NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

```
                    Final Report
                        ANALOG AUTOMATIC TEST PROGRAM
                    !
                    GENERATION USING NOPAL
                        by
                Cihan Tinaztepe
                    Prepared For
                    epartment of the Army
E a adquarters US Army Communications and Electronics Material Readiness Command
Fort Monmouth, N. J. 07703
Under contract DAAB07-79-C-1945
\[
\text { January } 1980
\]
```

REPORT DOCUMENTATION PAGE
READ INSTRUCTIONS BEFORE COMPLETING FORM REPORT NUMGER
2. GOVT ACCESSION NO \#80

TITLE (and Subtitle)

	echnical Report
Program Generation Using NOPAI	6. PERFORMING ORG. REPORT NUMBER Moore School Report \#8
AUTHOR(s). Cihan Tinaztepe	8. CONTRACT OR GRANT NUMBER(A) DAAB07-79-C-1945
performing organization name ano aooress Department of computer and Information. . Science-The Moore School of Electrical Engineering(D2) Univ. of Penna. Phila, PA	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMBERS
CONTROLLING OFFICE NAME ANO ADORESS 19104 Department of the Army-झeadquarters. US	12. REPORT DATE January 1980
Army Communications and Electronics, Material Readiness Command-Ft. Monmouth, N	13. NUMBER OF PAGES J. $\quad 176$
MONITORING AGENCY NAME \& AOORESS(If different from Controilind Offteo)	15. SECURITY CLASS. (of thic roport) Unclassified
-	15a. OECLASSIFICATION/DOWNGRAOING SCHEDULE

סISTRIBUTION STATEMENT (OI Thi E RapOFt)
Reproduction in whole or part permitted for purposes of the United States Government.

STRIBUTION STATEMENT (Of the abatract antorod in Block 20, it dilforont troan Raport)

SUPPLEMENTARY NOTES

- KEY WORDS (Continue on revorse dido If nececsery and ldentify by block number)

Analog Testing	NOPAL	
Automatic Programming	RADIO SET	AN/VRC-12
Automatic Test Equipment		
AMLAS	.	

ABSTAACT (Contime on reverse atde if necocelery and identty by block number)

This is a study of analog automatic test program generation >erformed in the context of the NOPAL system. The purpose $>f$ the research undertaken was to use the NOPAL system to generat LTLAS language programs to test analog circuit cards with the IQUATE (AN/USM-410) Automatic test equipment.

The software system is composed of top and bottom parts, ?he top part generates nonprocedural test specification from the :ircuit description of an* analog circuit. The bottom part generates EQUATE ATLAS programs from nonprocedural specifications

In this report both the top and the bottom parts of the NOPA system are used together to generate test programs to diagnose md isolate single catastrophic failures on two different circuit :ards taken from the AN/VRO12 radio set. The complete process $>f$ describing the circuit cards to the NOPAL System, generation $>£$ intermediate tables, the test specifications, and the ${ }^{\wedge}$ TLAS programs are presented. Examples from EQUATE runs are presented and evaluated.

Final Report: Analog Automatic Test Program Generation using NOPAL

This is a study of analog automatic test program generatic performed in the context of the NOPAL system. The purpose of the research undertaken was to use the NOPAL system to generate ATLAS language programs to test analog circuit cards with the EQUATE (AN/USM-410) automatic test equipment.

The software system is composed of top and bottom parts. The top part generates nonprocedural test specification from th circuit description of an analog circuit. The bottom part generates EQUATE ATLAS programs from nonprocedural specificatic

In this report both the top and the bottom parts of the NOPAL system are used together to generate test programs to diagnose and isolate single catastrophic failures on two circuit cards taken from the $A N / V R C-12$ radio set. The complet process of describing the circuit to the NOPAL system, generati of intermediate tables, the test specifications, and the ATLAS programs are presented. Examples from EQUATE runs are presente and evaluated.

FINAL REPORT: ANALOG AUTOMATIC TEST PROGRAM

 GENERATION USING NOPAL
TABLE OF CONTENTS

TITLE i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES viviii
INTRODUCTION 1-1
AN OVERVIEW OF THE NOPAL APPROACH TO ANALOG AUTOMATIC TEST 2-1PROGRAM GENERATION
2.1. GENERAL APPROACH
2.2 DESIGN FOR AUTOMATIC TESTING-TOP PART OF NOPAL 2-5AND INPUT TO THE TOP PART OF NOPAL
2.3 METHODOLOGY AND PROCESS OF TEST DESIGN 2-8
REPORTS GENERATED DURING TEST DESIGN 2-13
2.42.5 AN INTERMEDIATE LANGUAGE-NOPAL2-14
AUTOMATIC PROGRAM GENERATION-BOTTOM PART OF NOPAL2-16
2.7 TEST SEQUENCING AND OPTIMIZATION 2-16
2.8 ATLAS CODE GENERATION 2-19
MODELLING OF COMPONENTS AND DEVICES 3-1
3.1 SEMICONDUCTOR MODELLING 3-1
A. DIODE MODEL3-1
B. ZENER DIODE 3-8
C. BIPOLAR JUNCTION TRANSISTOR MODEL 3-11
3.2 NOMINAL COMPONENT AND FAILURE MODELLING 3-22
3.3 STIMULUS AND MEASUREMENT MODELLING 3-21
A. RESISTANCE MEASUREMENT 3-24
B. IMPEDANCE MEASUREMENT 3-26
C. VOLTMETER, AMPERMETER, AND POWER SUPPLIES 3-36
3.4 ATE-UUT INTERFACE CONNECTING DEVICE MODEL 3-38
GENERATION OF A TEST PROGRAM FOR A VOLTAGE REGULATOR CARD -A2100
4.1 VOltage regulator assembly: theory of operation4-3A. VOLTAGE REGULATOR4-5B. TIME DELAYC. FILTER$4-7$
4.2 NOPAL INPUT 4-10
A. CIRCUIT DESCRIPTION AND REQUIREMENTS FOR THE FILTER4-I SUBCIRCUIT
B. CIRCUIT DESCRIPTION AND REQUIREMENTS FOR THE VOLTAGE REGULATOR AND TIME DELAY SUBCIRCUITS
4.3 EVALUATION OF TABLES GENERATED
A. NOPAL TABLES OF THE FILTER SUBCIRCUIT
B. NOPAL TABLES OF THE VOLTAGE REGULATOR AND TIME DELAY SUBCIRCUITS
4.4 NOPAL TEST SPECIFICATION
4.5 ATLAS PROGRAM
4.6 EVALUATION OF EQUATE RUNS
V. GENERATION OF A TEST PROGRAM FOR AUDIO AMPLIFIER CARD-A5100
5.1 AUDIO AMPLIFIER ASSEMBLY-A5I00: THEORY OF OPERATION
5.2 NOPAL INPUT
5.3 EVALUATION OF TABLES GENERATED
5.4 NOPAL TEST SPECIFICATION AND ATLAS PROGRAM GENERATION
5.5 EVALUATION OF EQUATE RUNS
VI. CONCLUSION
2.1 DESIGN AND USE OF TESTING IN THE LIFE CYCLE OF
UUT
2.2 FLOWCHART OF THE TOP PART OF THE NOPAL SYSTEM
2.3 FAULT ISOLATION TREE ILLUSTRATING OPTIMIZATION TEST SETUPS AND ASSERTIONS
2.4 COMPONENTS OF.AUTOMATIC PROGRAM GENERATION SYS ${ }^{\text {T }}$ CHAPTER III
3.1 NAP2 BUILT-IN DIODE MODEL
3.2 SCEPTRE EBERS-MOLL DIODE MODEL
3.3 SCEPTRE DIODE MODEL FOR 1N645
3.4 NAP2 DIODE MODEL FOR 1N645
3.5 ZENER DIODE CHARACTERISTICS
3.6 ZENER DIODE MODEL
3.7 NAP2 ZENER MODEL FOR 1N75 2A
3.8 NAP2 BUILT-IN BIPOLAR JUNCTION TRANSISTOR MODE
3.9 SCEPTRE BIPOLAR JUNCTION TRANSISTOR MODEL
3.10 SCEPTRE MODEL FOR TRANSISTOR 2N329A
3.11 NAP2 MODEL FOR TRANSISTOR 2N329A
3.12 SINGLE CATRASTROPHIC FAILURE MODELS IN NOPAL
3.13 EQUATE RESISTANCE MEASUREMENT
3.14 NOPAL MODEL OF THE EQUATE OHMMETER FOR NAP2
3.15 NOPAL OHMMETER AS ATLAS PROCEDURE
3.16 EQUATE IMPEDANCE MEASUREMENT

CHAPTER III (continued)
3.17 NOPAL MODEL OF EQUATE IMPEDANCE METER FOR N.
3.18 NOPAL IMPEDANCE METER AS ATLAS PROCEDURE
3.19 NOPAL STIMULUS AND MEASUREMENT FUNCTIONS AS ATLAS PROCEDURE
3.20 A2100 INTERFACE SCHEMATIC
3.21 A5100 INTERFACE SCHEMATIC
3.22 ICD HOOKUP DIAGRAM

CHAPTER IV
U.I A2100 VOLTAGE REGULATOR CIRCUIT CARD
4.2 VOLTAGE REGULATOR, SIMPLIFIED SCHEMATIC
4.3 TIME DELAY CIRCUIT, SIMPLIFIED SCHEMATIC DL
4.4 CIRCUIT SCHEMATIC DIAGRAM OF A2100 CARD
4.5 ASSEMBLY A2100, PARTS LOCATION AND WIRING D
4.6 NOPAL INPUT FOR A2100 (FILTER SUBCIRCUIT)
4.7 NOPAL INPUT FOR A2100 (VOLTAGE REGULATOR AN: TIME DELAY SUBCIRCUITS)
4.8 NOPAL TEST SPECIFICATION FOR A2100 (FILTER SUBCIRCUIT)
4.9 ATLAS PROGRAM FOR A2100 (FILTER SUBCIRCUIT)
4.10 EQUATE PRINTOUTS FOR THE FILTER SUBCIRCUIT
4.11 EQUATE PRINTOUTS FOR THE VOLTAGE REGULATOR TIME DELAY SUBCIRCUITS.

CHAPTER V
5.1 ASSEMBLY A5100, PARTS LOCATION AND WIRING D!
5.2 MONITOR AMPLIFIER, SIMPLIFIED SCHEMATIC DIA<
5.3 AUDIO AMPLIFIER, SIMPLIFIED SCHEMATIC DIAGR,
5.4 CIRCUIT SCHEMATIC DIAGRAM OF A5100 CIRCUIT
5.5 NOPAL INPUT FOR A5100
5.6 NOPAL SPECIFICATION FOR A5100 - SUBCIRCUITS
5.7. _EQUATE . PRINTOUT\$iFOR AS 100
3.1 NAP2 BJT MODEL PARAMETERS 3-13
3.2 COMPONENT TOLERANCES 3.23

CHAPTER 44.1 A2100 - FILTER SUBCIRCUIT FAILURE DICTIONARY
4.3 A2100 - MULTIPLE VALUE DIAGNOSIS MATRIX AND
TEST LIMITS TABLE
4.4 A2100 - AMBIGUITY REPORT
4.5 A2100 - TEST SETUP OPTIMIZATION REPORT
4.6 A2100 - LOGIC OPTIMIZATION REPORT4..
1+. 2 A2100 - BINARY VALUED DIAGNOSIS MATRIX AND ASSERTIONS TABLE4.7 A2100 - VOLTAGE REGULATOR AND TIME DELAY CIRCUIT 4-AMBIGUITY REPORT
4.8 A2100 - TEST SETUP AND OPTIMIZATION SUMMARY REPORT4.9 A210 0 - LOGIC OPTIMIZATION REPORT
CHAPTER 5
5.1 A5100 - AMBIGUITY REPORT
5.2 A5100 - TEST SETUP AND OPTIMIZATION SUMMARY REPORT
REFERENCES AI
NOPAL PUBLICATIONS LIST A 2
APPENDIX A 5

Introduction

This is a study of analog automatic test program generation process performed in the context of the NOPAL system. The purpose of the research undertaken was to use the NOPAL system to generate programs in the ATLAS language to test analog circuits using an automatic test equipment. This software system is composed of top and bottom parts. The top part relates to the generation of nonprocedural test specifications from the description of an analog circuit. [l] The bottom part relates to the generation of ATLAS programs from a nonprocedural specification.[2] Both parts can be used independently of each other. A list of relevant reports and papers published by the NOPAL project is included in the references.

The effectiveness of the NOPAL system was investigated by taking two separate approaches. In one case only the bottom part was used to generate ATLAS programs to program the perform tests on the AN/ARC-114 radio set. The description of the test was taken directly from the depot maintenance work requiremen documents and written by hand in the NOPAL specification langua All tests were successfully conducted on the EQUATE test equipment. The findings of this approach are presented in a separate report. [3]

In the second case, both the top and the bottom parts of the NOPAL system were employed together to generate programs to diagnose and isolate failures on two different circuit cards taken from the AN/VRC-12 radio set. In this report the complete process of describing the circuit cards t the NOPAL system, generation of intermediate tables, the test specifications, and the ATLAS programs are described.

Finally examples from actual ATE runs are presented and evalu
The report is organized in six chapters. Chapter I is aj the contents and organization of this report.

Chapter II provides a description of our overall approaci analog automatic test program generation based on our past re; and development activity. Sufficient detail is provided so a; to obviate the need for frequent reference to the earlier tec] publications and related documentation.

The modelling of circuit components and ATE devices are described in Chapter III. The variety of circuit components, failure modes, stimulus and measurement devices is limited to those types utilized in the test program generation for the A and A5100 circuit cards. A description of interfacing these circuit cards to the EQUATE is also provided.

The complete process of test program generation and execution to diagnose and isolate single catastrophic failures in the A2100 card is described in Chapter IV. A description of the input supplied to the top part of the NOPA; system is followed by an overview of the tables generated by
the system. The specification of tests based on these tables is also explained. Finally, the ATLAS program generated from these tests is described and followed by program execution results.

A description of test program generation for the A5100 circuit is given in Chapter v. The organization of this chap follows closely the previous chapter.

A summary of the findings of this research, success and difficulty areas encountered in using NOPAL, and suggestions for future research and improvements are given in the final Chapter VI.

The appendix at the end contains the semiconductor models in the circuit analysis language used in this work. It can be used as reference to build models for other devices

An Overview of the NOPAL Approach To Analog Automatic Test Program Generation

2.1 General Approach

This section provides a description of our overall approach to analog automatic test program generation (AATPG) based on our past research and development activity. Sufficie detail is provided so as to obviate the need for frequent reference to the earlier technical publications and related documentation.

We have developed an AATPG system, called the NOPAL system, which automatically generates programs in the ATLAS test programming language to test and diagnose malfunctions in analog electronic circuit boards. The system consists of two distinct parts: a top-part which analyzes the circuit diagram and determines the necessary tests, and a bottom-part which analyzes the required tests and produces a program in the RCA EQUATE ATLAS test language for use with the RCA AN/USN automatic test equipment.

The top-part, the NOPAI language, and the bottom-part are described in respective subsections below.

The application of computer technology to automated testing of electronic circuits should suggest not only the use of computers but also the employment of automatic programming methodologies. The tasks of developing functional or fault diagnosis tests, and the programming of computer controlled test equipment to perform these tests are strikingly similar
to software development tasks in many other areas of applicat of computers. Recent research on automatic generation of computer programs has been motivated by the high costs and expertise needed for software development. These same proble: exist in automatic testing as well. The complete automatic performance of these tasks seems the only effective way to reduce significantly the required costs and expertise. Our work to date applies automatic program generation methods to testing of analog electronic circuits. It consists of structuring and incorporating the methods of analysis of electronic circuits and the methods of computer programming within an automatic system named NOPAL, which performs the software development for testing a specified circuit by compu controlled test equipment.

Software development is generally characterized as a three-phase procedure consisting of (1) development of requir ments, (2) development of a specification for each program unit, and finally (3) development of each program in a high level language, A similar approach is generally used in automatic program generation systems which consist of two par (1) a top-part which accepts as input a statement of problem requirements and produces, as an output, a program specificat and (2) a bottom-part which accepts, as input, the program specification, and produces a program in a high level languag

This general approach has been adopted in NOPAL. The top-part of NOPAL analyzes the circuit to be tested and produ a specification of the needed set of tests (expressed in the NOPAL language) 9 The top-part is based primarily on knowledg
of electronic circuits and systems. It is approximately 16,000 FORTRAN statements long. The bottom-part performs the computer programming task and produces a program in t ATLAS test language. It is based primarily on programmir knowledge.

As illustrated in Figure 2.1, information consistinc of circuit diagrams, circuit layout and testing objective is evaluated in the top-part. Necessary changes in the design are indicated when testing cannot satisfy the requ ments. If the design is satisfactory, the top-part of th system can determine a complete set of functional and fau isolation tests to be employed in fabrication and mainter The bottom-part, consisting of approximately 18,000 lines of $P L / l$ code, produces a corresponding ATLAS program that is utilized in computer controlled automatic test equipme which will test the unit under test (UUT) and produce app diagnoses.

Each of these two parts is independent of the other could be usefully employed by itself. The interface beth the top and bottom parts is a specification of tests expr in a language named NOPAL. Unlike ATLAS, NOPAL is not a programming language. It is a specification language in sense that it can be used only to describe individual tes It does not have facilities for stating commands or for sequencing the execution of tests. The top-part may be by itself, where the user writes the test programs manual based on the automatically produced test specifications.

can also be specified in NOPAL manually in which case only bottom-part of the system is utilized to generate the ATLAS programs.

In the following, the top-part is described first, ano followed by a description of the bottom-part.

The NOPAL system described is oriented towards the RCA EQUATE ATLAS[4] test language and the associated complemer of test equipment. However, the system incorporates featur that facilitate production of programs in other test programming languages and different computer controlled test equipment.
2.2 Design For Automatic Testing: The Top Part Of Nopal The objective of the top-part of the system is to finc a small and effective set of tests for a UUT, and express in the NOPAL language. The process is illustrated in figur The input required for the user is shown on the left side of Figure 2.2 and described in subsection 2.2.1. The methodology and processes are shown at the center of $F i g u r \in$ and are described in section 2.3. The output reports are shown on the right of figure 2.2 and are described in subsection 2.4. The NOPAL language, in which the tests are specified, is described in subsection 2.5 .

There are six input sections: (1) circuit descriptior
(2) accessible test terminals, (3) UUT failure definitions
(4) fault isolation testing objectives, (5) measurement
accuracy, and (6) initial conditions. The first input is

- FIGURE 2:2 FLONCHART OF TOP PART OF MOPAL SYSTEII
id the remaining are optional.
They are all important to understanding
te test design process.
Circuit Description of UUT: The test design is based on modeling and .mulation of the UUT under nominal and malfunctioning conditions for determini le symptoms of component failures. The analysis of the circuit in the top-par i based on simulation of faults. The modeling is based on the equivalent cirlit drawing of the UUT, The equivalent circuit may consist of resistors, capa Ltors, inductors, mutual-inductances, voltage and current sources, bipolar and ST devices. Accurate modeling of the last two component types may be an invol isk, however sufficient published data is available for popular types. Each Ircuit component is given a unique name, where first letter identifies the jmponent type. The value of any element may be defined by a numerical constan *ible, or mathematical expression. Component tolerances are specified by tating the maximum percentage deviation from the nominal value. Each circuit Dde is ..assigned a name. Current flow direction and source polarities are also adicated. The status of mechanical switches or potentiometers are treated as ifferent initial conditions of the system. The description of an equivalent ircuit follows conventions used in Computer Aided Circuit Analysis (CANA) prorams. We use the NAP 2 CANA program and follow its conventions, 1 -5i

Availability of Test Terminals: Any of the circuit nodes may be used for ttaching test devices. However, the user may restrict the class of terminals vailable for testing to external contacts on the circuit board. Manual probe ontact points may also be specified.

Failure Definition: The objective of testing is to discover the componeni f the UUT that have failed in a manner defined by the user. Since failure is
the user to be a failure. Failure definitions may include topological chang ch as the removal or addition of a component. Typically catastrophic (open d short circuit) and out-of-tolerance failures are most common. To ease the sks of input preparation, individual catastrophic failures are included autom gally and the user has to declare only the remaining failure definitions (i.e. Ltiple component failures) as changes to the nominal circuit description. The nber of tests that are required is related to the number of failures. Testing agnose a large number of potential faults may be extremely time consuming, and 1sive. The user can compromise between cost and quality by restricting the it objectives to discover only the more likely or most harmful failures.

Fault Isolation Test Objectives: To reduce the number of tests and lower sting costs, the user may wish to accept tests which will sometimes not locat failure in a specific component, but in a small group of components. The ilure isolation requirement is expressed in statements denoting that $P_{k} \%$ of t. tal number of possible failures may be located in ambiguous classes consistin k or less components. P^{\prime} s are iumulative percentages, therefore $P_{k 1}<P_{k_{2}}$ and $k_{1}<k_{2}--k_{n}$.

Measurement Accuracy: Three types of accuracy may be specified (1) minimur asurement threshold, (2) percentage inaccuracy of the measurement, (3) number significant digits of the measured value. The default values are 0.1% measul at scale inaccuracy and four significant digits in the meter readings. All its are in MKS.

Initial Conditions: A final optional input section specifies also the itial conditions of the UUT to speed the computer solution.

METHODOLOGY AND PROCESS OF TEST DESIGN
As shown in Figure 2.2 the first component of the process (P1) creates a ilure dictionary data base for the UUT, based on the UUT circuit and failure

The next component (P2) generates candidate stimuli and measurements for sts using the three strategies described below, one at a time. First, small Itage stimuli (d.c. or a.c., depending on the type of components involved) ar nnected to connecting - points of the UUT, with the objective of measuring pedances at the connection points. This is referred to as the cold-circuit rategy. Next, the UUT is powered with the nominally specified d.c. power sou: d voltage and current measurements are conducted at the available nodes. Thi rategy is referred to as a d.c.-nominal. Finally, an a.c. signal is applied put connecting points and user specified tests are conducted. This strategy ferred to as a.c.-signal. The system design process provides for addition of re test strategies in the future. These strategies are ail employed one at a me in the above order.

Next in (P3), the circuit behavior is simulated with the above stimulus plied, with the components having nominal values and with the components havit ilure conditions enumerated in the failure dictionary, one at a time. The nsitivity of the circuit zesponse due to tolerances is also determined for ch case. A CANA program, NAP2 has been selected to perform the simulation sed on considerations of economy of computer usage costs. The simulation oduces, for the nominal case and for each failure, ranges of measurable physal entities (voltage, current, phase etc.,) observed at connecting points.

In the 4th component (P 4), each range to be verified by a measurement is ecified in an assertion. These assertions, together with information on the sociated connecting points for the stimulus and measurement and on the associ ilures are inserted into a Failure Symptom Table. This is further discussed

Based on this information, it is possible (in PS and P6 of Figure 2.2) to
rify if the tests formulated so far meet the ambiguity requirement statements t forth in the input. If testing objectives are still not met, the next rategy is employed, new tests are examined and the circuit is simulated until \geq above criterion is met, or until all three test strategies have been exhaus When it is determined that the ambiguity levels of fault isolation are sat ed, the P7 component (see Figure 2.2) is initiated. The purpose of Process P7 to reduce the number of tests to be performed without loss of fault diagnosis 1 isolation capability. There are three optimization steps. First, the total aber of test setups is minimized since setup for a test consumes the longest ne in actual testing. Second, the available assertions of the remaining tests further reduced. Finally, diagnosis selection logic statements are found ch that only the minimum number of tests in the remaining set are performed to grose and isolate each failure or group of equivalent failures.

The first two considerations are attained by the same algorithm. The roach is to create a fault isolation tree. Figure 2.3 illustrates the constr on of such a tree. The top of Figure 2.3 shows the relation of five tests to re failures. The tasts are listed in respective rows. Each test specificatic 1sists of three parts, the stimulus, the measurement and the assertion that Eines the upper and lower limits. These three parts are identified by numeral brevity. Thus for instance: 1.2.3. means the combination of the first stimu s, second measurement and third assertion. The failures corraspond to respect ss at the top right of Figure 2.3. They are identified by numerals 1 to 5. The Erix consists of " 1 " in positions where a test may identify a corresponding ilure, and " 0 " in the other positions.

The nodes of the fault isolation tree at the bottom of Figure 2.3 represent
failures as determined by the outcomes of tests. The branches coming out of

$\begin{gathered} \text { STIMULUS } \\ 1 \end{gathered}$	MEASURED!? 1	$\begin{aligned} & \text { ASSERTION } \\ & 1 \end{aligned}$	$\left[\begin{array}{lllll}1 & 0 & 1 & 0 & 0\end{array}\right]$
	1	2	$0 \begin{array}{llllll}0 & 1 & 0 & 1 & 0\end{array}$
$1 \cdot$	1	3	0 0 00000
2	$1 \cdots$	1	$\begin{array}{lllll}1 & 1 & 0 & 0 & 1\end{array}$
2			(0.0.1. 1. 0

FIGURE $2.3 \mathrm{p}_{\mathrm{A}} \mathrm{yr}_{\boldsymbol{d}} \mathrm{T}$ ISOLATION TREE ILLUSTRATING OPTIMIZATION OF TEST SETUPS AND ASSERTIONS
ach node are labelled by assertions associated with a test setup. Each brand inks to a lower level node containing a disjoint subset of the failures presei n the parent node.

The leaves of the tree represent the equivalence classes of failures aftei esting is finished. Therefore, the leaves of the tree indicate the final fau: solation achieved. Any one of the failure modes included in each leaf may be he possible cause of the failure of a UIJT.

There are many ways to create this tree. The approach taken here is to reate a balanced tree with respect to the number of failures included in each ode; that is, the test at each level is selected so that nearly equal number 0 ailure modes are isolated at each node of the next depth.

The fault isolation tree is created as follows:
Initialization: Place the names of all the failure modes of the failure dictionary into the root node.

Determine which test will be used to define the branches out of the root nc The first test setup to be accepted is the one' that yields the -highest enti (information content). The entropy is defined as:

$$
H\left(T_{1}\right)=\varepsilon_{j=2}^{n} P_{i j} \log P_{i j} ; P_{i j}=\frac{k_{i j}}{\mathbb{N}_{f}}
$$

$\mathbf{k}_{\dot{j}}{ }_{j}$ is the number of failure modes diagnosed in the jth equivalence class determined by the outcome of test $T_{\check{\prime}}$ • A node can fanout to m new nodes where m is the number of assertions of that test setup.

Find the smaller equivalence classes: Using the diagnosis of the test whic yields the highest entropy, construct the distince equivalence classes (noc at the next depth of the tree and label the branches coming from each of tl upper level nodes to the .lower level nodes.

Find the next test with the highest entropy: Given the equivalence classes found in Step 3, find the next test which gives the highest entropy. This ε tropy is calculated as defined in Step 2. If there are several tests which give the same entropy, then accept the test which has the lowest average measurement sensitivity.

Check for termination: If the entropy has not increased or all tests have b utilized, then "best" fault isolation possible is reached, therefore, termin Otherwise, repeat starting from Step 3.

The fault isolation tree can then be used to minimize first the number of it setups, then the number of assertions. Next the effect of conjunctions and ijunctions of passing and failing tests is analyzed to improve fault isolation reduce the number of tests. Redundant tests are then deleted. Finally the dimum number of tests and assertions are joined to select the diagnosis. Deta these algorithms are given in [1].

The last component shown in Fiqure 2 produces these tests in NOPAL syntax. REPORTS GENERATED DURING 'LES'1' UESIGN

The reports produced by the top-part, shown in Figure 2.2 , give a step by s :ture of the progress of circuit analysis and test design. This reporting giv user sufficient information in order to overcome a variety of problems that arise. Some of these reports are only briefly described below as they are Igthy and their understanding would require a detailed explanation of the syst ch is beyond the scope and space of this paper.

