6 < C C N C A T > : : = / C A T R £ C /
4 7 < A R I T H _ C - V P > J : = / V R A E 1 / / S V A t / < M < S I G N > / S V O P t / " <
4 8 ~ < T E R r t > / S V C ? * P 1 / i " < O P ? > > / S V N X O P / < T E R M > / S V N X C M P / M { * / S T A L L /
4 9 < T E R f ^ > : : - / . R T E R r i / / S V T E K > r / < F A C T O K > / S V C V P 1 /
i C { • • < M O F S > / s y ^ x c F / < F A C T G P > / S V M X C ^ P / M < * / S T A L L /
i > 1 < F A C T G R > : : = / W R F A C . 1 / / S V F A C / C M " * / S V O P 1 / w { < P R I f t A R Y > / S V C W P 1 /
5>2 < " < £ X P O N > / S V N X O P / < F R I f i A R Y > / S V N X C h P / M < * / S T A L L /
5 3 < E X P 0 N > : : s / H X P R ^ C /
^ 4 < P R I ^ A R Y > : : = / « R P R X . V 1 / / S V P R I F / < I S _ P R l « > / S V C w P t / / S T A L L /

Figure 5: Definition of MODEL Language in EBNF/WSC

14

I <S tR 11
<SU?_VAPIABLE>

5£ <STkfNG F O R K > Z Z « * / S E T S t n M / <M < S T K I N G > /S VSTR **k> / " i
59 ~ / E f t M I S S /
t O " / A D L E X / <WB / S T R 1 T / / S I T E R R / < f c . S U F X > " l

fc2 ~ / S E T F U * \ C / ~ < " < / S V N X O P / < 8 0 0 L £ AN_EXPR ES S ION >
C3 /SVNXCfcP/ < M , / S V N X G P / <BOOLEAN~EXPRESS1ON>
1,4 / S V K X C K P / H < *) M (/ S T A L L /
65 <FU\CTIO^_NAf«E> : : - /FNCHECK/
t6 <VAR>::= 7S3TVAR/ / I N l T G N h / /wiNMTRR/ <NA^E> /ADLEX/ /MKfitNH/
fc7 < " • / A D L E X / /G* \ * 'ERR/ <NA«E> / A O L E X / / M K C M ^ / M { * /STR CON/
68
69
70
71
72 <S T K I f4G> : ; - <STKlUG.Cor- .ST>
73 < O P S > r z * / O P R E C /

75 < T E S T > s s = / T S S T b I T / :
7d <MODUL£ ^^Af^E^S TWT> : : • / W O D U L 1 / : /
77 / S T l " ? i / / <ENDCHAR>
7£ <i>OuR CEt# Fl LE S^S T^T> SS « <"< FX Lr ^KE Y VOR0> w< / S ^ C F L i / / I N I T S F L / :
79 < S o O ? C S . F l L c L I S T > / S T S R C / <ENDCH*R>
CO < f l L ? . K t l ' b 0 K 0 > z I ^ F I L E S I f I L £
fe 1 < S O U R C S a o ^ l L £ L I S T > : : = / S f c C f L * / <NAI1E> / S V 5 R C /

^ 3 < T A R G E T - F 1 L L S - S T ^ T > s : * i M < F X L £
fc* < T A R G i . T - F l L £ L I S T > / S T T A R / <?.U
15 <TAf iGET F l L E L I S f > ; z s / T A R F L ^ / <NAf t >

6 7 < D A T A ^ D c ? C - S T r , T > ; : s = < D A T A - 4 > E S C R T P T 1 0 N > < E N D C h A k >

fc9 < F I L E > / S V F 1 L E 7 / F I L F R R 1 / < F I L E D E S O / S T F 1 L E / <STORAGE P E S O / S T D E V /
9 C
9 1

V3
V4» <Gfi F^FL C >s : s < G R O U P - S T M T > | < F i E L D - S T W T >
V5 < S U B 2 s T h . T > : : r < s u P S C l < I P T > / p ' E h l h l t / * / S V « E M / < i8C < O C C S P E C >) " C / S T S U B S T /
V t < 5 s U b S C f c I P 7 > : : = SUB | S U B S C R I P T
V7 < F I L E > z . z » F I L E I REPORT
V8 <RfcCO,RD S T V T > ; : S < R t C 0 R D > / K E K 1 N I T / *(MC l f<C < I T E M L 1 S T > < * *) " {
9 9 / S T R EC/

1 t 0 <RfeCOh0> : ^ = HEC | RECCKD
1 U 1 < I T E K . L 1 S T > Z Z *
1Q2 < l T £ r > : :*<?<AW£:
1Oi <OCC5PEC>::- *

::=<INThGER>
107 <^AXOCC> : : = <ws
1C£ f <1NT£GER> /SVHXOC/

Figure 5 (continued)

15

1 0 9 < G R 0 U P _ $ T K T > : : * < G R 0 U P > / * E M I N I T / i*(n< < I T £ h L I S T * { " > " { (. " , - <
1 1 0 ~ { " TABULATED / S V T A 6 / t%< / S T G R P /
1 1 1 <GR0UP> : : = GRP I GftCUP
1 1 2 < F I E L D _ S T M T > : s * < F I E L D > / S V F L O / < F I E L D ATTR> / S T F L D /
1 1 3 < F I E L O > : : = FLO | F I E L D
1 1 4 < F I £ L D A T T R > : ; * <"tul <TYPE> / S V F D T P * / < " < L E N 3 $ P E C > " <
1 1 5 < % 7 ' t < M < L i ; % E _ S P £ O M < <• • , ' •< < M < C 0 L S P E O ' H < ") " <
1 U < L E K G _ $ P E C > : : * (/ F L 0 E R K 4 /
1 1 7 < W I N _ L E N S T h > im < K A X . U N G T H > "i / F L 0 E R R 5 /)
1 1 b
1 1 9 _

< L I N E ^ S P F C > : : = L l ^ £ / L C E K f i / C < I M 7 E G £ R >
< C 0 L . S P £ C > : : = COL / L C E R R / < < I N T E G £ * > / S V C O L /)

I < S T R I N G _ S F E C > I <%UW S P £ C >
< P I C . O E S C > : : = < P I C T Y P E > y P I C E R R i / / S V P I C /

U 5 ' i M < S T R I , \ G > / S V P 1 C S T / K C * / V T P I C /
1 2 ^ < P 1 C ^ T Y P ? > : : - P I C I P I C T U R E
1 2 7 < S T R I N G _ $ P E C > : : = < S T R I N G _ T Y P E > / S ' T R I P /
1 2 8 < S T R I N G * T Y P c > : : - C r i A R | C H A R A C T E R S I T f K U « I N U M E R I C
U9 < U U W ^ S P E C > : : - < N U H _ T Y P E > / S V N U W T P / < u < F ! X F L T >
1^0 <NU« T Y P ^ > : : - B I N F B INARY | OEC f DECIMAL
1 5 1 < F I X F L T > : : - F I X I F I X E D I FL I FLOAT I FLT
1 1 2 < M A X _ L E f c t T H > : : * C M : M < < I M E C S R > / S V K X F L K /
1 1 3 i f / F L 0 E R R 2 / < S I M G R > / S V S C A L E /
1 3 4 | < I N T E G E R >

<RECT*UM>
1 3 7 < R E C N U * > : : = / R E C K U * /
1 3 ? < I N I T N U r t > : : = / I M T N U M /
1 3 9 < S I G N > : ; = • I -
140 <RECG>::= RECORD I GROUP

142 <C0DE>::=c6CDIC|BCD|AS CII
143 <AN1>::= <NA*£>t<INT£GER>

= 7 (91 4 4 -

1 * 5 < O E N $ I T Y > :
U ^ < P A K I T Y > : :
1 4 7 < T Y P E D S K > :

1 4 9

< E N D C H A R > :

= - 2 3 1 4 l 2 i 1 1 U 3 3 G I 2 3 0 S I 3 3 3 0 - 1
I 0 R G A N 1 Z A T I C N
: = / C S J C £ R 2 / 1 S A I ^ I b E U U E M T I A L l S A P 11ND EXE D _$E QU E K T I AL

<cND_CHAR> / S T M T I N C /
1 5 1

1^3
1 5 4 < S T R I \ G _ C O N S T > : 2 = / C H A k $ T K /
15 5 < N A * E > : 7 S / * ^
1 5 6 < I M E G E R > : : =

: : = IS I »
E - S I ? ' T > : : - F I L c < M f * A « F M (f M < I S > M l / . M E D E R 1 / <N AM i> / S V FLNtfl /

1 5 9 ~ < F 1 L £ . D F S C > / S T F I L E /
<STORAbE. t>ESC> / S T U c V / <ENDCHAR>

1C2 ~ < - < M (i i < < S T A k > / S v S T A R F / C M) M < t H

Figure 5 (continued)

163 ("STORAGE <"NAMFft< {"<1S>"(/FILERR5/ <NAME> /SVSTNK/M(
U4 (M<KtY> (#'NAMEff({ "< IS>" { /FILERR6/ <NAME> /SVKEY/M(
1c5 (M<OfcG> {*•<!$>••{ <ORG_TYPE> /SVONG3/M(
1t£ <STORAGEwDESC> 22= {•VDEVlCt (M < I S > - i (<DEVICE> IH /SVDEV/

1x6 <P_LK. RtCwVOL>
1c9 {M<TAPt_DESC> w{ (i i<DISK -DFSC>* i{
17C {fiHARDWARE"({ "SOFTWA H Eff { %'
171 <DEVIC£> 22- /hfOERt/ TAPE ! DISK/SETDEVB/
172 | l^HD /SETDtVC/ | PRINTER /StTDFVP/
1/3 j PUNCH /SETDEVU/ | lERI^IMAL /SFTDEVI/ ^
17A <REC^f«T> 22= /RCFER1/ F1XED|VAR1AbLEIVAR_SPANNED lUNDEFlUED

1/6 ~ "(*• (fiMAXM{ /KCFER2/ BLOCKS17E (f f < IS>"{ <1NTEGER> /SVBLK/ t f{
177 (M {MMAX/MtDfcR4/w(RECORDSIZE {"<1S>M{ /RCF ER 3/<lNT EGER >/S VRCSZ / • * (
178 ("VOLUME- { itNAHEM({ M <1S>°(/KEDER5/ <NA-HE >/S VVOL/ {§i

f/MEDER5/<NAME> i i{* "i
179 <TAPE^DESC> s:= {"<TRACKS> {• •<!$>"{ /P ARF HR/<NO_TR KS >/S VTR K2/ f l (
160 ("PARITY (f f<I :S> - §(/PARFRR/ <PAR ITY >/ SVP AR2 / " (
Id ("DENSITY (" < I S>#-(/PARERk'/ <OFI«SITY> /SVDEN2/M (
1o2 ' {•• ••{fiTAFEii(LAPEL f M <IS> 9 f (<LAPfcL_TYPE>/ SVLA82/ f i(
1c3 ("START { M FIL£ f i < {M<IS> f # (/PARFKRA <1NTEGER> /SVSTFL2/M (
1t4 { i l(MCHAKM(CODE < - i<lS> - 6t <CCDE> /SVCC/ f i (
U5 <TRACICS> 2 2 = NO_TRK$ I TRACKS
1 6 < < L A b E L _ T Y P E > 2 S = * /?1ED E R 3 / I D « S I D J A M S I STD |NUNE f BYP AS S
U7 <D1SK^DE5C> :2= ("UNIT (i f<IS>MC /D5KER4/ <TYPEDSK> /SVUNIT2/° (
1c8 ("<C Y^IUDtRSV/SVUC YL / { # I<IS>"{ /PARERR/ <INTE6ER> /SVQTY2/W(
1b9 <CYLINDL^S> ; : = NO^CYLS I CYLINDERS
1V0 <HARDUARf>22= ("{MC OMPUTE R'H >tODFL (M<IS>> §(<kUV>
1V1 <SOFTwANF>22= (M(#iOPEKATINGM< SYSTEM { | { l<IS> i f i{

Figure 5s Continued

1EXTERNAL FUNCTIONS
CLREPRF
SVNXOP
FREETMP
StTSUBV
THENCt
WHAT 1
STNU^
QuKERR
SKCf L1
S V F I L t
SVKNOC
FLDtPRA
STP1C
RtCNUM
g» • f\ r £) 4
i' t b i. • 1

S V D E V
R C F E R 2
S \ i D l * 2

STPT^FL
S V A A S 1
ERKRMS
SVTGSR
E L S E C L

S V A E
S-fcTSTkN

1 N I T S F t
F1L EkK1
STARR EC
FLDERRv
SV5TRTP
I N I T N U ^
SV FLNK

SVtLK
S V L A B *

AND/OR SUBR
UNRECS
SVOP1
IUTOASS
INCLEVL
OR^REC
ill) T r n M 1VI f \ I C r I I I

SVSTRN6
niTSTR
STSKC
STF1LE
ITEMER2
SV-MKFLN
SVhUMTP
DSKfcR?
F1LLRR3
SVR fcCF
ME DIPA
SVSTFL2

V R t C U R S I V E PRODUCTIONS
MODtL_S
COfJDir I
ASSERTI
SbB^VAR
BOOLEAN

P E C I F I C A T I O N
ONAL
ON
l A B L t

EXPRESSION

CUTlNkS
END1NP
S E T B I T
SVASAE1
ERKfcACH
UKBT1
SVTERH
ERK1S&
EACHRCC
SRCFL2
STDLV
SVf^XOC
LCEKR
SVWCD
S E T I N T R
SVRtNfc
VEDLkt
RCFLR3
S V C C

A S S I N I T
SETSR
E«HEQ
ERKfcRP
SVBT1
URFAC1
S T B I T
CPTLC
£VSRC
r E K I N I T
CKttbMX
SVLINC
SVMXFLN
SEMI
SVSTARF

SETDEVB
SVRCS2
MLDERi

STRHS
ERMBOOL
SVEACH
DfcCLEVL
SVBF1
SVFAC
B1TERR
ftO-PKtC
TARFL1
SWMt«M
SVTAB
SVCCL
F L D b*R R ?
STMTINC
F I L t R R 5
StTDEVC
ELDERS
DSKLR4

ERMASS
ERKTHEN
SETVAR
WRBL1
RELREC
EXPREC
STFUN
TESTBIT
1NITTFL
STSUBST
STGKP
FL0ERR3
SVSCALE
SVENDC
SVSTNM
SETDEVP
SVVOL
SVUNIT2

SETT6
SVNXCMP
ADLEX
SVBEXP
WRCON1

WRPRIH1
SETFUNC
J4ODUL1
STTAR
STREC
SVFLD
PICERR1
INTERR
CHARSTR
FILERR6
SETDEVU
PAktRR
SVUCYL

SVASSR
STALL
STR_CON
SVCOND
SVCON
SVPRIM
FNCHECK
MODUL2
TARFL2
1TEM01
STFLD
SVP1C
NEGATE
NAMEREC
SVKtY
SETDEVTT
SVTRK2
SVGTY2

SVCMP1
INTODDL
EACHINT
CONDBL
CATREC
SETNUM
I N I T Q N M
STMOD
SVTAR
SVSTAR
SVFDTP2
SVP1CST
NUMERR
INTREC
SVOKG3
RCFER1
SVPAR2

B O O L E A N F A C T O R
CONCATENATION

FACTOR
Pk.IiMARY
is^pran
FUNCTION CALL

Figure 5: Continued

18

2.1.2 How the SAPG Produces' the SAP

The SAPG is a small compiler in itself in that it processes

a specification in the language EBNF/WSC and produces a program

(SAP). It performs this in three passes over the set of pro-

ductions.

In pass 1, each production is scanned, and its components

are encoded into a set of tables. Non-terminal symbols appearing

on the left-hand-side of a production (new production names) are

put into a symbol table, while non-terminals appearing on the

right-hand-side of a production are put into a work table. Terminal

symbols in a production re put into a terminal symbol table.,

Subroutine calls are put into yet another table«

In pass 2, the symbolic references in the work table (i«e«,

non-terminals on the right-hand-side of the original production)

are resolved. Pass 2 checks that each right-hand-side non-terminal

symbol in the work table is defined, and links it to the corres-

ponding entry in the symbol table. Undefined non-terminals as

well as circularly-defined non-terminals can be detected in these

table searches.

Pass 3 of the SAPG is the code-generation phase that produces

the SAP in PL/1. It is only entered if no errors were encountered

in the previous phases. For each EBNF/WSC production, a PL/1

procedure is generated. Each one returns a bit: 1 if the

recognition was successful? 0 if it was unsuccessful. The

exclusive nature of EBNF production rules and alternatives is

effected by generating nested PL/1 IF-THEN-ELSE statements.

19

Repetition zero or more times is effected by generating a GO TO

to the statement testing for recognition. Subroutine names

embedded in the EBNF/WSC get a CALL generated for them in place.

Calls to other subroutines not explicit in the EBNF/WSC are also

generated. These include "housekeeping" subroutines of the

SAPG and calls to LEX, a subroutine to scan and return the next

token in the object language.

Tci illustrate the code that the SAPG generates, consider the

following representative production rule in the EBNF/WSC and the

PL/1 code that corresponds:

<FIELD_STMT> ::«FIELD /SVFLD/<FIELD_ATTR> /STFLD/

The PL/1 code that is generated for it by the third pass of the

SAPG would be the following:

FIELD STMT: PROCEDURE RETURNS (BIT (1));
CALL $MARK;
CALL LEX;
IF LEXBUFF«'FIELD1 THEN DO;
CALL LEXENAB;
CALL $POPF;
CALL SVFLD;
IF FIELD_ATTR THEN DO;
IF ERRORSW THEN DO; CALL $SUCCES; RETURN(f1•B); END; ELSE;
CALL STFLD;
CALL $SUCCES; RETURN('1fB);END;
ELSE DO; CALL $SUCCES; RETURN(f1'B); END;
END;
ELSE DO; CALL $FAIL; RETURN(f0'B); END
END FIELD STMT;

20

The above code generated by the SAPG would become one procedure

in the SAP. Note that the names that the language definer uses

in the production rule ar*e preserved in the generated SAP code*

The subroutines beginning with dollar signs ($) are "housekeeping"

routines that are internal to the mechanisms of SAPG-generated

code.

2»2 Supporting Subroutines for BBNF of MODEL

A refined system flowchart of the SAPG and SAP showing the

types of supporting routines appears in Figure 6. The manually-

written syntactical supporting routines are of one of several

typesi

(1) a lexical analyzer which returns tokens of syntactic

units to the SAP for analysis,

(2) statement semantics checking routines;

(3) error message handling routines;
' ' " ' - • • • • • • • • • • • • • ^

(4) encoding routines to compact information for further

efficient processing; and

(.5) statement storage routines.

The cross-reference report produced during this phase is

generated by a manually-written program (XREF) and is described

in Section 2.7.

A discussion on how to decide where to insert subroutines

as well as a tabular summary of all routines used appears

in Section 2e3 .

2.2«>1 The Lexical Analyzer

The purpose of the lexical analyzer is to scan for syntactic

units or "tokens", using such delimeters as blanks and certain

punctuation marks, and to return tokens to the Syntax Analysis,

21

| with
supporting

I routines

Message
Routines

I \/
Specifications
Listing

Local

Checicing
Routines

Erccding
Pcutines

5

•

Sub-Systea

M/

— — -

syntax
Diagnostics

FUure 6

More Oetullccf View Of SAPG end SAP V/!ch
• Suppcrtlnc; Subroutines

22

Program (SAP) for syntactic checking* The automatically-generated

SAP calls upon the lexical analyzer (LEX) whenever it needs the

next token. The lexical analyzer is based on the finite

state machine concept. Each state of the machine

corresponds to a condition in the lexical processing of a character

string. At each state, a character is read, an action is taken

based on the character read (such as concatenating the current

character to previous ones or returning the entire token to the

SAP), and the machine changes to a new state. The character

classes for the MODEL Language, for the purposes of lexical

analysis, appear in Table 1. These classes divide the entire

character set into categories such as illegal characters ,

delimeters, "normal" characters, etc. The state transition matrix

for the MODEL language appears in Table 2e The rows of the matrix

represent the character classes of the previous character, while

the columns represent those of the current character. The entries

in the matrix indicate the action to be taken and the next state.

The action taken in each state is summarized in Table 3. The

actions involve such steps as concatenating of a character, ignoring

a character, detecting an illegal character, returning a complete

token to the SAP, etc., and setting a "next state".

2.2,2 Statement Semantic Analysis

Some of the semantics of the specification statements can be

checked during the syntax analysis phase. Such routines can

check that a range or condition on a syntactic unit is locally

correct. These routines do not and cannot check the overall

consistency, completeness, or correctness of the logic of the

MODEL specification, a task which is performed by a later phase

23

Class Character Set

0 A B ... Y 2 _

1 (space)

2 0 1 2 ...,9

3 . (+ 4) ; ,. 2 :

4

5 <

6 I

7 *

8

9 ' -

10 /

H >

12

13 • all others

Explanation

@ Characters in names

Delimeter

numerals

t 1 1
Delimeters in various contexts

Delin in lofiical expr.

"OR" symbol

Mult. Or connent if with "/*"

"NOT" s< bol

elnus s.(bol

Division or comnent if with M/*"

Delim -in logical expression

Delim for keywoeds & log. Expr.

Illegal

Tahle 1

Chnrncter Classes for MODEL Uinp.unp.e

24

Character 1 1 1 1
Class (next) 0 1 2 3 4 5 6 7 8 9 0 1 2 3

(current)

0 1 2 1 2 2 2 2 2 2 2 2 2 2 7

1 1 3 1 5 1 1 1 1 1 1 1 1 1 7

2 1 2 1 2 1 2 2 2 2 2 2 2 2 7

3 2 2 2 2 2 2 2 / 2 2 2 2 2 7

4 2 2 1 2 2 2 2 2 2 ** 2 2 2 7

5 2 2 2 2 2 2 2 2 "~% 2 2 1 7

6 2 2 2 2 2 2 1 2 2 2 2 2 2 7

7 2 2 2 2 2 2 2 2 2 2 2 2 7

8 2 2 2 2; ;^ 1 2 ?. 2 2 2 1 1 7

9 2 2 2 2,, y 2 2 2 2 2 2 1 2 7

10 2 2 2 2, 2 2 2 6 2 2 2 2 2 7

11 2 2 2 2 2 "2 2 2 2^2 2 2 1 7

12 2 2 2 2 2 2 2 2 2 2 2 2 2 7

13 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Table 2 '

State Transition Matrix for MODEL Lcxienl Analyzer

25

Action 1: Concatenate next character to current token

Action 2: End word with next character

Action 3: Skips blanks sequence

Action 4: Reserved (never taken)

Action 5: Scan forward ore character and save as token

Action 6: Comment bracket; scan to end of connent

Action 7: Illegal chara:ter(s); print error message

35 J

8 *

* £

Table 3

Lexical Analysis Actions

26

of the Processor. An example of a local semantics checking

routine is one which checks the range of a numeric computation.

For instance, if a group is said to occur n to m times, a sub-

routine exists to check the 0 < « n < m < 32768. These manually-

written routines are invoked automatically by the SAP by virtue

of their specification in the EBNF/WSC of the MODEL language for

the SAPG. The semantic checking routines are listed in Table 4,
2 ,

2+2.3 Error Message Stacking Rout

These are subroutines which *rror diagnostics to print

out upon recognition of a syntac -incorrect user statement.

Upon reaching incorrect syntactic * ', the automatically

generated SAP does not print its own m& sages, but expects the

corresponding diagnostics to be on an "error stack". For this

purpose, subroutines have to be written to give a MODEL user

effective information when statements have been incorrectly composed.

Specifically, an error message has to be stacked for each expected

terminal symbol in the MODEL language in case the token is missing

or incorrect. If the expected token is found, the SAP simply pops

the corresponding error message and continues; if the expected

token is missing or incorrect, the SAP pops the corresponding

error message, prints the statement number and message, scans for

the end of the statement delimeter (;), and continues. The

routines that stack such error message codes are the ones ending

the letters "ER" or "ERR. (e.g. RECERR). Each routine's syntax

error message pinpoints the token that is incorrect, missing,

unexpected, or misspelled.

27

Table 4

Semantics Checking Routines

(Inserted in the EBNF/WSG after the token(s) to be checked or for

other action)

NAME

ASSINIT

CATREC

BITSTR

CKMNMX

EACHINT

EACHREC

EXPREC

FNCHECK

FSASS

FRUITER

FRINTRM

GETLIB

INITQNM

INITSFL

INITTFL

INTOASS

INTODDL

WHAT IT DOES

Initializes number of sources/targets to assertion

Recognize the operator *|J f•

Check that an alleged bit string contains only the digits,

0, 1

Checks proper range for minimum and max!

Initializes flag for FOREACH existence

Recognizes FOREACH phrase

Recognizes the operator **

Check that a candidate name is a recognized

function name

Prints frame before first assertion

Prints frame before interfile relationship

Prints frame before interims

Gets input from library

Initializes number components to qualified name

Initializes source file list

Initializes target file list

Returns 1 if the currently scanned statement is an

assertion and not a data description statement

Records that the statement scanned is a data description

statement

Table 4: - 28

jSemantleg Che cking Routines (continued)

NAME WHAT' IT DOES

INTRT

MKQNM

MOPREC

NAMEREC

OPREC

ORJKEC

RECNUM

RELREC

RESETBT

SETBIT

SETSR

SETTG

STARREC

SVASSS

SVENDC

<>>t >

Recognizes integers

Initializes number of members of record or group

Concatenates qualified name components

Recognizes a multiplication operation, i«e«

I*1 or 7*

Name recognizer; checks not keywords

Recognizer for the operators f'4-\ Vr1.

Recognizes the alternation operator f|f

Recognizes and scans a number

Recognizes any of the relations

"<• » •» >» < • - .

Clears a flag which if set signify an assertion

is being scanned

Used to set and reset a bit that indicate whether

the statement is an assertion or a data

description statement*

Sets a flag which signals that the right hand

side of an assertion is being scanned. This will

cause all names encountered to be added to the

"source" list for the assertion

Signals that the left hand side of an assertion

is being scanned

Recognizes a **f for indefinite repetition

Saves the actual assertion itself during the

scanning of a statement

Recognizes a *jf as an end of statement character

29

One product of the syntax analysis phase is the Error

Diagnostics Report containing the messages. Each message gives

the diagnostics provided by the error routine and provides the

exact location of the ferror so that it can be corrected and

resubxaitted by the user easily. If no syntax errors are found

during the syntax analysis phase, a message is sent thai:

"NO ERRORS OR WARNINGS DETECTED", and the Processor proceeds to

the next phase. But̂ . if ef^or diagnostics were produced, a flag

is set to diable continuation of analysis and design beyond the

syntax checking phase.

..Si %'
The error aespagesaand stacking routines are listed in Table 5.

2.2.4 Encoding Usfir Statements

These supporting routines encode some of the MODEL specifi-

cation into an internal representation. Although all of the

names provided by tjie user specification are kept intact in internal

form for use by the object program, many of the descriptions and

attributes are encoded for more compact and efficient processing

later. For example, the description in a FIELD statement enters

an internal table where the type of field is encoded CO for

character, 1 for binary, 2 for numeric, etc.), and the field length

type is encoded 0 for fixed length, 1 for variable length). One

encoding routine is written for each such statement type* Each

routine is invoked automatically after recognition of the syntactic

unit by the SAP. The invocation is automatically generated as

part of the SAP by the SAPG by virtue of its specification in the

EBNF/WSC. The internal format of the tables is given in the next

section in conjunction with the discussion of the internal associative

30

Table 5

ERROR MESSAGE STACKING ROUTINES

NAME CODE

BITERR BITERR

CONDBL CONDBL

DSKER1 DISK01

DISK02

DSKER2 D2SK03

DSKER3 DISK04

DSKER4 DISK05

DSKER5 DISK06

DISK07

DSKER6 DISK08

DISK09

DISK10

ELSECE ELSEECE

ERMASS ERMASS

ERMBOOL ERBO0L

ERMEACH EREAdH

ERROR MESSAGE

A bit string contains characters
other than 0 or 1#

Missing boolean expression in
conditional expression

Left pa'~en missing in DISK
atem nt

pa-en missing in DISK
ame t

*Orga xiza ion type missing or
illegal in DISK statement

Internal name missing or illegal
in DISK statement

Type disk missing or illegal
in DISK statement

Left par*;n missing in SPACE
spec in DISK statement

Right paren missing in SPACE
spec in DISK statement

Units missing or illegal in
DISK statement SPACE spec

Comma missing after units in
DISK statement SPACE spec

Quantity missing or illegal
in DISK statement SPACE spec

Missing keyword THEN in
conditional expression

Assertion missing after the
keyword THEN.

No Boolean expression after
the keyword IF.

