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added, particularly in the areas of
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generation phases are entirely new.

is organized simlar to docunentation of
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.1 OVERVIEW

This document describes the algorithms and méchanisms of
the MODEL Processor, which is a software system performing a
program writing function. The MODEL Processor (hereafter called
the Processor) has been designed to automate the program design,
coding and debugging of software development, based on a non-
procedural specifications of a program module in the MODEL language.
As shown in Figure 1, a program module is formally described and
specified in the MODEL language, whose statements are then submitted
to the Processor. The set of MODEL statements describing a program

module is referred to as a specification. The Processor, performs

the analysis (including checking for the completeness and consistency
of the entire‘séecification), program modﬁle design (including
generating a flowchart-like sequence of events for the module), and
code generatior functions, thus replacing the tasks of an application
programmer/coder. The Processor's capability to process a non-
procédural specificétion language is built on application of graph
theory to the analysis of such specifications and to the program
generation task.

Another important function of the Processor is to interact
with the specifier to indicate necessary supplements or changes to
the submitted statements.

The Processor produces a complete PL/l* program ready for

compilation as well as various reports concerning the specification

*Another version of the system produces COBOL code.
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and the generated program. The Processor output reports include
a listing of the specification, a cross-reference report, subscript
range report, a flowchart-like report of the generated program,
and a listing of the generated program, all to be described fully
later:

Processing of a specification written in MODEL by the
Processor consists of four phases shown in the system flowchart
of Figure 2, which is the first refinement of Figure 1. Some

- of these phases represent adaptations of known but state-of-the-art

technology, while other phases involve more novel innovations in
analysis of the specification and in the design and code-generation
for the application program.

Each of the four phases depicted in Figure 2 is.discussed
below.

" Phase 1l: Syntax Analysis of the MODEL Module Specification

In this phase, the provided MODEL Specification is analyzed
to find syntactic and some semantic errors. This phase of the
Processor is itself generated automatically by a meta-processorx

" called a Syntax Analysis Program Generator (SAPG), whose input
is syntax rules provided through a formal description of the MODEL
language in the EBNF language (yet to be discussed). In this
manner, changes to the syntax of MODEL during development can
be made more easily.

A further task of this phase is to store the statements in
a simulated associative memory for ease in later search, analysis,
and processing. Some needed corrections and warnings of possible

errors are also produced in a report for the user. Also, a cross-

R . ¢

reference report is produced.
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A description of the Syntax and Statement Analysis phase is

covered in detail in Section 2.

Phase 2: Analysis of MODEL Specification

In this phase, precedence relationships between statements are
determined from analysis of the MODEL data and assertion statements.
The specification is analyzed to determine the consistency and
completeness of the statements. Each MODEL statement may be con-
sidered to be an independent stand-alone statement. The order of
the user's statements is of no consequence. However, in analysis of
the statements, precedence relationships are determined based on
statement components. These relationships are used to form the

nodes and directed edges of an array graph (yet to be discussed)

on which completeness, consistency, ambiguity, and feasibility

of constructing a program can be checked. <Various omissions or
errors are corrected automatically, especially in connection with
use of subscripts. Reports are produced for the user indicating
the data, assertions, or decisions that have been inadequately
described, assumptions that have been made by the Processor, or
contradictions that have been found. In addition, a report

showing the range of each subscript is generated.

Explanation of this process is covered in Section 3.

Phase 3: Automatic Program Design and Generation of Segquence and

Control Logic.

This phase of the Processor determines the sequence of execution
of all events and iterations implied by the specification, using
graph theory techniques. It determines also the sequence and control

logic of the desired program. The result of this phase is a flow




of events, sequenced in the order of execution. Thus,

the output of this phése is simlar to a program flowhart of the
desired program It is subsequently used to produce a flomchart-like
report* At the end of this phase it is also possible to produce a
formatted report of the specificatfon. This phase is presented in
detail in Section 4.

Phase .4 %.Code Generation

At this point in the process it is necessary to generate,
tailor, and insert the code into the entriea of the }Iomchart to
produce the program In particular,'read and mrite:lnput/output
conmands are generated whenever the flowhart indicates the
need for noving records. The assertions are developed into PL/I
assi gnment statenents. \Werever progran1iteration$ and ot her
control structures are necessary, progran1codé for them is generated.
Decl arations for object program data structures and vari ables
are generated. Code is also generated for recovery from program
failures when bad data is encountered during program execution. The
product of this phase is a conplete programin a high |evel |anguage,
PL/1, ready for conpilation and execution. A listing of the
generated program is produced.

The renai nder of this report expands on the above phases. Fgure 3




provides a tree diagram of the major nodules, as well as the overlay
structure of the Processor. The nanes of the nodules in this
di agram are referenced throughout the reminder of this report
wherever the corresponding task is explained. As seen at the top
of Figure 3, a MONITOR governs the execution of the different
phases 6f the Processor, and does not allow succeedi ng phases to
proceed mﬂthoqt the success of the previous phasesys At the second
| evel of Figuye 3, the maj or phases of the Processor are naned
(1) SAP (Syn{ax Anal ysis Program, Section 2; (2) NETGEN (Network
GEneration)'& NETANAL (Network Anal ysis), Section 3; (3) SCHEDULE
(Schedul e events and generate flowchart), Section 4;
and (4) CODEGEN (Code Generation), Section 5. Below this |eve
of Figure 3, the diagram shows the names of the nodul es subordinate
to each of these phases. Each of these subroutines is discussed
at length throughout this report*Figure 3a provides an al phabetic
i ndex of the nanmes of the mmjor nodules and the sections in which
they are discussed.

In order to exenplify the nature of the Processor phases
t hroughout the analysis, design, and program generation phases, a
sanpl e case problemis described in Section 3 and specified in
MODEL. The processing of that sanple problemis followed through-

out the various phases for tutorial purposes.
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2. SYNTAX STATEMENT ANALYSI S

The first phase of the MODE! processor analyzes the syntax
and other local semantics of indi”™ idual statements. Advanced
state-of-the-art syntax analysis techniques are used here which
have proved to be invaluable. Specifically, the capability to
genera{e the parser automatically has enabled rapid devel opnent
changeso In addition to checking the MODEL statenents for
Syntactic and $one senantic errors, this phase also stores the -
statements in an internal associative form for later processing.

2.1 EBNF,_ SAPC_-; and t he SAP

2>1.1  Specification of MODEL using EBN- and the SAPG

The Syntax Analysis Program (SAP) for the MODEL statenents
is generated automatically by a Syntax Analysis Program
CGener at or (SAEGQ- As shown in Figure 4, the SAPG produces the
Syntax Analysis Program (SAP) for analyzing MODEL statenents, based
on a specification of the MODEL | anguage expressed in the EBNF/ WSC
(Extended Backus Normal Form with Subroutine Calls) neta | anguage.
The EBNF/ WBC includes the traditional concepts of BNF. BNF

uses sequences of characters enclosed in angle-brackets < >

called non-tergiinals to give nanmes to grammatical units, for which
substitutions may be made. It also uses sequences of characters
not enclosed in brackets which are in the object |anguage (in

this case MODEL). BNF consists of a series of production rules

or substitution rules of the form"As%B'e "A' is a single non-

termnal synbol and '"B' is one or nore alternative sequences of

termnal or non-termnal synbols that can be substituted for A
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Th- alternatives are separated by the neta-symbol "|". To
facilitate |anguage description, BNF was extended to EBNF with
two nore well-known neta-synbolss [ ] representing optionality
and | ]* representing zero or nore repetitions.

The specification of MODEL that is input to the SAPG consists
“not only of the syntax specification of MODEL, but also of sub-
routi ne nanmes enbedded within the EBNF, therefore the nane "EBNF
with Subroutine Calls” (EBNF/MSC); The SAPG provides a capability
to branch to these subroutines upon successful recognition of a
syntactic unit. Thus, they can conplete the SAP to enable it to
check sone of the statenment semantics, to encode/ to produce
error nmessages, and to store t;“ KODEL statenents for later retrieval .
The invocations of these subrot“in >s are generated automatically
by the SAPG mhile t he supportihg subroutines thenselves are
witten manually. The definition of the MODEL |anguage in EBNF/ W5C
appears in Figure 5« The subroutines to be invoked are indicated
bet ween sl ashes (/eee/). Note thit subroutine calls are made
after the successful recognition of syntactic units up to that point.

The SAP generated by the SAPG according to the EBNF/WSC is
suppl enented and linked with the routines. The SAP accepts state-
ments in MODEL and checks them for "syntactical correctness, and
| ocal semantics. It produces a Iistihg of the statenents, syntax
di agnostics, an encoded stored version of the MODEL statenents,

syntax trees for the assertions and a cross-reference report.
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i"ELSE /SVNX-OPy <ASSfeRT10N> /S VicXCMP/"{ /STALL/
<ASSFRTIOA>: 3 /SftirASS/ <COKDITIGMAt> | <SIhPLE_ASSERT2GN> -
<DCL _OR_FHSP ez /INTODOLIZCATE CESC STHMT>/FREZTMP/
I /ERMRHS/<M*TCAS>/SttSR/<300LEAN.EXPRESSION>/SVNXCMP/
FSTALL/<ENGCHARD
CINTCASO>s2=/INTCASS Y
<SiftPL£.aS$ERTICN>:;=/SETTG//SVASAEL1 <SUJ.VARIABLE>
ISVCMP1/ JERffQ/ = 7SVN»)IOP/ /SETSR/
<6CCLfcCANAEXPStSSION> /SVNXChP/ /STALL/ <ENDCHAR>
<SU8_VAR!ADLF>::= <EAChR> /SVEACH/ /SETy/AR/ [AOLF*/ /STR.CON/

. | JEACHINT/ /SETSU3V/ <VAR> /SVC"P1/ /SVT65R/
i"i/sSv;,X(;P/ /1~CLAVL/ [:hTSIT/ I/f RM&ACH/
<BGOLEANAEXPRESSION> /SVX\XCMP/ (' ,/SVNXQp/
<BGOLEKkH_£XPKESSIiON>/SVNXChP/"<-
"«'/ERKERF/)/DECIEVL/M{/STALL/

<bCCLEAN.EXPf?£SSION>::= /VRbEL1/ [ISVSIXP/ <CUND_EXP> |
<cQULEAN TERM2> JSVCHKP1/
<M<oR> /SVNXOP/ <800LEANATERM> /SVNXCMP/"C*
IiTALL/
<COUD7MEXP>::*IF /SVCONO/ /CUN'DBL/ <&OOLE *>*£ XPRE SilOW> /SVCMP1/
IThRENCE/ THEN [$VNXCP/ ‘<fcOOLE*N.EXPRESSIOK> /SVNXCIAP/
IELSECE/ ELSc /SVNXCP/ <BOOLEJ»fg*EXF»P E$$ ION> /SVNXCMP/ [STALL/

<O0R>::= [QR_REC/
<faOCLEAN.TER?->: := /wRfeTl/ ZiVoTIl/ <EOQOOL6*N.FA CTOR> /SVC*'P1/

! <"i /SVNXOP/ <POOLEAN_FACTO&> [/SVNXCAP/"<* [STALL/
<BOGLEANAFACTOR>::= [*RE£E1/ /SVBF1/ <COMCATENATICN> /SVCMP1/

* <M<RELATION> /[SVNXCP/ <CONCATcNATION> /$VNXCtfP/M<* [STALL/

<REL*TION>::* [RFLREC/
<CONCATILSHTION>::- /JuRCCM/ /SVCCN/ <ARITH..EXP> [SVCAPI/
<" <CONCAT> /SVNXOP/ <ARITh_EXP> /SVNXCAP/"<* JSTALLI/
<CCNCAT>::= [CATREC/ S
<SARITH C-YP>J:= JVRAEL/ /SVAt/ <"<SIGN> [SVOPt/"<
- <TERrt> [SVC?*P1/ {"<OP?>> [SVNXOP/ <TERM> /SVNXCMP/“{* [STALL/

<TERfA>::* [ 'RTERril [ISVTEK>r/ <FACTOKS /[svcC'P1/
{++<MOFS> [sy"xcF/ <FACTGP> /SVMXCAP/"<* [STALL/
<FACTGR>::= [WRFAC.1/ [SVFAC/ C"* [SVOP1/"{ <PRIftARY> /SVCWP1/

<"<EXPON> [SVNXOP/ <FRIfiARY> [SVNXChP/"<* [STALL/
SEXPON>::s [HXPRAC/
<PRIMARY>::= J«RPRX.V1/ ISVPRIF/ <IS_PRl«> [SVCwPt/ /STALL/

Figure 5: Definition of MIDEL Language in EBNF/ W5C
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<IS_PRIM>:zz= ( <ROOLEAN_EXPRESSICN> /ERMERP/ )
| /SETNUM/ CNUKBER> /STNUM/ | <STRIMNG_FORM>
| <FUNCTLCN_CALL> | <SLB_VAPIABLE>
CSTRING_FORMDzz= 7 JSETSTak/ {" <STRING> /SVSTRNG/™(
JERMISS/ .
“ JADLEXZ/ (™8 /STRIT/ /GITERR/ <E_SUFX>"{ /SINUM/
SFUNCTICN_CALL>::= <FUNCTION_NAME> /STFUN/
JSETFUNC/ {™(/SVNXOP/ <BOOLEAMN_EXPRESSION>D
ISVAXCP/ (", /SUNXOP/ <BOOLEAN_EXPRESSION>
JSVRXCrMP/ "{x ) "{ /STALL/
CFUNCTION_NAME>z:= /FNCHECK/
VARD::= 7STTVAR/ JINITGNN/ JUNMERE/ <NAMED> /ADLEX/ /MKGNM/
{"e FALLEX/ /GNNEIRR/ <NAME> /JADLEX/ /MKGHM/"{* /STK_CON/

<E_SUFX>:s:= /BITSTR/
<EACHR>::= JSACHRCC/
CENAMED s o= JINITGNMZS JCGNMERKR/S <NAMED IMKGNM/

{® o+ JuNMERRZ <NANE> /¥KQNM/ “{ +
CSTaINE>s2= <STRING_CONST>
<€OPS>z2= JOPRECY

<HOPS>z:= [MOPREC/ v

<TEST>zz= /TESTRIT/ =

<MODULE _MAME_STMT>::= /MODUL1/: /MODUL2/ <NAMED
/STI“"L/ ( NDCHAR>

<SOURCE_FILES_STMT>zz= ("<FILE_KEYWURDD®{ /SRCFL1/ JINITSFL/ :
<s0UPCT_FILELIST> JSTSRC/ <CNDCHAR>

<EILE_Ke™ w.nD>::'F1LESlFILh
<SOURCE_ILELIST>23= /SKCFLo/ <unns> /SVERCY
{®y /SRCFL&/ <HKAME> /SV¥SKC/™.
STARGET _FILES_STMTD>2:= {"<F3 LE _KEYWGRO>®{ /TARFL1/ /ZINITTFL/ :
STARGLT_FILELIST> ISTTAR/ <ELDCHAE>
<TARGET_FILELISI>:s:s= /Takfle/ <HENE> /SVTARY
(s ITRRFLEZ <NANMED> JSVTIAR/S "l
<DATA_DcSC_STMT>2:= <DATA_DESCRIPTIOND <ENDChARD
<DATA_DESCRIPTICNMD>::z=
<FILE> /SVFILE/ /FILERKY/ <FILE_DESC> /STFILE/ <STORAGE_DESC> /STDEV/
L<RECGFL _STMT>
I <GRP_FLD>
I<SINT_STMTD> .
I<SUE_STHT>
SGRF_FLLD>:2=<GROUP _STHT> | <FLELD_STMT>
<SUB_STRT>::=<SURSTRIPTO/VEMINIT/ /SVNEM/ ("C <OCCSPEC> )"{ /STSUBST/
<SULSCRIPI>zz= SUB | SUBSCRIPT
<FILE>s:z= FILE|KEPORT
CRECORD_ST¥T>::= CRECGRDD> /MEMINIT/ {™(®{ <ITEM_LIST> {®)"{(

ISTREC/
SRECORD> ::= NKEC | RECChD
SITEV _LISTD>22= /JITEMCI/ITEND {%{","( <1?a~>"{*
<ITEMD>2:=<NAMED JSVREM / (™ o <CNAMED> /SVNEM/ “{x {"("( {™<OCCSPEC>"{{®)*!
<OCCSPECY>z:= <STAK> /SVSTAK/

| <MINQCCO/SVPNOC / {H“<MAXOCC>®(
<STAR>z:= /STARREC/
<n1nocc>: =<INTEGERD
<SMAXCCCY> z:2= {"/ITEMERCI{SINTEGERD /SVMXOC/ /CKMNMX/
r CINTEGER> /SVMXOC/ /CKMNMA/

Figu:e.S (continued)
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109 <GROUP_STMT>z:z= <GROUPD/MEMINIT/ ("("{ <ITEM_LIST> {")"{ {","{
110 {™ TABULATED /SVTAE/ "{ /STGRP/

111 <GROUP> ::= GKP | GRCUP

112 <FIELD_STMT>z:= <KFISLO> /SVFLD/ <FISLD_ATTR> /STFLO/

113 SFIELO> :2= FLO | FIELD

114 SFIELD_ATTR>zz3= ("(“{ <TYPE> /SVFDTPZ/{"™ <LENG_SPEC>"{
115 €790 {"™<CULINE_SPECO"{ ("™ {"<COL_SPECO"{ {")"(

11¢ <LENG_SPEC> z2:= ( JFLDERRG/

117 KMIN_LENGTHY> (" <FMAX_LENGTH> "{ /FLDERRS/ )

11e I <MIN_LENGTH> {™<HAX_LENGTHO"({

119 MIN_LENETHD> ::= CINTEGERD /JSVMNFWN/

140 <LINE_SPFEC>z2= LINE /JLCERR/ (KINTEGERD> /SVLINE/)

121 <COL_SPEC>zz= COL JLCERR/ (<INTEGEP> /SVCOL/)

122 <TYPE>::= /FLOERR3/ <PIC_0DESCDY

123 I <STRING_SFEC> | <NLM_SPECD

124 <PIC_DESC>:s= <PIC_TYPE> /PICERR1/ /SvPlC/

1¢5 T M <STRING> /SVPICSTY ™C ° 7,TP1C/

12¢ <PIC_TYPE>2:= PIC | PICTURE

127 <STRING _SPEC>::= <STRING_TYPE> /S' TRTH/

18 <STRING _TYPED>z:= CrAR | ChAKACTER - 2IY | NUM | NUMERIC

1¢9 SNUM _SPEC>2:= <NUM_TYPED JSYNUMTP/ (" <FIXFLT> /Svk0D/ “(
150 <NUM_TYPS>:z:= BIN | BINARY | DEC | DECIMAAL

131 SFIXFLT>:z:z= FIX | FIXED | FL | FLOAT | FLT

132 <MAX _LENCTH>zz2= (™:*{ <INTELSR> /SVEXFLN/

13 b s /FLDERRZ/ <SIMNTGR> /SVSCALE/S

134 I CINTEGERD> /SVMXFLN/

135 <CSINTGR>:2= = /INTERR/ <INTEGER> /NEGATE/ | <CINTEGERD

13¢ SNUMEERD>2:= CINITNUM> /NUMERR/ <RECHUMD>

137 <RE(NUM>zz= /RECNUM/

132 CINITALUAD2s= ZINITAUNY

13s <S16N>z:= + | =

140 <RECG>2::= RECORC | GROUP

141 CKEY>:z=KEY|SEGUENCE ;

142 <CODE>::=cBCDICIBCOIASCII ,

143 CANYD 2= <NAYEI>|<INTEGERD>

164 <NO_TRKSdz3= 719

145 COENSITY>z:= ¢QCI55¢1cCCl1€001€2°0

1aé <PARITY>::= ODD|FVEN

147 <TYFEDSKD:z:= 2214§2211}1233012305 } 3330-1

1«8 <0RGD::=CKGIORGANIZATICA

149 <ORG_TYPE>s:= /CLSKEKR2/ISAMISEGUENTIALISAPINDEXED _SEQUENTIAL
1s¢C SINT_STuT>z2:= <IMTERIMD /SETINTRZ <GRP_FLDD>

151 <INTERINMD>z:= INTIINTERIN

152 <ENDCHARD:z= /S:iMI/ <eND_CHARD> /STMTINC/

153 <END _CHAF>:zz= /SVENDC/

154 <STRING _CUNST>::=/CHAKSTR/

155 KNAMED2s=/NAVYEREC/

15¢ SINTEGERD::z=/INTFEC/

157 <€i$>:3= 1S |} =

158 SFILE_ST¥T> 3= FlILe ("NAME™( {™<IS>"{ /YEDER1/ <NAME>/SVFLNM/
159 <FILE_DESC>/STFILE/

1¢0 . <STORAGE _DESC> /STLEZV/ <ENDCHARD
1e¢1 SFILE_DESC> 223 <RECEY {“NAME™{ ("<TIS>"{ /FILERRI/SNAMED/SVRCNM/
1¢2 : Lo (" (<STARD/SNSTARF/I LI ("(

Figure 5 (continued)




163 : ("STORAGE - <"NAMF"< {"<1S>"( /FILERR5/ <NAME> /SVSTNK/"(

U4 Q"<KtY> ("NAME"( {"<I1S>"{ /FILERR6/ <NAME> /SVKEY/™(

1c5 (M<OfcG> {*e<I$>ee{ <ORG_TYPE> /SVONG3/Y(

1t£ <STORAGE,DESC> 22= {-VDEVICt ("<IS>"'( <DEVICE>'H /SVDEV/

17 (“RECORD FMEDER2/™L("FORMAT ("<IS>"{ <REC_FMTO>"{/SVRECF/

1x6 <P LK._RtC,VOL> ) - '

1c9 _ {"<TAPt DESC>"{ ("<DISK.DFSC>*{

17C {"HARDWARE"( {"SOFTWA HE"{ %'

171 <DEVICE> 22- /hfOERt/ TAPE ! DISK/SETDEVB/

172 .| I"HD /SETDtVC/ | PRINTER /StTDFVP/ et

1/3 j PUNCH /SETDEVU/ | IERI"IMAL /SFTDEVI/ A

17A ~  <RECM«T> 22= /RCFER1/ F1XED|VAR1AbLEIVAR_SPANNED IUNDEFIUED

175 <LK REC VOLD> ::=

1/6 ~  "(r ("MAX™{ /KCFER2/ BLOCKS17E (''<1S>"{ <INTEGER> /SVBLK/ '{

177 ™ {"MAX/MtDfcR4/"( RECORDSIZE {"<1S>“{ /RCF ER 3/<INT EGER >/SVRCSZ /+*(
178 ("VOLUME- {'NAHEM( {M<1S>°( /KEDER5/ <NAHE >/SVVOL/ {*{/MEDER5/<NAME>"{* il
179 <TAPEADESC> s:= {"<TRACKS> {e<!$>"{ /P ARFHR/<NO_TR KS >/S VIR K2/ "'(

160 . ("PARITY ("<I'S>"%( /PARFRR/ <PARITY >/ SVP AR2 /" (

Id ("DENSITY ("<l S>"( /PARERK'/ <OFI«SITY> /SVDENZ/M;

102 , ' {eo «{"TAFE"( LAPEL f“<IS>%"( <LAPfcL_TYPE>/SVLA82/"(

1c3 ("START {"FILE"< {M<I1S>"( /PARFKRA <INTEGER> /SVSTFL2/™(
1t4 ' {"MCHAKM( CODE <'<IS>°t <CCDE> /svccC/ "'(

us | <TRACICS> 22= NO _TRK$ | TRACKS

16< <LAbEL _TYPE> 2 S=*/?1ED ER3/ ID«_SIDJAMSI _STD |[NUNE fBYP AS S

u7 <DISKADE5C> :2= ("UNIT ('<IS>MC /DSKER4/ <TYPEDSK> /SVUNIT2/°(

1c8 ("<C YAIUDtRSV/SVUC YL/ {*'<IS>"{ /PARERR/ <INTE6ER> /SVQTY2/%(
1b9 <CYLINDLAS> ;:= NOACYLS | CYLINDERS

1V0 <HARDUARf>22= ("{"C OMPUTE R'H >tODFL (M<1S>”%( <kuv>

1v1 <SOFTWANF>22= (M(*OPEKATINGM< SYSTEM {/!'<IS>"{ <any>*{

Figure 5s Conti nued
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}EXTERNAL FUNCTIONS AND/OR SUBRCUTINES

L/

CLRERRF STMT_FL UNRECS ENDINP ASSINIT STRHS ERMASS SETTG6 SVASSR SVCMP1
SVNXOP SVAAS1 SVOP1 SETHIT SETSR EKMBOOL ERMTHEN SVNXCMP STALL INTODDL
FREETMP ERMRNHS INTOASS SVASAE? E«MEQ SVEACH SETVAR ADLEX STR_CON EACHINT
SETSUBV SVTGS K INCLEVL ERMEACH ERNERP DECLEVL WRBE1 SVBEXP SVCOND CONDBL
THENCE ELSECL OR _REC WKBT1 SVB T SVBF1 RELREC WRCON1 SVCON CATREC
WhAL1 SVAE WRTERM SVTERNM WRFAC1 SVFAC EXPREC WRPRIM1 SVPRIM SETNUM
STNUF SETSTKM SVSTRNG ERMISS STEIT B1TERR ST FUN SETFUNC FNCHECK INITGNM
GNMERR MK GNM RITSTR EACHRCC CPRET MOPKEC TESTBIT MoouL1 MOLU L2 STMOD
SKCEL INITSFL STSKC SKCFL2 SUSKC TARFL1 INITTFL STTAR TARFLZ SVTAR
SVFILE FILEkiT STFILE STDEV PEMINITY SVMEM STSUBST STREC ITENOD SVSTAR
SVFNOC . STAKREC ITEMER2 SV¥AOC CKMNMX SVT AB STGKP SVFLD STFLD SVFDTIP2
FLDEFR4  FLDERKS SVMAFLN LCEKR SVLINE SveeL FLDERR3 PICERR1 SVPIC SVPICST
STP1C SVSTRIP SVNUATP SVMGD SVMXFLN FLDERR? SVSCALE INTERR NEGATE NUME KR
fFECNUM INITNUM DSKERZ SETINTR SEM] STMTINC SVENDC CHARSTR NAMEREC INTKEC
VEDER1T Sy FLNE FILERK3 SVRCNN SVSTARF FILERRS SVSTNM FILERKE SVKEY SVOKG3
SVDEV FEDER SVRECF MEDLRE SETDEVD SETDEVC SETLEVP SETDEVU SETDEVY RCFER1
RCFERZ SVELK MEDERS RCFER3 SVRCS1Z MEDERS SVVOL PARERR SVTIRK?Z SVPARZ
SUDENZ SVLAB SVSTFL2 svec MEDER3 DSKERG SVUNTITR2 SvucYL SVGTY2
1RLCURSIVE PROGUCTIONS

MUDEL_SPECIFICATION

CuLDIT IONAL :

ASSERTION b

Sub_VARIABLE

BUOLEAN _EXPRESS1ON

COND _EXP

ECOLEAN _TERM

BUCLEAN_FACTOR

CONCATENATION

AkITH_EXP

TER4

FACTOR

PRIMAKY

1S_PRIM

FUNCTION _CALL

Figure 5: Continued
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2.1.2 How the SAPG Produces’ the SAP _

.The SAPG is a small conpiler in itself in that it processes
a specification in the |anguage EBNF/ W5C and produces a program
(SAP). It perfornms this in three passes over the set of pro-
ducti ons.

In pass 1, each production is scanned, and its conponents
are encoded into a set of tables. Non-term nal synbols appearing
on the |eft-hand-side of a production (new production nanmes) are
put into a synbol table, while non-term nals appearing on the
ri ght-hand-side of a production are put into a work table. Term nal
synbols in a production _re put into a terninal synbol table.,
Subroutine calls are put into yet another tabl e«

In pass 2, the synbolic references in the work table (i«e,
non-termnals on the right-hand-side of the original production)
are resolved. Pass 2 checks that each ri ght - hand-si de non-term na
synbol in the work table is.defined, and links it to the corres-
ponding entry in the synbol table. Undefined non-terminals as
well as circularly-defined non-termnals can be detected in these
tabl e searches.

Pass 3 of the SAPG is the code-generation phase that produces
the SAP in PL/1. It is only entered if no errors were encountered
in the previous phases. For each EBNF/ WSC production, a PL/1
procedure is generated. Each one retufns abit: 1 if the
recognition was successful? 0 if it was unsuccessful. The
exclusive nature of EBNF production rules and alternatives is

effected by generating nested PL/1 | F- THEN- ELSE st at ement s.
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Repetition zero or more times is effected by generating a GO TO
to the statement testing for recognition. Subroutine names
embedded in the EBNF/WSC get a.CALL generated for them in place.
Calls to éther subroutines not explicit in the EBNF/WSC are also
generated,‘ These include "housekeeping" subroutines of the

SAPG and calls to LEX, a subroutine to scan and return the next
token in the object language.

To illustrate the code that the SAPG generates, consider the
following representative production rule in the EBNF/WSC and the
PL/1 code that corresponds:

<FIELD__STMT> : :=FIELD /SVFLD/<FIELD__ATTR> /STFLD/

The PL/l'code that is generated for it by the third pass of the

SAPG would be the following:

FIELD_STMT: PROCEDURE RETURNS(BIT(1));

CALL S$MARK;

CALL LEX; X

.IF LEXBUFF='FIELD' THEN DO;

CALL LEXENAB;

CALL $POPF;

CALL SVFLD;

IF FIELD_ATTR THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;
CALL STFLD; .
CALL $SUCCES; RETURN('1'B) ;END;

ELSE DO; CALL $SUCCES; RETURN('1l'B); END;

END;

ELSE DO; CALL $FAIL; RETURN('0'B); END

END FIELD_STMT;




20

The above code generated by the SAPG would become one procedure

in the SAP. Note that the names that the |anguage definer uses

in the production rule ar*e preserved in the generated SAP code*
The subroutines beginning with dollar signs ($) are "housekeeping"
routines that are internal to the mechanisms of SAPG-generated
code.

2»2 _ Supporting Subroutines for BBNF_ of MODEL
A refined system flowchart of the SAPG and SAP showi ng the

types of supporting routines appears in Figure 6. The manual | y-
written syntactical supporting routines are of one of severa
typesi
(1) a 1 exi cal anal yzer which returns tokens of syntactic
units to the SAP for analysis,
(2) statement semantics checking roUtines;

(3) erfor message handling routines;

(4) encoding routines to conpact information for further

éfficient processing; and

(.5 statenment storage routines.

The cross-reference report produced during this phase is
generated by a manually-witten program (XREF) and is described
in Section 2.7.

