
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



1C

1011 V

Learning by Understanding Analogies

by

Russell Grcincr

COMPUTER SCIENHCE

UNIVERSITY WUNtS
CAtfREGIE-MElLON UNIVERSITY

iUSBUKaU. PENNSYLVANIA 1 5 2 U

Department of Computer Science

Stanford University
Stanford, CA 94305



 



LEARNING BY UNDERSTANDING ANALOGIES

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Russell Greiner

September 1985



© Copyright 1985

by

Russell Greiner



I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of

Doctor of Philosophy.

Michael R. Genesereth
(Principal Adviser)

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of

Doctor of Philosophy.j

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of

Doctor of Philosophy.

Bruce G. Buchanan

I certify that I have read this thesis and that in my opinion it is fully

adequate, in scope and in quality, as a dissertation for the degree of

Doctor of Philosophy.

Peter Hart
(President, Syntelligcnce)

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

in UNiV(;RS!TY LIBRARiF-S
TV



 



Acknowledgements

This is one small step for mankind;
One giant step for me.

- SHS

Both this dissertation and I owe a great deal to a good many people. By far our

biggest intellectual debt is to my principal advisor, Professor Michael R. Genesereth,

and his annoying habit of always being right. Essentially all of the ideas presented

in this dissertation stem from his ideas and insights. He was also the source of much

needed support and encouragement, offered during those many times when I k&sw

felt this research would never be finished.

The other members of my reading committee also provided major contributions.

Let me first thank Dr. Peter Hart, for his services above-and-beyond the call of duty.

Despite the inevitable hassles of starting up a new company, he still, somehow,

managed to find large chunks of time in which to offer his respected expertise and

assistance. His crisp appraisals often helped me prune and order my research paths;

more than once his comments kept me from wandering down fruitless paths.

I owe a lot to Professor Douglas Lenat as well. As my mentor during most of my

"early graduate student hood", he introduced me to the general field of Artificial

Intelligence, and vice versa. I still find him a constant source of creative new ideas,

and inspiration.

Professor Bruce Buchanan completes my committee. His precision kept me

honest, forcing me to think through murky ideas. He also proposed a great many

suggestions and extensions, when that was appropriate (during my thesis proposal

days) and, appropriately, many pruning heuristics to help me finish this research in

a finite amount of time.

IV



I have also had very high quality help from many of my colleagues. Let me

especially thank Jock Mackinlay, who suffered through more thesis drafts and more

preliminary presentations than anyone should have to endure. I also appreciate

the useful advise, as well as comradeship, offered from many of my MUGS cohorts,

including Tom Dietterich, Jeff Finger, Matt RA ' Ginsberg, Mike Lowry, Jeff Rosen-

schein, Stuart Russell, David Smith and Devika Subramanian. I also thank Steve

Tappel, Tom Pressburger, Professor Lindley Darden, Dr. Frederick Hayes-Roth and

Dr. Johan deKleer for their earlier contributions to the development of these ideas.

Dr. Shmuel Shaffer provided the electronics expertise needed to implement the

specific examples which appeared throughout the thesis. His willingness to help

during my times of need was yet even more important. Steve Katzman helped me

through a jungle of philosophical and mathematical arguments, as well as serving

as a general, and effective, sounding board;

Both Drs. Leslie Lamport and Howard Trickey provided a great deal of needed

— and greatly appreciated — assistance in formatting this report in the neo-natal

lATjjjX language. This research was done at the Knowledge Systems Laboratory (for-

merly the Heuristic Programming Project) at Stanford University, and supported

by the Office of Naval Research contract # N00014-81-K-0004.

Let me close the string of thanks by acknowledging the important people of my

life, friends who stood by me over the years, each helping me as much as possible

whenever possible: Claire Coire, Devora Fishman, Lynne Gonda, Jock Mackinlay

and Shmuel Shaffer, and, of course, my family. A special thanks goes to my parents:

To my father, for volunteering to proofread this magnus opus, and to my mother,

for being a constant source of love and caring. It's times of stress, such as writing

this dissertation, when I realized who my friends really axe... I could not have

finished without your help; my sincere thanks to all of you.