Failure Dictionary: As noted, the failure dictionary consists of the :astrophic failures of the individual components of the circuit and any other .Iure modes specified by the user. This report is in the form of a iable. Ih a row in the table for each failure mode. The columns give: an identificati ber, failure type (open, short, etc.), the nodes of the component in the cirit diagram, whether the failure is due to a topological change or due to a
ange in value of a component, the threshold value of the component which indi e failure, the model used to simulate the component and a relative index of celihood of this failure.

Circuit Analysis Output: This is a data base consisting of the unmodified tputs of the NAP2 system for each simulation of the circuit.

Stimulus, Measurement-region and Failure Tables: This is a series of tabl ich show the tests initially selected and progressively those retained or con ted in the test optimization process, as well as the basis for deletion of ot sts.

Ambiguity Report: An elementary group of failures where it is not possibl distinguish further between the individual (or subgroups of) failures is ref as an equivalent class of failures. This report is in a form of a table wit row for each equivalent class. The columns consist of an identification numb e number of failures (referred to as the ambiguity), the percentage of the to mber of failures, a cumulative percentage, and a list of the component names d their failure functions constituting the equivalence class.

NOPAL Test Specification: This report constitutes the final documentation the test requirements. The NOPAL test specification itself is shown and exained in the next section. In addition there are several summary reports.
intermediate language - nopal
NOPAL specification statements can appear in any order (due to its nonocedural nature). Yet, for organization purposes we will consider the tes ecification as divided into the UUT, ATE and Test-Module Sections. Below, e NOPAL specification has been generated automatically by the top-part. We te that the NOPAL language is also easy to use when specifying tests manually. UUT Specification: consists of two parts, component-failures and test-tery

ATE Specification: ATE related information, which is needed to verify the est Modules and the UUT specifications, is organized in two sections: (1) ATE onnecting points, which are connected to the matching UUT connectors, and
2) ATE functions, which specify evaluation of parameters involving stimulus id measurement devices. Purely computational functions may also be used and Lsted here.

We have allowed the user to define functions, which are high level operaions involving application of stimuli, measurements and computations. These unctions are similar in concept to the use of functions in PL/1. The user wi! Iso be required to specify for each function a procedure in the object languaj f the system (in this case EQUATE ATLAS) utilizing the equipment of the objeci TE unit. These procedures will be further discussed.

Test Module Specification: This section includes a collection of 1) test)dules. 2) diagnoses and 3) messages. The test-modules specification is the < f the NOPAL specification. Each test module is specified independently of the thers, thereby individual test modules can be modified, deleted, or added ithout affecting the rest of the test modules.

The subparts of each test module (in addition to the test module label) a: 1) the stimuli that need to be applied to the UUT at test time, (2) the measuents that need to be made with the comparison limits that will determine the assing or failing of a test, (3) the logic that selects diagnoses based on the esults, and (4) diagnoses. These four parts are described below.

Each test starts with the identification label of the test. The stimuli nd measurements are defined by conjunctions, which specify the devices that mi e applied simultaneously. Each device in a conjunction is specified by a trii hich consists of: 1) the terminals where the device must be connected, 2) a ti elation and 3) the function name (that refers to the device) and the values o
ariable names of the parameters of the function.
Next the assertions specify relations between variables of the tests, ing algebraic and locigal notation in general use.

Finally the logic part of the specification shows the rules for selecting diagnoses based on the outcome of the test, using notation which implements ult isolation tree described in Section 2.3.

AUTOMATIC PROGRAM PRODUCTION: THE BOTTOM-PART OF NOPAL

Figure 2.4 illustrates the components of the automatic orogram production the NOPAL system. The inputs are test specifications written in NOPAL. [1,7]

The first component in Figure 2.4 performs syntax analysis of the test spec cation. Also, the test specification is encoded and stored in a simulated as ciative memory to facilitate later processing. Syntactical errors and docume tion consisting of a specification listing and several cross reference report rmatted for easy readability, are produced. This component is not described rther here.

The second component incorporates an engineering knowledge-base which is termine and optimize the sequence of execution. In the course of analysis, e system produces various additional reports including error/warnings of dete consistencies, fault locating summary, and a flowchart showing the test execu on sequence. This component incorporates some novel methods and is described rther below in Section 2.7.

The third component generates a test program in EQUATE ATLAS acceptable to RCA AN/USM-410 series ATE. It is briefly reviewed in section 2.8 . The objer ogram needs to be compiled by the EQUATE ATLAS compiler, and then it will be ady to test the given class of UUT's.
7. TEST SEQUENCTNG AND OPTIMIZATION

The automatic sequencing and optimization process is further discussed

FIGURE 2.4 COMPONENTS OF AUTOMATIC PROCRAH
CENERATINC SYSTEM
elow because of its importance and novelty. The NOPAL system automatically ptimizes intra-test and inter-test execution sequences and generates control ogic for dynamically evaluating the conditions that determine the progress of he testing and selection of the next test. The process of determining the equencing consists of considering the test modules and their subcomponents as ntegral units represented by nodes in a directed graph. The specification is nalyzed to determine precedence relationships between test modules or their ubcomponents. These precedence relationships are represented by directed dges in a directed graph. A precedence relationship means that one node must recede the other at execution time of the object test program. One node is a redecessor of the other, which is the successor. Six major inter-test preced elationships are briefly explained in the following.
(1) Data determinacy incorporates the principle that data or variables mi e evaluated before they can be used. The generation of data by a predecessor odule is recognized by the declaration of a TARGET variable. A successor est module references the same variable, declared as SOURCE.
(2) Interactiveness relationships are dictated by the need to exchange essages interactively with the ATE operator.
(3) Component protection is based on the concept that non-destructive esting can be achieved if a critical component is tested before other comonentes which depend on it for their normal operation. Furthermore, the failur f such a critical component will prohibit the performance of any test which ho rotected components.
(4) Fault-isolation strategy schedules tests in a top-down fashion using omponent subset relationships. The more generic fault isolation tests are pe, ormed first. The lower level, more specific tests are then executed or skippe
epending upon whether the failure is detected at the top level. (similar in ept to the tree in Figure 2.3.
(5) Stimuli application is concerned with efficient application of stimul is based on the assumption that application of stimuli is most time consumin ence it is advisable to conduct all the possible tests once a stimulus is appl
(6) Failure likelihood uses the idea that efficiency is obtained by first sting those components which are more likely to fail. Information is extract :om the failure index field in the UUT Component Failures specification.

Based on the graph, the consistency, completeness, ambiguity and feasibili the test specifications may be checked. Possible cycles in the directed gra iply errors. They are detected and reported to the user. Finally all nodes a :dered in proper execution sequence defining a flowchart of the program.

This phase of the system produces two flowcharts showing the order of the the object program. The inter-test flowchart report shows the sequence of e thin each test module. The intra-test flowchart report shows the overall exe on sequence of the test modules.

8 ATLAS CODE GENERATION
The object program may be viewed as constructed in three levels. The two p levels are generated automatically. The first level is the global program. consists of the data declarations followed by calls on procedures for perfor ing the respective test. It is based on the inter-test flowchart report gener the test sequencing phase. Each test is followed by the logic to determine lection of the next test based on the result (passing or failing) of the :evious tests.

The second level consists of procedures for each one of the test modules. lese procedures are based on respective intra-test flowchart reports generated the previous test sequencing phase. Because of limited space these more engthy procedures are not shown here.

To employ the stimuli and measurement devices, the test procedures include calls on the lower level procedures that correspond to the functions which were specified at the ATE Function section of the NOPAL specification• These procedures are written manually and placed in the Function Library of NOPAL,

The intent of automatic program generation is to keep the user away from the object programming language. The users of NOPAL need not even read the ATLAS code generated. However for system debugging purposes this code may be easily read and understood. By selecting the proper options at the time NOPAL is invoked, an ATLAS program with full program execution trace can be generated. In this mode, the ATE prints the procedures invoked, steps executed, variables computed, and the state of the diagnosis selection process. This mode of operation greatly enhances the user's confidence level in using such automatically generated programs.

It was founid desirable to incorporate in NOPAL various facili that would facilitate its wider use. There is a need for two types of capabilities: first to produce test programs in a variety of high level test languages, and second to incorporate in the produced programs use of stimulus and measuring devices that are available in the automatic test equipment to which the produced programs are oriented. The facilities to attain these two capabilities in NOPAL are as follows:
(1) All except one on the NOPAL system components are independent of the object high level test language in which the programs are to be produced. The only component of the system that is dependent on the test programming language is the Code Generation component shown at the bottom of Figure 2.4. Furthermo this component incorporates tables which translate the entries in the flowchar
(produced by the Test Sequencing component shown in Figure 2.4), into respective test programming language statements. To produce programs in a language other than the EQUATE ATLAS, it would be necessary only to modify the Code Generation component of the system. It is anticipated that the modifications required would not be very difficult due to the tabular structures in this component.
(2) As already noted in the discussion of the NOPAL language, the NOPAL specification has an ATE section where stimulus and measurement device that are to be utilized may be described. The NOPAL system includes a library of routines, in the object test programing language, which correspo to the devices specified in the ATE section of the NOPAL specification. Thus expected use of additional or different devices may be incorporated in the program by entering in the library of the NOPAL system appropriate routi for these devices. This feature also allows for further enhancement by use in the NOPAL specification of very high level and complex devices, which in fact require a simplified model comprised of a number of lower level real devices to perform the equivalent function. This capability allows the use of higher level statements, thereby saving much labor by the user.

$$
2-21
$$

Modelling of Circuit Components and ATE Devices 3.1 Semiconductor modelling

The NOPAL approach to fault diagnosis and isolation is based on simulation of the circuit to be tested with its components in the nominal and failed modes. The stimulus and measurement functions (effectively ATE devices) are included in the simulation. In some cases the signals between the circuit and test equipment pass though an interface device. If this is the case, a circuit equivalent description of the interconnecting device is included in the simulation. The models used in the simulations are described in this chapter.

In section 1 of this chapter, modelling of the semiconductor devices in the NAP2 circuit analysis language is described. The semiconductor device types are limited only to those found on the A2100 and A5100 circuit cards. In Section 2 models of other circuit components and equivalent circuit diagrams of single component failures are described. The modelling of ATE stimulus and measurement devices are described in section 3. The variety of stimulus measurement device models presented in this chapter is limited to those devices of the EQUATE used in testing the A 2100 and A5 100 circuit cards. The ATE-UUT interconnecting devic for the above cards is described in section 4 . A. Diode Model

Because of the non-linear $V-I$ characteristics of the diode, correct analysis of a circuit containing diodes becomes criticall dependent on the definition of diode characteristics. Specifyinc
the model accurately is the most important part of the ana In circuit analysis programs several different diode m are used. The builtin model of a diode in NAP2 (Nonlinear Analysis Program) is shown in Figure 3.l.

Figure 3.1 NAP 2 Built-In Diode Model

NAP2 diode model characteristic is extended linearly when $V D<0$, and when the dynamic conductance GD>GS. GS may be specified by the user. The equations for the current ID the charge on capacitor $C D$, which is $Q D$, are defined in the non-linear region as follows :

$$
\begin{aligned}
& I D=I S \cdot(\exp (V D / V T)-1) \\
& Q D=\tau_{T} \cdot I D+\int_{0}^{V D} C D /(1-(V / \Phi))^{\nu} \cdot d V
\end{aligned}
$$

The variables in the above equation are as follows:
ID: Diode current source
QD: Charge across capacitor $C D$
IS: Diode reverse saturation current

VD: Voltage across diode
VT: Constant in the capacitor equation of diode $\psi:$ Junction potential

Y : Exponent in capacitor equation
T_{t} : Transition time constant of the diode

CJ: Zero bias junction capacitance
GS: Maximum dynamic conductance

The built-in diode model is referenced in NAP2 circuit descript language as follows:

Txxx Pnode Nnode LISTNAME
LIST NAME is a reference to a previously defined parameter list for the diode:

LIST NAME /DIODE/ IS value VT value TT value CJ value >
FI value GA value GS value
'value ${ }^{1}$ can be constant or functional.
Even though the NAP2 diode model has reasonable level off accuracy, there are some disadvantages in using this model. The disadvantages are:
(1) The diode current $I D$ is non-linear only in a small range of the forward biased region. Outside this area linearity is assumed. This model Becomes inadequate when the circuit has failures which may result in high current levels.
(2) The parameter list for the built-in model of dio is not directly available in the semiconductor data manuals. The user has to solve lengthy equations usi the data given in the semiconductor data manuals to o the parameter list of built-in model.

Because of the above disadvantages and linearization built-in diode model of NAP2, the SCEPTRE diode model is a and a corresponding NAP2 model is developed. A large amou of published SCEPTRE models are available for commonly use diodes [8].

The SCEPTRE diode model developed in the NAP2 circuit description language is described below. This model shown Figure 3.2 is known as the EBERS-MOLI model. The device p given in SCEPTRE model publication are used in this model

Figure 3.2 SCEPTRE Ebers-Moll Diode Model

The equation of the model are as follows: VCD /
$I D-I S$ - $\underbrace{(1)}$
$C D=\frac{C O}{(\phi-V C D)^{n}}+K D^{\prime}(I D+I S)$
$C D=$ The sum of the diode transition and diffusion capacitances where
$\mathrm{CO} /(\langle J\rangle-V C D)^{\boldsymbol{\Omega}}>\operatorname{Transition~capacitance~*~CJ,~and~}$ KD(ID+IS) < Diffusion capacitance

ID « Dependent Current generator representing the diode junctic current. The generator is a function of voltage VCD,

IS » Diode reverse saturation current
RB * Diode bulk resistance

VT » Co.nstant of the diode equation (volts)
$C O=$ Constant of the transistion capacitance equation (farads)
« * Junction contact potential (volts)
n > Junction grading constant

KD =* Diffusion capacitance constant
> $1 /(\mathrm{VT} * 2 * 3.14 * \mathrm{~F})$

F * Frequency parameter

VCD = Voltage across capacitor CD, which is equal to the diode junction voltage (volts)

The model of the diode model is illustrated for diode ING4
in both SCEPTRE and NAP2 circuit description language. (See
Figures 3.3 and 3.4).

```
MODEL 1N645 (PERM).(A-K)
SUPPLIED BY DAVID M. HAR3TAD, SANDIA CORPORATION
SANDIA BASE, ALBUQUERQUE, NEW MEXICO 37115
EBERS-MOLL DIODE MODEL
UNITS-MILLIAMPS-VOLT5-K0HMS-PF-MICROHENRY-NANOSEC
THE VALUES IN THE EQUATION FOR CT CORRESPOND TO THE
PARAMETERS SHOWN 8ELOW :
1) CO : CONSTANT OF THE TRANSITION CAPACITANCE EQUATION
2) <p : JUNCTION CONTACT POTENTIAL (VOLTS)
3) VCD : VOLTAGE ACROSS CAPACITOR CD, WHICH IS
                                    EQUAL TO THS DIODE JUNCTION VOLTAGE(VOLTS)
4) N : JUNCTION GRADING CONSTANT
5) KD : DIFFUSION CAPACITANCE CONSTANT (PFO/MA)
6) JD : CURRENT GENERATOR REPRESENTING THE DIODE
JUNCTION CURRENT.
7) IS : DIODE SATURATION CURRENT
THE VALUES Itf THE DIODE EQUATION CORRESPOND
TO THE PARAMETERS BELOW :
    1) IS : DIODE SATURATION CURRENT
    2) © : CONSTANT OP DIODE EQUATION
ELEMENTS
CT, 1-K = Ql ( 0.103E 02, 0.364E 00, VCT, 0.577E 00,"
    0.125E 06, JD, 0.206)
R3, A-1 =0.532E-03
RC, 1-K = 0.123E 09
JD, 1-K = DIODE EQUATION (0.251E-06, 0.261E 02)
FUNCTIONS
01 (A, B, C, D, E, F, G) - ((A/ABSlB-C)**D) +E*{F+G))
```

*LIB2 D1N545 +
:internal node 1 is the amode
:internal node 3 is the cathode
CURGEN/EXP/ A -0.25.OOE-C9 B 0.25100E-09 >
D $0.38314 \mathrm{E}-01 \mathrm{~L}-2.00$ U 0.10
CDIE / / B 0.12500E-03 C -0.25100E-09
CTRAN / / E $0.10300 \mathrm{E}-10 \mathrm{C} 0.86 \mathrm{D}-1 \mathrm{E}-0.57700$
RS $120.12300 E 09$
ID 121 1*CURGEN (VID)
CT $121 *$ CTRAN(VID)
CD 12 1*CDIF (IID)
RB $230.53200 \mathrm{E}-03$

Figure 3.4 NAP2 Diode Model For IN645
B. Zener Diode Model

Typical $V-I$ characteristics of a low voltage reference zener are shown in Figure 3.5. Note that the forward characteristic is similar to that of the regular p-n junction diode.

(a) Breakdown (Zener) diode

(b) Typical V-I characteristics

Figure 3.5 Zener Diode Characteristics

The reverse characteristic shows a breakdown voltage, $V z$, which is independent of the diode current. A wide range of zener diodes are commercially available; values from 2 to 200 volts, with power ratings from a fraction of a watt to 100 watts, are common. It should be pointed out, however, that
changes in temperature generally cause a change in the zener reference voltage. The typical temperature coefficient of the zener diode is specified by the manufacturer. For example, the temperature coefficient for zener diode IN752A varies from -1 to $1.5 \mathrm{Mv} /{ }^{\circ} \mathrm{C}<$

NAP2 does not have a built-in model for the zener diode. The zener diode is modelled by connecting an additional reverse current generator, Iz, parallel to the forward current generator, Id, in the diode model. IZ is defined with a table. The NAP2 zener diode model is shown in Figures 3.6 and 3

Figure 3.6. Zener Diode Model

```
*LIB2 Z1N752A +
CURGEN/EXP/ A -0.125E-10 B 0.125E-10 >
    D 0.32453E-01 L -2.0 U 0.8
ZENCUR/PAR2/ -3.0 -10.0 >
    -1.0 -6.0
    -0.8 -0.5>
    -0.6 -0.05
    -0.5 -0.2E-02 >
    -0.48-0.1E-08>
    0.0 0.1E-03 >
    1.0 0.1E-05>
    4.9 0.1E-05 >
    5.28 0.1E-02>
    5.34 .02 >
    5.41 .05
CDIE/ / B 0.31E-05 C -0.125E-10
CTRAN/ / S 0.333E-03 C 0.75 >
                                D -1.0 E - 0.5
RS 1 2 0.1E7
ID 2 1 1*CURGEN(VID)
IZ 1 2 l*ZENCUR(VIZ)
C'T 2 1 l*CTRAN(VID)
CD 2 1 1*CDIE(VID)
RB 2 3 11
```

Figure 3.7 NAP2 Zener Model For IN752A
C. BIPOLAR JUNCTION TRANSISTOR MODEL

A bipolar junction transistor may be described in terms of two diodes coupled back-to-back. This is not unexpected since a transistor is manufactured by forming two pan junctir back-to-back. The base region, which is common to both, prov the coupling. The model developed using the above concept is called the EBERS-MOLI model [5]. The builtin model of tl bipolar junction transistor used in the NAP 2 circuit analysis: program is shown in Figure 3.8 .

The transistor model in NAP 2 is the large signal EBERS-1 model with non-linear capacitors which represent the charge storage effects of the junctions. The $n-p-n$ model is shown with its characteristic equations.

Figure 3.8
NAP 2 Built-In Bipolar Junction Transistor Model (NPN)

The equationswhich govern the BJT model are as follows

$$
\begin{aligned}
& \text { VBE/VT } \\
& I B E=I S *(e \quad-1) \\
& \text { VBC/ (NV*VT) } \\
& I B C=N I * I S *(e \quad-I) \\
& Q B E 1=C_{e_{j}} \int_{0}^{V B E} \frac{d v}{\left(1-\frac{v}{\phi}\right)^{\gamma}} \\
& \text { QBE2 }=\alpha_{F} * \mathcal{J}_{F} * \text { IBE } \\
& Q B C I=C_{C_{j}} * \int_{0}^{V B C} \frac{d v}{\left(1-\frac{V}{\phi}\right)^{\gamma}} \\
& \text { QBC2 }=\alpha_{R} * J_{R} * \operatorname{IBC}
\end{aligned}
$$

The parameters are defined in Table 3.1.

The built-in transistor model is referenced in NAP2 circuit description language as follows:

TXXX Cnode Enode Enode IISTNAME [AF

LIST NAME is a reference to a previously defined paramet list for the transistor:

```
IISTNAME / / AF value AR value IS value NI value > VT value NV value TE value TR value GE value \(>\) \(C C\) value \(F I\) value \(G A\) value \(G Z\) value \(N G\) value \(>\) GS value
```

'Value' can be constant or functional. The curr $A F$ can be specified as a parameter in the transistor ref statement.

The NAP2 BJT model has some disadvantages. They ar (1) The diode current sources IBE and ICE are nononly in certain areas of the forward biased region. this area linearity is assumed. This model becomes inadequate when the circuit has failures.
(2) Some of the parameters like ϕ are assumed to b for $C-B$ and $B-E$ junctions.
(3) Bulk resistances of transistors can only be re as external resistances to the model.
(4) Finally, the parameter list for the built-in m of BJT is not directly available in the transistor So, the user has to solve complicated equations usi data given in transistor manuals to match the param list of the built-in model.

Because of the above disadvantages and short comings of the built-in transistor model of NAP2, the SCEPTRE model is adopted for use in the NAP2 circuit analysis program. The SCEPTRE model library contains a large number of commonly used transistor models. The SCEPTRE model is shown in Figure 3.9.

Figure 3.9 SCEPTRE Bipolar Junction Transistor
The equations which govern the SCEPTRE model are as follows:

$$
\begin{aligned}
& C E=\frac{C O E}{\left(\phi_{E}-V E\right)^{n_{E}}}+(T E / V T E) \cdot(I E+I E S) \\
& C C=\frac{C O C}{\left(\phi_{C}-V C C\right)^{n_{C}}}+(T S / V T C) \cdot(I C+I C S) \\
& \text { - }\left(e^{\text {vec/ute }}-1\right) \\
& \text { Ic. } \operatorname{XCS} \cdot\left(e^{V C C / V T C}-1\right) \\
& I N=\alpha_{F} \cdot I E \\
& \text { II }=\alpha_{R} \text {. ic } \\
& \alpha_{F}=F 1(I E) \\
& \alpha_{R}=F_{2}(I C)
\end{aligned}
$$

base junction
$71_{\mathrm{e}}=$ Emitter junction grading constant
${ }^{*} I_{\mathbf{C}} \mid=$ Collector junction grading constant
IN « cunent generator dependent on the emitter
base junction current
II $=$ current generator dependent on the collector base junction current.

IES » Emitter base saturation current measured in the active region

ICS » collector base saturation current measured in
the active region
VTE $=$ constant of the emitter base junction eauation VTC < constant of the collecor base junction eauation TE > Time constant of the emitter diffusion capacitance eauation
$=(1 /(2 * 3 * 14 * F F) \quad)$
$T S=$ Time constant of the collector diffusion capacitance equation
« (1 / (2 * 3.14 * PR.))
FF a The average fT normal
FR.a The average fT inverse
^p a Forward current gain
This parameter is entered as a function of IE in the SCEPTRE model

R3 a Hase bulk resistance
RC a Collector bulk resistance
Rl a Emitter base junction leakage resistance

```
TE = F3 (IE)
TS = F4 ( IC )
```

DEFINITION OF PARAMETERS.
$C E=$ The sum of the emitter transition and diffusion capacitances, where:
$\begin{aligned}\left\{\operatorname{COE} /\left(\phi_{E}-V C E\right)^{\mathrm{nE}}\right\}= & \text { emitter transition } \\ & \text { capacitance }\end{aligned}$
and
$\{T E / V T E\} \cdot\{I E+I E S\}=$ emitter diffusion capacitance
$C C=$ The sum of the collector transition and diffusion capacitances, where
$\left.\left\{\operatorname{coc} /\left(\phi_{c}-V C C\right)^{n}\right\}\right\}=c o l l e c t o r$ transition
$\{\operatorname{TS} / \operatorname{VTC}\} \cdot\{\operatorname{IC}+I C S\}=$ collector diffusion
COE = constant of the emitter transition capacitance equation
$C O C=$ Constant of the collector transition capacitance equation
$\phi_{E}=$ Emitter base junction contact potential
$\phi_{c}=$ collector base junction contact potential
$I E=$ current generator representing the emitter base junction
$I C=$ current generator representing the collector

R2 = collector base junction leakage resistance The description given above was for $N P N$ transistor model. A PNP transistor is modelled by reversing the polarities of th current sources in the NPN model. Figures 3.10 and 3.11 depicit the SCEPTRE and NAP2 statements which model transistor 2N329A.

```
MODEL 2N329A (PERM) (B-C-E)
```

SUPPLIED BY CONVAIR DIVISION, GENERAL DYNAMICS,
SAN DIEGO CALIF.92112
UNITS OHMS, VOLTS, AMPS, FARADS, HENRIRS, SECONDS
ELEMENTS
$R Q, 1-E=350.0$
$R C, C-2=32.0$
RE, $\mathrm{E}-3=2.5$
$\mathrm{RCC}_{\mathrm{f}} 2-1=5.0 \mathrm{E} 07$
REE, 3-1 =5.0E 07
$\mathrm{CE}, 3-1$ » F
JE, 2.16E-14)
CC, $2-1=$ EQUATION1 (95.E-12,.80,VCC, $50,29 ., 1.4 \mathrm{E}-05$,
JC, 6.22E-11)
JE, $3-1=$ DIODE EQUATIOW (2.16E-14, 39.)
JC, 2-1 » DIODE EQUATION (6.22E-11,29.)
JI, $1-3=0.865 *$ JC
JN, $1-2=0.972 * \mathrm{JE}$
JPl,l-3 = 0 .
JP2,l-2 •0.
FUNCTIONS
EQUATION! (A, B, C, D, E, F, G, H) $=(A /(B-C) \star * D+E * F *(G+H))$
:CLTPAN.C IS COLLECTOR BASE JUNCTION CONTACT >
POTENTIAL (FIC)
: CLTRAN.D IS - 1
:CLTRAN.E IS NEGATIVE DE COLLECTOR JUNCTION >
GRADING CONSTAYT (-NC)
RB 24350.00000 :BASE RULR RESISTANCE
R1 $430.50000 E+08$: EHITTER BASE JUNCTION
LEAKAGE RESISTANCE
IE 34 1*EMTCUR(VIE)
CET 43 I*EMTRA: (VIE)
PTEM以 $5=0.89 E-07$
PREMP1 $=0.39 E+02 *$ DTEMP6
PCEMP2 = 1* EMIDIF (IIE)
CED 43 l*PTEMPl*PTE:イD2
IN \& $50.97200 E+00$ IIE
R2 $450.50000 E+03$:COLLECTOR BASE JUNCTTOA 》

IC 54 l*COLLCUR(VIC) CC'T 45 l*CLTRA! (VIC)
PTEMP7=0.14E-04
PTEMP3 $=0.29001 E+02 *$ PTEMP 7
PTEDE4 $=1 * \operatorname{COLDIE}(I I C)$
CCD 45 1*PTERP3*PTEMP4
II $430.85600 \mathrm{E}+00$ IIC
RC $510.32000 E+02$:COLLECTOR 3ULK RESISTANCE

Figure 3.11 NAP2 Model For Transistor 2 N 329 A
3.2 NOMINAL COMPONENT AND FAILURE MODELIING

The analysis of a circuit when all of its components have nearly the nominal value yields the nominal response. Typically circuit components have 1%, 5% or 10% tolerance specified on their nominal values. The actual value of a 1 kohm resistor in a circuit having 5\% tolerance resistors may be any resistance between 950 and 1050 ohms. In the circuit analysis all componen tolerances are taken into consideration in the computation of the approximate worst case response. The sign of the sensitivit of the desired response with respect to the nominal component value (or parameter) indicates if the minimum or maximum value of the component value should be used to compute the worst case response. To compute the minimum worst case response, minimum component value is used when the sign of the sensitivity is positive. However if the sign is negative, maximum component value is used. To compute the maximum worst case response, maximum value is used when the sign of the sensitivity is positi If the sign is negative, minimum componentvalue is used. With these values two additional simulations are performed to get an estimate of the minimum and maximum worst case response.