A discussion on how to decide where to insert subroutines
as well as a tabular summary of all routines used appears
in Section 2.3 . |

e S B TN =T W - R Ve - RVE 2=12
* 7

The purpose of the lexical analyzer is to scan for syntactic
units or "tokens", using such delineters as blanks and certain

-punctuation marks, and to return tokens to the Syntax Anal ysis,
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Program (SAP) for syntactic checking* The automatically-generated
SAP calls upon the lexical analyzer (LEX) whenever it needs the
next token. The lexical analyzer is based on the finite

state nachi ne concept. Each state of the nachine

corresponds to a condition in the lexical processing of a character
string. At each state, a character is read, an action is taken
based on the character read (such as concatenating the current
character to previous ones or returning the entire token to the
SAP) , and.the machi ne changes to a new state. The character
classes for the MODEL Language, for the purposes of |exical

anal ysis, appear in Table 1. These classes divide the entire
character set into categories such as illegal charabters,
delineters, "nor mal " characters, etc. The state transition matrix
for the MODEL fanguage appears in Table 2. The rows of the matrix
represent the character clésses of the previous character, while
the colums represent those of the current character. The entries
in the matrix indicate the action to be taken and the next state.
The action taken in each state is sunmarized in Table 3. The
actions involve such steps as concatenating of a character, ignoring
a character, detecting an illegal character, returning a conplete
token to the SAP, etc., and setting a "next state"

2.2,2 Stat erﬁant Semantic Anal ysis

Sone of the senmantics of the specification statements can be
checked during the syntax analysis phase. Such routines can
check that a range or condition on a syntactic unit is locally
correct. These routines do not and cannot check the overal
consi stency, conpleteness, or correctness of the | ogic of the

MODEL épecifidation, a task which is perfornmed by a |ater phase




Class Character Set

10
11
12
13

AB ... Y2 _
(space)
012...,9
(+8);,%2:"

.

. all o:her;
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Explanation

# @ Characters in names

Delimeter
Numefals

Delimgters in various contexts

Delim in logical expr.
"OR" symbol
Mslt. Or comment 1if with '/%"

"NOoT" s' bol

. minus s, bol

Division or comment if with " /*"

Delim in logical expression

.Delim:for keywocds & log. Expr.

Illegal

Table 1

Character Classes for MODEL Lanpuape
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Character 1111
Class (next) 01234567890123
(current)

0 12122222222227
1 13151111111117
2 12121222222227
3 2222222 .5222227
4 22122222222227
3 2222222272217
6 22222212222227
7 2222222, 222227
8 22223122222117
9 2222,,222232127
10 22222226222227
1 2222222222221 7
12 22222222222227
13 77777177171727777

Table »°

State Transition Matrix for MODFL Lexical Analyzer




Action
Action
Action
. Action
Action
Action

Action

<o
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Concatenate next character to current token
End word with next character

Skips blanks secquénce

Reserved (never faken)

Scan forward orne charyc:cr and save as token
Comment brackét; scan to end of comment

Illegal charaﬁtcr(s); print error message

o

-
o 3

% dAmsre
S AR B O S

EE R

®;e

Table 3

Lexical Analysis Actions .
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of the Processor. An example of a local semantics checking
routine is one which checks the range of a numeric computation.

For instance, if a group is said to occur n to m times, a sub-

4

routine exists to check the 0< = n< m< 32768. These manually-

written routines are invoked automatically by the SAP by virtue

of their specification in the EBNF/WSC of the MODEL language for

the SAPG. The semantic checking routines are listed in Table 4.
| 5

©2.2.3 Error Message Stacking Rout ..

These are subroutines which 7 »rroxr diagnostics to print

out upon recognition of a syntacT““ﬁ‘°ﬁ#inccfrect user statement.
Upon reaching incorrect syntactic U -  , the automatically
generated SAP does not priﬁt its own me sages, but expects the
corresponding aiagnostics to be on an "error stack". For this
purpose, subroﬁtines have to be writte: to give a MODEL user
effective infokmation when statements'have’been'incorrectly composed.
Specifically, én error message has to bLe stacked for each expected
terminal symboi in the MODEL language in case the token is missing
or incorrect. If the expected token is found, the SAP simply pops
the correspcnding error message and continues; if the expected
token is missing or incorrect, the SAF pops the corresponding
error message, prints the statement number and message, scans for
the end of the statement delimeter (;), and continues. The
routines that étack such error message codes are the ones ending
the letters "ER" or "ERR. (e.g. RECERR). Each routine's syntax
error message pinpoiﬁts the token thét is incorrect, missing,

unexpected, or misspelled.
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Senanti cs Checki ng Routi nes

(Inserted in the EBNF/ W5G after the token(s) to be checked or for

ot her action)
NAMVE

ASSINIT
CATREC

Bl TSTR

EACH NT
EACHREC
EXPREC

FNCHECK

FSASS
FRU TER
FR NTRM
GETLI B

| N TQ\M
I'NTSFL -
| NITTFL

| NTQASS

I NTCDDL

WHAT | T DCES

Initializes nunber of sources/targets to assertion
Recogni ze the operator *|Jfe

Check that an aIIeged.bit string contains only the digits,
0, 1

Checks proper range for m ni numand max! - -
Initializes flag for FOREACH exi stence

Recogni zes FCREACH phr ase

Recogni zes the operator **

Check that a candidate nane is a recogni zed

functi on nanme

Prints frame before first assertion

Prints frame before interfile relationship

Prints frame before interins

CGets input fromlibrary

Initializes nunber components to qualified nane
Initializes s.ource file list

Initializes target file list

Ret urné 1if the currently scanned statement is an
assertion and not a data description statenent

Records that the statement- scanned is a data description

‘st at enent
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Semantics Checking Routines (continued)

NAME

————————

INTR' -

VSN

MOPREC
NAMEREC
OPREC
OR_REC
RECNUM
RELREC

RESETBT

SEIBIT

SETSR

SETTG

STARREC

SVASSS

SVENDC

a

LR yDy, > =

WHAT IT DOES

Recognizes integers

Initializes number of members of record or group

‘Concatenates qualified name components

Recognizes a multiplication operaficn, i.e.
k' or '/

Name recognizer; checks not keywords
Recognizer for the operaﬁors‘“+“, =",
Recognizes the alternation operator '|°
Recognizes and scans a number

Recognizes any of the relatioms

<= = >

- ’ ’ <, =

L] 9 °
Clears a flag which if set signify an assertion

is being scanned

" Used to set and reset a bit that indicate whe’her

the statement is an assertion or a data

description statement.

Sets a flag which signals that the right hand

side of an assertion is being scanned. This will
cause ail names encountgred to be added to the
"soﬁrce" list for the assertion

Signals that the left hand side of’an assertion
is being scanned

Recognizes a "“*' for indefiﬁite repetition

Saves the actual assertion itself during the

scanning of a statement

Recognizes a *;' as an end of statement character
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One product of the syntax analysis phase is the Error
Di agnbstics Report contai ning the nmessages. Each nessage gives
the diagnostics provided by the error routine and providqs_the
exact location of the ferror so that it can be corrected and
resubxaitted by the user easily. |If no syntax errors are found
during the syntax analysis phase, é nessage is sent thai:
"NO ERRORS R WARNINGé DETECTED', and the Processor proceeds to
the next phase. But”, if ef”or diagnostics were produced, a flag
is set to diable continuation of analysis and design beyond t he
synt ax checki ng phase. :

The error aespéﬂeggand stacking routines are listed in Table 5.

2.2.4 Encoding Wfir Statenents

These supporting routines encode some of the MODEL speci fi -
cation into an inte?nafxrepresentation. Al t hough all of the
names provided by tjie user specification are kept intact in internal
form for use by the object program nmany of the descriptions and
attributes are engoded for nmore conpact and efficient processing
| ater. For exanple, the description in a FIELD statenent enters
an internal table where the type of field is encoded QO for
character, 1 for binary, 2 for nuneric, etc.), and the field length
type is encoded O jor fixed length, 1 for variable Iength). One
encoding routine is witten for each such statenent type* Each
routine is invoked automatically after recognition of the syntactic
unit by the SAP. The invocation is automatically generated as
part of the SAP by the SAPG by viFtue.ofvits specification in t he
EBNF/ WSC. The internal format of the tables is given in the next

section in conjunction with the discussion of the internal associ at i ve




Table 5
- ERROR_ESSAGE_ STACKI NG ROUTI NES

NAMVE QODE
Bl TERR Bl TERR
CONDBL CONDBL
DSKERL DI SKO1
DI SK02
DSKER2 | Dstds
DSKER3 DI SK04
DSKER4 DI SKO5
DSKER5 .DI SKQ6
DI SKO7
DSKER6 DI SK08
DI SK09
DI SK10
ELSECE EL SEECE
ERVASS ERVASS
ERVBOOL ERBOOL
ERVEACH  EREAdH
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ERROR_NESOAGE
A bit string contains characters
other*than 0 or 14

M ssi ng bool ean expression in
condi tional expression

Left pa ~en missing in D SK
at em nt

Rig-t pa-en mssing in DI SK
ste ane t

*Oga xiza ion type m ssing or
illegal in D SK statenent

Internal name mssing or illegal
in DI SK statenent
Type disk mssing or illegal

In DI SK st at enent
Left par*;n missing in SPACE
spec in D SK statenent

Ri ght paren mssing in SPACE
spec In DI SK statenent

Units mssing or illegal in
D SK st atenment SPACE spec

Comma m ssi ng after units in
DI SK statenment SPACE spec

Quantity m ssing or

I 11 egal
in DI SK statenent

SPACE spec

"M ssing keyword THEN in

condi tional expression

Assertion m ssi ng after the
keyword THEN.

~ No Bool ean expression after

the keyword IF.

No expression after

t he keyword
l{!
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Table S5 T <

L}

ERROR MESSAGE STACKING ROUTINES (continued)

NAME  CODE
ERMERP  ERMERP
ERMEQ ERMEQ
ERMISSR  ERMRP
ERMISS  ERISSS
ERMPHS ERMRHS
ERMRHS ERMRHSR
ERMTHEN  ERMTHN
EXPREC EXPERR
FILERRlL  FILEOl
FILEO2
FILERR2  FILEO3
FILERR3  FILEO4
FILERR4  FILEOS
FILERRS FILEO6
FILERR6  FILEO7
FLDERR2  FLDO7
FLDERR3  FLDO2
FLDERR4  FLDO4

ERROR MESSAGE

Missing RightAParenthesis

Keyword '=' is missing

Missing Right parenthesis

Missing string after guote

No expression after the keyword '='

Error is recognition of a right hand
side of an assertion

Keyword THEN missing

Wrong structure for the exponent
part of a floating point constant

Left paren missing in FILE or REPORT
statement

Right paren missing in FILE or
REPORT statement

Keyword missing in FILE or REPORT
statement

Record name missing or illegal in
FILE or REPORT statement

Character code missing or illegal
in FILE or REPORT

Medium name missing or illegal in
FPILE or REPORT statement

Keyname missing in FILE or REPORT
statement ‘

Maximum length missing or illegal
in variable length in FIELD
statement

Invalid/missing field type in
field/interim stmt

Missing/invalid length in field/
interim stmt
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ERROR MESSAGE STACKING ROUTINES (continued)

NAME

FLDERRS

INTERR
ITEMO1

. ITEMER2
LCERR

LIBERR

MEDER1

MEDER2

MEDER3

MEDER4

MEDERS

MEDER®

MINERR

MODUL1

MODUL2

NUMERR
PARERR
PICERR1

QNMERR

CODE

FLDOS

INTERR
ITEMO1

MAXER1

LIBO1

FILENM
RECFMT

TPLLBL

RECSZ

VOLNAM

DEVTYP

MINER1

MINER2
MODUL1

MODUL2

NUMERR
PARERR
PICERL

ONMERR

ERROR MESSAGE

Missing right parenthesis after field-
type in field/interim

'<' sign is not succeeded by an integer
Name missing or illegal in item list

Missing/invalid max. no. of occurrences
of item

Badly formed line or column number for
statement

Left paren missing in library call

Missing/invalid file name after keyword
FILE

FORMAT missing/misspelled after RECORD
in storage stmt.

Inyalid/missing tape label

Keyword REZCORDSIZE missing/misspelled
after MAX

Missing/invalid volume name
(external or internal)

Invalid/missing device type

Number of occurrences of item missing
or illegal

Colon or right paren missing
Colon missing after keyword MODULE

Name miséing or illegal in MODULE
statement

Error in assembly of a number constant
Tape spec parameter missing or illegal
An error in a picture specification

Qualified name illegal
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Table 5
%
ERROR MESSAGE STACKING RQQTINES (continued) 5
NAME CODE ERROR MESSAGE
RCFER1 RECFO1 Record format missing or illegal
RCFER2 RECFO02 BLOCKSIZE keyword missing in record
format specification
RECFO03 Blocksize value missing or illegal
in record format spec.
RCFER3 RECF04 Record size value missing or illegal
in record format spec
RPTERR RPTO1 . Left paren missing in REPORT
statement
RPTO2 Keyword REPORT_ENTRY missing
RPTO3 Report entry name missing
RPTO4 " Right paren missing in REPORT statement
RPTNER RPTNO1 Left paren missing in REPORT_ENTRY
statement
RPTNO2 Right paren missing in REPORT_ENTRY
statement
SEMI . SEMI Semi-colon missing at end of state-
ment
SRCFL1 SRCFL1 Colon missing after keyword SOURCE
FILES
SRCFL2 SRCFL2 Name missing or illegal in source
file list
SVMNFLN LNGER1 Specified length is inappropriate for

specified length is inappropriate
for specified type of data element
(0 or too 1long)

SVMXFLN LNGER2 Specified maximum length is inappro-

' priate for the described data type,
or is smaller than the minimum
length specified.

SVPICST PICER2 ' Length of picture specification is
too small or too big (< 31)

PICER3 . Bad structure of picture string
specification
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Tablv- 5 )
ERRO.. MESSAGE STACKI NG ROUTINES _(continued)

NANE QoE ERROR VESSAGE
Pl CER4 II'legal character in picture specifi-
cation
SVSCALE PRECR1 The fraction point offset'is out si de

of the bounds -128 <p <127 or
_inappropriate for the data type

descri bed
TAPCRR TAPEO1 Left paren m ssing in TAPE st atenent
TAPEQO2 Ri ght paren missing in TAPE st at enent
TARFL1 TARFL1 Colon mssing after keyword TARGET
TARFL2 TARFL2 N?netnissing or illegal in TARGET file
is
THENCE THENCE ~ M ssing keymord ELSE in conditional
expression.
TLABERB TLABO1 : Keyword | NTANAME missing in tape |abe
descri ption
TLABO2 Internal name mssing or illegal in
tape |abel description
TRVERR TRVERL Left paren missing in TERM description
TRMER2 Right paren mssing in TERM description
UNRECS Ui CS Unr ecogni zabl e st atenment
VOLERR 'VOLERL VOLA"NAME keyword m ssi ng
VOLER2 Vol ume nane missing or illega
V\RBE1 V\RBE1 | Badly formed bool ean expression
VRBT1 V\RB | Badly fornmed boolean term
VRCON1 MRCQNl BadTy formed concatenation of expressions
VRFAC1 VRFAC1 Badly formed factor
V\RPRI ML WRPRIM Badly forned prinary

VRTERML VRTERM Badly formed term
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storage of the MODEL statements.
The encoding and saving routine are listed in Table 6.

2.2.5 Statement Storage Routines

These routines collect the strings of names and other vital
information in th; MODEL statements, and pass them to the STORE
system, which is a sub-system in itself to store the statements
for later processing. Such storage-invoking routines are called
at the énd of scanning each MODEL statement, and are the ones
that begin with the letters "ST". (e.g. STFLD, STREC, etc.).
The storage subsystem described below (STORE), which is called
by these routines, stores the MODEL statements in a simuiated
associative memory that facilitates later retrieval.

On analyzing the assertions (computational statements) a
syntax or derivatiOn tree which represenég the assertion is

R
generated and stored. This representation facilitates 1a£ir
analysis and scanning of the assertion, as well as systemitic
transformations; The tree representation is reccnverted into
text form in the code generation phase.

At the end of the syntax pass, we have the entire set of
MODEL statements stored in a convenient storage system for further
analysis. The storing subroutines which invoke fhe use of the
STORE system act as an interface between t e automatically generated
SAP and the storage systeq presented below. The storage system

is an extension to the capabilities of the SAPG since it is

general purpose in nature and is independent of the nature of
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ENCODING/SAVING ROUTINES

NAME

DECLEVL
INCLEVL

I N TNUM

SETDEVB
SETDEVC -

SETDEVP
SETDEV1

SETDEWU
SETFUFC

SETNHL

- SETS! >N
SETSUBV
SETVAR
STALL
STBI T

STOEV

STFUN

STNUM

WHAT | T DCES

Decrenments the Index |evel of a subscripted variable

(It is an entry in ASSINIT)

Increnents the Index |evel of a subscripted
variable (It is an entry in ASSIN T)

Initialize scanning a nuneric constant

Set device flag in nedia descripfion fo inmply disk
st orage

Set device flag in nmedia description to inply that
input is from cards

- Set device flag in nmedia description to inply PRI NTER

Set device flag in ned,ia description to inply a termna

Set device flag in nmedia description to inply a card
punch _

Initiate a node in the syntax tree to store a function
ref erence

Set for assenbling a constant nunber

Initiate a node in the syntax tree to store a string
const ant

Initiate a node in the syntax tree to store a subscri pted
vari abl e

Initiate a node in the syntax tree to store a variable
name

Stores a node in the syntax tree after all its conponents
have been defi ned

Se's the current string contained in the tenporary node
tfcfbe a bit string

Store devices Tape or disk

Stores a node in the syntax tree which contains a functi on
nane

Concl udes the assenbly of a constant nunber
(possibly floating point)
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ENCODING/SAVING ROUTINES (continued)

NAME

STPIC
STR_CON
STRHS

SVAAS1
SVASAEl
SVASNM
SVASSR
SVBEXP
SVBF1
SVBLK
SVBT1
svcc

SVCMP1

SVCOL
SVCON
SVCOND
SVDDNM
SVDEN
SVDEN2
SVDSK

SVDEV

SVEACH

WHAT IT DOES

Concludes the storing of a picture type specifi
cation

Stores a node in the syntax tree which contains a
general constant

Stores on assertion in the associative memory (an
Entry point in ASSINIT)

Sets a node to contain a conditional assertion

Sets to define a node containing a simple assertion
Saves assertion name in assertion storage entry e
Same as SVASAEL

Sets a node for storing a boolean expression

Sets a node for storing a boolean factor

Saves blocksize in disk/tape storage entry

Sets a node for storing a boolean term.

Encoies charactei code

Save in a node the recently scanned syntactical
unit as the first descendent

Saves column number in field storage entry

Sets a node for storing a ‘concatenation of expressions
Sets a node for storing a conditionél expression |
Saves data description statement name

Saves density in tape storage entry

Save density for tape, or giving warning

Encodes disk statement type as disk

Set device name to storage name, and save device:
Tape or Disk.

Saves FOREACH name in assertion storage entry




Table 6

38 -

ENCODI NG/ SAVI NG _ROUTINES  (cont i nued)

NAVE,
SVPAC
SVFCN
SVFDTP
SVPDTP2
SVFI LE
SVFLD
SVFLNM

L " XNCR
SVI NNM
SVI NTNM
SVI NTN
SVKEY
SVLAB

SVLAB2
SVLBNM
SVLI NE
SVMEN

SVIWNFLN
SVIMNOC

SVHOD
SVMXFLN
SVMXCG

VHAT 1T DOES

Sets a node for storing a factor
Saves function nane in assertion storage entry
Encodes field type
Save field type, including NUM & DEC
Encodes ffle statenent. type as FILE
Encodes field statenent type as FLD
Save file nanme. Call SVFILE, Set default
names for record a storage, and reset device
bit (DEVBIT).
Saves increnment in-disk storage entry
Encodes |INTERI M statenent type as |INIR
Saves internal |abel nane in disk storage entry
Saves internal |abel nanme in tape storage entry
Saves key field in file storage entry
Encodes |abel type in tape statenent
O«none, 1*1BM STD, 2«ANSJ_STD, 3=BYPASS
Save | abel for tape, or give warning
Saves library name in file storage entry
Saves line nunber in field storage entry
Saves nenber nanme in record/ group storage entry
Saves mninmum field Iength in FIELD statenent

Saves m ni mum nunber of occurrences in record
or group storage entry

Marks the nmode as FI XED or FLOATI NG

~Saves nmaximum field length in FIELD statenent

Saves maxi mum nunber of occurrences in record
or group storage entry
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ENCODING/SAVING ROUTINES (continued)

NAME

SVNUMTP

SVNXCMP

SVNXOP

SVOP1

SVORG

SVORG2
SVPAR
SVPAR2
SVPIC
SVPRIM
SVPICST
SVQTY2
SvQoTY

SVRCNM

SVRCSZ

SVRECF

SVRENM

SVRLSE

SVRPT

SVSCALE

WHAT IT DOES

Marks the data type as a numeric data type
(BINARY or DECIMAL).

Saves the next assembled syntactical unit in a
syntax node which is its ancestor.

Saves the next delimiter associated with the
assembled syntactical unit or sepairating it
from its successor

Saves an initial delimiter associated with phrase
such as unary 1_1 or 'IF'

Encodes organization type in DISK statement
S=sequential; I=ISaM;

Saves organization for disk, or give warning
Saves parity in tape statement

Saves purity for tape, or give warning
Denote the data as 'picture'

Sets for assembling a phrase for a PRIMARY
Saves the picture specification string

Save quantity for disk, or give warning
Saves track quantity in disk storage entry

Saves record name in file description storage
entry :

Saves record size in tape/disk storage entry

Encodes record format on tape/disk storage entry;
0=FIXED, 1l=FIXED BLOCK, 2=VARIABLE

Saves report entry name in report storage entry

Encodes space release indicator in disk storage
entry l=release; O=no release;

Encodes report’ statement type as REPT storage
entry

Saves the scale factor specified in the precision
specification of the data type
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ENCODING/SAVING ROUTINES (continued)

NAME

SVSR

SVSRC

SVSTARF

SVSTFL
SVSTFL2
SVSTNM

SVSTRNG

SVTAB
SVTAPE
SVTAR
SVTERM
SVTERM

SVTG

SVTGSR

SVTMUN
SVTRK
SVTRK2

SVTRMNM

WHAT IT DOES

Saves source name to assertion in ASSR storage
entry

Saves source file name in source storage entry

Records and saves the repetition specification
*(*)'" in a file statement.

Saves start file in TAPE storage entry

Save start file# for tape, or give warning

Saves storage name in FILE storage entry
Transfer an assembled string constant (may be
character or bit) from the general buffer into
a special temporary storage. The final storage
of the node will be done by STR_CON.

Sets tabulated indicator in group storage entry

Encodes tape statement type as TAPE

Saves target file name in target storage entry
Initialize a node to store a phrase for a TERM

Encodes terminal statement type as TERM

Saves target name to assertion in ASTG storage
entry

At the end of scanning of an assertion two
additional storage entries are made One for
the list of source variables used in the
assertion (type ASSR) and one for the list of
target variables defined by the assertion
(type ASTG). SVTGSR calls for routines SVSR
and SVTG respectively to perform these storage
operations.

Saves tape unit number of tape storage entry
Saves number of tracks in TAPE statement
Save #Tracks for tape, or give warning

Saves terminal name
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ENCODING/SAVING ROUTINES (continued)

NAME
SVUCYL
SVUNIT
SVUNITS
SVUNIT2

SVVOL

WHAT IT DOES

Save units as CYL for disk, or give warning
Encodes disﬁ units in DISK storage entry
Saves space units in DISK storage entry
Save unit for disk, or give warning‘

Saves volume name in disk/tape storz e entry
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the language specified, and could be used for processing other
languages.
The storing routines ‘are listed in Table 7.

2.2.6 Housekeeping Routines

Finally, there are just a few "housekeeping" type sub-
routines which need not be written by the language definer
because they are provided by the SAPG, but which need to be
included in Ehe EBNF/WSC.

The house eping routines are listed in Table 8.

2.2.7 An Inf To Sap untines

The sub utine -ames used in the specification of MODEL can
be classifi :‘intqfon of the following five types of subroutines:
error messa 2 sﬁacking routines, encoding/saving routines, storing
routines, semantics checking routines, and housekeeping routines.
Tables 5-8 provide an alphabetical listing of the routines within
each category. 'In the case of error message routines, the error
codes and ﬁheir meanings are shown. For the other types of

routines, their name and tasks are shown.

2,3 The String Storage and Retrieval Sub-System

2.3.1 Introduction

The store routines that are referred té in the EBNF
description of MODEL, utilize a general-purpose mechanism for
storing source language strings. A similar mechanism isrused
later for retrieving these source language strings. The following
system, basically, consists of a directory structure, described
in section 2.3.2 and the format of.storage entries described in

Section 2.3.3, There are also two main procedures:
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Table 7
STORI NG ROUTI NES

(inserted at the end of each .type of statenment of the EBNF/ W5C
in order to call STORE to put the statement in the associative
menory)

NAVE STMI WHAT PT STORES

STCARD Stores CARD statenent
STDISK  Stores DI SK statenent

STFI LE Stores FILE statenent
STFLD  Stores FIELD statement
STGRP Stores GROUP statenent
STMOD Stores MODULE statenent 7
STPNCH  Stores PUNCH statement

Ta
STPRNT Stores PRI NTER statenen ;-
STREC Stores RECORD st at enent

STRPT Stores REPORT st at enent
STRPTN Stor és REPORT- ENTRY st at enent

STSRC Stores SOURCE FILES statenent
STSUB Stores SUBSCRI PT st at enent
STTAPE  Stores TAPE statenent

STTAR Stores TARGET files statenent
STTERM Stores TERM st at enent




Table 8

"HOUSEKEEPING' ROUTINES

(inserted in the BBNFWSC in order to perform services provided by the

SAPG)
NaE WAT | T DCES
ADLEX : Adds a subpart of a floating point constant to its.
full representation
CLRERRF Qears "errors". flag every statement to indicate
no syntax errors yet in next statenent
ENDI NP Executed upon end-of-file to print last line and wap-up
FREETMP Frees &?Ioc’\'.ri_ on of a tenporary data structure which
| was nef ‘ler -1y allocated
NEGATE ‘Negat es‘ th r*w";ll ue of a negative integer constant
to deri e i i, correct representation
STMIJFL Scans for e?+ of statement delineters when Qnrecogni zabl e
statement encountered

STMTT NC | ncrenents .'he statenent nunber; called at end of each

st at emrent
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(1) STORE for storing source |anguage strings collected during
syntax analysis. STORE is described in Section 2.3.4.
(2) RETRI EVE for accessing previously stored source |anguage
strings, based on a variety o% "keys". RETRIEVE is described in
Section 2.3.5.

Additionally a set of routines specified in EBNP parses and
stores the assertions. Section 2.3.6 describes the format of
stored assertions,Section 2.3.7 describes the routines that store
the parsed assertions. These routines have also been referred to
in the description of saving and encoding routines in Section 2.2.5.

The STORE procedure accebts strings which are forned by

the subroutines called during syntax analysis. It stores the
strings in nmenory which we call "storage entries" while building
"directory entries" in a directory of certain nanes designated

as keys. By building a directory, the strings are stored

"associatively" in the sense that statenents can later be retrieved

based on their content. This capability is crucial to a
"non-procedural” |anguage processor since the statements can be
input in any order.

2,3.2 The Directory and Storage Structure

. The storage entries (the strings to be stored) consist of
two parts:

(1) the key names to be entered in the directory which include
the nanes the user provided in the MODEL statenents for nam ng
data, assertions, etc. These are the nanes by whi ch we may

want to retrieve information Tater
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(2) auxiliary data from the source language strings including
the encoded information in table form. This information is not
used as the basis of retrievals.

Each storage entry will contain information from a given
MODEL statement. They will appear in memory in the order in
which they are processed.

The directory consists of an entry for each key name. ﬁach
directory entry points to the first storage entry containing that
key name. A linked-list is then maintained from the first
storage entry with that key name to other storage entries con-

taining the same key name. A "branch and bound" binary tree

structure was chosen for the directory itself to make tree
modifications and searching for key names efficient. That is

the first key name entered in the directory becomes the root

of the directory tree; the next key is entered "above" or "below"

it in the tree by lexicographic order; etc.

Each directory entry has the following form:

Key name Ptr-to-first Up=-pointer Dowrni-pointer

where

"Keyname" is a string of (up to) 10 characters (padded with blanks)

rPtr-to-first" is a pointer to the first storage entry containing
the "key name".

*Up-pointer”and "Down-pointer" are pointers to other directory

entries, whose key names are up or down, respectively, in the

lexicographic sense.
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Each storage entry has the following form:

D D A - WP D P D G D Gy W, N D R D R R G N GD WD S D WS S WD D CH WD TP WD WD D GD WD TS Gy CO R LG G S AN G WS W WS WS wi wWe T w an

N namel ptrl . o e Name n Ptr~n Ptr ‘-to~-data

other data

where

N is the number of key names in the storage entry string.
Name (i=1 to n) is a key»nahe of a

variable.

Ptr (i=1 to n) is a pointer to the next storage entry with the

same key name,

Ptr—-to-data is a pointer to auxiliary data from the source

language statement.

Figure 7 depicts an example of three storage entries and
a directory consisting of only three entries, X,Y¥, and 2, where
Y is the directory tree apex. Such a structure was partially
motivated by similar ideas in the "multi-1list" file organization.

2.3.3 Storage Entries Format and Tables For MODEL Statements

The STORE mechanism, described in the next section, is
called by SAP's storing subroutines to store the MODEL statements
for retrieval (by RETRIEVE) in .the later phases., For each type

of MODEL statement, the key names in it are stored in its storage
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entry. The non-key information in the MODEL statement
(information which is not used to specify retrievals) is kept

in Qescription tables, which are connected (by STORE) to the
corresponding storage entries as was shown above. T;ble 9
summarizes the internal format of the storage entries and the
corresponding description tables for each type of MODEL state-
ment. The left name in each entry is the name of the statement
being stored. The middle column shows the information appearing
in the corresponding storage entry (with the pointers omitted due
to lack of space). The right column shows the additional
encoded information, if any, from the statement. The key names
beginning with a dollar sign ($) in the storage entries are not
user-provided, but are inserted by the systeﬁ for its own
information. The last name in each storage entry, for example,
identifies the type of statement, while the name beginning with
a "$P" identifies the parent file in which a data item appears.

2.3.4 The STORE Procedure

The STORE(S,D) Procedure has two parameters, S and D. S is
the string containing the key names which are to be'stored and to
be entered in the directory. D is a pointer to previously built
auxiliary data from the source string. The latter usually is
an encoded form of non-key source language information.

Algorithm STORE shows the storing procedure. Section 2.3,2
already depicted the data structures that STORE creates.

STORE receives the key names from S and creates a storage
entry for it (Steps 1-3). It chegks if they are in the directory

(Steps 4-5, subroutine SEARCH_DIR). If the key is in the




Tabl e 9 Storage Entries Format for MODEL
MODEL St at enent__Schenma Storage Entry Key_ Nanes

AuxHi | ary Descriptions

'MODULEI module-name modul e- name  $MODOLB

SOURCE FILIiS sx, 32t....s, $OURCE si s, s g

TARGET FILES ti# t,i tm  STARGET tj, t, ees ty

filename IS FILE( "ROUP j. "filename r a k S$FILE.
STORAGE IS 3. RECORD '* w2 '

KEY 1S k, ORG IS O)

record-nane |S RECORD record-name mg My see By
(M mpoeeeomy) o $Pfile S$RECD -

group-nane | S GROUP
file

Type Stmt¥.

MODL
SRCF
TARP
FILE

(§1 17 ’>

My sMapeeaiRy) | | grou$pp-name *Jt 12 sas my GRP

n

n

n
n

ORQ-Cade Key-flag
0-SAM " 0 no sort
]- 1SAM! key

u v
#membe's members

’\subscriBts .

first su
second sub.