No expression after the keyword

31

Tatle- 5 *• . ^
f

ERROR MESSAGE STACKING ROUTINES (continued)

NAME CODS

ERMERP ERMERP

ERMEQ ERMEQ

ERMISSR ERMRP

ERMISS ERISSS

ERMPHS ERMRHS

ERMRHS ERMRHSR

ERMTHEN ERMTHN

EXPREC EXPERR

FILERR1 FILE01

FILE02

FILERR2 FILE0 3

FILERR3 FILE04

FILERR4 FILE05

FILERR5 FILE06

FILERR6 FILE07

FLDERR2 FLD07

FLDERR3 FLD02

FLDERR4 FLD04

ERROR MESSAGE

Missing Right Parenthesis

Keyword •»• is missing

Missing Right parenthesis

Missing string after quote

No expression after the keyword '-1

Error is recognition of a right hand
side of an assertion

Keyword THEN missing

Wrong structure for the exponent
part of a floating point constant

Left paren missing in FILE or REPORT
statement

Right paren missing in FILE or
REPORT statement

Keyword missing in FILE or REPORT
statement

Record name missing or illegal in
FILE or REPORT statement

Character code missing or illegal
in FILE or REPORT

Medium name missing or illegal in
FILE or REPORT statement

Keyname missing in FILE or REPORT
statement

Maximum length missing or illegal
in variable length in FIELD
statement

Invalid/missing field type in
field/interim stmt

Missing/invalid length in field/
interim stmt

32

Table 5

ERROR MESSAGE STACKING ROUTINES (continued)

NAME

FLDERR5

INTERR

ITEM01

. ITEMER2

CO£)E

FLD05

INTERR

ITSM01

MAXER1

LCERR

LIBERR

MEDERI

MEDER2

MEDER3

MEDER4

MEDER5

MEDER6

MINERR

MODULI

MODUL2

NUMERR

PARERR

PICERR1

QNMERR

LIB01

FIX.ENM

RECFMT

TPLLBL

RECSZ

VOLNAM

DEVTYP

MINER1

MINER2

MODULI

M06UL2

NUMERR

PARERR

PICER1

QNMERR

ERROR MESSAGE

Missing right parenthesis after field-
type in field/interim

l~l sign is not succeeded by an integer

Name missing or illegal in item list

Missing/invalid max, no. of occurrences
of item

Badly formed line or column number for
statement

Left paren missing in library call

Missing/invalid file name after keyword
FILE

FORMAT missing/misspelled after RECORD
in storage stmt.

Invalid/missing tape label

Keyword R2C0RDSI2E missing/misspelled
after MAX

Missing/invalid volume name
(external or internal)

Invalid/missing device type

Number of occurrences of item missing
or illegal

Colon or right paren missing

Colon- missing after keyword MODULE

Name missing or illegal in MODULE
statement

Error in assembly of a number constant

Tape spec parameter missing or illegal

An error in a picture specification

Qualified name illegal

33

Table 5

ERROR MESSAGE STACKING ROUTINES (continued)

ERROR MESSAGENAME

RCFER1

RCFER2

CODE

RECF01

RECF02

RECF03

RCFER3

RPTERR

RPTNER

SEMI

SRCFL1

SRCFL2

RECF04

RPT01

RPT02

RPT0 3

RPT04

RPTN01

RPTN02

SEMI

SRCFL1

SRCFL2

SVMNFLN LNGER1

SVMXFLN LNGER2

SVPICST PICER2

PICER3

Record format missing or illegal

BLOCKSIZE keyword missing in record
format specification

Blocksize value missing or illegal
in record format spec.

Record size value missing or illegal
in record format spec

Left paren missing in REPORT
statement

Keyword REPORT_ENTRY missing

Report entry name missing

Right paren missing in REPORT statement

Left paren missing in REPORTJSNTRY
statement

Right paren missing in REPORT^ENTRY
statement

Semi-colon missing at end of state-
ment

Colon missing after keyword SOURCE
FILES

Name missing or illegal in source
file list

Specified length is inappropriate for
specified length is inappropriate
for specified type of data element
(0 or too long)

Specified maximum length is inappro-
priate for the described data type,
or is smaller than the minimum
length specified.

Length of picture specification is
too small or too big (< 31)

Bad structure of picture string
specification

34

Tablv 5

ERRO' MESSAGE STACKING ROUTINES (continued)

NAME

SVSCALE

TAPCRR

TARFL1

TARFL2

THENCE

TLABERB

TRMERR

UNRECS

VOLERR

WRBE1

WRBT1

WRCON1

WRFAC1

WRPRIM1

WRTERM1

CODE

PICER4

PRECR1

TAPE01

TAPE02

TARFL1

TARFL2

THENCE

TLAB01

TLAB02

TRMER1

TRMER2

UNRfiCS

VOLER1

VOLER2

WRBE1

WRBfl

WRC0N1

WRFAC1

WRTERM

ERROR MESSAGE

Illegal character in picture specifi-
cation

The fraction point offset is outside
of the bounds -128 <p <127 or
inappropriate for the data type
described

Left paren missing in TAPE statement

Right paren missing in TAPE statement

Colon missing after keyword TARGET

Name missing or illegal in TARGET file
list

Missing keyword ELSE in conditional
expression.

Keyword INT^NAME missing in tape label
description

Internal name missing or illegal in
tape label description

Left paren missing in TERM description

Right paren missing in TERM description

Unrecognizable statement

VOL^NAME keyword missing

Volume name missing or illegal

Badly formed boolean expression

Badly formed boolean term

Badly formed concatenation of expressions

Badly formed factor

Badly formed primary

Badly formed term

35

storage of the MODEL statements.

The encoding and saving routine are listed in Table 6*

2,2,5 Statement Storage Routines

These routines collect the strings of names and other vital

information in the MODEL statements, and pass them to the STORE

system, which is a sub-system in itself to store the statements

for later processing. Such storage-invoking routines are called

at the end of scanning each MODEL statement, and are the ones

that begin with the letters lfST". (e.g. STFLD, STREC, etc.).

The storage subsystem described below (STORE), which is called

by these routines, stores the MODEL statements in a simulated

associative memory that facilitates later retrieval.

On analyzing the assertions (computational statements) a

syntax or derivation tree which represents the assertion is

;c

generated and stored. This representation facilitates later

analysis and scanning of the assertion, as well as systematic

transformations. The tree representation is reconverted into

text form in the code generation phase.

At the end of the syntax pass, we have the entire set of

MODEL statements stored in a convenient storage system for further

analysis. The storing subroutines which invoke the use of the

STORE system act as an interface between t. e automatically generated

SAP and the storage system presented below. The storage system

is an extension to the capabilities of the SAPG since it is

general purpose in nature and is independent of the nature of

36
Table 6:

ENCODING/SAVING ROUTINES

NAME

DECLEVL

INCLEVL

INITNUM

SETDEVB

SETDEVC

SETDEVP

SETDEV1

SETDEVU

SETFUFC

SETNH1

SETS! >N

SETSUBV

SETVAR

STALL

STBIT

STDEV

STFUN

STNUM

WHAT IT DOES

Decrements the Index level of a subscripted variable
(It is an entry in ASSINIT)

Increments the Index level of a subscripted
variable (It is an entry in ASSINIT)

Initialize scanning a numeric constant

Set device flag in media description to imply disk
storage

Set device flag in media description to imply that
input is from cards

Set device flag in media description to imply PRINTER

Set device flag in med,ia description to imply a terminal

Set device flag in media description to imply a card
punch

Initiate a node in the syntax tree to store a function
reference

Set for assembling a constant number

Initiate a node in the syntax tree to store a string
constant

Initiate a node in the syntax tree to store a subscripted
variable

Initiate a node in the syntax tree to store a variable
name

Stores a node in the syntax tree after all its components
have been defined

Se s the current string contained in the temporary node
tfcfbe a bit string

Store devices Tape or disk

Stores a node in the syntax tree which contains a function
name

Concludes the assembly of a constant number
(possibly floating point)

37

Table 6

ENCODING/SAVING ROUTINES (continued)

NAME

STPIC

STR_CON

STRHS

SVAAS1

SVASAE1

SVASNM

SVASSR

SVBEXP

SVBF1

SVBLK

SVBT1

SVCC

SVCMP1

SVCOL

SVCON

SVCOND

SVDDNM

SVDEN

SVDEN2

SVDSK

SVDEV

WHAT IT,DOES

Concludes the storing of a picture type specifi
cation

Stores a node in the syntax tree which contains a
general constant

Stores on assertion in the associative memory (an
Entry point in ASSINIT)

Sets a node to contain a conditional assertion

Sets to define a node containing a simple assertion

Saves assertion name in assertion storage entry ^

Same as SVASAEl

Sets a node for storing a boolean expression

Sets a node for storing a boolean factor

Saves blocksize in disk/tape storage entry

Sets a node for storing a boolean term

Encodes character code

Save in a node the recently scanned syntactical
unit as the first descendant

Saves column number in field storage entry

Sets a node for storing a concatenation of expressions

Sets a node for storing a conditional expression

Saves data description statement name

Saves density in tape storage entry

Save density for tape, or giving warning

Encodes disk statement type as disk

Set device name to storage name, and save device:
Tape or Disk.

SVEACH Saves FOREACH name in assertion storage entry

38

Table 6

ENCODING/SAVING ROUTINES (continued)

NAME

SVPAC

SVFCN

SVFDTP

SVPDTP2

SVFILE

SVFLD

SVFLNM

L 'XNCR

SVINNM

SVINTNM

SVINTN

SVKEY

SVLAB

SVLAB2

SVLBNM

SVLINE

SVMEN

SVMNFLN

SVMNOC

SVHOD

SVMXFLN

SVMXOG

WHAT IT DOES

Sets a node for storing a factor

Saves function name in assertion storage entry

Encodes field type

Save field type, including NUM & DEC

Encodes file statement type as FILE

Encodes field statement type as FLD

Save file name. Call SVFILE, Set default
names for record a storage, and reset device
bit (DEVBIT).

Saves increment in -disk storage entry

Encodes INTERIM statement type as INTR

Saves internal label name in disk storage entry

Saves internal label name in tape storage entry

Saves key field in file storage entry

Encodes label type in tape statement

O«none, 1*IBM_STD, 2«ANSJ_STD, 3=BYPASS

Save label for tape, or give warning

Saves library name in file storage entry

Saves line number in field storage entry

Saves member name in record/group storage entry

Saves minimum field length in FIELD statement

Saves minimum number of occurrences in record
or group storage entry

Marks the mode as FIXED or FLOATING

Saves maximum field length in FIELD statement

Saves maximum number of occurrences in record
or group storage entry

39

Table 6

ENCODING/SAVING ROUTINES (continued)

NAME

SVNUMTP

SVNXCMP

SVNXOP

SVOP1

SVORG

SVORG2

SVPAR

SVPAR2

SVPIC

SVPRIM

SVPICST

SVQTY2

SVQOTY

SVRCNM

SVRCSZ

SVRECF

SVRENM

SVRLSE

SVRPT

SVSCALE

WHAT IT DOES

Marks the data type as a numeric data type
(BINARY or DECIMAL),

Saves the next assembled syntactical unit in a
syntax node which is its ancestor.

Saves the next delimiter associated with the
assembled syntactical unit or separating it
from its successor

Saves an initial delimiter associated with phrase
such as unary 1_1 or fIFf

Encodes organization type in DISK statement
S=sequential; I=ISAM;

Saves organization for disk, or give warning

Saves parity in tape statement

Saves purity for tape, or give warning

Denote the data as 'picture1

Sets for assembling a phrase for a PRIMARY

Saves the picture specification string

Save quantity for disk, or give warning

Saves track quantity in disk storage entry

Saves record name in file description storage
entry

Saves record size in tape/disk storage entry

Encodes record format on tape/disk storage entry;
O«FIXED, INFIXED BLOCK, 2=VARIABLE

Saves report entry name in report storage entry

Encodes space release indicator in disk storage
entry l*release; 0~no release;

Encodes report*statement type as REPT storage
entry

Saves the scale factor specified in the precision
specification of the data type

40

Table 6

ENCODING/SAVING ROUTINES (continued)

NAME

SVSR

SVSRC

SVSTARF

SVSTFL

SVSTFL2

SVSTNM

SVSTRNG

SVTAB

SVTAPE

SVTAR

SVTERM

SVTERM

SVTG

SVTGSR

SVTMUN

SVTRK

SVTRK2

SVTRMNM

WHAT IT DOES

Saves source name to assertion in ASSR storage
entry

Saves source file name in source storage entry

Records and saves the repetition specification
«(*)• in a file statement.

Saves start file in TAPE storage entry

Save start file# for tape, or give warning

Saves storage name in FILE storage entry

Transfer an assembled string constant (may be
character or bit)' from the general buffer into
a special temporary storage* The final storage
of the node will be done by STR_CON.

Sets tabulated indicator in group storage entry

Encodes tape statement type as TAPE

Saves target file name in target storage entry

Initialize a node to store a phrase for a TERM

Encodes terminal statement type as TERM

Saves target name to assertion in ASTG storage
entry

At the end of scanning of an assertion two
additional storage entries are made One for
the list of source variables used in the
assertion (type ASSR) and one for the list of
target variables defined by the assertion
(type ASTG). SVTGSR calls for routines SVSR
and SVTG respectively to perform these storage
operations.

Saves tape unit number of tape storage entry

Saves number of tracks in TAPE statement

Save #Tracks for tape, or give warning

Saves terminal name

41

Table 6

ENCODING/SAVING ROUTINES (continued)

NAME WHAT IT DOES

SVUCYL

SVUNIT

SVUNITS

SVUNIT2

SVVOL

Save units as CYL for disk, or give warning

Encodes disk units in DISK storage entry

Saves space units in DISK storage entry

Save unit for disk, or give warning

Saves volume name in disk/tape store e entry

42

•the language specified, and could be used for processing other

languages.

The storing routines -are listed in Table 7.

2.2.6 Housekeeping Routines

Finally, there are just a few "housekeeping" type sub-

routines which need not be written by the language definer

because they are provided by the SAPG, but which need to be

included in ff*e EBNF/WSC.

The house eping routines are listed in Table 8.

2.2.7 An ln< To Sap Routines

The sub utine ^ames used in the specification of MODEL can

be classifi into OL of the following five types of subroutines;

error messa a stacking routines, encoding/saving routines, storing

routines, semantics checking routines, and housekeeping routines.

Tables 5-8 provide an alphabetical listing of the routines within

each category,, In the case of error message routines, the error

codes and their meanings are shown. For the other types of

routines, their name and tasks are shown.

2o3 The String Storage and Retrieval Sub-System

2« 3.1 Introduction

The store routines that are referred to in the EBNF

description of MODEL, utilize a general-purpose mechanism for

storing source language strings. A similar mechanism is used

later for retrieving these source language strings * The following

system, basically, consists of a directory structure, described

in section 2.3.2 and the format of storage entries described in

Section 2.3.3. There are also two main procedures:

43

Table 7

STORING ROUTINES

(inserted at the end of each .type of statement of the EBNF/WSC

in order to call STORE to put the statement in the associative

memory)

NAME STMT WHAT PT STORES

STCARD Stores CARD statement

STDISK Stores DISK statement

STFILE Stores FILE statement

STFLD Stores FIELD statement

STGRP Stores GROUP statement)t

STMOD Stores MODULE statement ^

STPNCH Stores PUNCH statement _
"j&i

STPRNT Stores PRINTER statemen t

STREC Stores RECORD statement

STRPT Stores REPORT statement

STRPTN Stores REPORT-ENTRY statement

STSRC Stores SOURCE FILES statement

STSUB Stores SUBSCRIPT statement

STTAPE Stores TAPE statement

STTAR Stores TARGET files statement

STTERM Stores TERM statement

44

Table 8

"HOUSEKEEPING" ROUTINES

(inserted in the EBNF/WSC in order to perform services provided by the

SAPG)

NAME WHAT IT DOES

ADLEX Adds a subpart of a floating point constant to its

full representation

CLRERRF Clears "errors" flag every statement to indicate

no syntax errors yet in next statement

ENDINP Executed upon end-of-file to print last line and wrap-up

FREETMP Frees &*loc^rion of a temporary data structure which

was nef ler ly allocated

NEGATE Negates th ralue of a negative integer constant

to deri e i , correct representation

STMTJFL Scans for e? of statement delimeters when unrecognizable

statement encountered

STMTINC Increments .he statement number; called at end of each

statement

45

(1) STORE for storing source language strings collected during

syntax analysis. STORE is described in Section 2.3.4.

(2) RETRIEVE for accessing previously stored source language

strings, based on a variety of "keys". RETRIEVE is described in

Section 2.3.5.

Additionally a set of routines specified in EBNP parses and

stores the assertions. Section 2.3.6 describes the format of

stored assertionsmSection 2.3.7 describes the routines that store

the parsed assertions. These routines have also been referred to

in the description of saving and encoding routines in Section 2.2.5

The STORE procedure accepts strings which are formed by

the subroutines called during syntax analysis. It stores the

strings in memory which we call "storage entries" while building

"directory entries" in a directory of certain names designated

as keys. By building a directory, the strings are stored

"associatively" in the sense that statements can later be retrieved

based on their content. This capability is crucial to a

"non-procedural" language processor since the statements can be

input in any order.

2,3.2 The Directory and Storage Structure

•. ' The storage entries (the strings to be stored) consist of

two parts:

(1) the key names to be entered in the directory which include

the names the user provided in the MODEL statements for naming

data, assertions, etc. These are the names by which we may

want to retrieve information Tater.

46

(2) auxiliary data from the source language strings including

the encoded information in table form. This information is not

used as the Jpasis of retrievals.

Each storage entry will contain information from a given

MODEL statement. They will appear in memory in the order in

which they are processed*

The directory consists of an entry for each key name* Each

directory entry points to the first storage entry containing that

key name, A linked-list is then maintained from the first

storage entry with that key name to other storage entries con-

taining the same key name. A "branch and bound" binary tree

structure was chosen for the directory itself to make tree

modifications and searching for key names efficient. That is

the first key name entered in the directory becomes the root

of the directory tree? the next key is entered "above11 or "below"

it in the tree by lexicographic order; etc.

Each directory entry has the following forms

Key name Ptr-to-first Up-pointer Down-pointer

where

" Key name" is a string of (up to) 10 characters (padded with blanks)

^Ptr-to-first" is a pointer to the first storage entry containing

the "key name".

*U,g-pointer"and ^Down-pointer" are pointers to other directory

entries, whose key names are up or down, respectively, in the

lexicographic sense.

47

Each storage entry has the following form:

N namel ptrl • • . Name n Ptr~n Ptr -to-data

other data

where

I£ is the number of key names in the storage entry string.

Name (i-1 to n) is a key name of a

variable.

Ptr (i^l to n) is a pointer to the next storage entry with the

same key name*

JPtr-to-data is a pointer to auxiliary data from the source

language statement.

Figure 7 depicts an example of three storage entries and

a directory consisting of only three entries, X,Y, .and Z, where

Y is the directory tree apex. Such a structure was partially

motivated by similar ideas in the "multi-list" file organization.

2«3«3 Storage Entries Format and Tables For MODEL Statements

The STORE mechanism, described in the next section, is

called by SAP's storing subroutines to store the MODEL statements

for retrieval (by RETRIEVE) in .the later phases. For each type

of MODEL statement, the key names in it are stored in its storage

48

directory

Storage

Figure 7

Sample Df rectory and Stat-ass Entries

49

entry. The non-key information in the MODEL statement

(information which is not used to specify retrievals) is kept

in description tables, which are connected (by STORE) to the

corresponding storage entries as was shown above* Table 9

summarizes the internal format of the storage entries and the

corresponding description tables for each type of MODEL state-

ment* The left name in each entry is the name of the statement

being stored. The middle column shows the information appearing

in the corresponding storage entry (with the pointers omitted due

to lack of space). The right column shows the additional

encoded information, if any, from the statement. The key names

beginning with a dollar sign ($) in the storage entries are not

user-provided, but are inserted by the system for its own

information. The last name in each storage entry, for example,

identifies the type of statement, while the name beginning with

a tf$Pw identifies the parent file in which a data item appears.

2.3.4 The STORE Procedure

The STORE(S,D) Procedure has two parameters, S and D. S is

the string containing the key names which are to be stored and to

be entered in the directory. D is a pointer to previously built

auxiliary data from the source string. The latter usually is

an encoded form of non-key source language information.

Algorithm STORE shows the storing procedure. Section 2.3.2

already depicted the data structures that STORE creates.

STORE receives the key names from S and creates a storage

entry for it (Steps 1-3). It checks if they are in the directory

(Steps 4-5, subroutine SEARCH_DIR)• If the key is in the

Table 9 Storage Entries Format for MODEL

MODEL Statement Schema ___ Storage Entry Key Names AuxHilary Descriptions

module-name $MOD0LB

sn

MODULEi module-name

SOURCE FILIiSi s x , 3 2 t s n $SOURCE si s2

TARGET FILESi t i # t 2 i . . . tm $TARGET tj , t 2

f i lename IS FILE(^ROUP j ^ f i l e n a m e r a k $FILE.:
STORAGE IS 3. RECORD l* rl

KEY IS k, ORG I S O)

record-name IS RECORD

group-name IS GROUP

record-name

$RECD

group-name *.i} 102
$Pfile $GRP

MODL n

SRCF n r

TARP n

FILE n ORQ-Code Key-flag ls-star
0-SAM 0 no sort 0-no repet.
]- ISAM key for r

«„„,> u v ' i ~ 8 ° r t k e y lm* repeati
BECD n #members members

^subscripts
f irst sub.
second sub.

GRP n (same as record) ino

MODEL Statement Schema Storage Entry Key Namea Auxtlllary Descriptions

field IS FIELD (fieldtype
(minlength : maxlength) fieldname $Pflle $FLD

Typo Stmtff.

FLD n fieldtype
O~char
l^binary
2«numeric
3-decimal
^binary

floating
5-bit
6«=docinial
floating

7«picture

length type
O«fixed
invariable

min/max
scale factor
picture string
(if type -7)

SOURCE: slfs2,
TARGET: tpt 2 l

assertion-name:

sn
assertion-name a^ s2.•.an$ASSERT ASSR n
assertion-name t^ t2»..tm$ASSERT ASTG n

ASTX n
1 fc2

assertion-name 5ASSERT

subscript-name IS SUB [seRJi;P3l[(range)] subscript name $$SUB

storage-nai^e IS

CARD
TAPE (...)
DISK (..•)
TERM (...)
PUNCH (...)
PRINTER (...)

storage-name

$SUB n

tfnames components
tfnames components
Pointer to syntax tree

range

$CARO
$TAPE
$DISK
$TEKM
$PNCH
$PRMT

CARD n
TAPE n
DISK n
TERM n
PNCH n
PKNT n

tape-attributes
disk-attributes
term-attributes
punch-attributes
print-attributes

Ul

Table 9 (continued) Storage Entries Format for MODEL

52

AlRorithm STOfrH : The Store Procedure

Parameters: S»strin£ of keys to be stored;
T*«pointer to other data

(see Section 2*3*2 for diagrams of Data Structures)

{Subroutines cal led: CHECKJHK, CEKEPATEJSRTRYl

Step !• Count ?KEYS.

Step 2« Allocate the storage entry for S (ca l l i t SE* according to the
format sho*m).

Step 3. Connect PTTlJtOĴ ATA In SE to D.

Step 4* For each key name," perform steps 5 through 11.

Step 5e If key e x i s t s in the directory (Algorithn CHECK-DIP) f then go
to step 7; e l s e go to step 6*

Step 6* Create a directory entry for th i s key* (Alporithi* CEKEP.ATC-
BJTRY)

Step ?• Let Oic^thi-s directory entry»

Step 8* If PTR^TOJFIFS? in D£ already points to a f i r s t storape entry
vdth this key name, then £O to step 9; e l s e go to step 11 *

Step 0. Get the next storage entry in the? l i s t .

Step 10. If i t i s the last in l i s t , then £o to step II; e l s e go to
step ?• . .

Step 1U Add the new SE to the l i s t *

Step 12* Return.

53

directory, then it follows the "pointer-to-first" which points

to the first storage entry with that name (Steps 7-8). The

array of strings in each storage entry is scanned until the key

name is found. If its "next" pointer is null (end-of-list), then

it is set to point to the newly created storage entry (Steps 8-11) .

If it is not, the process is repeated until a null (end-of-list)

pointer is found (Steps 9-10). If the current key name is not

found in the directory, it is entered in the appropriate spot

in the lexicographical position in the directory (Step 6, sub-

routine CREATE__DIR) and the pointer in the directory is set

to point to the newly created first storage entry (Steps 7-8)•

2.3.5 The RETRIEVE Procedure

RETRIEVE(E,D,S,N,P) is the procedure for retrieving desired

storage entries, by searching through the data structures depicted

in Figure 7 and Table 4. It is invoked by many routines described

in subsequent phases of the Processor. It has five input para-

meters as indicated, RETRIEVE finds all the storage entries in

which the given key name or expression of key names, E, appears

and furthermore checks whether the first characters.of data

associated with the storage entries match the string D. That is,

RETRIEVE finds all the storage entries with keys satisfying the

logical expression E and other data D. RETRIEVE starts its

search at directory entry S, normally the root node of the

directory, and it returns a list of pointers P, to those storage

entries which satisfy the request by the calling program. The

number of storage entries satisfying the request is returned in N.

The logical expression used to retrieve strings can be any

boolean expression involving "key11 names or names in the MODEL

54

statements in disjunctive normal form, where the first key

in each term is non-negated. For example, consider the

following statement by a calling program:

CALL RETRIEVE(KEYS, lf,START, N,P);

KEYS might contain the string value 'PRICE & -^QUANTITY|EXTENTf „

This makes RETRIEVE find all storage entries (which correspond

to all statements in the MODEL specification) in which PRICE

appears and QUANTITY does not appear, or statements in which

EXTENT appears. The null second parameter means that the

auxiliary data portion of each statement is immaterial.

RETRIEVE would then start its search and return a list of

pointers in P to those storage entries which satisfy the

condition, and N would be set to the number of such statements

that satisfy the condition.

Algorithm RETRIEVE is shown on the following page. An

example showing the retrieval mechanism to retrieve all storage

entries with key names."B" and " C * is given in Figure 8. The

diagram shows in parentheses the steps that correspond in the

algorithm. RETRIEVE starts by getting the leading key name

of the first conjunct (Step 1) and searches the directory for

it (Step 2). If found, it puts the list of pointers to all

storage entries with that name in a temporary list (Steps 3-7)o

If there ^re other names in the conjunct (Steps 10,14),

then RETRIEVE eliminates the pointers in the temporary list

to storage entries that do not have the other terms in the

55

Algorithn P.nTRir.VE : The Retrieve Procedure

Parameters: I>lofcical expression string; S^pointer
to beginning of directory (input);
P«list of pointers satisfying E; N*nunber of
satisfying entries

(see Figure 7 a for diagrams of data
structures)

Step 1. Cet leading V.ey name K of next conjunct fron E. If
no nore, -j»o to Step 22.
Step 2. Check directory for K (standard binary tree search
in subroutine SEARCH-DIP given ear l i er) .
Step 3. If found, then go to step A; e l s e go to step 1.
Step 4. Set PSE»PTR_TOJFIRST (pointer to f i r s t storage entry
with K)
Step 5. Add fSF, to W list (temporary list of pointers)
Step 6. If K in PSE storage entry points to another storage
entry with K, then no to step 7; else go to step 8*
Step 7. Set PSE to next storage entry in the list, go to

Step 5.
Step 8. If end of E, then go to step 20; else go to step 9.
Step 9. Oet next symbol In E,
Step 10. If symbol*'&' then go to 3tep 14; else £O to step
11.
Step 11* If synbol«'i' then RO to step 12; else error
return.
Step 12. Add list of pointers in U to list of pointers in P
without duplication.
Step 13. Co to step 1.
Step 14. Cet next symbol.
Step 15. If symbol*""* then no to step 16; else go to step
13.
Step 16. (Case of conjoining negated tern) eliminate
pointers in V to storage entries which also contain next key
nane in n.
Step 17. Co to step 8.
Step 18. (Case of conjoining non-negated tern) eliminate
pointers in W to storage entries which do not contain next
key nane in E.
Step 19. Co to step 8.
Step 20. Add list of pointers in W to list of pointers in P.
Step 21. Set ??ssnumbcr of pointers in P list.
Step 22. return.

56

MAIN ?RCG?.A;.;

C a l l RSTRI2V

Vf*workir.g l i s t o f
temporary

i

3 *
(1.9
1 10

_ _ (20)1

•(Tor ""•

Figure 8 Example of Retrieval Mechansim

57

conjunct (Steps 14-16). If there are more conjuncts in the

expression, then the process is repeated and the additional

pointers are added to the list (Steps 12-13). When the end

of the expression is reached, the list of pointers to the

satisfying storage entries and the number of pointers are

returned (Steps 20-22).

^•^»6 Storage Structures For Assertion Statements

Analysis of an assertion statement causes three storage

entries to be made for the statement. (See also Table 9) •

The first entry is of type ASSR and contains a list of all the

names which are sources to the assertion. These are all the

names which appear on the right hand side of each equal sign,

(including subscript expressions) and within boolean condition

expressions. The second entry has the type ASTG and contains a

name which is the targets of the assertion, i.e. it's value

is defined by the assertion. Assertions will have only a single

target. The third entry, of type ASTX, contains in it's main

part just the assertion label (system generated if not provided

by the user) and a keyword $ASSERT. Its auxiliary data contains

a pointer to the syntax tree which represents in a parsed form

the body of the assertion.

2.3.6.1 The Syntax Tree for an Assertion

The syntax tree of an assertion is constructed out of

mutually linked nodes. There are nodes of two types: Non

terminal nodes which have descendants and terminal nodes which

have no descendants and represent an atomic syntactical units

such as identifiers, numeric and string constants. Each node

corresponds to a phrase in the parsed assertion, and if it is

non terminal the list of its descendants represents the further

58

breakup of this phrase.

2,3.6.2 The Structure of Non-Terminal Nodes

The structure of Non Terminal nodes is as follows:

TYPE
n-

Number
of Sons

Delimit
#1

Pointer
to Son

#i x
Delimit

#n

Pointer
to Son

#n

where

"type is an integer code identifying the syntactical type of the

phrase according to the following legend:

0.- Conditional Assertion. Examples If A«B THEN C«p.