If a tolerance is not specified, circuit simulation uses the same value when computing the nominal, minimum and maximum worst case responses. This is a very unlikely physical situatio

NOPAL Resistance Measurement Function Used in a Conjunction <CNX_HI, CNX_LO > = OHMMETER(RES,MIN,MAX,VREF)
where

Table 3.2 illustrates the typical tolerances used in NOPAL:

Component Type	Tolerance Value $(+$,)
Resistor	10%
Capacitor	10%
Inductor	10%
Diode (and Zeners)	5%
Transistor (BJT)	0.5%

Tolerance on Paramet

Resistance
Capacitance
Inductance
Reverse Saturation
Forward and Revers
Alpha When Cơ 0.995

Table 3.2 Component Tolerances

A 10\% tolerance indicated in the table represents-10\% and $+10 \%$ of the nominal value. If so required different negative and positive tolerances can be specified. When the circuit schematics don't specify otherwise, the tolerance shown above are used. The tolerances on transistor reverse and forward alphas should be carefully specified to ensure that the maximum value of alpha is less than one. Even though it is theoreticall possible to have negative resistances in circuit designs, -200% tolerance on a 20 ohm resistance (implies -20 ohm) is obviously, an errorneous specification.

In the NOPAL system most single component failures are modelled by topological changes in the circuit description. Eve though in this study only single catastrophic failures (open anc short) are investigated, any other failure (i.e. multiple) can 1 modelled using any combination of single failures and out-of-
tolerance parameters.

Single catastrophic failures which are automatically gener by the NOPAI system (whenever applicable to a component in the circuit) are tabulated and pictorially explained in figure 3.12 All resistor, potentiometer, capacitor diode and zener diode failures are modelled with a resistance replacing the component Transistor failures are essentially the same as the others with an additional low valued resistor shorting the junction which is open. This model of junction-open failure prevents numerica analysis and modelling problems associated with the Ebers-Moll model of bipolar-junction transistor.
3.3 Stimulus and Measurement Device Modelling

Each range of the stimulus and measurement devices of an ATE result different loading conditions to a unit under test. These loading effects and signals must be effectively modelled and simulated accurately. Especially the behavior of the nonIinear circuit components is critically dependent on the stimul and measurement devices. In the following subsections, resista impedance, voltage and current measurement models and power supply models are described.
A. Resistance Measurement

EQUATE performs resistance measurements by setting up a dc-standard reference voltage, a standard resistance in series with the unknown resistance connected through the PIU/DIU test

Figure 3.12 Single Catastrophic Failure Models in NOPAL
points. A voltmeter measures the voltage drop across the unknown resistance. This measured voltage is used with the other user provided data to compute the unknown resistance in software (Figure 3.13).

The ohmmeter setup described above is also modelled for NAP2 to make resistance measurements. In the NAP2 circuit analysis program it is more convenient to work with branch currents; hence in the circuit simulation the current through the reference voltage is requested and a slightly different equation is used to compute R. (Figure 3.14). X

The ATLAS resistance measurement procedure used by the NOPAL system is shown in Figure 3.15. In this procedure the range is selected according to the minimum expected resistanc However if the measurement is higher than the upper limit of the selected range (overrange) and maximum expected resistanc is greater than the measured value, then the measurement is repeated in the next higher range. To eliminate the effects charging and discharging time of capacitors dc standard is applied and measurements are repeated until the relative errc in two successive measurements is less than or equal to 0.1%. However this accuracy is not enfored when the measurement is greater than lOMohm. This is the highest resistance that can measured by the equipment.
B. Impedance Measurement

The impedance measurement operation in the EQUATE is sin to resistance measurement. Figure 3.16 depicts the setup used in impedance measurements. The impedance is computed fi

MEASURE (RES ! RX ${ }^{f}$ OHM), IMPEDANCE, RES MAX 'RES MAX 'RMAX ${ }^{f}$ OHM REF-VOLTAGE ${ }^{\prime}$ VREF $^{1} \mathrm{~V}$, DELAY ${ }^{\mathrm{f}} \mathrm{D}^{\mathrm{f}}$ SEC, CNX HI ${ }^{f}$ A $^{\mathrm{f}}$ LO ${ }^{\prime}$ IS 1 \$

Where the control limitations are:
\qquad
RES MAX
REF-VOLTAGE

RANGE:

0 to 10 Mohm
-10 to +100 SEC

Circuit Equivalent Equipment Setup:

Series resistance of R_{s} is programmed by the system depending on the RES MAX field as follows:
$\mathbf{R}_{\mathbf{s}}$
0.9 Kohm
9.0 Kohm
90.0 Kohm
900.0 Kohm

RES_MAX
$0<{ }^{R} \max <4$ Kohm
$4 \leq R_{\max }<40$ Kohm
40 Kohm $\wedge R_{\text {max }}<400$ Kohm
400 Kohm $\leqslant \mathrm{R}$
max

The voltage drop across $R_{\text {.. }}$ is measured by the voltmeter ${ }^{f} D^{f}$ seconds after the dc-standard voltage source is applied. The foil equation is used to compute the unknown resistance:

$$
\operatorname{Rx}_{\mathrm{v}_{\text {ref }}}^{\text {meas }}
$$

```
RS
M.0k_(%)
Relationship of R R to R N
To obtain the current levels at \(V_{r e f}\) other than lvolt, multiply 'z' by the desired \(V_{r e f . ~ A b o v e ~ o h m m e t e r ~ w r i t t e n ~}^{\text {f }}\) in NAP 2 language is:
FRANGE/TAB2/ 0 \(\quad 900 \mathrm{~K} \quad 0.77 \mathrm{U}\) 900K
\begin{tabular}{lcrccc}
0.77 U & 90 K & 2.04 U & 90 K & \(7.7 \mathrm{U} 90 \mathrm{~K}>\) \\
7.7 U & 9 K & 20.40 U & 9 K & 77 U & 9 K \\
7 & 0.9 K & 204 U & 0.9 K & 1 & 0.9 K
\end{tabular}
RVREF ba' 0 E Tref
RS a! a !*FRANGE (IRS)
*DC *WORST IROHMTR
Unknown resistance is computed using:
\[
R_{x}=\frac{v_{r e} f^{* R_{S}}(i)}{i}
\]
```

```
FI"E OSGEFEL;5, "OHMHETEN":
```



```
    CCHMEETGR.LASG" = -i -
```



```
        `(rMreT=n.LF:" = j s
```



```
        OH!pETEN.uE:" = j S GuTG \TEF ic:
```



```
        CUM*ET=ir.URI" = 5 J
```



```
        juT0 STEF 9: :F EO Z
```



```
                Cidx OnCEE %
    OHENETEF.Cum&T= 1 i
    C0!う JTEF ミ1 &
```



```
    ##nOve íc-STj j
    EN:O - EMN:ETE{",
```

the measured voltage across the unknown load. A reference voltage from the ac-standard is applied through a scaling resiste to the unknown. The frequency and voltage setting of the ac standard are programmable. R_{s} is a series resistance whose value is determined by the system depending on the maximum expected impedance. $\quad R_{m}$ and C_{m} are the parallel $R C$ network which represent the sampler impedance. z_{x} is the unknown impedance to be measure Z_{x} is computed from the $Z_{\text {total }}$ after compensating for Z_{m}. $Z_{\text {total }}$ is computed from the voltage measurement taken across Z_{x}. It has been determined that the programming data given for the impedance measurement are not attainable identically on EQUATES v and VII. The compensation used $\left(R_{m}=1 M 0 h m\right.$ and $\left.C_{m}=900 \mathrm{pF}\right)$ is not adequate. EQUATE V fails to make impedance measurements abov 8KHz. However EQUATE VII can measure up to 12 KHz .

The model of the impedance measurement function as used by the NOPAL system in NAP2 language is shown in figure 3.I7.

The ATLAS impedance measurement procedure used by the NOPAL system is shown in Figure 3.18. In this procedure the range is selected according to the minimum expected impedance. However if the measurement is higher than the upper limit of the selected range (overrange) and maximum expected resistance is greater than the measured value, then the measurement is repeated in the next higher range. To eliminate the effects of settling times and ac-standard setup time at each different frequency, the measurements are repeated until the relative error in two successive measurements is less than or equal to 0.1\%. This accuracy is not enforced if the measurement is greater than 10 Mohm.

ATLAS Statement to Measure Impedance:
MEASURE (IMP ' $\left.\mathrm{ZX}^{1}(\mathrm{l}) \mathrm{OHM}\right)$, IMPEDANCE, IMPMAX ! ZMAX ${ }^{\mathrm{f}} \mathrm{OHM}$, FREQ ' Z^{1} HZ, REF-VOLTAGE 'REIN ${ }^{1}$, DELAY 'D ${ }^{1}$ SEC, CNX HI 'A ${ }^{1}$ LO 'B ${ }^{f}$ \$

Circuit Equivalent Equipment Setup:

Rs is programmed by the system depending on IMP MAX field as follows:

Rs Imp MAX

| 0.9 Kohm | $0 \leq Z_{\max } £ 3.6$ Kohm |
| ---: | :--- | ---: | :--- |
| 9.0 Kohm | $3.6 \mathrm{Kohm} \leq 36 \mathrm{Kohm}$ |
| 90.0 Kohm | $36 \mathrm{Kohm}<\mathrm{Z}_{\text {mos }} \leq 360$ Kohm |
| 900.0 Kohm | 360 Kohm $<Z_{\max }$ |

The sample makes eight measurements for period of the reference frequency. The Fourier transform is taken to get th real and imaginary parts of the fundamental component. The following equation is used to compute the complex impendance.

Figure 3.16 EOTTATK .Impedance. Measurement

To obtain the current levels at other than $V \mathbf{r e f}^{\boldsymbol{I}}=\mathrm{IV}$ multipl
by the disired $V_{r y^{1}}$ This impedance measurement is wri
in NAP2 as follows:

FRANGE/TAB2 / 0 900K $\because 0.8 \mathrm{y} \quad \because 900 \mathrm{~K}>$
$0.8 y 90 K \quad 90 K \quad 7.94 y \quad 90 K \quad>$
$7.94 y \quad 22 \# 2 y \quad 9 K \quad 79.4 y \quad 9 K \quad>$
$79.4 \mu \quad 0.9 \mathrm{~K} \quad 222 \mathrm{~V} \quad$ O.9K \quad I O.9K
ZESRC
b a' O E vref
RS
a: a \mathbf{a}^{*} FRANGE(IRS)
*DC; *RUN
*AC *PRINT *MA *PH IPS
The simulation gives the magnitude (i) and phaseO) of the current through Rs.

The impedance seen by the meter is:

NOPAL Impedance Measurement Function Used in a Conjunction $\left\langle C N X _H I, C N X _L O\right\rangle=Z M E T E R(I M P, M A X, V R E F, F R E Q)$

'ZMETER_CNXOI' = high test poid	CNX_HI
'zMETER.CNXO2' $=$ low test point	CNX_LO
'ZMETER.PRMOI' = measured impedance	IMP
'ZMETER.PRMO2' = minimum impedance	MIN
'ZMETER.PRMO3' $^{\prime}$ = maximum impedance	MAX
'ZMETER.PRMO4' = reference voltage	VREF
'ZMETER.PRMO5' = frequency	FREQ


```
    CBETEADfNE-(1)=Ez
```



```
    OHERER.LASTO=-i=
```



```
    GOTO STEF ذ: :F ju ?
```



```
    0GPEPミN.CSU&T* = 1 $
        30T: STEP -1 !
```



```
        O-OETER.LII" = "EGETEK.LK!" +1 %
```


REMO:E AC-STO
ENO 'zMETER'\$

```

VOLTMETER, AMPMETER AND POWER SUPPLIES

The stimulus functions which apply the power supplies and the asurement functions which take voltage and current measurements
simpler than the resistance and impedance measurements. In is particular application the internal resistance and loading effe the stimulus and measurement devices could be ignored. This mplifies the task significantly because the circuit analysis proam can provide the voltage and current measurements directly. The fferent power supply requirements can be handled by writing a fferent function for each power supply available on the EQUATE. gure 3.19 shows the most common power supply and measurement nctions used in the test specifications.
```

(I************************ *>《V*x***A*
UEFIGE PFOCESLCE, VULTNETEN゙

```

```

 VOLTMEIEh:CNXC |"" / vO| 'r r c゙T:K•C*<X;?u." ?0
 ~A A SURE (VOiTnbL`'V GLTMETc'=? - S fc S " v),
 DC-SIL^AL i DELAY 'j". 1 SEC%
 C»V< HI 'VOLT';'cT'cH.C^Xu1'
 LG 'VOLT^j£T£R.C^X C2 " X
 ?C MEA5Uh"t (VOLTAGE 'VOLTrSTc`P.Fh~.ü 1" V),
DI-SIV.J,AL,O£LAY *J»1 S*tC,
CNX HI "VOLTfETW\ddot{\&}\#CN;XG1
LO ^VCir^ETc̈K.CNX J<<:^ i

```

```

 L£ C.."u!^
 GoTO STtP 7C IF NOGO^
    ```

```

 \bullet\bulleti.T^.-=' V, Cr** HI %
    ```

```

 EN0*VOLTMETEN",
 C*****************************

```

```

 "ri SUP PLY. CuVu*i', 'LS U P PLY •CNXCi "^
 REMOVE DC2Ai
APPLY OC-SiGUfIL DCZA.VOLTAb*E *\&Su'PrLt•PRrtC1' Vt
CNX HI 'EtUPTLY.Cr*X.;i* L^ *iSuPFLY.C -'A J*Z** %
RECORD 'AfF-CCf'^.T£ST%"TEST -*:A FPLICD DC?A', M,
"c`SUPPLY.P..VJi*'fu ... i .." .. ^jj C<>A` HI M.
'S S UPPLY. C*:XC1 ',"•: LC ",
't S UPPLY.C'ACZ',* 1^ ." i
MEASURE (CURRENT *iSUPFLY.KE3 * A) f
OC-SIGUAUGDEL^Y 0.1 EEC,CNX OCCA

```

```

 END 'c̄SUPPLY' 1
    ```
C

Figure \(3<19\) NOPAL Stimulus and Measurement Functions as ATLAS Procedures

A 2100 and A5100 circuit cards are connected to the E through a custom made interconnecting device (ICD) manufa by RCA. This ICD has only a few passive elements and prov the proper sockets and edge connections to route the ATE a signals to the appropriate pins. The circuit components the ICD are the leak resistors which discharge the capacit the attached UUT after the stimulus has been removed. The extra resistors are treated as a part of the UUT in circui simulation. The ICD is intended for use with only one cir card at a time.

Figure 3.20 is the interface schematic when A2100 car is being tested. The ICD box is attached to the EQUATE th cable CAI. Similarly Figure 3.21 is the interface schemat when A5100 card is inserted. In addition to cable CAl, ca is attached to provide the lines to the three different po supplies which are used in testing A5100.

In addition to the resistors, the ICD box contains a capacitors. However these capacitors are not involved in tests of A2100 and A5100. The ICD has several other slots inserting other cards from the AN/VRCl2 radio. Figure 3.2 illustrates the hookup of the ICD to the EQUATE.




Figure 3.22 ICD Hookup Diagram

Generation of a Test Program For Voltage Regulator Card-A210

The generation of a test program to diagnose and isolat single catastrophic failures in the A2100 voltage regulator card of the \(A N / V R C-12\) radio is described in the following six sections. Section 1 presents the theory of operation for the circuit. This description closely follows the theor given in DMWR 11-5820-401 pages 34-35, and 3B.10-3B.12. Section 2 contains the input supplied to the top part of the NOPAL system. Each input option is briefly explained. An overview of the tables generated by the system is given in Section 3. The NOPAL specification of the tests based on these tables is explained in Section 4. The flowchart of th EQUATE ATLAS program which is generated from the NOPAL speci cation is described in Section 5. Finally in Section 6, the printouts obtained by running this program on EQUATE V or VI are exhibited and evaluated.


Figure 4.1 A2100 Voltage Regulator Circuit Card
4.1 Voltage Regulator Assembly-A2100: Theory of Operation The voltage regulator card A2100 shown in Figure 4.1 provide a regulated output of 16 volts dc for circuits in the \(R-442 / V R C\) (or the \(R T-246 / V R C\) and \(R T-524 / V R C\) ) radiosets. The regulator maintains its 16 -volt output over a wide range of current demands The A2100 circuit card contains circuitry to perform the following three functions: (A) l6-volt dc voltage regulation, (B time delay circuit to operate a relay, and (C) an RC integrator a a small-signal rectifier. The operation of the circuitry for eac function is explained below.
A. A simplied circuit schematic diagram of the voltage regulator portion of \(A 2100\) is shown in Figure 4.2.

The effective resistance of transistor 0202 (2403) in series
 any current required by the external circuit. Diodes CR201 (CR4O CR202 (CR 406) and transistor Q202 (Q403) are not located on the voltage regulator assembly card-A2l00. They are connected to the A 2100 circuitry when the card is inserted into its slot in the radioset. If the current drawn from the regulator increases or decreases, the effective resistance of 2202 (Q403) is lowered or increased as necessary to maintain the output at 16 volts. This is done by controlling the transistor emitter-to-base bias voltag The emitter voltage is essentially fixed by the 25.5-volt dc supp The base voltage is controlled by the voltage drop across resiste R2104 and thermistor RT2101. The emitter current of 22101 is controlled by its emitter-to-base bias voltage. Its collector is maintained out 16 volts dc since it is connected to the collector


TME820-409-35-38

Figure 4.2Voltage regulator, simplified schematic diagram


Figure 4. उTime delay circuit, simplified schematic diagram
generator on a motor vehicle. It starts shorting the spikes above 39 volts. Capacitors \(C 2102\) and C2103 attenuate low and high frequency ripple voltages, respectively.
B. Figure 4.3 shows the time delay circuit which is als located on the A2100 circuit card assembly. This circuitry i used to energize a relay which turns on and off the error sig coming from the phase discriminator and going to the local os This is done to prevent the local oscillator to lock on spuri frequencies when the radio is being turned on and off and als when megacycle tuning switch is being rotated. Relay k3001 a switch Sl03 (S301, S355) are not physically located on the A2 card.

As power is applied, current flows through transistor \(Q^{2}\) and the coil of relay K3001. Relay K3001 energizes, error si from the phase discriminator is provided, and capacitor \(C 2104\) begins to charge. When capacitor C2104 is charged, transisto is biased to cutoff, relay \(k 3001\) deenergizes, and the ground removed from the error signal and routed to the local oscilla Resistor R2107 establishes the initial bias for transistor 22 and, in combination with resistor R2108, determines the time to charge capacitor C2104. Diode CR2106 enables quick discha of capacitor c2l04 when power is removed, thus assuming the of the time delay circuit in the event power to the equipment switched off and on very quickly.

The time delay circuit also functions whenever megacycle switch Sl03 closes. As the switch closes momentarily, capaci discharges through resistor R2109 and the switch to ground.

Q202 (Q403). CR2103 is a 5.5-volt Zener diode which maintains the voltage on the emitter of transistor \(Q 2102\) at 5.5 volts lowe than the output voltage. Potentiometer R2l06 establishes the ba voltage of Q2102. The effective resistance of 22102 sets the ba voltage on \(Q 2101\) and thus controls its emitter current.

When the current requirement of the external circuit increa the collector voltage on \(Q 207\) (Q403) decreases. This decreases the emitter voltage of \(Q 2102\), decreasing its effective resistanc and lowering the base voltage on Q2lol. The emitter current of Q2101 increases and lowers the base voltage on 2202 (Q403); thus decreasing its effective resistance. The voltage drop across Q202 (Q403) is reduced, and the output is increased to 16 volts Diode CR2102 applies the voltage at the junction of resisto R2102 and R2103 to the base of 22102 through potentiometer R2106 This action starts the regulator when power is first applied. the output voltage reaches 16 volts dc, CR2l02 is reverse-biased and effectively removed from the circuit.

Potentiometer 2106 compensates for variations in zener dio CR2103 and is used to manually adjust the regulator output to 16 volts dc.

Diodes CR2104 and CR2105 compensate for variations in the emitter-to-base voltage of 22102 caused by change of ambient and junction temperatures. Diode CR2O1 (CR406), resistor R2104, and thermistor RT2lOl provide temperature compensation for transistor \(2202(0403) . \quad\) Zener diode CR2O2 (O412) protects the requlated 16 volt power supply ines from the intermittent spike which appear on the 25.5 volt supply line coming from a
capacitor C2104 is discharged, the sequence of events described above occurs. Switch S103 momentarily closes as the tuning gear train turns; this insures that the new crystal oscillators being selected provide the maximum output before the error signal is connected to the local oscillator.
C. The small subcircuit on the lower left hand side of Figure 4.4 is the RC subscircuit on the \(A 2100\) card which is not related to voltage regulation. Diode CR2101 performs rectificatic of an AC-signal. The output is routed through a large \(R C\) time constant circuit, resistor R 2101 and capacitor C 2101 , back to the radioset. This circuit is referred to as the filter subscript in the remainder.

The complete circuit schematic of the circuitry contained on the A2100 card is shown in Figure 4.4. Figure 4.5 shows parts location and wiring diagram of the circuit card. The numbers enclosed in small circles point at the nodes of the circuit. Thes numbers are arbitrarily assigned to identify the nodes. The same node assignments are also used in Figure 4.4. The numbers in rectangles are actually printed on the circuit card for easy identification. The numbers above them are the EQUATE dedicated interface unit test points as they are routed to A2100 through the special VRC-12/EQUATE interface connecting device. These connections explained in more detail in the discussion of the interface in Section 3.4.


Figure 4.4 Circuit Schematic Diagram of A 2100 Card

TM 8820-409-33-7 «

Figure 4.5 Assembly A2100, Parts Location and Wiring Diagram.

The test program for the \(A 2100\) card is generated in two parts. The first program is for the filter subcircuit and the second program is for the voltage regulator and time delay circuit.

The complete input given to the top part of NOPAL to generate a test program for the filter subscript of the A 2100 card is shown in Figure 4.6 and discussed in subsection \(A\). The input which describes the voltage regulator and time dela circuit and its requirement is shown in Figure 4.7 and discus in subsection B.
A. CIRCUIT DESCRIPTION AND REQUIREMENTS FOR THE FILTER SUBSC The circuit description of the filter is shown in

Figure 4.6. Resistor \(R 2101\) is 270 ohms and is incident on circuit nodes 0 and 2l. In NAP2, node 0 is the ground refere node. Node 21 is arbitrarily named. Capacitor C2l01 is \(68 \mu \mathrm{~F}\) and is incident on nodes 2 and 21. Diode QDR2101 (CR2101) is type 1 N645 and is incident on nodes 21 and 3 . The nodes 1,2 and 3 are also terminals on the edge connector of A2100. How node 21 is internal and not available unless probing of the \(c\) is allowed. (see Figures 4.3 and 4.4).

A diode model for IN645 has been previously stored in the model library number 2 of the NAP2 circuit analysis progr Hence its details need not be repeated in the circuit descrip A reference to the model by name enables the model to be retr from the library during simulation. The model for IN645 is included in the main circuit as a subscircuit by connecting i internal node 1 to node 21 , and internal node 3 to node 1 .
\[
4-10
\]
```

CIRCUIT DESGRIPTION AZICO DEFAULT VOLTAGE REGULATOR
*CIRCUIT
: THIS CIRCUIT IS PART Of AZ100 GIRCUIT BOARD
R2101 D 21 2?O : FAILS
C2109 2 <1 E\&UF : FAILS
QDR2101 21 = 1 1 = 3 : FAILS
*LIEZ 01NS4S
0*
ROPEN1 1 O TOMEG
ROPENZ 2 O 10MEG
*MODIFY 1 C.1 2.1 R2901 C2101
*MODIFY z 0.0S 0.05 >
ZDR2101.ES QDRZ101.RE GDR21C1.CT GOR2101.CD
*MODIFY 3 10.0 0.1 ROPEN1 ROPEN2
TEST_TERMINALS J\& PC SOARD EDGE CONNECTOR
O AZ1_3 GROUNO
1 A21-1
2 A21-2
AGTEST TERMINALS JE PC EOARD EDGE CONNECTOR
O GND GROUND
1 A21_1
2 A21_2
OBJECTIVES STANDARD
100.0% DIAGNOSIS
50. 2 aMSIGUOUS
\&O. \& AMEIGUOUS
ACCURACY MINIMAL

```
```

 0.5JE-02
    ```
        0.5JE-02
        0.20E+02
        0.20E+02
        3
        1
        1
        1
            1.ここE+コ1
            1.ここE+コ1
            1.5JE+39
            1.5JE+39
            1.こうE-23 01.00E+20 GURRENT
            1.こうE-23 01.00E+20 GURRENT
            1.2כE-23 01.00E+20 CURRENT
            1.2כE-23 01.00E+20 CURRENT
            C.5JE+30 こ3.5JE+01 VOLTAGE
            C.5JE+30 こ3.5JE+01 VOLTAGE
    1
    1
INITIAL_GOVDITIONS NOFOWER
INITIAL_GOVDITIONS NOFOWER
END
```

Figure 4.6 NOPAL Input for A2 100 Filter Subcircuit

The resistors ROPEN1 and ROPEN2 are not part of the circuit. They are included to prevent numerical analysis problems. Eventhough it is not always required to have at least two branches incident on each circuit node, it is a good practice not to leave any dangling branches for consistency. The valu Of ROPENI and ROPEN2 are very high. For all practical purpos they can be considered open. The first "modify" statement specifies $+-10 \%$ tolerance for R2l01 and C2lol. Diode QDR2101 has +-5 tolerance on most of its parameters: on short and bu resistances, and on transition and diffusion capacitances. ROPEN1 and ROPEN2 have $+1000 \%$ and -10% tolerance. This wide tolerance is specified to show that these two resistors have no effect on circuit response.

All of the circuit nodes which are on the edge connector are declared to be test terminals. Node 21 is not made avail for probing. The objectives of fault isolation is held very high by requesting that all of the failures should be detecte (i.e. 100% diagnosis); furthermore one half of the failure mo should be isolated into groups containing no more than two possible failures (i.e. 50\% of failures 2-ambiguously) and 80 of the failures should be isolated into groups containing no than four possibilities (i.e. 80\% of failures, 4-ambiguously) In this particular subcircuit, this objective does not appear to be very meaningful. It is included here for uniformity wi other inputs. This is the standard objective which is used i all test programs.

Accuracy specifications state that (1) any measurement which is in the range -0.005 to 0.005 should be treated a z (2) any measurement taken can be as much as + 20% off from true value, (3) the test program should refer to stimuli an measurements using at most 3 -significant difits, (4) minimu measureable resistance is 100 ohms, and maximum mesureable resistance is 400 Kohms, (5) minimum measureable impedance magnitude is 15 ohms, and maximum impedance is 10 kohms, (6 minimum current is 1 on A and maximum current is 1 A, (7) minimum voltage is 0.5 volt, maximum voltage is 35 volts.