(same as record)

|s-star’

0-no repet.
for r

i~80rt key Img I’epeatl



MODEL St at enent . Schena

Storage Entry Key Namea

Auxt! || ary Descriptions

field IS FIELD (fieldtype
(mnlength nmax| engt h)

SQURCE: S|fS§,o...sn
TAREI- t.pt2|oa¢,m

Typo

SImiff..

fieldname $Pflle $FLD ., FLD

assertion-nane a® Sy, *. a,.$ASSERT ASSR n
asserti on- nane thfipn». . t "SASSERT ASTG n

asserti on- narre: -assertion-name 5ASSERT ASTX n
subscript-name 1S SB[%RJi;PSI[(-range)] subscript name $$SUB $SUB n
. storage-nai*e 1S ' | B
CARD . st orage- name  $CARO . CcARD N
TAPE (...) - $TAPE TAPE n
TERV (...) $TEKM TERM n
PUNCH (...) $PNCH PNCH n
PRNTER (...) $PRVI PKNT n

fieldtype length type
O-char =~ O«fixed
| *binary invariable
2«nuneric
3=deci nal
Abi nary
floating
5-bit
6x=docinial
floating
T«pi cture

t f names conponent s
t f nanes conponent s
Pointer to syntax tree

range

tape-attributes
disk-attributes
termattributes
punch-attri but es

print-attributes

Table'9 (conti nued) St.orage Entries Format for MODEL

m n/ max
scal e factor
pi cture string

(if type -7)

Ic<
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Algorithm STOPEL : The Store Procedure

Parameters: S=string of keys to be stored;
P=pointer to other data

(sce Section 2.3.2 foé diagrams of Data Structures)
[Subroutines called: CHECK _DIR, CEMEPATE_ENTRY]
Step 1. Count #KCYS. |

Step 2. Allocate the storage entry for S (call it SE, accerding to the
format showm). :

Step 3. Connect PTP_TO _DATA in SE to D.
Step 4. For each key name, perform steps 5 through ll.
Step 5. If key exists in the directory (Algorithn CHECK-DIP ), then go

to step 7; else go to step 6.

Step 6. Crecate a directory entry for this Eey.'(AlaOtichw GENEPATE=-
ENTRY ) . . _

Step 7. Let DL=this directory entry.

Step 8. If PTR_TO_FIFST in DT already points to a first storage entry
with this key name, then go to step 9; else o to step 1ll.

Step 9. Get the next storage entry in the list.

Step 10, If it 4is the last ia list, then go to step 11; else go to
step 2. : . . i

Step 11. Add che new SE to the list.

Step 12. Rc turn.
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directory, then it follows the "pointer-to-fir;t" which points

to the first storage entry with that name (Steps 7-8). ‘The

array of strings in each storage entry is scanned until the key
name is found. If its "next" pointer is null (end-of-list), then
it is set to point to the newly created storage entry (Steps 8-11).
If it is not, the process is repeated until a null (end-of-1list)
pointer is found (Steps 9-10). If the current key name is not
found in the directory, it is entered in the appropriate spot

in the lexicographical position in the directory (Step 6, sub-
routine CREATE_DIR ) and the pointer in the directory is set

to point to the newly created first storage entry (Steps 7-8).

2.3.5 The RETRIEVE Procedure

RETRIEVE(E,D,S,N,P) is the procedure for retrieving desired
storage entries, by searching through the data structures depicted
in Figure 7 and Table 4. It is invoked by many routines described
in subsequent phases of the Prodessor. It has five input para-
meters as indicéted. RETRIEVE finds all the storage entries in
which the given key name or expression of key names, E, appears
and furthermore checks whether the first characters of data
associated with the storage entries match the string D. That is,
RETRIEVE finds all the storage entries with keys satisfying the
logical expression E and other data D. RETRIEVE starts its
search at directory entry S, normally the root node of the
directory, and it returns a list of pointers P, to those storage
entries which satisfy the request by the calling program. The
number of storage entries satisfying the request is returned in N,

The logical expression  used to retrieve strings can be any

‘boolean expression involving "key" names or names in the MODEL
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statements in disjunctive normal form, where the first key
in each term is non-negated. For example, consider the
following statement by a calling program:

CALL RETRIEVE(KEYS, '',START, N,P);

KEYS might contain the string value 'PRICE &-i@UANTITY!EXTEN?'.
This makes RETRIEVE find all storage entries (which correspond
to all statements in the MODEL specification) in which PRICE
appears and QUANTITY does not appear, or statements in which
EXTENT appears. The null second parameter means that the
auxiliary data portion of each statement is immaterial.
RETRIEVE would then start its search and return a list of
pointers in P to those storage entries which satisfy the
condition, and N would be set to the number of such statements
that satisfy the condition.

Algorithm RETRIEVE is shown‘on the following page. An
example showing the retrieval mechanism to retrieve all storage
entries with key names "B" and "C" is giQen in Figure g, The
diagram shows in parentheses the steps that correspond in the
algorithm. RETRIEVE starts by getting the ieading key name
of the first conjunct (Step 1) and searches the directory for
it (Step 2). 1If found, it pués the list of pointers to all
storage entries with that name in a temporary list (Steps 3-7).
If there are other names in the conjunct (Steps 10,14),
then RETRIEVE eliminates the pointers in the temporary list

to storage entries that do not have the other terms in the
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Algorithm RCTRIRVE : The Retricve Procedure

Paraneters: [L=logical expression string; S=pointer
to beginning of directory (input);

P=list of pointers satisfying F; N=nunmber of
satisfyine entries

(sce Figure 7a for diagrams of data
structures)

Step l. Get lcading key name ¥ of next conjunct from E. If

no nore, go to Step 22,

Step 2. Check directory for K (standard binary tree search

in subroutine SEARCH-NIFP given earlier).

Step 3. If found, then go to step 4; else go to step l.

Step 4. Set PSE=PTR_TO_FIRST (pointer to first storage entry

victh R) _

Step 5. Add PSF to W list (temporary list of pointers)

Step 6. If K in PSE storamge entry points to another storage

entry with ¥, then po to step 7; else go to step 8.

Step 7. Set PSE to next storage entry in the list, go to
~ Step S. :

Step 8. If end of E, then pgo to step 20; else go to step 9.

Step 9. flet next synbel in F, '

Step 10. If symbol=’&" then gfo to step l4; else o to step

11,

Step ll. If synmbol="|" then go to step 12; else error

return. '

Step 12. Add l!ist of poilnters in U to list of pointers in P

without duplication.

Step 13. Ga to step 1.

Sten l4. Cet next symbol.

Step 15. If symbol="""

18. ) .

Step 16, (Case of conjoining nepated term) eliminate

pointers in U to storage entries which also contain next key

name in L.

Step 17. GCo to step 8.

Step 1R, (Case of conjoining non-negated term) eliminate

pointers in W to storage entries which do not contain next

key name in E. s

Step 19. Co to step 8. -

Step 20. Add list of pointers in W to list of pointers in P.

Step 21. Sct !'=niumber of pointers in P list.

Step 22. Teturn.

then po to step 16; clse go to step
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HAIN PRCGRAN
Call RETRIZVE

)
- § o3 &
/ wner2 2=°'3 £ 5

cmm—m ey

|
}
{

(2.2 1ty
W=aworking list of y 10 15
== teAgorary ’
U poinzers o seipm p=final
',‘ RETRIZVZ list of >
k ointe=a
y as (20) 9, = =
e — h=2
'dq (20) " —5-.-‘ -—-.—.....-n-—-s—-’?‘
(18, ’ b woen e am—
/ AS30CTATIVE MEVCRY:

Direc=ory:

Figure g Example of Retrieval Mechansim



conjunct (Steps 14-16). If there are more conjuncts in the
expression, then the process 1is repeated ana the additional
pointers are added to the list (Steps 12-13). When the end
of the expression is reached, the list of pointers to the
satisfying storage entries and the number of pointers are
returned (Steps 20-22).

2.3.6 Storage Structures For Assertion Statements

Analysis of an assertion statement causes three storage
entries to bé made for the statement. (See also Table 92).
The first entry is of type ASSR and contains a list of all the
names which are sources to the assertion. These are all the
names which appear on the right hand side of each equal sign,
(including subscript expressions) and within boolean condition
expressions. The second entry has the type ASTG and contains a
name which is the targets of the assertion, i.e. it's value
is defined by ;he assertion. Assertions will have only a single
target. The third entry, of type ASTX, contains in it's main
part just the assertion label (system generated.if not provided
by the user) and a keyword $ASSERT. 1Its auxiliary data contains
a pointer to the syntax tree which represents in 5 parsed form

the body of the assertion.

2.3.6.1 The Syntax Tree for an Assertion

The syntax tree of an assertion is constructed out of
mutually linked nodes. There are nodes of two types: Non
terminal nodes which have descendants and terminal nodes which
have no descendants and represent an atomic syntactical units
such as identifiers, numeric and string constants. Each node
corresponds to a phrase in the parsed assertion, and if it is

non terminal the list of its descendants represents the further
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breakup of this phrase.

2,3.6.2 The Structure of Non-Term nal Nodes

The structure of Non Term nal nodes is as follows;:

— — - — S e el — ———— e——— " an—— — e e RS Amas v

n= Poi nt er o Poi nt er
TYPE Nunber Delimt to Son, ‘ou Delimt to Son
wher e
"type is an integer code identifying the syntactical type of the

phrase according to the follow ng |egend:

0.- Conditional Assertion. Exanples |If A«B THEN C«p.
1 - Sinple Assertion Exanple: A«B
2 - Conditional Expression. Exanples |IF A > B THEN C ELSE 0.
5 - Bool ean Expression. Exanple: (A=B) | (C«D |
6 - Boolean Term Exanples (A >5) & C<« 3
7 * Bool ean Factor* Exanple: C* 7
8 - Concatenation. Exanple. AllJI'END
9 ~ Arithmetical Expression. Exanple: A*B+C'D
10 - Term Ex.: A*B
11 - Factor. Ex.: A**2
12 - Primary. Ex.: A/ B(l1+1), (At+B)
13 - Functi on Ex:  SUMA I)

14 - Subscripted Variable. Ex: A(FOR,EACH. A)

"Nunber of Sons" is the nunber of conponents or subphrases the

I ndi cated phrase is broken into. Thus if the phrase is "A+B" it is
of type 9 (Arithnetical Expression) and it is parsed further into
t he subphrases "A" and "B". The '+« delimiter will be stored as

delimter no, 2 in the current node.
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The delimters are encoded as integers according to the follow ng |egend:

1-*'(Bank -"No delimter)

2 - '"IF (keyword)
3 - 'THEN

4 - 'ELSE

5. ..

6- '+

7

8 - '* (Standing for multiplication)

9 - o

10 - '**e (Exponenti ati on)

11 - 1" (Alternation - Logi cal
12-.' &

13 - '||" (Concat enati on)
14 - '-»"  (Negation)
15 - ' ("

16 - ')

17 - V

18 -' ->>'

19 - >

20 - ' —H <

21 - ' <-o

22 - " -1»y

23 - » '

24 - T <

‘or')
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"Delimiter #i, i=1, ..n" are the delimiters separating the

subphrases. The first one is any delimiter prefixing the whole

phrase such as the '-' in the phrase =-A or the ' ' in the phrase
' (A <B & B <(C)°
"Pointer to Son #i, i=l,..n" these are pointers to other nodes )

which represent the subphrases into which the current phrase is
parsed.

2.3.6.3 The Structure of Terminal Nodes

Terminal nodes are used to store constants such as variable

names, string or numeric constants. Their structure is as follows:

— camr, . g —m a— - e c— D G D R S — 0 aw——n a— m—

Type Constant-Length ___gpquggt____

where

"Type" is an integer code identifying the type of the constant
according to the following legend:

20 - A character string constant. Ex.: ‘ABC'

21 - A function name. Ex.: SUM

22 - A numeric constant.Ex.: 3.14

23 - A variable name. Ex.: PAY

24 - A bit string constant. Ex. '1001'B

“Constant Length"™ is the length of the character string representing

the constant. It will be 3 for storing the variable name PAY.

"Constant" is the actual character string :epresenting the constant.
During later processing (Module ENEXDP), all the terminal

nodes which refer to non constants (types 21,23) are converted to

a different format; referred to as Variable Terminal Nodes:
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e i — — P

Type Node#

—_— e e e o,

! Type! As before is an integer code identifying the type of the

name according to the follow ng |egend:

25 - Vhriaple type. The associated nane is a variable and NODES
is the dictionary entry nunber of this variable.

26 - Subscript type. This stores the nane of a subscript. NODES
refers to. . a dictionary entry nunber. This dictionary entry
can be of one of the follow ng typeé:

!GRP+ or 'FLD', which nust be repeating. |If this entry
nane is X then the name of the subscript is FORI2ACH. X
'$SUB" - This is either a subscript declared by the user

or one of the systenlsupplfed'free subscripts SUBL.to SUB9
"$' - This is a free subscript added by the system It is
one of the subscripts $I.:to$9.

"$1" - This is a loop variable added by the system for |ack
of a user provided nane. In any of the latter three cases
the nane of the subscript is the nane of the entry.

27 - _Function Nanme. NCDE# is a running index in a list of
functions recognized by the system See £ ] for the list.

An an overall exanple consider the syntax tree for the assertion:
IF AB | c<D$E<=*F
THEN X(FOR EACH. X) » (Y + 2) *T|| '$ ;
ELSE X(FOR EACH.X) * '0' ;

It is described in Fig, 9, thh the nodification that delimters

are represented by thenselves rather then in their encoded form

to inprove readability.
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2.3.7 The Syntax Tree Construction Routines

— . ap—— & —

Several routines are responsible for the construction of the syntax
tree of an assertion. They may be classified and described as follows:

Setup Routines: On entering a parse for a phrase of a certain type (by SAP)

an appropriate setup routine is called. This routine allocates a temporary
node area (temporary since we do not know yet how many subphrases or components
it will have), assigns a type number corresponding to the type of the phrase
and resets a component count to 0. There is a setup routine corresponding
to each phrase's type. They are for the non terminal types (listed in
increasing type code order):

>SVAASI, SVASSR (SVASAEl) SVBEXP, SVBT1l, SVBF1,

SVCON, SVAE, SVTERM, SVFAC, SVPRIM, SETFUNC, SETSUBV.

For the terminal types (codes > 19), a string area is allocated and
a type variable is éssigned too. The terminal types setup routines are:
SETSTRN, STFUN, SETNUM, SETVAR. No setup routine exists for bit string
siﬁce the distinction between it and a character string can be made only at
the end of its scanning., |

Save Routines: These are common to all non terminal phrases. They alternately

store delimiters and pointers to components, increasing the "number of sons”
coﬁnter appropriately. These are all stored in the temporary node storage area.
SVOP1 - Stores a first delimiter. If this routine is not called the
first delimiter is always set to 1 (= '').
SVCMP1 - Stores a pointer to the first component.
SVNXOP - Stores the recently scanned delimiter in the next available
delimiter slqt. Then increment the 'number of sons" counter.
SVNXCMP - Stores a pointer to the recently assembled subphrase in the

next available component slot.
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Storing Routine§: These finalize the node s:ructﬁre, after scanning of the
phrase is complete. Since size of strings and number of sons are known by
this time, a permanent node space is allocated and the contents of the
temporary storage entry transferred there. The temporary storage area is
then freed.

STALL = This is the storing routine for all the non-terminal nodes. It
first checks to see if the assembled node is not trivial. It will be trivial
if it contains only one component and the first delimiter is blank. 1In this
case no permanent storage is made for this node. This check eliminates redundant
nodes in the syntax tree. If the node is not trivial, 'a permanent allocation
is made for it and the proper contents transferred these.

For the terminal nodes we have séparate storing routines .

STNUM ~ Stores a numeric constant

STFUN - Stores a function name

SVSTRNG ~ Transfers a string constant to the storage area before
calling on STE_CON.

STBIT - Stores a bit string

$TR_CON - A common routine for storing all constants. It

Allocates a oermanent node storage and transfers typme, length and string into it.
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2.4 Cross Reference and Attribute Report

A useful product of the Syntax and Statement Analysis
Phase is a cross-reference report, produced by a cross-reference
progfam (XREF) whose input is the encoded and stored MODEL
specification. The XREF report provides an alphabetical listing
of all the names provided by the user, and some of the reserved
special names (such.as CHOICE). For each name, the report
provides the statement number in which the entity was described,
the statement numbers of statements in which it is referenced,
and the attributes or other known characteristics regarding the
name.

For examplg, if field X is described in a given statement
and is used in various other MODEL statements, such as in
assertions, the cross-reference list would provide the original
statement number in which it is described, a list of all the
field's attributes as well as the names of the file or files
in which it is a member, and a list of statement numbers which
reference the given field name.

The cross-reference report is produced by the XREF module.
It produces the report by traversing_the directory and producing
each line by successive uses of RETRIEVE to get the corresponding
references. A bubble-sort is used to alphabetize the listing

(in a subroutine named ALPHDIR).
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3. Analysis of MODEL Specification

3.1 Introduction and Background

3.1.1 An Illustrative Example

In this phase the MODEL Processor analyses the MODEL specifi-
cation by use of directed graphs. This introductory sub-section
presents and exemplifies the background and terminology iﬁvclved
in this phase, and describes the tables, and other data structureé
that are built from a MODEL specification.

In order to exemplify the algorithms and data structures used,
a sample problem is presented below and described using the MODEL
language.

Section 3.2 provides an overview of the processes involved in
this phase, and Section 3.3 discusses them in greater detail.

The statements of a MODEL specification consist of a series
of descriptions of the following:

(1) files, which are designated as source files, target files,

(or both). The description of each file may include the
physical storage medium.

(2) components of each file; i.e. records, groups, fields,

as well as assertions for defining data-dependent para-
meters.

3) assertions giving logical 'and arithmetic relationships

that define the various target and interim fields.

A small sample set of MODEL statements is provided in for

discussion purposes. This example is used here and in subseqguent
sections as a vehicle for explaining the various algorithms.
The specification of the example is shown in Figure 10(a).

Statements added by the system are shown'in Figure 10(b) .,




/tatiiwitiittiabvﬁiil*ttt*axittitq AXARRXRF IR AP NRAN IR K2R NAR A RN R R R A R RNk ]

I~ S g
/* ALGTALL e fbLULT SFECIFICATION A/
YR} ' ./

/tlttttttthitttttinititi-titkttiwﬁ'i!ttﬁtii:’it*tﬁtﬁﬁiattiaﬁ'*itutt*xtn/

PUbLle: MINUALE,
SUURCL: YRA, [ihVin,
TAFGET: SLIP, INVEN,;

[V S8 'Y

J 3 AR XX AR AR A AR N AR AR A AT ATTN AR RN AR P TR AN RN PR S AR RAIR PR PR ak kP ARR A A h W = [/

A x/
1> FILE DESCHRIPTICONS: =/
/* - x/

/kii*it***iQt*iitiiﬁ*ii*t*itttlf*t:twit#t*t*iiitttat*ilti*ii'it*t**’*it/

l‘]*ti**i!t*ttii-‘i(a*‘tiiiiii‘it*ti‘it*ii?*atiit*ﬁ*iiitti‘*iit't*i**ti/

/% */
/* DeSCRIPTICH CF TFAN FILE =/
/* */

/tl‘tittttii**tiii**li*i*f*t**titt-*'i*l*ii*:*i*tQ*titt*lillti*ttitt!i!/

FiLE Trat

&

& RECORD SALLREC(*)

¢ STUKAGE SALLDECK

4 LEVICE CAFD

[ FCWIAT F1YZD

4 ctCCKeIZT 2202

3 XTLORDST LS Loy

S SALEREC 1 FzCuexl (CUST ,STCCY ,QUAMTITY);
¢ CUET . IS FLELODC(CHAR(Y));

7 STLCKT 1S FIELD(CHAR(T));

b3 QUANTITY IS FIELD(ChARK(Z)),;

] ¥R AR IR IR A AT R ARSI RAR AR R A AN T IARFARARAA AT R A XA RN AT ARSI X AP I TEAEETERERER R FEEY,

/* =/
/* DESCRIPTIUN CF INWEN FILE */
/* */

Iitif‘tt**tit*lit*ti*it‘itﬁiﬁii‘It*il*tttt*iiiii*iittftiﬂit***ii**iiﬁii/

7 File INVEN

9 RECORD INVREC

9 STORAGE IMVOLISK

9 KFY STCOCKX"

¢ GRo [SAM™

g LEVICE S1¢k

9 FORMAT 1S VARIAEBLE

9 eA olLOCKSIZE IS ¢:0uy

9 _  MAx RECOROSIZE IS 17,

1¢ INVReC IS wFCORDCSTGCK "9ySALPRICESGCH)
11 STLCKY 1S FIELDCCHAF(?));

1¢ SALPRICE IS FIELD (NUMCZRIC(S));
12

GOH IS FISLOD(NUMERIC(S));

rigurc 10(a) MODEL Specification of The MINSALE Example




/***_*** kkhkkhk kkhkkkkkkk k k * % *******@g************************* *k kkkkkkk kK k%K A/

/* */
[ * DESCRI PTI ON OF SLIP FI LE *|
[ * ' */
/************************* ************************ *********************/

U - FILE SLIP

U RECORD SLIP*EC<*>

U STORAGE S*LEDISK

14 DTvICF DISK

U F.CKPAT IS FIXED

1A bUCKSIZL IS Ji'Ct

U “rvACORDSIAT IS SC;

15 SLIPKEC 1S RCCCRD (CUST {STOCK-;{CHANGE);

u CUST IS H FLDCCH AH (5));

17 STOCK' IS FITLM(CHAR(4))

1? CHARUE IS FIcLD (Nu”6PIC(P)):

e e e e e e e e e e e ,

19 CHAMu? = QUANTITY * CL”.iUVEr«+*SALPRICE;

nO NF*.1*WEN «ttC-H = DLL . INWE s« ¢<*Oh - QUANTITY,;
« M POINT t% +OLi>. INVR £C « TftAN; STOCK *;

| * k Kk Kk kK k Kk Kk Kk k k Kk Kk Kk k Kk Kk Kk k Kk * ¥ * * Kk k Kk k Kk Kk k Kk k Kk Kk Kk Kk Kk * K ok ok koo Kk k Kk Kk Kk Kk Kk Kk o K Kk ¥ * [

’

Figure 10(a) Continued

SL I F . STOCK* =TRAN. STOCK *;

SLI P. CUST” =TRAN . CUST-;

NEs" « iINVK.N'. SALPR1 C£=0LD .iNVEue SALFRICE;

NEU; * INVF. N. STOCK™=OLD* INVEK.STQCK ’;
SYSGENI IS GROUP (WE'- «INVRcC (*));
$YSGE*\? IS GRCUPCOLD .INVREC (*) );
SYSGEf*" IS GROUP CPOINTEft.OLD «IK'VREC (*))";

el el N SN L BN TN

Figure 10(b)s Statements Added By The MODEL System



It is referred to as MINSALE. It describes a module whose input

is sale transac%ions (consisting of a customer number, stock

number, and quantity desired) and an inventory £file of items (con-
sisting of a stock number, price, and quantity on hand). The output
is a sale s{ip report (consisting of the customer number, stock
number, and charge) and the updated inventory file with the new

quantity on hand after the sale. The cross reference report is shown
in Figure 10(c¢c).
3.1.2 The Array .Graoh

The preparer of the .MODEL specification gives each entity in
his statements -- file, field, assertion, etc. =-- a symbolic name.
In this phase, each name is related by the Processor to other names

in one of several ways. Hierarchical relationships exist when one

data item contains another, such as when a file contains a record,

a record contains a field, etc. A pointing relationship exists when a

field of a record in one file is used to compute a key to a record.

A dependency relationship exists between a field and an assertion
when the field is a source variable of the assertion and between

an assertion and its target field.

All of these are precedence relationsh;ps, in that the former

in some sense must precede the latter and is said to be a predecessor

(also known as a precedent) of the latter, while the latter is a

successor (also known as a direct descendent or dependent) of the

former. The various types of precedence relationships that are

implicit or deduced from a MODEL specification are summarized
below. Each type of precedence relationship has a corresponding

predecessor ‘and successor types. The types of precedence relationships
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W |l have direct inplications on the program to be generated. For
exanple, a record nust be read before any of its conponent fields
can be used. A key to a record nust be available before the record
being pointed to can be accessed* A value of a field which is a
source (or input) to an assertion nust be avail able before invoking
the procedure enbodying the assertion, A field which is é t ar get

of an assertion is only defined after the procedure is call ed.
These and other requirenents of the program to be generated are

inplied by the precedence information conveyed in a directed graph

that is referred to in the following as an array graph

 An array graph is a pair <N, A>. a set,of nodes
N+ { N1,N2#.nt.,N¢ﬁ and a set of ordered pairs ("edges" or "arcs")
A = {AJ#AZ,.;.,Ap} where each Al is an ordered pair (N, Nk)
representing an edge fromnode N to node Nk. In other words, A
is arelation on Nx N Each node may have 0, 1, or nore edges
emanating fromit.

Each edge (N,Nk) fromnode N to node Nk is a nenber of 6ne
of a set of different types of relations and is |abeled by one of
the possible |abels.

An exanple of a labeled directed graph appears in Figure 11,
which corresponds to the exanple of Figure 10. Each node of
this graph representé the nane of one of the entities in the

MODEL statement, including files, records, groups, fields,
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assertions, etc. Each node has 0, 1, or more edges
emanating from it pointing to successor nodes; i.e. to nodes to
which it is precedent.

Generally, each MODEL statement of Figure 10 corresponds to

one node. The exceptions of the one-to-one correspondence are
the following: |

(1) Files that ére both input and output (such as INVEN in
the example) as well as their component records, groups,
and fields are described only once in MODEL, but become
two nodes in the digraph -- one for the "o0ld" or source
data and one for the "new" or target data.

(2) The list of source aﬁd target files in the header of the
MODEL specification do not correspond to any node
because the file statements themselves correspond
to the nodes for files.

(3) Qualified names prefixed by a key, such as POINTER,

SIZ2E names, etc., constitute interim data. They are not
described explicitly by the MODEL user, but are used in
context. However, in the array graph, such names do
correspond to nodes ﬁnd have successors, predecessors, etc.

3.1.3 Representation of Edges

Edges are tied to their source and target nodes by edge=~lists
associated with these nodes.

Each node has in its attribute list the following four

entries:




73

SUCC_LIST - A list of the edges emanating from the current
node. ,

#SUCCESSORS - The number of edges of the successors list.

PRED_LIST - A list of the edges coming into the current node.

$PREDECESSORS - The number of edges on the predecessor list.
An edge list has the following format:

PPAIR:

—_— PCDR ) _—

| PCAR W

PCDR - A pointer to the next list element.

PCAR - A pointer to an edge structure.

Consegquently when an edge is created it will be entered
into the successors-list of its source and into the predecessors-list
of its target. Similarly when an edge is deléted it will be deleted
from both these lists.

Every edge going from the node S to the Noée T has the uniform
format:

t

T(Uk,..Ul)*‘S(Jm,..J )

1
where is the tzbe of the edge, as described below.
k the dimensionality of T,

m the dimensionality of S,

each ‘subscript expression Ji’ 1 <i<mis in or one of the forms:
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az UE for some 1 £ A £ kK

b* W-1 for some 1 £ 1 £ k

C. LﬁZ~Cf°r some 1 £ A £ k and an integer constant ¢ > 1
d: E standfng for a general wunanal yzed expression.
Consequently in our representation of such edges we do not

to specify the left hand side which is obtainable from the

attributes of T. An edge will be conpletely specified by giving:

5 - The source of the edge®
T - The target of the edge]
t - The type of the edge

6 « k-m - The difference between the dinmensionality of the target
and the source.

jl,,,jn]- The list of subscript expressions for the source variables.

I ndeed, an edge is represented by a structure:

EDGE: SOURCE S
TARGET T
EDGE-TYPE : t
DIMDIF . 6
SUBX l: A pointer to the subscript
1

expression list.

The subscript expression list is conposed of elenents

of the following form
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EDGE-SUBL:

NXT - SUBL

LOCAL-SUB#

APR-MODE

NXT=-SUBL - A pointer to the next list element.

LOCAL-SUB# - For cases a,b,c this gives ¢,

i.e. the ordinal

number of the subscript as it appears in T(Uk"°U1)‘

APR_MODE - Distinguishes between the cases. It has the value

1,2,3,4 corresponding to cases, a,b,c,d above

respectively.

Note that in case ¢ we do not retain the constant ¢ > 1.
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3«l«4 Edges and their Types in the Array G aph

Type 1 H erarchical Source Edge:

1(0

Drawn between a node A in an input file and any of its

i medi ate descendants, By If Uis the local subscript list of
B, then we have the follow ng cases:
If Bis repeating then
B(UK' oo Ull = A(Up x, 02)

Qherwise B(Uc, +. U,) * A(Uyg, o u,)

Type 2, Hi erarchical Target Ed.qe:

Drawn between a node B in an output file or interim structure

2

and its inmediate ancestor A.
If B is repeating then
. A(Ukr oo U]-) + B(Uk' L. Ul’ E)

O herw se Aka; .- Ul) + B(Uf Ta# U}
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The local subscript list of o contains all the subscripts
which appear either on the lhs or rhs of a. Subscripts which
appear on the rhs only are considered to be reduced. For each

instance of B in ¢ we draw an edge:

)

a(Uk, .o Ul) « B(Jm, oo Jl

where m is the dimension of B.
The order of the subscript Ji is as stated in the assertion.
Each of the Ji can assume one of the following forms:
1) U, for some 1 £ j £ k

J
2) Uj-l for some 1 £ j < k
3) Uj-C‘for some 1 £ j < k and an integer constant C > O,
4) E .- standing for all other subscript expression forms.

The order of the subscripts Uy is discussed in connection with type 7.

Type 4. Not used

Type 5. Pointing Relationship Edge

For every record X which belongs to a keyed file (SAM or ISAM)

we draw an edge:
X(Ukr e e Ul) « PoINTER.x(Uk’ o‘a Ul) L]

Type 6. Not Used.

Type 7. Asse:tion to target‘Edge
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The local subscript list of o is arranged to have all the
lhs subscripts appearing in the order to the left of all the , !
reduced subscripts. Consequently we have an edge:
k’ o o Ul'E'E’ooE)o

The number of E's is the number of subscripts of source

variables of & which are reduced in . The order of Uj is as
stated in the target variable of a.

Type 8. Siebling Order Edge

" These edges are drawn between siebling data itemé.in an input/
output file provided they are:
l. Below the record level, or

2. Belong to a sequential file.

O

P !
N

.

The edge drawn is:
o o o +. LN E L]
B(Uk' Ul) A(Uk, Um' )
m=2 if B is repeating, and m=1 otherwise.
The number of E's is the number regquired to fill out the
complete dimension of B (could be only 0 or 1).

Type 9. ENDFILE Edge.

Let F be an input file and R the last record type specified for
the file (the rightmost or youngest siebling record node in the
tree). Then the following edge is drawn:

ENDFILE.F(Uk,..Ul) * R(Uk,..Ul).
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This edge is drawn only if the user has explicitly nmentioned
ENDFILE.F in an assertion. Note that the user does not specify
the dinensionality of the ENDFILE. F variable. The dinensionality
of ENDFILE.F is the sane as that of R This is used in the nodule
DlNPROﬁ to automatically assign the correct dinensionality to

ENDFI LE. F.