Contents

Acknowledgements iv

Abstract 1

1 Introduction 1

1.1 Motivation ^ " , . . . . . 1

1.2 Outline 4

1.3 Example 7

1.4 Objectives 10

2 General Analogical Inference 12

2.1 Definition of Analogical Inference • 13

2.2 Example of Analogical Inference 17

2.3 Definition of Analogy Relationship . 22

2.4 Triviality and Aboutness 23

2.5 Complexities of Analogical Inference . . . . . . .̂  28

3 Useful Analogical Inference 36

3.1 Analogical Inference for a Purpose 37

3.2 Definition of Useful Analogical Inference 38

3.3 Example of Useful Analogical Inference 40

3.4 Intuitions about Useful Analogies 43

4 Use of Abstract ions 46

VI



4.1 Informal Discussion of Abstractions 47

4.2 Use of Abstractions in Analogies 54

4.3 Why Abstractions Should be Used for Analogical Inference 59

4.4 Why Abstractions Can be used for Analogical Inference 65

4.5 Comparison of Abstractions 70

5 Ranking Analogical Inferences 72

5.1 Framework for Ranking Analogies 72

5.2 Abstraction-Based Heuristics . 74

5.2.1 HJK*. Justification Kernel 74

5.2.2 Hcc: Common context 78

5.3 Least Constraining Analogies 80

5.3.1 Motivation for the Least Constraint Maxim 80

5.3.2 Syntactic Criterion: Additions to the Theory 83

5.3.3 Semantic Criterion: Constraints on Possible Worlds 84

5.3.4 HMGA: Most General Abstraction 92

5.3.5 Hpc: Fewest Conjectures 94

5.3.6 HFT: Findable Terms 99

5.4 Summary of Heuristics 103

5.4.1 Classification and Synopsis of Heuristics 103

5.4.2 Interactions of Heuristics 105

6 Specification of the NLAG Process 108

6.1 Components of NLAG System 109

6.1.1 Verify Module I l l

6.1.2 ComAbs Module 112

6.1.3 1: Find-Kernel Module 113

6.1.4 2: Inst-Source Module 114

6.1.5 3: Inst-Target Module 115

6.2 Underlying System 116

6.2.1 Why Use MRS? 116

6.2.2 FC-Find Module 118

vu



6.2.3 CTruep Module 119

6.2.4 Summary of MRS Additions 128

6.3 Requirements of the NLAG System 134

7 Experimental Results 138

7.1 Initial Set Up 139

7.2 JVLAG's Functionality — Runs#l 142

7.2.1 Using Generator#l . . . 144

7.2.2 Using Generator#2 148

7.3 JVLAG's Sensitivity to Initial Theory— Runs#2a 150

7.4 JVLAG's Sensitivity to Abstractions — Runs#2b 152

7.5 Ablation of Analogy — Runs#3 154

7.6 Analysis 157

7.6.1 Utility of Analogies'. . . 158

7.6.2 Utility of Maximal Generality 160

7.6.3 Questionable Utility of Abstraction Label 161

7.6.4 Summary . 162

8 Semantic Definition of Analogy 164

8.1 Motivation and Intuitions 164

8.2 Partial Interpretations 166

8.2.1 Why Not Use Tarskian Semantics 166

8.2.2 Partial Interpretation Semantics 166

8.2.3 Using Partial Interpretations to Describe Learning 174

8.3 Semantic Definition of Analogy . 177