1 - Simple Assertion Example: A«B

2 - Conditional Expression. Examples IF A > B THEN C ELSE 0.

5 - Boolean Expression. Example: (A=B) | (C«D)

6 - Boolean Term. Examples (A > 5) & C <« 3

7 * Boolean Factor* Example: C * 7

8 - Concatenation. Example. AllJI'END1

9 ~ Arithmetical Expression. Example: A*B+C*D

10 - Term. Ex.: A*B

11 - Factor. Ex.: A**2

12 - Primary.Ex.: A,B(I+1), (A+B)

13 - Function Ex: SUM(A,I)

14 - Subscripted Variable. Ex: A(FOR_EACH.A)

"Number of Sons" is the number of components or subphrases the

indicated phrase is broken into. Thus if the phrase is "A+B" it is

of type 9 (Arithmetical Expression) and it is parsed further into

the subphrases "A" and "B". The '+• delimiter will be stored as

delimiter no, 2 in the current node.

59

The delimiters are encoded as integers according to the following legend:

1 - * '(Blank - No delimiter)

2 - 'IFf (keyword)

3 - 'THEN'

4 - 'ELSE1

5 - •-'

6 - '+'

7 - '-'

8 - '*' (Standing for multiplication)

9 - •/*

10 - '**• (Exponentiation)

11 - 'I' (Alternation - Logical 'or')

12 -.'&'

13 - '||T (Concatenation)

14 - '-»' (Negation)

15 - '('

16 - ') '

17 - V

18 -'->>'

19 - ' >»'

20 - ' —i < •

21 - .' <-•

22 - '-!»'

23 - »> '

24 - f < '

60

"Delimiter #i f i-1, . .n
tf are the delimiters separating the

subphrases. The first one tis any delimiter prefixing the whole

phrase such as the •-1 in the phrase -A or the• • in the phrase

1 (A < B & B < C) '

"Pointer to Son; #ir i = l M tn" these are pointers to other nodes

which represent the subphrases into which the current phrase is

parsed.

2.3.6.3 The Structure of Terminal Nodes

Terminal nodes are used to store constants such as variable

names f string or numeric constants. Their structure is as follows:

Type Constant-Lengthy ^Con^tant

where

"Type" is an integer code identifying the type of the constant

according to the following legend:

20 - A character string constant. Ex.: fABC*

21 - A function name. Ex.: SUM

22 - A numeric constant.Ex.: 3.14

23 - A variable name. Ex.: PAY

24 - A bit string constant. Ex. 'lOOl'B

"Constant Length" is the length of the character string representing

the constant. It will be 3 for storing the variable name PAY.

"Constant" is the actual character string representing the constant.

During later processing (Module ENEXDP)# all the terminal

nodes which refer to non constants {types 21#23) are converted to

a different format; referred to as Variable Terminal Nodes :

61

Type Node#

1 Type1 As before is an integer code identifying the type of the

name according to the following legend:

25 - Variable type. The associated name is a variable and NODES

is the dictionary entry number of this variable.

26 - Subscript type. This stores the name of a subscript. NODES

refers to a dictionary entry number. This dictionary entry

can be of one of the following types:

1GRP • or 'FLD1, which must be repeating. If this entry

name is X then the name of the subscript is FORJ2ACH.X.

f$SUBf - This is either a subscript declared by the user

or one of the system supplied free subscripts SUBL.to SUB9

f$f - This is a free subscript added by the system. It is

one of the subscripts $l..to$9.

f$If - This is a loop variable added by the system for lack

of a user provided name. In any of the latter three cases

the name of the subscript is the name of the entry.

27 - Function Name. NODE# is a running index in a list of

functions recognized by the system. See £] for the list.

An an overall example consider the syntax tree for the assertion

IF A-B | c < D $ E < = * F

THEN X(FOR_EACH.X) » (Y + 2) *T|| '$' ;

ELSE X(FOR_EACH.X) * '0' ;

It is described in Fig, 9, with the modification that delimiters

are represented by themselves rather then in their encoded form,

to improve readability.

1 1 >•
23 [10 |FOR_EACH.

CM 1 X

23

? ! I
• • : j •• I

Figure 9 Syntax Tree For Example - Assertion

• ; • : • • : • ; t

63 *

2*3.7 The Syntax Tree Construction Routines

Several routines are responsible for the construction of the syntax

tree of an assertion. They may be classified and described as follows:

Setup Routines ; On entering a parse for a phrase of a certain type (by SAP)

an appropriate setup routine is called. This routine allocates a temporary

node area (temporary since we do not know yet how many subphrases or components

it will have) , assigns a type number corresponding to the type of the phrase

an<J resets a component count to 0. There is a setup routine corresponding

to each phrase's type. They are for the non terminal types (listed in

increasing type code order):

SVAAS1, SVASSR (SVASAE1) SVBEXP, SVBT1, SVBF1,

SVCON, SVAE, SVTERM, SVFAC, SVPRIM, SETFUNC, SETSUBV.

For the terminal types (codes > 19), a string area is allocated and

a type variable is assigned too. The terminal types setup routines are:

SETSTRN, STFUN, SETNUM, SETVAR. No setup routine exists for bit string

since the distinction between it and a character string can be made only at

the end of its scanning.

Save Routines: These are common to all non terminal phrases. They alternately

store delimiters and pointers to components, increasing the "number of sons"

counter appropriately. These are all stored in the temporary node storage area.

SVOP1 - Stores a first delimiter. If this routine is not called the

first delimiter is always set to 1 (« f l) .

SVCMP1 - Stores a pointer to the first component.

SVNXOP - Stores the recently scanned delimiter in the next available

delimiter slot. Then increment the "number of sons" counter.

SVNXCMP - Stores a pointer to the recently assembled subphrase in the

next available component slot.

64

Storing Routines : These finalize the node structure, after scanning of the

phrase is complete. Since size of strings and number of sons are known by

this time, a permanent node space is allocated and the contents of the

temporary storage entry transferred there. The temporary storage area is

then freed t
x

STALL ~ This is the storing routine for all the non-terminal nodes. It

first checks to see if the assembled node is not trivial. It will be trivial

if it contains only one component and the first delimiter is blank. In this

case no permanent storage is made for this node. This check eliminates redundant

nodes in the syntax tree. If the node is not trivial, a permanent allocation

Is made for it and the proper contents transferred these.

For the terminal nodes we have separate storing routines,.

STNDM - Stores a numeric constant

STFUN - Stores a function name

SVSTRNG - Transfers a string constant to the storage area before

calling on STRJZON.

STBIT - Stores a bit string

§TR_CON - A common routine for storing all constants. It

Allocates a oepnanent node storage and transfers type, length and string into it.

65

2.4 Cross Reference and Attribute Report

A useful product of the Syntax and Statement Analysis

Phase is a cross-reference report, produced by a cross-reference

program (XREF) whose input is the encoded and stored MODEL

specification. The XREF report provides an alphabetical listing

of all the names provided by the user, and some of the reserved

special names (such as CHOICE)• For each name, the report

provides the statement number in which the entity was described,

the statement numbers of statements in which it is referenced,

and the attributes or other known characteristics regarding the

name.

For example, if field X is described in a given statement

and is used in various other MODEL statements, such as in

assertions, the cross-reference list would provide the original

statement number in which it is described, a list of all the

field's attributes as well as the names of the file or files

in which it is a member, and a list of statement numbers which

reference the given field name.

The cross-reference report is produced by the XREF module.

It produces the report by traversing the directory and producing

each line by successive uses of RETRIEVE to get the corresponding

references* A bubble-sort is used to alphabetize the listing

(in a subroutine named ALPHDIR).

67

3. Analysis of MODEL Specification

3. 1 Introduction and Background

3,1.1 An Illustrative Example

In this phase the MODEL Processor analyses the MODEL specifi-

cation by use of directed graphs. This introductory sub-section

presents and exemplifies the background and terminology involved

in this phase, and describes the tables, and other data structures

that are built from a MODEL specification.

In order to exemplify the algorithms and data structures used,

a sample problem is presented below and described using the MODEL

language.

Section 3.2 provides an overview of the processes involved in

this phase, and Section 3.3 discusses them in greater detail.

The statements of a MODEL specification consist of a series

of description? of the following:

(1) files, which are designated as source files, target files,

(or both). The description of each file may include the

physical storage medium.

(2) components of each file; i.e. records, groups, fields,

as well as assertions for defining data-dependent para-

meters.

3) assertions giving logical and arithmetic relationships

that define the various target and interim fields.

A small sample set of MODEL statements is provided in for

• discussion purposes. This example is used here and in subsequent

sections as a vehicle for explaining the various algorithms.

The specification of the example is shown in Figure 10(a).

Statements added by the system are shown in Figure 10 (b) •

/ • A *H ********************************* *•***/

/* */
/* :-UhrALL p.C-tU: S K. C I F I C^ T I G r. */
/* */
/ * « * * * * * * * A * + * * * * * 4 * * * * * * * * * * * * * * i r * * * * * * * * * * * * 1 t « /

; > U N ^ A L E ,
2 S O U S C L : TRA;. . i;,VL.\;
3 T A K u P T : S L I P , lr,VLN;

/ ^ A « * * * * * * « * * * • « * * - * i i i * 4 r A » x * * i k * * * * * + » * * * * * * * * * * * * * * • • * /

/ . * * /

/* FILr O E i C h l P T i O N T : */
/* - */

/ • * * * * * * * * * * * * * + « A * ^ t * • * - * * * * * * * * * * * * * * * * • • T k * i r * « * * « * « * i * > i k * * * * * v 4 * « * * - « 4 -

/ * * /

/ * O t S C P I P T I O N Of- TFAN F I L b * /
/ * * /

U F A L & T k kf

** K F C O k C S A L ^ R E C C *)
t • S T u f t A G E S A L L U E C K
4 O F w I C 5 C A F D
4 f C K f" A T F 1 V £ D

S A U n s c . i r P C C C K O (C O S T f r T r c > " , Q U A N T I T Y) ;

C U S T • I S F i EL. f r C C H A* . (*)) ;
S T C C K I S F I £ L O C C H A » (? J) ;
Q U A N T I T Y I S F I t L D (C h A R < :)) ,

/ * D t S C P I P T l O N CF 1NV£N F ILE * /
/ * * /
/ * * < * * » * * * * * * * * * * + * * * • * * * * * * * * * * * * * * * • * * * * * * * » * * * * > * * * » * * * * * * * * * * * * • * * * * * * /

9 F i l e I . \ v p f c
9 K c C O R f > 1 N V K E C
9 S T Q R A G E I f : V D I S K
9 ^ e Y S T O C K '
9 G $ u I S A I ^
9 D T W I C E D I S K
9 F O R M A T I S V A R I A B L E
9 M A t j L O C K S I Z E I S t t O u
9 _ _ . . . M * x rtECOKDSI2£ I S 1 7 ;

1 C I N ' V R c C I S K F C O S D C 5 T O C K ' f S A L P f t IC^ i t G C H) ;
1 1 S T I C K " I S F l t L D C C H A P (7)) ;
12: S A L P K I C 6 I S F I E L O (N U K C K I C < £ >) ;
1 ! GOH I S F I E L

r i g u r e 10(a) MODEL S p e c i f i c a t i o n of The MINSALE Example

68A
/* * * *** **** ******** * * * * ******** *************** * ********** ************* A/

/* */

/* DESCRIPTION OF SLIP FILE */
/* */
/***** * ******************* ************************ *********************/

U FILE SLIP
U RECORD S L I P * E C < * >
U STORAGE S * L £ D I S K
1 4 D T v I C F D I S K
U F . C k P A T I S F I X E D
1 ^ b U C K S I Z L I S j i ' C t
U r v ^ C O R D S I ^ T I S S C ;
1 5 S L I P K E C I S R C C C R D (C U S T f S T O C K - f C H A N G E) ;
U C U S T I S H F L D C C H A.H (5)) ;
1 7 S T O C K i I S F I L L M (C H A R (4)) ;

1 ? C H A R u E I S F I c L D (N u ^ 6 P I C (P)) ;
/ * * * * * * * * * • * * * * * - * " * * * + * * * * • * * - * * * * * * * * * * * /

19 C H A ^ u ? = Q U A N T I T Y * CL ^ . iU VE r« • S A L P R I C E ;
^0 N F * . 1 **WEN •ttC-H = DLL . IN wE •« • <*Oh - Q U A N T I T Y ;

x ^1 P O I N T t»% • O L i > . I N V R £C « T f t A N # STOCK * ;;
/ * • * * * * * * * * • * * * * /

Figure 10(a) Continued

1 SL IF .STOCK =TRAN .STOCK *;
1 SLIP.CUST^ = TRAN .CUST-;
1 NEs^ • i N V k . N 1 . S A L P R 1 C £ = O L D . i N V E u
1 NEU; * I N V F . N . S T O C K — O L D * I N V E K . S T Q C K J ;
1 S Y S G E N I I S G R O U P (W E 1 - • I N V R c C (*)) ;
1 $ Y S G E * \ ? I S G R C U P C O L D . I N V R E C (*)) ;
1 S Y S G E f * 7 IS G R O U P CPO I NT E f t . OL D • I K f v RE C (•)) ' ;

Figure 1 0 (b) s S ta tement s Added By The MODEL System

69

It is referred to as MINSALE. It describes a module whose input

is sale transactions (consisting of a customer number, stock

number, and quantity desired) and an inventory file of items (con-

sisting of a stock number, price, and quantity on hand). The output

is a sale slip report (consisting of the customer number, stock

number, and charge) and the updated inventory file with the new

quantity on hand after the sale* The cross reference report is shown
in F.igure 10 (c) .
3,1.2 The Array ..Oraph

The preparerof £h.e.MODEL specification gives each entity in

his statements -- file, field, assertion, etc. -- a symbolic name.

In this phase, each name is related by the Processor to other names

in one of several ways. Hierarchical relationships exist when one

data item contains another, such as when a file contains a record,

a record contains a field, etc. A pointing relationship exists when a

field of a record in one file is used to compute a key to a record.

A dependency relationship exists between a field and an assertion

when the field is a source variable of the assertion and between

an assertion and its target field.

All of these are precedence relationships, in that the former

in some sense must precede the latter and is said to be a predecessor

(also known as a precedent) of the latter, while the latter is a

successor (also known as a direct descendent or dependent) of the

former. The various types of precedence relationships that are

implicit or deduced from a MODEL specification are summarized

below. Each type of precedence relationship has a corresponding

predecessor and successor types. The types of precedence relationships

1
0

CROSS REFERENCE AND ATTRIBUTES REPORT
REFERENCES

AASSli

AAS5U

AASS15

CUST '

COST*

II.VDISK

IUVEN

IKV-MEC

KiNSALE
NLW

O L D

POINTER

QUANTITY

SAttDtCK

SALEDISK

S A L P I U C E

SLIP

SLIPRtC

STOCKS

STOCKS

SIGCKf

TRAM

STATEMENT
DESCPIPTie?;

19
?O
?1
13

16

6

9
9

10

1

1 i

8

0 .
14

5

12

14
15

17

11

ATTRIBUTES

ASSERTION
ASStiKTlOfc
A 5 S E rt T I Of.
f l L L D , NUPERICC
F I L E <LJP
FI fcLbt CHAKACTtRC
I N F ILE S L I P
F U L D , CU? NACTERC
l \ FILfc TPAK
DISK KA.V=£
F ILE , S O U K C C , 1 A r t G f c T
S H H T L H / K L YF D

KtCCKD»(7 SUH-ME*1

I f i F l i t IMfFM
MODULE UAVE
U*SERVED WORD
.'C^bEiWLD VOH0
f<FSFi<VFD UORD
F I E L D , fcUPlRICC
f ILE II*VEN
F IfcLD , CHA^ACTERC
K i F I L E IRAN
CARD MAMt

DISK NAl^c
RECOKO,(5 SUB-MEM
I N F I L c TPAN
F IELD« KU^EPICC
F I L E INVEM

e> I N

5)

LERS) ,

5> IN

bfRS) ,

5> IN

F ILE »TAr^FT fUMSO«<TLD
RECORD, (* SUB-WE PI
I * F ILE S L I P
F I E L U , CHARACTER(
IN FILE SLIP
FIELD, Ch^ft«CTER(

bERS) 9

4)

7>

7

4

F l i c 1 f: V F l«
7)

1 9 , 15

20« ?0» 19» 3 , 2

21 t 9

20
21» 20 , 19
21
2 0 , 20 , 10

2 0 , 19 , 5

14
4

19 , 10

o\

IN Fl LL
h l i t «SOUKCfc,UNSOKTtO

i
14

15

1 0 ,

2 1 ,

2 1 .

9

5

2

70

will have direct implications on the program to be generated. For

example, a record must be read before any of its component fields

can be used. A key to a record must be available before the record

being pointed to can be accessed* A value of a field which is a

source (or input) to an assertion must be available before invoking

the procedure embodying the assertion, A field which is a target

of an assertion is only defined after the procedure is called.

These and other requirements of the program to be generated are

implied by the precedence information conveyed in a directed graph

that is referred to in the following as an array graph.

An array graph is a pair <N,A>: a set,of nodes

N*{ N1,N2# .-•", ,N-m} and a set of ordered pairs ("edges" or "arcs")

A = {A1#A2,...,Ap} where each Ai is an ordered pair (Nj,Nk)

representing an edge from node Nj to node Nk. In other words, A

is a relation on N x N. Each node may have 0, 1, or more edges

emanating from it.

Each edge (Nj,Nk) from node Nj to node Nk is a member of one

of a set of different types of relations and is labeled by one of

the possible labels.

An example of a labeled directed graph appears in Figure 11,

which corresponds to the example of Figure 10. Each node of

this graph represents the name of one of the entities in the

MODEL statement, including files, records, groups, fields,

OU&. INV&N

Figure 11: Array Graph For The Example of Figure 10
(Edges of Types 10,11, 12 and 18 omitted

72

assertions, etc. Each node has 0, 1, or more edges

emanating from it pointing to successor nodes; i.e. to nodes to

which it is precedent.

Generally, each MODEL statement of Figure 10 corresponds to

one node. The exceptions of the one-to-one correspondence are

the following:

(1) Files that are both input and output (such as INVEN in

the example) as well as their component records, groups,

and fields are described only once in MODEL, but become

two nodes in the digraph -- one for the "old" or source

data and one for the "new" or target data.

(2) The list of source and target files in the header of the

MODEL specification do not correspond to any node

because the file statements themselves correspond

to the nodes for files.

(3) Qualified names prefixed by a key, such as POINTER,

SIZE names, etc., constitute interim data. They are not

described explicitly by the MODEL user, but are used in

context* However, in the array graph, such names do

correspond to nodes and have successors, predecessors, etc

LtJL# L Representation of Edges

Edges are tied to their source and target nodes by edge-lists

associated with these nodes.

Each node has in its attribute list the following four

entries:

73

SUCC^LIST - A list of the edges emanating from the current

node.

#SUCCESSORS - The number of edges of the successors list.

PRED_LIST - A list of the edges coming into the current node,

#PREDECES$ORS - The number of edges on the predecessor list.

An edge list has the following formats

PPAIR:

PCDR

PCAR

PCDR - A pointer to the next list element,

PCAR - A pointer to an edge structure.

Consequently when an edge is created it will be entered

into the successors-list of its source and into the predecessors-list

of its target. Similarly when an edge is deleted it will be deleted

from both these lists.

Every edge going from the node S to the Node T has the uniform

formats
t

T(Ulr,..U_)«-S<J ,..J,)* 1 m x

where is the type of the edge, as described below.

k the dimensionality of T,

m the dimensionality of S,

each Subscript expression J^, 1 £ i.£ m is in of one of the forms:

74

a# U£ for some 1 £ A £ k

b* U^-l for some 1 £ I £ k

c. uj7~c f o r some 1 £ A £ k and an integer constant c > 1

d# E standing for a general unanalyzed expression.

Consequently in our representation of such edges we do not

have to specify the left hand side which is obtainable from the

attributes of T. An edge will be completely specified by giving:

5 - The source of the edge^

T - The target of the edge

t - The type of the edge

6 « k-m - The difference between the dimensionality of the target

and the source.

j j - The list of subscript expressions for the source variables
1 m

Indeed, an edge is represented by a structure:

EDGE: SOURCE

TARGET

EDGE-TYPE

DIMDIF

SUBX

: S

: T

: t

: 6

A pointer to the subscript

1
expression list.

The subscript expression list is composed of elements

of the following form:

75

EDGE-SUBL:

NXT - SUBL

LOCAL-SUB#

APR-MODE

Here:

NXT-SUBL - A pointer to the next list element.

LOCAL-SUB# - For cases a,b,c this gives t, i*e. the ordinal

number of the subscript as it appears in T(U. #..U.)
K 1

APR_J4ODE - Distinguishes between the cases. It has the value

1,2,3,4 corresponding to cases, a#brc,d above

respectively.

Note that in case c we do not retain the constant c > 1.

76

3«1«4 Edges and their Types in the Array Graph

Type 1 Hierarchical Source Edge

0

Drawn between a node A in an input file and any of its

immediate descendants, B# If U is the local subscript list of

B, then we have the following cases:

If B is repeating then

B (Uk' ••

Otherwise B(Ufc

A (Uk' *•

A(Ufc, ••

Type 2, Hierarchical Target Edge:

B

Drawn between a node B in an output file or interim structure

and its immediate ancestor A.

If B is repeating then

A (Uk r ••

Otherwise

Type 3. Source to Assertion Edge

B

B (Uk f # # Ul }

77

The local subscript l i s t of a contains a l l the subscripts

which appear e i ther on the Ihs or rhs of <*• Subscripts which

appear t>n the rhs only are considered to be reduced, For each

instance of B in a we draw an edge:

K i m l

where m is the dimension of B«

The order of the subscript J. is as s ta ted in the a s se r t i on .

Each of the J. can assume one of the following forms:

1) U. for some 1 £ j £ k

2) U.-l for some 1 £ j £ k

3) U.-C for some 1 ^ j £ k and an integer constant C > 0e

4) E , - standing for a l l other subscript expression forms.

The order of the subscripts Uj is discussed in connection with type 7a

Type 4» Not used

Type 5, Pointing Relationship Edge

For every record X which belongs to a keyed file (SAM or ISAM)

we draw an edge:

X(U, , •• U) «• POINTER. X(U W .» U_) •
^ 1 , 1

Type 6. Not Used.

Type 1. Assertion to Target Edge

78

The local subscript list of a is arranged to have all the

Ihs subscripts appearing in the order to the left of all the

reduced subscripts. Consequently we have an edge:

A(T1, .. u,) *• Ot (U , • . U ,E,E,..E).
K x K 1

The number of Efs is the number of subscripts of source

variables of a which are reduced in a. The order of U. is as

stated in the target variable of a.

Type 8. Siebling Order Edge

" These edges are drawn between siebling data items in an input/

output file provided they are:

1, Below the record level, ££

2. Belong to a sequential file.

The edge drawn is:

B(U , . . • U) -K A (U , . . 0 , E) .
Jc l JC m

m=2 if B is repeating, and m=l otherwise.

The number of E's is the number required to fill out the

complete dimension of B (could be only 0 or 1)•

Type 9, SNDFILS Edge,

Let F be an input file and R the last record type specified for

the file (the rightmost or youngest siebling record node in the

tree). Then the following edge is drawn:

ENDFILE.F(UV, . .U) «- R (U. , . . U) .
K 1 K J

79

This edge is drawn only if the user has explicitly mentioned

ENDFILE.F in an assertion. Note that the user does not specify

the dimensionality of the ENDFILE.F variable. The dimensionality

of ENDFILE.F is the same as that of R. This is used in the module

DIMPROP to automatically assign the correct dimensionality to

ENDFILE.F.

Type 10. Virtual-Subscript^Data To Assertion Edge,

These edges connect assertions, which refer to a virtual

subscript,to their source and target variables that use a virtual

subscript. These connections combine with type 7 edges to make

the assertion and its target participate in the same strongly

connected component. In the SCHEDULE procedure this will ensure

a continuous iteration loop for the nodes that use virtual

subscripts.

Feedback from target variable node to the assertion node:

Let the type 7 edge bes
7

N(ukr..*D r.-Uj) +
 a(^ k* •• Uv#«.O1#Er..E)

where u is a virtual subscript, m is the dimensionality of a

and 5 * m-k is the number of E's and the number of reduced subscripts

We draw a feedback type 10 edge from N to as

80

m' # # # / v+5'* 1 m . v+o o + l'

This edge ensures that we do not activate a for U ,..U «, until

m v+o

N(Umf..U + X"
1, * , . . *) is completely utilized.

Type 11. Virtual Subscript Edge - From Source Field Descendent

to its Predecessor.

Let A be a repeating node in an input structure, such that

the repetition is virtual. Let B be its descendant which

is a field.

A)(*)

Then we draw an edge:

A (U k ' ••u
1
> * B (Uk' " # U2'Ul""1 E / • # E)

The number of E's is the number required to fill up the

correct number of subscripts of B„

The meaning of this edge is that since U is a virtual

repetition we can have only one instance of the structure with

the predecessor A in memory. Consequently this edge ensures

that we do not process A for the subscripts U, , .. U- until we

have utilized all the components of the structure for the

subscripts UV/..U^,U -lf namely, the previous instance of the* 2 1

structure.

81

Type 12. Virtual Subscript Edge - From Target or Interim

Precedecessor to its Field Descendant,

Let A be a repeating node in a target or interim structure,

and let B be its leftmost descendant which is a field.

A)(*)

We draw the type 12 edges

B(0. ,. .U ,U , ,. .U.)+A(U. ,. . .U .0-1)k m m—l i K m •

where k-ia+1 is the dimensionality of A. The rationale is

again avoiding processing the next instance of A until the previous

instance is completely defined. Since in output and interim

structures the processing of a structure begins with its left-

most field descendant and terminates in its head we made the

beginning depend on the end for the previous subscripts value.

Type 13. SIZE edge«,

This edge is drawn between the variable SIZE.X (if

explicitly mentioned by the user) and the variable X. It

has the form

X(u.#..u.) «- SIZE.X(uv, . .U).K ± ^ 2

A 'SIZE1 array always has one dimension less than the array it

refers to. This is used by the system to assign the proper

dimensionality to the structure SIZE.X.

82

Type 14 END Edge

This edge has the form:

X(U, , . . U)«-END.X(U, , . .U ^Ur1)
JV X JV ^ A

The truth value of END.X(U ,..Uo,U-1) determines whether

X(U ,-. .U.) is within range.

Type 15 FOUND Edge

Let R be an input keyed record, then we have the edge.

FOUND. R(U,, . .IK)«-R(U. , . .U,)
XL J. JC X

The reason for this edge is that 'FOUND1 is defined

only after the record was read.

Type 16 NEXT Edge

Let X be a field in an input file, then we have

the edge

NEXT.X(U, , . .U.)«-X(U- , . .U.)
•K X K X

This reflects the fact that NEXT.X is read and defined

only after X is read.

Type 17 SUBSET Edge - Target

If R is a target record we have the edge

R(UV# . .U,) ̂-SUBSET. R(UV, . .U.)
Jv X JC X

This edge ensures that the SUBSET condition is

evaluated before the writing of the record.

Type 18 Virtual Subscript-From Assertion To Its Source

N

83

For every type 3 edge from a node to an assertion

of the form

a(Uxn' ••ujt'"u
1
)*"N(J

k' • -
J
V'- •

Ji)

where m is the dimensionality of a, k the dimensionality

of N, J denotes a virtual subscript of N and U^ is the

corresponding virtual subscript in a.

J has to be of the form U« or U'jl' for some 1 ££^nu Up

may also be reduced in a. The order of the subscripts of a

is determined by the order of the subscripts in the target

variable of a, plus any reduced subscripts.

We draw the type 18 edges

N(J.,...J ,-..J.) «- a(U ...Ua....U.)K v i m ** i

where each U. 1 £ i £ m is may be equal to one of the subscripts

of N or to ?.: subscript in another source variable in a.

However if i « I then U. « Jv"
1^

Type 19, SUBSET Edge - Input

If R is: an input record and the user mentioned the variable

SUBSET.R we'draw the edge:

SUBSET. R(U, ,...U ,)«-R(U #..U.)k 1 k 1

This edge ensures that the 'SUBSET' condition will be checked

after the record is physically read, enabling skipping the pro-

cessing of its fields.

Type 20. LEtl Edge

If the length of a varying length field X is specified by

a LEN.X expression we draw the edge:

X(Uk,...U)+-LEN.X(Uk, . -U)

This ensures that the field is processed only after the

LEN.X expression is evaluated.

34

Type 21. MODULE NAME TO FILE EDGE

This edge indicates the precedence of a MODULE node

over the FILE nodes. The MODULE and FILE nodes are sealer.

85

3,2 Overview of Sub-phases in Network Creation and Analysis

The array graph of a set of MODEL statements is a

crucial factor in the MODEL Processor's ability to sequence

operations and to detect many inconsistencies and incompletenesses*

Table 10 shows a summary of the ten steps or sub-phases involved

in the creation and analysis of the array graph (or "network"),

and in the determination of the attributes of all the graph

nodes. The ten sub-phases are described in sub-sections 3.3d

through 3.3.13,

Each node, in particular the assertion nodes, may represent

an action which should be performed repeatedly, say for each

input record read. This will be the case if the assertion either

uses a repeating field (directly or indirectly) or defines a

repeating field. The requirements for such repetitions may be

quite complex and nested, for example an assertion defining a

repeating field within a repeating record within a repeating group.