- Type 10. Virtual -Subscript”Data _ To Assertion Edge,

These edges connect assertions, which refer to a virtua
subscript,to their source and target variables that use a virtua
subscript. These connections conbine with type 7 .edges to make
the assertion and its target participate in the same strongly
connected conponent. In the SCHEDULE procedure this will ensure
a continuous iteration | oop for the nodes that use virtual
subscri pts. |

Feedback from target variable node to the assertion node:

Al

10 /7

Let the type 7 edge bes
' 7

N(U..*D r.-U) +2(A,*x oo U« OLEr. . E)
where u' is a virtual subscript, mis the dinensionality of a
and 5 * mk is the nunber of Es and the nunber of reduced subscripts

W draw a feedback type 10 edge fronlN.to as
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10 -
AU U e U © Mg T gt Ugy)

».

This edge ensures that we do not activate a for Um"'Uv+5’ until

N(Um,--Uv+6‘1 *, .. *) is completely utilized.

’

Type 1ll. virtual Subscript Edge - From Source Field Descendent

to its Predecessor.

Let A be a repeating node in an input structure, such that

the repetition is virtual. Let B be its descendant which

is a field.

Then we draw an edge:

AU, ..U ) B(U_, .. Uz,Ul'l E, .. E)

The number of E's is the number required to fill up the
correct number of subscripts of B.

The meaning of this edge is that since U_ is a virtual
repetition we can have only one instance of the structure with
the predecessor A in memory. Consequently this edge ensﬁres
that we do not process A for the subséripts Ugr -+ U; until we
have utilized all the components cf the structure for the

subscrints Uk"’Uz'U -1, namely; the previous -instance of the

1

structure.



81

Type 12. Virtual Subscript Edge - From Target or Interim

Precedecessor to its Field Descendant.

Let A be a repeating node in a target or interim structure,

and let B be its leftmost descendant which is a field.

(*)
We draw the type 12 edge:

B(U, ,..U_, U 1/ oU ) AU, .. U, U=1)

where k-m+1l is the dimensionality of A. The rationale is

again avoiding processing the next instance of A until the previous
instance is completely defined. Since in output and interim
structures the processing of a structure begins with its left-
most field descendant and terminates in its head we made the
beginning depend on the end for the previous subscripts value.

Type 13. SIZE edge.

This edge is drawn between the variable SIZE.X (if
explicitly mentioned by the use?) and the variable X. It
has the form

x(Uk,..ul) « SIZE.X(Uk,..UZ). .
A 'SIZE' array always has one dimension less than the array it
refers to. This is used by the system to assign the proper

dimensionality to the structure SIZE.X.
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Type 14 EBEND Edge

This edge has the form:

XU, ,.. U)<END.X(U, , ..U, ~Ur?"

Jv X Jv n A
The truth value of END. X(U, ,.. U, U-.l)_ determ nes whet her
X(Uk,-. .UJ._) is within range.

Type 15 FOUND_ Edge

Let R be an input keyed record, then we have the edge.

FOUND. R(U,, . .1K)«-RU., . . U, )
XL J. JC X

The reason for this edge is that 'FOUND' is defined

only after the record was read.

Type—T16 NEXTEdge

Let X be a field in an input file, then we have
t he edge

NEXT. X(U,", . . U )«XU , . .U)

K X K X

This reflects the fact that NEXT.X is read and defined

only after X is read.

Type 17 SUBSET EJQE - Target
If Ris a target record we have the edge

R( Uyg. . U, ) ~-SUBSET. R( Uy, . . U.)
v X Jc X

This edge ensures that the SUBSET condition is

eval uated before the witing of the record.

Dg_‘_g__a_Ed:f(_
Subscri pt-From Assertion To Its_ Source
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For every type 3 edge from a node to an assertion
of the form

J.)

a(Um,..Uz,,.Ul)+N(Jk,..Jv,.. 1

where m is the dimensionality of &, k the dimensionality
of N, Jv denotes a virtual subscript of N and Uy is the
corresponding virtual subscript in a.

J, has to be of the form U, or Uil for some 1 <&<m. Ug
may also be reduced in a. The order.of the subscripts of a
is determined by the order of the subscripts in the target
variable of a, plus any reduced subscripts.

We draw the type 18 edge:

N(J J Io-oJl) e a(Um'..UZO‘.’GUl)

k’ooo v
where each Ui 1 £ 1 £ mis may be equal to one of the subscripts
of N or to & subscript in another source variable in o.

However if i = & then Ui = Jv-L.

Type 19. SCBSET Edge - Input

If R is an input record and the user mentioned the variable
SUBSET.R we ‘draw the edge:

SUBSET.R(Uk,...U1)+R(U ,..Ul)

k
This edge ensures that the 'SUBSET' condition will be checked
after the record is physically read, enabling skipping the pro-

cessing of its fields.

Type 20, LEN Edge

If the length of a varying length field X is specified by
a LEN.X expression we draw the edge:

X(Uk,...Ul)*LEN.X(Uk,..Ul)

This ensures that the field is processed only after the

LEN.X expression is evaluated.
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Type 21. MODULE NAME TO FI LE EDGE
This edge indicates the precedence of a MODULE node

over the FILE nodes. The MODULE and FI LE nodes are seal er
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3.2 Overview of Sub-phases in Network Creation and Analysis

The array graph of a set of MODEL statements is a
crucial factor in the MODEL Processor's ability to seguence
operations and to detect many inconsistencies and incompletenesses.
Table 10 shows a summary of the ten steps or sub-phases involved
in the creation and analysis of the array graph (or "network"),
and in the determination of the attributes of all the graph
nodes. The ten sub-phases are described in sub-sections 3.3.1
through 3.3.13,

Each node, in particular the assertion nodes, may represent
an action which should be performed repeatedly, say for each
input record read. This will be the case if the assertion either
uses a repeating field (directly or iniirectly) or defines a
repeating field. The requirements for such repetitions may be
guite complex and nested, for example an assertion defining a
repeating field within a repeating record within a repeating group.
In MODEL II the need for repetition is expressed by associating
with each node subscripts. One of the form of a subscript
variable is FOR_EACH.X where X is some repeating structure. This
form explicitly associates an assertion with the repetition on X.
The list of these special variables (or repetitions) associated

with a node is called the subscript structure of the node. We

will compute the subscript structure for each node. This structure

is later used to construct the proper iteration control and guide
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Steg Name

1 Creating Dictionary
(cppICT)

2 Entering Hierarchical
Relationships
(ENHRREL)

3 Attribute Computation
(ENHRREL)

4 Entering Explicit
Value Dependencies
(ENEXDP)

5 Finding Implicit
Predecessors
(ENIMDP)

6 Calculating Dimensionalities
(DIMPROP)

7 Filling Up Missing
Declarations and Subscripts
(FILLSUB)

8 Assigning Ranges to
Subscripts (RNGPROP)

9 Graph Analysis
(AMANAL)

10 Cycle Detection

Table 10

Summary of Tasks and/or
Relationships Searched

Creates a dictionary of all
names assigning a "node"
number to each (3.3.1)

Searches for hierarchical
relationships between a parent
and descendant data (3.3.3)

Computes various attributes for
each of the dictionary entries,
and a list of the iteration
subscripts. (3.3.4)

Searches for explicit value
dependency relationships given
by assertions (3.3.5)

Searches for implicit predecessor
to nodes with no explicit
predecessor (3.3.8)

Calculates the dimensionalities
of all the variables in the
specification, considering the
initial declarations and
deductions from the edges drawn
between nodes. (3.3.9)

Based on the previous calculation

of dimensions, structures are

extended and all subscripted
references expanded to the full
dimension of their variables. (3.3.10;

Each iteration for a node is
assigned a range. The range
specification is "propagated"

from nodes which depend on them. -
’ ’ (3.311)

Analyses the array graph to
ensure that certain error
conditions do not exist (3.3.12)

Diagnostic Search for possible

~cycles (3.3.13)

Steps in Network Creation and Analysis
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the sequencing.

One of the major tasks during this entire phase is detecting
logical errors and reporting themto the user. In parallel to
searching and entering precedence relationships certain kinds of
logical errors are detected, and nessages are sent to the user.
Further error analysis takes place after the Processor constructs
the graph array. A sunmary of all the error messages produced
in this phase,uas well as the conditions for their generation is

included in Section 3.4.
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3.3 Sub-phases of Network Creation and Analysis

This section supplies greater detail on each of the sub-phases
of network creation and analysis, and the logical errors that are
detected by each phase. References are made to the message
numbers of Section 3.4.

3.3.1 Creating a Dictionary of Names and Numbers of Nodes

The Create Dictionary (CRDICT) procedure creates a dictionary
of names, assigning a node number to each. These names correspond
to the nodes of the array graph. The dictionary data structure
(DICT) is an array of strings. An entry is made in the dictionary
for each distinct, fully qualified name of each file, record,
group, field, or assertion named in the user's MODEL specification;
each name roughly corresponding to a statement in the specification.
For example, a field name entry corresponds to a field description
statement, an assertion name entry corresponds to an assertion
statement, etc.

However, there are exceptions to the correspondence between
dictionary names and statements in MODEL. If a file is described
in MODEL to be both a source and target file, its component record,
groups, and fields (described once in the MODEL specification)
appear in two separate entries in the dictionary (DICT) because
they represent two distinct entities ("OLD" and "NEW"). Further-
more, there are several types of "special names" in a MODEL speci-
fication that can be the source or target of an assertion and
. which become entries in the dictionary. These include names with
any of the following prefixes: POINTER, SIZE, LEN, CHOICE, SUBSET,
END, ENDFILE, NEXT, FOUND, SUBSET, and declared subscript names.

Such special names may be omitted in data description statements.
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Instead their description is inplicit and the Processor |ater
generates the appropriate statenments. They all become nodes

in the array graph and therefore need dictionary entries.

Al gorithm CRDI CT shows the details of the Create Dictionary
Procedure. It goes through each entry of the directory and
retrieves the corresponding statenent (Steps 1-3). Each nane
is fully qualified with the filenane, "OLD' or "NEW qualifiers,
etc, and is entered in the dictionary (Steps 4-8). It also creates
entries for the special names explained above (Step 9), and for
the subscripts and |oop variables (step 10). After this subphase
we wll refer to each dictionary entry also as a node.

After the dictionary is created all subsequent analysis is
perf or ned referriné to node nunbers which are the ordinal nunber
(i ndex) of the nodes in the dictionary,, In the anal ysis we have
often to retrieve for a given nane (possibly qualified) its node
nunber .

The routine DI CT# (NAME) returns the node nunber correspondi ng
to the nane NAME. A binary search is conducted on the al phabetized
di ctionary. _

Si nce thé user is not required to always specify the fully
qualified name, it is often the case that only a partially qualified
name is given and its node nunber requirede

One case is handl ed by the routine DI CTN( NAME) whi ch operates
as follows: It tries to find NAVE in the dictionary. If it

succeeds the node nunber is returned. O herwi se we check if the
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name has a prefix. 1If it has a prefix other than 'OLD' or 'NEW'
this prefix is dropped and the search reattempﬁed. If the prefix
is NEW or OLD we look for the next component, t:y to drop it and
search again.

Another case is when we are given a name which consists of
only the last component. 1In order to retrieve the code number
dictionary entries for simple (unqualified) names are maintainea

by the algorithm CREASIM.
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Algorithm CRDICT: Creating the Dictionary

[subroutines called: RETRIEVE]
Step 1. Get next directory entry.

Step 2. If there are more directory entries, then go to Step 3;
else go to Step 9.

Step 3. RETRIEVE statements (storage entries) in which the name
is described.

Step 4. Branch on statement type:
RECD, then go to Step 7:;
FLD or GRP, then go to Step 6;
FILE, then go to Step 7;
Others, then go to Step 5.
Step 5. Enter name in next entry of dictionary as is; go to Step 1.

Step 6. Qualify name with its parent file; go to Step 7.

Step 7. If corresponding file is both a source and a target file,
then go to Step 8; else go to Step 5.

Step 8. Enter name in dictionary twice: once with "NEW". and
once with "OLD". prefix; go to Step 1.

Step 9. Using RETRIEVE find all SIZE, LEN, POINTER, END, ENDFILE,
NEXT, FOUND & SUBSET names and enter each one in the dictionary
once.

Step 10. Create system subscripts and loop variables as follows:
a. Standard free subscripts SUBl,..SUB9®

b. System added subscripts $1,..$9
c. System loop variables I17,..I9
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Algorithm CREASIM: Create Simple Dictionary

It

3.

A special attribute called UNIQUE is added to each node.

is formed as follows:

If the node is a special name, i.e. beginning with a prefix
excluding NEW_OLD then the UNIQUE field is left blank.

If the node's name has a last component which is unique then
UNIQUE is assigned the last component.

Otherwise UNIQUE is assigned the full name.

Algorithm SIMPLE#: Search a UNIQUE List

Input: A name, presumably a node name.

Output: A node number denoting the dictionary's entry matching

1.

the input name.

Do first a regular name search by calling DICT# (NAME). If
a positive result was returned this is the result.

Otherwise extract the last component of NAME and search for

a match in the UNIQUE 1list. The first node whose UNIQUE field
matches the last component of NAME is the returned result.

If no match is found, the following Error Message is printed:
"Name error: the following name is missing from the simplified

dictionary - NAME". .

The algorithm SIMPLE#(NAME) retrieves the code number. for

a simple name NAME.
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3.3.2 Creating the Array Graph and Entering Precedence Relationships
Within Tt ‘

Algorithm CRADJMT (Create Edge Matrix) outlines the creation
of the edge structures, including its allocation (Step 1), its
initialization (Step 2), and the invocation of subroutines that detect
and enter precedence relationships within it (Steps 3). The pro-
cedure then proceeds to call other routines (DIMPROP, FILLSUB and
RNGPROP) which detect and enter subscript related information. 1In
these subsequent procedures, values are entered in the appropriate
edge structures. Certain logical inconsistencies and incompleteness
in the MODEL statements can be detected during the construction and
analysis of these structures.

Since we have the full dimensions of the nodes only after DIMPROP,
which in tu:n rélies on the edges, most of the edges are created
without any subscript list. Edges types 3,7 are created with partial
subscript lists which are later extended. All other edges are first
created with an empty subscript list which is filled up later in
FILLSUB. However the field DIMDIF is defined as soon as the edge
is generated. This is so because when we find an edge:

A(U;) « B
we will decide that dim(A)-dim(B) = 1. This means that whenever B's
dimension is extended we will extend‘A’s dimension by at least the
same number of additional dimensions. Thus corresponding to such an

edge we will retain a DIMDIF field of 1.
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Al gorithm CRADIMI; Creating the Edge Matri x

[ Subroutines called: ENHRREL, DI MPROP, FILLSUB, RNGPROP]

Step
Step
Step
Step
Step
Step

1.
2
3.
4

5

64

Al l ocate edge structufes

Initialize edge structure

Call ENHRREL (Enter Hierarchical Relationships).

Cal | ENEXDP (Enter other Dependency Rel ationshi ps).
Call DIMPRCP (Calculate Dinmensionalities of variables)

Call FILLSUB (Extend structures as needed and fill wup

subscripts in assertions and in edges)-

Step 7.

Call RNGPROP (ldentify the ranges of subscripts)
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3.3.3_ Entering Hi erarchical Relationships

Edges of types 1,2,8,9,11 and 12 between files, records,
groups, and fields by the foutine named ENHRREL (ENter Hi eRarchica
REIl at i onshi ps).

Al'gorithm ENHRREL consists of parts A B, and G Part A
enters hierarchical relationships edges of types 1 and 2, Entering
the hierarchical types is acconplished by retrieving all the file
descriptions (Al, A2) and successively finding the conponents of
each. By nmeans of a recursive procedure (Step A3, ENTAH ER*ADJ)
that "clinmbs" down the inplicit hierarchic data structure, each
conponent's direct descendant statenents are retrieved in turn
and the hierarchical relationship between a parent and its direct
descendants is successively entered (Steps 1-7 of ENT"HI ER*ADJ).

If the current file is an input file then the edge type is 1

If the current file is an output file then the edge type is 2.
Furthernore, if the node is not a |lowest level field (Step 10), then
its descendants are found, in turn, and the procedure is invoked
recursively to insert the hierarchical relationships with their
descendants.

Note that the hierarchical relationships "1" and "2" are
reversed in direction for precedence purposes (Step 7) because,
for example, a record of an input file nmust be read before its
conponent groups and fields are available, while the record of
an output file nust be witten after its conponent groups and

fields attain a val ue.
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Algorithm ENHRREL: Enter Hierarchical And Structural Relationships

Part A: Enter edges of types 1,2,8,11 and 12 in all files
Al. Retrieve all files
A2, Get next file name, if none go to Part B
A3, Call ENT_ﬂiER_ADJ(Father name, Son name)
This routine enter edges of type 1,2,8,9,11 and 12
recursively, until it reaches all field nodes.
A4, Go to Step A2
Part B: Enter edges of types 2,8, 12 in data structures where a data
node has no parent. Such structure is assumed to be interim
and statements for parents will be added later.
Bl: Find all data nodes which have no parent.
B2: Get next node with no parent of none go to Part C.
B3: Assign a name to a parent file.
B4: Call ENT_HIFR_ADJ(Parent-file-name, head-of-found-structure-name)
to enter fecursively type 2, 8,9,12 edges in the structure
B5: Go to step E2.
Part C: Enter edge of type 9 between ENDFILE.file-name and the records
in the file.
Cl: Search directory_for all sequential source file names.
C2: Get next. If none go to Part D
C3: If the directory does not already have ENDFILE.file-name, add
a new entry to directory.
C4: Search for all record descendents of the file-néme.
CS: Getvnext record descendent. If none go to C2.
C6: Enter an edge of type 9, §=0 between the ENDFILE.file-name node

and the record node.
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Al gorithm ENTJH ERJUDJ ENTERI NG HI ERARCHI CAL DATA STRUCTURES | N ADJACENCY

WATKI X

Enter -H erarchical Relationships in Wighted Adjacency Matrix ( a
recursive routine) [Subroutines called: RETRI EVE]

Step 1. Qualify parent and direct descendant nanes.

Step 2. Let i=*dictionary nunber of parent.

Step 3. Let ~dictionary nunber of direct descendant.
Step 4. If current file is source only, then go to Step 5;

if current file is target only, then go to Step 67
if current file is source and target, then go to Step 7*

Step 5. (source only) Draw a 'I' edge fromi to j, 6=1 if |
Is repeating and 6«0 otherwise; go to Step 8.

Step 6. (target only) Draw a '2' edge fromj to i, 5 ¢ -1 if |
is repeating and 6*0 otherwi se* go to step 8.

Step 7. (source and target)

Set i=dictionary nunber of "OLD' parent.

Set j«dictionary nunber of "OLD' direct descendant.
Perform Step 5

Set i=dictionary ,nurrber of "NEW parent.

Set j=dictionary nunber of "NEW direct descendant.
Perform Step 6. '

Step 8. RETRI EVE direct descendant storage entry

Step 9. If one direct descendant storage entry is found, then call
it 'son' and go to Step 10; :

if no direct descendant storage entry found, then go to Step 15;

if nmore than 1 direct descendant storage entry found, go to Step 16.

Step 10. If type of Son is record, group, or report entry, then go to
Step 11,
if type of son is field, then go to Step 14; else systemerror.

Step 11* Get all of the son's direct descendants.

Step 12a. If the son is an itemin a file which is either bel ow

the record level or an itemin a sequential (actually unkeyed) file,
then for each pair of successive direct descendants, k and m we draw
an '8* edge between k and m 5«0 since this edge is not used in

di mensi on propagati on.

Step 12bo (Virtual Self Dependence - |nput)
If the son k is a virtual repeating structure in an input file, then

draw an edge of type '11' between its rightnost descendant and itself.
6=0. .

Step 12c. (Virtual Self Dependence - Qutput)

If the son is a virtual repeating structure in an output file or
interim structure, then draw edge of type '12' between the son k and
its leftnost descendant. 6=0.
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Algorithm ENT_HIER_ADJ (continued)

Step 13.

For each descendant, call ENT_HIER_ADJ recursively to

enter hierarchical relationships between it & its descendants
(go to Step 1).

Step
Step
Step

Step

14.
15.
16.

17.

(field: no further direct descendants) Return.
Print incompleteness message (#6); go to Step 17.
Print inconsistency message (#4); go to Step 17.

Return.
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During the scanning of the structure, the structure
relationships ('8') are also created in Part C. This relation-
ship happens whenever we have a group or a record which is
either an input or an output, bélongs to a sequential file or
is below the record level. 1In this case we consider the list
of items which are descendants of the group or the record in
the order in which they were specified and introduce an '8' edge
between any two successive ones. This ensures for example in the
specification: IN IS FILE (GROUP IS IN_GRP)

IN_GRP IS GROUP (A,B)
that reading record A and its procéssing will precede reading
record B and processing it.

Certain errors can be detected during this process
(Steps 15 and 16 of ENT_HIER_ADJ). If at a given node the indicated
descendants do not exist and therefore cannot be retrieved (e.g.
if a record X is described to have fields A and B but field B is
never (described), then the file layout is poorly-defined due to
incompleteness. Likewise, if at a given node more than one
descendant with the identical name can be found in the same file
(e.g. field X of a given file is described twice with two different
sets of attributes), then the file is ill-defined due to an
inconsistency. Such problems are reported to the user in the
Network Analysis Report in a manner similar to the following
(Message numbers 6 and 4, respectively):

ERROR(INCOMPLETENESS) : Need a description of X

or

ERROR(INCONSISTENCY) : X is described more than once.
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Part C in the algorithm ENHRREL defines a precedence relation
of type 9 between all nodes describing variable ENDFILE X. This
represents the fact that the ENDFILE X variable has a meani ng only
after the relevant records have been read, and hence should be tested
bnly after reading these records.

Routi ne ENHRREL al so constructs several attribute tables for

the dictionary entries (nodes). They are described in the next

secti on.
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3.3.4. Node Attribute Tabl e

The routine ENHRREL which systematically scans all the data
structures also constructs several attributes tables. These tables
record different properties of the program nodes (dictionary entries),
The |ist bel ow describes for each of the tables its structure, its
significance and the node of its conputation (HOC)e Sone of these
attributes are generated later and are brought here for conpl eteness*
Most of these attributes are stored in a table haying one line for
each node. The nanes of the entries in the table all begin with X
Thus the conponent DI CT, has the table name XDICTc In addition we
have for each conmponent a function which gives the node nunber (t)
retrieves this conponent value, e.g. DICT(l), In sone cases the type
of the function and the table entry are different, this wll be

mentioned in the description*
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In the list below each table contains DICTIND (the number of
dicéionary entry) elements, one fof each dictionary entry (node).
ENDB - BIT(l) - is '1l' for a node by the name X if there exists a
name END.X in the dictionary. This means that the
repetition associated with the node X will be
terminated by an END.X condition rather thén'by a
repetition specification.
XENDB-INTEGER ~ gives the node number of the END.X variable or O.
MOC: For a node by the name X search the dictionary
.
for the name END.X. Computed in ENEXDP.
EXISTB-BIT(l) - is 'l' for a node by the name X if there exists a
name SIZE.X anywhere in the dictionary. This means
that the repetition associated with the node X will
be terminated by count which will be given in the
variable SIZE.X.
MOC: PFor a node by the name X, search the dictionary
for the name SIZE.X. Computed in ENPTREL.
XESISTB-INTEGER-Gives the node number of the SIZE.X variable or 0.
INP-BIT(1) - Is '"1' if the node is a data item in an input file.
(could be a group, a record or a field)
MOC: When scanning a input file all of its descendants
have their INP entry set ‘to 'l'.
XINP-INTEGER = Is 1 if input and O other%ise.

KEYED-BIT(1l) = Is 'l' if the node is a data item in a file for which

a key name was specified.
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XKEYED- INTEGER - If the file is keyed this contains the node
MOC: When scanning a file with a non blank key
name all its number of the field used as key
descendants have their KEYED entry set to 'l°'.

LEN_DAT-INTEGER -The length in bytes of the data item. Applies only
to input/output items and not to interim variables.
If the item itself or any of its subitems are of
variable length the maximal length or number of
iterations will be taken if available.

MOC: 1If the item is a field its length is calculated
using the declared (maximal) length and the field's
type in the procedure BYTE_CALC. For items on a higher
. level LEN_DAT of a direct descendant is computed, its
oroduct with the (maximal) repetition count is added

*o the LEN_DAT of its parent. 1In this way the sice

of the parent is computed by accumulating the sum of
the length of its descendants. For files this is the
maximum LEN_DAT of its records.

XLEN_DAT~INTEGER~The table entry name.

MAX_REP-INTEGER -(Table name XMAX_REP). The maximal repetition count
which was declared for the item. If not declared as
repeating MAX_REP = 1. If an exact count was specified
(MIN=MAX) this count is assigned to MAX_REP.

MOC: The value is retrieved from the storage entry

of the respective node.



NRECS- | NTEGER

OUP- BI T(1)

PAREC- | NTEGER

PARFI LE- | NTECGER
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= (Table nane XNRECS)

This count is neani hgful only for files, and
holds for each file node the hun‘per of different
records (record types) contained in the file,

as declared by the user. For nodes ot Her t han
files this count is always O.

MXC.  For each node corres.pondi ng to a record the
NRECS count for the node corresponding to its
pareht file is increnmented.

Is 'I' for items in output files* Table entry XOUP
is integer and is > o if itemis in output file.
MOC:  When scahni ng an out put file, the QUP entries
for all its descendants are set .to "1t

(Table name XPAREC)

For itens below the record level this will hold the
node number of the itenls parent record.

MC: Wien scanning descendants (not necessarily

i mediate) of a record, set their PAREC entry to
the node nunber of the record*

(Tabl e nanme XPARFI LE)

Hol ds the node number of the parent file for all

i nput - out put itens. ‘

MOC: W\en.scanni ng descendants of a file, set

their PARFILE entry to the node nunber of the file.



PDIM-INTEGER
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(Table name XPDIM)
Holds the dimension allocated to the item in
memory. Every record, whether it is repeating
or not, is allocated a single area in memory.
Every repeating item below the record level
is allocated space according to the maximal
number of repetitions. The "physical" dimension
of an item below the record level (given by PDIM)
will therefore be the number of repeating items
(including itself) which appear in the ancestry
line from its parent record to itself. Thus
in the example.
Ex.S: A IS FILE( B(*))

B IS GROUP ( C(*))

C IS RECORD( D(5))

D IS GROUP (E(2))

E IS FIELD

The PDIM of A,B,C,D,E will be respectively:

0,0,0,1,2
- MOC: All items on and above the record level

are assigned PDIM=0. Then éoing down the file
tree if an item is not repeating

PpDIM(item) = PDIM (its ancestor)

if it is repeating then

PDIM (item) = PDIM (its ancester) + 1



REPTNG

SUBREC

SUBSLST

BIT(1)

BIT(1l)

PTR
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Is '1" an.item is repeating. This is the
case 1if in its specification the maximal
repetition > 1 or is specifiéd as (*). Table
entry XREPTNG is integer which is positive if
item is repeating.

MOC: Rétrieve the storage entry for its
ancestor (where repetition is specified) and
check the above.

Is '1l' if the item is below the record level.
Table entry XSUBREC is an integer which is

positive if item is below record level.

MOC: Set the SUBREC entry for a node to '1l'

if either the SUBREC for its ancestor is '1l'

or its ancestor is a record.

This entry holds a pointer to the local subscript
list associated with the node. These are all

the subscripts which the node depends on.

If the list is empty PTR = NULL, otherwise

it points to a list of local subscripts.

The local subscript list is a list of the following structures:

LOCAL_SUB:
NXT_LOCSUB
REDUCED
SUBTYPE
SUBID
IDWITH

RANGE
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NXT-LOCSUB - |Is a pointer which points to the next structure in the

|ist.
REDUCED I's positive only in subscripts which are reduced in
an assertion. It is zero ot herw se. This field is

neaningfullonly in assertion nodes.
( SUBTYPE, SUBI D) Specify the nane of the subscript.
SUBID is the node nuhber of the node associated with the
subscript. SUBTYPE distinguishes bet ween four types of
subscri pt nanes.
1. SUBTYPE « 1, this is a subscript of the form FORIBACH. X
associated wth the node X* X has then to be a
repeating data node. SUBID is the node nunber of X
2. SUBTYPE = 2, A subscript declared by the user as a running
subscri pt.
3. SUBTYPE » 3, A standard fiee subscri pt.
One of the list SUB1, SUB2,..SUB9/
4. SUBTYPE = 4 - A subscript added by the systemin the fill-up
process. This is one of the first $1,..%$9.
In cases 2-4 the subscript appears in the dictional as an
i ndependent node entry and SUB(l) contains then its node nunber.
Gases.* 1,2 can have a direct range specificatioﬁ, in case 1 by
specifying the size of the associated data node X, and in case 2
by explicitly specifying a range in the declaration of the.subscript
or including a SIZE or END statenent. Cases 3 and 4 are essentially
free subscripts and their ranges have to be deduced separately

for each statenent.




RANGE

IDWITH
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Is a node number of a node which has an explicit
range specification. If subscript Uy in an
assertion has as range entry the numbe? referring
to some data node X, then this means that the
range of U in the current assertion is the same
of the declared range (size) of X.

Is used in the scheduling process and will contain
the nesting level of the loop variable with which

the subscript is identified.

Let us consider for illustration several types of nodes and

their local subscript lists, as well as some relevant edges.

Consider the declarations

F IS FILE(C(*))
C IS GROUP(R)
R IS RECORD(L(3))

L IS FIELD

The local subscript list of L is

(FOR_EACH.L, FOR_EACH.G

The lists for G and R are

(FOR_EACH.G)

and the list for F is empty.

Consider the assertion:

a:A(I,J)=B(I)+C(J)
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The assertion 0 gets the subscript list (J,I). Note
that the list always goes from the least to the most
significant subscripts (right to left).

. Associaﬁed with this assertion will be the edges
3:0(I,J3)+«B(I) with the subscript expression 1list (2) and
3:0(I,J)«C(J) with the subscript expression list (1).

Later we may find that B is actually two dimensional
while A is three dimensional. This will be reflected in
modifying the assertion into

J: A($1,I,J) = B($1,I) + c(J).

The local subscript list of o will be modified to
(J,I,$1) while the edge from B to & will contain the subscript
expressior. list: (2,3).

Consider an assertion

B:xX(I) = I A(I,J)
J

The assertion B is given the local 1list (E,I)
where 3 is marked as reduced. The edge leading into this
assertion is

3:8(I,J3)«A(I,J) with the subscript e#pression list (1,2)

and the edge leaving into the target variable is:

7: X(FOR_EACH.X)<+B(FOR_EACH.X,E)



VARS- BI T(1)
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MOC: For data nodes this list is
obtained‘by scanning the structure

tree bottom up starting at the current

node, and listing the names of all the
repeating data nodes which are encount er ed.
For assertions we take the list of sub-
scripts appearing on the left hand side

of the assertion and precede it by a Iist
of the additional subscripts which appear
on the right hand side but not on the |eft
hand side. These additional subscripts are
mar ked as reduced. Later when subscripts
are addded by the system these lists wll
be updated

(Field entry XVARS, an integer) This entry
is "I'" if the structure of the iteminvolving
any descendants bel ow the record Ievel 'S
variable. Thus if any subitem has a variable
nunber of repetitions or a variable length

t he iteh1is assigned a VARS entry of "11,
This will later determne if in reading a
record we have to unpack each field or can

read the whole record as a single string

overlaying the corresponding data structure.
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MOC: Whenever a subrecord item has a
varying length or a wvarying number of
repetitions, the VARS entrxies for both
. itself and its parent are set to 'l',

VARYREP - BIT(1l) (Field Entry XVARYREP). 1Is set to '1l'
if the item has a varying number of
repetitions.
MOC: Inspect in the node's parent
storage statement if MAX_REP > MIN_REP
or MIN REP = -1 signifying a '*'
repetition, set VARYREP to 1.