8.4 Semantic Definition of Analogical Inference 179

9 Standard Definitions of Analogies 184

9.1 Common Views of Analogy 185

9.2 How \~PT Differs from Other Versions of Analogical Inference . . . 187

9.2.1 View that Analogies must be Constructed 187

9.2.2 Definition of Maximal Commonality 190

viii



9.2.3 Limitations of the HM$A Rule. 194

9.3 How Analogyp Differs from Other Versions of Analogy 200

9.3.1 Exact Formulation is Important 203

9.3.2 Need for Reformulation 206

9.4 Literature Survey 210

10 Conclusion 220

10.1 Placement 220

10.2 Future Work 221

10.3 Contributions 226

A Notes from the Text A-l

A.I Notes from Chapter 1 A-l

A.2 Notes from Chapter 2 A-5

A.3 Notes from Chapter 3 . . f A-22

A.4 Notes from Chapter 4 A-25

A.5 Notes from Chapter 5 A-33

A.6 Notes from Chapter 6 A-36

A.7 Notes from Chapter 7 A-38

A.8 Notes from Chapter 8 A-45

A.9 Notes from Chapter 9 A-48

A.10 Notes from Chapter 10 . A-57

B Data for the Experiments A-60

B.I Actual NLAG Code • A-60

B.2 Initial Theory A-66

B.2.1 General Information A-66

B.2.2 Initial Electric Facts, EC A-72

B.2.3 Initial Hydraulics Facts, FS . A-75

B.2.4 Facts about the Target Problem, PT A-77

B.3 Run#l-1 Data A-78

B.3.1 Trace of JVLAG's Actual Run A-78

ix



B.3.2 Source Kernel A-97

B.3.3 Conjectures Considered A-98

B.3.4 All Analogical Inferences Found — Run#l-1 A-103

B.4 Data from Other Runs A-104

B.4.1 All Analogical Inferences Found — Run#l-2 A-104

B.4.2 Relevant Data Added — Runs#2a-z A-106

B.4.3 Irrelevant Abstractions Added — Run#2b-2 A-107

B.4.4 Relevant Abstractions Added — Runs#2b-3 and #3-zb . . . A-112

B.4.5 Results Found, Using all Eight Relevant Abstractions . . . . A-113

C Glossary A-118

C.I Notation and Conventions A-118

C.2 Glossary of Terms A-120



 



List of Tables

4-1 Other Examples of Lumped Element Linear Systems 67

4-2 Abstractions used for Useful Analogies 69

5-1 Synopsis of Heuristics 104

7-1 Overview of Tests Run 139

7-2 Generated and Accepted Values for Variables 145

7-3 Data for Run#l-1 (using Generator #1) 146

7-4 Data for Run#l-2 (using Generator #2) 149

7-5 Data for Run#2b-3 155

7-6 Ablation of Analogy Data 157

7-7 Summary of Findings 163

9-1 Tension between Commonality and Applicability 199

A-l Classification of Unary Formulae A-20

B-l Deductions for Resolve-Exists and Verify, for the rkk Abstraction . . A-95

B-2 Deductions for Resolve-Exists and Verify, for the other Abstractions A-96

B-3 Deductions for Resolve-Exists and Verify, using Generator # 2 . . . . A-106.

B-4 Number of Deductions for Run#2a~3 and #2a-4 A-107

B-5 Answers Returned for Run#2a-4 A-108

XI



 