In MODEL II the need for repetition is expressed by associating

with each node subscripts• One of the form of a subscript

variable i.s POR^EACH.X where X is some repeating structure. This

form explicitly associates an assertion with the repetition on X.

The list of these special variables (or repetitions) associated

with a node is called the subscript structure o£ the node. We

will compute the subscript structure for each node. This structure

is later used to construct the proper iteration control and guide

86

Summary of Tasks and/or
Relationships Searched

1 Creating Dictionary
(CPDICT)

2 Entering Hierarchical
Relationships
(ENHRREL)

3 Attribute Computation
(ENHRREL)

4 Entering Explicit
Value Dependencies
(ENEXDP)

5 Finding Implicit
Predecessors
(ENIMDP)

6 Calculating Dimensionalities
(DIMPROP)

Filling Up Missing
Declarations and Subscripts
(FILLSUB)

8 Assigning Ranges to
Subscripts (RNGPROP)

Creates a dictionary of all
names assigning a "node"
number to each (3.3,1)

Searches for hierarchical
relationships between a parent
and descendant data (3.3.3)

Computes various attributes for
each of the dictionary entries,
and a list of the iteration
subscripts• (3.3.4)

Searches for explicit value
dependency relationships given
by assertions (3.3,5)

Searches for implicit predecessor
to nodes with no explicit
predecessor (3.3.8)

Calculates the dimensionalities
of all the variables in the
specification, considering the
initial declarations and
deductions from the edges drawn
between nodes. (3.3.9)

Based on the previous calculation
of dimensions, structures are
extended and all subscripted
references expanded to the full
dimension of their variables. (3.3.10)

Each iteration for a node is
assigned a range. The range
specification is "propagated"
from nodes which depend on them.

(3.3J.1)

9 Graph Analysis
(AMANAL)

Analyses the array graph to
ensure that certain error
conditions do not exist (3.3.12)

10 Cycle Detection Diagnostic Search for possible
cycles (3.3.13)

Table 10
Steps in Network Creation and Analysis

87

the sequencing.

One of the major tasks during this entire phase is detecting

logical errors and reporting them to the user. In parallel to

searching and entering precedence relationships certain kinds of

logical errors are detected, and messages are sent to the user.

Further error analysis takes place after the Processor constructs

the graph array. A summary of all the error messages produced

in this phase, as well as the conditions for their generation is

included in Section 3e4.

38

3,3 Sub-phases of Network Creation and Analysis

This section supplies greater detail on each of the sub-phases

of network creation and analysis, and the logical errors that are

detected by each phase. References are made to the message

numbers of Section 3.4,

3,3,1 Creating a Dictionary of Names and Numbers of Nodes

The Create Dictionary (CRDICT) procedure creates a dictionary

of names, assigning a node number to each. These names correspond

to the nodes of the array graph. The dictionary data structure

(DICT) is an array of strings. An entry is made in the dictionary

for each distinct, fully qualified name of each file, record,

group, field, or assertion named in the user's MODEL specification;

each name roughly corresponding to a statement in the specification.

For example, a field name entry corresponds to a field description

statement, an assertion name entry corresponds to an assertion

statement, etc.

However, there are exceptions to the correspondence between

dictionary names and statements in MODEL. If a file is described

in MODEL to be both a source and target file, its component record,

groups, and fields (described once in the MODEL specification)

appear in two separate entries in the dictionary (DICT) because

they represent two distinct entities ("OLD" and "NEW"). Further-

more, there are several types of "special names" in a MODEL speci-

fication that can be the source or target of an assertion and

which become entries in the dictionary. These include names with

any of the following prefixes: POINTER, SIZE, LEN, CHOICE, SUBSET,

END, ENDFILE, NEXT, FOUND, SUBSET, and declared subscript names.

Such special names may be omitted in data description statements*

39

Instead their description is implicit and the Processor later

generates the appropriate statements. They all become nodes

in the array graph and therefore need dictionary entries.

Algorithm CRDICT shows the details of the Create Dictionary

Procedure. It goes through each entry of the directory and

retrieves the corresponding statement (Steps 1-3). Each name

is fully qualified with the filename, "OLD" or "NEW" qualifiers,

etc, and is entered in the dictionary (Steps 4-8). It also creates

entries for the special names explained above (Step 9) , and for

the subscripts and loop variables (step 10). After this subphase

we will refer to each dictionary entry also as a node.

After the dictionary is created all subsequent analysis is

performed referring to node numbers which are the ordinal number

(index) of the nodes in the dictionary,, In the analysis we have

often to retrieve for a given name (possibly qualified) its node

number.

The routine DICT# (NAME) returns the node number corresponding

to the name NAME. A binary search is conducted on the alphabetized

dictionary.

Since the user is not required to always specify the fully

qualified name, it is often the case that only a partially qualified

name is given and its node number required•

One case is handled by the routine DICTN(NAME) which operates

as follows: It tries to find NAME in the dictionary. If it

succeeds the node number is returned. Otherwise we check if the

90

name has a prefix. If it has a prefix other than 'OLD1 or 'NEW1

this prefix is dropped and the search reatterapted. If the prefix

is NEW or OLD we look for the next component, try to drop it and

search again.

Another case is when we are given a name which consists of

only the last component. In order to retrieve the code number

dictionary entries for simple (unqualified) names are maintained

by the algorithm CREASIM.

91

Algorithm CRDICT: Creating the Dictionary

[Subroutines called: RETRIEVE]

Step 1. Get next directory entry.

Step 2. If there are more directory entries, then go to Step 3?
else go to Step 9*

Step 3. RETRIEVE statements (storage entries) in which the name
is described.

Step 4« Branch on statement types

RECD, then go to Step 7;
FLD or GRP, then go to Step 6;
FILE, then go to Step 7?
Others, then go to Step 5,

Step 5. Enter name in next entry of dictionary as is? go to Step 1

Step 6# Qualify name with its parent file; go to Step 7.

Step 7. If corresponding file is both a source and a target file,
then go to Step 8; else go to Step 5.

Step 8* Enter name in dictionary twice: once with "NEW". and
once with "OLD". prefix; go to Step 1.

Step 9. Using RETRIEVE find all SIZE, LEN, POINTER, END, ENDFILE,
NEXT, FOUND & SUBSET names and enter each one in the dictionary
once.

Step 10. Create system subscripts and loop variables as follows %

a. Standard free subscripts SUB1,..SUB9
b. System added subscripts $1,.. $9
c. System loop variables 17,..19

92

Algorithm CREASIM: Create Simple Dictionary

A special attribute called UNIQUE is added to each node.

It is formed as follows:

1. If the node is a special name, i.e. beginning with a prefix
excluding NEWjOLD then the UNIQUE field is left blank.

2. If the node's name has a last component which is unique then
UNIQUE is assigned the last component.

3. Otherwise UNIQUE is assigned the full name.

Algorithm SIMPLS#; Search a UNIQUE List

Input: A name, presumably a node name.

Output: A node number denoting the dictionary's entry matching
the input name.

1# Do first a regular name search by calling DICT#(NAME). If
a positive result was returned this is the result.

2. Otherwise extract the last component of NAME and search for
a match in the UNIQUE list. The first node whose UNIQUE field
matches the last component of NAME is the returned result.

3. If no match is found, the following Error Message is printed:

"Name error: the following name is missing from the simplified
dictionary - NAME".

The algorithm SIMPLE*(NAME) retrieves the code number for

a simple name NAME.

93

3.3.2 Creating. J^J£_^££5X Graph_^_nd JEnte_ring Precedence Relationships
Within iV """': * —

Algorithm CRADJMT (Create Edge Matrix) outlines the creation

of the edge structures, including its allocation (Step 1), its

initialization (Step 2), and the invocation of subroutines that detect

and enter precedence relationships within it (Steps 3). The pro-

cedure then proceeds to call other routines (DIMPROP/ FTLLSUB and

RNGPROP) which detect and enter subscript related information. In

these subsequent procedures, values are entered in the appropriate

edge structures. Certain logical inconsistencies and incompleteness

in the MODEL statements can be detected during the construction and

analysis of these structures.

Since we have the full dimensions of the nodes only after DIMPROP,

which in turn relies on the edges, most of the edges are created

without any subscript list. Edges types 3,7 are created with partial

subscript lists which are later extended. All other edges are first

created with an empty subscript list which is filled up later in

FILLSUB. However the field DIMDIF is defined as soon as the edge

is generated. This is so because when we find an edge;

Ad^) «• B

we will decide that dim (A)-dim(B) s 1. This means that whenever B's

dimension is extended we will extend A's dimension by at least the

same number of additional dimensions. Thus corresponding to such an

edge we will retain a DIMDIF field of 1.

94

Algorithm CRADJMT; Creating the Edge Matrix

[Subroutines called: ENHRREL, DIMPROP, FILLSUB, RNGPROP]

Step 1. Allocate edge structures

Step 2. Initialize edge structure

Step 3. Call ENHRREL (Enter Hierarchical Relationships).

Step 4. Call ENEXDP (Enter other Dependency Relationships).

Step 5. Call DIMPROP (Calculate Dimensionalities of variables)

Step 6# Call FILLSUB (Extend structures as needed and fill up

subscripts in assertions and in edges)•

Step 7. Call RNGPROP (Identify the ranges of subscripts)

95

3.3.3 Entering Hierarchical Relationships

Edges of types 1,2,8,9,11 and 12 between files, records,

groups, and fields by the routine named ENHRREL (ENter HieRarchical

RElationships).

Algorithm ENHRREL consists of parts A,B, and C- Part A

enters hierarchical relationships edges of types 1 and 2, Entering

the hierarchical types is accomplished by retrieving all the file

descriptions (A1,A2) and successively finding the components of

each. By means of a recursive procedure (Step A3, ENT^HIER^ADJ)

that "climbs" down the implicit hierarchic data structure, each

component's direct descendant statements are retrieved in turn

and the hierarchical relationship between a parent and its direct

descendants is successively entered (Steps 1-7 of ENT^HIER^ADJ).

If the current file is an input file then the edge type is 1

If the current file is an output file then the edge type is 2.

Furthermore, if the node is not a lowest level field (Step 10), then

its descendants are found, in turn, and the procedure is invoked

recursively to insert the hierarchical relationships with their

descendants.

Note that the hierarchical relationships "1" and "2" are

reversed in direction for precedence purposes (Step 7) because,

for example, a record of an input file must be read before its

component groups and fields are available, while the record of

an output file must be written after its component groups and

fields attain a value.

96

Algorithm ENHRREL: Enter Hierarchical And Structural Relationships

Part A: Enter edges of types 1,2,8,11 and 12 in all files

Al. Retrieve all files

A2. Get next file name, if none go to Part B

A3, Call ENT_HIER_ADJ(Father name, Son name)

This routine enter edges of type 1,2,8,9,11 and 12

recursively, until it reaches all field nodes.

A4. Go to Step A2

Part B: Enter edges of types 2,8,, 12 in data structures where a data

node has no parent. Such structure is assumed to be interim

and statements for parents will be added later.

Bl: Find all data nodes which have no parent.

B2: Get next node with no parent of none go to Part C.

B3: Assign a name to a parent file.

B4: Call ENT_HIFR_ADJ(Parent-file-name, head-of-found-structure-name)

to enter recursively type 2, 8,9,12 edges in the structure

B5: Go to step E2.

Part C: Enter edge of type 9 between ENDFILE.file-name and the records

in the file.

Cls Search directory for all sequential source file names.

C2: Get next. If none go to Part D

C3: If the directory does not already have ENDFILE.file-name, add

a new entry to directory.

C4: Search for all record descendents of the file-name.

C5: Get next record descendent. If none go to C2.

C6: Enter an edge of type 9, 5=0 between the ENDFILE.file-name node

and the record node.

97

Algorithm ENTJHIERJUDJ ENTERING HIERARCHICAL DATA STRUCTURES IN ADJACENCY
WATKiX

Enter -Hierarchical Relationships in Weighted Adjacency Matrix (a
recursive routine) [Subroutines called: RETRIEVE]

Step 1. Qualify parent and direct descendant names.

Step 2. Let i=*dictionary number of parent.

Step 3. Let ^dictionary number of direct descendant.

Step 4. If current file is source only, then go to Step 5;
if current file is target only, then go to Step 6?
if current file is source and target, then go to Step 7*

Step 5. (source only) Draw a 'I1 edge from i to j, 6 = 1 if j
is repeating and 6«0 otherwise; go to Step 8.

Step 6. (target only) Draw a '2' edge from j to i, 5 • -1 if j
is repeating and 6*0 otherwise* go to step 8.

Step 7. (source and target)
Set i=dictionary number of "OLD" parent.
Set j«dictionary number of "OLD" direct descendant.
Perform Step 5
Set i-dictionary number of "NEW" parent.
Set j=dictionary number of "NEW" direct descendant.
Perform Step 6.

Step 8. RETRIEVE direct descendant storage entry

Step 9. If one direct descendant storage entry is found, then call
it 'son1 and go to Step 10;
if no direct descendant storage entry found, then go to Step 15;
if more than 1 direct descendant storage entry found, go to Step 16.

Step 10. If type of Son is record, group, or report entry, then go to
Step 11;
if type of son is field, then go to Step 14; else system error.

Step 11* Get all of the son's direct descendants.

Step 12a. If the son is an item in a file which is either below
the record level o*r an item in a sequential (actually unkeyed) file,
then for each pair of successive direct descendants, k and m, we draw
an f8 * edge between k and m. 5«0 since this edge is not used in
dimension propagation.

Step 12bo (Virtual Self Dependence - Input)
If the son k is a virtual repeating structure in an input file, then
draw an edge of type '11' between its rightmost descendant and itself.
6=0. •

Step 12c. (Virtual Self Dependence - Output)
If the son is a virtual repeating structure in an output file or
interim structure, then draw edge of type '12' between the son k and
its leftmost descendant. 6=0.

98

Algorithm ENT_HIER_ADJ (continued)

Step 13. For each descendant/ call ENT_HIER_ADJ recursively to
enter hierarchical relationships between it & its descendants
(go to Step 1).

Step 14. (field: no further direct descendants) Return.

Step 15. Print incompleteness message (#6); go to Step 17.

Step 16. Print inconsistency message (#4); go to Step 17.

Step 17. Return,

99

During the scanning of the structure, the structure

relationships (•S1) are also created in Part C, This relation-

ship happens whenever we have a group or a record which is

either an input or an output, belongs to a sequential file or

is below the record level. In this case we consider the list

of items which are descendants of the group or the record in

the order in which they were specified and introduce an '8' edge

between any two successive ones. This ensures for example in the

specifications IN IS FILE (GROUP IS INJ3RP)

INJ5RP IS GROUP (A,B)

that reading record A and its processing will precede reading

record B and processing it*

Certain errors can be detected during this process

(Steps 15 and 16 of ENT_HIER_ADJ). If at a given node the indicated

descendants do not exist and therefore cannot be retrieved (e.g.

if a record X is described to have fields A and B but field B is

never (described), then the file layout is poorly-defined due to

incompleteness. Likewise, if at a given node more than one

descendant with the identical name can be found in the same file

(e.g. field X of a given file is described twice with two different

sets of attributes), then the file is ill-defined due to an

inconsistency. Such problems are reported to the user in the

Network Analysis Report in a manner similar to the following

(Message numbers 6 and 4, respectively)J

ERROR(INCOMPLETENESS): Need a description of X

or

ERROR(INCONSISTENCY): X is described more than once.

100

Part C in the algorithm ENHRREL defines a precedence relation

of type 9 between all nodes describing variable ENDFILE.X. This

represents the fact that the ENDFILE.X variable has a meaning only

after the relevant records have been read, and hence should be tested

only after reading these records.

Routine ENHRREL also constructs several attribute tables for

the dictionary entries (nodes). They are described in the next

section.

101

3 . 3.4 Node Attribute Table

The routine ENHRREL which systematically scans all the data

structures also constructs several attributes tables. These tables

record different properties of the program nodes (dictionary entries),

The list below describes for each of the tables its structure, its

significance and the mode of its computation (HOC)• Some of these

attributes are generated later and are brought here for completeness*

Most of these attributes are stored in a table haying one line for

each node. The names of the entries in the table all begin with X,

Thus the component DICT, has the table name XDICTc In addition we

have for each component a function which gives the node number (t)

retrieves this component value, e.g. DICT(I)o In some cases the type

of the function and the table entry are different, this will be

mentioned in the description*

102

In the list below each table contains DICTIND (the number of

dictionary entry) elements, one for each dictionary entry (node).

ENDB - BIT(l) - is 'I1 for a node by the name X if there exists a

name END.X in the dictionary. This means that the

repetition associated with the node X will be

terminated by an END.X condition rather than by a

repetition specification.

XENDB-INTEGER - gives the node number of the END.X variable or 0.

MOC: For a node by the name X search the dictionary

for the name END.X. Computed in ENEXDP.

EXISTB-BIT(I) - is fl f for a node by the name X if there exists a

name SIZE.X anywhere in the dictionary. This means

that the repetition associated with the node X will

be terminated by count which will be given in the

variable SIZE.X.

MOC: For a node by the name X, search the dictionary

for the name SIZE.X. Computed in ENPTREL.

XESISTB-INTEGER-Gives the node number of the SIZE.X variable or 0.

INP-BIT(l) - Is 4 1 if the node is a data item in an input file.

(could be a group, a record or a field)

MOC: When scanning a input file all of its descendants

have their INP entry set to 'I 1.

XINP-INTEGER - Is 1 if input and 0 otherwise.

KEYED-BIT(l) - Is 'I1 if the node is a data item in a file for which

a key name was specified.

103

XKEYED-INTEGER - If the file is keyed this contains the node

HOCs When scanning a file with a non blank key

name all its number of the field used as key

descendants have their KEYED entry set to'1].1.

LEN_JD AT -INTEGER -The length in bytes of the data item. Applies only

to input/output items and not to interim variables.

If the item itself or any of its subitems are of

variable length the maximal length or number of

iterations will be taken if available.

MOCs If the item is a field its length is calculated

using the declared (maximal) length and the field's

type in the procedure BYTE_CALC« For items on a higher

level LEN^DAT of a direct descendant is computed, its

product with the (maximal) repetition count is added

to the LEN_DAT of its parent. In this way the sine

of the parent is computed by accumulating the sum of

the length of its descendants. For files this is the

maximum LEN^DAT of its records.

XLEN_DAT-INTEGER-The table entry name.

MAX^REP-INTEGER -(Table name XMAX_REP). The maximal repetition count

which was decl'ared for the item* If not declared as

repeating MAX_JREP » 1. If an exact count was specified

(MIN«MAX) this count is assigned to MAX_REP.

HOC; The value is retrieved from the storage entry

of the respective node.

104

NRECS-INTEGER

OUP-BIT(l)

PAREC-INTEGER

PARFILE-INTEGER

(Table name XNRECS)

This count is meaningful only for files, and

holds for each file node the number of different

records (record types) contained in the file,

as declared by the user. For nodes other than

files this count is always 0.

MOC: For each node corresponding to a record the

NRECS count for the node corresponding to its

parent file is incremented.

Is 'I1 for items in output files* Table entry XOUP

is integer and is > o if item is in output file.

MOC: When scanning an output file, the OUP entries

for all its descendants are set to 'I1.

(Table name XPAREC)

For items below the record level this will hold the

node number of the itemfs parent record.

MOC: When scanning descendants (not necessarily

immediate) of a record, set their PAREC entry to

the node number of the record*

(Table name XPARFILE)

Holds the node number of the parent file for all

input-output items.

MOC: When scanning descendants of a file, set

their PARFILE entry to the node number of the file.

105

PDIM-INTEGER (Table name XPDIM)

Holds the dimension allocated to the item in

memory. Every record, whether it is repeating

or not, is allocated a single area in memory.

Every repeating item below the record level

is allocated space according to the maximal

number of repetitions. The "physical" dimension

of an item below the record level (given by PDIM)

will therefore be the number of repeating items

(including itself) which appear in the ancestry

line from its parent record to itself. Thus

in the example.

Ex.Ss A IB FIt,E(B(*))

B IS GROUP (C(*))

C IS RECORD(D(5))

D IS GROUP (E(2))

E IS FIELD

The PDIM of A,B,C,D,E will be respectively:

MOC: All items on and above the record level

are assigned PDIM=0. Then going down the file

tree if an item is not repeating

PDIM(item) « PDIM (its ancestor)

if it is repeating then

PDIM (item) * PDIM (its ancester) + 1

SUBREC - BIT(l)

106

REPTNG - BIT(l) Is 'I1 an item is repeating. This is the

case if in its specification the maximal

repetition > 1 or is specified as (*). Table

entry XREPTNG is integer which is positive if

item is repeating.

MOC; Retrieve the storage entry for its

ancestor (where repetition is specified) and

check the above.

Is '1' if the item is below the record level•

Table entry XSUBREC is an integer which is

positive if item is below record level.

MOC; Set the SUBREC entry for a node to 'I1

if either the SUBREC for its ancestor is fl f

or its ancestor is a record*

This entry holds a pointer to the local subscript

list associated with the node. These are all

the subscripts which the node depends on.

If the list is empty PTR « NULL, otherwise

it points to a list of local subscripts.

The local subscript list is a list of the following structures:

LOCAL_SUB:

NXT_LOCSUB

REDUCED

SUBTYPE

SUB ID

IDWITH

RANGE

SUBSLST - PTR

107

NXT-LOCSUB - Is a pointer which points to the next structure in the

list.

REDUCED Is positive only in subscripts which are reduced in

an assertion. It is zero otherwise. This field is

meaningful only in assertion nodes.

(SUBTYPE,SUBID) Specify the name of the subscript.

SUBID is the node number of the node associated with the

subscript. SUBTYPE distinguishes between four types of

subscript names.

1. SUBTYPE • 1, this is a subscript of the form FORJBACH.X

associated with the node X.* X has then to be a

repeating data node. SUBID is the node number of X,

2. SUBTYPE - 2, A subscript declared by the user as a running

subscript.

3. SUBTYPE » 3, A standard free subscript.

One of the list SUB1,SUB2,..SUB9 /

4. SUBTYPE - 4 - A subscript added by the system in the fill-up

process. This is one of the first $1,..$9.

In cases 2-4 the subscript appears in the dictional as an

independent node entry and SUB(l) contains then its node number.

Cases.* 1,2 can have a direct range specification, in case 1 by

specifying the size of the associated data node X, and in case 2

by explicitly specifying a range in the declaration of the.subscript

or including a SIZE or END statement. Cases 3 and 4 are essentially

free subscripts and their ranges have to be deduced separately

for each statement.

108

RANGE Is a node number of a node which has an explicit

range specification* If subscript U. in an

assertion has as range entry the number referring

to some data node X, then this means that the

range of U. in the current assertion is the same

of the declared range (size) of X.

IDWITH Is used in the scheduling process and will contain

the nesting level of the loop variable with which

the subscript is identified.

Let us consider for illustration several types of nodes and

their local subscript lists, as well as some relevant edges.

Consider the declarations

F IS FILE(C(*))

C IS GROUP(R)

R IS RECORD(L(3))

L IS FIELD

The local subscript list of L is

L: (FOR^EACH.L, FOR_EACH.G

The lists for G and R are

(FOR_EACH.G)

and the list for F is empty.

Consider the assertion:

<X:A(I, J) «B(I) +C(J)

109

The assertion a gets the subscript list (J,I). Note

that the list always goes from the least to the most

significant subscripts (right to left).

Associated with this assertion will be the edges

3 ?a (I, J) *-B (I) with the subscript expression list (2) and

3:a(I,J)*-C(J) with the subscript expression list (1).

Later we may find that B is actually two dimensional

while A is three dimensional. This will be reflected in

modifying the assertion into

J; A($1,X,J) - B($1,I) + C(JK

The local subscript list of a will be modified to

<J,I,$1) while the edge from B to a will contain the subscript

expression list: (2 ,3) .

Consider an assertion

gsX(I) • I A(I,J)
J

The a s s e r t i o n 6 i s g i v e n the l o c a l l i s t (J,X)

where J i s marked as reduced . The edge l e a d i n g i n t o t h i s

a s s e r t i o n i s

3 : 6 (1 , J)«-A(I, J) wi th t h e s u b s c r i p t e x p r e s s i o n l i s t (1 , 2)

and t h e edge l e a v i n g i n t o the t a r g e t v a r i a b l e i s :

7: X(FOR_EACH.X)^8(FOR_EACH.X,E)

110

MOC: For data nodes this list is

obtained by scanning the structure

tree bottom up starting at the current

node, and listing the names of all the

repeating data nodes which are encountered.

For assertions we take the list of sub-

scripts appearing on the left hand side

of the assertion and precede it by a list

of the additional subscripts which appear

on the right hand side but not on the left

hand side. These additional subscripts are

marked as reduced. Later when subscripts

are addded by the system these lists will

be updated

VARS-BIT(l) - (Field entry XVARS, an integer) This entry

is fl f if the structure of the item involving

any descendants below the record level is

variable. Thus if any subitem has a variable

number of repetitions or a variable length

the item is assigned a VARS entry of "I 1.

This will later determine if in reading a

record we have to unpack each field or can

read the whole record as a single string

overlaying the corresponding data structure.

Ill

VARYREP - BIT(l)

VIR DIM-BIN

MOC s Whenever a subrecord item has a

varying length or a varying number of

repetitions, the VARS entries for both

itself and its parent are set to 'I'c

(Field Entry XVARYREP). Is set to 8l f

if the item has a varying number of

repetitions.

MOC 2 Inspect in the node's parent

storage statement if MAX^REP > MIN_REP

or MINJREP « -1 signifying a f*f

repetition, set VARYREP to 1.

Integer (Field entry name XVIR^DIM)

This gives for each item the conceptual

(virtual) dimensionality that it has.

Regardless of the physical memory allocation

it counts the number of repeating structures

(including itself) which exist on the ancestry

line between an item and its parent file.

For all input output items this will be equal

to the ultimate size of the SUBSLST list.

MOC: If the item is repeating then VIRJDIM

VIRJDIM(item) * VIRJDIM (parent) +1 else

VIR_DIM(item) « VXRJDIM(parent)

112

MAINASS - PTR (Field name XMAINASS) For each

node this entry contains a pointer

to the storage statement defining

this node. It is prepared in CRDICT.

XDICT - CHAR(32) Holds the name of the node.

MAMESIZE - Integer - The length of the node's name.

The corresponding function DICT(I) uses XDICT and NAMESIZE

and returns the nodes name as a CHAR(32) varying string.

ISSTARRED (Field name XISSTARRED, positive if

true), is true if the data item is

repeating and has a virtual repetition.

DICTYPE (Field entry name XDICTYPE) CHAR(4) -

Specifies the type of the node. It

is set during the dictionary creation

and whenever new nodes are added to

the dictionary. Its possible values

are the following:

fASTX* - An assertion node.

'GRP1 - A group

'FILE1 - A file.

fRECDf - A record

'MODL1 - The specification name.

'DISK1, 'PRINT1, 'CARD1, 'TAPEf , 'TERM1, 'PNCH' -

denoting a storage media of the corresponding type,

•SPCN1 - A special name with a reserved prefix:

(END,SIZE,LEN,POINTER,NEXT,SUBSET,

•ENDFILE,FOUND)

113

f$SUBf - User or system declared subscripts, including

the standard subscripts SUB1 ,SUB2 , e . .SUB9 »

•$$' - System added subscriptss $1, •. $9

f$If - System loop variables I1,.«.X9.

"SUCCESSORS - INTEGER - The size of the successor list.

SUCC^LIST - Pointer - A pointer to the list of

successors - list of edges emanating from

the current node.

#PREDECESSORS - Integer - The size of the predecessor list*

PRED__LIST - Pointer - A pointer to the list of edges coming

into the current node*

UNIQUE-CHAR(32) - The smallest name by which this node can

be identified. If the last component of

DICT is sufficient to uniquely identify

this node then UNIQUE is set to this las-

component. Otherwise, UNIQUE is set to

DICT.

FATHER - Integer, The node number of the immediate ancestor

of the current node.

SON1 - Integer - The node number of the first (leftmost)

immediate descendant of the current node.

BROTHER - Integer The node number of the immediate right

neighbor of the current node, or the next

immediate descendant of FATHER.

114

ORGANIZATION - Integer,

TERMC - Integer

RANGEP - Integer

NXTNEED - Integer

Equals 1 if this item is a

•member of a file which is not

sequential. It equals 0 otherwise.

Specifies the termination criterion

condition for the node if one is

explicitly specified: It accepts

one of the values:

1- Constant limits given in the

repetition specification

2- An END.X variable exists for the

current node X.

3- A SIZE.X variable exists for the

current node X.

4- This node is a last record or

group in an input sequential

(unkeyed) file.

If a termination criterion is not

explicitly specified, the system

will attempt to deduce one. RANGEP

points to the node whose termination

criterion (explicitly given) is the

same as that of the current node.

This entry is positive for all

nodes which are referred to by a

NEXT prefixed variable. It will

also be set for records containing

such nodes. These nodes are

115

restricted to nodes in input sequential

files.

PRVNEED - Integer -This entry is positive for all nodes

which are virtual repeating structures

and have a reference of the form

A(oo«X-l,..) is a subscript position

in A corresponding to the current node.

This will cause these nodes to be declared

as repeating of size 2O X(l) will refer

to the previous value of x abyte X<2) will

refer to the current X. After the loop

containing Xf X(2) will be moved to X(l).

USED - Integer This entry is set to 1 for each node

which is chosen as a logs variable name.

This will govern the selective declaration

of the system generated subscripts:

SUB1, • .SUB9,$1, • .$.9,$11, . .19.