VIR_DIM~BIN Integer (Field entry name XVIR_DIM)
This gives for each item the conceptual
(virtual) dimensionality that it has.
Regardless of the physical memory allocation
it counts the number of repeating structures
(including itself) which exist on the ancestry
line between an item and its parent file.
For all input output items this will be egqual
to the ultimate size of the SUBSLST list.
MOC: If the item is repeating then VIR_DIM
VIR _DIM(item) = VIR_DIM (parent) +1 else

VIR _DIM(item) = VIR_DIM(parent)
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MAI NASS - PTR (Field nane XNAI NASS) For each
node this entry contains a pointer
to the storage statement defining
this node. It is prepared in CRDI CT.
XDI CT - CHAR(32) _ Hol ds the nane of the node.
MAMESI ZE - "I nteger - The length of the node's nane.
The corresponding function D CT(l) uses XDICT and NAMESI ZE
and returns the nodes nane as a CHAR(32) varying string.
| SSTARRED (Field name Xl SSTARRED, positive if
true), is true if the data itemis
repeating and has a virtual repetition.,
DI CTYPE (Field entry nanme XDI CTYPE) CHAR(4) -
Specifies the type of the node. It
is set during the dictionary creation
and whenever new nodes are added to
the dictionary. Its possible val ues
are t.he fol | ow ng:
PASTX* - An assertion node.
'GRP' - A group
"FILE' - Afile.

fRECD' A record

'MODL' - The specificati on nane.

" 'DISK!, 'PRINT! 'CARD', 'TAPE , 'TERM, 'PNCH -
denoting a storage nedia of the corresponding type,
*SPCN' - A special nanme with a reserved prefix:

( END, SI ZE, LEN, P(]‘ NTER, NEXT, SUBSET,
« ENDFI LE, FOUND) "
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'$SSUB' - User or system declared subscripts, including
the standard subscripts SUBl1,SUB2,...SUB9.
’ v$S! - System added subscripts: $1, .. $9
t$1 - System loop variables Il,...I9. )

"SUCCESSORS = INTEGER - The size of the successor list.

SUCC_LIST - Pointer - A poi;terlto the list of
successors - list of edges eﬁanating from
the current node.

#PREDECESSORS - Integer - The size of the predecessor list.
PRED_LIST - Pointer - A pointer to the list of edges coming
into the current node.

UNIQUE-CﬁAR(32) - The smallest name by which this node can
be identified. If the last component of
DICT is sufficient to uniguely identify
this node then UNIQUE is set to this las-=:
component., Otherwise, UNIQUE is set to
DICT.

FATHER - Integer, The node number of the immediate ancestor
of the current node.

SONl - Integer = The node number of the first (leftmost)
immediate descendant of the current node.

BROTHER - Integer The node number of the immediate right
neighbor of the current node, or the next

immediate descendant of FATHER.
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ORGANI ZATI ON - I nteger, Equals 1 if this itemis a
enmenber of a file which is not
sequential. It equals O otherw se.

TERMC - .| nteger - Specifies the termnation criterion
condition for the node if one 'S
explicitly specified: It accepts
one of the val ues:

1- Constant limts given in the
repetition specification

2- An END. X variable exists for the
current node X |

3- A SIZE X variable exists for the
current node X

4- This node is a last record or
group in an input sequenti al
(unkeyed) file.

RANGEP - | nt eger If a termnation criterion is not
explicitly specified, the system
will attenpt to deduce one. RANGEP
points to the node whose ternination
crite({on (explicitly given) is the
sane as that of the current node.

NXTNEED - | nt eger ' This entry is positive for all
nodes which are referred to by a
NEXT prefixed variable. It will
al so be set for records containing

.- such nodes. These nodes are
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restricted to nodes in input segquential
files.

PRVNEED - Integer -This entry is positive for all nodes

i which are virtual repeating structurés

and have a reference of the form
A(...I-1,..) is a subscript position
in A corresponding to the current node.
This will cause these nodes to be declared
as repeating of size 2. X(1) will refer
to the previous value of x abyte X{(2) will
refer to the cﬁrrent X. After the 1loop
containing X, X(2) will be moved to X(1l).

USED = Integer This entry is set to 1 for each node
which is chosen as a logs variable name.
This will govern the selective declaration
of the system generated subscripts:

SUBl,..SUB9,81,..$9,8I1,..1I9.
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3.3.5 Entering Dependency Relationships

Dependency relationships are entered to indicate that a
node j, such as a field or assertion depends on the value of another
node, i, and that therefore i is precedent to j. These relation-
ships are detected and entered by the routine ENEXDP (ENter Edges
for explicit DePendency). Some dependency relationships are explicit
in the MODEL statements, while others are implicit and are deduced
or assumed by the Processor,

The main tasks of ENEXDP are:

A) Draw edges of the types:

5,13,14,15,16,17,19,20 associated with the special names
with reserved prefixes: POINTER,SIZE,END,FOUND,NEXT,SUBSET(Output),
SUBSET(Input), LEN respectively.

B) Analyze assertions. Transform the leaves in the assertiOn
syntax tree to reflect node numbers, subscript numbers and function
numbers, replacing all the variable name leaves. Deduce and insert
subscripts in the case of implicit reduction. Form the local
subscript list fér the assertion. Generate edges type 3 and 7 into
and out of the assartion.

C) Call ENIMDP to generate additional assertions for the
definition of fields lacking an explicit source.

Draw edges for special names.
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Algorithm ENEXDP: Enter Edges For Explicit Value Dependencies

The algorithm consists of three Tasks, A,B and C.
Task A
This task is perfdrmed by the main body of the procedure
ENEXDP.
Each node is examined for having a reserved prefix as
a first component in its name. In the following let NODE
denote the examined node and TRGT denote the subject of the
special name, i.e. the suffix to the reserved prefix.
1. 1If PREFIX = 'POINTER' then verify that TRGT is a keyed
record and draw an edge.
5: TRGT <« POINTER.TRGT, §=0.
2, If PREFIX = 'SIZE' then verify that TRGT is repeating
and draw an edge:
13: ©2RGT(I) « SIZE.TRGT, 0=1
Note +hat this implies that the dimension of SIZE.X is
smaller by 1 than that of X.
3. If PREFIX='END' then verify that TRGT is repeating and
draw an edge.
14: TRGT(I) + END.TRGT (I-1), &=0
4, If PREFIX='FOUND' then verify that TRGT is a keyed
record and draw an edge:
15: FOUND.TRGT +« TRGT, 6=0
This will make FOUND.R depend on the record R.
S. 1If PREFIX = ‘'NEXT', verify that TRGT is an item below

the record level in an input seguentiél file and draw an edge:
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16: NEXT. TRGI «- TRGI, 6-0

This will make NEXT.X depend on X
6. If PREFI X 'SUBSET! then verify that TRGT is a record.
If it is an out put reéord we draw an edge %

17: TRGIT+SUBSET. TRGI, 5=0.

O herwise it nust be an input record and then we draw
the edge:

19: SUBSET. TRGI«- TRGI, 5=0
7. | f PREFI X*' LEN' then we draw an edge:

20; TRGI«-LEN TRGI, 5=0

Al'l these edges (including 13,14) are drawn with an
enpty list of subscript expressions, i.e. SUBX=NULL. The
modul e Fillsub constructs later the subscript expression |ist
according to the edge type.
Task b

Transform Assertions and Draw Edge in and out of the
Assertions (types 3 and 7)

This task is performed by the procedure DQOASS which
is called for each assertion node.
Task_c |

W éall on ENIMDP to detect non input fields for
whi ch no defining assertion is given. EN MDP creates new
defining assertions for such fieldé and enter then into the
syntax analysis phase by recalling SAP. After com ng out
of ENIMDP, we call once nore on DOASS for each of the new y

created assertions.
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3.3.6 Procedure DOASS

The syntax tree for the assertion is retrieved. Let
POINT(1) point to the node representing the L.H.S. of the
assertion and POINT(2) represent the R.H.S. We first call
SCAN(POINT(1),1,1,0) to transform and construct the local
subscript list for the L.H.S. Then, we call SCAN(POINT(2),
0,1,0) to transform and construct edges and augment the Local
subscript list for the R.H.S.

When SCAN creates the local subscript list, subscripts
are added from the left. Each subscript added to the list
is assigned a sequence number which specifies its rank of
joining the list or its position measured from the right.
Thus in the assertion,

(s

a(r,J) = i B(I,X,J)
we will construct the local subscript list (X,J,I) aésigning
right position numbers 3,2,1 to K,J,I respectively. The
leaves in the assertion referring to subscripts refer to these
right position numbers. Similarly when we construct the
type 3 edge connecting B to ¢«

3: o(1,J3,K)+B(I,XK,J)
a subscript expression list (J,K,J) is constructed for this

edge. This list is also represented by references to the

right position numbers: (2,3,1).
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However at the end of Fhe process we would like to have
all the references changed to left position number according
to the positions of the subscripts in the local subscript 1list
measured from the left. Thus we will have to change the sub-
scipt expression list in the edge above to (2,1,3).

Consequently both the local subscript list and type 3 edges
are first generated locally by SCAN,

Then after this is done we resequence the reference numbers
of the local subscripts. We rescan the syntax tree‘for the
assertion changing all nodes referring to subscript numbers.

We then modify all the subscript expressions list in all the
edges and enter these edges into the array graph.

3.3.7 Subprocedure SCAN

SCAN is presented with a node in the syntax tree and is
responsible for performing the following tasks:

1) Transform the descendant leaves of this node which are
of type variable-name (23) into one of the types: variable qumber
type (25), subscript number type, (26) or function number type (27).

2) Augment the local subscript list by the new subscripts
which appear among the descendants of the given tree node.

3) Construct type 3 edge for each instance of a subscripted
variable appearing as or among the descendants of the given tree
node. These edges will contain a list of subscript expressions.

4) Check special and reduction functions, and if no

explicit reduced subscript is given, one is automatically deduced.
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Al gorithm DOASS.

1.

3*

B«

6*

Cal | SCANCPOI NTd) ,1,1,6) to scan the L.H. S. subtree of the
assertion,

Call SCAN(PO NT(2),0,1,0) to scan the RVfi.SVsubtree of the
assertion,

Call RENUMBER to nodify all references to subscripts in the
syntax tree fromright positions to left positions «

For each locally generated edge, nodify the subscript expression
list to refer to left positions, and enter the edge into the
gr aph,

Check for subscripts which appear on the RH, S« but not on the
L.H S which are not explicitly reduced, Mark then as reduced
and issue a warning;

"ENEXDP: SOME SUBSCRI PTS APPEAR ON THE RHS BUT NOT ON THE
LHS. SELECTION IS IMPLIED FORs SUBIL, SUBZ, ,..",

Generate a type 7 edge fromthe assertion to its target with
the follow ng subscript lists

(E"S| » «Ey@, f | &%5

E appears in any position corresponding to reduced subscripts.
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Algorithm SCAN(ROOT,LEFT,LEVEL,PARTYPE)

The parameters are:

Root - A pointer to the tree node.

Left - An integer being positivg if this node is in the
target subtree of the assertion, and equal to zero
if the node is in the right hand side subtree.

Level - An integer specifying the depth of the node in the
tree,

Partype - An integer, giving ;he type of the parent of
this node.

Description of the algorithm:

1. If the node is a leaf, go to Step 18.

2. I=1, no. of descendants call recursively

SCAN(PONT(I) ,LEFT,Level+l, Node.Type)
3. If the node is not a subscripted variable go to step 12
4. {subscripted variable}. Scan each of its descendants
and cénstruct a subscript expression list element as
follows:
S. If the descendant is a simple subscript then
LOCAL_SUB# = Subscript number, |
APR_MODE = 1.
6. Otherwise if the descendant is of the form I-1l we
Set: LOCAL_SUB# = subscript number of I
APR_MODE = 2.
7. Otherwise if the descendant is of the form I-C for
C > 0 we set LOCAL_SUB# = Subscript number of I

APR_MODE = 3,
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Algorithm SCAN (continued)

8.

9.

10,

11.
12,

13,

14.

1s5.

16.

Otherwise we set APR_MODE = 4

If left > 0 check that APR_MODE = 1, otherwise issue

an error message: 'ENEXDP: A GENERAL EXPRESSION APPEARS
AS A LEFT HAND SIDE SUBSCRIPT AT - ass-name'.

If Left=0, generate a local edge of type 3 from Root

to the assertion with the subscript expression list

as created in stéps 5-8. Set its DIMDIF field to the
size of the subscript exéression list.

Exit.

If the node is not a function call, exit.

{Function Call}. If not a special function (array
function) exit.

{ Special Function}, Check that level = 1. Otherwise
issue an error message: 'ENEXDP: A SPECIAL FUNCTION
APPEARS AT AN INTERNAL LEVEL',

If no explicit subscript list appears in the function
call, generate one by taking the most recent subscript
added to the local subscript list. This is based on

the assumption that the summed variable will be explicitly
subscripted and will transform A = SUM(B(I)) into
A=SUM(B(I),I). |

If the special function is a reduction function we

mark all the subscripts in its parameter list as reduced
by setting their REDUCED fiéld in the local subscript

list to 1.
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Algorithm SCAN (continued)

17.

18.

19.

20.

21.

22,

23.

Exit,

If the node type is not a variable name (type 23)
go to step 24.

{variable Name} If the name is of the form
FOR_EACH.X and X is repeating or it refers to a
dictionary node which of type subscript ('$SUB')
then this name is a subscript name. Otherwise
go to step 23.

{The name refers to a subscript} Check if a

Asubscript by that name already appears in the

local subscript list. If it does not, create a
new entry in the local subscript list with this
name. go to step 22.

{ Name already in local subscript 1list} If left

> 0 issue an error message: 'ENEXDP: Two LEFT

SUBSCRIPTS COINCIDE'

Create a tree leaf of type: Subscript Number (26)
referring to the right position of the corresponding
entry in the local subscript list. Exit.

{The name refers to a variable name}. Construct

a tree leaf of type: Variable Number(25) referring
to the dictionary entry number»corresponding to

this variable. Create an edge of type 3 from

this entry to the_assertion with an empty subscript

expression list, DIMD1lF=0. Exit.



125

Algorithm SCAN (continued)
24, If the node type is not a function name (type 21)
Exit.
25. {A function name}. Searches for this name in the
function list. Create a leaf node of type Function

Number (27) referring to its index in the function

name list. Exit.
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Al gori t hm RENUMVBER

This procedure scans all the |eaf nodes of the syntax
tree which are of type 'subscript nunmber' (26) and transform
their reference nunber fromright position to left position.
If the final size of the local subscript list is #LOCALS then
this transformation is done by Subscript:

(Left _Position)»# LOCALS+1-(Ri ght Position).
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3.3.8 Finding Impiicit.giedecesscrs (ENIMDP)

If a field in some target file is not defined
via some explicit user's assertion, then the Processor tries to
' find an implicit source for the field)using a set of successive
rule;. Also, further analysis is made of the array graph and
certain kinds of inconsistency and incompleteness errors are
detected. Details of entering such implicit relationships and
detecting corresponding errors are in the process called ENtering
IMplicit DePendence (ENIMDP), and its subroutines, described
here,

First, interim variables are checked to make sure that they
have a predecessor. The HASSRC ("HAS SouRCe") function
determines’whether a node has an explicit predecessor. If an
interim field corresponds to node j, then the node is checked
to see if it has an explicit predecessor. If so, then the field
has a sourcé; otherwise, a message is sent to indicate its
absence (Message number 3):

ERROR(INCOMPLETENESS): Need an assertion that describes

how to obtain interim name X.

Secondiy, all the fields in target files are checked to
determine whether they alreédy have an explicit predecessor via
the HASSRC function. If a given field in a target file (a
field corresponding to, say, node j already has an explicit
source by virtue of a user's assertion, then it has an entering
edge of type 3. Otherwise, the field has no explicit source

the FNDISRC routine (FIND Implicit SouRCe) is called to find
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a same-named field in another file or a same~named interim

field as its source using a set of successive rules in the
following order of priority. The idea here is to make some
reasonable assumption for a plausible predecessor if at all
possible. The following rules are used by the FNDISRC
Algorithm.

Rule 1l: If the target field having no explicit predecessor is
in a file which is both a source and target file, then the

value in the corresponding field in the o0ld record is taken as
the value of the field in the new record (Message 10 is printed).
Rule 2: If Rule 1 does not apply, then the Processor tries to
find a same-named field in a source file. If one is foungd,

it is assumed to be the source and is so indicated in a message
containing the assumed assertion (Message 10). If more than

one same-named field in a source file is found, then the first
is taken és a source and a message is sent to indicate that
there was an ambiguity, and the assumed assertion is printed
(Message 11).

Rule 3: If no predecessor for the field is found by the above
means, then the Processor tries to find a same-named interim
field. If'oné is found, it is éaken as the source and a message
is sent to indicate that (Message 10). If more than one is
found, the first is taken and a message is sent to indicate that
there was an ambiguity (Message 1l1).

Rule 4: If the above efforts aré unsuccessful, the Processor

tries to £find a same-named field in another output file. If
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one is found it is taken as the source with a corresponding
message given to the user (Message 10), and if more than one
is found, then one is taken with a corresponding message to
the user regarding the ambiguity (Message 11l).

Rule 5: 1In the above cases, the Processor tries to find
"implicit" sources for a field if none is given explicitly.
If all this still fails to find some field which can be
construed to represent the current field's source, then an
error message is sent to the user to the effect that the
current field has no assertion desc¥ibing how it is obtained,
and that therefore such an assertion is needed (Message 3).

In the above cases where an assumption is made regarding
an implicit precedence, the corresponding assertion is printed
to the user. A warning is printed as follows: "In the absence
of any other relationship, the folluowing assertions have been
assumed:", followed by the assumed assertions. The warning
(Messages 10 and 11) is produced by the PRSRCWRN routine
(PRint SOouRCE WaRNing).

The resulting list of such assumed assertions becomes a
permanent part of the documentation. The assumed assertion is
written out to evaluate whethér‘it agrees with the users
original intention or whether some of the statements must be
changed and the specification resubmitted.

Each of the gssumed assertions is added to the MODEL
specification by the procedure CREATASS(I,J) which creates
a new assertion,

NODE#J = NODE#I.
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CREATASS( SOURCE. TARCET)
*«SOURCE' - The dictionary nunber of the source variable.
*« TARGET'! - The dictionary nunber of the target variable.

The assertion text is created by retrieving the nanes
O SOURCE,” TARCET:

"name( TARGET) - name( SOURCE); END; e

This text is placed in a character stri'ng CARD and a
pointer to it placed in G\ 'TXPTR which is a pointer variable
known to the lexical analysis LEX is SAP,

Then SAP is called. \Whenever SAP uses LEX to fetch the
next input token, LEX checks first GNTXPTR If it points to
a non enpty character string then the next input is taken from
this character string. Thus SAP will process the given assertion
and formfor it the appropriate entries in the associative
menory including the syntax tree. Next it will read the END
statement which wll cause it to clear GNTXPTR and exit,

On exit we retrieve the assertion name given to the new

assertion and create a new entry in the dictionary.
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3,3.9 Dimension Propogation (DIMPROP)

This procedure calculates the final number of dimensiOns
(referred here as dimension) for each node in the array graph.
Initially every data node is given a dimension specified by its
declaration. Thus, for example, a consequence of the definitions:

F IS FILE(G)

G IS GROUP(R(*))

R IS RECORD(X(5))

X Is FIELD
F and G are assigned dimension O, R is assigned dimension 1 and X
is two dimensional. Data which are not declared (END.X) or are
declared as interim fields, not belonging to any highgr structure,
are (initially) assigned dimension 0.

The process of dimension propagation considers dependencies
between nodes and infers a requirement for the dimension of the
target of an edge (or anlassertion) based on the dimension of the
source., Thus if together with the abovzs specification we also
had

Y IS INTERIM FIELD

Y = X+1
we will infer that the dimension of Y should be at least the same
as the dimension of X. This inferepce is based on the assumption
that X is actually an abbreviation for X($2,$1) (which will in
fact be fully developed into this form later). Assuming iﬁ general
that unless selection is explicitly specified ali rhs subscripts
should also appear on the lhs, the full expansion of the complete
statement will be:

Y($2,%1) = xX($2,3%1) + 1
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From this we infer that the should have at least two dimensions.
This interpretation is based on the following two rules:

l. Missing subscripts ére always inserted on the left of a
specified (or empty) string of subscripts.

2., All implicit subscripts that appear on the rhs must
also appear on the 1lhs.

Assume for example that the variable U has been declared as
one dimensional and the user specified Z=X+U.

This will be completed into:

Z2($2,31)=xX($2,81)+U0(S$1)
If instead the user had specified:
Z(I)=X(I)+U
The completion would have ‘been into
Z2($1,1)=x($1,I)+U($1)
which has of ccurse a different meaning.

The inference of dimensions from assertions is extendable
to other edges which also reflect dependencies. For example having
the edge

S: R « POINTER.R
we would expect R to be at least of the same dimension as POINTER.R.
Since for each possibly different value of POINTER.R we have to
retrieve a possibly different R.

The dimension propagation sometime proceeds from target to
source. This is the case for example for the edge:

13 X(I)+«SIZE.X

o
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Here we will want to infer the dimension of SIZE.X which is
normally not declared, a{a make it one less than the dimension of
X.

The general dimension propagation will consider therefore
both forward and backward propagation. The propagation and its
direction depends on thé type of the edge. A summary of the
algorithm is as follows.

We use an array C for representing the current dimension of a
node. Let D represent the initially declared dimension of the
nodes. Let N denote the set of nodes in the graph (specification).
Below is a simplified algorithm for DIMPROP. This will be followed
by the description of the more efficient algorithm in use.

1. For each n € N Let C(n) + D(n)

2. Consicé¢er an edge e: t « s of type T

and DIMDIF field (68) for the ecdge connecting s to t.s,teﬁ.
3. 1f7e1,2,3,5,7,9,15,16,19} then

{ Propagate forwards}:

if Cc(s)+8> C(t) then C(t)<«C(s)+§
4. 1f T1e{13,14,17,20} then

{ Propagate backwards}:

If c(t)-8> C(s) then C(s)<«C(t)=$
5. Repeat steps 2-4 until either

a., No further change in the C's is observed

b. One of the C(n) ,neN exceeds a given threshold

(in our case 20) .
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In case (a) we say that the process has converged. In order
to verify that the process has converged we have to scan the C
vector and check that none of the elements has been modified.

Case (b) is due to a cycle in the graph which if pursued will
cause an endless increase in the dimensions. This of course is an
error and is flagged as such. Consider for example the (erroneous)
specification:

G IS GROUP(F(*))

F IS FIELD

IF I=1 THEN H(I)=5 ELSE H(I)=F+1
IF I=1 THEN F(I)=6 ELSE F(I)=H+l

The first assertion is interpreted as stating that the
dimension of H is larger by 1 than that of F i.e. C(H)>C(F). The
second assertion stated in turn that C(F)>C(H).

Applying our algorithm to this specification will result
in endless loop of alternately incrementing C(H) and C(F). 1In order
to avoid this we added the overflow case(b) and we check for one
of the dimension getting too high.

In order to make the algorithm more efficient we introduce a
gqueue Q which will hold all the nodes whose calculated dimension

could possibly be altered.
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The nore efficient algorithmis:

Be

8«

10.

For each nEN let C(n)**D(n), put nin Q

If Qis enpty ~ exit.

Pick a node ntQ renove it from QX Let d<O
For every incomng edge, froms to n of type
Te{1,2,3,5,7,9, 15,16, 19} Let cemax(d, C(s) +6)
For every outgoing edge, leading fromn to t of
type Te{ 13,14:17,20} L et

de-max (d, C(t)-6)

If d S Cn) £0 t£ step 2*

{A new updated value} Let C(n)"de

For every incom ng edge, leading froms to n of
type Te{13,14,17,20} put s on Q

For every outgoing edge, leading fromn to t of
type Tc{1,2,3,5,7,9,15,16,19} put t on

If d > Threshold then halt and issue an error nessage;

there exists a propagation cycle.
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In the program DIMPROP, D is represented by the attribute
entry VIR-DIM, C by the array CALC_DIM.

The edges along which forward propagation should take place
are characterized by the characteristic array IS_DPROP(f) which
is positive for I's of the appropriate edges. Similarly backward
propagating edges are characterized by the array BACK_DPROP.

The queue Q is represented by a linked list whose beginning
and end are respectively pointed to by FRONT and BACK. The
procedure PUT-NODE(n) will put the node n ;nto this list if it
is not already there. For gquick reference we also use the integer
array ONLIST(I) which is positive for nodes number I which are
currently in the list.

The DIMPROP algorithm description is stated below.
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For conpl eteness we review here the initialdinmension
assignnments of D (MR_DM and the 6 values associated with
each edge type*
Let ai A(ljo.-1) * f(...BJ -3 ). )
be a typical assertion. For each instance of a subscripted variable
such as AL.lv,..1-), B(J-,.*J-) we define an apparent dipension
as the nunber of subscripts actually appearing in it. This is
smal l er or equal to the actual dinension of t he appearing vari abl e.
The apparent dinension of the assertion itself a is defined to
be the nunber of distinct subscript nanes appearing on both sides
of the assertion.
The initial dinmension VXR'DIM of any node nEN is defined as
foll owsz
1. If the node is a data node, this is the dinension
as inplied by the decldration and the structure in
which it is a menber.
2. If the node is an assertion then its initial dinmension
S sef to be its apparent dinension as descri bed.
Following is a list of the 6 values associated with each
type of edge, _
Typé 1: <5 « 1, 0 according to whether the target is a repeating
i tent :
Type 2% 6 « -1,0 according to whether the source is a repeating
itent
Types 5,9,14,15,16,17,19,20 all have 6 « Q-
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3: Associated with an instance of a subscripted variable B
in an assertion a:
§ = (apparentidimension(a))-(apparent-dimension (instance
of B))
Thus in the assertion:
&: A(I,J) = SuM(B(X,J),K)
The apparent dimension of B is 2, the apparent dimension

is 3 ((I,J3,K) being the local subscript list) and the a<B

has § = 1
13: 4=1
7: == (numbered reduced subscripts).

This is based on the premise that if the assertion is

a:A(Ik,ooIl)g‘.f(o;o)

and the local subscript list is

m

(IleoIl'Jm'o ‘Jl)

J ,..Ji being the reduced subscripts, then the generated edge is

A(Ik,..Il)+a(Iu,Il,E.,,E)

whose dimension difference is -m,

§ for the other edges is irrelevant
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Al gorithm DI MPROP:  Di mension Propagatjon

Cal | s EXTEND_STRUCTURE

1.
e

3e

Apply the dinension propagation algorithnt |
For every node nEN, conpare VIR DIMn) with CALC*DI Mn).
| f CALC DI M n)=VIRIDIMn) check next node. If all nodes

checked - Exit.

{ CAAGD.IMn) >VIRIDIMn) }« Verify that node is either

a special name, a group or a field in an interim structure,
or an itemin a keyed pointed file. If none of the above
hol d issue an error nessage:

* DI MPROP: AN | NCOVPATI BLE DI MENSI ON HAS BEEN COMPUTED
FOR AN | NPUT- QUTPUT NODE- n!
Updat e VI RIDI M n) «-CALG DI Mn) e

If the node is not a record nor the top level in an
interimstructure go to 2 to consider the next node.
{Node is either a record or the top level of an interim
structure}

Céll EXTENDED_STRUCTURE(n, father of n, Difference

bet ween CALCIDI M n) .and VIR-DI M n)),

Return to step 2 to consider the next node*
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This subprocedure EXTEND_STRUCTURE called by DIMPROP
defines additional repeating nodes between the node and its
father in the case of a pointed file, or above the top level
in case of an interim structure. The number of nodes to be
defined is the difference between the calculated and initial

dimension.
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Algorithm EXTEND_STRUCTURE

Parameters: BOTTOM,TOP,#DIM.

Calls DRAW_EDGES

BOTTOM is the node above which additional structures have to

be generated.

TOP is its current father. It is the file node in the

case of a pointed file and empty if this is an interim

structure.

#DIM The number of additional structures and hence dimensions
required.
1. If TOP # 0 remove all current edges between TOP

and BOTTOM,
Set LOW to BOTTOM and repeat the fo;lowing #DIM
times., When done go to Step 8.
Generate a unique NEW_NAME =.'$YSGENi$YSGENi'. Let
OLD_NAME = DICT(LOW) .
Generate the text:
'new_name IS GROUP(old_name(*)); END;'
and call SAP to process it.
Generate a new dictionary entry, m with the following
field values:

XDICT+NEW_NAME

XDICTYPE+*'GRP"*

XREPTNG,XISSTARRED+]

XSONl*LOW. Sét REPTNG (LOW) , ISSTARRED(LOW)<+«l too,
Set HIGH+m and call DRAW_EDGES to draw‘necessary

edges between LOW and HIGH.
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Algorithm EXTEND_STRUCTURE (continued)
7. Set LOW+m, and return to step 3.
8., If TOP#0 set HIGH+«TOP and call DRAW_EDGES to draw
necessary edges between the newly created top item

and the o0ld file node above it.



143

Al gorithm DRAWBOGES

Draw edges between two data nodes LOW and HI GH, the second
being an i medi ate ancestor of the first,

1. . If itens belong to an interimstructure or output file
go to step 4.

2. {lnput items}. Draw a type 1 edge fromH GH to Low.

3. If LONis repeating find its rightnost field descendant s
and draw a type 11 edge froms to LOW -
Exit.

4« {Qutput itens}y Draw a type 2 edge from LONto H CH

5. If LONis repeating search its leftnost field descendant s

and draw a type 12 edge from LONto s«
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Filling Mssing Subscripts in Edges and Assertions (FILLSUB)

This nodule performs the followi ng tasks:

a)

b)

d)

e)

f)

Gener ates and fiIIs up the subscript list for each
node.

Fills up m ssing subscripts in the syntax tree for
assertionse

Generates and fills up the subscript expression lists
of all the edges.

Draws edges of types 10 and 18 connecting nodes with
virtual subscripts to assertions.

Draws edges of type 11 and 12 connected from FIELD type
nodes X to their ancestors Y, if Y is repeating and

FOR EACH.Y is a virtual subscript.

Y &) p X
4]t o fké
! |
- Ye)

For each interimvariable END. X and S| ZE. X* the system
~has built the top level structure if they are arrays

t hensel ves,in DI MPROP procedure. Now copy the synbo
attri butes Xl SSTARRED and XMAX REP from the ancestors
of X to the ancestors of END.X. Thi s information will

be used in the GFLIDCL procedure.
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g) Draw edge of type 21 from nodule nane to every file

name. This will make the schedul er put the nodul e nane

in the beginning of the flowchart,

h) Draw edges of types 24 and 25 connecting nodes X to
nodes SIZE. X or END. X,if SIZE. X or END, X has virtua
subscripts. It is simlar to the reverse edge for
edge type 3*

Task a: Local Subscript List Generation
If the node X is a daté node, its subscript list is

(displayed fromlast to first) s
(FORJEACH. A, . . . FORﬁEACH.Aﬁ‘

Where Ac,..A'is the list of the repeating ancestors
of Xin a top down order. If Xitself is repeating then

. A, « X
If the node is an assertion node then it has already

been assignéd a partial subscript list in ENEXDP* This is

the list of apparent subscripts in the assertion, i.e*

all the subscripts appearing either on the L.H S or the

R HS of the assertion. Let the assertion be of the form

a:A(lgs. . 1x) « f(..)