After failure simulation, any failure which is not sim for a given test should be treated as resulting in nominal measurement. This option is actually not used in these pro It was specified here to prevent early termination of the t part in case of intentional omission of failure modes. The sort option is used for printing the tables according to av assertion or test sensitivity.
B. CIRCUIT DESCRIPTION AND REQUIREMENTS FOR THE VOLTAGE REGULATOR AND TIME DELAY SUBCIRCUITS

Figure 4.7 shows the circuit description of the voltag regulator and the time delay circuitry of the A2100 card. the circuit description first the semiconductor devices are connected. The terminals of the NPN and PNP transistors ar connected in the same sequence: collector, base and emitte The complete models of these devices are included in Append Potentiometer $R 210 B$ is modelled as two separate fixed resis where R2106B is functionally dependent on R2106A. The valu

Figure 4.7 NOPAL Input For A2100 Voltage Regul and Time Delay Subcircuits

```
                QQ2103.INGQ2133.R2 QQ2103.IG QQ2103.CCT QQ2103.CCD >
                Q22103.1I QGE103.RC >
                20R21C2.PS GCR210E.IO ODR21U2.CT GOR2102.CD QOR2102.RB >
                2DR21C4.RS GDR2104.JD QDR2104.CT GDR2104.CD QDR2104.RE
                ZDR21OS.RS GDR2105.IO ODR21L5.CT QDR21O5.CD QOR21OS.RB >
                2DRZ1OE.RS WDK21CE.ID ODR21CE.CT GOR210E.GD QDR21OE.RE
            GOR21CZ.RS GRRZ1O3.IO GDRE1O3.IZ GDR21Q3.CT ODR21O3.CD >
            GOR2103.RE
TEST_TERMINALS JE PC GOARD EDGE CONNECTOR
O AZ1.9 GROUND
4 A21_4 MAIN POWER INPUT
5 AC1_S THEPMISTOR CONNECTION
E A21.S REGULATED 1G VOLT OUTPUT
7 A21-7 S103 SWITEH POINT
& AZ1, TIME DELAY OUTPUT
ACTEST-TERMINALS JE PC GOARD EDGE CONNECTOR
O AZ1.7 GROUNC
4 A21_4 MAIN POWER INPUT
5 AZ1_5 THERMISTOR CONNECTION
6 AZ1-. REGULATED 1E VOLT OUTPUT
7 A21-7 S103 SWITCH POINT
& AZ1_Э TIME UELAY OUTPUT
CONVERSENCE CRITERION
    *MOOIFY VE=9C,V5=20
OBJECTIVES STANDARD
    1UC.O% DIAGNOSIS
        SE. 2 AMEIGUOUS
        SC. 4 AMBIGUOUS
ACGURACY MINIMAL
            O.5OE-02 
            0.1JE+02
        3
                        SIGNIFIGANT OIGITS
                    SORT WITHI\ TEST ONLY
                            OFTIMILE LOGIC
                            MISSING FAILURES SAME AS NOMINAL
            1.2JE+91 4C.0こE+04 RESISTANCE
            1.5こE+C1 O1.JJE+C4 IMPEDANCE
            1.00E-03 O1.00E+CO GURRENT
            0.5JE+J2 O3.5こE+J1 VOLTAGE
        10
ACEIAS DG OFEKATING PCINT IS DEGIDED EY THE FOLLWING DC SUPPLY
BEGIN !A ATTENTION OFERATOR: UUT IS EEING POWERED NOW
REIAS 4 D C.4 E 25.5V
INITIAL_CONDITIONS POWERUP
GEUIN !A ATTENTION OPERGTOR: UUT IS OEING POWERED NOW.
RSUPPLY 4 O 0.1 E 25.5
ENC
ENO-INITIAL
```

Figure 4．7 NOPAL Input For A 2100 Voltage Regulator and Time Delay Subcircuits（continued）
of R2106A is determined by an optimization simulation run requiring that R 2106 A should be adjusted such that the voltage at node 6 is equal to 16 volt dc. The simulation determines R2106A is 3.44 Kohm and R2106B is 1.56 Kohm (5 Kohm - 3.44 Kohl Both of the resistors may have +-5\% tolerance. Resistors RUUT and RUUT2 are not on the A2100 card. They are inside the AN/V3 interconnecting device. RUUT2 (33 Kohm) is not documented on the original ICD description. It was discovered during testin< and added to the interface schematic shown in Figure 3.20. Th leakage resistor discharges capacitor C2102 after a stimulus is removed from the card. RUUT2 is a load resistor for the time delay circuit. It effectively puts a load to ground on tl collector of transistor Q2103. All resistors and capacitors a; assigned +-5\% tolerance. All diode and transistor model param< are assigned -f-Q.5\% tolerance. Their tolerance specifications were deduced from semiconductor data books. These tolerances may result in up to $20-30 \%$ tolerance on transistor gain (beta) characteristics.

The edge connections are assigned the same circuit node numbers. In addition to the edge connectors, circuit nodes 15 18 are used as probe test points. In the current implementati< of the top part of NOPAL, there are no explicit provisions to generate special instructions to the operator to make the required connection. The probe message and the required ATLAS command is implemented in the OHMMETER, ZMETER or VOLTMETER functions. This is done by assigning the probe points to be connections points which are beyond the EQUATE ${ }^{1}$ S capability, tl
during execution, these cases are intercepted in the function prologue code to branch to the appropriate instructions to issue the probe message and to use the "PROBE" connection. The convergence crition (16 volts dc on node 6 and 25 volts dc on node 20) is not required. It is specified only to speed up th simulation and prevent possible numerical (no-convergence) pro Experience with failure simulation indicates that solutions ar considerably faster when the initial conditions for non-linear circuits are started from the nominal voltage levels rather th from all node voltages and branch currents at zero. All circu analysis programs start the numerical solutions from zero leve unless different initial conditions are specified by the user The remainder of the requirements listed in Figure 4,7 ar identical to those described in the previous subsection.

Evaluation of Tables Generated
The tables generated to the top part of NOPAL are evaluat in this section. The dicussion of the two subcircuits are don separately. The tables generated for the filter subcircuit a: discussed fully in Subsection A. In Subsection B, the tables generated for the remaining circuits are discussed however the complete table listings except the shortest significant ones a not included due to their length. The complete tables are available as computer listings and on a computer tape accompan this report.
A. NOPAL Tables For The Filter Subcircuit

The first table generated from the user provided input is failure dictionary. Table 4.1 shows the failure dictionary fo the filter subcircuit. There are 7 failure modes which the ci may have. Failure identification number 1 is not actually a failure, it is the nominal state of the circuit. It is includ in table for completeness. Each component has two failure mod as described in Section 3.2. This failure dictionary is simpl a document of the failure modes which are analyzed by the top In digital testing literature, the term 'failure dictionary ${ }^{1}$ a includes the data which is called the 'failure symptoms ${ }^{1}$ in th NOPAL system. This information is not apart of NOPAL failure dictionary.

Even though it is theoretically possible, it is very unli to have resistors failing by the shorting of their terminals. Initially in the course of this study, it was decided to inves the symptoms of failure due short of resistors to determine whether or not they could be isolated. It was observed that i many cases short of resistors could not be identified, i.e., t

Table 4.l A2l00-Filter Subscircuit Failure Dictionary
circuit behaves as if it were normal. There were several exceptions to this behavior, i.e. resistors which are involved in biasing and feedback circuits usually serve as voltage dividers, hence they effect circuit behavior significantly. All of these failures can be picked up. However, many resistors are included as safety devices for limiting the current when large amount of current is drawn. Hence under normal conditions their failure by shorting does not affect the operation of the circuit Due to these reasons, in addition to the statistics published by industry indicating very seldom occurance of such failures, the final test programs which are generated for these circuits exclu resistor shorted failures. Resistor short failures are included in the analysis until the generation of failure symptom tables. In reports presented here, and on the accompanying computer tape, they are dropped from further investigation. If it become desirable to include any or all of these failures, new ambiguity analysis, optimization, NOPAL specification and ATLAS program generation steps can be easily performed including the additiona failures. The operations described above amount to only one job on the computer.

Table 4.2 is the test limit and diagnosis table which conta the assertions created from the failure symptom table. This tab contains 8 different tests with an average of 2 assertions per t A total of 17 assertions are created. The actual identification and the test points involved in these tests are available in oth reports not shown here. These assertions are created slightly differently from the original version of the top part of NOPAL.

A test may have at most three assertions: (1) a nominal assert, giving the expected nominal range of measurement and identifyin< all components which result in this measurement, (2) a low asse: giving the range of measurement and indentifying the failure mo< for which the measurement is less than the nominal, and (3) a high assertion giving the range of measurement and identifying failure modes which result in a measurement higher than the nominal. In certain cases either the low or the high assertion may not be present. This is due to the fact that all measuremei have a low and a high measureable limit. It is physically not possible to get a reliable measurement beyond these limits. In these assertions, if a measurement is above 400 Kohms, it is replaced by a very large number. Then during code generation a corresponding, assertion is created requiring that the measure be greater than the lower limit with no restriction on the high' limit. Similarly the converse is done for the low-assertions. The following additional observations are noted: (1) When a test has a single assertion, it contains no useful fault isol information. (2) When there are two assertions; the first one is the nominal, and the second one may be either the low or the high assertion. (3) Where there are three assertions, the first one is the nominal, the second one is the low, and third is the high assertion.

Table 4.3 is a condensed form of Table 4.2. It is obvious that test 6.1 (stimulus 6, measurement 1) provides no fault

Table 4.3 Multiple Valued Diagnosis Matrix and Test Circuits Table
isolation information; tests (2.1, 3.1, 5.1) and (1.1, 4.1) provide the same fault isolation information.

The ambiguity report shown as Table 4.4 indicates that all failures and the nominal mode can be uniquely identified. Fail short of R2101 has been dropped in this phase.

The first step of optimization gets rid of the redundant test setups. It retains only the minimum number of tests which are essential to achieve the same level of fault isolation whic was indicated during the ambiguity analysis phase. This optimi is based entropy (information content) only (see Table 4.5). T the tests selected have an interesting property. The first tes selected (7.1) has a very general fault isolating capability. It divides all possible failures into three classes where each class has nearly equal number of failures. The next test (8.1) divides these classes into smaller classes. This type of fault isolation design is commonly referred to as the top-down methodology. During this optimization phase, it is determined that only 3 out of the 8 original tests are sufficient to provi the same fault isolation capability.

The next table (Table 4.6) shows how the assertions of the remaining three tests can be put together with conjunctions to select diagnoses. Diagnosis 6 (short of CR 2101) and Diagnosis (short of C2101) are selected upon the completion of a single assertion. Diagnosis 2 (Open of R2101), Diagnosis 3 (Open of C2101), Diagnosis 5 (Open CR2101) can be selected only after th two required tests are performed. Diagnosis 1 (all component nominal) is selected after all three tests are performed.

Table 4.4 Ambiguity Report

C
FAULT ISOLATION SUMMARY

DESIRED AND ACHIEVED LEVEL OF CUMULATIVE FAULT ISOLATION PERCENTAGE

MUM3EP	$3 F$	FAILURE MODES	$:$	7
NUM3ER OF EQUIV. CLASSES	$:$	t		
DESIRED	LEVEL OF DIAGNOSIS:	$100.0 X$		
ACHIEVED LEVEL OF DIAGNOSIS:	100.02			
FAULT ISOLATION IS SATISFACTORY.				

C

C

Table 4.4 Ambiguity Report (continued)

C

C

C

C

SEA (12) STIMULUS (7) MEASUREMENT (1) ASSERTION (3) NUYEER JF TESTS USED : 1
NUMEER OF EGUIVALENCE CLASSES: 3 ENTROPY REAUIRED FOR ISOLATION: 2.807
CUÑ天ミT EVTPOPY: : 1.557
CAFACITY (THEORETICAL MAX.) : 1.585
EQUIVOCATION
1.251
EFFECTIVENESS : 0.982
MEMEERSHIP IN EQUIV. CLASSES 12
1923
SEÜ (15) STIMULUS (8) MEASUREMENT (1) ASSERTION (3)
NUMSER JF TESTS LUSED : 2
NUMEER JF EQUIVALEDGE CLASSES. -: E
ENTROPY REQUIRED FOR ISOLATION: 2.807
CUKRENT ENTROPY: : 2.522
CAPACITY (THEORETIGAL MAX.) : 2.585
EGUIVOCATION
0. 286
EFFECTIVENESS: 0.976
MEMEERSHIP IN EQLIV. CLASSES 142 6
G
SEG (3) STIMULUS (2) MEASUREMENT (1) ASSERTION (2)
SEG (3) STIMULUS (2) MEASUREMENT (1) ASSERTION (2)
SEG (3) STIMULUS (2) MEASUREMENT (1) ASSERTION (2)
NUMEER JF TESTS USED : 3
NUMBER JF EGUIVALENCE CLASSES: 7
ENTRCPY RESUIRED FOR ISOLATION: 2.807
CUREENT ENTROPY: 2.807
CAPACITY (THECRETICAL MAX.) : 2.807
EQUIVOCATION
$=0.000$
EFFECTIVENESS \quad : 1.000
EFFECTIVENESS \quad : 1.000
EFFECTIVENESS
MEMBERSHIP IN EQUIV. CLASSES
1.000
1
NUMEER JF TESTS LUSED : 2
4567

INOIVIOUAL AND JOINT ENTROPY VALUES

\cdots	SEQ	STIM	MEAS	ASSE	ENTROPY	JOINT ENTROPY	EQUIV. CLA
C	7	7	1	12	1.557	1.557	3
C	8	8	1	15	1.379	2.522	6
	2	2	1	3	0.592	2.807	7
\%	1	1	1	1	C. 542	2.522	6
-	3	3	1	5	0.592	2.807	7
	4	4	1	7	0.592	2.522	ϵ
	5	5	1	9	0.592	2.807	7
1	6	t	1	11	0.000	2.522	6

(OUT OF \& CANDIOATE TESTS 3 ARE RETAINED

```
INPUT IS A MULTIPLE VALUED DIAGNOSIS MATRIX - vo negations of assertions will ge generated
```

c
NUMEER OF TESTS (OR ASSERTIONS) PER DIAGNOSIS WILL EE MINIMIZED
C

B. NOPAL Tables For The Voltage Regulator and Time-Delay Circt The failure dictionary for the circuit contains 54 failure modes. All applicable default (single catastrophic) failures described in section 3.2 are included. 9 failures are due to resistor shorts. It is assumed that the components and cablins of the interconnecting device cannot have any failures. The complete failure dictionary is contained in the accompanying computer tape and listings. It is not included in this report due to its length.

The binary and multiple valued diagnosis matrix and assertions tables are also not included in this report. In the reports there are 34 test setups and 84 assertions. On the ave there are 2.5 assertions per test.

The ambiguity report (Table 4.7) shows how 45 failure mode are isolated in 27 equivalence classes. The failures in each equivalence class have identical electronic behavior. In the no-diagnosis class (i.e. nominal) the open failure of zener dic CR2103 could not be diagnosed. This is due to the fact that given the light loading of the circuit, the potentiometer can adjust the output to 16 volts. However the short failure of th zener can be isolated uniquely. The open failure of the capac C2103 (0.01 10) could not be diagnosed because it is in paralle with a relatively large capacitor C2l02 ($68 \mu \mathrm{~F}$) which has $+-5 \%$ tolerance. It is not possible to distinguish between the open (class lo) and short (class ll) failures of diodes CR2l04 and CR2105. These diodes are one of the same type and are connect

FAULT ISOLATION SUMMARY
ϵ
DESIRED AND ACHIEVED LEVEL OF CUMULATIVE FALLT ISOLATION PEKCENTAGE
C

NUMBER OF FAILURE MODES
45
27
NUMBER JF EQUIV. CLASSES
DESIRED LEVEL OF DIAGNOSIS: 100.0% ACHIEVED LEVEL OF DIAGNOSIS: 93.2%
FAULT ISOLATION IS NOT SATISFACTORY.
C
C
C

C

C
Table 4.7. A2100-Voltage Regulator and Time Delay Circuit Ambiguity Report (continued)
in series. The failures could be isolated to a single diode if probing of their common connection point was allowed. Th open failure of resistor R 2104 and thermistor RT2lOl could r be distinguished from each other for the same reason.

The complete optimization report of the test setup is r included due to its length. Only the summary of the process is shown in Table 4.8. The tests selected in this optimizat phase exhibit a top-down fault isolation capability as discu in previous subsection. The process is initiated with 34 ca tests. Only 13 of these tests are sufficient to achieve the same level of fault isolation.

The final report (Table 4.9) shows how 37 assertions of 13 remaining tests can be used in conjunctions to select the diagnoses.

The selection of most of the diagnoses is very quick (i they depend only one or two assertions. But the selection diagnoses such as diagnosis 5,9 and 27 are not obvious at al They can be selected only after performing 4 or 5 tests. If complicated selection logic had to be done manually, it woul been very difficult to make the choices. These cases highli the benefits of automating the process.

INDIVIDUAL AND JOINT ENTROPY VALUES						EQUIV. CLASS
ScG	Stim	MEAS	A \$ \$	ENTROPY	JOINT ENTROPY	
23	21	3	58	1.084		EQUIV. Class
10	10	1	23	1.011	1.084 2.035	3
13	13	1	31	0.803	2.035 2.703	7
16	25	1	79	0.614	2.703 3.199	11
34	26	1	39 82	0.725	3.599	15
18	. 18	1	45	0.605	3.912	19
17	17	1	42	0.825 0.455	4.206	25
6	6	1	12	0.455 0.361	4.465	29
19	19	1	48	0.361 0.133	4.546	30
20	20	1	50	0.133	4.622	31
1	1	1	1	0.361	4.694	32
21	21	1	53	0 *455	4.755	33
2	2	1	4	0.310	4.806	34
3	3	1	£	0.361	4.806	34 34
4	4	1	-	0.650	4.806	34 34
5	5	1	I	0.614	4.806	34
7	7	1	11	0.000	4.306	34 34
3	8	1	15	0.800 0.747	4.806	34 34
9	9	1	15	0.747 0.229	4.806	34 34
11	11	1	21	0.854	4.80 S	34
12	12	1	ci	0.361	4.806	34
14	14	1	29	0.361 0.650	4.806	34
15	15	1	34	0.650 0.614	4.806	34
22	21	2	36	0.614 1.071	4.806	34
24	21	4	55	1.071 0.310	4.306	34
25	21	5	d	0.310 0.361	4.806	34
26	22	1	63	0.361 $0.31 Q$	4.806	34
7	22	1	66	0.31 Q 0.133	4.806	34
8	22	3	6 B	0.133 0.000	4.806	34
9	22	4	70	0.000 0.133	4.306	34
0	22	5	71	0.133 0.133	4.306	34
1	23	1	73	0.133	4.306 4.806	34
32	24	1	75	0.229 0.229		34
			77	0.229		34
T OF	34 CA	DATE	STS	ARE RE	LED	

Table 4.8 A2100 Test Setup and Optimization Summary Report

```
.- NO NEGATIONS <OF ASSERTIONS taILL BE GENERATED
```

C.

NUMBER OF TESTS COR ASSERTIONS) PER DIAGNOSIS WILL BE MINIMIZED

DIAGNO	SIS	1							
TESTC	55>	STIMULUS C	21)	MEASUREMENTC	3)	ASSERTIONC	1)	LOGI CU	
TESTC	23)	STIMULUS C	10)	MEASUREMENTC	D	ASSERTIONC	1)	LOGICCS	
$\mathrm{T}_{\mathrm{E}} \mathrm{STC}$	31)	STIMULUS C	13)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	79)	STIMULUS C	25)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	39)	STIMULUS C	16)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	52)	STIMULUS C	26)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	42)	STIMULUS C	17)	MEASUR£M£NTC	1)	ASSERTIONC	1)	LOGICCS	
TSSTC	43)	STIMULUS C	19)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	50)	STIMULUS C	20)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
DIAGNO	SIS	2							
TESTC	23)	STIMULUS C	10)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS	
TESTC	41)	STIMULUS C	16)	MEASUREMENTC	1)	ASSERTIONC	3)	LOGICCS)
DIAGNO	SIS	3							
TESTC	24)	STIMULUS C	10)	MEASUREMENTC	1)	ASSERTIONC	2)	LOGICCS)
TESTC	40)	STIMULUS C	16)	MEASUREMENTC	1)	ASSERTIONC	2)	LOGICU)
DIAGNO	SIS	24							
TESTC	59)	STIMULUS C	21)	MEASUREMENTC	3)	ASSERTIONC	2)	LOGICCS)
TESTC	47)	STIMULUS C	18)	MEASUREMENTC	1)	ASSERTIONC	3)	LOGICCS	J
DIAGNO	SIS	5							
TESTC	59)	STIMUUUS C	21)	MEASUREMENTC	3)	ASSERTIONC	2)	LOGICCS)
TESTC	23)	STIMULUS C	10)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS)
TESTC	39)	STIMULUS C	16)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS)
TESTC	45)	STIMULUS C	16)	MEASUREMfcNTC	1)	ASSERTIONC	1)	LOGICCS)
DIAGNO	SIS	6							
'TESTC	23)	STIMULUS C	10)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS)
TESTC	40)	STIMULUS C	16)	MEASUREMENTC	1)	ASSERTIONC	2)	LOGICCS)
TESTC	45)	STIMULUS C	18)	MEASUREMENT	1)	ASSERTIONC	1)	LOGICCS.)
DIAGNO	SIS	: 7							
TESTC	53)	STIMULUS C	$21)$	MEASUREMENTC	3)	Assertjofo C	1.)	LOGICCS)
TESTC	47)	STIMULUS C	1£)	MEASUREMENTC	1)	ASSERTIONC	3)	LOGICCS)
DIAGNO	SIS	: 8							
TESTC	59)	STIMULUS C	21)	MEASUREMENTC	3)	ASSERTIONC	2)	LOGICCS)
TESTC	51)	STIMULUS C	25)	MEASUREMENTC	1)	ASSERTIONC	3)	LOGICCS)
DIAGNO	SIS	9							
testc	59)	STIMULUS ${ }^{(}$	21)	MEASUREMCNTC	3)	ASSERTIONC	2)	LOGICCS)
testc	24)	STIMULUS C	10)	MEASUREMENTC	1)	ASSERTIOMC	2)	LOGICCS)
testc	31)	STIMULUS C	13)	MEASUREKSNTC	1)	ASSERTIONC	1)	LOGICCS)
testc	79)	STIMULUS C	25)	MEASUREMENTC	1)	ASSERTIONC	1)	LOGICCS)
testc	45)	STIMULUS C	U)	MEASUREMETC	1)	ASSERTIONC	1)	LOGICCS)
DIAGNO	SIS	: 10							
testc	53)	STIMULUS ($21)$	MEASUREMENTC	3)	ASSERTION	1)	LOGICCS)
testc	31)	STIMULUS C	25)	MEASUREMENTC	1)	ASSERTIONC	3)	LOGICCS)
DIAGNO	SIS	: 11							
testc	50)	STIMULUS C	25)	MEASUREMENTC	1)	ASSERTIONC	2)	LOGICCS)

DIAGNOSIS : 12
Table 4.9 A2100 Logic Optimization Report

DIAGNOSIS	: 13							
TEST(57)	STIMULUS $($	21)	MEASUREMENT(3)	ASSERTION(2)	LOGICC8)
TEST(?)	STIMULUS	1)	MEASUREMENT(1)	ASSERTIONC	3)	LOGICC8)
DIAGNOSIS	: 14							
TEST (59)	STIMULUS $($	21)	MEASUREMENT	$3)$	ASSERTION(1)	LOGICSE	
TEST(25)	STIMULUS 6	10)	MEASUREMENT(1)	ASSERTION(3)	LOGICS\&)
DIAGNOSIS	: 15							
TEST(47)	STIMULUS	19)	MEASUREMENTC	1)	ASSERTION(2)	LOGIC(8)
DIAGNOSIS	: 16							
TEST (4 5)	STIMULUS ${ }^{\text {c }}$	18)	measurement	1)	ASSERTION(2)	LOGICC)
OIAGNOSIS	: 17							
TEST(31)	STIMULUS 6	13)	MEASUREMENT(1)	ASSERTION(1)	LOGICC8)
TEST(46)	STIMULUS 6	17)	MEASUREMENT(1)	ASSERTION(3)	LOGICく)
DIAGNOSIS	: 18							
TEST(43)	STIMULUS (17)	MEASUREMENT(1)	ASSERTIONC	2)	LOGICC8)
DIAGNOSIS	- 19							
TEST (39)	STIMULUS	13)	MEASUREMENTC	1)	ASSERTION(1)	LOGIC $\%$)
TEST (52)	STIMULUS	20)	MEASUREMENT(1)	ASSERTION(3)	LOGICC\&)
CIAGNOSIS	: 20							
TEST(57)	STIMULUS	21)	measurement	3)	ASSERTION	2)	LOGICC8)
TEST (32)	STIMULUS 6	13)	MEASUREMENTC	1)	ASSERTION(2)	LOGICR\&)
OIAGNOSIS	: 21							
TEST (33)	STIMULUS	13)	measuremente	1)	ASSERTION(3)	LOGIC $\%$)
TEST (4 4)	STIMULUS	17)	MEASUREMENT(1)	ASSERTION(3)	LOGIC(8)
OIAGNOSIS	: 22							
TEST (33)	STIMULUS (12)	MEASUREMENTC	1)	ASSERTION(3)	LOGICC8)
TEST (42$)$	STIMULUS	97)	MEASUREMENT.	1)	ASSERTION(1)	LOGICS\%)
DIAGNOSIS	: 23							
TEST (31)	STIMULUS	13)	Measurementc	1)	ASSERTION ${ }^{\circ}$	1)	LOGICC)
TEST (3)	STIMULUS 6	26)	measurementc	1)	ASSERTION(2)	LOGIC $\%$)
DIAGNOSIS	: 24							
TEST (34)	STIMULUS 6	26)	MEASUREMENTC	1)	ASSERTION(3)	LOGICC8)
DIAGNOSIS	: 25							
TEST (24)	STIMULUS ${ }^{\text {P }}$	10)	measurementc	1)	ASSERTION(2)	LOGICC:)
TEST (¢3)	STIMULUS	26)	MEASUREMENT(1)	ASSERTION(2)	LOGICS)
DIAGNOSIS	: 26							
TEST (23)	STIMULUS $($	10)	MEASUREMENT(1)	ASSERTION(1)	LOGICC \%)
TEST (32)	STIMULUS	13)	MEASUREMENT(1)	ASEERTION(2)	LOGICC 8)
TEST (83)	STIMULUS	26)	MEASUREMENT	1)	ASSERTION(2)	LOGICC	$)$
DIAGNOSIS	: 27							
TEST (53)	STIMULUS	21)	MEASUREMENTC	3)	ASSERTION(1)	LOGICC8)
TEST (24)	STIMULUS	10)	MEASUREMENT	1)	ASSERTION(2)	LOGICC)
TEST (31)	STIMULUS (13)	MEASUREMENT(1)	ASSERTION(1)	LOGICC 8)
TEST(37)	STIMULUS	16)	MEASUREMENTC	1)	ASSERTION(1)	LOGIC)
TOTAL VJME TOTAL NJME	$\begin{array}{lll} \text { R } & O F & T E S T \\ S & O F & A S S E R \end{array}$	$\begin{aligned} & \text { SETU } \\ & T I O N \end{aligned}$		13 37				
SHORTEST T LONGEST...T	ST SETUP ST SETUP							
SHORTEST C	NJUNCTION							

4.4 NOPAL Test Specifications

The most important and final output generated by the toppart of the system is the NOPAL test specification report. Thi report contains all the necessary information to generate an ATLAS program which effectively performs the selected tests and decides on the proper diagnoses. Figure 4.8 shows the NOPAL test specification for the filter subcircuit. The first 12 lines are directives to the code generation.