116

3.3.5 Entering Dependency Relationships

Dependency relationships are entered to indicate that a

node j, such as a field or assertion depends on the value of another

node, i, and that therefore i i's precedent to j. These relation-

ships are detected and entered by the routine ENEXDP (ENter Edges

for explicit Dependency). Some dependency relationships are explicit

in the MODEL statements, while others are implicit and are deduced

or assumed by the Processor.

The main tasks of ENEXDP are:

A) Draw edges of the types :

5,13,14,15,16,17,19,20 associated with the special names

with reserved prefixes: POINTER,SIZE,END,FOUND,NEXT,SUBSET(Output),

SUBSET(Input), LEN respectively.

B) Analyze assertions. Transform the leaves in the assertion

syntax tree to reflect node numbers, subscript numbers and function

numbers, replacing all the variable name leaves. Deduce and insert

subscripts in the case of implicit reduction. Form the local

subscript list for the assertion. Generate edges type 3 and 7 into

and out of the assertion.

C) Call ENIMDP to generate additional assertions for the

definition of fields lacking an explicit source.

Draw edges for special names.

117

Algorithm SNEXDP: Enter Edges For Explicit Value Dependencies

The algorithm consists of three Tasks, A,B and C*

Task A

This task is performed by the main body of the procedure

ENEXDP.

Each node is examined for having a reserved prefix as

a first component in its name. In the following let NODE

denote the examined node andTRGT denote the subject of the

special name, i.e. the suffix to the reserved prefix,

1. If PREFIX « •POINTER' then verify that TRGT is a keyed

record and draw an edge*

5s TRGT + POINTER.TRGT, 6«G*

2e If PREFIX ». fSI2Ef then verify that TRGT is repeating

and draw an edges

13s TRGT(I) + SIZE.TRGT, 6*1

Note that this implies that tha dimension of SIZE.X is

smaller by 1 than that of X.

3o If PREFIX«*ENDf then verify that TRGT is repeating and

draw an edge.

14s TRGT(I) «- END.TRGT (1-1), 6 = 0

4e If PREFIX*1 FOUND1 then verify that TRGT is a keyed

record and draw an edges

15s FOUND. TRGT «- TRGT, 6=0

This will make FOUNDER depend on the record R.

5. If PREFIX = 'NEXT1, verify that TRGT is an item below

the record level in an input sequential file and draw an edges

Algorithm ENEXP (continued)

16: NEXT.TRGT «- TRGT , 6-0

This will make NEXT.X depend on X.

6. If PREFIX-1SUBSET1 then verify that TRGT is a record.

If it is an output record we draw an edge %

17: TRGT+SUBSET.TRGT, 5=0.

Otherwise it must be an input record and then we draw

the edge:

19: SUBSET. TRGT«-TRGT, 5=0

7. If PREFIX^'LEN1 then we draw an edge:

20; TRGT«-LEN.TRGT, 5=0

All these edges (including 13,14) are drawn with an

empty list of subscript expressions, i.e. SUBX=NULL. The

module Fillsub constructs later the subscript expression list

according to the edge type.

Task b

Transform Assertions and Draw Edge in and out of the

Assertions (types 3 and 7)•

This task is performed by the procedure DOASS which

is called for each assertion node.

Task c

We call on ENIMDP to detect non input fields for

which no defining assertion is given. ENIMDP creates new

defining assertions for such fields and enter then into the

syntax analysis phase by recalling SAP. After coming out

of ENIMDP, we call once more on DOASS for each of the newly

created assertions.

1 1 9

3 , 3 . 6 Procedure DQASS
• • • • ' " • • • '• ' • • •• • ' • • • • ^

The syntax tree for the assertion is retrieved. Let

POINT(l) point to the node representing the L.H.S. of the

assertion and P0INT(2) represent the R.H.S. We first call

SCAN(POINT(l)f1,1,0) to transform and construct the local

subscript list for the L.H.S. Then, we call SCAN(POINT(2),

0,1,0) to transform and construct edges and augment the Local

subscript list for the R.H.S.

When SCAN creates the local subscript list, subscripts

are added from the left. Each subscript added to the list

is assigned a sequence number which specifies its rank of

joining the list or its position measured from the right.

Thus in the assertion.

a: A(I,J) - I B(I,K,J)

we will construct the local subscript list (K,J,I) assigning

right position numbers 3,2,1 to K,J,I respectively. The

leaves in the assertion referring to subscripts refer to these

right position numbers. Similarly when we construct the

type 3 edge connecting B to a

3: a(I,J,K)«-B(I,K, J)

a subscript expression list (J,K,J) is constructed for this

edge. This list is also represented by references to the

right position numbers: (.2/3,1).

120

However at the end of the process we would like to have

all the references changed to left position number according

to the positions of the subscripts in the local subscript list

measured from the left. Thus we will have to change the sub-

scipt expression list in the edge above to (2,1,3).

Consequently both the local subscript list and type 3 edges

are first generated locally by SCAN.

Then after this is done we resequence the reference numbers

of the local subscripts. We rescan the syntax tree for the

assertion changing all nodes referring to subscript numbers.

We then modify all the subscript expressions list in all the

edges and enter these edges into the array graph,

3.3.7 Subprocedure SCAN

SCAN is presented with a node in the syntax tree and is

responsible for performing the following tasks:

1) Transform the descendant leaves of this node which are

of type variable-name (23) into one of the types: variable number

type (25) , subscript number type, (26) or function number type (27)

2) Augment the local subscript list by the new subscripts

which appear among the descendants of the given tree node.

3) Construct type 3 edge for each instance of a subscripted

variable appearing as or among the descendants of the given tree

node. These edges will contain a list of subscript expressions.

4) Check special and reduction functions, and if no

explicit reduced subscript is given, one is automatically deduced.

121

Algorithm DOASS

1. Call SCANCPOINTd) ,1,1,0) to scan the L.H.S. subtree of the

assertion,

2. Call SCAN(POINT(2),0,1,0) to scan the RVfi.SVsubtree of the

assertion,

3* Call RENUMBER to modify all references to subscripts in the

syntax tree from right positions to left positions «

4, For each locally generated edge, modify the subscript expression

list to refer to left positions, and enter the edge into the

graph,

5« Check for subscripts which appear on the ReH,S« but not on the

L.H.S which are not explicitly reduced, Mark then as reduced

and issue a warning;

fENEXDP: SOME SUBSCRIPTS APPEAR ON THE RHS BUT NOT ON THE

LHS. SELECTION IS IMPLIED FORs SUB1,SUB2,,..',

6* Generate a type 7 edge from the assertion to its target with

the following subscript lists

(E ̂ S | • «£ yd. f | «S)

E appears in any position corresponding to reduced subscripts.

122

Algorithm SCAN(ROOT,LEFT,LEVEL,PARTYPE)

The parameters are:

Root - A pointer to the tree node.

Left - An integer being positive if this node is in the

target subtree of the assertion, and equal to zero

if the node is in the right hand side subtree.

Level - An integer specifying the depth of the node in the

tree.

Partype - An integer, giving the type of the parent of

this node.

Description of the algorithm;

!• If the node is a leaf, go to Step 18.

2. 1=1, no,, of descendants call recursively

SCAN(PONT(I),LEFT,Level+l, Node.Type)

3. If the node is not a subscripted variable go to step 12

4. {Subscripted variable}. Scan each of its descendants

and construct a subscript expression list element as

follows;

5. If the descendant is a simple subscript then

LOCAL_SUB# * Subscript number,

APR_MODE - 1.

6. Otherwise if the descendant is of the form 1-1 we

Set: LOCAL_SUB# « subscript number of I

APR_MODE • 2.

7. Otherwise if the descendant is of the form I-C for

C > 0 we set LOCAL_SUB# = Subscript number of I

APR MODE » 3.

123

Algorithm SCAN (continued)

80 Otherwise we set APR_MODE - 4

9. If left > 0 check that APR_MODE « 1, otherwise issue

an error message: fENEXDP: A GENERAL EXPRESSION APPEARS

AS A LEFT HAND SIDE SUBSCRIPT AT - ass-name f .

10. If Left«0, generate a local edge of type 3 from Root

to the assertion with the subscript expression list

as created in steps 5-8, Set its DIMDIF field to the

size of the subscript expression list*

lie Exit.

12, If the node is not a function call, exit.

13O {Function Call}, If not a special function (array

function) exit.

14. {Special Function}, Check tĥ .t level * 1. Otherwise

issue an error message: 'ENEXDP: A SPECIAL FUNCTION

APPEARS AT AN INTERNAL LEVEL**

15. If no explicit subscript list appears in the function

call, generate one by taking the roost recent subscript

added to the local subscript list. This is based on

the assumption that the summed variable will be explicitly

subscripted and will transform A * SUM(B(D) into

A*SUM(B(I) ,1) .

16. If the special function is a reduction function we

mark all the subscripts in its parameter list as reduced

by setting their REDUCED field in the local subscript

list to 1.

124

Algorithm SCAN (continued)

17. Exit.

18. If the node type is not a variable name (type 23)

go to step 24.

19. {Variable Name} If the name is of the form

FOR_EACH.X and X is repeating or it refers to a

dictionary node which of type subscript ('$SUB')

then this name is a subscript name. Otherwise

go to step 23.

20. {The name refers to a subscript} Check if a

subscript by that name already appears in the

local subscript list. If it does not, create a

new entry in the local subscript list with this

name. go to step 22.

21. {Name already in local subscript list} If left

> 0 issue an error message: 'ENEXDP: Two LEFT

SUBSCRIPTS COINCIDE1

22. Create a tree leaf of type: Subscript Number(26)

referring to the right position of the corresponding

entry in the local subscript list. Exit.

23. {The name refers to a variable name}. Construct

a tree leaf of type: Variable Number(25) referring

to the dictionary entry number corresponding to

this variable. Create an edge of type 3 from

this entry to the assertion with an empty subscript

expression list/ DIMD1F=O. Exit.

125

Algorithm SCAN (continued)

24. If the node type is not a function name (type 21)

Exit.

25« { A function name},, Searches for this name in the

function list. Create a leaf node of type Function

Number (27) referring to its index in the function

name list. Exit.

126

Algorithm RENUMBER

This procedure scans all the leaf nodes of the syntax

tree which are of type 'subscript number' (26) and transform

their reference number from right position to left position.

If the final size of the local subscript list is #LOCALS then

this transformation is done by Subscript:

(Left_Position)»# LOCALS+1-(Right Position).

3.3.8 Finding Implicit Predecessors (ENIMDP)

If a field in some target file is not defined

via some explicit user's assertion, then the Processor tries to

find an implicit source for the field; using a set of successive

rules. Also, further analysis is made of the array graph and

certain kinds of inconsistency and incompleteness errors are

detected. Details of entering such implicit relationships and

detecting corresponding errors are in the process called ENtering

IMplicit Dependence (ENIMDP), and its subroutines, described

here.

First, interim variables are checked to make sure that they

have a predecessor* The HASSRC ("HAS SouRCe") function

determines whether a node has an explicit predecessor. If an

interim field corresponds to node j, then the node is checked

to see if it has an explicit predecessor. If so, then the field

has a source? otherwise, a message is sent to indicate its

absence (Message number 3):

ERROR(INCOMPLETENESS): Need an assertion that describes

how to obtain interim name X.

Secondly, all the fields in target files are checked to

determine whether they already have an explicit predecessor via

the HASSRC function. If a given field in a target file (a

field corresponding to, say, node j already has an explicit

source by virtue of a user's assertion, then it has an entering

edge of type 3. Otherwise, the field has no explicit source

the FNDISRC routine (FIND Implicit SouRCe) is called to find

128

a same-named field in another file or a same-named interim

field as its source using a set of successive rules in the

following order of priority. The idea here is to make some

reasonable assumption for a plausible predecessor if at all

possible* The following rules are used by the FNDISRC

Algorithm*

Rule 1: If the target field having no explicit predecessor is

in a file which is both a source and target file, then the

value in the corresponding field in the old record is taken as

the value of the field in the new record (Message 10 is printed)

Rule 2: If Rule 1 does not apply, then the Processor tries to

find a same-named field in a source file. If one is found,

it is assumed to be the source and is so indicated in a message

containing the assumed assertion (Message 10). If more than

one same-named field in a source file is found, then the first

is taken as a source and a message is sent to indicate that

there was an ambiguity, and the assumed assertion is printed

(Message 11).

Rule 3: If no predecessor for the field is found by the above

means, then the Processor tries to find a same-named interim

field* If one is found, it is taken as the source and a message

is sent to indicate that (Message 10)• If more than one is

found, the first is taken and a message is sent to indicate that

there was an ambiguity (Message 11).

Rule 4: If the above efforts are unsuccessful, the Processor

tries to find a same-named field in another output file. If

129

one is found it is taken as the source with a corresponding

message given to the user (Message 10) , and if more than one

is foundf then one is taken with a corresponding message to

the user regarding the ambiguity (Message 11).

Rule 5: In the above cases, the Processor tries to find

"implicit" sources for a field if none is given explicitly*

If all this still fails to find some field which can be

construed to represent the current fieldfs source, then an

error message is sent to the user to the effect that the

current field has no assertion describing how it is obtained,

and that therefore such an assertion is needed (Message 3).

In the above cases where an assumption is made regarding

an implicit precedence, the corresponding assertion is printed

to the user, A warning is printed as follows s wIn the absence

of any other relationship, the following assertions have been

assumed:", followed by the assumed assertions. The warning

(Messages 10 and 11) is produced by the PRSRCWRN routine

(PRint SouRCE WaRNing)•

The resulting list of such assumed assertions becomes a

permanent part of the documentation. The assumed assertion is

written out to evaluate whether it agrees with the users

original intention or whether some of the statements must be

changed and the specification resubmitted.

Each of the assumed assertions is added to the MODEL

specification by the procedure CREATASS(I,J) which creates

a new assertion,

NODE#J « NODE#I.

130

CREATASS(SOURCE.TARGET)

•SOURCE1 - The dictionary number of the source variable.

•TARGET1 - The dictionary number of the target variable.

The assertion text is created by retrieving the names

Of SOURCE, TARGET:

'name(TARGET) - name(SOURCE); END;•

This text is placed in a character string CARD and a

pointer to it placed in GN TXPTR which is a pointer variable

known to the lexical analysis LEX is SAP,

Then SAP is called. Whenever SAP uses LEX to fetch the

next input token, LEX checks first GNTXPTR. If it points to

a non empty character string then the next input is taken from

this character string. Thus SAP will process the given assertion

and form-for it the appropriate entries in the associative

memory including the syntax tree. Next it will read the END

statement which will cause it to clear GNTXPTR and exit,

On exit we retrieve the assertion name given to the new

assertion and create a new entry in the dictionary.

131

3.3.3 Dimension Prorogation (DIMPROP)

This procedure calculates the final number of dimensions

(referred here as dimension) for each node in the array graph.

Initially every data node is given a dimension specified by its

declaration. Thus, for example, a consequence of the definitions:

F IS FILE(G)

G IS GROUP(R(*))

R IS RECORD(X(5))

X IS FIELD

F and G are assigned dimension 0, R is assigned dimension 1 and X

is two dimensional. Data which are not declared (END.X) or are

declared as interim fields, not belonging to any higher structure,

are (initially) assigned dimension 0,

The process of dimension propagation considers dependencies

between nodes and infers a requirement for the dimension of the

target of an edge (or an assertion) based on the dimension of the

source. Thus if together with the above specification we also

had

Y IS INTERIM FIELD

Y * X + l

we will infer that the dimension of Y should be at least the same

as the dimension of X. This inference is based on the assumption

that X is actually an abbreviation for X($2,$l) (which will in

fact be fully developed into this form later)• Assuming in general

that unless selection is explicitly specified all rhs subscripts

should also appear on the lhs, the full expansion of the complete

statement will be;

Y<$2,$1) = X($2,$l) +.1

132

From this we infer that the should have at least two dimensions.

This interpretation is based on the following two rules:

1. Missing subscripts are always inserted on the left of a

specified (or empty) string of subscripts.

2. All implicit subscripts that appear on the rhs must

also appear on the Ihs•

Assume for example that the variable U has been declared as

one dimensional and the user specified Z=X+U.

This will be completed into:

Z($2,$l)«X($2,$l)+u($l)

If instead the user had specified:

Z(I)-X(I)+U

The completion would have been into

which has of course a different meaning.

The inference of dimensions from assertions is extendable

to other edges which also reflect dependencies. For example having

the edge

5: R «- POINTER.R

we would expect R to be at least of the same dimension as POINTER.R,

Since for each possibly different value of POINTER.R we have to

retrieve a possibly different R.

The dimension propagation sometime proceeds from target to

source. This is the case for example for the edge:

13: X(I)«-SIZE.X

133

Here we will want to infer the dimension of SIZE.X which is

normally not declared, and make it one less than the dimension of

X*

The general dimension propagation will consider therefore

kQtk forward and backward propagation. The propagation and its

direction depends on the type of the edge. A summary of the

algorithm is as followso

We use an array G for representing the current dimension of a

node* Let D represent the initially declared dimension of the

nodes. Let N denote the set of nodes in the graph (specification),

Below is a simplified algorithm for DIMPROP.This will be followed

by the description of the more efficient algorithm in use.

!• For ee.ch n e H Let C(n) «- D(n)

2. Consider an edge es t •«• s of type T

and DIMDIF field (6) for the edge connecting s to t.s,teN.

3. If T e{ 1,2,3,5,7,9,15,16,19} then

{Propagate forwards}:

if C(s)+6> C(t) then C(t)^C(s)+5

4* If Te{ 13,14,17,20} then

{Propagate backwards}:

If C(t)-5> C(s) then C(s)«-C(t)-6

5e Repeat steps 2-4 until either

a0 No further change in the C8s is observed

b. One of the C(n),neN exceeds a given threshold

(in our case 20).

134

In case (a) we say that the process has converged. In order

to verify that the process has converged we have to scan the C

vector and check that none of the elements has been modified.

Case (b) is due to a cycle in the graph which if pursued will

cause an endless increase in the dimensions. This of course is an

error and is flagged as such. Consider for example the (erroneous)

specification:

G IS GROUP(F(*))

P IS FIELD

IF 1=1 THEN H(I)=5 ELSE H(t)»F+l

IF 1=1 THEN F(I)-6 ELSE F(I)»H+1

The first assertion is interpreted as stating that the

dimension of H is larger by 1 than that of F i.e. C(H)>C(F). The

second assertion stated in turn that C(P)>C(H).

Applying our algorithm to this specification will result

in endless loop of alternately incrementing C(H) and C(F). In order

to avoid this we added the overflow case(b) and we check for one

of the dimension getting too high.

In order to make the algorithm more efficient we introduce a

queue Q which will hold all the nodes whose calculated dimension

could possibly be altered.

135

The more efficient algorithm is:

1. For each n£N let C(n)**D(n), put n in Q,

2m If Q is empty ~ exit.

3. Pick a node ntQ, remove it from Q« Let d-<-0.

4, For every incoming edge, from s to n of type

Te{1,2,3,5,7,9,15,16,19} Let d«-m:a.x (d, C (s) +6)

5e For every outgoing edge, leading from n to t of

t y p e Te{ 1 3 , 1 4 f 1 7 # 2 0 } L e t

d«-max (d,C(t)-6)

6e If d S C(n) £O t£ step 2*

1. {A new updated value} Let C(n)^de

8« For every incoming edge, leading from s to n of

type Te{13,14,17,20} put s on Q.

9. For every outgoing edge, leading from n to t of

type Tc{1,2,3,5,7,9,15,16,19} put t on Q*

10. If d > Threshold then halt and issue an error message;

there exists a propagation cycle.

136

In the program DIMPROP, D is represented by the attribute

entry VIR-DIM, C by the array CALC_DIM.

The edges along which forward propagation should take place

are characterized by the characteristic array IS_DPROP(I) which

is positive for I's of the appropriate edges. Similarly backward

propagating edges are characterized by the array BACK^JDPROP.

The queue Q is represented by a linked list whose beginning

and end are respectively pointed to by FRONT and BACK. The

procedure PUT-NODE(n) will put the node n into this list if it

is not already there. For quick reference we also use the integer

array ONLIST(I) which is positive for nodes number I which are

currently in the list.

The DIMPROP algorithm description is stated below.

137

For completeness we review here the initialdimension

assignments of D (VIR__DIM) and the 6 values associated with

each edge type*

Let a: A(I.,..I) * f(...B.(J ,..J) . . .)ic i m i

be a typical assertion. For each instance of a subscripted variable

such as A(.I ,..I), B(J ,.*J) we define an apparent dimens ion

as the number of subscripts actually appearing in it. This is

smaller or equal to the actual dimension of the appearing variable.

The apparent dimension of the assertion itself a is defined to

be the number of distinct subscript names appearing on both sides

of the assertion.

The initial dimension VXR^DIM of any node n£N is defined as

follows z

1. If the node is a data node, this is the dimension

as implied by the declaration and the structure in

which it is a member.

2. If the node is an assertion then its initial dimension

is set to be its apparent dimension as described.

Following is a list of the 6 values associated with each

type of edgeo

Type 1: <5 « 1, 0 according to whether the target is a repeating

item*

Type 2% 6 « -1,0 according to whether the source is a repeating

item*

Types 5,9,14,15,16,17,19,20 all have 6 « 0.-

138

Type 3: Associated with an instance of a subscripted variable B

in an assertion a:

6 * (apparent-dimension(a))-(apparent-dimension (instance

of B))

Thus in the assertion:

a: A(I,J) » SUM(B(K,J),K)

The apparent dimension of B is 2, the apparent dimension

of a is 3 ((I,J,K) being the local subscript list) and the a-<-B

edge has 6 = 1

Type 13: 5=1

Type 7: <5=-(numbered reduced subscripts).

This is based on the premise that if the assertion is

a:A(I ,..1)=f (.•.)
* 1

and the local subscript list is

Jm,..J' being the reduced subscripts, then the generated edge is

A(lk,..l

whose dimension difference is -nu

6 for the other edges is irrelevant

139

Algorithm DIMPROP: Dimension Propagation

Calls EXTEND_STRUCTURE

1. Apply the dimension propagation algorithm*

2«, For every node n£N, compare VIR_DIM(n) with CALC^DIM(n).

If CALC_DIM(n)=VIRJDIM(n) check next node. If all nodes

checked - Exit.

3e { CALC-D.IM(n) >VlRJDIM(n) }• Verify that node is either

a special name, a group or a field in an interim structure,

or an item in a keyed pointed file. If none of the above

hold issue an error message:

•DIMPROP: AN INCOMPATIBLE DIMENSION HAS BEEN COMPUTED

FOR AN INPUT-OUTPUT NODE-n1

4e Update VIRJDIM(n) «-CALC-DIM(n) •

If the node is not a record nor the top level in an

interim structure go to 2 to consider the next node.

5. {Node is either a record or the top level of an interim

structure}

Call EXTENDED_STRUCTURE(n, father of n, Difference

between CALCJDIM(n) and VIR-DIM(n)),

6. Return to step 2 to consider the next node*

140

This subprocedure EXTEND_STRUCTURE called by DIxMPROP

defines additional repeating nodes between the node and its

father in the case of a pointed file, or above the top level

in case of an interim structure. The number of nodes to be

defined is the difference between the calculated and initial

dimension^

141

Algorithm EXTEND_STRUCTURE

Parameters? BOTTOM,TOP,#DIM.

Calls DRAWJBDGES

BOTTOM is the node above which additional structures have to

be generated,

TOP is its current father. It is the file node in the

case of a pointed file and empty if this is an interim

structure*

#DIM The number of additional structures and hence dimensions

required*

L If TOP f 0 remove all current edges between TOP

and BOTTOM.

2C Set LOW to BOTTOM and repeat the following #DIM

times. When done go to Step 8.

3. Generate a unique NEWJNAME « •$YSGENi$YSGENi•. Let

OLD_NAME * DICT(LOW).

4. Generate the texts

new_name IS GROUP(oldjxame()); END;1

and call SAP to process it.

5. Generate a new dictionary entry, m with the following

field values s

XDICT^-NEW^NAME

XDICTYPE«-8GRP*

XREPTNG,XISSTARRED«-1

XSON1«-LOW. Set REPTNG(LOW) , ISSTARRED (LOW) ̂ 1 too.

6. Set HIGH-*-m and call DRAW^EDGES to draw necessary

edges between LOW and HIGH.

142

Algorithm EXTEND_STRUCTURE (continued)

lm Set LOW-*-m, and return to step 3,

8. If TOP^O set HIGH^TOP and call D.RAW^EDGES to draw

necessary edges between the newly created top item

and the old file node above it.

143

Algorithm DRAWJB0GES

Draw edges between two data nodes LOW and HIGH, the second

being an immediate ancestor of the first,

1. . If items belong to an interim structure or output file

go to step 4.

2. {Input items}. Draw a type 1 edge from HIGH to Low.

3. If LOW is repeating find its rightmost field descendant s

and draw a type 11 edge from s to LOW.

Exit.

4« {Output items} # Draw a type 2 edge from LOW to HIGH

5. If LOW is repeating search its leftmost field descendant s

and draw a type 12 edge from LOW to s«

14 4

3.3.10 Filling Missing Subscripts in Edges and Assertions (FILLSUB)

This module performs the following tasks:

a) Generates and fills up the subscript list for each

node.

b) Fills up missing subscripts in the syntax tree for

assertions•

c) Generates and fills up the subscript expression lists

of all the edges.

d) Draws edges of types 10 and 18 connecting nodes with

virtual subscripts to assertions.

e) Draws edges of type 11 and 12 connected from FIELD type

nodes X to their ancestors Y, if Y is repeating and

FOR EACH.Y is a virtual subscript.

4i

"6
f) For each interim variable END.X and SIZE.X^ the system

has built the top level structure if they are arrays

themselves,in DIMPROP procedure. Now copy the symbol

attributes XISSTARRED and XMAX_REP from the ancestors

of X to the ancestors of END.X. This information will

be used in the GFLIDCL procedure.

145

g) Draw edge of type 21 from module name to every file

name. This will make the scheduler put the module name

in the beginning of the flowchart,

h) Draw edges of types 24 and 25 connecting nodes X to

nodes SIZE.X or END.X,if SIZE.X or END,X has virtual

subscripts. It is similar to the reverse edge for

edge type 3*

Task a: Local Subscript List Generation.

If the node X is a data node, its subscript list is

(displayed from last to first) s

(FORJEACH.Ak,.. . FOR^EACH.A^

Where A]c,..A1'is the list of the repeating ancestors

of X in a top down order. If X itself is repeating then.

Ax « X.

If the node is an assertion node then it has already

been assigned a partial subscript list in ENEXDP* This is

the list of apparent subscripts in the assertion, i.e*

all the subscripts appearing either on the L.H.S or the

R.H.S of the assertion. Let the assertion be of the form

a:A(Ik#..lx) • f(..)

Let the R.H.S contain the subscripts J w » « J
m not appearing

on the L.H.S and hence assumed to be reduced. Then the

partial list assigned to a is {Ik,..I1#Jm,•.J^) and its

apparent dimension determined to be d « k .+ m. As a

result of the dimension propagation process we will have

14 6

had recomputed a new dimension for a , C>d. This will

cause n * C-d new subscripts to be added to the list of

a which now appears as:

($nf.,$lfl^f.,l^/ Jm, • • J]_)

The new subscripts are respectively named $l,..$n.

Task b: Filling Up Missing Subscripts in the Assertions.

Consider an instance of a subscripted variable in an

assertion A(I.,..I)• The calculated dimension VIR^DIM

for A yields a value d which should be d^j. If this is

not the case an error message is produced. If n » d-j>o

we add n new system added subscripts $1 to $n, modifying

the instance into A($n,••$1,Ij,..I^).

Note that the new subscripts are always added on the

left*

Task c: Fill Up the Subscript Expression List for the Edges

All the edges except types 3 and 7 have been generated

with an empty subscript expression list . According to

the edge type and the known dimensions of its source and

target we generate a subscript expression list. Edges

of types 3 and 7 have already a partial list based on

their apparent appearance in the assertion. We augment

these by adding the subscripts corresponding to $!,•.

$n where n = dim(A) - apparent dimension in instance.

Task d: Drawing Edges of Types 10 and 18.

Type 10 edges connect a target node to an assertion,

14 7

whenever one of the dimensions of the target node is

virtual. It always reverses a type 7 edge.

Consider first the simple case that a contains no

reduced subscripts, then the type 7 edge appears as:
7

N(Uk,. .Uv# . •U^) «- ct(Uk# • .Uv# . •Uj) where we assume

that vf l£v£k is the position of the virtual repetition in

No This means that the value of N for subscripts U n #*.U 1

depends on the activation of a for the same subscripts.

However, before activating a and producing a new value to

be stored in N(Uk, ••!!-) we have to ensure that the previous

value has been used by an assertion needing N« The fact

that Uv is virtual implies that N's values for different

U v occupy the same memory space. Thus we draw a f10 f

edge :
10

a(uk, • .uv,. .u1) «• N(uk,. .uv-i,. .ux)

In the case of the presence of reducing subscripts in

a we have the 7 edge:

. eU v f..U 1) -* a(U k # #.U Vr ••Ui,E,E#.E>

where m » number of E fs, i.e. the number of reduced sub-

scripts. We draw then the '10* edge:
10

a(ukf . . U V , . . U 1 , J B I , . . J 1) «• N(u k ^ .vv-i,..ux)

148

A type 10 edge has to be drawn between N and a for

each virtual position in N.