List of Figures

1-1 Simple Fluid Circuit 8

1-2 Solution to the "Find the f lowrate" Problem 9

2-1 Definition of Analogical Inference 16

2-2 Contents of Initial Theory, ThCF 18

2-3 Desired Analogy Formula and Instantiations 19

2-4 Analogy Questions 29

2-5 Number of Possible Analogies 32

3-1 Definition of Useful Analogical Inference 39

3-2 Over-Extended Analogy 44

4-1 Example of a Perspective: Electric Domain 49

4-2 Definition of the R K K - E C Perspective .'-.... 50

4-3 Definition of the R K K Abstraction 52

4-4 Formulae, Relations and Abstractions 55

4-5 Abstraction-Based (Useful) Analogical Inference 57

4-6 Different Types of Analogical Inference 58

4-7 Components of Analogical Inference — Hydraulics Example 61

4-8 Example of Abstraction-Based Analogical Inference 62

5-1 Possible Worlds 85

5-2 NonOverlapping Possible Worlds . . 89

5-3 Constrained Possible Worlds . 91

5-4 Possible Worlds: Hpc Demonstration 95

5-5 RKK's Material Implication 101

6-1 Overall Behavior 109

xn



6-2 Detailed Behavior of NLAG . . . 110

6-3 Detailed Behavior of ComAbs 113

8-1 Semantic Definition of (General) Analogical Inference: |=s 181

9-1 Why Duke GDogs is more specific than DukeGAnimals 191

9-2 Commonality Intuition 191

9-3 How are Dams like Trans i s to rs? 204

9-4 Simple Pressure Regulator 205

A-l Desired Analogy Mapping, M = (SCF PC PF) A-l l

A-2 Number of Analogies A-19

A-3 Definition of the RKK-Junc Abstraction A-28

A-4 Rule Used to Solve A Group Problem A-41

A-5 Definition of PlusAll . A-54

A-6 Faulty Definition of TimesAll A-55

A-7 Definition of PlusAll-addi A-55

A-8 Definition of Plus-2-Al l A-56



Abstract

The phenomenon of learning has intrigued scholars for ages; this fascination is

reflected in Artificial Intelligence, which has always considered learning to be one

of its major challenges. This dissertation provides a formal account of one mode of

learning, learning by analogy. In particular, it defines the useful analogical inference

process (UAI), which uses a given analogical hint of the form "A i s l ike B" and

a particular target problem to map known facts about B onto proposed conjectures

about A. UAI only considers conjectures which are useful to the target problem;

that is, the conjectures must lead to a plausible solution to that problem.

To construct a procedure which can effectively find these useful analogies, we

use two sets of heuristics to refine the general UAI process. The first set is based

on the intuition that useful analogies often correspond to "coherent" clusters of

facts. This suggests that UAI seeks only the analogies which correspond to common

abstractions, where abstraction are relations which encode solution methods to past

problems. The other set of rules embody the claim that "better analogies impose

fewer constraints on the world". Basically, these rules prefer the analogies which

require the fewest additional conjectures.

This dissertation also describes a running program, NLAG, which implements

this model of analogy. It is then used in a battery of tests, designed to empirically

validate our claim that UAI is an effective technique for acquiring new facts. This

data also demonstrates that the heuristics are effective, and suggests why.

In summary, the primary contributions of this research are [1] a formal definition



 



of UAI, described semantically (using a new variant of Tarskian semantics), syn-

tactically and operationally; [2] a collection of heuristics which eflBciently guide this

process towards useful analogies; and [3] various empirical results, which illustrate

the source of power underlying this approach.



 



Chapter 1

Introduction

"Analogy pervades all our thinking, our everyday speech and
our trivial conclusions as well as artistic ways of expression
and the highest scientific achievements."

How to Solve /*, Polya (1957)

1.1 Motivation

Designing a system capable of learning new facts has long been a central theme

for the general field of Artificial Intelligence; it has also been one of its greatest

challenges [Fei63]. In the Expert Systems sub-area, Knowledge Acquisition — the

task of expanding a system's knowledge base — is considered the major problem of

the 1980's [FM83]. This dissertation discusses the task of learning by understanding

an analogy: using information about some well understood source analogue as a

framework for proposing new conjectures about a target concept.

Why use analogies? A common method for learning new facts is by explicit

instruction from some teacher. However, acquiring new facts about a novel concept

can be time consuming and laborious to both teacher and student. This is especially

true when the new material is unfamiliar to the learner; this is always the case when

the pupil is a young Expert System [BCEM78].

Fortunately, however, certain ideas pertain to more than one domain. This



2 CHAPTER 1. INTRODUCTION

means that knowledge can sometimes be re-used, that facts known about one con-

cept can be used, mutatis mutandis^ to understand another. The examples below

illustrate this transference. In each case, facts known about the source analogue

are used to suggest new conjectures about the target analogue.