Let the RH S contain the subscripts ~w»«”’

m Not appeari ng
on the L.H S and hence assuned to'be reduced. Then the
partial list assigned to a is {lyx, ..l1xJm=*.3") and its
apparent dinmension determned to be d « k. .+ m As a

result of the dinension propagation process we wll have
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had recomputed a new dimension for a , C>d. This will
cause n = C-d new subscripts to be added to the list of
a which now appears as:
($Sn,..81, I, ,..3,,3p,..77)

The new subscripts are respectively named $1,..$n.
Task b: Filling Up Missing Subscripts in the Assertions.

' Consider an instance of a sﬁbscripted variable in an
assertion A(Ij,..Ilf. The calculated dimension VIR;pIM
for A yields a value 4 which should be d4%§. If this is
not the case an error‘message is produced. If n = d-j>o
we add n new system added subscripts $1 to $n, modifying
the instance into A(Sn,..$1,Ij,..Il).

Note tha’s the new subscripts are always added on the
left.
Task ¢: PFill Up the Subscript Expreséion List for the Edges.
All the edges except types 3 and 7 have been generated

with an empty subscript expression list . According to
the edge type and the known dimensions of its source and
target we generate a subscript expression list. Edges
of types 3 and 7 have already a partial list based on
their apparent appearance in the assertion. We augment
these by adding the subscripts corresponding to $1,..
$n where n = dim(A) -~ apparent dimension in instance.
Task d: Drawing Edges of Types lO.and 18.

Type 10 edges connect a target node to an assertion,
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whénever one of the dimensions of the target node is
virtual. It always reverses a type 7 edge.

410

(F—0

Consider first the simple case that ¢ contains no

reduced subscripts, then the type 7 edge appears as:

N(Uk,..Uv,..Ul) Z a(Uk,..Uv,..Ul) where we assume
that v, lsvsk is the position of the virtual repetition in
N. This means that the value of N for subscripts Un"'Ul
depends on the activation of a for the same subscripts.
However, before activating & and producing a new value to
be stored in N(Uk,..Ul) we have to ensure that the previous
value has been used by an assertion neediné N. The fact
tﬁat Uy is virtual implies that N's values for different
Uy occupy the same memory space. Thus we draw a '10°
edge:

10 :

0 (UksreeUyraUg) « N(Up,..Uy=1,..03)

In the case of the presence of reducing subscripts in
o we‘have the 7 edge:

N(UgreoUyre.Uy) 1 0(Ug,eeUyse.Uy,E E..E)
where m = number of E's, i.e. the humber oflréduced sub~
scripts. We draw then the '10' edge:

. 10
a(Uk'o-Uv'.cUl'Jm’o.Jl) “ N(Uklotuv-lpooul)
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A type 10 edge has to be drawn between N and o for
each virtual éosition in N.

Type 18 edges reverse 3 edgés and are drawn from an
assertion & to one oﬁ igs sources N corresponding to a
virtual position in N.

18

(F——=

Corresponding to a type '3' edge:

@ (Up,..Uyp) i N(TgseeTyseedy)

with a virtual position v in N we draw the edge:

N(Uyg,..U3) ¥ o (Km,..K;)
where the Kj are subscript expressions. Jk,..Jl may in
general be a permutation or even partial selection of the
Ukr..U, and Kp,..K; is an inverse of the permutation.
Also the expression corresponding to the virtual position
in N should be reduced by 1.

Assuming Jy to be U; or U;-Pf so that the virtual
position in & is the l'tﬁ), we take |

RKg= U1

K, for i # )4 Up if J, = U, for some 1lsjsk.

b
E.

Otherwise Ki
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Algorithm FILLSUB

Subprocedure used: UPDATE_ASSR,APOD_SUB_REF,CONSEQ,EXPR.

l.

2.

Consider in turn each node neN,

if ?he node is a data node construct for it the subscript
list by upwards tracing of its repeating ancestors.

If the node is an assertion it already has a partial
subscript list. We augment it by adding on the left
subséripts of the form $1,$7,.. up to the assertion's
dimension. We also call UPDATE_ASSR to fill the missing
subscripts in the syntax tree of the assertion.

Consider in turn each incoming edge e, entering the node
n. Let its type be T. We branch according to the edge's
type to different routine, each f£filling the subscript
expression list for an edge of the appropriate type. The
adding of an element is done by ADD_SUB_FEF.

Scan again each node neN which is a data node.

Consiéer in turn each incoming edge e entering n.

If the edge e is of type 7 (assertion to data node) then
for each virtual position o in the local subscript list
of the node n perform step 8.

Construct an edge of type 10 reversing the type 7 edge e
relative to the virtual position v.

Consider in turn each outgoing edge of type 3 (data nbde

to assertion).
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Algorithm FILLSUB (continued)

10. Repeat step ll. for each wvirtual position o in the local
subscript list of n.

1l. Construct an edge of type 18 reversing the type 3 edge,

relative to the virtual position o.
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Subprocedure UPDATE ASSR(ROOT)

This procedure adds missing subscripts in the syntax tree
of the assertion pointed to by the pointer ROOT.
The syntax tree is systematically scanned. For each

instance of a subscripted variable A(I I.), let 4 be the

meeTy
calculated dimension of A (as obtained in DIMPROP). If d>m
then let e = d-m and the instance is replaced by the instance
A($Ie,$ll,Im,..Il), adding the system generated subscripts
$11 to $Ie.

Subprocedure ADD_SUB_REF (SUB#,APRM,TOBACK)

This procedure adds an element to the subscript expression
list associated with an edge. It is assumed that two pointers
FRONT and BACK have been set to point respectively at the first
and last elemerts of the list. SUB# is the local subscript
number in the local subscript list of the node into which the
edge enters. A subscript expression element is allocated. Its
LOCAL_SUB# field is set to SUB#, its APR_MODE field to APRM.
This element is linked to either the back or front of the list
according to whether TOBACK is positive or zero respectively.
Since subscript expressions are listed from right to left,
adding to the back of the list means adding subscripts on the

left.
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Subprocedure CONSEQ LOW NUM

A procedure for adding "NUM subscript expression elenents
to the back (left) of the list pointed at by the pointers
FRONT and BACK respectively* The elenents refer to the | ocal
subscri pt positions: Low, Lowtl, . .Low NUWI. The APR_ MDE
of all of themis set to 1.

Subprocedure EXPR(NUM

A procedure for adding 'NUM subscript expressions of
type 4 (general expression) to the back (left) of the |ist
pointed at by the pointers FRONT and BACK.
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3.3,11 Range Propagation (RNGPROP)

This modul e cal culates the range of subscripts and dimensions
in the specification. Range, or term nation criterié must be
cal cul ated for:

1. -Each repeating data structureeg

2. Each local subscript associated with a node.

Basic termnation criteria are always associated with the nodes
{henselves. Term nation of |ocal subscripts is indicated by
references to the repeating node which has a range identical wth
that of the local subscript. A repeating node is said to have a
direct range specification if its size was specified by a constant,
by an 'END' or 'SIZE' descriptor or inplied by an end of file
encoﬁnter. The attribute vector TERMC(O CTINP) of integers
provi des range information for nodes with direct range specification
as follows: It has the val ues:

1. If the repeating variable has a constant upper limte

This limt is found in the attribute vector MAX REP(nN)
for the node n.

2 If the range is specified by an END. X descri ptor.

3. If the range is specified by a SIZE descri ptor

4. If the range is.inplied by reading an end of file.

This criterion applies to any record or group above the
record level which is last in its peer group in an
i nput file. It may apply in conbination with any of

the preceding criteria and then the preceding are
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marked in the TERMC array, but both criteria are chécked
in the generated program.

A repeating node is said to have an indirect range specifica-
tion if no direct range was specified but one can be inferred
from the assertions. For such a node n, TERMC(n)=0, but another
array RANGEP(DICTIND) will point to the node which has the same
range. Thus RANGEP(n)=m where m has a direct range specification
which was inferred from the assertions for n. We limit ourselves
to range inferences which are identical with a direct range of
another node. If both TERMC(n)=RANGEP(n)=0 after RNGPROP is
done, and n is a repeating structure, this‘is an error and will
be flagged as one.

The range specification of local subscripts is always indirect
by pointing to a node which has the same range specification.

The field RANGE in the structure LOCAL_SUB will be set to the
node number which has a range identical with that of the local
subscript.

The general process of assigning ranges to repeating nodes
and local subscripts can be summarized as follows:

a) Initially, assign direct ranges by defining TERMC for

all these nodes which have direct range specification.
Assign range pointers to all local subscripts of the
form FOR_EACH.X or declared subscripts X such that X

has been assigned a direct range.
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We start an iterative process which successively attenpts
to assign additional ranges to Iocal subscripts and

consequently to repeating nodes. Note that a node is

assigned an indirect range (by setting RANGEP) only

t hrough the range assignnment of a l|local subscript.

The rules for range propagation are the follow ng:

L \Whenever a |ocal subscript of the form FOR JEACH X
is assigned a new range, we set X to have the sane
indirect range specification, by setting RANGEP(mM
where mis the node nunber- of X« (This is reflected
in the procedu}e UPDATE" SUB)

20 For every edge of type « 1, 3, 5 7, 9, 15 16 and

the form _
AL, 1., 11) « B(..,1.G'c3..)
where | or Ig-c appears in the k'th position of B
J

then if the j'th local subscript in A has no range
specification while the k'th I[ocal subscript of B
has a range specification we assign this specification
to lg«the j'th local subscript of A This is called
forward range propagation.

3, For every edge of type =2, 3, 7 14 and of the form

B(e. .1 ,¢.17) +A(.. .1]-c], . .)

where |* or |,-c appears in the jfth position of A
we propagate the range specification of the k'th

| ocal subscript in B into the j'th local subscript
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of A. This is called backwards range specification.

In order to make the iterative process more efficient we
maintain a gqueue of nodes to be processed. The gueue is represented
by a list of elements of the type PAIR which is linked forward.

The pointers CFRONT and CBACK point respectively to the first and
last elements in the list. The procedure PUT_NODE (NODE#) adds

the node NODE# to the back of the queue, after checking first

that this node is not already in the queue., This check i? done

by consulting the integer vector ONLIST which is an auxiliary

record of the nodés which are in the queue. ONLIST(n)>0 if

node number n is in the queue. The function REMOVE_CANDIDATE
returns the node which is first on the gueue. It also appropriately
updates the CFRONT, CBACK pointers and the ONLIST array.

Another table expressing dependency of nodes is represented
by lists pointed to by  the array PROPTO(DICTIND). PROPTO(n)
for the node x whose node number is n, points to a list of all
the nodes one of whose local subscripts has the name for _EACH.X.
Correspondingly, whenever the node n is assigned a range we

rescan all the nodes which are in the list PROPTO(n).
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Algorithm RNGPROP:

1. Initialization: 1Initialize the candidate queue (represented
by CFRONT, CBACK, ONLIST) to an empty gueue. Set the table
FORPROP to be 1 for the edges along which we do forward
propagation, namely: 1, 3, 5, 7, 9, 15, 16. Similarly
set the table BACKPROP to 1 for edge types 2, 3, 7, 1l4. Also
allocate and clear the arrays TERMC, RANGEP, PROPTO.,

2. Detetmine Direct Ranges: Examine in turn each node n.

If the VARYREP field of its attribute table is zero, we
set its TERMC component to 1 (fixed-size range) . If its
ENDB field is positive we set TERMC to 2. If its EXISTB
field is positive TERMC is set to 3. Also, put each node
on the candidate queue. !

3. Examine Local Subscripés: Check in turn all the local
subscripts of node n=1,..DICTIND. Let one of these sub-
scripts have the name FOR_EACH.X or a declared subscript X,
where the node number of X is m. If X has a direct range
then we set the range pointer of the local subscript to m.
If X has no direct range we put n on the list PROPTO(m),
so that if later X is assigned a range we will reséhedule
the scanning of n.

4., This major step iterates the propagation of ranges along
edges. It repeats the following substeps until the candidate

gueue becomes empty.
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Algorithm RNGPROP (continued)

4.1

Let I be the element on the gqueue's top. Remove it

from the queue. Spread its list of local subscripts

into the auxiliary arrays ASUBT, ASUBID, ARANGE denoting

respectively the local subscript type, identity and

range. If the subscript is named FOR_EACH.X or a

subscript wvariable x'check if X has a direct or indirect

range specification. 1If one is available assign it

to the range of the local subscript.

For each incoming edge to the node I if it is one

along which forward propagation is to be performed,

carry out the forward propagatioﬁ.

For each outgoing edge of the right type perform

backwards propagation from the local subscripts of the

target node into the local subscripts of I.

If any additional local subscript has been granted a

range by the steps 4.1 - 4.3, update the RANGE field

in all the local subscripts of node I. ‘Then add to

the candidate gqueue all the nodes which are either:

a) Connected to I by forward edges which.are back
propagatable,

b) Having I connected to them by edges which are
forwards propagatable.

c) Are on the list PROPTO(I).

Return to 4.1 to consider the next element of the

candidate queue.
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Algorithm RNGPROP (continued)

5. Print a report for the ranges of the nodes and local
subscripts. This is done through the procedure REPORT_RANGES
described below.

6. This step defines some additional attribute arrays as
following:

a) If a node X which is an input field has an outgoing
edge of type 16 it means that there is a variable by
the name NEXT.X. If I is the node number of X and J
is the node number of NEXT.X, we set NXTNEED(I)=J.
Besides we also set NXTNEED(K)=J where K is the node
number of the record which contains X as its subfield.

b) If the node X, number I, is a record with an incoming
edge of type 5, it means that there is a wvariable
called POINTER.X. In this case we set

PTDTO(I)=1

c) Checking all subscript expressions in all edges (and
hence in all the assertions) we verify that the only
expressions appearing in virtual positions are of
the form I and I-1l. Also, if a virtual position which
corresponds to the node number J contains somewhere
a subscript of the form I-1l, we set

PRVNEED(J) =1
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The following procedures perform auxiliary tasks within

RNGPROP:

SEARCH_EDGE (ROOT,TYPE) - This function searches an edge of a
given type in an edge list ROOT. ROOT can be the predecessor
edge list PRED_LIST or the successor edge list SUCC_LIST of a
node. TYPE is an integer between 1 and 24 specifying the
sought edge type. If there exists an edge of this type in
the given list,the function returns a pointer to the edge.

Otherwise it returns the empty pointer null.

UPDATE_DEPENDENTS (NODE#) - This procedure is called to enter
into the candidate gqueue all the nodes whosé ranges or the
ranges of their local subscripts would be influenced by the
range just determined for the node NODE#. It enters into the
queué all the nodes which are connected to NODE# by incoming
or outgoing edges along which propagation is implied. It

also enters into the queue all the elements of the list PROPTO
(NODE#) .

REMOVE_CANDIDATE ~ This function returns the element which is

first on the candidate queue and removes it from the gqueue.
It also updates ONLIST appropriately.

GETLMN(ROOT,N) - This function returns a pointer to the element

number N of a linked .list. ROOT points to the first element
of the list.

PUT_NODE(NODE#) - This procedure adds the node number NODE# to

the end of the‘candidate queue pfovided it is not already in

the queue. ONLIST is updated appropriately.
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ENTERICRIT(NODE#,CRIT#l) - This procedure enters a termnation

criterion CRIT# which is a nunber between 1to 4 into the
t abl e TERNC(NODE#). It checks first that this node did not
have any previous criterion. |If an attenpt is made to redefine
the criterion for' a node the follow ng nmessage is issueds
RNGPROP: THERE IS A MILTI PLE TERM NATI ON CRI TERI ON FOR
VARIABLE vari abl e BOTH critl AND critj.
"variable" is the node nane.
critl and crit2 are each one of the cl auses:

CONSTANT LIMTS

END. X SPECI FI ED

SI ZE. X SPECI FI ED

END OF FILE
ENTER REQ(NODEE, TRGT) - This procedure adds the node TRGI to the

list pointed to by PROPTO(NODE#). It is called whenever the
node TRGT contains the local subscript FOR EACH x where X is

the name of node NODE#. This list will be used |ater whenever
the range of the node NODE# is determined to trigger a rescan of
the subscript list of the node TRGT. _

UPDATE SUB(J, NEW - This proceduré is called fo assign a range

to a local subscript nunber j. The range is given by NEW

which is a node nunmber whose range is identical to that of

the J' th subscript. It is assumed that the |ocal subscript

list of some node has been copied into the tables ASUBT; ASUBI D,
ARANGE and J refers to the J'th conponent of these tables. | f
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NEW=0 or NEW=ARRANGE(J) then no new information is provided and
we exit immediately. Otherwise if ARRANGE(J) >0 we have a
contradictory range specification and the following error message
is issued:

RNGPROP: THE SUBSCRIPT - sub HAS BEEN ASSIGNED TWO DIFFERENT

RANGES range, AND range, THE FIRST ONE IS RETAINED, . "sub™"

is the subscript name. "rangel and "rangez' are range
specifications of the respective nodes.
Then ARRANGE(J) is set to NEW and the variable UPDATED
incremented to mark that at least one subscript was granted a
range. If the subscript has the name FOR_EACH.X we check
whether node x(number n)has a range specification and compare
it with the range given by NEW. If the ranges are contradictory
the following error message'is printed:
RNGPROP: A MULTIPLE RANGE ASéIGNED TO THE DATA NODE node IN
ASSERTION asseréion THROUGH THE LOCAL SUBSCRI#T sub THE FIRST
RANGE Is-rangel AND THE NEWLY ASSIGNED Is-rangez.
Where "node" is the node name, "assertion" the assertion
name, “;ubf the subscript name, “rangel" and "rangez" are the
contradictory range specifications.
If there is no contradiction then the node X is 5ssigned
the indirect range pointer NEW by setting RANGEP(n)=NEW

where n is the node number of the node X.

REPORT_RANGES - This procedure prints a report for all the nodes

and the local subscripts. The report contains the node and
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subscript'names‘and their respectively assigned ranges. The
report is organized as follows:

First, under the heading BASIC RANGES we print all the
nodes with TERMC>0O, i.e. these with direct range specifications.
Next, under the heading DEPENDENT RANGES we print all the nodes
with kANGEP>O with the format:

node1 SAME AS nodez
Then under the heading:
RANGE OF SUBSCRIPTS IN ASSERTIONS
We print for each assertion node:
=assertion name-
followed by

sub range
1 EAS]

' A

' A

¢ )
suby, rangey
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3.3.12 Graph Analysis

Although by this time many logical errors in the MODEL
statements havé been detected during the construction of M,
such as the inconsistencies, ambiguities, and incompleteness
explained in the previous sections, some of the analysis can
be done only after the‘construction'of the graph is complete.

Some examples of the anaiysis performed at this stage
are as follows:

a) If a given row, i, of matrix M corresponds to a field
that has no direct descendants, i.e.

(F3) (mig=3)
then it is an "unused" field. If the unused field is an output
field, then of course there is nothing unusual. If the unused
field is a field in a source file, then a warningvis sent té
indicate that the field is not used in any assertion (Message 5).
If the unused field is an interim field then the digraph is
incomplete since there is no assertion involving the field,
and an errxor message is sent to this effect (Message 5).

b) If the node, say j, corresponding to a "keyed" input
record has no "pointing" source, (i.e. an ISAM file that has
ﬁo assertion "pointing" td its records)

(Fi) (Mij=5)
then there is no assertion telling how that file relates to
other files. The digraph is thus disconnected and therefore

incomplete. In such a case, the user is warned that the two
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or more source file are defined but that there is no relation
bet ween the two (Message 8)..

c) If a field, j, has nore fhan one assertion as its
source, i.e. there exist k and 1 such that MkKj=M =7, then a
war ni ng nessage is sent to the user indicating that the two
assertions can only hold if they are under mutually exclusive
choices, and a corresponding message is sent to the user

(Message 9) .

d) Anot her check that needs to be madei s that the targets

of all assertions may not thenselves be a field in a source
file;, i.e. if Mj=3 where i corresponds to an assertion, then
j may not correspond to a field in a source file (Message 12).
Note that if any errors have been detected during the
construction ox during the post-analysis; of the array graph,
the error count flags the Processor not to proceed to
subsequent phases, but to let the user resubmit a corrected

speci fication.
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3.3.13 Cycle Detection

Another important type of analysis performed here is the
detection of cycles that might exist in the graph. This is
necessary to give the MODEL user feedback about possible errors
regarding circular definitions.

In order to detéct the existence of cycles in the directed
graph, we perform a depth-~first search systematically scanning
all the nodes and edges. This search can be described by the
CYCLES algorithm.

Since the full analysis of cycles is done jointly with
the scheduling, the current check for cycles is only a preliminary
diagnostic check. If it fails then the graph is ﬁnschedulable.
On the other hand if it passes the test here it may still fail
in SCHEDULE.

In actual implementation of the algorithm (in the module
CYCLES) several data structures are needed, in addition to
those mentioned. They are discussed below:

SUCCL(DICTIND)PTR - Is a compact representation of the
graph. Each entry here boints to a list of edges.. We omit
from these edges all these with subscript I on the left hand

side and I-c for c>o0 on the right hand side.




167

Algorithm CYCLES (THERE_ARE): Detect cycles in the graph G.

Set 'THERE_ARE' to true ('l'B) if cycles exist.

l. Let L be an empty list.

2. If the graph is empty (no remaining nodes) - terminate.

3. Pick an arbitrary node of the graph and place it in the
list L.

4. Let n be the last element in L. If n has no successors in the
graph go to Step 7. Otherwise let n' beits next successor
(consideredbin some ordering).

5. Check if n°! already appears in the list L. If it does not,
add n' to the end of L and return tc step 4.

6. A cycle has been detected. Print trhe segment of the list
from the previous appearance of n' to the end.

Set 'THERE_ARE' to true. Return to step 4.
7. (No successors to n). Remove n from L and delete n and all

its incident edges from the graph.

If L is empty return to step 2, otherwise return to step 4.
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LIVE(DICTIND) BIN - Rather than actually deleting nodes and

edges from the graph as is called for in step 7, which is an
expensive operation, we maintain a characteristic array LIVE.
LIVE(I)=1 if the node is still considered to be in the graph.
Otherwise, if LIVE(I)=0 the node is considered to bé dead

and deleted.

IN-CYCLE(DICTIND) BIN - This characteristic array facilitates

the check performed in step 5, if a node n' already appears

in the list. Whenever a node n is added to the list, we set
In-CYCLE(n)=1. Whenever a node n is deleted we set IN_CYCLE(n)=0.
In order to test whether a node is already in the list we only
have to check if IN~CYCLE(n)=1.

CYCLE(DICTIND) BIN - Is the program representation of the 1list L.

It is important to note that CYCLES will not print out
all existing cycles, but will detect the presence of a cycle
if one (or more) exist.

Consider for example the operation of CYCLES on the graph
of figure 12. We list below the status of the list L and major

steps performed:




Figure

12
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Cycle Enumeration of

2

Sample Digrzapn
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L:- (1)
L:  (1,3) ' . '
L: (1, 3,4) (Successors are taken in increasing order)
L: (1,3,4,5)

Consider 5 s first successor, it is 1. A cycle has been
det ect ed. -

Print: 1,3,4,5
L:  (1,3,4,5,2)

. Consi der 2's successor, it is 1. A cycle is detected.
Print: 1,3,4,5,2 |

L: (1,3,4,5) Node 2 deleted
L: (1,3) Node 4 deleted
L: (1) Node 3 deleted

L: ( ) Node 1 deleted
End of algorithm
Note that when we had (1,3) for the second tinme we did not
consider 5 as a successor since it has been deleted. Thus of
the 8 existing cycles, only 2 have been printed.
Note that the order of cycles printed by the algorithmis by
| exi cographic order of the node nunbers. Since the corresponding
di ctionary has been previously al phabetized, the algorithm
prints the distinct cycles in al phabetical order
| An exanplé of an illegal cycle in a MODEL digraph woul d
be a &®B+0f circular assertions such as the follow ng:

B=C+D

D=C+A
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In this example, A depends on B, B depends on D, and D depends
on A, an inconsistent cycle. In such a case a message would
be sent to the user in the Network Analysis Report indicating
the assertions causing the problem (Message 7).

In summary, the above algorithm enumerates some of the
distinct cycles in the specification. If there are illegal
cycles, the Processor would not proceed to further stages but
would let the user re-submit a corrected specification.
Normally, however, no cycles would exist and the Processor

proceeds to subsequent phases of analysis and design.
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3,4 Summary of Errors Detected During Array G aph Anal ysi s Phase

Message 1.
ERROR( | NCOVPLETENESS) :
Need to know how to obtain field X

Vhen TSsuedl Exanprl €;

If field X is in a target file or an interim but no assertion
exi sts that describes how X is obtained and nothing can be
deduced.

Exanpl e:

X IS FIELIX...)

where X is a field in a t ar get f|Ie but no assertion exists
whi ch obtains X

| ssued by routine: FNDI SRC

Message 2: _
ERROR( | NCONSI STENCY) :

X is described nore than once [Contradictory descriptions of x|

YWheEn T SSued’ Exanprl €:

If X is described in 2 or nore data description statenents in

the sane file.

Exanpl e:

X IS FIELD (CHARC2));

X I'S FI ELD ( NUVERI CC9));

where both pertain to the sane file; or
I ssued by routine: ENHRREL

Message 3.

ERRORCI NCOVPLETENESS)
Description of Goup or Field X in Y m ssing.
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Wien | ssued/ Exanpl e:

Y (a file, record, or group) is described to have descendant X
but X is nowhere descri bed.

Exanpl e:

Y IS RECORD( X, V, U);

Y IS FIELD(.." )

UIS FIELD(...)

i.e. description of X is m ssing.

| ssued by routine: ENHRREL

Message 4s

ERRORCI NCONSI STENCY) :
The following groups of itens are circularly described:

When i ssued/ Exanpl e:

When itens are described circularly«
Exanpl e;

As X=Y+Z7?

Bs V=x+w;:

C. Y=v+U;

| ssued by routine: PRCYCLES (which is called by CYCLES enuner ation)

Message_ 5:

MARNING(PCSSIBLE | NCOVPLETENESS) .
Not hing is obtained from X

When | ssued/ Exanpl e:

Xis a field in a source file or is an interimname, but it is
never used el sewhere in the specification. -
Exanpl e5

X IS FIELD(...);

X is never used elsewhere in this specification of the nodul e
(intentionally or inadvertently).

| ssued by routine: AMANAL
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Message 6:
WARNI NG( POSSI BLE AMBI GUI TY) . :
X is given a value by assertions Al, A2, . ..; they nust be under

mut ual |y exclusive conditions.

When | ssued/ Exampl e:

More than one assertion describes how X is obtained; my be
alright if under mutually exclusive conditions.

Exampl e:
Al : SOURCE: CHOI CE. C1,Y;
TARGET: X;

o Ke
A2: SOURCE: CHOICE. C2, W
TARGET: X;

This could be alright if CI and C2 are mutually excl usive.

I ssued by routine: AMANAL

Message_ 7:

WARNI NG( APPARENT | NCOMPLETENESS) :
Fol | owi ng assertion assumed:
uX:YM

When | ssued/ Exanpl e:

V\hen

(1) X was not assigned a value by means of an explicit assertion;
and

" (2) it was possible for the Processor to find an inplicit
predecessor using the first applicable of the follow ng rules:
(a) X is in a file which is both source and target, so OLD

name is assigned to the NEW nane. '

Exampl e: NEW. X=*Q.D. X;

(b) Y has the sane name. as X, except that Y appears in one of the
source files.

Exampl e: FE. X=G. X;

where F is the target file, and G is the source file with the
same- naned fiel d.

(c¢) Y has the sanme nane as X, and Y is an interim field.
Exampl e: F. X=I NTERI M X; '
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(d) ¥ has the same name as X, and Y is in another target files
and already has a value itself.

Example: F.X=G.X:

where G is another target file with the same-named field, which
already has a value assigned to it.

Issued by routine: FNDISRC (Rules 1-4)

Message 8:

WARNING(APPARENT AMBIGUITY) :
‘Following assertion is assumed:
"x=yY"; ‘

When Issued/Example:

When

(1) X was not assigned a value by means of an explicit assertion:
and )
(2) the Processor determined an implicit predecessor using the
first applicablg of the following rules:

(just like the previous set of messages, except that here there
is more than one candidate for a predecessor, because of multiple
same~named fields in different files, so the first such candidatsz
found is arbitrarily chosen and printed to the user).

(a) (see TD).

(b) (see 7d).

Issued by routine: FNDISRC (Rules 1-4)

Message S:

ERROR(INCONSISTENCY) :
Field X is a souce-file field and cannot be the target of assertion
A.

When Issued/Example:

When X is described to be in a file that is source to the module
and X is described to be the target of an assertion.
Example: ‘
SOURCE FILES: F,...;
F IS FILE(...);
X IS FIELD (...); (in file F)
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A: SOURCE: Y;
TARGET: X;

Issued by: AMANAL

Message 10:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-POINTER.P POINTS TO A
NODE WHICH IS NOT A KEYED RECORD

When Issued/Example:

When a POINTER type assertion of the form POINTER.P=F is given,
but P is not the name of a keyed record.

Issued By: ENEXDP

Message 1ll:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-END.X POINTS TO A NON
REPEATING NODE

A name of the form END.Y is allowable only when Y is a data
name which is repeating. The above message is issued when an

"end" name X is detected which does not satisfy this requirement. -

Issued by: ENEXDP

Message 12:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-SUBSET.Y POINTS TO A
NODE WHICH IS NOT AN OUTPUT RECORD .

A name of the form SUBSET.Y is allowed only when Y is an output
record name. The above message is issued when Y does not refer
to a record name,

Issued by: ENEXDP

Message 13:

SEMANTIC ERROR: ENEXDP: A VARIABLE NAME OR SUFFIX-X IS UNRECOGNIZED
IN ASSERTION-A
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A name X which is in an assertion A is not found in dictionary,
hence not defined in the specification.

Issued by: ENEXDP

Message l1l4:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME- FOUND X POINTS TO A
NODE WHICH IS NOT A KEYED RECORD

A name of the form FOUND.X is allowed only when X is a keyed
record name. The above message is issued when X does not

refer to a keyed record name.

Issued by: ENEXDP

Message 15:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-SIZE.X POINTS TO A
NON REPEATING NODE

A name of the form SIZE.X is allowed oniy when X is a repeatlng
node. The above message is issued when X is not a repeating
node.

Issued by: ENEXDP

Message 16:

SEMANTIC ERROR: ENEXDP: THE SPECIAL NAME-LEN.X POINTS TO A NODE
WHICH IS NOT A FIELD ‘ - ' ‘ '

Issued by: ENEXDP

Message 17:

SEMANTIC ERROR: ENEXDP: 2 SPECIAL NAME-NEXT. X POINTS TO A NODE
WHICH IS NOT AN INPUT FIELD =

A name of the form NEXT.X is allowed only when X is an input
field name. The above message is issued when X does not refer
to an input field name.

Issued by: ENEXDP
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Message 18:

NAME ERROR: the following name is missing from the simplified
dictionary - X. This implies ambiguous use of X as a
simplified name.

The single component name X is missing from the simple name
dictionary.

Message 19:

ENHRREL: END FILE PREFIXES A NON EXISTENT FILE - name.

This message is issued when a name of the form ENDFILE.X is
encountered and X is not declared as a file.