The first test specified uses an ohmmeter to make a resist measurement. The high side of the meter is connected to termin and the low side is connected to terminal 3 on the printed ciro card. The resistance measured is stored in variable RA21_2_1. When the unit is working properly, it is expected to measure minimum 320 Kohm. The maximum measurement could be very high. The ohmmeter is programmed to use 2.8 volt (2800 mV) dc referen voltage source. The assertion requires that the nominal resist be greater than 319 Kohm. If the assertion is true, the nomin diagnosis is selected with a conjunction. If it is not, nothin is done. This situation is processed in another test module.

Test 2 refers to the resistance measurement which was
made in Test l. If the resistance measured is less than 319 Kc diagnosis 4 is selected; which in turn indicates that capacitor C2102 has shorted.

Test 6 makes a complex impedance measurement across termin 3 and 2. The magnitude of the impedance measured is available in variable $\mathrm{ZA} 21 _^{3} \mathbf{Z}^{6}$. Minimum expected impedance is 170 ohms, the maximum is 390 ohms. 1 volt rms ac standard signal source used as reference. The impedance measurement is conducted at lK hertz. If the impedance is $280+-109$ ohms, then nominal

1. NOPAL TEST SPECIFICATION SOURCE INPUT, FILE: SAPL1ST */ iL PROCESSOR OPTIONS SPECIFIED: SAPLIST,NOXRcFi,COOE,SEQ*£,NCXREF2,NOSOURCE2,TRACE=4,De r NO.
```
/* - NOPAL TEST SPECIFICATION GENERATED BY VERSIOh 1.2 (OCTOBER 79)
1. AUTCMATED TEST DESIGN FOR ANALOG CIRCUITS
% DATE 12/19/79 TIMfc 17.42.22
```

1 -

NOPAL SPECIFICATION A21CO

Figure 4.8 NOPAL Test Specification for A2100 Filter
Subscircuit

```
1* UUT CCMPONENT FAILURE DICTIONARY
1*
|********************************************************************************
CCMF_FAIL i: ALL_COMPS , FAILURE=NOMINAL , INDEX= 0 :
COMF_FAIL 2: R2101 , FAILURE=OPEN , INDEX= 0:
COMF_FAIL 4:C2IO1 , FAILURE=OPEN , INDEX= 0:
GCMPGFAIL S:CZIC1 , FAILURE=SHORT INDEX= 0 :
CCMF_FAIL E: GORZIC1 , FAILLURE=OPEN , INDEX= 0
COMP_FAIL 7: GORZ101 , FAILURE=SHORT , INDEX= 0 :
```



```
1*
1* DIAGNCSESAND SPECIALMESSAGES
1*
```



```
    TIAGNOSIS 1:
        OfEKATOR PESSAGE:
    AFFECTSD COMPONENTS =
                NOMINFL(ALL_CCMPS) ,
    PRINT= GOOO.UUT:
    CIAGNOSIS 2:
        CFERATOR MESSAGE:
    AFFECTED COMPONENTS =
            CPEN(F2101)
    PRIINT= CONJLNCTION:
    EIAONCSIS . 3:
        OPERATOR MESSAGE:.
    AFFECTED CCPPONENTS =
                OPEN(C2101)
    PFIAT= CONJLNCTION:
    DSAG:OSIS 4:
        OPERATOR MESSAGE:
    AFFECTED CORPONENTS =
            SHORT(C2101) ,
    PEINT= CONJLNCTION:
    OJAGNOSIS 5:
        Of!RATCR PESSAGE:
    AFFECTED CCMPONENTS =
            OPEN(GOR2101) ,
    FRIRT= CONJLNGTION:
    CIAGNOSIS E:
            OFERATOR FESSAGE:
    AFFECTEC GOMPONENTS =
            SHORT(EDR2101),
    PAINT= CONJLNCTION:
    OIAGNOSIS 7:
        OPEFATOR yESSAGE:
    PRINT= GAD_LUT:
ノ#**####***********************************************************************
    MESSAGE CONJUNCTION:
                TEAT=`POSSIELE FAULTY GOMPONENT(S) ---*"(G)*;
MESSAGE NODIAGNOSIS:
                TEXT=`FOLLCWING FAILURES (INCLUDING AOMINAL CASE)*.
                    - bere not oiagnosaule -.-", (C)" :
```

```
            MESSfiliE GOGE_UUT: 
|************************************************************************
/*
/• UUT AND ATE FUNCTIONS
/
FUNCTION: NOMNAL t TYPE = ft PARAfT = < COMP tS REAL)
FUNCTION : OP &N , ' TYPE * f, PARAM=(COMP,S REAL)
FUNCTION: SHCRT , TYPE & F, PARAM* <COMP,S READ
FUNCTION: OHI*METER, FUNCTION TYPE r M MPINS * 2f
    PAKAP_1 * (RESISTANCE, T REAL, LIMIT * (OHM, 1CE6* O >) "
    PARAP*2 " (MN.Rt'S, S REAL, LIMIT = (Oh*, 1CEtf, O),
    PARAJ*2- * CPAX^R'CS, S REAL, LIKIT S (OhK, 10fc\varepsilon, C) > ,
    P4RA.*% * <REF~VCLTf S RIAL, Li^IT * (fcVOLT, t\vec{~ & 3f - 10£ 0 > ),}
    COrtFgNITS a 'AUTOkANGING OHMMETER*;
FINC TICN: VOLTMSTER, FLNCT1ON TYPE = ^, 'rPINS " 2g
        PARA^^I * (VCLTAbE, T REALt LIKIT # (VGLT, 2COf - 200))f
        COKMINTS S 'AUTOHANG1NG VOLTMETER, WIDTH U6,7M$EC, 10Q0 SAPPTES';
FUNCTION: AMFMETĆR , FUNCTION 7YPc`* rt, ~PIN$ * 2,
        PA»A*_1 < (CIRKENT, T REAL, LIMIT * (AMP, 9, - 9)),
        COMM^^̄TTS « "CURRINT ThROtiGH THE PObER SUPPLY-ESUPPLT";
FUNCTION: ZMC'TER f FUNCTION TYPE * M, *PINS * 2.
    PARA^.1 = (C^PLXWIMP, T REAL, LIMIT * (CHW, 10E3f 0)) f
    PAftA>32 s (FIN.I^P" S REAL, LIMIT = <Oh!% 1C*Cd, C)) f
        PARAf^ s ("AX^IHP, S REAL, LIMIT " (Oh^f 1C^6f C)) "
        PARAI-%% s (PfF^VCLT, S REAL, LI*1T * (VOLT, 7, O)) f
        PARA!>*5 = (FHE<.UCN `CY, S REAL, LIMIT * (HZ, 12E2, 10)),
        COM^EFITS = 'AUTOItANGING COMPLEX IMPEDANCE - FAGNITUOS METER';
FUNCTION: ESIPPLY, FUNCTION TYPE = S, ^PINS * ^^,
        PARAf-^1 S (VCLTABf, S REAL, LIKIT = (VCLT, Itgo)),
        PAKA^2^ s CIIsT_StS, S REAL" LIMITM= (OHM, 4, Q)),
        COMKcNTS * ' hc'h SUPPLY -OC?A, MAX 9AMP, 1^T.BRES IGNORED*;
l4<\cdots**4tr<**#<**-**<**4<*-**<ir|ik4*****4*******
UUT^POIN'T: Aċ1^3
            /* G^OUNO
UUT POINT: A 21 X , CCNNECTOR=( J8
            / - J^
UUT_PCINT: A^1.2 > CONNECTO<<=s( J8 ;
/* ENO CF NOPAL TFST SPECIFICATIONS
```



```
d1 ENOAT10C ;
CPROR/WARSING MESSAGES GENERATED
        DURING NOPAL SYNIAX ANALYSIS:
    -STATISTICS* NO. OF SAP ERRORS * O , HO. OF WARNINGS = O ONTATEMEf
```

zgnosis is selected. If a higher than 390 ohms is measured ther capacitor $C 2101$ or resistor 2101 could be open.

Following the test modules, UUT components and their failure actions are listed. Failure number 3 (short of R2101) is itted since this class of failures were considered unlikely A dropped from analysis. The diagnoses identify the affected nponents and issue a message when they are selected.

The UUT and $A T E$ functions define and describe the function their parameters. These functions were described in Section 3.3 The NOPAL test specification for the voltage regulator and ne delay circuit is similar to the specification described دve. It is not listed in this report due to its length. A oy of the listing is available on the accompanying computer tape.
4.5 ATLAS Program

The bottom part of the NOPAL system generates ATLAS progra from NOPAL specification. Figure 4.9 is an ATLAS compiler list of a program used to test the filter subcircuit. In the beginn of the program, test module, diagnosis, and affected component names are uniquely identified with an index. Then, a number of system variables and constants are declared. A disk file named "UPCX2I" (included during compilation) contains the actual DIU pin assignments to the test point names used in the NOPAL speci cation. Another disk file named "UPFLBS" (also included during compilation) contains the ATLAS function library of all the fun used in the specification. "AFF-COMP.PRINT" is a utility proce which points the failure name of a component for given subscrip "UPFIP" is another disk file which contains utility procedures keep track of the fault isolation state. These procedures are not essential to the execution logic of the program. They mere provide a fault isolation status summary upon program terminati Each diagnosis in the NOPAL specification becomes a diagno procedure in the ATLAS program. In the beginning of the proced there is a check to determine whether or not the diagnosis is actually selected. This check is done only for those diagnoses which are selected by conjunctions. If it is a diagnosis selec unconditionally or by disjunction, this code is omitted. Then there are a few lines of code which keep track of the affected components. Finally the text of the message to operator is iss This code is omitted if there is no message in the diagnosis. Each test module in the NOPAL specification becomes an ATI test procedure. First, a number of system flags are set. Ther

$61:$ 6 2： 43： $54:$ 55： $66:$ 67： 58：

DEFINE＇SYS．．TRUE＇，B＇l＇S
DEFINE＇SYS．．FALSE＇，B＇O＇\％
DEFINE＇SYS．．OONT KNOW，B＇OO＇＾
OFF IME＇SYS．．IS＇，B＇rt $01^{\text {\＃}}$ s
DEFINE＇SYS．．IS＜MOT＇，．${ }^{\#} 010^{\#}$ «
OEFIVE＇SYS．．MAY 9E＇，＊＇O1t＇＜
DFFLME＇SYS，MAY RF MOT＇，PMOO＇ 5
DEFJNF＇SYS＾COMPONEMTS＇， 75
C UI．TP POINT DEFINITIONS \＄
C FOLLOWING DISK FILE SHOULD CONTAIN THE
C MISSING EQUATP／UUT Pitt＊Oly ASSIGNMENTS＊. $\boldsymbol{\pi}$
INCLUOE＂UPCX21＂S
C A2100＇JUI CONNECTIONS S
f^{\wedge}（Tf？TNf $C \quad$＇A21－1＇， 525

DEFINE＇A21－3＇ir＾OS．
OEFIN＇F＇A2i－a＇， 595
DEFINE＇A21－5＇，．61\＄
DEFINE＇421－＊＊＇，＊＞3S
DEFINE＇A21－7＇，？5s
DSFIME＇A21－8＇， 515
DEFINE＇A21－＂＇（r 315
OFFIME＇5NO＇，MS C FOP THE Mi IN CIPC＇JIT S
DEFINE＇GNO＇， 505 C FOP THE SMALL CIRCUIT $\boldsymbol{\$}$
MAC＜＜？DEFINITIONS \＄

C DECLARATIONS FOR USFR DEFINED GLOPAL VADIABLES 5
OECLAPE DECIMAL，＇9＊21－3－9＇S
OECLAPE DECIMAL，＊A21－3－11＊s
OECLAPE DECIMAL，＇ZAR1－3－14＊
C SYSTEM UTILITY ROUTINES S
DEFTNE PROCEDURE，＇GET．TI＾E＇S
PEADCTI＾E＇SYS．CLOC＾＇CD ALL），SYS－CLOCK 5
＇SYS．TI«E＇s 3600＊＇SYS CLOCK＇fn＋60＊＇SYS ．CLOC＾＇f2）

END＇SET．TIME＇S
DECLARF DECIMAL，＇SYS \＃DEC．O1＇＜
DECLARE DECIMAL，＇SVS\＃DFC．O2＇S
USEFQ PEFIMED ATE FUNCTIONS \＄
INCLUDE＂UPFL＾S ${ }^{11}$ \＄
OEFINE PPOCEDURE，＇OHMMETEP＇S
DEF．LARE OECIMAL，＇OHMMETFP．PRMO1＇，
＇OHMMET£R \＃PRMO2＇，＇OHMMETEP•PP＾03＇，＇OHMMPTEP \＃PRM0a＇， ＇OHMMETER．RES＇，＇OHMMETEP \＃MAX＇，＊工»HMMPTFR\＃LL＇，＇OHMMETEP．IU

＇OHMMETEP．CNXO1＇，＇OHMMETEP．CNVQ？＊S
DECLARE DECIMAL，LIST，＇QHMMgTEP．PNS＇（5） 5
－OHMMETER．RNM ${ }^{\circ}$（1）$=0 \mathrm{~S}$
＇OHMM？TFR\＃PMG＇C2）s 3999 S ${ }^{\circ}$ OHMMFTFR．RNIS＇f3）＊3i9999 $\$$

－OHMMETFR．LAST＇s •！ 5
10 ＇OH＜＊METEP＜COUMT＇s 0 S
 －OHMMETEP．LRI＇＊ $2 \ll$ GOTO STrp la 응
It COMPARE＇OHMMPTEP．PRMO？＇，LT 40000 S GOTO STEP 12 IF MOGO S －OHMMPTFP．LPT＇$s 3^{\prime} \mathrm{S}$ GOTO STE ${ }^{\text {P }} 1^{\wedge}$ \＄


```
    'OHiAMETER.LRT' = 4 S GOTO STFP 14 s
13 'OMMMETER.LFI' = 5 S
14
        COMPARE ' OHMMFTEP.PRMNZ', LT 4OONS FOTO STEP 15 IF NOGO S
            'OHMMETER.LURI' = ? S GOTN STFP IR S
15 COMPARE OHMMETER.PRMOZ', LT 4OOOO S GOTO STEP 1G TF MOTO S
            'OHMMETFR.URI' = 3 S GOTN STEP 1R S
IS COMPARE 'OHMMFTEQ.PRMOZ', LT ANOONO S GOTO STEP 17 IF NORO S
            'OHMMETER.URT' = A S ENTO STFP IRS
            -OHMMETER.IJRT' = S S
        - OHMMETER.MAX' = 'OHMMETER.RNG'('OHMMETEQ.LRI') S
        COMPADE 'OHMNETER.CNXO1' + 'OHMMETER.CNYOP', LE 2OO s
            GOTO STEP IT IF GO S
        OISPLAY "PPORE HI ", 'OHMMFTEP.CNXOI', "### LO ", 'OHMMETER.
        MONITOR (RES 'OHMMETEQ.PRMOI' OHM),IMPEDANCFF,
                REF-VRLTAGE 'OHMMETEP.PRMOA' MV, OFS MAX 'OHMMETER.MAX'
                C!!X PRORE S
        - OhMMETER.COUNT' = 1 S
        GחTO STEP ?1:S
1Q INITIATE (RES 'OHMMETER.PRMOI' NHM),IMPEDANRE,
                REF-VOLTAGE 'OHMMFTER.PRMO&' MV, RFS MAX 'OHMMETEP.MAY'
                CNX HI 'OHMMETER.CNXO1' LO 'OHMMETED.CNXOC'S
20 DEAO (RES 'OHMMETER.PRMO1' OHM), IMPENANCE S
    'OHMMETER.COUNT' = 'OHMMETER.COIINT' + 1 S
        COMPARE 'OHMMETER.PRMOI', GT 1OEGS GOTO STFP 2I IF GO S
        COMPARF AES(('OHMMETER.PRMO1'-'OHMMETER.LAST')/'OHMMETER.PRMOI
    - OHMMETER.LAST'='OHMMETER.PRMOI'S FOTO STEP 2O IF NOGOS
?1 PECORD 'AFF-COMP.TEST',"TEST ##: ", 'NHMMETFR.PRMO1'/IEZ,
            "#######.### KOMM, ", OHMMETER.PPMO&', (#### MN, ",
            ('OHMMETEP.MAX'+1)/1E3, "#### KOHM, ", 'OHMMETER.COUNT'," ##
            "CNX(",'OHMMETER.CNX01","##,",'OHMMETER.CNXOZ',"##)":
        COMPARE 'OHMMETEQ.PRNO1',
            UL 'OHMMETER.RNG"('OHMMETER.LRI') S GOTO STEP ?R IF GO
        'OHMMETFR.LRI' = 'OHMMETER.LRI' +1 &
        COMPARE 'OHMMETER.LRI', GT 'OHMMETFR.URI' + O.5 S GOTO STEP l&
22
        PFMOVE DC-STDS
        ENO 'OHMMETER'S
*****************************************************************
DEFINE PPOCEDIRE, 'ZMETER'S
        DECLARF DECIMAL, 'TMETER.PPMO1',
        'ZMETER.PRMOZ','ZMETER.POMO3','ZMETER.POMO4','ZMETEP,PRMOS
        'ZMETER.RES','ZMETER.MAX','ZMETER.LL','TMETER.UL',
        'ZMETER.LAST*,'ZMETER.CNUNT','7METEQ.LRT','ZMETER.HPI',
        'ZMETER.CNXOI','ZMETER.CNXOZ'S
        DECLARF DECIMAL, LIST, 'ZMETFR.APG'(?),'ZMETER.QNG'(S) S
        'ZMETER.QNG'(1) = 0 S
        'TMETER.RNG'(2) = 3600 S 'TMETER.RNG'(3) = 36000 s
        'ZMETER.RNG'(4) = 3600ON S 'ZMETER.RNG'(5) = 1E6 $
        'ZMETER.LAST' = -1 S
3O 'ZMETER.COUNT' = 0 S
        COMPARE 'ZMETER.PRMOZ', LE 3GOO S GOTO STFP 3I IF NOGO S
            'ZMETER.LRI' = 2 s GOTO STEP 3a &
31 SOMPARF 'ZMETER.PRMOZ', LE 3HOOO S GOTO STEP 3Z IF NOFON S
            ZMFTER.LRI' = 3 s GOTN STER 34 s
32 COMPARF 'ZMETFQ.PRMDZ'. LE 3GOONO S GOTO STFP 33 IF NOGO S
            'ZMETFR.LRI' = a S GNTO STEP 3as
            'ZMETER.LRI' = S S
        COMPARE 'ZMETER.PRMOZ', LE 3600 S GOTO STFP 3S IF NOGO &
            'ZMETER.URI' = 2 $ GOTO STEP 3R S
35 COMPARE 'ZMETER.DRMOZ', LE 3AONO S GOTO STEP 3G IF NOGO S
        'ZMETFR.HRT' = 3 s GOTN STEO 3R S
```

DEFINE PROCEDURE,'VOLTMFTER' S
DECLARE DECIMAL,'VOLTMETER.PRMO1','VOLTMETER.RFS",
'VOLTMETER.CMX01', 'VOLTM£TEP \# rMXO 'S
MEASURE (VOLTAGE 'VOLTMETER.RES' V), OC-SIC«MAL\#OELAY 0.1 SFC, CMX HI 'VOLTMETFR.CMV01' LO 'VOLTMETER.CMX02' J MEASURE (VOLTAGE 'VOLTMETER.PRMO1' V), OC-SIGWAL, DELAY 0.1 SEC, C^X HI 'VOLTMETER.CMX01' LO 'VOLTMETER.C^XO?' S
COMPARE ARStC'VOLTMETER.PRMO1'-'VOLTMETFR.RES')/'VOLJMETEP.PPMQt*), LE 0.00555
GOTO STEP 70 IF MOGOS
RECOPO 'AFF-COMP.TEST',"TEST **: MEA^UPEO «,'VOLTMETER.PRMO1•, *UgUU* V, CMX HI *,
'VOLTMETER.CNXO1', >* LO ",'VOLTMFTER.CNXO?*, ${ }^{\text {n }}$. ${ }^{\text {tt }}$ \$
E^O 'VOLTMETER'S
C**
DEFINE PROCEDURE, "ESUPPLY' \$
DECLARE DECIMAL,'ESUPPLY. opMOt','ESUPPLY ${ }_{\#} P R M O 2$ ', 'ESUPPLY\#RFS', -ESUPPLY.CNXO1', 'ESHPPLY.CNXO2's
REMOVE OC2AS
APPLY OC-SIGWAL DC2A,VOLTAGE 'FSUPPLY.PRMQ1' V, CMX HI 'ESUPPLY.CNXOt ' LO 'ESUPPLY.CWVQ?' S
RECORD 'AFF-COMP.TFST',"TEST *\#z APPLIED DC2A, ",

```
*ESIPPPLY.CNXO1*,"#L! N,
*ESUPPLY.CNXO?","#** $
MEASURE (CURRFNT 'ESUPPLY.PES' A).
    DC-SIGNAL,DELAY O.I SEC,ENX CRIZA S
    PECORC " MEASURED ",'ESUPPLY.RES', "#.z### AMPS THRU
ENO 'ESMPPLY'S
C*****************************************************************
DEFINE PROCEDURE, 'AFF-COMP.PRINT'G
    3 0 0
        COMPARE 'SYS.I', LT Z S EOTN GTEP 305 IF NDGO S
        RECDRO "AFF-COMP.COUNT',"###: SHORT(BNRP101)"; GOTO STEP
    3O5 COMPARE 'SYS.I', LT 3 S GOTO STEP 310 IF NOGO $
        RECORD 'AFF-COMP.COUNT',"###: OPEN(DDRミIO1)"S GOTN STEP 3
    310 COMPADE 'SYS.I', LT A S GOTO STED 315 IF NOGO S
        RECNRD 'AFF-COMP.COIINT',"###: SHORT(CDIN1)"S GOTO STEP 3Z'
    315 COMPARF 'SYS.I', LT S GOTO STFP 320 IF NOGO S
        RECORD 'AFF-COMP.COUNT',"###: OPEN(CZ1OI)"S GOTN STEP 335
        COMPARE 'SYS.I`. LT G S GUTO STEP 3?S IF NOGO S
        RECORN 'AFF-COMP.EOINNT',"###: SHDRT(RZIOI)"$ GNTN STEP 33'
        COMPARE 'SYS.I', LT }7\mathrm{ S GOTO STFP 33n IF NDGOS
        RFCORN 'AFF-COMP.COUNT',N###: DPFM(RZ1O!)*S FOTO STEP 335
    330 PECOQD "\triangleFF-COMP.COIJNT',"###: NOMIMAL(AI.L-COMPS)"S
    335 END 'AFF-COMP.PQINT'S
        INCLUDE "UPFIPN S
    OEFINE PROCEDURE, 'PRINT,DONT KNOW' S
    RECORD "LIST OF COMPONENTS FOR WHICH NO DIAGNOSIS HAS REEN MADE:"
    'AFF-COMP.COIJNT' = OS
    FOR 'SYS.I' = 1 THRU 'SYS.#COMPONENTS' THENS
        CDMPARE 'AFF-CDMP.STATE'('SYS.I'),ED 'SYS.DDNT KNDW'S
        GOTO STEP 710 IF NOGO S
        'AFF-COMP.CDUNT' = 'AFF-COMP.COUNT' + 1 s
        PERFORM 'AFF-COMP.PRIMT'S
710 ENO FOR &
    CNMPARE '\triangleFF-COMP.COUNT',GT O S
    GOTO STEP 711 IF GO S
    RECOR! "*** NONE *** " S
711 RECORO "END OF LIST." s
        ENN 'PPINT.DONT KNOM' S
    DEFINE PROCEDIRE, 'PRINT.MAY RE' S
    RECORO "LIST OF COMPONENTS NHICH MAY RE AFFECTED:*S
        GAFF-CDMP.COUNT' = DS
        FOP 'SYS.I' = I THRU 'SYS.#COMPONENTS' THENS
        COMPARF 'AFF-COMP.STATE'('SYS.I'),ED'SYS.WAY RE'S
        GOTN STEP 720 IF NOGO S
        'AFF-COMP.COUNT' = 'AFF-COMP.CNINNT' +.1 s
        PERFOQM 'AFF-COMP.PRTNT'S
```

720 ENN FOR S
COMPARE •AFF-COMP.COIJNT', GT O S
GOTD STEP 721 IF GO S
RECORD "*** NONE *** " $\$$
721 RECORD "END OF LIST." \$
ENO 'PRINT.MAY BE' S
DFFINE PROCEOUPE, •PRINT.MAY BE NOT' S
RECORD "LIST OF COMPONENTS WHICH MAY NOT $8 E$ AFFECTED $: \$$
'AFF-COMP.COUNT' = OS
FOR 'SYS.I' = 1 THRU 'SYS. ZCOMPONENTS' THENS
COMPARE 'AFF-CNMP.STATE'('SYS.I'),ED 'SYS.MAY BE NOT'S
GOTN STEP 730 IF NOGO S
- AFF-COMP.CNUNT' = AFF-COMP.COUNT' + 1 s
PERFORM 'AFF-COMP.PRINT' S

12／13／79 AN／USM $410(X E 3)$ 2EV 1.0 ？
301
302
＜03：PFCORO＊＊＊＊NONE＊＊＊ 5
．04：731 RECORO＂ENO OF LIST．＂S
305：END＇PQINT．MAY BF MNT＇S
306：DFFINE PROCEDUPF，＇POINT．IS＇S
307：REGORN＂LIST OF EOMPONENTS NHICH APF AFFECTEN：W S
308：${ }^{\circ} \triangle A F F-C O M P . C O U N T \cdot=08$
3nO：FOQ＇SYS．I＇＝ 1 THRU＇SYS．HCOMPONENTS＇THENS
310：
3118
312：
313：
314
315
316
317
319：741 PECORD＂ENO OF LIST．＂S
310：END＇PRINT．IS＇S
320：
3？1：
322：
323：
324：
325：
326：
3？7：
328： 7

30：
321．
132：751 PESORD＂EMD OF LIST．＂S
132：ENN＇PQINT．IS NOT＇S
134：DEFINE PROCEDURE，＇AFF－COMP．UPNATE＇S

135：
i36：
i？7：
；38：
39：
40：
41：
$42:$
43：
44：
45：
46：
47：
48：
$49:$
50：
51： 761 COMPAPE＇SYS．STATE＇，EQ＇SYS．IS NOT＇S
うこ：
53：
54：
55：
5ヶ：
57：
58：
59：
，0： FOR＇SYS．I＇＝ 1 THRII＇AFF－COMP．ROUNT＇THEN S ＇SYS．NANE＇＝＇AFF－COMO，NAME＇（＇SYS．I＇）S ＇SYS．STATE＇＝＇$A F F-C O M P$ ．STATE（ ${ }^{\prime}$＇SYS．NAMF＇）S ＇SYS．SELECT＊＝＇AFF－CNMP．SELECT＇（＇SYS．I＇）E COMPARE＇SYS．STATE＇，EQ＇SYS．NONT KNOW＇S
GOTO STEP 760 IF NOGOS
GOTO STEP 76ES
76O COMPARE＇SYS．STATE＇，ED＇SYS．IS＇S
GOTO STEP 76I IF NOGOS COMPARE＇SYS．SELECT•，EN＇SYS．IS＇E GOTO STEP 7 GG IF SOS COMPARE＇SYS．SELECT＇，EQ SYS．IS NOT＇S GOTO STFP 767 IF GOS COMPARE＇SYS．SELFCT＇，EQ＇SYS．MAY BE＇S GOTO STEP 7ha IF GOS GOTO STFP 7h7S

GOTO STEP 762 TF NOGOS
COMPAPE＇SYS．SELECT＇，EQ＇SYS．IS＇S GOTN STEP 767 IF GOS COMPARE＇SYS．SELECT＇，EQ＇SYS．IS NOT＇S GOTO STFP 7 GG IF EOS COMPAPE＇SYS．SELECT＇，EO＇SYS．MAY BE＇S GOTH STEP 767 IF GOS GOTO STEP 7K8S
762 COMPARE＇SYS．STATE＇，EM＇SYS．MAY RF＇S

GOTA STED 763 IF MOGOS COMPARE＇SYS．SFLEECT＇，ER＇SYS．IS＇S GOTN STFE 76t IF GO．S COMPAPE＇SYS．SELECT＇，ER＇SYS．IS NOT＇s GOTD STEP 764 IF GDS COMPARF＇SYS．SELECT＇，ED＇SYS．MAY EE＇S GOTO STEP 766 IF GOS GกTR STEP 764 S
7G3 COMPAPE＇SYS．STATF＇，EQ＇SYS．MAY RE MOT＇S GOTO STEP 7 GR IF NOGOS

COMPARE＇SYS．SFLECT＇，ER＇SYS．IS＇S
GOTO STEP 7G4 IF GOS
COMPARF＇SYS．SELFCT＇，EO＇SYS．IS NOT＇S GOTN STEP 7 GG IF GOS COMPARE＇SYS．SELECT＇，ER＇SYS．iAAY BE＇s GOTO STEP 784 IF GODS GOTO STEP 76んS
764 PECORO＂＊＊＊WARNING：FAULT ISOLATION LOGIC TNCONSISTANCY＂S
765 RECDRD＂CMMPDNENT：＂，＇SYS．NAME＂，＂\＃\＃\＃：＂e
 ＂IN TEST：＂，＇AFF－COMP．WHERE＇P＇SYG．MAME＇），＂$\# \# \# ; ~ " S$ RECDRN＂CIRRRENT STATE：＂，＇SYS．STATE＇R ？，N g＇\＃\＃\＃\＃＇；＂， ＂IN TEST：＂，＇AFF－COMP．TEST＇，＂\＃\＃\＃＂ 9
$7 \delta \sigma^{\prime \prime} A F F-C O M P . S T A T E$＇（＇SYS．NAME＇）$=$＇SYS．SELECT＇ \mathcal{S}
－$A F F-$ COMP．WHERE＇（＇SYS．NAME＇）＝\triangle＇AFF－COMP．TEST＇ GOTO STEP 768 S
767 RECORD n＊＊＊ERROR：FAULT ISOLATION LOGIC INCONSTSTANCY＂S ETTO STEP 765s
768 ENO FORS
ENO－AFF－COMP．UPDATE＇S


```
C DIAGNOSES PQOCS S
```


1000 DFFINF PROCEDIRE, 'TIAG.1' S
'SYS.\#TESTS IN CONJ'(1) = 'SYS.\#TESTS IM COMJ'(1) - 1 s
COMPARE 'SYS.\#TESTS IN CONJ'(1), LE 0 ©
GOTE STEP 1005 IF NCEO S
- $\triangle F E-C O M D . C O U N T=1.9$
- $A F F-C O M P \cdot N A M E \cdot(1)=7 \mathrm{~s}$
-AFF-SOMD.SELECT'(1) = 'SYS.MAY RE' S
PERFORM 'AFF-COMP. IIDDATE' S
FECORD "**** 0000 リリT ****" s
'SYC.OIAG-FLAE'(1) = 'SYS.SELFETED'
1005 END OIAG.1.