Type 18 edges reverse 3 edges and are drawn from an

assertion a to one of its sources N corresponding to a

virtual position in N,

18

Corresponding to a type '31 edge:

with a virtual position v in N we draw the edge:

18
N(uk,..u1) + a(Km#..K1)

where the K^ are subscript expressions, Jk'**Ji taay in

general be a permutation or even partial selection of the

Uj^,, .U, and Km,..K^ is an inverse of the permutation.

Also the expression corresponding to the virtual position

in N should be reduced by 1.

Assuming Jv to be U^ or U^-2 so that the virtual

position in a is the t'th), we take

* £ - uv-l

K± for i ? t = Up if Jp » U± for some

Otherwise Ki » E.

14 9

Algorithm FILLSQB

Subprocedure used: UPDATE_ASSR,APOD_SUBJREF,CONSEQ,EXPR,

1. Consider in turn each node n£N.

2 # If the node is a data node construct for it the subscript

list by upwards tracing of its repeating ancestors.

3e If the node is an assertion it already has a partial

subscript list. We augment it by adding on the left

subscripts of the form $1,$7, #. up to the assertion's

dimension. We also call UPDATE__ASSR to fill the missing

subscripts in the syntax tree of the assertion*

4 e Consider in turn each incoming edge e, entering the node

n« Let its type be T, We branch according to the edge's

type to different routine, each filling the subscript

expression list for an edge of the appropriate type. The

adding of an element is done by ADD__SUB__FEF •

5, Scan again each node n£N which is a data node.

6. Consider in turn each incoming edge e entering n.

?• If the edge e is of type 7 (assertion to data node) then

for each virtual position o in the local subscript list

of the node n perform step 8.

8, Construct an edge of type 10 reversing the type 7 edge e

relative to the virtual position v,

90 Consider in turn each outgoing edge of type 3 (data node

to assertion).

150

Algorithm FILLSUB (continued)

10. Repeat step 11. for each virtual position o in the local

subscript list of n.

11, Construct an edge of type 18 reversing the type 3 edge,

relative to the virtual position o.

151

Subprocedure UPDATE__ASSR (ROOT)

This procedure adds missing subscripts in the syntax tree

of the assertion pointed to by the pointer R00To

The syntax tree is systematically scanned. For each

instance of a subscripted variable A (I m M . I .) , let d be the

calculated dimension of A (as obtained in DIMPROP). If d>m

then let e « d-m and the instance is replaced by the instance

A($Ie,$ll,Im,..1^), adding the system generated subscripts

$11 to $Ie.

Subprocedure ADP_SUB_RBF (SUB#,APRM,TOBACK)

This procedure adds an element to the subscript expression

list associated with an edge. It is assumed that two pointers

FRONT and BACK have been set to point respectively at the first

and last elements of the list. SUB# is the local subscript

number in the local subscript list of the node into which the

edge enters. A subscript expression element is allocated. Its

LOCAL_SUB# field is set to SUBf, its APR_MODE field to APRM.

This element is linked to either the back or front of the list

according to whether TOBACK is positive or zero respectively.

Since subscript expressions are listed from right to left,

adding to the back of the list means adding subscripts on the

left.

152

Subprocedure CONSEQ(LOW,NUM)

A procedure for adding fNUMf subscript expression elements

to the back (left) of the list pointed at by the pointers

FRONT and BACK respectively* The elements refer to the local

subscript positions: Low, Low+1, . .Low__NUM~l. The APR__MODE

of all of them is set to 1.

Subprocedure EXPR(NUM)

A procedure for adding 'NUM' subscript expressions of

type 4 (general expression) to the back (left) of the list

pointed at by the pointers FRONT and BACK.

15 3

3.3,11 Range Propagation (RNGPROP)

This module calculates the range of subscripts and dimensions

in the specification. Range, or termination criteria must be

calculated for:

1. -Each repeating data structuree

2. Each local subscript associated with a node.

Basic termination criteria are always associated with the nodes

themselves. Termination of local subscripts is indicated by

references to the repeating node which has a range identical with

that of the local subscript. A repeating node is said to have a

direct range specification if its size was specified by a constant,

by an 'END' or 'SIZE1 descriptor or implied by an end of file

encounter. The attribute vector TERMC(OICTINP) of integers

provides range information for nodes with direct range specification

as follows: It has the values:

1. If the repeating variable has a constant upper limit•

This limit is found in the attribute vector MAX_REP(n)

for the node n.

2 • If the range is specified by an END.X descriptor.

3. If the range is specified by a SIZE descriptor.

4. If the range is implied by reading an end of file.

This criterion applies to any record or group above the

record level which is last in its peer group in an

input file. It may apply in combination with any of

the preceding criteria and then the preceding are

154

marked in the TERMC array, but both criteria are checked

in the generated program,

A repeating node is said to have an indirect range specifica-

tion if no direct range was specified but one can be inferred

from the assertions. For such a node n, TERMC(n)s0f but another

array RANGEP(DICTIND) will point to the node which has the same

range. Thus RANGEP(n)=m where m has a direct range specification

which was inferred from the assertions for n. We limit ourselves

to range inferences which are identical with a direct range of

another node. If both TERMC(n)-RANGEP(n)=0 after RNGPROP is

done, and n is a repeating structure, this is an error and will

be flagged as one.

The range specification of local subscripts is always indirect

by pointing to a node which has the same range specification.

The field RANGE in the structure LOCAL_SUB will be set to the

node number which has a range identical with that of the local

subscript.

The general process of assigning ranges to repeating nodes

and local subscripts can be summarized as follows:

a) Initially, assign direct ranges by defining TERMC for

all these nodes which have direct range specification.

Assign range pointers to all local subscripts of the

form FOR^EACH.X or declared subscripts X such that X

has been assigned a direct range.

155

b) We start an iterative process which successively attempts

to assign additional ranges to local subscripts and

consequently to repeating nodes. Note that a node is

assigned an indirect range (by setting RANGEP) only

through the range assignment of a local subscript.

The rules for range propagation are the following:

L Whenever a local subscript of the form FOR_JEACH.X

is assigned a new range, we set X to have the same

indirect range specification, by setting RANGEP(m)

where m is the node number- of X« (This is reflected

in the procedure UPDATE^SUB)•

2O For every edge of type « 1, 3, 5, 7, 9, 15f 16 and

the form:

A(I ,..!.,.. I1) «- B(. . ,1 . C-'c3t . .)

where I or I,-c appears in the kfth position of B,
j 3

then if the j'th local subscript in A has no range

specification while the k'th local subscript of B

has a range specification we assign this specification

to I.«the j'th local subscript of A. This is called

forward range propagation.

3, For every edge of type = 2 , 3, 7f 14 and of the form:

B(• . .1 ,•.I) + A(.. .1 [-c] , . .)

where I or Iv-c appears in the j
fth position of A,

we propagate the range specification of the k'th

local subscript in B into the j'th local subscript

15 6

of Aw This is called backwards range specification.

In order to make the iterative process more efficient we

maintain a queue of nodes to be processed. The queue is represented

by a list of elements of the type PAIR which is linked forward.

The pointers CFRONT and CBACK point respectively to the first and

last elements in the list. The procedure PUT_NODE (NODE#) adds

the node NODE# to the back of the queue, after checking first

that this node is not already in the queue. This check is done

by consulting the integer vector ONLIST which is an auxiliary

record of the nodes which are in the queue. ONLIST(n)>0 if

node number n is in the queue. The function REMOVE_CANDIDAT£

returns the node which is first on the queue. It also appropriately

updates the CFRONT, CBACK pointers and the ONLIST array.

Another table expressing dependency of nodes is represented

by lists pointed to by•the array PROPTO(DICTIND)• PROPTO(n)

for the node x whose node number is n, points to a list of all

the nodes one of whose local subscripts has the name for _EACH.X.

Correspondingly, whenever the node n is assigned a range we

rescan all the nodes which are in the list PROPTO(n).

157

Algorithm RNGPROP:

1, Initialization; Initialize the candidate queue (represented

by CFRONT, CBACK, ONLIST) to an empty queue. Set the table

FORPROP to be 1 for the edges along which we do forward

propagation, namely: 1 #- 3, 5, 7, 9, 15, 16 <, Similarly

set the table BACKPROP to 1 for edge types 2, 3, 7, 14. Also

allocate and clear the arrays TERMC, RANGEP, PROPTO*

2«, Determine Direct Ranges: Examine in turn each node n<»

If the VARYREP field of its attribute table is zero, we

set its TERMC component to 1 (fixed size range). If its

ENDB field is positive we set TERMC to 2. If its EXISTB

field is positive TERMC is set to 3. Also, put each node

on the candidate queue, y

3. Examine Local Subscripts: Check in turn all the local

subscripts of node n*l,..DICTINDo Let one of these sub-

scripts have the name FOR_EACH*X or a declared subscript X,

where the node number of X is nu If X has a .direct range

then we set the range pointer of the local subscript to m.

If X has no direct range we put n on the list PROPTO(m),

so that if later X is assigned a range we will reschedule

the scanning of n.»

4o This major step iterates the propagation of ranges along

edges. It repeats the following substeps until the candidate

queue becomes empty.

158

Algorithm RNGPROP (continued)

4.1 Let I be the element on the queue's top* Remove it

from the queue. Spread its list of local subscripts

into the auxiliary arrays ASUBT, ASUBID, ARANGE denoting

respectively the local subscript type, identity and

range. If the subscript is named FOR^EACH.X^or a

subscript variable X check if X has a direct or indirect

range specification. If one is available assign it

to the range of the local subscript.

4.2 For each incoming edge to the node I if it is one

along which forward propagation is to be performed,

carry out the forward propagation.

4.3 For each outgoing edge of the right type perform

backwards propagation from the local subscripts of the

target node into the local subscripts of I.

4.4 If any additional local subscript has been granted a

range by the steps 4.1 - 4.3, update the RANGE field

in all the local subscripts of node I. Then add to

the candidate queue all the nodes which are either:

a) Connected to I by forward edges which are back

propagatable.

b) Having I connected to them by edges which are

forwards propagatable.

c) Are on the list PROPTO(I).

4.5 Return to 4.1 to consider the next element of the

candidate queue.

159

Algorithm RNGPROP (continued).

5. Print a report for the ranges of the nodes and local

subscripts , This is done through the procedure REPORT__RANGES

described below.

6. This step defines some additional attribute arrays as

following:

a) If a node X which is an input field has an outgoing

edge of type 16 it means that there is a variable by

the name NEXT«Xo If I is the node number of X and J

is the node number of NBXT.X, we set NXfNEED(I)»J.

Besides we also set NXTNEED(K)=J where K is the node

number of the record which contains X as its subfield*

b) If the node X, number I, is a record with an incoming

edge of type 5, it means that there is a variable

called POINTER.X* In this case we set

PTDTO(I)«1

c) Checking all subscript expressions in all edges (and

hence in all the assertions) we verify that the only

expressions appearing in virtual positions are of

the form I and 1-1. Also, if a virtual position which

corresponds to the node number J contains somewhere

a subscript of the form 1-1, we set

PRVNEED(J)«1

160

The following procedures perform auxiliary tasks within

RNGPROP:

SEARCH_EDG£(ROOT,TYPE) - This function searches an edge of a

given type in an edge list ROOT, ROOT can be the predecessor

edge list PRED__LIST or the successor edge list SUCC__LIST of a

node. TYPE is an integer between 1 and 24 specifying the

sought edge type. If there exists an edge of this type in

the given list,the function returns a pointer to the edge.

Otherwise it returns the empty pointer null,

UPPATE_DEPENDENTS(NODE#) - This procedure is called to enter

into the candidate queue all the nodes whose ranges or the

ranges of their local subscripts would be influenced by the

range just determined for the node NODE*. It enters into the

queue all the nodes which are connected to NODE# by incoming

or outgoing edges along which propagation is implied. It

also enters into the queue all the elements of the list PROPTO

(NODE#).

REMOVE—CANDIDATE - This function returns the element which is

first on the candidate queue and removes it from the queue.

It also updates ONLIST appropriately.

GETLMN(ROOT,N) - This function returns a pointer to the element

number N of a linked list, ROOT points to the first element

of the list.

PUT_NODE(NODE#) - This procedure adds the node number NODE# to

the end of the candidate queue provided it is not already in

the queue, ONLIST is updated appropriately.

161

ENTERICRIT(NODE#,CRIT#1) - This procedure enters a termination

criterion CRIT# which is a number between 1 to 4 into the

table TERMC(NODE#). It checks first that this node did not

have any previous criterion. If an attempt is made to redefine

the criterion for a node the following message is issueds

RNGPROP: THERE IS A MULTIPLE TERMINATION CRITERION FOR

VARIABLE variable BOTH crit AND critj.

"variable" is the node name.

crit and crit are each one of the clauses:

CONSTANT LIMITS

END.X SPECIFIED

SIZE.X SPECIFIED

END OF FILE

ENTER_REO(NODE£,TRGT) - This procedure adds the node TRGT to the

list pointed to by PROPTO(NODE#). It is called whenever the

node TRGT contains the local subscript FOR_EACH.x where X is

the name of node NODE#. This list will be used later whenever

the range of the node NODE# is determined to trigger a rescan of

the subscript list of the node TRGT.

UPDATE_SUB(J,NEW) - This procedure is called to assign a range

to a local subscript number j. The range is given by NEW

which is a node number whose range is identical to that of

the J' th subscript. It is assumed that the local subscript

list of some node has been copied into the tables ASUBT# ASUBID,

ARANGE and J refers to the Jfth component of these tables. If

16 2

NEW=O or NEW=ARRANGE(J) then no new information is provided and

we exit immediately. Otherwise if ARRANGE(J)>O we have a

contradictory range specification and the following error message

is issued:

RNGPROP: THE SUBSCRIPT - sub HAS BEEN ASSIGNED TWO DIFFERENT

RANGES range AND range2 THE FIRST ONE IS RETAINED^ . • "sub"

is the subscript name. "range " and "range." are range

specifications of the respective nodes.

Then ARRANGE(J) is set to NEW and the variable UPDATED

incremented to mark that at least one subscript was granted a

range. If the subscript has the name FOR_EACH.X we check

whether node X/number nlhas a range specification and compare

it with the range given by NEW. If the ranges are contradictory

the following error message is printed:

RNGPROP: A MULTIPLE RANGE ASSIGNED TO THE DATA NODE node IN

ASSERTION assertion THROUGH THE LOCAL SUBSCRIPT sub THE FIRST

RANGE IS-range AND THE NEWLY ASSIGNED IS-range2.

Where "node" is the node name, "assertion" the .assertion

name, "sub" the subscript name, "range," and "range2fl are the

contradictory range specifications.

If there is no contradiction then the node X is assigned

the inidirect range pointer NEW by setting RANGEP (n) =NEW

where n is the node number of the node X.

REPORT_RANGES -. This procedure prints a report for all the nodes

and the local subscripts. The report contains the node and

16 3

subscript names and their respectively assigned ranges. The

report is organized as follows:

First, under the heading BASIC RANGES we print all the

nodes with TERMC>0, i.e. these with direct range specifications*

Next, under the heading DEPENDENT RANGES we print all the nodes

with RANGEP>0 with the format:

node SAME AS node

Then under the heading:

RANGE OF SUBSCRIPTS IN ASSERTIONS

We print for each assertion node:

-assertion name-

followed by

sub, range,

subn rangen

16 4

3.3.12 Graph Analysis

Although by this time many logical errors in the MODEL

statements have been detected during the construction of M,

such as the inconsistencies, ambiguities, and incompleteness

explained in the previous sections, some of the analysis can

be done only after the construction of the graph is complete.

Some examples of the analysis performed at this stage

are as follows:

a) If a given row, i, of matrix M corresponds to a field

that has no direct descendants, i.e.

j) (Mij-3)

then it is an "unused" field* If the unused field is an output

field, then of course there is nothing unusual. If the unused

field is a field in a source file, then a warning is sent to

indicate that the field is not used in any assertion (Message 5)

If the unused field is an interim field then the digraph is

incomplete since there is no assertion involving the field,

and an error message is sent to this effect (Message 5) .

b) If the node, say j, corresponding to a "keyed" input

record has no "pointing" source, (i.e. an ISAM file that has

no assertion "pointing" to its records)

> (Mij-S)

then there is no assertion telling how that file relates to

other files. The digraph is thus disconnected and therefore

incomplete. In' such a case, the user is warned that the two

16 5

or more source file are defined but that there is no relation

between the two (Message 8) .

c) If a field, j, has more than one assertion as its

source, i.e. there exist k and 1 such that Mkj=Mlj=7, then a

warning message is sent to the user indicating that the two

assertions can only hold if they are under mutually exclusive

choices, and a corresponding message is sent to the user

(Message 9) .

d) Another check that needs to be m a d e i s that the targets

of all assertions may not themselves be a field in a source

file; i.e. if Mij-3 where i corresponds to an assertion, then

j may not correspond to a field in a source file (Message 12).

Note that if any errors have been detected during the

construction ox during the post-analysis; of the array graph,

the error count flags the Processor not to proceed to

subsequent phases, but to let the user resubmit a corrected

specification.

16 6

3.3.13 Cycle Detection

Another important type of, analysis performed here is the

detection of cycles that might exist in the graph. This is

necessary to give the MODEL user feedback about possible errors

regarding circular definitions*

In order to detect the existence of cycles in the directed

graph, we perform a depth-first search systematically scanning

all the nodes and edges. This search can be described by the

CYCLES algorithm.

Since the full analysis of cycles is done jointly with

the scheduling, the current check for cycles is only a preliminary

diagnostic check. If it fails then the graph is unschedulable.

On the other hand if it passes the test here it may still fail

in SCHEDULE.

In actual implementation of the algorithm (in the module

CYCLES) several data structures are needed, in addition to

those mentioned. They are discussed below:

SUCCL(DICTIND)PTR - Is a compact representation of the

graph. Each entry here points to a list of edges. We omit

from these edges all these with subscript I on the left hand

side and I-c for c>o on the right hand side.

167

Algorithm CYCLES (THERE__ARE); Detect cycles in the graph G.

Set "THERE^ARE1 to true ('TB) if cycles exist,

1. Let L be an empty list.

2. If the graph is empty (no remaining nodes) - terminate.

3* Pick an arbitrary node of the graph and place it in the

list L,

4. Let n be the last element in L. If n has no successors in the

graph go to Step 7« Otherwise let n8 be its next successor

(considered in some ordering).

5. Check if n1 already appears in the list L. If it does not,

add n1 to the end of L and return to step 4«

6o A cycle has been detected. Print the segment of the list

from the previous appearance of nf to the end.

Set 'THERE^ARE8 to true. Return to step 4e

7. (No successors to n). Remove n from L and delete n and all

its incident edges from the graph.

If L is empty return to step 2, otherwise return to step 4.

163

LIVE(DICTIND) BIN - Rather than actually deleting nodes and

edges from the graph as is called for in step 7, which is an

expensive operation, we maintain a characteristic array LIVE.

LIVE(I)~1 if the node is still considered to be in the graph.

Otherwise, if LIVE(I)=O the node is considered to be dead

and deleted.

IN-CYCLE(DICTIND) BIN - This characteristic .array facilitates

the check performed in step 5, if a node n1 already appears

in the list. Whenever a node n is added to the list, we set

In-CYCLE(n)=1. Whenever a node n is deleted we set INJZYCLE(n)=0

In order to test whether a node is already in the list we only

have to check if IN-CYCLE(n>=1.

CYCLE(DICTIND) BIN - Is the program representation of the list L-

It is important to note that CYCLES will not print out

all existing cycles, but will detect the presence of a cycle

if one (or more) exist.

Consider for example the operation of CYCLES on the graph

of figure 12. We list below the status of the list L and major

steps performed:

Figure 12 Cycle Enumeration or a Sample Digraph

170

L: (1)
L: (1,3)
L: (1,3,4) (Successors are taken in increasing order)

L: (1,3,4,5)

Consider 5's first successor, it is 1. A cycle has been

detected.

Print: 1,3,4,5

L: (1,3,4,5,2)

Consider 2fs successor, it is 1. A cycle is detected.

Print: 1,3,4,5,2

L: (1,3,4,5) Node 2 deleted
L: (1,3) Node 4 deleted
L: (1) Node 3 deleted

L: () Node 1 deleted

End of algorithm.

Note that when we had (1,3) for the second time we did not

consider 5 as a successor since it has been deleted. Thus of

the 8 existing cycles, only 2 have been printed.

Note that the order of cycles printed by the algorithm is by

lexicographic order of the node numbers. Since the corresponding

dictionary has been previously alphabetized, the algorithm

prints the distinct cycles in alphabetical order.

An example of an illegal cycle in a MODEL digraph would

be a set of circular assertions such as the following:

B=C+D

171

In this example, A depends on B, B depends on D, and D depends

on A, an inconsistent cycle. In such a case a message would

be sent to the user in the Network Analysis Report indicating

the assertions causing the problem (Message 7).

In summary, the above algorithm enumerates some of the

distinct cycles in the specification. If there are illegal

cycles, the Processor would not proceed to further stages but

would let the user re-submit a corrected specification.

Normally, however, no cycles would exist and the Processor

proceeds to subsequent phases of analysis and design.

172

3,4 Summary of Errors Detected During Array Graph Analysis Phase

Message 1:

ERROR(INCOMPLETENESS) :

Need to know how to obtain field X.

When Issued/Example;

If field X is in a target file or an interim, but no assertion
exists that describes how X is obtained and nothing can be
deduced.
Example:
X IS FIELD(...)
where X is a field in a target file, but no assertion exists
which obtains X.
Issued by routine: FNDISRC

Message 2:

ERROR(INCONSISTENCY):

X is described more than once [Contradictory descriptions of xl

When Issued/Example:

If X is described in 2 or more data description statements in
the same file.
Example:
X IS FIELD (CHARC2));
X IS FIELD (NUMERICC9));
where both pertain to the same file; or
Issued by routine: ENHRREL

Message 3:

ERRORCINCOMPLETENESS) :
Description of Group or Field X in Y missing.

173

When Issued/Example:

Y (a file, record, or group) is described to have descendant X,
but X is nowhere described.
Example:
Y IS RECORD(X,V,U);
Y IS FIELD (..'•)
U IS FIELD(...)
i.e. description of X is missing.

Issued by routine: ENHRREL

Message 4 s

ERRORCINCONSISTENCY):
The following groups of items are circularly described:

When issued/Example:

When items are described circularly«
Example;
As X=Y+Z?
Bs V
C: Y=

Issued by routine: PRCYCLES (which is called by CYCLES enumeration)(

Message 5:

WARNING (POSSIBLE INCOMPLETENESS).:
Nothing is obtained from X.

When Issued/Example:

X is a field in a source file or is an interim name, but it is
never used elsewhere in the specification.
Example 5
X IS FIELD(...);
X is never used elsewhere in this specification of the module
(intentionally or inadvertently).

Issued by routine: AMANAL

174

Message 6:

WARNING(POSSIBLE AMBIGUITY).
X is given a value by assertions Al, A2, . ..; they must be under
mutually exclusive conditions.

When Issued/Example:

More than one assertion describes how X is obtained; may be
alright if under mutually exclusive conditions.

Example:
Al: SOURCE: CHOICE.C1,Y;

TARGET: X;
• « •

A2: SOURCE: CHOICE.C2, W;
TARGET: X;
• • •

This could be alright if Cl and C2 are mutually exclusive.

Issued by routine: AMANAL

Message 7:

WARNING(APPARENT INCOMPLETENESS):
Following assertion assumed:
"X = YM

When Issued/Example:

When
(1) X was not assigned a value by means of an explicit assertion;
and
(2) it was possible for the Processor to find an implicit
predecessor using the first applicable of the following rules:
(a) X is in a file which is both source and target, so OLD
name is assigned to the NEW name.
Example: NEW . X=*OLD . X ;

(b) Y has the same name as X, except that Y appears in one of the
source files.
Example: F.X=G.X;
where F is the target file, and G is the source file with the
same-named field.

(c) Y has the same name as X, and Y is an interim field.
Example: F.X=INTERIM.X;

175

(d) Y has the s^me name as X, and Y is in another target files
and already has a value itself.
Example; FeX=G.X?
where G is another target file with the same-named field, which
already has a value assigned to it*

Issued by routines FNDISRC (Rules 1-4)

Message 8:

WARNING(APPARENT AMBIGUITY) :
'Following assertion is assumed:
MX«Y";

When Issued/Examples

When
(1) X was not assigned a value by means of an explicit assertion;
and
(2) the Processor determined an implicit predecessor using the
first applicable of the following ruless

(just like the previous set of messages, except that here there
is more than one candidate for a predecessor, because of multiple
same-named fields in different files, so the first such candidate
found is arbitrarily chosen and printed to the user) .

(a) (see ?

(b) (see 7d) .

Issued by routine: FNDISRC (Rules 1-4)

Message 9:

ERROR(INCONSISTENCY) :
Field X is a souce-file field and cannot be the target of assertion
A.

When Issued/Example?

When X is described to be in a file that is source to the module
and x is described to be the target of an assertion*
Examples
SOURCE FILES: F,...;

• • • • • •

F IS FILE(...);
X IS FIELD (..•); (in file P) .

176

A: SOURCE: Y;
TARGET: X;

Issued by: AMANAL

Message 10:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-POINTER.P. POINTS TO A
NODE WHICH IS NOT A KEYED RECORD

When Issued/Example:

When a POINTER type assertion of the form POINTER.P~F is given,
but P is not the name of a keyed record.

Issued By: ENEXDP

Message 11:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-END.X POINTS TO A NON
REPEATING NODE

A name of the form END.Y is allowable only when Y is a data
name which is repeating. The above message is issued when an
"end" name X is detected which does not satisfy this requirement.

Issued by: ENEXDP

Message 12:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-SUBSET•Y POINTS TO A
NODE WHICH IS NOT AN OUTPUT RECORD

A name of the form SUBSET.Y is allowed only when Y is an output
record name. The above message is issued when Y does not refer
to a record name.

Issued by: ENEXDP

Message 13:

SEMANTIC ERROR: ENEXDP: A VARIABLE NAME OR SUFFIX-X IS UNRECOGNIZED
IN ASSERTION-A

177

A name X which is in an assertion A is not found in dictionary,
hence not defined in the specification.

Issued by: ENEXDP

Message 14 :

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-FOUND«X POINTS TO A
NODE WHICH IS NOT A KEYED RECORD

A name of the form FOUND-X is allowed only when X is a keyed
record name. The above message is issued when X does not
refer to a keyed record name.

Issued bys ENEXDP

Message 15i

SEMANTIC ERROR: ENEXDP; THE SPECIAL NAME-SIZE .'X POINTS TO A
NON REPEATING NODE

A name of the form SIZE.X is allowed only when X is a repeating
node. The above message is issued when X is not a repeating
node.

Issued by: ENEXDP

Message 16s

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-LEN•X POINTS TO A NODE
WHICH IS NOT A FIELD

Issued by: ENEXDP

Message 17:

SEMANTIC ERROR: ENEXDP: A SPECIAL NAME-NEXT.X POINTS TO A NODE
WHICH IS NOT AN INPUT FIELD

A name of the form NEXT.X is allowed only when X is an input
field name. The above message is issued when X does not refer
to an input field name.

Issued by: ENEXDP

178

Message 18;

NAME ERROR: the following name is missing from the simplified
dictionary - X. This implies ambiguous use of X as a
simplified name.

The single component name X is missing, from the simple name
dictionary.

Message 19:

ENHRREL: END FILE PREFIXES A NON EXISTENT FILE - name.

This message is issued when a name of the form ENDFILE.X is
encountered and X is not declared as a file.

Message 20;

name UNDEF:

A message produced by ENHRREL when an item "name" is listed as
a descendant of a group, a record or a file but there is no
definition of "name" itself*

Message 21:

SEMANTIC ERROR: SCHEDULE: NO RANGE DETERMINED FOR LOOP VARIABLE
AT LEVEL"-M AT CYCLE-N1, N2 , . . .

In a strongly connected component, we have found a subscript
candidate for the loop but there is no range defined for this
subscript variable, it is an error.

Issued by: SCHEDULE

Message 22:

SEMANTIC ERROR: DIMPROP: THE DIMENSION PROPAGATION IS IN AN
INFINITE. LOOP!

The nodes involved are also listed.

Issued by: DIMPROP

179

Message 23 :

SEMANTIC ERROR: DIMPROP: THE I/O NODE-X HAS INCOMPATIBLE
DIMENSION. THE DIFFERENCE IS: N

If node name X is in input or output file and not in a keyed
file. The dimension of X canft be extended.

Issued by: DIMPROP

Message 24:

SEMANTIC ERROR: RNGPROP: AN ILLEGAL SUBSCRIPT EXPRESSION IN A
VIRTUAL POSITION. SUBSCRIPT 2S : X IN A DEPENDENCY OF T ON S

If there is an edge from node S to node T and X is a virtual
subscript position of node S, the subscript expression of X
should be either I or '2-1'. Otherwise, above message will be
issued.

Issued bys RNGPROP

Message 25s

SEMANTIC ERROR: RNGPROP: THERE IS A MULTIPLE TERMINATION
CRITERION FOR VARIABLE-X BOTH Tl AND T2

In range propagation procedure, we find that different (not
equal) multiple termination criterions, Tl and T2, are
assigned to variable X.

Issued by: RNGPROP .

Message 26:

WARNING: RNGPROP: THE SUBSCRIPT-S HAS BEEN ASSIGNED TWO
DIFFERENT RANGES: Rl AND R2 THE FIRST ONE IS RETAINED

In range propagation procedure, we find that both ranges Rl
and R2, equal or different, are assigned to subscript S. We
will arbitrarily choose Rl as its range,

Issued by: RNGPROP

180

Message 27;

SEMANTIC ERROR: SCHEDULE: A CYCLE DETECTED

In SCHEDULE procedure, if there is a strongly connected component
which has more than one node and at least one node doesn't have
available subscript candidate, it is a cycle. The node names
in the strongly connected component are all listed.