• Electricity is often taught by showing the similarity of electrons flowing in

resistors to water flowing in pipes (see Section 1.3).

• Matrix operations and abstract function spaces are often understood by re-

lating them to more familiar concepts, like numbers (see Note:7-2 in SubAp-

pendix A.7).

• The underlying structure of one computer subroutine can often be used to

guide the construction of another. For example, a program which computes

the product of the entries in an array can be used as a guide when designing

a program to compute the sum of the members of a vector, even if the first

is in PASCAL and the latter in LISP. (See Note:7-3 in SubAppendix A.7 and

Note:9-6 in SubAppendix A.9, as well as [Der83] and [Ric81].)

• Computers are often anthropomorphized and people "computer-morphized":

e.g., "SUMEX doesn't want to print my file" or "I was swapped out". This

understanding allows us to accurately predict the further behavior of the

information processing system, be it human or machine; see [McC79] and

[NS72].

• We think of happiness as "up", as in "He was up in the clouds" or "I was

down in the dumps." This connection is sufficiently systematic that we can

understand these and other related comments; see [LJ80], [CM83], [Hob83a]

and [Red79].

• Many great scientists have used analogies to guide their work: Darwin un-

derstood natural selection by analogy to artificial selection [Dar58,Dar83].

Edison, too, was able to re-use results from one field in another — in particu-

lar, his first plans for the kinetoscope followed from his design of a phonograph

system [Bro85].



1.1. MOTIVATION 3

• The similarities between the findings of cardiomyopathy and hypercalcemia

can be used to predict the latter's anticipated drug toxicity with respect to the

Digitalis treatment. ([Swa81] refers to this as the common Anticipate Drug

toxicity domain principle.)

• Introductory computer programming texts often portray variables as boxes

in which values can be stored (see [Bur84,AFB78]). Similarly, many people

leaxn how to use a text-editor by thinking of it as a typewriter (see [Dou83]).

• Many frame-based representation systems allow the user to create a new unit

by editing a copy of an existent unit. This is based on the assumption that

many properties associated with the source unit will carry over to the target.

(C/., [GL80,Len84]).

• Concepts with similar names joften have analogous functions. For example,

the observed symptoms associated with viral meningitis axe quite similar to

those of bacterial meningitis [Kun82, 273-74]. This is even more prominent

in designed domains: I was able to use my knowledge of the Scribe text-

formatting system [RW80] to correctly guess the names of many Î TgX op-

erations [Lam84]. (E.g., I guessed that IATgK's itemize command is "\be-

gin{itemize}", as Scribe's command is "@begin{itemize}".) The general

observation is that many designed artifacts share obvious common properties

with other objects built from the same plan; naming conventions are but one

example of this phenomenon.

.»

This list includes both interfield and intrafield connections (see [DM77]) and deals

with both natural and artificial domains. Each entry is an analogy, or more precisely,

an instance of learning by understanding an analogy. In each case, the instructor

is exploiting the student's initial knowledge; using that body of facts, insights and

intuitions pertaining to a source analogue to suggest plausible conjectures about

the target.1

1Note:l-l in Sub Appendix A.I lists yet other examples of analogy.



4 CHAPTER 1. INTRODUCTION

Roughly speaking, analogical inference refers to the process commonly known as

learning by analogy. Stated more precisely, it is the process of proposing new facts

about A based on existing facts about B and an analogical hint, "A i s like B".

This dissertation defines and validates the thesis that:

Analogical inference, guided by common abstractions,

is an effective mechanism for acquiring additional useful facts.

1.2 Outline

This section provides an outline for this dissertation, a guide for the casual reader

and a brief description of the intended reader. Section 1.3 presents an example to

make the notion of analogical inference more concrete. It implicitly describes the

basic learning-by-analogy task and indicates the desired behavior of an analogical

inference. Section 1.4 describes our goals and points out how it differs from much

of the other work on analogy and learning.