1100 DFFINE PROCEDURE, 'OIAG.A. $\$$
-SYS.\#TESTS IN CONJ'(Z) = 'SYS.\#TESTS IN CONJ"(2) - 1 s
COMPARE SSYS.\#TESTS IN CONJ'(P), LE 0 -
EOTO STEP 1105 IF MOGO $\$$
- $\triangle F F-C O M D . C O U N T=1 s$
- $\triangle F F-C O M P$. NAME $(1)=3$ ©
- $\triangle F F-C$ MMP. SELECT' (I) = 'SYS.MAY BE' S
PERFORM 'AFF-COMP.UPNATE' S
RFEORN "POSSIRLF FAIILTY COMPONENT(S) ---ILSHORT(CZ1O1)
'SYS.DIAG-FLAG'(2) = 'SYS.SELETTED' $\$$
1105 ENO DIAS.4' s

1500 DEFINE PROCEDUPE, 'NIAG. 3°.
-SYS. \#TESTS IN CONJ'(G) = 'SYS.\#TFSTS IN CONJ'(G) - 1 .
COMPARE 'SYS.\#TESTS IN CONJ' (G), LE O \&
GOTO STEP 1505 IF NOGO S
'AFE-CTMP.COUNT' $=1 \mathrm{~s}$

- $\triangle F F-C O M P$. NAME' (1) $=4 \mathrm{~S}$
- $A F F-C O M D . S E L E C T$ (1) $=$ 'SYS.MAY AE' S

PFRFORM 'AFE-COMP. UODATE'S
 'SYS.DIAG-FLAG'(G) = 'SYS.SFLECTEN' $\$$
1505 END 'DIAG.3's

1GOO DEFINE PROCEDIIRE, 'กIIG.7'.

-SYS.ПIAG-FLAG" (7) $={ }^{\circ}$ 'SYS.SELECTEN' S
END ${ }^{\circ}$ OIAG.7'S

TEST PROCS S

1700 DEFINE PQOCEDURE, 'TEST.9' \$
'SYS.FLAG' = 'SYS.TRUE' S
${ }^{\bullet}$ SYS.ASRT-FI.AG' $=$ 'SYS.TRUE' S

```
    \bulletAFF-COMP'•teSt' s ] 5
    'OHMMETER.CN*O1' s 'A21-2' 5
    'OHMMFTFR.CNXO2' 2 'A21-V *
    'PMMMETEP.PffMO?' s 3.2E+05 *
    'OHMMFTEF #PPW03# s 1.2F+5* S
    *OHMMETER.\rho员MO4' s 250 S
    PERFORM 'OHMMETEP' S
    - P A21 \bullet2 ->9 ' s 'OH^MfTFR•PPMO1' $
    'SYS.DEC.01' s 'nHMMfTFR.PES' ^
    COMPARE #PA2t-2* 9"# GT 3.t9flOOE+05 *
GOTO STEP 1710 IF GO *
    #SYS,FLA6' s 'SYS,FAISE" S
    #SYS*ASPT-FLAG" S "SYS^FALSE' *
    1710 COMPARE 'SYS^FLAG' 把(5 *5YS*TPUE' *
        GOTO STEP 1715 TF NOGO S
        OEPFOPM "DTAG*1* %
    1715 "SY^#TEST-FLAG'(1) = `SYS.TESTEO# ^
        END "TFST#q* S
    180n DEFINE PPOCEOUPE# "TEST#10" *
            "SYS.FLAS" s "SY^.TRUE" <
            #SYS#ASPT-FLAG' s #SYS,TPUE# S
            #AFF-COMP#TEST" s 2 5
            COMPARE "RA21-2-0*, LT ^#19000E+05 %
            GOTO ?T£P 1805 IF GO *
            'SYS#FLA(?' s #SYS.FALSE* S
            'SYS.A55RT-FLAG' s 'SYS.FALSE' $
            1^05 COMPARE "SYS#FLA<" ,FQ "SYS#TPUE" <.
            GOTO STEP 1810 IF WOGO S
            PERFORM #DTAG#4 S
            1810 "SYS.TEST*FLAG"C?) s 'SYS.TESTFD' S
            ENO 'TEST#10" 5
            DEFINE PROCEDURE, "TFST.11# 3
            #SYS.FLAG" S #SYS.TRUE# *
            'SYS.ASRT-PLAG' s "SYS#TPUE" S
            #AFF-COMP.TEST" s 3 5
            -QHMMETEP^CNXfl1' s*A21-3* S
            'OHMMETFJ9.CMX02' s *A21*i# S
            'OMMMEPER.PRMO2' = 4 5E+02 S
            -ПूMMETER.ロRMO3' s 7!SF+O;> s
            'OHMMETEQ.ORMO4' S 2800 5
1905 PE9FOPM *OHMMETE»" S
            #RA2l-3*tl# s 'OMMIW!?TER*PPMO!# S
            'SYS.OEC.O1* s "OHMMFTFR#RES" $
            #SYS.OEC.02" s U53000E+0? <
            COMPARE *RA21-3*11"# UL ^.OinONE+03 > #SYS#DEC*02* LL
            6.01000E+02 - 'SYS.PEC.02' 5
            GOTO STEP 1^10 IF GO S
            #SYS^FLAG" = #SYS.FALSF" S
            #SYS,A<5PT-FLAG' s 'SYS.FALSE' 5
                1910 COMPARE 'SYS.FLAG' ,EO "SY8.TRUE" <
            GOTO STEP 1915 IF NO^O S
            PERFORM #DIAG#1# $
            "SYS<.TEST-FLAG'(3) s #SYS#TESTED" <
            ENO 'TEST.ll* S
DEFINE PROCEDURE，＇TEST．！？＇＊
＇SYS．FLAG＇s＇．＾YS．TPtIE＇ 5
＂SYS\＃ASRT－FLAG＇S＇SYS．TRUE＇S
```

541： 542： 4． 4
－AFF－COMP．TEST＇a 4 ＜
COMPAPE＇RA21－3－11＇，LT a．aAOOOE＋O？S
GOTO STEP 2005 TF GO＊
＇SYS．FLAG＊a＇SYS．FALSE＇S
＇SYS．ASRT－FLAG＇a＇SYS．FALSE＇« COMPARE＇SYS．FLAG＇，EQ＇SYS．TRUE＇ 5 GOTO STEP 2010 IF NOGO « PERFORM＇DIAG．6＇S
＇SYS．TEST－FLAG＇（a）a＇SYS．TESTFD＇ 5 END＇TEST．12＇S

```
() *****************************************************************
```

2100
OEFIME PROCEDURE，＇TFST．tV \＄
＇SYS．FLAG＇s＇SYS．TRUE＇S
＇SYS．ASRT－FLAG＇a＇SYS．TRUE＇S
＇AFF－COMP．TEST＇a 5 S
COMOAPE＇RA21－3－11＇，GT 7．5a000E＊O2 s
GOTO STE» 2105 IF GO S
＇SYS．FLAG＇a＇SYS．FALSE＇S
＇SYS．ASRT－FLAG＇a＇SYS．FALSE＇ 9
2105
COMPARE＇SYS．FLAG＇，EQ＇SYS．TRUE＇＊
GOTO STEP 2110 IF MOGO S
PERFORM＇OTAG．2＇\＄
PERFORM＇DIAG．5＇S
2110 ＇SYS．TEST－FLAG＇（5）a＇SYS．TESTED＊S
ENO＇TEST．IV S
〔I＊＊＊
2200
DEFINE PROCEDURE，＇TEST．14＇\＄
＇SYS．FLAG＇a＇SYS．TRUE＇ 9
＇SYS．ASRT－FLAG＇a＇SYS．TRUE＇S
＇AFF－COMP．TEST＇a 6 \％
＇7METER．CNX01＇a＇A2J－3＇＜
＇7MF．TER．CNX03＇a＇A21－2＇ 4
＇ZMETEFI．PRMO2＇a 0．17E＋03 \＄
＇ZMETEQ＇．PRM03＇a 0．39E＋03 S
＇ZMETER．PPMOa＇a 1000 S
＇7METER．PRMQ5＇a 1000 S
2205
PE＇FORM＇ $\mathbf{Z}^{\text {M }} \mathrm{ETE}^{\text {B }}$＇＜
＇ZA21－3－14＇a＇ZMETER．PRM01＇S
＇SYS．DEC．O1＇a＇ZMETFR．RFS＇s
COMPARE＇ZA21－3－14＇，U，1．7？ftftflF＋03 aL 3．90000B＋02 \＄
GOTO STEP 2210 TF GO 《
＇SYS．FLAG＇a＇SYS．FALSE＊S
＇SYS．ASRT－FLAG＇a＇SYS．FALSE＊5？
2210 COMPARF＇SYS．FLAG＇，EO＇SYS．TRUE＇＜
GOTO STEP 2215 TF NOGO S
PERFORM＇niAg．l＇S
22t5＇SYS．TEST－FLAG＇（6）a＇SYS．TESTED＇ 5
END＇TEST．14＇ 9

2300
DEFINE PROCEDURE，＇TEST．15＇ 9
＇SYS．FLAG＇a＇SYS．TRUE＇S
－SYS．ASRT－FLAG＇a＇SYS．TRUE＇S
－AFF－COMP．TEST＇a 7 S
COMPARE＇ZA21－3－1＊＇，GT 3．90000E＋rt2＞
GOTO STEP 2305 IF GO 9
＇SYS．FLAG＊a＇SYS．FALSE＇\＄
＇SYS．ASRT－＾LAG＊a＇SYS．F4LSE＇S
2305 COMPARE＇SYS．FLAG＇，｜？g＇SYS．TRUE＇«
GOTO STEP 2310 IF MOGO 5
PERFORM＇OIAG．2＇S
$601:$ sil : 403:
04:

PERFARM 'DTAG. ${ }^{\prime}$ '
'SYS.TFST-FLDG' (T) = 'SYS.TESTFV'
END ${ }^{\circ}$ TFST.15' S

F 2409 PFRFORM •RET.TIME' $\$$
RECOQD \quad : X TESTING UUT: A? 100 -SMALI.N S
QECOPD 'SYS.CLOCK'(4), "OATE \#\#/n, 'SYS.CLOCK'(5), "出\#
-SYS.CLOCK' (() , " 4 TIME", 'PRT.TIME. S
'SYS.TIM' = 'SYS.TIME' S
FOR 'SYS.I' $=1$ THRU 'SYS.HDIAGS' THFN S
'SYS. \cap IAG-FLAG' P'SYS.I') $=$ 'SYG."OT SELECTED' S 'SYS.\#TESTS IN CONJ' ('SYS.I') $=0$.
END FOR S
FOR 'SYS.I' $=1$ THRU 'SYS. \#COMPONENTS' THEM S

- AFF-COMP.STATE ('SYS.I') = 'SYS.OONT KNOM' S
-AFF-SOMD. 'AHERE' ('SYS.I') $=0$ S
END FOR S
'SYS.\#TESTS IN CONJ'(1) $=3$ S
-SYS.\#TESTS IN CONJ'(2) $=1$.
'SYS.\#TESTS IN CTNJ' (3) $=1.9$
-SYS.HTESTS IN CONJ' (4) $=$?
'SYS.\#TESTS [N CONJ'(S) = 1 S
${ }^{\bullet}$ SYS. \#TESTS IN CONJ' (6) $=1$ \&
FOR 'SYS.I' = 1 THRU 'SYS.\#TESTS' THFN S
'SYS.TEST-FLAG' ('SYS.I') = 'SYS.NIOT TESTED' S FNO FOR S
C BEGTNAIMT OF TESTING S
C SONTROL POECFOING THE CALL OA THE TEST MOOILLF PEST. Q° S 2500 'SYS.FLAG' = 'SYS.TRUE' $\$$ PEPFORM 'TEST. $9^{\circ} S$
C $\$$
C
CONTROL PQECFOING THE CALL ON THF TFST MONULE 'TEST. 11' S 'SYS.FLAG' = 'SYS.TRUE' S
DERFORM 'PEST.11' S
C s
C
CONTROL PREEENING THE CALL ON THE TEST MONULE 'TEST. 14 ' S 2700 'SYS.FLAG' = 'SYS.TPUE' s

PERFORM •TFST.14'S
C S
C
CONTROL PPECENING THE CALL ON THE TFST MONULE PTET. IO' S
${ }^{\circ}$ SYS.FLAG' $={ }^{\circ}$ SYS.TRUE' ${ }^{\circ}$
PERFQQM •TEST. 10° -
C. $\$$

C CONTROL PQECEOTNG THE CALL ON THE TFST MONULE 'TEST.IZ' S
'SYS.FLAG' = 'SYS.TRUE' S
PEPFOPM 'TEST.12' S
C
C
CONTROL PRECFDIMG THE CALL ON THE TEST MOOILE •TEST. 13° S 3000 'SYS.FLAF' = 'SYS.TRUE' S

PERFORM 'YFST. $13^{\circ} S$
C $\$$
C
CONTROL PPFCEDING THE CALL ON THE TEST MONULE •TEST.IS' S 3100
'SYS.FLAG" = 'SYS.TRIIE', S
PEPFORM 'TEST.15'S
C $\$$

```
61: ??00
```

PgPFOPM 'GET.TIM?' *
3ECORD ••FINISHED TESTING AT\% 'PRT.TIMf S
'SYS.TIM' s 'SYS.TIME* - 'SYS.TIM' S
'SYS.CLOCK' (J) s INT f'SYS.TTM'/Sfroni S

-SYS.CLOCK' (2) s TNT(\#SYS\#TIMV^iO) S
-SYS.CLOCK' (3) = "SY\$.TIM' • 60*\#.SYS.CLOC<' (2) s
PECORO PUPATION " , "PRT\#TTME" S
PFMOVF ALL 55
PECQPO ${ }^{\text {WOO }}$ YOU WISH TO SEE THE FINAL FAULT ISOLATION 8'
" (Y/N) " S
WAIT-FOP MANMJAL-OATA-60-MOGO S
GOTO STEP 3205 IF MOGO S
PEPFOPM 'PRINT.DONT KWOVt' S
-हgनпीव 'PRIMT.I?' S

PERFOPM \#PPINT \#MAY <E" S
PERFORM /PRIMT.MAY <EF (S!OI ${ }^{\#}$ \$
RECORD "DO YOU WISH TO RERUN THIS PROGRAM? (Y/N) < 8
WAIT-FOR MANIJAL-OATA-GO-WOGO S
GOTO STEP 3210 IP \»OGO S
RECORO " $l P^{n} \mathrm{~S}$
GOTO STEP 2a00 S
RECORD "TERMINATE EQUATE PROGRAM \#A3tOO-SMALL' iPw S FINISH S
TERMINATE EQUATE PROGRAM 'A?100-SMALL" S
the ohmeter parameters are assigned values (see lines 482-486). After returning from the procedure, the target variable used in the conjunction is assigned the resistance measured. This variab is used in an assertion to compare its value to 319 Kohm. If the assertion passes, diagnosis 1 is selected.

The program execution start on line 609 (statement number 2400) which is the only entry point to the program. In the prologue, the system variables are initialized and then testing starts on line 634. The sequence of testing is determined by sequence analysis phase of the bottom part of the NOPAL system. Because this sample program does not involve component protection after-diagnoses etc., none of the test procedure calls are preced by checks to determine the run time conditions. If there had been any of these features used in the specification, there would have been additional code between test procedure calls.

After all test are performed, the test duration is printed, and then all ATE devices are removed. If so desired, a synopsis of the fault isolation state is printed. At this point the operator may rerun the same program for another UUT or terminate execution.

The ATLAS program for testing the voltage regulator and time delay circuit is not included in this report. It is availab separately on the accompanying listing and computer tape.
4.6 Evaluation of EQUATE Runs
A. Results from the Filter Subcircuit:

The program discussed in the previous section was used to test three different A2100 circuit cards. The printouts from EQUATE VII are exhibited in Figure 4.10. The first card teste had a missing capacitor (C2101). Three tests were performed before the failure was detected. The other two cards were god After card 2 was tested, the fault isolation state was printed as requested. The long repetition in test 1 , of cards 2 and is due to the charging time of capacitor c2l01. This reflects a deficiency in the test strategy selection and optimization algorithms of the NOPAL system. This is one of the areas wher the current implementation can be improved.
B. Results from the Voltage Regulator and Time Delay Subcirct Three A2100 cards were tested with the ATLAS program
(see Figure 4.11). This program did not have tests which requ probing of the UUT, therefore the ambiguity classes were large The first card tested had a transistor failure which was not of the failures contained in the failure dictionary. Therefor no diagnosis was selected.

Card 2 contained two physically broken resistors R2105 ar
R2109. Because NOPAL generated programs can detect only singl catastrophic failures, multiple failures result in unpredictar selected diagnoses. In this case open failure of R2105 was picked up correctly, However the open of 2105 was not, inste a rather large number of other possible failures were given.

```
DATE 12/14,TG TIME 1&:41:44
TEET 1: E5571. E10 KOHM, 250 MV, 400 KOHM, 1 TIMEE, ENX(SE, S0)
TEST' 1: 45E0E.17.47E kOHM, 250 MV, 1000 kOHM, 2 TIMES, ENX(51, 50)
TF-T 3: 0.620 KOHM, 2E00 MV, 4 KOHM, 2 TEMES, CNK(SO, SE)
TL_i s: 110. SEE KOHM, -81 DEG, 1004 HZ, 1000 MV, E. & KOHM, SO TIMES, ENXiSO,
POSEIELE FAULTY GOMFINENT:S) ---
OFEN(O2101)
FINISHED TESTING AT :E:4S:1S
DIFRATION 0: 3:S4
DO YOU WIEH TG EEE THE FINAL FAULT IEDLATIDN ETATE ? (Y/M)
DO YOU WIEH TO RERUN THIE FROGRAM? (Y/N)
```

TE:ETINH:
DATE 12/13/79 TIME 1E: 13:35
TEST 1: 10701. $\exists 5 E$ KOHM, $250 \mathrm{MV}, 400 \mathrm{KOHM}, 32$ TIMES, GNX (E: 30)
TEST 1: 10218. $679 \mathrm{KOHM}, 250 \mathrm{MV}, 1000 \mathrm{KOHM}, 113$ TTMES, SNX (S1, SO)
TEST 3: 0. $605 \mathrm{KDHM}, 2 E 00 \mathrm{MV}, 4 \mathrm{KOHM}, 2$ TIMES, ENX(SO, 52)

** : gOOD IUT ****
FINISHED TEETING AT 1E: 16:47
DURATION 0: 3:12
DO YOU WISH TI EEE THE FINAL FAILL ISDLATION STATE ? (Y/N)
-IST OF COMPDNENTS FDR WHICH ND DIAGNDEIE HAE EEEN MADE:
1: SHORT(QDRZ101)
2: DFEN(QDF: 101)
3: EHORT(CE2101)
4: DPEN(C2101)
5: BHORT(R2101)
b: GPEN(RZ101)
ND DF:IST.
IST DF GOMPINENTS WHICH ARE AFFECTED:
** NINE ***
ND OF LIST.
IST DF GUMFDNENTS :NHIEH ARE NDT AFFECTED
** NONE ****
vD IF LIET.
IST OF GOMFINENTE WHICH MAY BE AFFECTED:
1: NOMENAL (ALL-COMFS)
VD DF LIST.
:ST IF GOMFINENT: Which may not ee affected

* NONE ***
ID OF LIET.
I YOU WIEH TG RERUN THIE PROGRAM: (Y/N)
TESTING BHIT: A玉1OOーEMALL
TE 12/1:3/79 TIME 18:17: 51
ST 1: 10270.127 KOHM, $250 \mathrm{MV}, 400 \mathrm{KOHM}, 51$ TIMES, ENX(51; 50$)$
ST 1: $10065.501 \mathrm{KOHM}, 250 \mathrm{MW}, 1000 \mathrm{KOHM}, 134$ TIMES, ONX (51, 50)
ST S: $\quad 0.5 E 2 \mathrm{KOHM}, 2800 \mathrm{MV}, \quad 4 \mathrm{KOHM}, 2$ TIMES, SNX (EO, 52)

+ 5000 UUT ****
VIEHED TESTING AT 1S: 21: 14
FATION 0: 3: 2\%
YOU WISH TO SEE THE FINAL FAULT :ERLATIDN STATE ? (Y/N)
YOU WIEH TD FEFUN THIE FFOLGAM? (Y/N)
IMINATE EQUATE PRTGGIAM 'AZ100-EMALL'

```
    TESTING OUT: AS 2.OO
DATE 12/14/7? TIME 13:40:34
TEST 1: 1.537 KOHM, 230 MV. 4 KOHM* 2 TIMES* 'CNX(39* 41)
TEST 3: 0. 301 KOHM* 250 MV, 4 KOHM* 3 TIMES* CNX(61* 39)
TEST 5: 27. 662 KOHM* 230 MV, 40 KOHM* 16 TIMES* CNX (63*61)
TF~T छ
49.643 KOHM* 250 MV'
400 KOHM* 10 TIMES, CNX <23* 63)
TL ; 11: 1.471 KOHM* 2300 MV, 4 KOHM* 2 TIMES* CNX (39, d3)
TEST 14: 1. 127 KOHM* 2800 MV* 4 M KOHM, 2 TIMES, CNX (25*63)
TEST 14: 
TEST 20: 0.000 KOHM* 2 DEG* 1004 HZ* 1000 MV, 3.6 KOHM* 33 TIMES*
TEST 22: 0. 633 KOHM* -3 DEG, 1003 H2* 1000 MV* 3.6 KOHM* 2 TIMES*
CNX (41* 63
    ATTENTION OPERATOR: UUT IS SEIKO POWERED NOW
TEST 24: APPLIED DC2A* 25. 300 V. CNX HI 39 LO 41.
                MEASURED 0. 0133 AMPS THRU DC2A.
TEST 24: MEASURED 23. 497 V, CNX HI 61 LO41.
        ATTENTION OPERATOR: UUT IS BEING POWERED NOW
TEST 26: APPLIED 0C2A, 23. 300 V* CHX HI 39 LO 41
                MEASURED 0. 0123 AMPS THRU DC2A.
TEST 26: MEASURED 3. 170 V.* CNX HI 63 LO 41.
FINISHED TESTING AT 13:47i 5
DURATION 0: 6:31
DO YOU WISH TO SEE THE FINAL FAULT ISOLATION STATE ? (Y/N)
DO YOU WISH TO RERUN THIS PROGRAM? (Y/N)
```

TESTI IMG UUT: DATE 12/14/79 TIME 18:34: 4
TEST 1: 1. SOO KOHM* 230 MV, 4 KOHM* 2 TIMES. CNX (59, 41)
TEST 3: 0.483 KOHM* 230 MV, 4 KOHM/ 2 TIMES* CNX (61*39)
TEST 5: 34. 991 KOHM* 230-MV, 40 KOHM* 10 TIMES* CNX (63* 61)
TF^T 3; 74830. $566 \mathrm{KGHM}^{*} 250 \mathrm{MV}^{\star} \quad 400 \mathrm{KOHM}, 1$ TIMES, CNX (25* 63)

TEST 17: 10. 752 KOHM* 2800 MV , 40 KOHM* 10 TIMES, CNX < 63* 41)
TEST 20: 0. 000 KOHM* 93 DEG* $1004 \mathrm{H} 2 * 1000 \mathrm{MV} * 3.6$ KOHM, 39 TIMES* CNX (41*6^
TEST 22: 4. 278 KOHM* -83 DEG* 1004 HZ* 1000 MV* 3.6 KOHM, 6 TIMES, CNX ($41 * 2$!
POSSIBLE FAULTY COMPONENTS)
COLL-OPSN<QQ2i01) OR BASE-OPEN (QQ2101) OR COLL-OPEN<QQ2102) OR BASE-OPEN (QQ210:
POSSIBLE FAULTY COMPONENTS)
OPEN $<Q D R 2102$)
POSSIBLE FAULTY COMPONENTS)
OPEN<QDR2106)
POSSIBLE FAULTY COMPONENTS)
OPEN<R2103) OR OPEN (R2107)
POSSIBLE FAULTY COMPONENTS)
OPEN (C2104)
POSSIBLE FAULTY COMPONENT (S)
OPEN<R2109)
ATTENTION OPERATOR: UUT IS BEING POWERED NOW
TEST 24: APPLIED DC2A* 23. SOO V^{*} CNX HI 39 LO 41.
MEASURED 0. 0109 AMPS THRU OC2A.
TEST 24:..MEASURED 23. 499 V , CNX HI 61 LO 41.
ATTENTION OPERATOR: UUT IS BEING POWERED NOW
TEST 26: -APPLIED DC2A, 23. 300 V* CNX HI 59 LO 41.
MEASURED 0. 0107 AṂPS THRU DC2A.
Tr * 26: MEASURED 7. S49 V* CHX HI 63 LO 41 .
FINISHED TESTING AT 19: 1:33
DURATION 0: 7:29
DO YOU WISH TO SEE THE FINAL FAULT ISOLATION STATE ? (Y/N)
DO YOU WISH TO RERUH THIS PROGRAM? <Y/N)
gure 4,11 EQUATE Printouts for the Voltage Regulator and Time Delay

JATE 12/14/79 TTME 19: 4:42

Figure 4.11 EQUATE Printouts for the Voltage Regulator and Time Delay Subcircuits (continued)

Card 3 was a good card. Because the test design in this particular program did not utilize probing (to speed testing), the nominal equivalence class contained a large number of semiconductor failures. In a test design which uses probing, these possibilities were removed. The program included which is the accompanying tape has the fault isolation capability shown in Table 4.7. In this program all transistor failures are diagnosable.