Issued by: SCHEDULE

Message 28:

SEMANTIC ERROR: SCHEDULE: NO CANDIDATE SUBSCRIPT IN CYCLE

In SCHEDULE procedure, if there is a strongly connected component
which has more than one node and every node has an available
subscript candidate but we just can't find a subscript candidate
out of them, it is a cycle. The nodes in the strongly connected
component are listed.

Issued by: SCHEDULE

Message 29:

WARNING: SCHEDULE: A RANGE CONFLICT IN NODE X BETWEEN THE ALREADY
ASSIGNED RANGE: Rl AND THE NEWLY IMPLIED RANGE: R2

In a strongly connected component, if we find there is a sub-
script candidate for the loop and the range of the subscript
candidate in different node is conflicting, this possibly is
an error.

Issued by: SCHEDULE

181

4. AUTOMATIC PROGRAM DESIGN AND DETERMINATION OF SEQUENCE AND
CONTROL LOGIC __________^^ _-___.

This section is concerned primarily with the creation of

a flowchart for the specified program based on the array graph.

It also performs additional checks of consistency and produces

messages and a flowchart report. The constructed flowchart is

used in the subsequent code generation phase to generate the

program for the MODEL specification.

This phase consists essentially of three parts described

in respective subsections. The first part is the SCHEDULE

procedure which creates a preliminary schedule table. It

consists of two recursive subprocedures SCHEDULE__GRAPH and

SCHEDULE_COMPONENT which essentially order the nodes in the

array graph in:o a linear order to which it adds iteration

control statements. This linear order can be interpreted in

the next phase, generally, entry by entry, to create the

desired program. SCHEDULE also checks for circular definitions

which are reported as errors.

The second part consists of the procedure FLOWOPT. Its

task is to process the schedule produced by SCHEDULE and

reorder the entries as appropriate to enlarge scope of the

iterations, thereby producing a flowchart for a more efficient

program.

Finally, the third part consists of the procedure GFLTRPT

whose task is to produce a flowchart report that is available

optionally to the user.

184

(1) The P(n) local subscript in node n,Ip(n),is still

available.

(2) In any edge N(I m, . . I.)-*-M(Js , . . JjJ where the Ji

are expressions involving I^r».Im we require that J , j=I C-c]

i.e. the position corresponding to the loop variable is consistent

in all edges. Since in the assertion or dependency corresponding

to this edge the loop variable is to be identified with *

we require that I occupies the position allocated to the
P (n)

loop variable in M,

If we cannot find a candidate identification satisfying

(1) and (2) the graph cannot be scheduled and we issue an error

message. .

Otherwise we set all the ID.WITH fields of the local subscripts
I , .for each nGN to 1 thus noting that these subscripts have
p in)

been identified with the loop variable at level 1. We also

remove all edges of the form.

N(I m, .. 1^)«•(. .•Ip(n)-?*••} f° r c > o since they imply

dependency on values from the previous iteration of the same

loop. Denoting the graph thus modified by G , which may have

ceased to be strongly connected by the removal of the edges,

we call S=SCHEDULE_GRAPH(G ,1+d) to Schedule G1. Let us denote

the newly introduced loop variable by v^• Then the schedule

returned by the current procedure is: for v^ dô S end {v^}.

When the program will be generated, all the subscripts

whose IDWITH field has been set to 1 will be replaced by v^ .

185

4.1.3 Representations

A graph is represented.by a list of elements of type GNODE,

each having the following fields:

NXT_GNODE - A pointer to the next element in the list.

NODE^ID - The node number (in the directory) of the element.

SUXL - Pointer to a list of edges connecting this element

to,its successors. Initially this is identical to

the SUCC_LIST list. But as the process proceeds

some of these edges are removed from this list.

A strongly connected component is represented by the

structure COMP having the fields:

NXT^COMP - Pointing to the next component.

NODE^LIST - Pointer to a graph which comprises the component.

A schedule is a list of schedule elements each of which is

either a node-element or a for-element.

A node-element is declared as a structure NELMNT having

the fields:

NXT^NLMN - Pointer to the next element in the schedule.

NLMN_JTYPE - An integer, always equal to 1 for node elements.

NODE# - The node number.

A for-element is declared as a structure FELMNT having

the fields:

NXTJFLMN - Pointer to the next element in the schedule.

FLMN_JTYPE r Always equal to 2, denoting this is a for-element

186

ELMNT_LIST - Pointer to a schedule which is the scope of

the for-loop.

FORENAME - The node number of the loop variable which can

be a FOR_EACH.X and then FORENAME is the node

number of X, or it can be a declared subscript.

FOR_RANGE - The node number specifying the range of the

loop variable in the loop,

4.1.4 The Main Program of Schedule

The main body of SCHEDULE starts by constructing a graph,

i.e. a linked list of structures of the type GNODE representing

the complete specification. Each 1=1,•.DICTIND is allocated

an element structure with its NODE__ID field equal to I and its

SUXL field pointing to a copy of the list SUCC_LIST(I)• We

also set the array NODEP(I) to point to the graph's element.

This is necessary since the edges in SUXL refer to node numbers

which we should translate to graph's elements. We then call

once :

FLOWCRT=SCHEDULE_GRAPH(MAING,I)

where MAING is a pointer to the complete graph, 1 is the

initial level, and FLOWCRT is a global pointer to the schedule

which later procedures use to retrieve the schedule.

4.1.5 Finding Strongly Connected Components

One of the basic processes in the procedure is that of

finding maximal strongly connected components. We follow

Tarjan's algorithm based on depth first search as described

187

in Ahot Hopcroft and Ullman's book: The Design and Analysis

of Algorithms. The main part of the algorithm is the recursive

procedure SEARCffC(V) which is presented with a node v and

identifies all the strongly connected components reachable from

V. It utilizes the arrays DFNUMBER, LOWLINK which are preset

to $ for all nodes, the global variable COUNT and a stack

called STACKo In our implementation we also employ an array

ONSTACK which is positive for node n if it is currently on the

stack.

STRONG(G) is a function which accepts a graph as a parameter

and returns a sorted list of its strongly connected components.

The procedure SCHEDULE GRAPH has been described above.

188

Algorithm SSARCHC(v)

1. COUNT: » COUNT+1, DFNUMBER(v), LOWLINK(v): « COUNT,

Put v on the stack.

2. Repeat the following substeps for each node w a direct

descendant of v.

2.1 If DFNUMBER(w)=o this is a new node not searched before.

We call SEARCHC(w) and then let LOWLINK(v)=min

(LOWLINK(v), LOWLINK(w)).

2.2 Else, if DFNUMBER(w)>o and w is on the stack, then let

LOWLINK(v)=min (DFNUMBER(w), LOWLINK(v)).

3. If LOWLINK(v)< DFNUMBER(v) return.

4. Else, LOWLINK(v)=DFNUMBER(v) and this is a root of a strongly

connected component. All the elements (above and including v)

on the stack are successively unstacked and linked together

into a list - a subgraph which is defined as a component.

This component is placed at the head of a list of components

pointed to by the variable COMP_LIST. In addition we maintain

a running component number COMP^CNT and set the array

COMP#(W) =COMP_CNT for each w in the current component.

Note that the algorithm returns a list of components which

are ordered consistently with the dependency order.

189

Algorithm STRONG(G)

1. Clear the stack, the component count, the list of components

and the variable count. For each veG set

DFNUMBER(v)=o

2. For each veG such that DPNUMBER(v)«o call SEARCHC(v) to add

the components reachable from v to the top of the component

list,

3* Delete from the graph all the edges which connect nodes in

different components*

4. Return as a result the component list»

190

Algorithm SCHEDULE-COMPONENT(G,1)

1. For each node n€G compute the number of free local subscripts

These are local subscripts whose IDWITH=0 which implies that

they have not yet been identified with any loop variable.

Let MINFREE be the minimal number of free subscripts over

all n£G.

2. If MINFREE-0 and [G|-1 we return a schedule of one node

element containing the single node in G. Exit.

3. If MINFREE=o and |G|>£ this is an error• The message:

SCHEDULE: A CYCLE DETECTED is printed and then the procedure

PRINT CYCLE is called to print the remaining cycle. Return

an empty schedule and exit.

4. Otherwise we have to search for candidate identification.

We start by constructing in the array stack (denoted here

by S) a list of the graph nodes such that for every i>l the

node S[i] has an edge incoming from some S[j1 j<i. This is

done by the following iterative process:

4.1 Let S[£] be the first node in G. Let I»l.

4.2 Repeat the following steps as long as K |G|.

4 .2.1 Let n:=S[l].

4.2.2. For each descendant of n which is not already

on S, add it to S.

4.2.3 I:*I+1, return to 4.2.1.

191

Algorithm SCHEDULE_COMPONENT (continued)

5* Let IDF be the node S[A]. Let POS range over all the free

subscripts of IDF. Repeat steps 6-13 for each available

subscript,

6. Clear POSITION for all nodes in the graph, and then set

POSITION [ID:P]:»POS.

.7* Repeat steps 8-12 for 1=1 to | G [.

8» Let n: «S[X] f POSTPOSITION (n) and consider each edge from

node n to any other node to

t(Im, • .I1)-^n(Eaf • .Ex)

Consider the subscript expression Ep^g. which corresponds to

the identified position in n.

9. If Eposj -*-s n o t a simple expression (I^[*cl) or if the

subscript is reduced then POSJ cannot be identified with a

loop variable for the strongly connected component, exit to

step 14 to consider the next value of POS.

10. If Ep0SJ«I.[-c] for some X<j£m, check if POSITION [t]>o.

If POSITION [t]>o and POSITION Ct]^j there is a conflicting

identification in the subscripts of t. Exit to step 14.

11. If POSITION Ct]»o set POSITION Ct]:«j.

12. Return to step 8 for the next I.

13. Arriving here means, that a complete identification was

successfully performed• Go to step 16.

14. The identification starting with position POS for node IDF

has failed. If another free subscript for IDF is available

set POS to it and return to step 6.

192

Algorithm SCHEDULE_COMPONENT (continued)

15. Arriving here means that no identification is possible. The

message: "SCHEDULE: NO CANDIDATE SUBSCRIPT IN CYCLE" is

printed, followed by a list of the nodes in the graph.

Return the empty schedule and exit.

16. A successful identification! We proceed to determine name

and range for the loop variable and to delete edges which

are of the form

A(,..I , . .1.)«-B(, . .1 -c, . .)

p i p

where p is the identified position of A.

17. Allocate a for-element for the schedule with empty FOR_JRANGE,

FORENAME fields.

18. Scan each node in the graph, nzG. Let p = POSITION[nl .

19. Examine the local subscript I . Set its IDWITH field to 1,
P

the level parameter. If I has a range and FOR__RANGE is
empty yet set FOR RANGE to the range of I .

— P

20. If F0R_RANGE has a previous value which is different than

the range of I , print the following warning message:

SCHEDULE: A RANGE CONFLICT IN NODE node-name

BETWEEN THE ALREADY ASSIGNED RANGE: range. AND

THE NEWLY IMPLIED RANGE: range2

"node_name" is the name of node n.

"range," and "range^" are respectively node names whose range

is assumed by the loop variable and the local subscript I .
P

21. If I has a range and FOR NAME is empty yet assign to
p —

FOR NAME the name associated with I / provided it does not
~ p

193

Algorithm SCHEDULEJSOMPONENT.(continued)

coincide with the names assigned to the loop variables of

the enclosing loops. These names (or node numbers of the

names) are kept in the array PAST_NAMES.

22. Delete from the graph any edge of the form

where E is of the form I^-c for some k and c>o. These

correspond to dependencies on values created during the

previous iteration and hence should be ignored,

23. Repeat steps 18 to 22 for all nodes in the graph.

24. If FORENAME is still empty define a system name of the

form $11.

25. Save FORENAME in PAST_NAMES(1)„

26. If FOR^RANGE is empty issue the error message:

"SCHEDULE: NO RANGE DETERMINED FOR LOOP VARIABLES

AT LEVEL - AT CYCLE - "

followed by a printout of the component.

27. Call SCHED0LE_j3RAPH (G,l+1) to further schedule the component

Set the field ELMNT_LIST of the for-element to the schedule

returned by SCHEDULE J3RAPH.

Return as a result the for-element.

The following subprocedures are defined with SCHEDULE^

COMPONENT:

PRINT_CYCLE: Prints the names of all the nodes in the

current component *

194

Algorithm SCHEDULE_COMPONENT (continued)

CONCATENATE (A,B): Concatenate the list B to the end of

the list A. A and B are pointers to general lists.

FREE PPAIR LIST (LIST) : Frees the space allocated to a

list of PPAIR structures pointed to by LIST.

195

4,2 Loop Optimization (FLOWOPT)

The schedule generated by SCHEDULE was designed for

correctness with no considerations for efficiency. Its tendency

was to split large loops into small ones wherever possible.

Considering efficiency it is much more economic to have maximal

loop scopes. The advantages are not only in reduced overhead

which is involved with the maintenance of separate loops but

also in possible saving in memory space.

Thus by merging the two loops %

for J do C(J) - A(J)*2

for 3 do B(J) « A(J)+C(J)

we would reduce the required dimension of C if it is an

interim variable not used elsewhere:

for C* do

C • A(J)*2

B(J) « A(J)+C

end Of

The main part of FLOWOPT just calls on the recursive

procedure OPTIMIZE_LIST (FLOWCRT, 1) with parameters FLOWCRT

pointing to the complete schedule, and I being the initial

level.

196

4.2,1 OPTIMIZE_LIST (LIST, LEVEL)

This procedure optimizes a schedule by recursively

performing two operations on it:

(a) Omitting all nodes which imply no action and loop

consisting exclusively of such nodes,

(b) Merging every two contiguous loops whose loop

variables have equal ranges and where the subscript

positions identified with the loop variables are the

same in the two loops .

Since a schedule is a structured object we use a function

FORMALIST (ELMNT_LIST) which spreads a schedule ELMNT_LIST

into a flat list of nodes. These lists are all represented

by the array NXTLINK which contains for a node n its successor

in the flat list. FORMALIST returns as a value the node number

of the first element in the flat list.

197

Algorithm OPTIMIZE^LIST (LIST/ LEVEL)

1. Let CURRENT point to successive elements in the schedule

list. PREVIOUS points to the previous element,

2. If the current element is a, node element go on to step 13

to continue scanning the schedule*

3. The current element is a for-element. Let NEXT point to

the next element in the schedule* Call FORMALIST to form

a flat list of all the nodes within the scope of the for-

element CURRENT. Let CLIST be the first node in the flat

listo

4. Scan the li$t pointed to by CLIST. If any of the nodes in

the list is either an assertion or a data item (field,

group, record or a file) in an input or output file, then

the list should not be cancelled. Continue at step 6.

5. Otherwise the for-list is cancelled. We skip the for-element

pointed to by CURRENT and omit it from the list SCHEDULE*

Go on to step 13 to continue scanning the schedule«

6. Test if the element pointed by NEXT can be merged with

CURRENT, A boolean variable MERGE is set to 'false' if

such a merge is impossible. The testing is done in steps

7 - 1 0 .

7. If NEXT is empty or points to a node-element, or points to

a for-element with a range which is different from that

of CURRENT then MERGE is set to 'false'. Go to step 12

to advance CURRENT and NEXT to the next two elements.

198

Algorithm OPTIMIZE_LIST (continued)

8. Form a flat list out of the nodes of the NEXT element.

Let NLIST be the pointer to the flat list.

9. Run over the nodes in the NLIST, For each n e NLIST

set POSITION (n) to the position of the local subscript

which is identified with the loop variable at level LEVEL.

This is a local subscript whose IDWITH field is equal to

LEVEL.

10. Consider now all the nodes in CLIST (the list of nodes in

the current for-element). Let n £ CLIST. Find the position

of its local subscript corresponding to the level LEVEL.

Let it be POS, Consider every edge

where m e NLIST, p^POSITION(M).

Verify that E__ *I [~c]. If this is not the case set
rOS p

MERGE to 'false1 and go to step 12. This check confirms

the consistency of the loop variable positions between the

variables in CLIST and the variables in NLIST.

If the tests have been passed for all edges from CLIST to

NLIST, the two for-elements can be merged. This is done

by calling the procedure CONCATENATE which concatenates the

lists of elements from the current for-element and the

list of elements from the NEXT for-element. Then merge

the flat lists CLIST and NLIST. Set NEXT to the element

following the element just merged and return to step 6

trying to increase the scope of CURRENT even farther.

199

Algorithm 0PTIMI2E_LIST (continued)

12. No more merges of contiguous elements are possible., Call

OPTIMIZEJLIST (CURRENT, LEVEL+1) recursively to optimize

the schedule nested within the CURRENT for-element with

level LEVEL+1..

13o Advance CURRENT to the next element. If the schedule

scanning is not complete return to step L Otherwise exit.

Subprocedures:

FORMALIST (ELEMENT): Forms a flat list of all the nodes

enclosed within the schedule ELEMENT. All the elements in

the schedule are scanned. If an element is a node element

it is added to the list. If it is a for-element we call

FORMALIST recursively with its contained element list and

append the returned flat list to the accumulated flat list.

CONCATENATE!(A,B): A procedure which concatenates two element

lists,

200

4.3 The Flowchart Report (GFLTRPT)

This module produces a report of the schedule . The report

includes a line for each node delineating its type, name and

attributes and the action associated with it. In addition it

describes the iteration structure working the opening and

closing of loops.

The actual task is performed by the recursive procedure

PRINT^SCHEDULE. The main part of GFLTRPT produces a title

line with captions heading the appropriate columns of the

report and then calls P.RINT^SCHEDULE with a pointer to the full

schedule, given in FLOWCRT.

PRINT^SCHEDULE (ELEMENT): This procedure prints the report

of the schedule pointed by ELEMENT. In general this schedule

is a list of elements. All node-elements are printed directly.

For for-elexae.nt the report includes statements describing the

opening and closing of the top loop associated with this top

element. We then call PRINT^SCHEDULE recursively to report

the elements on the higher level.

The operation of PRINT_jSCHEDULE is again split into several

subtasks, and can be described as follows:

1. Consider each element of the element list pointed to

by ELEMENT.

2, If the element is a node-element call PRINT_NODE to

print a report line for the node. If the

node is a for-element, call PRINT_F0R to report

201

the opening of a loop, call PRINTJSCHEDULE (ELEMENTJLIST)

to report the schedule within the loop's scope, and

then call PRINT_J3ND to report the closing of the loop.

3. Consider the next element in the schedule. If the

schedule is not finished return to step 1. Otherwise

exit.

Each line in the report consists of the following fields

arranged sequentially:

CC - for controlling the skipping of lines.

NODE# > The node's number „

NAME - The node's name.

DESCRIPTION - The type of the node.

EVENT - The action associated with the node,

PRINT—TOR: This procedure reports the opening of a loop

corresponding to a given for-element* The line printed has in

its DESCRIPTION field the message ITERATION and its EVENT

field iss

F0fiL name UNTIL termination*

Here "name" is the loop variable name. "Termination" is the

termination condition. If there is no determined termination

condition it assumes the value:

WHO KNOWS? (ERROR)

signifying an error.

PRINT^SNDs This procedure prints a report line with a

DESCRIPTION field: END ITERATION FOR name

where "name" is the name of the loop variable*

202

PRINT—NODE: This procedure prints a report line for a node

The NODE# and NAME fields are respectively the node's number

and name.

DESCRIPTION assumes one of the following values:

RECORD IN FILE file

ASSERTION

MODULE NAME

FILE

SPECIAL NAME

GROUP [IN RECORD record] [IN FILE file]

FIELD [IN RECORD record] [IN FILE file] [TARGET OF

ASSERTION: assertion]

DECLARED SUBSCRIPT

FREE SUBSCRIPT

SYSTEM SUBSCRIPT

STORAGE DEVICE OF TYPE: type

Here "file" stands for a file name,

"record" stands for a record name.

"assertion" stands for an assertion name.

"type" stands for a device's type.

The EVENT field is usually blank except for the following

cases:

For an input record: READ RECORD

For an output record: WRITE RECORD :

For a module name: PROCEDURE HEADING

203

For an input file: OPEN FILE

For an output file: CLOSE FILE

204

5, Code Generation

This phase of the Processor proceeds after array graph

construction, specification analysis, program design, and

schedule c.reation have been completed • Recall that had there

been user errors during syntax analysis or specification analysis,

then neither the flowchart creation nor the code-generation

phases would be reached. As seen in Figure 13. the code

generation phase accepts as input the schedule tables produced

in the previous phase, and produces as output a complete PL/1

program ready for compilation.

5.1 Generation of PL/1 Program

The control program for generating the complete PL/1 program

(GFNPLl). , as shown in Figure /3, accepts the tables of attributes

and the schedule table created during the previous phase as

input. This phase produces, as output, the complete PL/1 program

and a code-generation report. The files to which code is written

are described below.

205

Schedule

Attributes
Table

CODE GENERATION

PL/1 Program

Code Generation Report

Figure 13"

Overview of the Code Generation Phase

206

Generating the PL/1 program code, as can be seen in Figure

IS, is accomplished by processing the schedule list described

above and invoking the appropriate code-generation sub-routine.

Algorithm CODEGEN describes the generation of PL/1 code. The

executable PL/1 code is generated by examining the elements

of the schedule one at a time, and invoking the code-generation

rdutine that corresponds to the type of operation. These

include code-generation routines for input-output operations,

for invoking and writing of object assertions and for generating

control structures.

The executable PL/1 code is written out to the "PLiEX"

file, while associated PL/1 "ON11 conditions are written to the

"PLiON" file. The PL/1 procedures (which contain assertions

plus functions) are written to the PLlPRGC file. The PL/1 code

for declaring the object data items is written to a 'PLlDCL

file.

207

Schedule

Attribute
Tables

Generate PL/1
Code

PL/r
Program

PL1EX
PL1ON
PL1PROC
PLiDCL

Code Generation
Report

Generate PL/£
Declarations
(GPL1DCL)

Generate Iterative
Code

(GENDO,GENEND)

Generate Code
for the Execution
of Statements
CGENASSR)

^Generate
Code
(GENIOCD)

I/O

Figure {4

Components of Generating PL/I Code

208

5.1.1 Generate PL/t Program (CODEGSN)

This procedure generates the code for the PL/£ program.

It takes care of all parts of the generation except for the

declarations of variables and files which is done by GPL10.CL.

Initially we open all the output files and then generate

the following standard instructions which open every generated

pro.gram. These instructions are routed to the file PL1EX:

ALLOCATE ERROR, ACC_ERROR

ACC_ERRROR »' rO'B

ALLOCATE $ERR_LAB

$ERR_LAB « END_PROGRAM.

The following declarations are routed to PL1DCL :

DCL (ERROR, ACC_ERR, NOT_DONE) CTL BIT(l)

DCL $ERR_LAB LABEL CTL

The following instructions are sent to PL1ON:

ON ERROR

BEGIN

IF ERRORF_BIT THEN WRITE FILE (ERRORF)

FROM ($ERRORJ3UP)

ERROR - flfB

. GO TO $ERR_LAB

END

ERROR_RESTART:

The procedure GENERATE (FLOWCRT, 0) is called then to

perform the actual generation.

209

5.1.2 A Scan of the Schedule and Generation; GENERATE(LIST.LEVEL)

This recursive procedure scans the schedule given by the

list of elements LIST at level LEVEL, It calls lower level

procedures to process the different types of elements.

1. Scan each element of the list LIST.

2. If the element is a node-element call GEN-NODE. Return

to 1 and repeat until the list is all empty.

3O If the element is a for-element do the following;

3.1 Call GENDO to produce a code for opening a loop.

3.2 Call GENERATE recursively with the list of the

elements within the loop's scope and level * LEVEL-Hl

3.3 Call GENEND to generate the termination of the loop.

5.1.3 Open a Loop (GENDO)

This procedure produces the code necessary in order to

open a loop. The loop variable name FOiySAME and the termination

criterion are taken from the fields FORENAME and FOR_RANGE in

the for-element being scanned.

The following instructions always precede each loop opening:

ALLOCATE ERROR, ACCJBRROR

ACCJERROR « 'O'B

ALLOCATE $ERR_LAB

$ERR_LAB « LOOfJENDc

The McM following LOOP_END is a unique number assigned to the

loop. The purpose of these statements is to ensure that an

error occurring within the loop control will be directed to

210

END^LOOPc which is a label immediately preceding the loop's end.

We then construct the do-statement itself. If the termina-

tion criterion given is that of a fixed upper limit or given

through a SIZE variable/ the string DO_ST is initialized to

DO name = 1 TO upper

where "upper" is either a constant number or a variable of

the form SIZE$X.

Thus the two basic forms for the loop opening are according

to the termination criteria:

a) If an upper limit is specified then:

DO name « 1 TO upper [WHILE (condition)]

b) An upper limit is not specified:

name - 0

DO WHILE (condition)

name = name+1

Here "name" is the loop variable. "Condition" is the termination

condition in case b and may contain additional conditions in

both cases•

If the range is specified by an END.X descriptor, we add

NOT^DONE to the condition and the following statements before

the loop's beginning:

ALLOCATE NOT_DONE

NOT_DONE - 'lfB

NOT_DONE will be set to f0'B whenever the appropriate END • X

variable is set to 'true1.

211

If there is an end-of-file condition associated with the

iteration, either as the main termination condition, or because

this is an iteration on an input record or group above the

record level which are last in their peer group, we adds

-i ENDFILE$f to the condition "condition"„

5.1.4 Close a Loop (GENEND)

This procedure produces the code needed to close a loop.

First we check all the nodes that have been accumulated in the

list PREDLIST. This list, local to each invocation of GENERATE

accumulates all the variables which are defined in the loop

and whose dimension corresponding the loop variable is virtual.

The actual range declared for such dimension is 2 and in each

iteration we compute (or read) A(...,2,,•) and may refer to

the previous element as A (.«>., 1 , • •) . Wien the loop is done

we should perform the transfer s A (. . . , 1, . .) * A (•.. , 2 , • •) •

Elements are put on the list PREDLIST by the procedure CHECK_VIRT

which is called whenever processing a node which is a field or

a group.

After producing a sequence of these shifting operations

we produce the label :

LOOP_ENDc:

where "c" is the unique count associated with the current loop.

If the termination criterion for the loop was through an END.X

descriptor we also produce the codes

IF END.X » SELECTED THEN NOT DONE - f0fB

212

This has to be done at the end of the loop since the

determination of END.X at a given iteration determines whether

this iteration will be the last.

After, this we produce the following statements:

$TMP_ERROR » ACCJSRROR

FREE ERROR, ACCJBRROR

FREE $ERR_LAB

I f $ T M P _ E R R O R T H E N E R R O R , A C C _ E R R O R » f l f B

If the termination criterion was through an END.X descriptor

we also produce:

FREE NOTJDONE

5.2 Code Generation for a node (GEN_NODE)

This procedure generates the code associated with a single

node. It branches according to the type of the node to

different parts dealing with the different types of the nodes.

In the following "node" always refer to the node's name.

5.2.1 Program Heading

If the node is the module name (type MODL) we produce

the code:

name: PROCEDURE OPTIONS (MAIN)

This code is routed to the file PL1DCL.

5.2.2 Files

If the node is a file node (type FILE) we generate first

three n-ames. "File stem" is the file name, removing the

"NEW" or "OLD" prefixes if there are any. "Name" is the original name

213

and "file suff" is the file-stem with the addition of S for

source only files, T for target only and U for update files

(both source and target).

1. If the file is an input file we produce the statement?

OPEN PILE (file suff)

2. If the file is a sequential input file and an end-of-file

is explicitly mentioned by the user or needed to terminate

iterations we produce the declaration;

DCL ENDFILE$file stern BIT(1)INIT(80fB)

routed to PL1DCL. The statements

ON ENDFILE (file suff) ENDFILE$file stem «' 'l'B

is sent to PL10N'.

3. If the file is input sequential and unkeyed we send the

declarations 2

DCL namej CHAR (length) VARYING INIT(lf)

DCL name_INDX FIXED BIN

"Length" is the maximum length of records in the file.

"Name^jS" is the name of a buffer into which records in

the file are read. "Name^INDX" is a variable used to

scan the buffer for unpacking input fields.

4. If the file is an output file we produce the statement:

CLOSE FILE (file suff).

214

5.2.3 Records

If the node is a record (type RECD) we call GENIOCD

to produce the code for the reading and writing of records.

We also call CHECK_VIRT to check if the record has a

virtual dimension*

5.2.4 Groups and Fields

To process groups and fields we call the procedure GENITEM.

We also call CHECK_VIRT to find if the node has a virtual

dimension,

5.2.5 Special Descriptors

We check if the node has a virtual dimension. Then if the

node is of the form SUBSET.X we produce the code

If SUBSET$X THEN GO TO END_LOOPc

"c" is the unique count associated with the current loop.

This will cause transfer of control to the end of the current

loop if SUBSET$X has just been set.

5.2 .6 Assertions

If the node is an assertion we call the procedure GENASSR

to produce the code for an assertion.

If the type of the node is not one of the recognized types

the following error message is generated:

CODEGEN: AN ILLEGAL TYPE -TYPE: type FOR NODE: name

215

5,3 Auxiliary Procedures Within CODEGEN

Following is a description of some auxiliary procedures

within CODEGEN/

5.3.1 Checking a Virtual Dimension (CHECK_VIRT)

This procedure checks a given node for being a repeating

node with virtual dimension* If it is a virtually dimensional

variable, the physical range assigned to it is either 1 or 2

depending on whether there is an explicit reference to A(...I-1)

if A is the dimensional node,

If the node is virtual and a previous value is explicitly

required, the node is added to the list PREDLIST.