Message 20:

name UNDEF:
A message produced by ENHRREL when an item "name" is listed as

a descendant of a group, a record or a file but there is no
definition of "name" itself.

Message 21:

SEMANTIC ERROR: SCHEDULE: NO RANGE DETERMINED FOR LOOP VARIABLE
AT LEVEL-M AT CYCLE-N1l, N2,...

In a strongly connected component, we have found a subscript
candidate for the loop but there is no range defined for this

subscript variable, it is an error.

Issued Dby: SCHEDULE

Message 22:

SEMANTIC ERROR: DIMPROP: THE DIMENSION PROPAGATION IS IN AN
INFINITE LOOP!

The nodes involved are also listed.

Issued by: DIMPROP



179

Message 23:

SEMANTI C ERROR: DI MPROP: THE 1/0 NODE- X HAS | NCOWPATI BLE
DI MENSI ON. THE DI FFERENCE | S: N

If node name X is in input or output file and not in a keyed
file. The dinension of X can't be extended.

| ssued by: DI MPROP

Message 24:

SEMANTI C ERROR: RNGPROP: AN | LLEGAL SUBSCRI PT EXPRESSION I N A
VI RTUAL POSI TI ON.  SUBSCRI PT 2S: X IN A DEPENDENCY OF T ON S

|f there is an edge fromnode S to node T and X is a virtua

subscript position of node S, the subscript expression of X

should be either | or '2-1. O herw se, above nessage will be
i ssued.

| ssued bys  RNGPROP

Message 25s

SEMANTI C ERROR: RNGPROP: THERE IS A MJULTI PLE TERM NATI ON
CRI TERI ON FCR VARI ABLE- X BOTH Tl AND T2

I n range propagation procedure, we find that different (not
equal) multiple termnation criterions, Tl and T2, are
assigned to variable X

| ssued by: RNGPROP

Message 26:

WARNI NG: RNGPROP: THE SUBSCRI PT-S HAS BEEN ASSI GNED TWD
DI FFERENT RANGES: R AND R2 THE FIRST ONE IS RETAI NED

I n range propagation procedure, we find that both ranges R
and R2, equal or different, are assigned to subscript S. W
will arbitrarily choose R as its range,

| ssued by: RNGPROP
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Message 27:

SEMANTIC ERROR: SCHEDULE: A CYCLE DETECTED

In SCHEDULE procedure, if there is a strongly connected component
which has more than one node and at least one node doesn't have
available_subscript candidate, it is a cycle. The node names

in the strongly connected component are all listed.

Issued by: SCHEDULE

Méssage 28:

SEMANTIC ERROR: SCHEDULE: NO CANDIDATE SUBSCRIPT IN CYCLE

In SCHEDULE procedure, if there is a strongly connected component
which has more than one node and every node has an available
subscript candidate but we just can't find a subscript candidate
out of them, it is a cycle. The nodes in the strongly connected
component are listed.

Issued by: SCHEDULE

Message 29:

WARNING: SCHEDULE: A RANGE CONFLICT IN NODE X BETWEEN THE ALREADY
ASSIGNED RANGE: R1 AND THE NEWLY IMPLIED RANGE: R2

In a strongly connected component, if we find there is a sub-
script candidate for the loop and the range of the subscript
candidate in different node is conflicting, this possibly is
an error.

Issued by: SCHEDULE
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4. AUTOMATIC PROGRAM DESIGN AND DETERMINATION OF SEQUENCE AND
CONTROL LOGIC

This section is concerned primarily with the creation of
a flowchart for the specified program based on the array graph.
It also performs additional checks of consistency and produces
messages and a flowchart report. The constructed flowchart is
used in the subsequent code generation phase to generate the
program for the MODEL specification.

This phase consists essentially of three parts described
in respective subsections The fi;st part is the SCHEDULE
procedure which creates a preliminary schedule table. It
consists of two recursive subprocedures SCHEDULE_GRAPH and
SCHEDULE_COMPONENT which essentially order the nodes in the
array graph in:zo a linear order to which it adds iteration
control statemants. This linear order can be interpreted in
the next phase, generally, entry by entry, to create the
desired program. SCHEDULE also checks for circular definitions
which are reported as errors.

The second part consists of fhe procedure ?LOﬁOPT. Its
task is to process the schedule produced by SCHEDULE and
reorder the entries as appropriate to enlarge scope of the
iterations, thereby producing a flowchart for a more efficient
program.

| Finally, the third part consists of the procedure GFLTRPT
whose task is to produce a flowchart report that is available

optionally to the user.
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(1) The P(n) local subscript in node n,lp(n),is still
avail abl e.

'(2) In any edge N(In, . . IJ.)'*'M Js, . . JjJ where the J
| C-c]

- . .. /\ T e [
are expressions involving I~r». 1, we require that memj—lp(n)

i.e. the position corresponding to the loop variable is consistent

in all 'edges. Since in the assertion or dependency corresponding
to this edge the loop variable is to be identified with *g5¢,y.

- we require that | occupies the position allocated to the
P(n) -

|l oop variable in M

If we cannot find a candidate identification satisfying
(1) and (2) the graph cannot be schedul ed and we issue an error
nmessage.

O herwise we set all the IDWTH fields of the |ocal subscripts
Ipi’n)'for each nGN to 1 thus noting that these subscripts have

been identified with the |oop variable at |evel 1. We al so
renove all edges of the form |

N(Im .. 10 )«e(. ~elp(n)-2%ee} f°7 °2° since they inply
dependency on values from the previous iteration of the sane
| oop. Denoting the graph thus nodified by Gl, Which'rray have
ceased to be strongly connected by the removal of the edges,
\;ve cal | S=SCHEDULE__GRAPH(G]',1+d) to Schedule G. Let us denote
the newly introduced |oop variable by V-}\- Then the schedul e
returned by the current procedure is: for v* do® S end {v”"}.

When the program will be generated, all the subscripts

whose IDWTH field has been set to 1 will be replaced by VA
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4.1.3 Representations

A graph is‘represented.by a list of elements
each having the following fields:

NXT_GNODE - A pointer to the next element in

NODE_ID - The node number (in the directory)

SUXL -~ Pointer to a list of edges connecting

to its successors. Initially this is

of type GNODE,

the list.
of the element.
this element

identical to

the SUCC_LIST list. But as the process proceeds

some of these edges are removed from this list.

A strongly connected component is represented by the

structure COMP having the fields:

NXT COMP - Pointing to the next component.

NODE_LIST - Pointer to a graph which comprises the component.

A schedule is a list of schedule elements each of which is

either a node-clement or a for-element.

A node-element is declared as a structure NELMNT having

the fields:

NXT_NLMN - Pointer to the next element in the schedule.

NLMN_TYPE - An integer, always equal to 1 for node elements.

NODE# - The node number.

A for-element is declared as a structure FELMNT having

the fields:

NXT_FLMN - Pointer to the next element in the schedule.

FLMN_TYPE - Always egqual to 2, denoting this is a for-element.
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ELMNT_LIST - Pointer to a schedule which is the scope of

the for-loop.

FOR_NAME - The node number of the loop variable which can
be a FOR_EACH.X and then FOR_NAME is the node
number of X, or it can be a declared subscript.

FOR_RANGE - The node number specifying the range of the

loop variable in the loop.

4.1.4 The Main Program of Schedule

The main body‘of SCHEDULE starts by constructing a graph,
i.e. a linked list of structures of the t?pe GNODE representing
the complete épecification. Each I=l,..DICTIND is allocated
an element structure with its NODE_ID field equal to I and its
SUXL field pointing to a copy of the list SUCC_LIST(I). We
also set the array NODEP(I) to point to the graph's element.
This is necessary since the edges in SUXL refer to node numbers
which we should translate to graph's elements. We then call
once:

FLOWCRT=SCHEDULE_GRAPH(MAING,4)

where MAING is a pointer to the complete graph, 4 is the
iﬁitial level, and FLOWCRT is a global pointer to the schedule
which later procedures use to retrievé the schedule.

4.1.5 Finding Strongly Connected Components

One of the basic processes in the procedure is that of
finding maximal strongly connected components. We follow

Tarjan's algorithm based on depth first search as described
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in Ahoy Hopcroft and U |l mn's book: The Design and Anal ysis
of Algorithms. The main part of the algorithmis the recursive

procedure SEARCfQ(V) which is presented with a node v and

identifies all the strongly connected conponents reachable from
V. It utilizes the arrays DFNUVBER, LOWLINK which are preset
to $ for all nodes, the global variable COUNT and a stack
called STACKo In our inplenentation we also enploy an array
ONSTACK which is positive for node n if it is currently on the

st ack.

STRONG( G is a function which accepts a graph as a paraneter
and returns a sorted list of its strongly connected conponents.

The procedure SCHEDULE_GRAPH has been descri bed above.



188

Algorithm SEARCHC(vV)

1. COUNT: = COUNT+1l, DFNUMBER(v), LOWLINK(v): = COUNT.
Put v on the stack.

2. Repeat the following substeps for each node w a direct
descendant of v.

2.1 If DFNUMBER{(w)=o0 this is a new node not searched before.
We call SEARCHC(w) and then let LOWLINK(vV)=min
(LOWLINK(v), LOWLINK(w)).

2.2 Else, if DFNUMBER(w) >0 and w is on the stack, then let
LOWLINK(v)=min (DFNUMBER(w), LOWLINK(v)).

3. If LOWLINK(v)< DFNUMBER(vV) return.

4. Else, LOWLINK(v)=DFNUMBER(v) and this is a root of a strongly
connected component. All the elements (above and including v)
on the stack are successively unstacked and linked together
into a list - a subgraph which is defined as a component.
This component is placed at the head of a list of components
pointed to by the variable COMP_LIST. 1In addition we maintain
a running component number COMP_CNT and set the array
COMP# (W) =COMP_CNT for each w in the current component.

Note that the algorithm returns a list of components which

‘are ordered consistently with the dependency order.
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Algorithm STRONG G

1.

3*

Clear the stack, the conponent count, the list of conponents
and the variable count. For each veG set

DFNUMBER( V) =0
For each veG such that DPNUMBER(Vv)«o call SEARCHC(v) to add
t he conponents reachable fromv to the top of the conponent
l'ist,
Del eté from;the graph all the edges which connect nodes in
di fferent conponents* .

Return as a.result the conponent list»
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Algorithm SCHEDULE.COMPONENT(G,1)

' l -

For each node ne€eG compute the number of free local subscripts.
These are local subscripts whose IDWITH=C which implies that
they have not yet been identified with any loop variable.
Let MINFREE be the minimal number of free subscripts over
all neG.
If MINFREE=O and |G|={ we return a schedule of one node
element containing the single node in G. Exit.
If MINFREE=o0 and ]Gl>l this is an error. The message:
SCHEDULE: A CYCLE DETECTED is printed and then the procedure
PRINT_CYCLE is called to print the remaining cycle. Return
an empty schedule and exit.
Otherwise we have to search for candidate identification.
We start by constructing in the array stack (denoted here
by S) a list of the graph nodes such that fér every i>1 the
node S{i] has an edge incoming from some S[j] j<i. This is
done by the following iterative process:
4.1 Let S[4] be the first node in G. Let I=1l.
4.2 Repeat the following steps és long as I<|G|.

4.2.1 Let n:=s[I].

4,2.2., For each descendant of n which is not already

on S, add it to S.

4.2.3 I:=I+l1, return to 4.2.1.
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Algorithm SCHEDULE_COMPONENT (continued)

5.

10.

1l1.
12,

13.

14.

Let IDF be the node S[4]. Let POS range'over.all the free
subscripts of IDF., Repeat steps 6-13 for each available
subscript.
Clear POSITION for all nodes in the graph, and then set
POSITION [IDFJ]:=POS.
Repeat steps 8-12 for I=4 to |G]J.
Let n:=S[I], POST=POSITION(n) and consider each edge from
node n to any other node t.

t(Im,..Il)+n(Es,..El)
Consider the subscript expression Eposyg which corresponds to
the identified position in n.
If Epgpgg is not a simple expression (Ij[~c]) or if the
subscript is reduced then POSJ cannot be.identified with a
loop variable for the strongly connected component, exit to
step 14 to consider the next value of POS.

If E =Ij[—c] for some X j<m, check if POSITION [t]>o.

POSJ
If POSITION [t]>0 and POSITION [t]#j there is a conflicting
identification in the subscripts of t. Exit to step 1l4.

If POSITION [t]l=o set POSITION [tl:=3.

Return to step 8 for the next I.

Arriving here means that a complete identification was
successfully performed. Go to step 16.

The identification starting with position POS for node IDF

has failed. If another free subscript for IDF is available

set POS to it and return to step 6.
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Al gorithm SCHEDULE_COMPONENT (continued)

15.

16.

17.

18.
19.

20.

21.

Arriving here means that no identification is possible. The
message: "SCHEDULE: NO CANDI DATE SUBSCRIPT IN CYCLE" is
printed, followed by a list of the nodes in the graph

Ret urn the‘enpty schedul e and exit.

A sucéessful identification! We proceed to defernine name
and range for the loop variable and to delete edges which
are of the form

A(,.. 1, .. 1. )«B,..1-¢c,..)
pI p
where p is the identified position of A
Al l ocate a for-elenment for the schedule with enpty FOR JRANGE,
FORENAME fi el ds. '
Scan each node in the graph, nzG Let p=PCSITIONnl .

Exam ne the |ocal subscript I . Set its IDNTH field to 1,
p P
the | evel paraneter. If I has a range and FOR_RANCE is
enpty yet set FOR RANGE to the range of |
— P

| f FOR_RANGE Wgs a previous value which is different than

the range of I , print the follow ng warning nessage:
SCHEDULE: A RANGE CONFLI CT | N NODE node-Tane
BETWEEN THE ALREADY ASSI GNED RANGE: range. AND
THE NEWY | MPLI ED RANGE: range;

"node_Jr_larre" is the nane of node n.

"range," and "range”™" are respectively node nanes whose range

Is assumed by the | oop variable and the | ocal subscript |
. ) . P
If I has a range and FOR NAME is enpty yet assign to

FOR &ANE the name associa{gd with I p/ provided it does not
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Algorithm SCHEDULE_COMPONENT. (continued)

coincide with the names assigned to the loop variables of
the enélosing loops. These names (or node numbers of the
names) are kept in the array PAST;NAMES.
22. Delete from the graph any edge of the form
T« )“R(Eg, . E s E )
where EP is of the form I, -c for some k and c>o. These
correspond to dependencies on values created during the
previous iteration and hence should be ignored.
23. Repeat steps 18 to 22 for all nodes in the graph.
24. If FOR_NAME is still empty define a system name of the
form $1I1.
25, Save FOR_NAME in PAST_NAMES(I).
26. If FOR_RANGE is empty issue the errér message:
"SCHEDULE: NO RANGE DETERMINID FOR LOOP VARIABLES
AT LEVEL =~ AT CYCLE - "
followed by a printout of the component.
27. Call SCHEDULE_GRAPH (G,1+1) to furher schedule the component.
| Set the field ELMNT_LIST of the for-element to the schedule
returned by SCHEDULE_GRAPH.
Return as a result the for-eiement.
The following subprocedures are defined with SCHEDULE _
COMPONENT:
PRINT_CYCLE: Prints the names of all the nodes in the

current component.
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Algorithm SCHEDULE_COMPONENT (continued)

CONCATENATE (A,B): Concatenate the list B to the end of
the list A. A and B are pointers to general lists.
FREE_PPAIR_LIST (LIST): Frees the space allocated to a

list of PPAIR structures pointed to by LIST.
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4.2 Loop Optimization (FLOWOPT)

The schedule generated by SCHEDULE was designed for
correctness with no considerations for efficiency. 1Its tendency
was to split large loops into small ones wherever possible.
Considering efficiency it is much more economic to have maximal
loop scopes. Thé advantages are not only in reduced overhead
which is involved with the maintenance of separate loops but
also in possible saving in ﬁemory space.

Thus by merginé the two loops:

for J do C(J) = A(J)*2
for J do B(J) = A(J)+C(J)

we would reduce the required dimension of C if it is an

interim variable not used elsewhere:

H

or O do

|
|

C = A(J)*2
B(J) = A(J)+C

nd J

o

The main part of FLOWOPT just calls on the recursive
procedure OPTIMIZE_LIST (FLOWCRT, 1) with parameters FLOWCRT
pointing to the complete schedule, and 1 being the initial

level.
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4.2.1 OPTIMIZE_LIST (LIST, LEVEL)

This procedure optimizes a schedule by recursively

performing two operations on it:

(a) .Omitting all nodes which imply no action and loop
consisting exclusively of such nodes.

(b) Merging every two céntiguous loops whose loop
variables have equal ranges and where the subscript
positions identified with the loop variables are the
same in the two loops.

Since a schedule is a structured object we use a function
FORM_LIST (ELMNT_LIST) which spfeads a schedule ELMNT_LIST

into a flat list of nodes. These lists are all represented

by the array NXTLINK which contains for a node n its successor
in the flat list. FORM_LIST returns as a value the node number

of the first element in the flat list.
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Algorithm OPTIM ZEMLI ST (LI ST/ LEVEL) -
1.

Let CURRENT point to successive elenments in the schedul e
list. PREVIOUS points to the previous el enent,

If the current element is a, node element go on to step 13
to continue scanni ng the schedul e*

The current elenent is a for-element. Let NEXT point to
the next elenent in the schedule* Call FORMALIST to form
a flat list of all the nodes within the scope of the for-
el ement CURRENT. Let CLIST be the first node in the flat
listo _

Scan the |i$t pointed to by CLIST. |If any of the nodes in
the list is either an assertion or a data item (field,
group, record or a file) in an input or output file, then
the list should not be cancell ed. Continue at step 6

O herwise the for-list is cancelled. W skip the for-elenment
pointed to by CURRENT and omt it fronlthellist SCHEDUL E*
G on to step 13 to conti nue scanning the schedul e«

Test if the elenent pointed by NEXT can be nerged with
CURRENT, A boolean variable MERGE is set to 'false' if
such a nmerge is inpossible. The testing is done in st eps
7-10. |

If NEXT is enpty or points to a node-elenent, or points to
a for-elehent with a range which is different from that

of CURRENT then MERGE is set to 'false'. Go to step 12

to advance CURRENT and NEXT to the next two el ements.




198

Algorithm OPTIMIZE _LIST (continued)

8.

10.

11,

Form a flat list out of the nodes of the NEXT element.

Let NLIST be the pointer to the flat list.

Run over the nodes in the NLIST. For each n € NLIST

set POSITION (n) to the position of the local subscript

which is identified with the loop variable at level LEVEL.

This is a local subscript whose IDWITH field‘is equal to

LEVEL.

Consider now all the nodes in CLIST (the list of nodes in

the current for-element). Let n &€ CLIST. Find the position

of its local subscript corresponding to the level LEVEL.

Let it be POS. Consider evéry edge
m(...Ip,..)*n(Es,..EPOS,..El)

where m € NLIST, p=POSITION(M).

Verify that E =Ip[—c]. If this is not the case set

POS
MERGE to 'false' and go to step 12. This check confirms
the consistency of the loop variable positions between the
variables in CLIST and thé variables in NLIST.

If the tests have been passed for all edges from CLIST to
NLIST, the two for-elements can be merged. This is done

by calling the procedure CONCATENATE which concatenates the
lists of elements from the current for-element and the

list of elements from the NEXT for-element. Then merge

the flat lists CLIST and NLIST. Set NEXT to the element

following the element just merged and return to step 6

trying to increase the scope of CURRENT even farther.
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. Algorithm OPTIM 2E_LIST (continued)

12.  No nore nerges of contiguous elenents are possible., Cal
OPTIM ZEJLI ST (CURRENT, LEVEL+1) recursively to optim ze
the schedule nested within thé CURRENT for-elenment wth
l'evel LEVEL+L.

130 Advance CURRENT to the next element. If the schedul e
scanning is not cohplete return to step L Oherwise exit.

Subpr ocedur es:

FORMVALI ST (ELEMENT): Fornms a flat list of all the nodes
enclosed within the schedule ELEMENT. Al the el ements in

the schedule are scanned. |If an elenment is a node el enent

it is added to the list. If it is a for-element we call
FORMALI ST recursively with its contained elenment list and
append the returned flat list to the accunulated flat |ist.
CONCATENATE!(A,B): A procedure whi ch concatenates two el ement

|ists,
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4.3 The Flowchart Report (GFLTRPT)

Thi s nodul e produces a report of the schedule. The report
includes a line for each node delineating its type, name and
attributes and the action associated with it. In addition it
describes the iteration structure working the opening and
cl osing of | oops.

The actuél task is perfornmed by the recursive procedure
PRI NTASCHEDULE. The main part of GFLTRPT produces a title
line with captions heading the appropriate colums of the
report and then calls P.RINT"SCHEDULE with a pointer to the ful
schedul e, given in FLOACRT.

PRINTASCHEDULE (ELEMENT): This procedure prints the report
of the schedule pointed by ELEMENT. In general this schedule
is a list of elements. Al node-elenents are printed directly.
For for-elexae.nt the report includes statenents describing the
openi ng and cl osi ng of the top loop associated with this top
element. W then call PRI NTA"SCHEDULE recursively to report
the elements on the higher |evel.

The operation of PRINT_jSCHEDULE is again split into severa
subt asks, and can be described as foll ows:

1. Consider each element of the elenment list pointed to

by ELEMENT.
2, If the elenment is a node-elenent call PRI NT_NODE to
' print a report line for the node. If the

node is a for-elenment, call PRINT_FOR.to report
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the opening of a |oop, call PRINTJSCHEDULE (ELEMENTJLI ST)
to report the schedule within the loop's scope, and
then call PRINT_J3ND to report the closing of the | oop.
3. Consider the next elenment in the schedule. If the
schedule is not finished return to step 1. COtherwise
exit.
Each line in the report consists of the following fields
arranged sequentially: _
CC - for controlling the skipping of |ines.
NCDE# > The node's nunber ,
NAME - The node's nane. |
DESCRI PTION - The type of the nqde.
EVENT - The action associated with the node,
PRINTQIOR: This procedure reports the opening of a |oop
corresponding to a given for-elenent* The line printed has in
its DESCRIPTION field the nmessage | TERATION and its EVENT
field iss
FXiL nane UNTIL term nation*
Here "nane" is the |loop variable nane. "Term nation" is the
term nation condition. Iflthere IS no determ ned terninatioh
condition it assunmes the val ue:
VWHO KNOWS?  ( ERROR)
signifying an error.
PRI NT"SNDs Thi s procedure prin;s a report line with a
DESCRI PTI ON fi el d: END | TERATI ON. FOR narme

where "nane" is the name of the |oop variabl e*
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PRINT_NODE: This procedure prints a report line for a node.

The NODE# and NAME fields are respectively the node's number
and name.
DESCRIPTION assumes one of the fol1owing values:
RECORD IN FILE file
ASSERTION
MODULE NAME
FILE
SPECIAL NAME
GROUP [IN RECORD recordé] [IN FILE filel
FIELD [IN RECORD record] [IN FILE file] [TARGET OF
AsssRTIowz assertion]
DECLARED SUBSCRIPT
FREE SUBSCRIPT
SYSTEM SUBSCRIPT
STORAGE DEVICE OF TYPE: type
Here "file" stands for a file name.
"record" stands for a record name.
"assertion” stands for an assertion name.
"type" stands for a device's type.
The EVENT field is usually blank except for the following
cases: '
For an input record: READ RECORD
For an output record: WRITE RECORD

For a module name: PROCEDURE HEADING
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For an input file: OPEN FILE

For an output file: CLOSE FILE
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5., Code Generation

This phase of the Processor proceeds after array graph
construction, specification analysis, program design, and
schedule creation have been completed. Recall that had there
been user errors during syntax analysis or specification analysis,
then neither the flowchart creation nor the code-generation
ph;ses would be reached. As seen in Figure I3 the code
generation phase accepts as input the schedule tables produced
in the previous phase, and produces as output a complete PL/1l
program ready for compilation.

5.1 Generation of PL/l Program

The control. program for generating the complete PL/1l program
(GE NPL1l), as shown in Figure 13, accepts the tables of attributes
and the schedule table created during the previous phase as
input. This phase produces, as output, the complete PL/1l program
and a code-~generation report. The files to which code is written

are described below.
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Schedule . PL/1 Program

\
Attributes /

Table Code Generation Report

CODE GENERATION

Figure 13

Overview of the Code Generation Phase
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Generating the PL/l program code, as can be seen in Figure
14, is accomplished by processing the schedule list described
above and invoking the appfopriate code-generation sub-routine.
Algorithm CODEGEN describes the generation of PL/1l code. The
executable PL/1l code is generated by examining the elements
of the schedule one at a time; and invoking the code-generation
roéutine that corresponds to the type of operation. These
include code-generation routines for input-output operations,
for invoking and writing of object assertions and for generating
control structures.

The executablevPL/l code is written out to the "PLIEX"
file, while assqciated PL/1 "ON" conditions are written to thev
"PLAION" file. The PL/1 procedures (which contain assertions
plus functions) are written to the PLAPROC file. The PL/l code
for declaring the object data items is written to a "PLIDCL

file.
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PL1EX
) PL/r PL1ON

Schedul e — N Program PL1PROC
- Generate PL/1 PR OO PLi DCL

/ COde \
\
Attribute ' Code Generation

Tabl es Report

CODEGEYN ' CGCenerate PL/E

Decl ar ati ons
(GPL1DCL)

CGenerate Ilterative CGener at e Code

Code for the Execution Code
( GENDO, GENEND) of Statements ( GENI OCD)
CCENASSR)
Figure {4

Corrpo'ner)ts of Generating PL/I1 Code
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5.1.1 Generate PL/t P'rc')gr'am. (C(DECBN)

This procedure generates the code for the PL/£ program
It takes care of all parts of the generation except for the
decl arations of variables and files which is done by GL10.Q..
lnitially we open all the output files and then generate
the follow ng st andard instructions which open every generated
pr.o.gram These instructions are routed to the file PL1EX:
ALLOCATE ERROR, ACC_ERROR
ACC_ERRROR »' 'O B
ALLOCATE $ERR LAB
$ERR LAB « END_PROGRAM
The follow ng declarations are routed to PL-lDCL:
DCL (ERROR ACC _ERR, NOT_DONE) CTL BIT(I)
DCL $ERR LAB LABEL. CTL
The follow ng instructions ére sent to PL1ION:
ON ERROR

BEG N
| F ERRORF_BIT THEN WRI TE FILE (ERRCRF)

FROM ( $ERRORI3UP)
ERROR - "I 'B
GO TO $ERR_LAB
END
ERROR_RESTART:
The procedure GENERATE (FLOACRT, 0) is qalled then to

perform the actual generation.
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5.1.2 A Scan of the Schedule and Generation; GENERATE(LIST. LEVEL)

This recursive procedure scans the schedule given by the
list of elenents LIST at level LEVEL, It calls |ower |eve
procedures to process the different fypes of el enents.

1. Scan each elenent of the list LIST.

2. If the elenment is a node-el ement call GEN-NODE. Return

to 1 and repeat until the list is all enpty.

30 If the elenent is a for-elenent do the follow ng;

3.1 Call CGENDO to produce a code for opening a |oop.
3.2 Call GENERATE recursively with the list of the
el ements within the |loop's scope and |level * LEVEL-H .
3.3 Call CGENEND to generate the termnation of the | oop.
5.1.3  Open_a Loop  (GENDO)

This procedure produces the code necessary in order to
open a loop. The |oop variablé nane FQySAME and the term nation
criterion are taken from the fields FORENAME and FOR_RANGE in
the for-elenent being scanned.
The follow ng instructions always precede each |oop opening:
ALLOCATE ERROR, ACCIBRROR
ACCJERROR « 'OB
ALLOCATE $ERR LAB
| $ERR LAB « LOOF JENDc
The Mc™ following LOOP_END is a unique number assigned to the
| oop. The purpose of -these statenments is to ensure that an

error occurring within the loop control will be directed to
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END_LOOPc which is a label immediately preceding the loop's end.

We then construct the do-statement itself. If the termina-
tion criterion given is that of a fixed upper limit or given
through a SIZE variable, the string DO_ST is initialized to
DO name = 1 TO upper
where "upper" is either a constant number or a variable of
the form SIZESX.

Thus the two basic forms for the loop dpening are according
to the termination criteria:

a) If an upper limit is specified then:

DO name = 1 TO upper [WHILE (condition) ]
b) An upper limit is not specified:
name = O
DO WHILE (condition)
name = name+l
Here "name" is the loop variable. "Condition" is the termination
condition in case b and may contain additional conditions in
both cases.

If the range is specified by an END.X descriptor, we add
NOT_DONE to the condition and the following statements before
the loop's beginning:

ALLOCATE NOT_DONE
NOT_DONE = '1'B
NOT_DONE will be set to 'O'B whenever the appropriate END.X

variable is set to 'true'.
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If there is an end-of-file condition associated with the
iteration, either as the main termination condition, or because
this is an iteration on an input record or group above the
record level which are last in their peer group, we add:

— ENDFILES{ to the condition "condition®.

5.1.4 Close a Loor (GENEND)

This procedure produces the code needed to close a loop.
First we check all the nodes that have been accumulated in the
list PREDLIST.. This list, local to each invocation of GENERATE
accumulates all the variables which are defined in the loop
and whose dimension corresponding the loop variable is virtual.
The actual range declarea for such dimension is 2 and in each
‘iteration we compute (or read) A(...,2,..) and may refer to
the previous element as A(...,1,..). Wnen the loop is done
we should perform the transfer: A(...,1,..) =2a(..,2,..).
Elements are put on the list PREDLIST by the procedure CHECK_VIRT
which is called whenever processing a node which is a field or
a group.

After producing a sequence of these shifting operations
we produce the label:

LOOP_ENDc:
where "c¢" is the unique count associated with the current loop.
If the termination criterion for the loop was through an END.X
descriptor we also produce the code:

IF END.X = SELECTED THEN NOT_DONE = '0O'B
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This has to be done at the end of the loop since the
determination of END;X at a given iteration determines whether
this iteration will be the last.

After this we produce the following statements:

$TMP_;ERROR = ACC_ERROR

FREE ERROR, ACC_?RROR

FREE $ERR_LAB

If $TMP_£RROR THEN ERROR, ACC;ERROR = '1'B

If the termination criterion was through an END.X descriptor
we also produce:

FREE NOT_DONE

5.2 Code Generation for a node (GEN_NODE )

This procedure generates the code associated with a single
node. It branches according to the type of the node to
different parts dealing with the different types of the nodes.
In the following "node" always refer to the node's name.

5.2.1 Program Heading

If the node is the module name (type MODL) we produce
the code:
name: PROCEDURE OPTIONS (MAIN)
This code is routed to the file PL1DCL.

5.2.2 PFiles

If the node is a file node (type FILE) we generate first

three names. "File stem" is the file name, removing the

"NEW" or "OLD" prefixes if there are any. "Name" is the original name
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and "file suff" is the file-stem with the addition of S for

source only files, T for target only and U for update files

(both source and target).

1.

If the file is an input file we produce the statement:
OPEN FILE (file suff)
If the file is a sequential input file and an end-of-file
is explicitly mentioned by the user or needed to terminate
iterations we produce the declaration:
DCL ENDFILES$file stem BIT(1l)INIT('O'B)
routed to PLIDCL. The statement:
ON ENDFILE (file suff) ENDFILES$file stem = '1'B
is sent to PLI1ON,
If the file is input sequential and unkeyed we send the
declarations:
DCL name_S CHAR (length) VARYING INIT('"'")
DCL name_INDX FIXED BIN
"Length” is the maximum length of records in the file.
"Name_S" is the name of a buffer into which records in
the file are read. "Name_INDX" is a variable used to
scan the buffer for unpacking input fields.
If the file is an output file we produce the statement:

CLOSE FILE (file suff).
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5.2.3 Records

If the node is a récord étype RECD) we call GENIOCD
to produce the code for the reading and writing of recorxds.
We also call CHECK;VIRT to check if the record has a
virtual dimension.