The generation of a test program to diagnose and isolate single catastrophic failures in the A5100 audio amplifier circ card of the AN/VRC-12 radio is described in the following six sections. Section 1 presents the theory of operation for the circuit. This description follows the theory given is TM5820-409-35-34 Section A, pages 19-21. Section 2 contains the input supplied to the top part of the NOPAL system. Each input option is briefly explained. An overview of the tables generated by the system is given Section 3. The NOPAL specifi cation of the tests based on these tables is explained in Section 4. The flowchart of the EQUATE ATLAS program which is generated from the NOPAL specification is described in Section Finally in Section 6, the printouts obtained by running this program on either EQUATE V or VII are exhibited an evaluated.
5.1 AUDIO AMPLIFIER ASSEMBLY-A5100: THEORY OF OFERATION

The module provides two outputs, a high-level audio
amplifier output and a low-level monitor amplifier output (Figure 5.1). The amplifiers are expected in the 300 through 3000 KHertz audio range. The monitor amplifier is described under paragraph A, and the audio amplifier is described under paragraph B.
A. A Simplified schematic diagram of the monitor amplifier is shown in figure 5.2. The monitor amplifier provides a fixed level audio output which is independent of the setting of the volume control. Capacitor C5lOl couples the audio signal at the output of filter FL5001 to the base of 95101 . The amplifie output across load resistor $R 5105$ is coupled through capacitor. C5103 to the interphone amplifer AM-1780/VRC. During reception of transmitted signals (no squelch), 25101 is powered from the 16-Volt power supply. During squelch operation, the power supp is disconnected from the monitor amplifer, thereby disabling th stage; diode CR5lol prevents the transfer of an audio signal through the base-to-emitter circuit of 25101 . Resistor R5104 provides emitter degeneration for gain stability. Voltage divi resistor R5l01 and R5102 develop the fixed bias portion of the emitter-to-base bias. Resistors R5103 and R5104 establish the self-bias portion of the emitter-to-base bias and are used for current stabilization. Capacitor C5102 is an audio bypass capacitor.
B. A simplified schematic diagram of the audio amplifier is shown in Figure 5.3. The audio amplifier stages amplify freque from 300 to 3000 hertz. The final amplifier stage uses power

TM5820-409. 35-33
Figure5.2 Monitor amplifier, simplified schematic diagram.

Figure 5. 3 Audio amplifiers, simplified schematic diagram.

transistor Q201 (Q402) and resistor R202 (R402) which are not on the amplifier module. They are mounted in a heatsink on the case. The output of the audio and squelch preamplifier feeds through low-pass filter FL5001, to volume control Rlol, diode CR5102, and capacitor C5104 to the base of Q5002. The amplified output across load resistor R5ll4 is direct-coupled to the base of 25104 , amplified and direct-coupled to the base of Q201. The amplified output across voltage divider, R5111, R5112 and C5106, in parallel with resistor $R 202$ and the primary winding of transformer T500l. A part of the output is coupled back to the collector of 25103 , across degenerative ac feedback network of R5111, R5112, and C5102. The circuit raises input impedance, reduces audio distortion, and stablizes amplifier gain. The other output across 2202 and the primary winding of T5001 is coupled to the secondary of T5001. The output across the full secondary winding of $T 5001$ is coupled through the contacts of relay R500l to drive the loudspeaker. The output across the center tap of the secondary winding provides an unmuted output to the headphones. In transmit mode, a ground is supplied to one side of muting relay K5001, causing it to energi This removes the short across resistor R5117, inserting a 1600 resistance in series with the loudspeaker, resulting in muted audio output. Capacitor C5108 is an arc suppressor for relay $k 5$ During reception of transmitted signals (no squelch),

16 volts dc is connected to voltage divider R5107, R5108, R5106, and RT5lol. The voltage present at the junction of R5l07 and R5 is applied through isolating resistor R5l09 to the base of Q5l02
and establishes the fixed-bias portion of the emitter-to-base bias. The effective resistance of 25103 , which increases or decreases with variations in temperature, provides bias to the emitter of Q5102. The collector voltage of Q5lo2 establishes base voltage for 25104 . Temperature-compensated voltage divid R5115 and RT5102 establishes the voltage supplied to the emitt of Q5104. Resistor R5106 develops the collector-to-base bias for Q5104. The emitter voltage of Q5104 establishes the base voltage of Q201(Q402). Diode CR5104 provides a constant volta drop of 0.8 volt dc to the emitter of 2201 (2402), keeping its emitter voltage constant. This allows a reverse bias to be applied to the base-to-emitter function to prevent thermal runaway at high temperatures. The voltage drop across power resistor $R 202$ (R402) and the primary winding of transformer 75001 establishes the collector voltage for 2201 (2402). Dc feedback is used to maintain constant collector currents for t transistors to prevent thermal runaway. For the base of trans Q201 (2402) the network, consisting of resistors R5115 and R51 thermistor RT5102, and 25104, appears as a voltage divider in which 25104 is a variable resistor whose value is controlled by its emitter-to-base bias. For the emitter of 25102 , transi

Q5103 appears as a variable resistance to ground whose value is controlled by its emitter-to-base bias. An increase in temperature lowers the resistance of a thermistor. An increas in temperature is usually due to an increase in collector currents. The biasing circuits are designed such that a decre in the thermistor resistance results in driving the transistor toward cutoff and returns the collector current to its origina value.

Capacitor C5105 and resistor R5113 produce a time delay cross terminals 2 and 7 of squelch relay $K 5002$ to prevent ey clicks from occuring at the audio output during squelch peration as the 16 volt dc line is disconnected.

The input given to the NOPAL system to generate a test program for the monitor and audio amplifiers is shown in Figure 5.5. A few of the isolated components on the card (CR5103, CR5104, R5117 and C5108) are not included in the cir description because they are not a part of the amplifier circu A test program to test them is generated separately.

The resistors and capacitors are described completely in the circuit description. The diode and transistor models are included from the model library 2. The models are shown in Appendix l. During testing it was observed that resistor R5ll does not exist physically on any of the circuit cards that wer available. Also capacitor C5l06 has been charged to $47 \mu \mathrm{~F}$ fron $8.2 \mu \mathrm{~F}$. The circuit description was accordingly charged to incorporate the capacitor change。 R 5118 was retained as is because of its low resistance in a low current base circuit. The interface device provided by RCA to test the $A N / V R C-1$ cards had an additional resistor (RUUTl) 33 Kohm which was no shown on the circuit schematic diagram. This is a capacitor discharge resistor grounding circuit node l. RUUT3 was measur to be 482 ohms. In the documentation it was shown to be 560 The measured quantities with $+-10 \%$ tolerances are used in the circuit description. All of the remaining resistors and capac are assigned lo\% tolerance. The diode parameters have 5\%, anc transistor parameters have 0.5\% tolerance.

The test requirements given under the circuit descriptior are the same as the requirements described for the A 2100 card
(. CIRCUIT J
: THIS IS MONITOR AMPLIFIER

C5101	50			FAILS
R5102	50	3	9.1K	: FAILS
R5101	50	2	2.7x	FAILS
R51C3	2	52	560	: FAILS
R5104	52	53^{\prime}	360	: FAILS
C5102	52	0	15 UF	FAILS

QQ5>101 5** $53 * 253=3 \quad$ FAILS
*LiB2 TR 2N329A
Q*
QDR51C1 $54 * 155 * 3$: FAILS
*LIB2 01 N645
Q*
R5105 $55 \quad 3 \quad 2.2 \mathrm{~K}$: FAILS
C5103 55 S 15UF : FAILS
: THIS IS AUDIO ATFLIFIER

: AND EMITTER FOLLOWER
805102 61*1 $60 * 262 * 3$ FAILS
-LIB2 TR2N33S
$\begin{array}{llll}\text { Q* } \\ \text { R5114 } 61 & \text { 33C iI FAILS }\end{array}$

R5114	61	33C	II FAILS		
R5115	9	$i 2$	103	iI FAILS	
C51.07	61	12	C.47UF		FAILS
C51C4	59	$6 ?$	$1.5 U F$		FAILS

QOR5132 59 * $111=3$: FAILS
*LIE2 D1N645

QQ5103 0 * 1 E $\% 2$ 65* 3 FAILS
*LI52 TR2N404A

TR2N329A
Q*
RT5102 $9 \quad 1200$: FAILS
: THE FOLLWING ARE UUT INTERFACE RESISTANCES
$\begin{array}{llll}\text { RUUT1 } 1 & 1\end{array}$

```
RUUTZ
RUUT
    110
                                .482
    *MODIFY \(10.100 .10>\)
        RS1 1 R R 5102 R5903 RS 104.65101 C5102 >
        R51 J C CiC3 R5107 RS 198 RS10t RT5901 >
        C5105 R 519 R R 5110 R5909 R5194 K5915 >
        C5127 651C4 K519 R 5191 R5192 C5106 >
        R591E RTSICE RUUTG KUUTZ RUUT3
*MODIFY \(20.050 .05>\)
                ODRS101.IN GORSYC1.ET GDR5101.CD >
                GDRS1C2.ID QDPS1L2.ET ODR5102.CD
*MODIFY 3 O.COS \(3.005>\)
    QGS1E1.IN GG5151.II OG59129.CED GO5901.CET QG5101.CCD QQ5101.CCT
```



```
TEST_TERMIVALS J\& PC EOARD EUGE CONNECTOR
0 GND
1 A51.1
2 A59-2
\(7 \quad 4597\)
8 A59-8
9 A59.9
19 A5i_91
12 A59.12
13 AS9 13
ACTEST_TER̄MINALS J\& PC BOARD EDGE CONNECTOR
0 ड̄VO
1 A59-9
2 A51-2
7 A59-7
8 A51_3
9 A51 9
11 AS1-11
12 A51. 12
13 A59_13
```

OSJECTIVES STANDARD
1CO.O\% DIAGNOSIS
EO. 2 AMEIGUOUS
EC. 4 AMEIGUDUS
AGCURACY INIMAL
0.50E-G2
ZERO DESCRIMINATION
C. $19 \mathrm{E}+02$
INACCURACY IN Z
3
SIGNIFICAGT OIGITS
1 SORT WIFHIN TEST ONLY
1 OPTIMILELOGIC
1 MISSING FAILURES SAME AS NOMINAL
5.99ミ+コ0 1U.0うE+05 RESISTANCE
1.うこE+コ1 1こ.こコE+コ3 IMPEDANCE
0.12ミ-23 OJ.50E+00 CURRENT
O.1 $5 E+30$ OE.J2E+O1 VOLTAGE
11
AGEIAS DG OPERATING POINT IS DECIUED EY THE FOLLWING DC SUPPLY
BEGIN UJT IS EEING POWERED NOW

There are two initial conditions specified. The first one sets power supply RSUP4 to 0.0 volt, thereby turning the audio amplifi off. The second initial condition changes the power supply volta level to 6.0 volts which turns on all the transistors. These levels force the amplifier to operate at its limits.
5.3 Evaluation of Tables Generates

The failure dictionary for the A5100 card has initially 81
failure modes. 19 failures are due to resistors which are remove from consideration after circuit simulation. If it becomes desirable to do so, a test program searching for resistor shorts can be readily generated since all necessary failure symptoms are available in the simulation results.

The binary valued diagnosis matrix and assertions table has 162 rows which are generated from 76 different test setups. These tables are not included in this report. They are available on the listings and computer tape accompanying this report.

The ambiguity analysis indicates that with these tests 95\% fault diagnosis is possible (see Table 5.1). 30 out of 62 failur can be uniquely isolated. The open failures of the two thermisto RT5101 and RT5102 could not be distinguished from the nominal circuit behavior. This is not surprising because these thermisto are in parallel with low valued resistors and the tolerances on these components effectively hide their open failure. In fact as it was described in the theory of operation of A5100 circuitry it was explained that these thermistors function when the operati temperature of the card increases. This condition arises when the card has been operating at high output levels for some time. Since such a long operation time could not be allowed on an ATE,

Table 5.1 A5 100 Ambiguity Report

FAULT ISOLATION SUMMARY

DESIRED AND AGHIEVED LEVEL OF GUMULATIVE FAULT ISOLATION PERCENTAGE

NUMEER $3 F$	fallur	MOCES	62
NUMEER $2 F$	EGUIV.	CLASSES	42
OESIKED	LEVEL OF	DIAGNOSIS:	100.0\%
ACHIEVED	LEVEL OF	DIAGNOSIS:	95.2\%
AULT IS	ON	NOT	

Table 5.1 A5100 Ambiguity Report (continu
an alternate way would have been to manually warm the termist to observe a decrease in the termistor resistance or output 1 It was decided that doing such a test at this initial investi stage was unnecessary.

The largest ambiguity group (equivalence class 23) has 5 possible failures. One of the failures is due to resistor R which has been omitted during manufacturing of the A5100 card The remainder of the failures are due to transistors $0-5102$ Q5103. The next largest ambiguity group (class 4) is due to the failures of resistor R5102 and transistor 25101 .

It should be observed that all of the failure functions an equivalence class tend to be the same (i.e. all open or al short). If the failures are due to open, the affected compon are generally in series and no probing is done (it is physica impossible) at their common node. If the failures are due to short, the affected components are generally in parallel and would require the physical removal of a component to determin which one is at fault. Due to the design of the circuit abou 10 probe tests had to be included to achieve this ambiguity Table 5.2 is a summary of the test setup optimization phase. Out of 76 candidate tests only 28 were found to be su while enabling a top down fault isolation design. The first test selected is a dc-power up test which immediately splits large number of possible failures from the nominal. Then, te are selected as the number of possibilities in each as class reduced.

INDIVIDUAL ANO iCIKi LNT*OPY VALUCS

SEQ	S\%\%	MEAS	ASSF	EfcTftOPY	JOINT EfcTROPY	EQU1V. CLASS
75	63	10	15?	C. 876	0.826	2
55	52	5	114	0.605	1.360	3
70	58	1	144	Q.6t3	1.851	6
56	52	6	116	0.449	2.256	9
76	64	10	161	0.503	2.643	13
37	37	1	17	0.394	2.956	16
68	56	1	138	0.394	3.262	20
40	40	1	75	0.3*4	3.528	23
72	60	1	n -	$0.3 * 4$	3.746	26
56	38	1	7 C	C. 263	3.053	29
41	41	1	7 f	0.213	4.146	31
32	32	1	5 ?	0.263	4.312	33
*,7	47	1	95	0.263	4.466	35
69	57	1	141	0.3*4	4.608	37
50	50	1	$1 \mathrm{C4}$	0.229	4.746	38
49	49	1	1 C 1	0.192	4,859	40
8	8	1	14	0.2*9	4.961	42
74	62	1	156	0.213	5.057	44
57	52	7	119	0.333	5.141	46
1	1	1	1	CC96	5.199	47
3	3	1	6	Q.0V6	5.255	48
65	53	1	131	0.CV6	5.309	49
73	61	1	152	0.192	5.360	50
2	2	1	3	0.333	5.408	51
54	52	4	112	0.573	5.453	52
5	5	1	9	0.264	5.493	S3
39	39	1	73	0.0V6	5.517	54
67	55	1	135	0.263	5.542	55
4	4	1	$\stackrel{\sim}{0}$	0.0C0	5*542	55
6	6	1	11	0.060	5.542	55
7	7	1	12	C234	5.542	55
9	9	1	16	0.096	5.542	55
10	10	1	18	C096	5.542	55
11	11	1	20	0.096	5.542	55
12	12	4		0.2 fc 4	5.542	55
13	13	1	24	0.0 V 6	5.542	55
14	14	1	It	C.2\&4	5.542	55
15	15	1	28	0.060	5.542	55
16	16	1	29	0.096	5.542	55
17	17	1	31	0.333	5.542	55
18	18	1	34	C2\&4	5.542	55
19	19	1	36	0.167	5.542	55
20	20	1	38	0.2*4	5.5*2	55
$i 1$	21	1	40	0.229	5.542	55
22	22	1	42	c.CV6	5.542	55
23	23	1	44	O.CüO	5.542	55
24	24	1	45	0.0*6	5.542	55
*5	25	1	47	CCCO	5.542	55
26	26	1	48	COOO	5.542	55
27	27	1	49	0.2\&4	5.542	55
28	28	1	51	0.060	5.542	55
29	29	1	52	0.224	5.542	55
3 C	30	1	54	0.229	5.542	55
31	31	1	56	0.264	5.542	55
33	33	1	61	0.060	5.542	55
34	34	1	62	0.2*4	5.542	55
35	- 35	1	64	C229	5.542	55
36	36	1	66	e.c\&o	5.542	55
42	42	1	ê1	0.394	5.542	55
43	43	1	£4	0.263	5.542	55
44	44	1	87	C096	5.542	55
45	45	1	a9	0.324	5.542	55
46	46	1	92	0.263	5.542	55
48	48	1	98	0.263	5.542	55
51	52	1	106	0.096	5.542	55
52	52	2	108	C167	5.542	55
53	52	3	110	CU7	5.542	55
58	52	£	122	C096	5.542	55
59	52	9	124	COCO	5.542	55
to	S;	10	125	COCO	5.542	55
61	51	11	1 Zi	COCO	5.542	55
al	52	12	117		5.542	55
63	52	13	1*8	0.2*4	5.542	55
64	52	14	130	0.0c0	5.542	55
66	54	1	1 i!	$0.2 * 9$	5.542	55
71	59	1	1*7	C3i4	5.542	55

* OUT OF 78 CANDIDATE TESTS 28 Afit KE'TA1*EO
5.4 NOPAL Specification and ATLAS Program Generation

The NOPAL specification for $A 5100$ incorporating the above features has about 50 test modules, and 42 diagnoses. The listing is available separately in the accompanying documentation and computer tape, A short NOPAL specification to test the isolated single components is shown in Figure 5,6.

Because of the limitations of the memory size of the compute available for software development the bottom part of the NOPAL system is unable to generate one ATLAS program for the A5100 circuit. A temporary solution to the problem was to divide by hand the NOPAL specification for A5100 into four separate specifications. An interesting and encouraging observation was made here. The original circuit description contains two independent subcircuits: the monitor and the audio amplifiers. The original test specification easily divides into two disjoint parts (including the tests and their diagnoses) each relating to only one subcircuit. This behavior is not a coincidence. Any other behavior would have meant an erroneous specification. In the future, we are planning on exploiting this modularity property to speed the generation of specifications.

Various reports generated by the system makes it an easy task to split the specifications into several parts. The most useful tables are the test setup and logic optimization reports. In fact, a separate NOPAL specification can be generated for each diagnosis by simply including all the tests involved in selecting that diagnosis conjunctively. This would result in a large number of ATLAS programs. Instead several diagnoses referring to the desired -failures can be put together, and then all the tests required can be inserted into the specification. Then on
/* NOPAL TEST SPECIFICATION SOURCE INPUT, FILE: SAPL1ST •/
1PAL PROCESSOR OPTIONS SPECIFIED: SA PLIST ${ }_{i}$ NOXREF $1 »$ "ODE »S E«» $6_{+} N C X R$ E F2,NOSOUR CS2 IMT NO,

NOPAL SPEC A5100;

```
    TEST CR51C3.SHORT
        PEAS; CONJ:
                <A5 1_3, A51_5> * QHKMEIERC >4QQE2, 400E3. 10E6, 2800);
            LOGIC: |* S.CR5103 ;
    TEST CR5103 CPEN;
        KEAS; CGNJ:
            <A51 5, A51 -3> * OHHHETERC < 4E3f 4E3, 39E3> 28003:
            LOGIC: Is Q.CR5103
                                    ***********************/
    TEST CR5104_SHORT;
        *EAS; CONJ:
                <A5i_1Q A51_9> < OH<<<ETER( >4C0E3f 400EZ, 10E6f Z8C0);
            LOGIC: [" S.CR5104 ;
TEST CR51C4_CPEN
            *EA&; CONJ:
                <A51 9, A51_10> * OH《<€TERC < 4£3 (f 4E3f 3963, 28C0);
```



```
    TEST R5117_CPEN
            HEAS; CONJ:
                <A51 4; A51 _6> * CH<<<&TERC RES_ R5117, 1E3, Z.SBZ* 2800)
                        TARGET: R6S.R5117;
            ASSERT: RES R5117 > 1760;
        LOGIC: I 0^5117;
/***************************##***************************************/
    TEST RS117_$H0RT;
            ffEAS;
            ASSERT: RES^R5117 < 1440;
            LOGIC: I S!R5117;
TEST
            PEAS; CONJ:
                        <A51_6f SNO > * ZKETERC IMP_65103, 1E3, 3.5E3.25(0. 8E3)
                TARGIT: l«P C51C8;
            ASScRT: IKP C51G̃8 > 1760;
        LOGIC: I Olc5108;
|******************************************************************/
    TEST . C5108 _ SHORT;
            PEAS;
            ASSERT: IKP.C5108 < 1440;
            LOGIC: I Sj:51Q8;
            ************ <*•***************************************************)
            DIA6 S_CR51C3: <SHCftT(Cfi5 1C3)*, FAIL.MSG);
            OlAfe o2cR51C3: <OPE"((CR51 03) "t FAIL_MS6);
            OIAfa SICR51C4: (SHORT (C R5104) t, FAIL_msG);
            OIAG O_CR51C4: (OPEN<CRi104) gf FAIL.«SG);
```

Figure 5»6 NOPAL Specification For A5100-Subcircuits
DIAG O_RS191: (OPEN(R5117) , FAIL_MS6):
the $A T E$, any one of the programs can be run arbitrarily. there is a failure, one of the programs will select the diag This approach implies another interesting possibility. Fault diagnosis and fault isolation programs can be generat separately. The fault diagnosis program (containing only nominal assertions) would indicate good or bad card only. card is bad, then the fault isolation programs could be run the ATE. During software testing phase of the research, th approach was taken to speed the ATE throughout.

5.5 Evaluation of EQUATE Runs

Figure 5.6 shows the NOPAL specification for testing t isolated components on the A5100 card. The execution of th ATLAS program generated for this specification is shown as third test run in Figure 5.7. Test sequence numbers and co points are documented inside the ATLAS program listing whic available separately. The failure detected by the program R5117 was actually due to a bad test point relay on EQUATE When the same program was executed on EqUATE V, this f disappeared but another failure, short capacitor C5108, sho This was also a malfunction of the ATE, EQUATE V measured 0 complex impedance at and above 8 KHertz .