Consequently, before the loop's end the following statement

will be produced:

A<. . .1) - A< . .*2)

for each A which was placed on PREDLIST.

5.3.2 Constructing an Instance of a Subscripted Variable (CRSVAR)

This procedure creates the text of a subscripted variable

for the use of other code generation procedures. This

procedure is not used in assertions. The list of local sub-

scripts of the node is scanned. For each physical subscript we

retrieve the IDWITH field which gives the level of the loop

variable identified with this subscript. The array LOOP_VARS(1)

contains for level 1 the name of the loop variable on level 1,

placed there by GEN_DO. Therefore for each physical dimension

number I we take LOOP_VARS ((LEVEL+1)-(OFFSET+D) as the subscript

216

constructed. Ofr<ce/T. is an additional parameter enabling a shift.

For virtual dimensions we usually take the "current" value which

is 1 or 2 according to whether there is an explicit requirement

for the previous value of the same variable. A parameter

named CASE specifies whether the last subscript is required

to be the previous (case=l), the current (case=2) or the next

(case~3). Therefore if the rightmost subscript is physical we

use- sname-1, sname or sname+1 as the subscript where "sname"

is the subscript according to the LOOP_VARS stack. If the

rightmost subscript is Virtual we use 1, 2, or 3 according to

the parameter CASE.1

5 . 3 . 3 ADD_JTO_WHIL£ (COND)

This procedure adds a condition to the string by the name

of WHILE__CQND which accumulates all the conditions to be

included in a DO statement. If the string is empty it is set to

COND. If it contafiff previous conditions we add to it the

string 'LvM. COND. fcJUl-
l t

5.3.4 $ * urI1

This procedure converts a qualified name which contains

reserved prefixes. If RES is any reserved prefix then the

name RES.X should be converted to RES$X. To be more precise:

Names of the form NEXT^S! are converted to X.

Names of the form NEW.X ?and OLD.X. are converted to

NEW_X and OLD_X respectively.

Names of the form RES.X, where RES is any of the prefixes

217

SIZE, END, ENDFILE, SUBSET, POINTER, FOUND, LEN are

converted into RES$X. Where X is X in which each appearance

of a dots f.f has been replaced by an underlines l_l •

5.4 Packing and Unpacking of Input/Output Fields (GENITEM)

This procedure is called for nodes which are input/output

fields and may require packing and unpacking of information into

or from an input/output buffer. The code for reading or

writing the buffer is generated in association with the record

node. Af.ter defining the names of the buffer and of the

packing counter, and checking whether packing or unpacking is

actually required the procedure calls an auxiliary procedure:

FIELDPK which generates the code itself. For output fields a

special check is made to determine whether the current field is

the leftmost in the record in which casi a code for initializing

the packing counter is produced,

1. If the field is not a member in a v lable structure

record, i.e. containing any fi . or group whose range

is determined by a SIZE or iescriptors, or a field

whose length is determined ~>y a LEN descriptor we exit

immediately. Packing and unpacking is done only for

fields in variable structure records.

2. Determine the name of the record containing the current

field* Let it be REC. Then we construct a buffer

names REC^S and a buffer index name REC_JINDX. Let

the field1s name be in the variable "field".

218

3. Determine whether this field is the leftmost field in

an output record. If the field is leftmost and not

repeating or contained in any repeating groups we issue

the code:

REC_INDX=1.

Initializing the packing index. Note that in the input

case the index is initialized immediately after the

re ,ding of the record.

If the field is leftmost and output but contained in

several loops with the loop variables I ,..I m respectively,
./

we generate the code:

IF IJL-1 & -.1^=1 THEN REC_INDX=1.

4. in all cases call FIELDPK with an appropriate parameter:

1 - for packing, 0 for unpacking for the actual code

generation,

5.4.1 FIELDPK

This procedure produces the actual code for the packing

or unpacking operation. Available to it are the field's name,

buffer name and index name as well as the field's type.

1# If the length type of the field is fixed, i.e. specified

in the declaration we compute its length directly.

If the field's type is VG•, 'N1 or fPf denoting

respectively character, numeric or picture we take

the declared length. Otherwise we call BYTE_CALC

with the declared length and type to compute the

219

length of the field in bytes. The string representing

the length is stored in "lenstring11.

2e If the length of the field was not declared exactly

(but only by specifying lower and upper bounds) we

check that there exists a length descriptor for this

field. If none exists we issue the error messages

FIELDPK: NO LENGTH SPECXFIC'ATON FOR THE FIELD-field.

3, If a length descriptor is found we set :

lenstring * BYTE^CALC (length-descriptor, field-type)

This will cause an execution time call to BYTEjCALC

in order to compute the byte-length of the field during

run time.

4o If the field is an input field we generate the

instructions

UNSPEC(field) « SUBSTR(REC_S, REC_INDX, lenstring)

Otherwise we generates

SUBSTR(REC_S, REC_INDX, lenstring) « ONSPEC(field).
T

Here:

"field" - is the field name properly subscripted

(through call to CRSVAR)

'•lenstring" - the length specification

If the field is of type C the UNSPEC qualities will

be omitted.

5. Generate the following code for incrementation of the

buffer index?

REC_INDX • REC_INDX + lenstring.

220

5.5 Generating Code for Assertions (GENASSR)

This procedure generates the code for assertions. If the

assertion contains a special function such as SUN!, AMIN or

AMAX we modify the assertion to perform the needed computation

as well as provide initializing statements for the variable

holding the cumulative result• In addition this procedure

will also transform assertions containing conditional expressions

into conditional assertions. Thus, an assertion of the form:

Y « IP (IF X > 0 THEN Y > 0 ELSE Y <»0)

THEN X*Y ELSE -JX*?

will be transformed into:

IF X > 0 THEN IF Y > O THEN Y « X*Y

ELSE Y - -X*Y

ELSE IP Y < «O THEN Y * X*Y

ELSE Y » -X*Y.

Apart from these two special transformations the main

task of GENASSR is to transform the syntax tree representation

of the assertion into a string representation acceptable by

the PL/I compiler. The transformation is carried out by a

recursive climb on the syntax tree, combining for each node

the string representations of the descendant subtrees into a

string representation of the tree rooted at that node.

The overall execution of GENASSR can therefore be summarily

described as:

1. Treat the case of (special) array functions.

221

2, Transform assertions with conditional expressions

into conditional assertions.

3. Form the string representation of the assertion.

5,5.1 Transforming Array Functions

This subtask is performed in the body of GENASSR. Array

functions are functions which may operate on array elements

as they are generated and do not need the complete array at one

time. Array functions may be divided into reduction functions

which produce a single result for an array, and running-value

functions which for each array element A[l] produce a value

which depends only on the array segment A[l],.oA[X]o

Examples of reduction functions are SUN, AMIN, AMAX which

compute for a given array its sum, minimal and maximal values

respectively. Their running-value counterparts are respectively

RUN_SUM, RUN_MIN and RUN^MAX which compute the similar function

on each array segment. The format for the use of any of these

functions is:

Y - FCN (E,J1#.•Jk)

where E is the array element, generally dependent on J ,..JV,
1 •"*

and Jw'-Jfc t^ie running subscripts. For a running value

function the left hand side should be of the form Z(Jif..Jk) or

some permutation thereof.

As displayed above, the use of array functions is currently

restricted to the top level of simple assertions. E itself may

be a conditional expression.

222

The statement above is transformed as follows:

1. We add the statement

IF (J «1 [&. . <JV-1.) 3 THEN Y « initial1 K

as a preceding statement. Its role is to initialize Y

to an initial value.

•Initial1 is a value computed by the procedure INIT_VAL

and depends on the function FCN and on the type of Y.

It will be 0 for summation functions,

the minimal value possible for the type of Y for a

maximization function, and

the maximal value possible for the type of Y for a

minimization function*

2. If FCN « !SUMf or 'RUN^SUM1 we modify the assertion

into Y s: Y+E.

If the function is a minimization or maximization

function, the statement is modified into:

Y«MIN(Y,E) or Y«MAX(Y,E) respectively

The modification is done by changing the pointers and

fields in the syntax tree, and creating new nodes if

necessary.

5.5.2 Transforming Conditional Expressions into Conditional
Assertions ' .

This task is carried out by the procedure SCAN

which uses the auxiliary procedure EXTRACT_COND•

5.5.2,1 ; -EXTRACT_COND (ROOT,COM) ,LETT,RIGHT)

22 3

This procedure identifies and extracts the leftmost

conditional expression in a given expression pointed to

by ROOT/

If a conditional is found the (pointer to the)

condition is returned in COND and its first (THEN) and

second (ELSE) subexpressions returned in LEFT and

RIGHT respectively. If the analyzed expression contains

no conditional expression the procedure returns NULL.

Its operation can be described as follows?

I d Inspect the top level of the given expression.

1*2 If it is a conditional expression, return

respectively its condition, THEN subexpression

and ELSE subexpressions , exit.

1*3 If the expression is a simple expression, i.e.

a constant or a variable, return NULL and exit.

1*4 If the expression is a compound expression,

scan each of. its descendants by calling EXTRACT_COND

recursively. Consider the first COND, LEFT and

RIGHT which are returned such that COND £ NULL,

In general, a compound expression is of the form:

E ** g(E. , . .E)i m

Assume that the recursive scanning of E_,..E
1 m

produces first COND ^ NULL for E. l<i<m, returning

also the THEN and ELSE subexpressions L, R

224

respectively. Then the current call for E

returns:

COND as the condition,

gfEj,.•Ei_1,L#•.Em) as LEFT, and

g(E ,..Ei-1,RI•.Em) as RIGHT.

Thus the overall effect of EXTRACT_COND on an expression E

is to extract a condition C if one exists in E (returned

as COND) , and then. to. compute Eg, which is E when C is

true, and E2,which is E when C is false. E^ and E2 are

returned in LEFT and RIGHT respectively. Described in

another way we look for C, E1 and E 2 such that the

following equivalence holds:

E = IF C THEN E , ELSE E 2.

In particular this gives:

g(E ,..E i_ 1, (IF C THEN L ELSE R),..Em) -

IF C THEN g(E j . ^ ,L,..Em)

ELSE g(En ,. .E. .R, ..E) .
1 i-l m

5.5.2.2. SCAN(IN)

The procedure SCAN effects the complete transformation

of assertions containing conditional expressions into

conditional assertions. The procedure is presented with

an assertion pointed to by IN, and return a pointer to

the transformed assertion.

1 If the assertion is a simple assertion, go to

step . 5.

* 225
- f • • ! -

2 Assertion is a conditional assertion of the forms

IN: IF COND THEN S ELSE S2 where Sx, S2 are

statements.

3 Call EXTRACTjCOND to check whether COND contains

a conditional expression. If it does then

EXTRACTJCOND returns C,L,R such that:

COND * IF C THEN L ELSE R.

We transform IN into:

IN: IF C THEN IP L THEN Sx

ELSE S2

ELSE IF R THEN Sx

ELSE S2

The value returned is SCAN(IN1) which involved

a recursive call to SCA13.

4 Assume that the statement IN is as above but

COND contains no embedded conditions. In this

case we return the statement:

IF COND THEN SCAN(Sx) ELSE SCAN(S2)

obtained by two recursive calls to SCAN for the

assertions S and S . Exit.

5 The assertion is a simple assertion:

y • E .

Call EXTRACTJCOND(E). If it returns NULL, we

return the assertion Y « E unchanged. Otherwise

226

EXTRACT_COND returns C,L,R such that

E - IF C THEN L ELSE R.

We return the result of

SCAN (IF C THEN Y - L

ELSE Y * R)

5.5,3 Transforming the Assertion into String Form (PRINT)

This procedure is presented with a pointer to an assertion

represented by a syntax tree and converts it into string

representation.

The procedure branches according to the type of node

to be printed: •

lA If the node is a subscripted variable A(E*,..E) we
l m

generate the string 'At1, We then scan each of the

^ subscript expressions E to E and add them to the
1 m

^ string according to the following subcases:

1.1 If the subscript at position i corresponds

to a record level and the variable was prefixed

by 'NEXT.1 then

1.1.1 If the position is virtual we insert the

subscript value '3'.

1.1.2 If the position is physical and the expression

Ei is a constant c, we insert the value of c + 1.

1.1.3 If the position is physical and E. is an

expression we insert PRINTfE^) 1 .' -4- 1 f .

227

1.2 If the subscript position i is a virtual position

then:

1.2.1 If it is a simple subscript and the position

is associated with an input record to which

the prefix NEXT is applied somewhere, but

definitely not i.n the current variable,

then we insert the subscript '2 1,

1.2.2 If the position is not fNEXTf qualified

and the subscript is I then no subscript

is inserted,,

1.2.3 If the subscript expression is 1-1, then

flf is inserted. It is assumed that i

these cases the physical allocation for

the virtual position will be at least -;. : f l f

standing for the previous value, and f2 B

for the current value ,

2. For all other compound nodes we call PRINT recursively

to convert the descendants and insert between them

the string representation of the separators, operators

and delimiters stored in the OP^CODE fields of the

code. This string representation is available in

the string array KEYS.

3. For atomic nodes we use either the variable namef

directly or through its node number. Loop variables

(subscripts) are accessed through the level indication

228

available in their IDWITH field which is used as an

index to the array LOOP_VARS. Function names are

retrieved by their function number indexing the

table FCNAMES.

5.6 Generating Input/Output Code(GENIOCD)

The routine' for generating input/output code (GENIOCD) is

invoked by the generate PL/1 code control routine after reading

an element that corresponds to a record node. It accepts as

input the node number corresponding to the element. This

routine generates the Pl/1 READ, WRITE, or REWRITE Statements

with the appropriate parameters based on the flowchart table

entry, as well as any control code or condition code associated

with the input/ovtput operation.

To summarize the different statements generated by GENIOCD

for the different cases we use a table format (Table 11) for DO REC

instead of an algorithm form for the sake of clarity. Each of

the different cases is preceded by the conditions defining the

case followed by the statements which are generated for the

case. The upper case letters represent part of the actual

Pl/1 string being generated, whereas the lower case letters

are the metanames of the items obtained from the flowchart

table during program generation.

Several preparatory steps are taken before branching

to the different cases.

229

1. Definition of Names. Derived from the record name

we generate several variable names to be used in the

code .

Let the record name be designated by R,

1.1 If R is of the form OLD.X or NEW.X we define

RECNAME as OLD_X or NEW^X respectively.

1.2 Otherwise we define RECNAME as R.

1.3 RECBUF is defined as recnamej,

1.4 RECINDX is defined as recname^INDX.

Consider now the file which is parent to R.

Let it be denoted by F.

1.5 Set FILENAME to F.

1.6 If F is of the form OLD,X or NEW.X set FILENAME

to OLD_X or NEW_X respectively and FILESUFF to

filename U.

1.7 Otherwise set FILESUFF to filename S if the file

is a source and to filename T if the file is a

target*

1.8 Set "EOF to ENDFILE$filename.

1.9 Retrieve the keyname associated with the record,

if one exists, and assign it to KEYNAME.

1*10 Set FOUND to FOUND$filename.

2. Issue the declaration. DCL recbuf CHAR (len^dat(n))

VARYING INIT(lf). This declares a buffer for the

record into which and out of which the information

230

will be read or written. lLen_dat(N) f here gives the

buffer length.

3. If the record has a variable structure/ packing and

unpacking will be called for and we therefore issue

the declaration:

DCL recindx FIXED BIN

4. If the file is an output file of fixed structure

issue the transfer:

recbuf » recarea

•recbuf1 is the record buffer defined above while

'recarea1 is the name of the internal structure

allocated to the record. It might be subscripted. If

the file is an output file of variable structure the

movement of data from the record area into the record

buffer is done piecewise and instruction for its

execution generated in conjunction with each of the

output fields belonging to the record.

5. If the record is an output record and a SUBSET condition

was specified for it we enclose the code for writing

the record by the condition:

IF SUBSET$record THEN DO;

code

END

5.6.1 DO_REC

The procedure DO_REC produces the code for the reading and

writing of records. It branches according to the cases in Table 11.

231

Algorithm BYTE^CALC (Length, TYPE, #BYTES)

A routine for calculating the length in bytes of a data
of a given length and a given type.

Length - The length of the field in units appropriate to
the type.

TYPE - The field type (one of C,N,P,T,F,B,L ,E)

#BYTES - The calculated length in bytes

1. If TYPE - •CI|INI|IPI then #BYTES - Length

2* If TYPE + 'T1 (Bits) then #BYTES - [length/8]

3. If TYPE •F1 (Decimal) then #BYTES * [(length+1)/23

4. If TYPE w 'B1 (Binary) then
if length <16 then #BYTES » 2

otherwise #BYTES = 4

5O If TYPE » 'L1 (Binary Floating) then
if length <22 then #BYTES * 4
if 22 length < 54 then #BYTES • 8

otherwise #BYTSS • 16

6. If TYPE » ••£' (Decimal Floating) then
if length <7 then #BYTES * 4
if 7 ^length <17 then #BYTES » 8

otherwise #BYTES « 16

232

Case 1: An Input Sequential and Nonkeyed Record.

The following code is produced:

"IF recbuf «• ' f THEN DC-

READ FILE (filesuff) INTO (recbuff) ;

END;

ELSE recbuf - filebuf11

If the record is of fixed structure we issue:

"recarea » recbuff"

to move the information from the record buffs into the

internal record structure.

Otherwise, for variable structure records we only produce

"recindx » 1"
I

to reset the unpacking index. The movement of the data

to the individual fields will be done in conjunction with

the nodes corresponding to the fields (see GENITEM).

Next we read and unpack the data for the NEXT record.

"IF -l£NDFILE$FILE THEN DO;

READ FILE (filesuff) into (filebuf);"

if there is a reference to NEXT fields we should move

or unpack the data from the next record. If the record

has a variable structure we call the procedure UNPACK to

Table 11

DO REC Inpur Output Transformations From Flowchart Table to Pl/1

233

produce the moving code, and then reset

"recindx » 1"

Otherwise, for fixed structure record we produce

"next^record^area « filebuf11

where 'next^record^area1 is the internal structure component

reserved for representing the next record fields.

Case 2: Input, Sequential and Keyed Record.

Ensure that the following declarations have been issued:

DCL POUND$rec BIT(l)

DCL PASSED$rec BIT(l)

Issue now the code;

FOUND$rec, PASSED$rec » f0'B

DO WHILE 1EN:JFILE$file & ~1 PASSED$rec;

READ FILE (filesuff) INTO (recbuf)?

If the record is of variable structure issue

"recindx « 4 "

and call UNPACK to unpack its fields,

otherwise issue:

"recarea - recbuf" %"

If keyname « POINTER$rec THEN

FOUND$rec, PASSED$rec « 'I'B;

ELSE IF keyname > POINTER$rec THEN

PASSED$rec - '1'B

Table 11 (continued)

DO_JREC Input Output Transformations From Flowchart Table to PL/1

234*

Case 3: Input, Nonsequential (Indexed or Random), Keyed Record

Verify that the declaration

"DCL FOUND$rec BIT(l)"

has been issued. Then issue the code;

POUND$rec = ' T B ;

READ FILE (filesuff) INTO (recbuf) KEY (POINTER$rec)

ON KEY (filesuff) FOUND$rec » 'O'B

If the record ha*s fixed structure issue

"recarea - recbuf"

otherwise issue

"recindx - 1".

Case 4: Output, Sequential Record

WRITE FILE (filesuff) FROM (recbuf)

Case 5: Output, Nonsequential, Keyed and an Update Record

(both NSW and OLD specified)

REWRITE FILE (filesuff) FROM (recbuf) KEY (POINTER$rec)

Case 6: Output, Nonsequential and Keyed Record.

WRITE FILE (filesuff) FROM (recbuf) KEY (POINTER$rec)

Table 11 (continued)

DO REC Input Output Transformations From Flowchart Table to PL/1

23 5

5,6.2 Unpacking Variable Structure Records (UNPACK)

If a record is of fixed structure its data can be moved

between the record buffer and the internal structure area by a

single PL/I assignment such ass

"recarea « recbuf"

If however the record is of variable structure the data

movement will be performed by individual transfers, one for

each field. The transfer statements will be interleaved with

other statements which compute the variable parameters of the

record structure such as fields1 lengths and dimensions. These

parameters can depend on earlier fields in the same record.

The transfer instructions in the variable structure case are

generated in conjunction with the schedule elements associated

with the field nodes. There are however two cases in which

the unpacking of information has to be done immediately after

the reading of the record. The first case is that of reading

the NEXT version of a record in order to access fields referred

to by a NEXT.F reference. The other case is that of a sequential

search on a file for a given key value. Here, also, we must,

unpack the record in order to access the key field immediately

after reading. In both cases we make the following simplifying

assumptions The fields referred to by a NEXT.F reference, or

used as a key value must all be in a prefix of fixed structure

of the record.

23 6

Consequently in the abbreviated version of the unpacking

process described here/ we may unpack only up to and excluding

the first field or group which depend on a variable parameter*

By assumption this must have included all the needed fields of

the record. Of course,.a full unpacking will take place prior

to the actual processing of the fields, duplicating some of

the abbreviated unpacking performed here.

The procedure UNPACK accepts two parameters: NODES

and CASE. NODE* identifies the field into, which data should

be moved. CASE=2 implies unpacking from RECBUF to the "current"

record area, and will be used for a sequential search. CASE=3

implies unpacking from PILEBUF to the "next11 record area, and

is used for reading the NEXT fields referenced.

The main part of UNPACK can be described as follows:

1. If the node is a repeating group or field we check

for the termination criterion of the repetition. If

it is not a constant repetition we exit.

1.1 Otherwise open a loop: Define a loop variable

of the form UNP#n, and generate the declaration

DCL UNP#n FIXED .BIN

1.2 Then issue the code

DO UNP#n«l TO maxrep (nodet!

1.3 Call the subprocedifres DO^GRP or *d*y_FLD to

issue code for the unpacking of the node or its

descendants.

237

1.4 Issue an 'END1 code terminating the loop.

2c Otherwise if the node is not repeating then:

If the node is a group or a record call

DO_GRP, otherwise call DO_FLD

5O6,3 Unpacking Groups (DO_GRP) and Fields (DO_FLD)

Two subprocedures complete the unpacking.

DO__GRP s This procedure considers in turn each

descendant of the node NODE#. For each

descendant D it calls UNPACK (D,CASE) recursively.

DO_JFLD: This procedure is responsible for producing

code for the unpacking of a field. It uses the

procedure FIELDPK to expand the code itself.

For description of FIELDPK see 5.4.1.

The procedure distinguishes between two cases

according to the value of the parameter CASE.

For CASE=3 the code produced is (assuming a

fieldname F and a record name REC) .

F(..3,..) • SUBSTR (filebuf, FILEINDX, Length).

The '31 designates assignment to the 'next1 version

of the record.

If CASE=2 the following code is produced:

F(..2,.\) - SUBSTR (recguf, RECINDX, Length)-

The f2' designates assignment to the 'current1

•sion of the record. If the record has no

'next' reference it might be allocated only a

single copy (version) and then the '2' subscript

will be dropped. This is managed by FIELDPK.

23 8

5.7 Generating the Program Error File

If there is any error during the execution of the generated

program, an input record, for which the error occurred is written

to an error file, ERRORF. This error file must be described in

the JCL used to execute the generated program, by including a dd

statement of the form.

//ERRORF DD DSN » <dsname> is the error file name and the

<dd_j?arameter > are the same parameters used in the dd statement

of the source file.

The required code for writing the bad input record to the

error file is generated by the routine GENIOCD. For example, in

the DEPSALE example, the following PL/I code is generated:

ON ERROR BEGIN;

IF ERRORF_BIT THEN

WRITE FILE'(ERRORF) FROM $ERROR_BNF

GO TO #ERR_LAB

END

Note that if no dd statement for the error file is specified,

then ERRORF_BIT is ' 0 1 , in which case, the record that caused

the error is completely ignored.

If the I/O mode is WR we check whether there exists a

dictionary entry of the form SUBSET.recname. If there exists

such, we precede the I/O code (which is enclosed by a DO-END

pair) by the statement:

"IF SUBSET$recname THEN11.

239

After the I/O code we check again to see whether a variable

of the form SUBSETSrecname is defined. If there is such a

variable we produce the codes

"SUBSETSrecname «.l'ltB;""

The main sequential input file (there must be exactly one) is

read in a special way as shown in case 1 of Table 9* It is

always read one record ahead so that filename^ (filename) always

contains the next record to be used. If the NEXT option is

used, i.e. there is somewhere a reference to an item of the form

NEXT.A

where A is an item in the main input file, several special

actions take place.

The area for the record is defined as having dimension 3.

Subscript 2 will always refer to the 'current' version of all

fields in the record, while subscript ! 3 ! corresponds to the

'next1 copy.

240

5.8 Generating PL/1 Declarations (GPL1DCL)

This procedure generates most of the declarations for the

structures defined by the user as well as those added by the

system. Some additional declarations are generated by the

other procedures during the code generation."

The main part of GPL1DCL can be described as follows:

1* For each file F in the specification (available from

the list FILIST) call

DECLARE_STRUCTURE(F)

to declare F and all its descendants.

2. For each node N in the specification which is a group

or a special reserved prefix name and has no parent,

call

DECLARE_STRUCTURE(N)

3* For each system or standard subscript which has

been referenced or used (tested through the array USED)

we issue the declaration:

DCL subname FIXED BIN

241

5,8.1 Declaring a Structure (D'ECLARE—STRUCTURE)

This procedure declares a complete structure. It issues

the declarative: DECLARE, and then proceed to call DCL^STR

(11,1,0) .

5.8.1.1 DCL STR (U, LEVEL:, SUX)

This recursive procedure produces a declaring clause for

each node N in the structure. 'LEVEL8 is the current level

in the structure while SUX is a termination criterion stating

whether there is a next item on the same level (younger brother)

or a descendant*

L Some preliminary transformations are made on the

declared item name.

1.1 File names of the form NEW.F and OLD.F are

modified to NEW_F and OLD J? respectively.

1*2 All other names excluding special names are ;

reduced to their last component.

2. For special names the resulting declaration is;

For SIZE, LEN and POINTER names?

name FIXED BIN,

while for all other reserved prefix names it is

name BIT(l),

3. The declaration includes in general the following

items s

LEVEL - The component level.

Name - The declared name.

242

Repetition - The repetition indicator.

Type - The data type.

The type is determined as follows:

For Character fields - CHAR(len)[VARYINGj

For Binary fields - BIN FIXEDden, scale)

For Numeric fields - PIC '99..91

For Fixed fields - DEC FIXED (len, scale)

For Binary Floating - BIN FLOAT (len)

For Bit string fields - BIT(len)[VARYING]

For Decimal floating fields - DEC FLOAT(len)

For Picture fields * PIC 'picture'

In. the above 'len1 is the specified or default

length for the field. The VARYING option is taken if

the length is specified (for strings) by a minimal

length <maximal length.

The repetition is defined by the repetition counter

If different from zero and denoted by R we append the

string f(R)f after the declared name.

If the repetition is virtual we set the repetition

to 3 if this is a record level for a record containing

a 'next1 referenced field. It is set to 2

if there is a reference to X(..I-1,.-) with 1-1 in

the position corresponding to the current level. In

all other cases of virtual repetitions we omit the

repetition indicator completely.

243

4. For each of the descendants of the node m, call

DCL_STR(M, LEVEL+1, termination) recursively.

5.9 Other Code-Generation' Supporting Routines

Certain routines have been found to be useful to all the

code generation routines.

The "WRite PL/11' routine (WRPLl) is called by each of the

code generating routines in order to write out the PL/1 code.

Two parameters are passed to this routine: the string of Pl/1

code to be written and the output file to which it should be

written. WRPLl takes the string containing one or more

generated PL/1 statements and it outputs the PL/1 statement in

the format and syntax that the PL/1 compiler expects. It ensures

that the statement fits in columns 2 to 72 of each card

necessary for the statement produced and generates sequence

numbers in columns 73 to 80 of each card image.

The WRite DeCLarations routine (WRDCL) does the same for

writing PL/1 declarations and indents the declarations according

to the level numbers for readability. It is called by GPLlDCL

in order to write out each declaration. It is passed two parameters

the string containing the declaration, and the level in the

tree. The file to which the declarations are written is PLlDCL.

5.10 Code Generation Summary

The "Code Generation Summary11 routine (CGSUM) has the task

of wr-apping up the code generation phase and writing a report to

the user„

244

First, the different files with the generated PL/1 program

(PL1DCL, PL1ON, PL1EX, PLlPROC) are merged (by MERGPL1) into

one object PL/1 file (PL1OBJ) which can be subsequently compiled.

Secondly, a Code Generation Summary Report is written which

lists the generated PL/1 program to the user, and prints

out the total number of lines generated. While the PL/1

listing would not be of much use to the average MODEL user,

it would provide a deeper understanding for the more sophisticated

user or system programmer for insight or debugging. This is

analogous to the way that a PL/1 compiler can list a pseudo**

assembly language listing for the object program that it

generates, which can be of occasional use to certain users •

This routine also generates a few lines of statistics

about the generated program that might be useful for the

user, including the number of PL/1 statements generated and

the amount of computer time used to generate the program.

The result of this entire code generation process is thus

a complete PL/1 program ready to be compiled by the PL/1

compiler.