5.2.4 Groups and Fields

To process groups and fields we call the procedure GENITEM.
We also call CHECK_VIRT to find if the node has a virtual
dimension.

5.2.5 Special Descriptors

We check if the node has a virtual dimension. Then if the
node is of the form SUBSET.X we produce the code

If SUBSETSX THEN GO TO END;}OOPC
"c" is the unigue count associated with the current loop.
This will cause transfer of control to the end of the current
loop if SUBSETS$X has just been set.

5.2.6 Assertions

If the node is an assertion we call the procedure GENASSR
to produce the code for an assertion.

If the type of the node is not one of the recognized types
the following error message is generated:

CODEGEN: AN ILLEGAL TYPE - TYPE: type FOR NODE: name
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5,3 Auxiliary Procedures Wthi n- CODEGEN

Following is a description of some auxiliary procedures
wi t hi n CODEGEN/
5.3.1 Checking a Virtual Dinension ,;(CHECK_VIRT)

Thi s procedure checks a given node for being a repeating
node with virtual dinmension* If it is a virtual ly di mensi onal
vari abl e, the physical range assigned to it is either 1 or 2
dependi ng on whether there is an expficit reference to A(...I-1)
if Ais the dinensional node,

If the node is virtual and a previous value is explicitly
required, the node is added to the |ist PREDLI ST.

Consequently, before the loop's end the follow ng statenent
wi Il be produced:

A<. . .1) - A<. .*2)
for each A which was placed on PREDLI ST.

5.3.2 Constructing an _Instance of a_ Subscripted Variable (CRSVAR)

This procedure creates the text of a subscripted variable
for the use of ot her code generation procedures. This
procedure is not used in assertions. The list of |ocal sub-
scripts of the node is scanned. For each phyéical subscri pt we
retrieve the IDWNTH field which gives the Ievef of the | oop
variable identified with this subscript. The array LOOP_VARS(1)
cohtains for level 1 the nane of the loop variable on level 1,
pl aced there by GEN DO. Therefore for each physical dinmension
nunber | we take LOOP_VARS ((LEVEL+1);(CFFSET+D) as the subscript
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constructed. OFT<ET is an additional parameter enabling a shift.
For virtual dimensions we usually take the "current" value which
is 1 or 2 according to whether there is an explicit requirement
for the previous value of thé same variable; A parameter

named CASE specifies whether the last subscript is required

to be the previous (caseéli; the current (case=2) or the next
(case=3). Therefore if the rightmost subscript is physical we
use  sname-1, sname or sname+l as the subscript where "sname"

is the subscript according to the LOOP_VARS stack. If the
rightmost subscript is virtual we use l, 2, or 3 according to
the parameter CASE.:

5.3.3 ADD_TO_WHILE (COND)

This procedure adds a condition to the string by the name
of WHILE_COND which accumulates all the conditions to be
included in a DO statement. If the string is empty 1t is set to
COND. 1If it contaf#®’ previous conditions we add to it the
string 'L'{¥ COND. Blen
5.3.4_$ R

This procedure cdnvertsﬁa qualified name which contains
reserved prefixes. If RES is any reserved prefix then the
name RES.X should be converted to RES$X. To be more precise:

Names of the form NEXT.X are converted to X.

Names of the férm NEW.X ‘and OLD.X are converted to

NEW_X and OLD_X respectively.

Names of the form RES.X, where RES is any of the prefixes
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SIZE, END, ENDFILE, SUBSET, POINTER, FOUND, LEN are

n N
converted into RES$X. Where X is X in which each appearance
of a dot: '.' has been replaced by an underline: '_'.

5.4 ©Packing and Unpacking of Input/Output Fields (GENITEM)

This procedure is called for nodes which are input/output
fields and may require packing and unpacking of information into
or from an input/output buffer. The code for reading or
writing the buffer is generated in association with the record
node. After defining the names of the buffer and of the
packing counter, and checking whether packing or unpacking is
actually reguired the procedure calls an auxiliary procedure:
FIELDPK which generates the code itself. For output fields a
special check is made to determine whether the current field is
the leftmost in the record in which cas: a code for initializing
the packing counter is produced.

1. 1If the field is not a member in a v .able structure
record, i.e. containing any fj.,J or group whose range
is determined by a SIZE or ’Hniescriptors, or a field
whose length is determined ;Q a LEN descriptor we exit
immediately. Packing and unpacking is done only for
fields in variable structure records.

2. Determine the name of the record containing the current
field. ULet it be REC. Then we construct a buffer
name: REC_S and a buffer index name REC_INDX. Let

the field's name be in the variable "field".
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Determineh&hether this field is the leftmost field in
an outéut record. If the field is leftmost and not
repeating o£ contained in any repeating groups we issue
the code:

QRﬁC_INDX=l.
initializing the packing index. Note that in the input
case the i;gex is initialized immediately after the
re:ding o% the record.
Ié the field is leftmost and ocutput but contained in
%éverai loops with the loop variables Il,..Im

¢

« 5
we generate the code:

respectively,

IF Il=1 & "Im=l THEN REC__INDX=1.
in all cases call FIELDPK with an appropriate parameter:
1l - for packing, O for unpacking)for the actual code

generation.

FIELDPK

This procedure produces the actual code for the packing

or unpacking operation. Available to it are the field's name,

buffer name and index name as well as the field's type.

1.

If the length type of the field is fixed, i.e. specified
in the declaration we compute its length directly.

If the field's type is 'C', 'N' or 'P' denoting
respectively character, numeric or picture we take

the declared length. Otherwise we call BYTE_CALC

with the declared length and type to compute the
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length of the field in bytes. The string representing
the length 1is stored in "lenstring".
If the length of the field was not declared exactly
(but only by specifying lower and upper bounds) we
check that there exists a length descriptor for this
field. If none existé we issue the error message:

FIELDPK: NO LENGTH SPECIFICAT;)N FOR THE FIELD-field.
If a length descriptor is found we set:

&

lenstring = BYTE_CALC (length-descripto;, field~-type) .
This will cause an execution time call to BYTE CALC
in order to compute the byte-length of the field during
run time.
If the field is an input field we gener?te theT
instruction:

UNSPEC(field) = SUBSTR(REC_S, REC_INDX, lenstring)
Otherwise we generate:

SUBSTR(REC_S, REC_INDX, lemstring) = UNSPEC(field).
Here: |

"field" - is the field name properly subscripted

(through call to CRSVAR)

"lenstring" - the length specification
If the field is of type (¢’ the UNSPEC gualities will
be omitted.
Generate the.following code for incrementation of the

buffer index:

REC_INDX = REC_INDX + lenstring.
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5.5 GEneratihg Code for Assertions (GENASSR

This procedure generates. the code for assertions. |If the
assertion contains a special function such as SN, AMN or
AVAX we nodify the assertion to perform the needed conputation
as well as provide initializing statenents for the variable
hol ding the cunul ative resulte In addition this procedure
will also transform assertions containing conditional expressions
into conditional assertions. Thus, an assertion of the form

Y « IP (IF X >0 THEN Y > 0 ELSE Y <»0)

THEN X*Y ELSE -JX?
will be transformed into:
IF X >0 THEN IF Y > O THEN Y « X*Y
ELSE Y = -X*Y
ELSE IP Y <«O THEN_Y * XY
‘ ELSE Y » - X*Y.

Apart from these two special transformations the nmain
task of GENASSR is to transform the syntax tree representation
of the assertion into a string representation acceptable by
the PL/I conpiler. The transformation is carried out by a
recursive clinb on the syntax tree, conbining for each node
the string representations of the descendanf subtrees into a
string representation of the tree rooted at that node.

The overall execution of GENASSR can therefore be sumarily
descri bed as:

1. Treat the case of (special) array functions.
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2, Transform assertions with conditional expressions
into conditional assertions.
3. Formthe string representation of the assertion.

5,5.1 Transforninq Array Functions

This subtask is performed in the body of GENASSR. Array
functions are functions which nmay operate on array el enents
‘as they are generated and do not need the conplete array at one
time. Array functions may be divided into reduction functions
whi ch produce a single result for an array, and running-val ue
functions which for each array elenment A[l] produce a val ue
whi ch depends only on the array segnment A[l],.,A[ X] o

Exanpl es of reduction functions are SUN, AMN, AMAX which
conpute for a given array its sum mninmal and maxi mal val ues
respectively. Their running-value counterparts are respectively
RUN_SUM RUN_M N and RUN*MAX which conmpute the simlar function
on each array segnent. The format for the use of any of t hese
functions is:

Y - FCON (E, Jig. *Ji)

where E is the array el ement, generally dependent on J.,..Jy
and Jw -Jfc tAT® running subscripts. For a running vaIJé -
function the left hand side should be of thé form Z(Jis..Jx) or
sonme permnutation thereof.

As displayed above, the use of array functions is currently
restricted to the top level of sinple assertions. E itsel f may

be a conditional expression.
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The statement above is transformed as follows:

Wwe add the Qtatement'
IF (Jl=1'{&..(3k-1)3 THEN Y = initial
as a preceding statement. Its role is to initialize Y
to an initial value.
'tnitial' is a value computed by the procedure INIT_VAL
and depends on the function FCN and on the type of Y.
It will be 0 for summation functions,
the minimal value possible for the type of ¥ for a
maximization function, and
the maximal value possible for the type of ¥ for a

minimization function.

If FCN 'SUM' or 'RUN_SUM' we mcdify the assertion

Y+E.

into Y
If theAfunction is a minimization or maximization
function, the statement is modified into:

¥Y=MIN(Y,E) or ¥Y=MAX(Y,E) respectively
The modification is done by cﬁanging‘the point;rs and
fields in the syntax tree, and creating new nodes if
necessary.

Transforming Conditional Expressions into Conditional
Assertions : ’

This task is carried out by the procedure SCAN

which uses the auxiliary procedure EXTRACT_COND.

5.5.2.1'., -EXTRACT_COND (ROOT,COND,LEFT,RIGHT)
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This procedure identifies and extracts the leftmost
conditional expression in a given expression pointed to
by ROOT.

If a conditional is found the (pointer to the)
condition is returned in COND and its first (THEN) and
second (ELSE) subexpressions returned in LEFT and
RIGHT respectively. If the analyzed expression contains
no conditional expression the procedure returns NULL.

Its operation can be described as follows:

1.1 1Inspect the top level of the given expression.

1.2 If it is a conditional expression, return

respectively its condition, THEN subexpression
and ELSE subexpressions , exit.

1.3 1If the expression is a simple expression, i.e.

a constant or a variable, return NULL and exit.
1.4 1If the expression is a compound expression,
scan each ofi its descendants by calling EXTRACT_COND
recursively. Consider the first COND, LEFT and
RIGHT which are returned such that COND # NULL.
In general, a compound expression is of the form:
E = g(El,..Em)

Assume that the recursive scanning of E .Em

1°°
produces first COND # NULL for E, 1<ism, returning

also the THEN and ELSE subexpressions L, R
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respectively. Then the current call for E
returns:

COND as the condition,
g(El,..Ei_l,L,..Em) as LEFT, and
g(E,+..E;_,R,..BEp) as RIGHT.

Thus the overall effect of EXTRACT_COND on an expression E
is to extract a condition C if one exists in E (returned
as COND), and then to compute E, which is E when C is
true, and Ez,which i§ E when C is false. El and E, are
returned in LEFT and RIGHT respectively. Described in
another way we look for C, E, and Eé such that the
following eguivalence holds:

E = IF C THEN E ELSE EZ'

ll
In particular this gives:

g(E ,..Ey (IF ¢ THEN L ELSE R),..Em) =

-1

IF C THEN g(E ,..E,_ ,L,..E)

ELSE g(El,.fEi_l,R,..Em).

5.5.2.2. SCAN(IN)

The procedure SCAN effects the complete transformation
of assertions containing conditional expressions into
conditional assertions. The piocedure is presented with
an assertion pointed to by IN, and return a pointer to
the transformed assertion.

1 1If the assertion is a simple assertion, go to

step . 5.
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Assertion is a conditional assertion of the forng
IN | F COND THEN % ELSE éz where S, S, are
st at enents.
Cal | EXTRACT] COND to check whet her COND contains
a conditional expression. If it does then
EXTRACTIJCOND returns C L,R such that:
COND * IF C THEN L ELSE R
W transform IN into:
I N: IF C THEN IP L THEN S
ELSE S,
ELSE |F R THEN S
| ELSE S,
The value returned is SCAN(INY) which invol ved
a recursive call to SCA13.
Assune that the statenment IN is as above but
COND contains no enbedded conditions. In this
case we return the statenent:
| F COND THEN SCAN(S,) ELSE SCAN(S,)
obt ai ned by two recursive calls to SCAN for the
assertions S, and S, Exit.
The assertion is a sinple assertion:
y * E.
Cal | EXTRACTICOND(E). If it returns NULL, we

return the assertion Y « E unchanged. O herw se
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EXTRACT_COND returns C,L,R such that
E = IF C THEN L ELSE R.

We return the result of

SCAN (IF C THEN Y L

ELSE Y R)

5.5.3 fTransforming the Assertion into String Form (PRINT)

This procedure 1is presentgd with a pointer to an assertion
represented by a syntax tree and converts it into string
representation,

The procedure branches according to the type of node
to be printed:

1£ If the‘node is a subscripted variable A(El,..Em) we

generate the string 'A(". We then scan each of the

s subscript expressions El to Em and add them to the

. string according to the following subcases:

1.1 If the subscript at position i corresponds

to a record level and the variable was prefixed

by 'NEXT.' then

1.1.1 If the position is virtual we insert the
subscript value '3°'.

1.1.2 If the position is physical and the expression
Ei is a constant ¢, we insert the value of c+1.

1.1.3 If the position is physical and E; is an

. . !
expression we insert PRINT(Ei)'1" 41",
i
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1.2 If the subscript position i is a virtual position
then:

1,2,1 1If it is a simple subscript and the position
is associated with an input record to which
the prefix NEXT is applied somewhere, but
definitely not in the current variable,
then we insert the subscript '2°,

1.2.2 If the position is not 'NEXT' qualified
and the subscript is I then no subscript
is inserted.

1.2.3 1If the subscript expression is I-1, then
'l1* is inserted. It is assumed that 1
these cases the physical allocation for
the virtual position will be at least - :'1'
standing for the previous value, and '2°
for the current wvalue,

For all other compound nodes we call PRINT recursively
to convert the descendants and insert between them

the string fepresentation of the separators, operators
and delimiters stored in the OP_CODE fields of the
code. This string representation is available in

the string array KEYS.

For atomic nodes we use either the variable name,
directly or through its node number. Loop variables

(subscripts) are accessed through the level indication
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available in their IDWITH field which is used as an
index to the array LOOP_VARS. Function names are
retrieved by their function number indexing the

table FCNAMES.

5.6 Generating Input/Output Codg(GENIOCD)

The routine for gene;ating input/outpu£ code (GENIOCD) is
invoked by the generate PL/1 code control routine after reading
an element that corresponds to a record node. It accepts as
input the node number corresponding to the element. This
routine generates the P1/1 READ, WRITE, or REWRITE Statements
with the appropriate par#meters based on the flowchart table
entry, as well as any control code or condition code associated
with the input/ovtput operation.

To summarize the different statements generated by GENIOCD
for the different cases we use a table format (Table 11) for DO_REC
instead of an algorithm form for the sake of clarity. Each of
the different cases is preceded by the conditions defining the
case followed by the statements which are generated for the
case. The upper case letters represent part of the actual
P1/1 string being generated, whereas the lower case letters
are the metanames of the items obtained from the flowchart
table during program geﬁeration.

Several preparatory steps are taken befo?e branching

to the different cases.
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Definition of Names. Derived from the record nane
we generate several variable names to be used in the
code. _

Let the record nane be designated by R;

1.1 If Ris of the form OLD. X or NEW X we define
RECNAME as OLD X or NEV@X respectively.

1.2 dhervvi se we define RECNAME as R

1.3 RECBUF is defined as recnamej,

1.4 RECINDX is defined as recnanme”l NDX
Consi der now the file which is parent to R
Let it be denoted by F.

1.5 Set FILENAME to F.

1.6 If Fis of the form OLD, X or NEWX set FILENAME
to OLD X or NEWLX respectively and FILESUFF to
filename U

1.7 Oherwise set FILESUFF to filename S if the file
is a source and to filenane T if the file is a
target”*

1.8 Set "ECF to ENDFI LES$fil ename.

1.9 Retrieve the keynane associated with the record,
if one exists, and assign it to KEYNAME.

110 Set FOUND to FOUNDS$fi | enane.

| ssue the declaration. DCL rechuf CHAR (I en*dat (n))

VARYING I NI T('f). This declares a buffer for the

record into which and out of which the information
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will be read or witten. 'Len_dat(N) ' here gives the
buffer |ength.

3. If the record has a variable structure/ packing and
unpacking will be called for and we therefore iséue
the decl arati on:

DCL recindx FIXED BI N

4. If the file is an output file of fixed structure

i ssue the transfer:

recbuf » recarea
srechuf’ is the record buffer defined above while
'recarea® is the name of the internal structure
allocated to the record. It mght be subscripted. |If
the file is an output file of variable structure the
novenent of data from the record area into the record
buffer is done piecewise and instruction for its
execution generated in conjunction with each of the
output fields belonging to the record.

5. If the record is an output record and a SUBSET condi tion
was specified for it we enclose the code for witing
the record by the conditioh:

| F SUBSET$record THEN DO
code
END |
5.6.1 DO REC

The procedure DO REC produces thelcode for the reading and

witing of records. It branches according to the cases in Table 11.
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Al gorithm BYTEACALC (Lengt h, TYPE,'#BYTEQ

2*

50

A routine for calculating the length in bytes of a data

of a given length and a given type.

Length - The length of the field in units appropriate to

the type.

TYPE - The field type (one of C NP, T,F B L,E

#BYTES - The calculated length in bytes

| f

TYPE - «C'|'N'|'P' then #BYTES - Length
TYPE + 'T* (Bits) then #BYTES - [l ength/ 8]
TYPE «F' (Decimal) then #BYTES * [(length+1)/23

TYPE w ' B! (Binary) then
y

if length <16 then #BYTES » 2
ot herwi se #BYTES = 4

TYPE » 'L' (Binary Floating) then

if length <22 then #BYTES * 4

if 22 length <54 then #BYTES « 8
ot herwi se #BYTSS « 16

TYPE » e«£ (Decinmal Floating) then
I f length <7 then #BYTES * 4
if 7 "ength <17 then #BYTES » 8

ot herw se #BYTES « 16
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Case 1: An Input Sequential and Nonkeyed Record.
The folloming code is produced:
"IF recbuf « '" THEN DG
READ FILE (filesuff) INTO (recbuff) ;
END,;
ELSE recbuf - filebuf!!
If the record is of fixed structure we issue:
"recarea » recbuff” _
to nove the information from the reqord'buffs into the
internal record structure.
O herwi se, for variable structure recordslme only produce

"recindx » 1"

I
to reset the unpacking index. The novenent of the data

to the individual fields will be done in conjunction with
the nodes corresponding to the fields (see GENI TEM.
Next we read and unpack the data for the NEXT record.

"IF -1 £NDFI LESFI LE THEN DO

READ FILE (filesuff) into (filebuf);"
if there is a reference to NEXT fields we should nove
or unpack the data fronlfhe next record. If the record

has a variable structure we call the procedure UNPACK to

Table 11

DO_REC Inpur CQutput Transformations From Flowchart Table to PlI/1




N

Case

233

pfoduce the moving code, and then reset
"recindx = 1"
Otherwise, for fixed structure record we produce
"next_record_area = filebuf"
where 'next_;ecord;areaf is the iﬁternal structure component
reserved for representing.the next record fields.‘
2: Input, Sequential and Keyed Record.
Ensure that the following declarations have been issued:
DCL FOUNDS$Srec BIT(1)
DCL fASSEDSrec BIT(1)
Issue now the code:
FPOUNDSrec, PASSEDS$rec = '0O'B
DO WHILE -1ENOFILESfile X <7 PASSEDSrec;
READ FILE (filesuff) INTO (recbuf);
If the record is of variable structure issue
"recindx = 4"
and call UNPACKX to unpack its fields,
otherwise issue:
"recarea - recbuf" |
If keyname = POINTER$rec THEN
FOUNDSrec, PASSEDSrec = '1'B;
ELSE IF keyname > POINTER$rec THEN

PASSEDSrec = '1'B

Table 11 (continued)

DO_REC Input Output Transformations From Flowchart Table to PL/1
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3: Input, Nonsequential (Indexed or Random) , Keyed Record.
verify that the declaration
"DCL FOUNDS$rec BIT(1l)"
has been issued. Then issue the code:
FOUNDS$Srec = '1'B;
READ FILE (filesuff) INTO (recbuf) KEY (POINTERSrec)
ON KEY (filesuff) FOUNDSrec = 'O'B
If the record has fixed structure issue
"recarea = recbuf”
otherwise issue
"recindx = lﬁ.
4: Output, Sequential Record
WRITE FILE (filesuff) FROM (recbuf)
5: Output, Nonsequential, Keyed and an Update Record
(both NEW and OLD specified)
REWRITE FILE (filesuff) FROM (recbuf) KEY (POINTERSrec)
6: Output, Nonsequential and Keyed Record.

WRITE FILE (filesuff) FROM (recbuf) KEY (POINTERSrec)

Table 11 (continued)

DO_REC Input Output Transformations From Flowchart Table to PL/1

i¥
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5.6.2 Unpacking Variable Structure Records (UNPACK)

If a record is of fixed structure its data can be moved
between the record buffer and the internal structure area by a
single PL/I assignment such as:

"recarea = recbuf"

If however the record is of variable structure the data
movement will be performed by individual transfers, one for
each field. The transfer statements will be interleaved with
other statements which compute the variidble parameters of the
record structure such as fields' lengths and dimensions. These
parameters can depend on earlier fields in the same record.

The transfer instructions in the wvariable structure case are
generated in conjunction with the scheduile elements associated
with the field nodes. There are however two cases in which

the unpacking of information has to be done immediately after
the reading of the record. The first case is that of reading
the NEXT version of a record in order to access fields referred
to by a NEXT.F reference. The other case is that of a sequential
search on a file for a given key value. Here, also, we must,
unpack the record in order to access the key field immediately
after reading. In both cases we make the following simplifying
assumption: The fields referred to by a NEXT;F reference, or
used as a key value must all be in a prefix of fixed structure

of the record.
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Consequently in the abbrevi ated version of the unpacking
process descri bed here/ we may unpack only up to and excl uding
the first field or group which depend on a variable parameter*
By assunption this nmust have included al | the needed fields of
the record. Of course,.a full unpacking will take place prior
to the actual processing of t he fields; duplicating sone of
the abbreviated unpacki ng perfornmed here.

The procedure UNPACK accepts two paraneters: NODES
and CASE. NODE* identifies the field into, which data shoul d
be noved. CASE=2 inplies unpacking from RECBUF to the "current"
record area, and will be used for a sequential search. CASE=3 _
i mpl i es unpacking from PILEBUF to the "next!' record area, and
is used for reading the NEXT fields referenced.

The main part of UNPACK can be described as follows:

1. If the node is a repeating group or field we check

for the termnation criterion of the repetition. | f
it is not a constant repetition we exit,
1.1 Otherwi se open a | oop: Define a |oop variable
of the form UNP#n, and generate the declaration
DCL UNP#n FI XED .BIN
1.2 Then issue the codel
DO UNP#n«l TO maxrep (nodet!
1.3 Call the subprocedifres DO"GRP or *d*y FLD to
i ssue code‘for t he unpacki ng of the node or its.

descendants.
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1.4 1Issue an ’END"code terminating the loop.
2. Otherwise if the node is not repeating then:
If the node is a group or a reéérd call
DO_GRP, otherwise call DO_FLD

5.6.3 Unpacking Groups (DO_GRP)‘and Fields (DO_FLD)

Two subprocedures complete the unpacking.
DO_GRP: This procedure considers in turn each
descendant of the node NODE#. For each
descendant D it calls UNPACK (D,CASE) recursively.
DO_FLD: This procedure i§ responsible for producing
code for the unpacking of a field. It uses the
procedure FIELDPK to expand the code itself.
For description of FIELDPK see 5.4.1.
The procedure distinguishes between two cases
according to the value of the parameter CASE.
For CASE=3 the code produced is (assuming‘a
fieldname F and a record name REC).
F(..3,..) = SUBSTR (filebuf, FILEINDX, Length).
The '3' designates assignment to the 'next' version
of the record.
If CASE=2 the fo;lowing code is produced:
F(..2,..) = SUBSTR (recguf, RECINDX, Length).
The '2' designates assignment to the 'current'
-sion of the record. If the récord has no
‘next' reference it might be allocated only a
single copy (version) and then the '2' subscript

will be dropped. This is managed by FIELDPK.
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5.7 Genérating the Program Error File

If there is any érror during the execution of the generated
program, an input record, for which the error occurred is written
to an error file, ERRORF. This error file must be described in
the JCL used to execute the generated program, by including a 44
statement of the form. |

//ERRORF DD DSN = <dsname> is the error file name and the
<dd;Parameter > are the same parameters used in the dd statement

of the source file.

The required code for writing the bad input record to the
error file is generated by the routine GENIOCD. For example, in
the DEPSALE example, the following PL/I code is generated:

ON ERROR BEGIN;

IF ERRORF_3IT THEN

WRITE FILE(ERRORF) FROM $ERROR_BNF
GO TO #ERR_LAB
END

Note that if no dd statement for the error file is specified,
then ERRORF_BIT is '0O', in which case, the record that caused
the error is completely ignored}

If the I/O mode is WR we check whether there exists a
dictionary entry of the form SUBSET.recname. If there exists
such, we precede the I/O code (which is enclosed by a DO-END
pair) by the statement:

"IF SUBSETS$recname THEN",
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After the 1/0O code we check again to see whether a variable
of the form SUBSETSrecnane is defined. |If there is such a
vari able we produce'the.codes

"SUBSETSrechane « 't

The main sequential input filé (there nust be exactly one) is
read in a special way as éhomn in case 1 of Table 9* It is

al ways read one record ahead so that filename® (filenane) always

contains the next record to be used. |If the NEXT option is
used, i.e. there is sonewhere a reference to an itemof the form
NEXT. A

where Ais an itemin the main input file, several specia
actions take place.

The area for the record is defined as having dinmension 3.
Subscript 2 will always refer to the 'current' version of all
fields in the record, while subscript '3' corresponds to the’

“next! copy.
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5.8 Generating PL/4{ Declarations (GPL1DCL)

This procedure generates most of the declarations for the

structures defined by the user as well as those added by the

system.

Some additional declarations are generated by the

other procedures during the code generation.a

The main part of GPL1DCL can be described as follows:

1.

For each file F in the specification (available from
the list FILIST) call

DECLARE_STRUCTURE (F)
to declare F and all its descendants.
For each node N in the specification which is a group
or a special reserved prefix name and has no parent,
call

DECLARE_STRUCTURE(N)
For each system or standard subscript which has
been referenced or used (tested through the array USED)
we issue the declaration:

DCL subname FIXED BIN
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5.8.1 Declaring a Structure (DECLARE_STRUCTURE)

This procedure declares a complete structure, It issues
the declarative: DECLARE, and then proceed to call DCL_STR

(N,1,0).

5.8.1.1 DCL STR (4¥,LEVEL,SUX)

This recursive procedure produces a declaring clause for
each node N in the structure. 'LEVEL' is the current level
in the structure while SUX is a termination c¥iterion stating
whether there is a next item on the same level (younger brother)
or a descendant.

1. Some preliminary'transformations are made on the

declared item name.

1.1 File names of the form NEW.F and OLD.F are
modified to NEW_F and OLD F respectively.

1.2 All other names excluding special names are
reduced‘to their last component.

2. Fbr special names the resulting declaration is:

For SIZE, LEN and POINTER names:
name FIXED BIN,

wﬁile for all 6ther reserved prefix names it is
name BIT(1l),

3. The declaration inclqdes in general the following

items:
LEVEL - The component level.

Name - The declared name.
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Repetition - The repetition indicator.
Type - The data type.
The type is determined as follows:

CHAR(len) [VARYING]

For Character fields

BIN FIXED(len, scale)

]

For Binary fields

For Numeric fields PIC '99..9'

j}

For Fixed fields DEC FIXED (len, scale)

BIN FLOAT (len)

For Binary Floating
For Bit string fields -~ BIT(len) [VARYING]
For Decimal floating fields - DEC FLOAT(len)
For Picture fields - PIC ‘picture’
In the above 'len' is the specified or default
length for the field. The VARYING option is taken if
the length is specified (for strings) by a minimal
length <maximal length.
The repetition is defined by the repetition counter.
If different from zero and denoted by R we append the
string '(R)' after the declared name.
If the repetition is virtual we set the repetition
to 3 if this is a record level for a record containing
a 'next' referenced field. It is set to 2 n
if there is a reference to X(..I-1,.-) with I-1 in
the position corresponding to the current level. 1In
all other cases of virtual repetitions we omit the

repetition indicator completely.
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4. For each of the descendants of the node m, call
DCL_STR(M, LEVEL+l, termination) recursively.

5.9 Other Code-Generation Supporting Routines

Certain routines have been found to be useful to all the
code generation routines.

The "WRite PL/1" routine (WRPL1l) is called by each of the
coée generating routines in order to write out the PL/1 code.

Two parameters are passed to this routine: the string of Pl/1
code to be written and the output file to which‘it should be
written. WRPL1 takes the string containing one or more

generated PL/l statements and it outputs the PL/1 statement in
the format and syntax that the PL/1l compiler expects. It ensures
that the statement fits in columns 2 to 72 of each card

necessary for the statement produced and generates seguence
numbers in columns 73 to 80 of each card image.

The WRite DeCLarations routine (WRDCL) does the same for
writing PL/l1 declarations and indents the declarations according
to the level numbers for readability. It is called by GPL1DCL
in order to write out each declaration. It is passed two parameters:
the string containing the declaration, and the level in the
tree. The file to which the declarations are written is PL1DCL.

5.10 Code Generation Summary

The "Code Generation Summary" routine (CGSUM) has the task
of wrapping up the code generation phase and writing a report to

the user.
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First, the different files with the generated PL/1l program
(PL1DCL, PL1ON, PL1EX, PL1PROC) are merged (by MERGPL1l) into
‘one object PL/1 file (PL10OBJ) which can be subsequently compiled.
Secondly, a Code Generation ngmary Report is written which
lists the generated PL/l1 program to the user, and prints
out the total number of lines generated. While the PL/1
listing would not be of much use to the average MODEL user,
it would provide a deeper understanding for the more sophisticated
user or system programmer for insight or debugging. This is
analogous to the way that a PL/1l compiler can list a pseudo=
assembly language listing for the object program that it
generates, which can be of occasional use to certain users.

This routine also generates a few lines of statistics
about the generated prograﬁ that might be useful for the
user, including the number of PL/1l statements generated and
the amount of computer time used to generate the program.

The result of this entire code generation process is thus
’a complete PL/1l program ready to be compiled by the PL/1

compiler.