The first two runs on figure 5.7 are from an ATLAS pro which were generated from split NOPAL specifications. The run yields all nominal measurements. Test ll refers to con points 255 and 200. These are not DIU points. When this t is invoked a message appears on the operator consolete givi instructions to connect high end of the probe to circuit no and the low end to ground (node 0). The failure detected i second run is a false alarm due to the resistance measureme

TEETTINE：LHTT：AEID囚

DATE 12／14．7\％TIME 20：17： 1
TEST 1： 33.064 KOHM， $250 \mathrm{MV}, 40 \mathrm{KOHM}, 3$ TIMES，ENX $(22,41)$

TL $: 6: 1.706$ KDHM，－ 25 DEG， $1004 \mathrm{HZ}, 1000 \mathrm{MV}, \quad$ E．K KHM， 12 TEMES，ENX（41，：

TEST 11：2． $0.4 \mathrm{KEHM} 250 \mathrm{MV}, 4 \mathrm{KOHM}, 1$ TEMES，GNX（Z5S，ZUO）
TEST 14： 0.372 KOHM，250 MV， 4 KOHM， 1 TIMES，ENX（25Z，25E；
TEST 16： $120.451 \mathrm{KOHM}, ~ 250 \mathrm{MV}, 400 \mathrm{kOHM}, 1$ TIMEE，ENX（25E，2E4）

UUT IE EEING FOWEFED NOW
TEST 20：APPLIED ITEA，2E．S00 V．ENX HI 209 LO 200.
MEABURED 0.0015 AMPS THRU DCEA．
TEST 20：AFFLIEI［MEOA， 16.000 V ，ENX HI 202 LO 200.
MEAEUFED O．012\％AMFE THRU DUCZA．
TEST 20：AFFIIEI DC2E， 3.60 V ，ENX HI 213 10 200．
MEABURED 0.0061 AMF＇S THRU DCSE．

UUT：UFE11．IE REV：12／14／70 DATE：12／14／79 19：44：46

MATE 12／14／74 TIME 19：4．4：47

TEST 14： $0.371 \mathrm{KOHM} \quad 250 \mathrm{MV}, 4 \mathrm{KOHM} 1$ TIMES，ENA（25z 2EE）
TEST 16： 120.311 KCHM こEOMV，400 KOHM， 1 TEMES，ENX（2ES，2EM）

POSSIELE FAULTY COMPDNENT（E）－
EC－GHMFT（OLS101）OR EC－SHORT（GOS101）OR SHORT（QDRE101）
UHT IE EEING FGWEEET NOW
HJT：UFSIM．IE REV：1こノ：4／79 DATE：12／14／79 20：4：43

TES：TエNIT BildT：AE1BO

JATE 12／14／7：9 TIME 20：4：44

EET 2：1．ZニE KGMM，2EOO MV， 40 KOHM，2 TIMES，ENス（ET，4E）

EST 5： 677.064 KOHM，2BOO MV． 4 KOHM， 7 TIMES，UNX（44，SE）
＊＊＊＊FAILURE DETECTEI－REFLAME DFEN（FSI17）＊＊＊＊＊

INIEHED TEETING AT $20: 6: 5$
JFATION 0： $1: \geq 1$
3 YOU NISH TO EEE THE FINAL FAIMT IEOLATION STATE ？（YN）
J YOU WISH TO RERIIN THIE PROGRAMS（Y＇N）

Figure 5．7 NOPAL Printouts For A5100 Subcircuits

UUT: UP5U. $1 C$ REV: 11/2/79
DATE: 11/2/7? 20:2:21

TESTIMG UUT:

DATE 11/ 2/79 TIME 20: 2::22
TEST 1: 32.909.KOHM, 250^{\prime} MV, 40 KOHM, 2 TIMES, CNX $(22,41)$
TEST 2: 1.572 KOHM* 250 MV, 4 KOHM, 2 TIMES, CNX (59, 41)
TEST 3: 1763S. $283 \mathrm{KOHM}, 250 \mathrm{MV}, 400 \mathrm{KOHM}, 4$ TIMES, CNX 47,41)
TEST 3: 10665. 117 KOHM, 250 MV* 1000 KOHM, 14 TIMES* CNX (47* 41)
TEST 4: 0.154 KGHM* 250 MV, 4 KOHM, 2 TIMES, CNX $(48,41)$
TEST 5: 89981. 338 KQHM* 250 MV, 400 KOHM, 1 TIMES, CNX $(61,41)$
TEST 5: 10930S. 650•KOHM* 250 MV, 1000•KOHM, 2 TIMES, CNX (61, 41)
-TEST 6: 0. 432 KOHM, 250 MV, 4 KOHM, 2 TIMES, CNX (33* 41)
TEST 7: 72552. 555 KOHM, 250 MN* 400 KOHM, 1 TIMES, CNX ($24 * 41$)
TEST 7: 95795. 853 KQHM, 250 MV, 1000 KOHM, 2 TIMES* CNX<24* 41)
TEST S: SI. 1S4 KOHM, 250 MV, 400 KOHM, 13 TIMES, CNX (25*41)
TEST 9: 34. 530 KOHM, 250 MV, 40 KOHM, 5 TIMES, CNX (59, 22)
TEST 10: 24494.642 KOHM, 250 MV, 400 KOHM, 4 TIMES, CNX (47* 22)
TEST 10: 10142. 093 KOHM, 250 MV, 1000 KOHM, 14 TIMES, CNX (47* 22)
TEST 11: 33. 053 KOHM . 250 MV , $40 \mathrm{KOHM}, 10 \mathrm{TIMES}, \mathrm{CNX}(48,22)$
TEST 12: 132603. $902 \mathrm{KOHM}, 250 \mathrm{MV}, 400 \mathrm{KOHM}, 1$ TIMES, CNX (61* 22)
TEST 12: 107595. 991 KOHM, 250 MV, 1000 KOHM* 2 TIMES* CNX (61, 22)
TEST 13: 33. $203 \mathrm{KOHM}, 250 \mathrm{MV}$, $40 \mathrm{KOHM}, 3 \mathrm{TIMES}$, CNX $(33,22)$
TEST 14: 797S90. 9S6 KOHM* 250 MV, 400 KOHM, 1 TIMES, CNX (24* 22)
TEST 14: 134439. 442 KOHM, 250 MV, 1000 KOHM, 2 TIMES* CNX (24*22)
TEST 15: 92. 510 KOHM* 250 MV, 400 KOHM, 13 TIMES, CNX $(25,22)$
TEST 16: 10709. 460 KOHM, 250 MV, 400 KOHM, 3 TIMES, CNX (47* 59)
TEST 16: 10428. 643 KOHM, 250 MV, 1000 KOHM, 12 TIMES, CNX (47, 59)
TEST 17: 1.726 KOHM, $250 \mathrm{MV}, \quad 4 \mathrm{KOHM}, 2$ TIMES, CNX 43,59$)$
TEST IS: 292449.814 KOHM* 250 MV, 400 KOHM, 1 TIMES, CNX (61*59)
TEST IS: 115824. 900 KOHM, 250 MN* 1000 KOHM, 2 TIMES, CNX (61*59)
TEST 19: 2. 050 KOHM, 250 MV, 4 KOHM* 2 TIMES* CNX (33* 59)
TEST 20: 117108. 331 KOHM, 250 MV, $400 \mathrm{KOHM}, 1 \mathrm{TIMES}$, CNX $(24,5$?)
TEST 20: 188795. $573 \mathrm{KOHM}, 250 \mathrm{MV}, 1000 \mathrm{KOHM}, 2 \mathrm{TIMES}$, CNX $(24,5$?)
TEST 21: 79. $124 \mathrm{KOHM}, 250 \mathrm{MV}, 400$ KOHM, 12 TIMES , CNX (25* 59)
TEST 22: 12046. 924 KOHM, 250 MV, 400 KOHM, 5 TIMES, CNX (48* 47)
TEST 22* 10706. 993 KOHM* 250 M** 1000 KOHM, 14 TIMES* CNX (48* 47)
TEST 23: 295231. $104 \mathrm{KOHM}, 250 \mathrm{MV}, 400 \mathrm{KOHM}, 1 \mathrm{TIMES}, \mathrm{CNX}(61,47)$
TEST 23: 49S060. $784 \mathrm{KOHM}, 250 \mathrm{MV}, 1000 \mathrm{KOHM}, 2$ TIMES, CNX $(61,47)$
**** GOOD UUT •••*
FINISHED TESTING AT 20:10:50
DURATION 0:8:23
DO YOU WISH TO SEE THE FINAL FAULT ISOLATION STATE ? (Y/N)
DO YOU WISH TO RERUN THIS PROGRAM? <Y/N)
TERHINATE EQUATE PROGRAM -'A5100-1'

Figure 5.7 NOPAL Printouts For A5100 Subcircuits (conti

TEETTINIG I＿HT：
DATE 11／2／79 TIME 20：14：
TEST 1：14919．502 KOHM，
TEST 1：11590． 9.5 KDHM ，
TEST 2：943503． 343 KOHM ，
TEST 2： 98167.027 KOHM ，
TEST 3： 11687.903 KOHM,
TEST 3：10787．617 KOHM，
TEST 4：356212 721 KOHM ，
TEST 4：225281． 575 KDHM ，
TEST 5：0． 635 KOHM ，
TEST 6：124624． 512 KOHM ，
TEST 6：92530． 249 KOHM ，
TEST 7：
TEST S：211．051 KOHM，
TEST 9： 0.08 KIDHM ，
TEST 10：94832． 163 KOHM.
TEST 10： 564.010 KDHM ，
TEST 11：175251． 523 KOHM,
TEST 11：150539．136 KOHM，
TEST 12：73． 392 KOHM ，
TEST 13：11813． 675 KOHM ，
TEST 13：564． 221 KDHM ．

AE1Q心ーシ
7
2巨0 MV， 400 KDHM， 4 TIMES，CNX（33，47）
$250 \mathrm{MV}, 1000 \mathrm{KDHM}, 15$ TIMES，CNX $(33,47)$
250 MV， $400 \mathrm{KIOHM}, 1$ TIME 2, ENX $(\geq 4,47)$
$250 \mathrm{MV}, 1000 \mathrm{KOHM}, 2$ TIMES，ENX $(24,47)$
$250 \mathrm{MV}, 400 \mathrm{KOHHM}, 7$ TIMES，ENX 25 （25，47）
$250 \mathrm{MV}, 1000 \mathrm{KOHM}, 13$ TIMES，ENX（2S，47）
$250 \mathrm{MV}, 400 \mathrm{~K}, \mathrm{HM}, 1$ TIMES，ENX $(6.1,4 \Omega)$
$250 \mathrm{MV}, 1000 \mathrm{KDHM}, 2$ TIMES，ENX $(61,48)$
250 MV， 4 KOHM， 2 TIMES，CNX（35，4：3）
$250 \mathrm{MV}, 400 \mathrm{KOHM}, 1$ TIMES，ENX 44,48 ）
$250 \mathrm{MV}, 1000 \mathrm{KOHM}, 2$ TIMES，ENX（24，4：3）
$250 \mathrm{MV}, 400 \mathrm{KIDHM}, 15$ TIMES，CNX（25，48）
$250 \mathrm{MV}, 400 \mathrm{KOHM}, 4$ TIMES，INX 43,61 ）
$250 \mathrm{MV}, 4 \mathrm{KOHM}, 2$ TIMES，ENX 24,61 ）
$250 \mathrm{MV}, 400 \mathrm{KOHM}, 3$ TIMES，ENX（25，©1）
250 MV， $1000 \mathrm{KOHM}, 5$ TIMES，ENX $(25,61)$
$250 \mathrm{MV}, 400 \mathrm{KIJHM}, 1$ TIMEE，ENX（24，33）
$250 \mathrm{MV}, 1000 \mathrm{KOHM}, 2$ TIMES，CNX $(24,35)$
$250 \mathrm{MV}, 400 \mathrm{KOHM}, 24$ TIMES，CNX（25，33）
$250 \mathrm{MV}, 400 \mathrm{KOHM}, 3$ TIMES，ENX $(25,24)$
$250 \mathrm{MV}, 1000 \mathrm{KOHM}, ~ \& ~ T I M E S, ~ E N X(25, ~ 24)$ IMFEDANEE 1633.6 OHM，－ 34.9 DEG，1． 0 KHZ ．REF－VOLTAGE 1000 MV, ITERATED 1 TIMEE，ENX HI 41 LD 22
TEST 15：IMPEDANCE 415． 9 DHM，－6．6 DEG，1． 0 KHZ ，REF－VOLTAISE 1000 MV ， ITERATED 1 TIMES，CNX HI 41 LO 5%
TEST 16：IMFEDANCE 144.6 OHM，－0． 3 DEG，1．O KHZ ，REF－VOLTAGE 1000 MV ， ITERATED 1 TIMES．CNX HI 41 LO 48
TEST 17：IMPEDANCE 2035．O OHM，－27． 6 DEG，1． 0 KHZ ，REF－VOLTAGE 1000 MV ， ITERATEI 1 TIMEE，ENX HI 41 LO 25
TEST 1E：IMPEDANCE 77．O OHM，－12．1 DEG，1． 0 KHZ ，FEF－VOLTAGE 1000 MV ， ITERATED 1 TIMES，CNX HI 47 LO 59
TEST 19：IMPEDANCE 249®．I OHM，－24． 4 DEG，0． 1 KHZ ，REF－VOLTAGE 100 MV ， ITERATED 1 TIMES，ENX HI 41 LO 22
TEST 20：IMPEDANCE 423． 4 OHM，－7． 2 DEG， 0.1 KHZ ．REF－VOLTAGE 100 MV ， ITERATED 1 TIMES，ENX HI 41 LO 59
TEST 21：IMPEDANCE 144． 6 DHM， 0.6 DEG， 0.1 KHZ ，REF－VOLTAGE 100 MV ， ITEFATEI 1 TIMES，CNX HI 41 LO $4:$
TEST 22：IMPEDANCE 2127．6．DHM，4． 4 DEG，0． 1 KHZ REF－VGLTARE 100 MV ， ITEFATED 1 TIMES，CNX HI 41 LD 25.
TEST 23：IMFEDANCE 1E3． 5 DHM，－64． 1 DEO， 0.1 KHZ REF－VDLTAGE 100 MV ， ITERATED 1 TIMES，CNX HI 47 LO 59.
FINISHED TESTING AT 20：22： 9
DURATION 0： $8: 1$
DO YOU WIEH TO EEE THE FINAL FAULT ISOLATION STATE ？（Y／N）
DO YOU WISH TO REFUN THIS PROGFAM？（Y／N）
TERMINATE EQUITTE FROGFAM＇AS100－2＇

Figure 5．7 NOPAL Printouts For A5 100 Subcircuits（cc
across diode CR5101. The simulation results expected very 1 resistance (> 400 Kohm). However test equipment measured approximately 120 Kohm. Such a large discrepency is due to inaccurate EBERS-MOLL model of the transistor and diode at low current levels. Unfortunately, this is a case which re a change in the semiconductor model to remove the inaccuracy

The last two runs illustrate the performance of a diagn program which contains only nominal assertions. The output A5100-1 shows that upon the completion of all test the UUT i found to be nominal under the tests conducted so far. The o labelled A5100-2 does not contain a "nominal uUT" message. this case, the problems arose from the fact that the EQUATE make accurate impedance measurements when the reference volt is less than one volt. This poses a serious problem in circ simulation because ac circuit behavior is simulated utilizir small-signal response where linearity is assumed at levels close to the operating point. Higher voltage levels (such start pushing the semiconductors to their conducting and nor conducting ranges during the application of the sinusoidal This problem can best be alleviated by removing the line-vol modulation which is present on the floating ac-standard sigr (approximately 0.2 volts) on the EQUATE.

Conclusion

In the course of the research it was decided that no major changes to the NOPAI system should be done to highlight and understand the deficiencies and successful aspects of the current implementation. In our view this rigidity was necessary at this time because there is no other methodology (manual or automatic) which can be compared to NOPAL to determir its effectiveness. Hence this version of NOPAI will serve as a baseline for our future developments. During the past Year minor changes which do not conflict with the concept of NOPAL were introduced. Because these changes are minor and do not influence the operation of the algorithm a separate documentation for the system is not required.

The NOPAL system has been used to generate specifications diagnose and isolate the failures in two analog circuit cards. Portions of these specifications were used to generate many short ATLAS programs to test for specific failures. As the research progressed, it was found that the NOPAI concept of automatic programming indeed works well as intended. That is, once a circuit description is available, the generation of ATLAS programs and the specification of tests for a given circuit can be done completely automatically. However, occasionally it may be necessary to evaluate the intermediate results to understand the progress of program generation.

Because the only input to the system is the circuit description of the card to be tested, the accuracy of the models used in the input becomes the most critical component of the process. This is especially important in the case of semiconductors. When a technician tests, say a diode, several hundred percent tolerance on its reverse impedance would pass his inspection. However, in the case of circuit component modelling this tolerar must be specified precisely, or else the NOPAL system may put the go-nogo limits in ranges which result in a large number of false alarms.

The following comments identify some problem areas which need further investigation:

1. A laboratory type setup to verify the published semiconduct models is required. If the models have not been previously published, a facility to develop circuit analysis models is needed. This would reduce the chances of unsuccessful ATE runs due to wrong component modelling,
2. The ATLAS programs generated by NOPAL tend to be several thousand statements long. The EQUATE executes ATLAS statements very slowly. The code should be optimized. For example, if the programs execute the test performance logic of the fault isolation tree, the programs would run faster.
3. In many cases the specifications generated become very lengthy. It becomes a serious problem to generate partial programs. The NOPAL system can be modified such that it generates several programs, if it becomes impossible to fit it all at once into memory.
4. Circuit simulation time can be reduced significantly by taking advantage of circuit topology and failure definition
5. When the tests performed at the available test points do no result in satisfactory fault isolation levels, the NOPAL system may automatically select a minimum number of manually probed test points.
6. Finally the test selection strategy should be improved and designed to operate in ranges where the ATE is most accurate. The designer should be warned if any test is selected where the accuracies of the stimulus and measurement are marginal according to the ATE performance specification•

7, Tests which result in long delays, such as resistance measurement across capacitive loads, should be avoided. Such cases should be found by circuit simulation and replaced by appropriate impedance measurements.
[l] C. Tinaztepe "Automatic Test Design," Ph.D. Dissertation, Department of Computer and Information Science, University of Pennsylvania, 1977 (Also Report ECOM-75-0650-F-2, U.S. A: Electronics Command, Fort Monmouth, N. J. 07703, June 1978.!
[2] C. Tinaztepe, R. Sangal, H. Che, and N.S. Prywes, "NOPAL Program Generator: System and Program Documentation Department of Computer and Information Science, Moore Schoo! of Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, Nov. 1978.
[3] R.D. Graubart, "A Case Study of Using a Nonprocedural Language for Automatic Testing of Electronic Equipment, ${ }^{11}$ Department of the Army, Headquarters U.S. Army Communication and Electronics Material Readiness Command, Fort Monmouth, N. J. Dept. 1979
[4] "EQUATE ATLAS Programming Manual for AN/USM-410 (XE-3) Electronic Test Equipment Test Station," Electronics Systems Procurement Division, Production and Procurement Di: torate, U.S. Army Electronics Command, Fort Monmouth, N.J. Rep. 410XE3.PM, CR76-588-021, Sept. 1976.
[5] T. Rubner-Peterson, "Network Analysis Program, NAPZ," Techn: University of Denmark, Lyngby, Denmark, March 1973.
[6] H. Che and Y. Chang, "The NOPAL Language: Specification an< Uses Manual," Department of Computer and Information Scien< University of Pennsylvania, Philadelphia, Pa., August 1976, Moore School Report \#76-04.
[7] Y.K. Chang, "Automatic Test Program Generation," Ph.D. Dissertation, Department of Computer and Information Science, University of Pennsylvania, 1977. (Also Report ECOM-75-0650-F-1, U.S. Army Electronics Command, Fort Monmouth, N.J. 07703, March 1978).
[8] "Super Sceptre Solid State Model Library," Department of Electrical Engineering, University of South Florida, Tampa, FL, 1976.
[9] "Transistor and Diode Model Handbook," Air Force Systems Command, Kirtland Air Force Base, New Mexico, Oct. 1969, Technical Reprot No. AFWL-TR-69-44.
(1) "Automatic Test Design," Research and Developmen Technical. Report ECOM-75-0650-F-2, ECOM U. S\# Army Electronics Command, Fort Monmouth, New Jer: June 1978, (Contract DAAA-25-75-C-0650, by C. Tin.
(2) "Automatic Test Program Generation for Automatic Test Systems," submitted to the U.S. Army, Frank; Arsenal, Philadelphia, Pennsylvania, University Pennsylvania, Moore School of Electrical Enginee: Technical Progress Report, March 23, 1978, (by C. Tinaztepe, R. Berkowitz)•
(3) "Automatic Test Design - A Case Study," M.S. The: University of Pennsylvania, Moore School of Elec Engineering, Philadelphia, Pa., August 1979 (by Linguiti).

PAPERS:
(1) "Automatic Test Design," MIDCON ${ }^{\text {f }} 77$, Electronic Show and Convention, Chicago, Illinois, November 1977, (by R. Berkowitz, N.S. Prywes, C. Tinaztep*
(2) "Automatic Test Design for Fault Diagnosis in AnCircuits," ATFA ${ }^{\mathrm{f}} 77$, Advanced Techniques In Fail Analysis Symposium, Los Angeles, California, Sep 27-29, 1977 (by C. Tinaztepe).
(3) "Automated Test Program Generation For Fault Dia< in Analog Circuits," $20 t h$ Midwest Symposium on C and Systems, Lubbock, Texas, August 15-16, 1977, (by C. Tinaztepe).
(1) "A Case Study of Using a Nonprocedural Language for Automatic Testing of Electronic Equipment," Department of the Army Headquarters U.S. Army Communications and Electronics Material Readiness Commard, Fort Monmouth,N. J., Sept. 1979 (Contract DAAB07-79-C-1945, by Richard D. Graubart) and Moore School Report \#79-02.
(2) "NOPAL Program Generator: System and Programming Documentation," Technical Report to Automatic Test Support Systems, Communications Research and Development Command, U.S. Army, Fort Monmouth, N.J., November 1978, Contract NOOO14-76-C-0416, by C. Tinaztepe, R. Sangal, H. Che, N. Prywes).
(3) "The NOPAL Language Specification and User Manual," Moore School Report No. 76-04, Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, l9104, August 1978 (Contract DAAA-25-75-C-0650, by Her-daw Che and Yung Chang).
(4) "The NOPAL Processor: Inter-Test Sequencing," M.S. Thesi Moore School of Electrical Engineering, University of Pennsylvania, Philadelphia, Pa., 19104, May 1978. (by Joseph F. Weiss).
(5) "Automatic Test Program Generation," Research and Development Technical Report ECOM-75-0650-F-1, U.S. Army Electronics Command, Fort Monmouth, N. J., 07703 , March 1978 (Contract DAAA-25-75-C-0650, by Yung Chang).
(6) "NOPAL Processor: Intra-Test Sequencing," Research and Development Technical Report ECOM 75-0650-F, U.S. Army Electronics Command, Fort Monmouth, N.J., 07703, January 1978 (Contract DAAA-25-75-C-0650, by Ronald Berman).
(7) "Automatic Computer Program Generation For Automatic Testing systems," Report \#FCF-3-75, U.S. Army Armament Command, Frankford Arsenal, Philadelphia, PA., 19173, January 1975 (contract \#DA-36-034-ORD-3347, by Noah S. Prywes).
(1) "Automatic Test Program Generation," AUTOTESTCON '77, IEEE International Automatic Testing Conference, Hyannis, Massachusetts, November 2-4, 1977, (by C. Tinaztepe, Y. Chang, N. Prywes).
(1) "Generation of Software for Computer Controlled Test Equipment For Testing Analog Circuits," IEEE Transacti on Circuits and Systems, Special Issue on Automatic Analog Fault Diagnosis, Vol. CAS-26, No. 7, July 1979, (by C. Tinaztepe, N. Prywes)
(2) "Automatic Test Program," Autotestcon '77, IEEE International Automatic Testing Conference, Hyannis, Massachusetts, November 2-4, 1977, (by C. Tinaztepe, Y. Chang, N.S. Prywes).
(3) "NOPAL: Automated Design and Programming of Testing," IFIP '77, International Federation of Information Proc Congress, Toronto, Canada, August 8-12, 1977, (by N.S. Prywes, Y. Chang, C. Tinaztepe).

APPENDIX

1. Diode and Zener Diode Models 1N645, IN4001, IN752A
2. Transistor Models ZN329A, 2N335, 2N404A
```
unter刀ミl ncue \(\overline{\text { as the cernces }}\)
```



```
TEOVA - VOOE 1 IS THE MOOE
TEOVAL VOUS 3 IS THE CATHUOE
```



```
        ₹ 1*CCIF(IID)
```



```
-Iミz
                                T&ごこここ
```



```
:VTRムY.E IS COKSTG:TT OF THE EMITTEK TRANSITICN GAFAGITANCE (COE)
:WTFAV.C IS EPITTER EASE JUNCTIOA GONTACTPOTEVTIAL (FIE)
MTFav.0 is -?
MTFAV.E IS MELAT:VE CFEMITTTEF JUNCTICN GOAOING CONSTANT (-NE)
TCURノEXF/ & -?.21ECSE-13 E O.21E00E-15 D O.25t4100CE
YTCJR.A IS \EUATIVE OF EMITTEK EA:E SATURATICV CURRENT >
                    MEASUAED IN THE ACTIVE rEG:O:
VTCJR.EIS ENGTTEK EASE SGTURATION GURRENT MEASURED IN >
                                    THE LCTIVE PEGIC:
ATCJZ.D IS THE EVVERSE UF CUNSTAVT OF EMITTER EASE JUNGTION >
                                    EquaTION (VTE)
TJIF/ , A A J.E1EJこE-1E
```



```
OLLEJR.A IS VEGATIVE CF GULLECTOR ミASE SATURATION CUREENT >
                    *EQSUREO J!: THE ACTIVE fEGION
OLEJK.ミ IS THS COLLECTOR ヨASE SATUFATION GURRENT >
                    MEASURED IV THE ACTIVE REGION
OLGJR.J IS THE IVVEREE JF GONSTA:T OF COLLEGTOR EASE JUNCTIUV >
                                    EQuATION (VTC)
```



```
.TRAV.E IS GONSTANT OF THE COLLECTOR TRANSITION CAFACITAVCE >
                                    Egjat:ON (COC)
    TPAV.C IS GOLLECTOR EASE JUNCTION GUNTACT POTENTIAL (FIC)
    TMAV.D IS -1
    TRAV.E IS NEGATIVE OF COLLECTON JUNCTIOV GRADING CONSTANT (-MC)
        z, 6 SSE.GGJCE:BASE EULK RESISTANCE 
        j i ?*EMTCUR(VIE)
```



```
    MPG = i* EMTC:F(IIE)
```



```
    AFS= C.ESCQ1E 2%* 0.160OCE-C4
    ** = 9*COLOIF(IIC)
        4 S l*PTEMPZ*PTEMPG
        ミ 1 2.こここOこE UZ :COLLECTCR EULK eESISTANCE
```

LI-5 2 TR<.HZZ:5 -

£VTRA^. 5 IS CON?TA;*T OF THC EMITtek TRANSITION CAPACITANCE (COE)
s̀ViTPA^.C IS "c ${ }^{Y} I T T E \wedge$ BASE JUNCTION CONTACTPOT£NTIAL (FIE)

:VTSA>*.S IS NEGATIVE OF EMITTEK JUNCTION GRADING CONSTANT (-NE)
MTCUR/CX?/ A -T.4t03d-.12 2 :.4S433E-12 D 0.?37ci3990E
i^TCJR.A $^{\wedge}$ IS NEGATIVE OF EMITTER \&ASE SATURATION CURRENT
MEASURED IN THE ACTIVE REGION
L*TCJ3.3 IS E1ITTER 5ASB SATURATION CURRENT MEASURED IN >
TH£ ACTIVE REGION
${ }^{-}{ }^{V}$ TCJ?.D IS THE IWESS C OF CONSTANT OF EMITTER 3ASE JUNCTION >
EQUATION (VTE)
TDIF/ / A
L^IF/ / A.

0.4?430E-12

Ct27i3GE-11
CLLCJK.A IS NEGATIVE CF COLLECTOR 5ASE SATURATION CURRENT >
Mc^SURSD IN THE ACTIVE REGION
CLLCJR.J IS THE COLLECTOR 3ASE SATURATION CURRENT >
KEASUPEO IN Thé ACTIVE REGION
OLLC'JR.D IS Thf INVERSE OF CONSTANT OF COLLECTOR BASE JUNCTION >
EQUATION (VTC)
THAH/ / t :.1QCCO£-1D C O..C̄CO30E OQ D -1 £ -3.323:
LTR*M. 3 IS CONSTANT CF THE COLLbCTOH TRANSITION CAPACITANCE >
EQUATION (COO
,T?*>4.C IS COLLECTOR 6ASE JUNCTION CONTACT POTENTIAL (FIC)
.TRAN.D IS -1
.TR'^.E IS NEGATIVE OF COLLECTOR JUNCTION GRADING CONSTANT (-NC)
I $t>\quad 3^{C} 5 \cdot C C C C C$:BAS£ SULK RESISTANCE
2 U.5CCCOE 3b :SMITTER ??ASE JUNCTION L£ANAGE RESISTAN
3 1《E>ITCU** (VIE)

$\mathrm{m}_{\mathrm{Pa}}=1$ * E^TDTF CUE).
1*PTE*P1*PT£*P2
$3.98 i r O E \quad 30$ HE
C.53CC3E CE COLLECTOR 2ASE JUNCTION LEAKAGE RESIST-
1*COLLCUfi(VIC)
1*CLT9AN (VIC)
0.4?6?CE C2* i.46GCCE-2fc
$1 * C O L U I F$ (IIC)
$4 \quad 5 \quad 1 * P T £ *!P 3 * P f E X P 4$
3 *. J.5CC30E 30 IIC
5 1 C.esCQGE 02 :COLLECTOR £UL< RESISTANCE

MTKAVOE IS AEGMTEVE OF EHITTER JUNCTION GHAOING CONSTANT（－NE）

 MEASUKEO IN THE ACTIVE RÉGION
VTLUA－j IS EMITTE EASE SATUFATIUA CUPRENT MEASUREO IN • $>$ THE ACTIVE FEGICA．
HTCLF．D IS THE EAVEFSE CF CONSTANT CF EMITTER QASE JUNCTIOA＞ EGUATION（VTE）

$$
\begin{align*}
& \text { C. } 214 \text { すコEー54 }
\end{align*}
$$

CLLCJR．A ES NELATIVE CF COLLECTOR EASE S $\begin{array}{r}\text { MESSURED IN THE ACTIVE REGION }\end{array}$
CLLCJ₹．E IS THG COLLECTAF EASE SATUPATION CUNOEVT＞
BEASUEEC IN THE ACTIVE REGION
GLLCUR．O IS THE IRVERSE OF CUNSTAIT OF COLLEGTOR EASE JUNGTION＞ EGUATIUN（VTC）
 EUUATIOA（CCC）
LTEAV．C ：S COLLECTOF EASE JUNCTIUN CONTACT POTENTIAL（FIG）
LTKAV．O IS－i
LTFAVEE IS NEGMTIVE OF COLLECTUR JUNCTION GRAOIAG GONSTANT（－NC）
j
10