The rest of this dissertation motivates, presents and validates a specific mecha-

nism for performing analogical inference:

Chapter 2 provides the framework, by defining the terms "analogy" and "ana-

logical inference". It also illustrates the vast space of possible analogies. The rest

of this dissertation can be viewed as a search through this space, one which seeks

the "best" analogies first.

Chapter 3 focuses the search by imposing a usefulness constraint: i.e., we want

to consider only those analogical inferences whose conjectures help to solve specific

problems. This leads to the useful analogical inference process. Section 3.4 infor-

mally discusses some intuitions about what should qualify as a good useful analogy.

(Subsequent chapters convert these insights into heuristics which order the space

of analogies. This ordering allows efficient generation of the analogies that suggest

useful new facts.)

Chapter 4 continues the progression of refinements, defining the class of useful



1.2. OUTLINE 5

analogies which correspond to "common abstractions" and describing the underly-

ing process of abstraction-based (useful) analogical inference. These abstractions —

abstract relations which each encode solutions to previous problems — realize one

of Section 3.4's intuitions: that an analogy should deal with a closed collection of

facts. Section 4.2 states the fundamental claim of this research: that most useful

analogical inferences reduce to finding a common abstraction which links source

and target analogues. This chapter also shows how the abstraction-based analog-

ical inference process works and motivates both why this process should be used

(by showing that it can efficiently find useful analogies) and why it can be used (by

showing that these needed abstractions do exist in a usable form). The rest of this

dissertation deals with this refined model of analogy.

There can still be a large number of legal abstraction-based analogies. Chapter 5

discusses ways of ordering this search space, to rapidly find "better" analogies. In

particular, Section 5.3 provides a cluster of related heuristics to guide the search

to the "closest" analogy, that is, to the analogy which requires the fewest addi-

tional assumptions. (This "nearness" measure stems from another of Section 3.4's

intuitions.)

The next two chapters put these abstract ideas to work. Chapter 6 discusses

how I implemented this model of analogy, describing the NLAG2 system; Chapter 7

describes the experiments and demonstrations run using this system. This is the

crux of my research, as it validates the thesis claim shown above. In addition to an

empirical demonstration that this model of analogical inference is effective, it also

includes an analysis which describes

• the underlying source of power of our abstraction-based approach — i.e., why

seeking common abstractions is effective. This analysis suggests the charac-

teristics a domain and task must exhibit for this approach to be effective.

• why this "abstraction" label is not overly important. This means that our re-

liance on finding common abstractions does not constitute a major restriction.

2Pronoimcc(l ene lagee , tJuit is, "analogy".



6 CHAPTER 1. INTRODUCTION

Chapter 8 presents a semantic account for analogies, providing semantic defi-

nitions which correspond to the syntactic ones given in Chapters 2 and 3. This

framework is also used to formally explain and justify many of the heuristics pre-

sented in Chapters 4 and 5.

This closes the major new contributions of this research. The concluding chap-

ters discuss the impact of this work in the larger picture. Chapter 9 discusses how

my version of analogical inference differs from those of other researchers. Chapter 10

lists both future directions suggested by this research and its major contributions.

The various appendices cover tangential aspects of this research. Appendix A is

a collection of long but indirectly relevant digressions, extending brief teasers which

appear in the text. (Each pointer of the form "Note:i-j" refers to the "}th" note in

SubAppendix A.L) Appendix B elaborates Chapters 6 and 7, describing NLAG's

implementation in more detail and providing details of the actual experiments and

demonstrations. Appendix C explicates my notational conventions and provides a

quick glossary of the terms used in this dissertation.

As a final comment, this dissertation contains a fairly generous sprinkling of

footnotes, each pursuing some theme considered tangential to the main point. Any

focused reader who is annoyed by digressions is advised — indeed, urged — to

ignore the footnotes whenever the main topic is understood.

Skimming Guide: The casual reader can acquire a good summary of this mate-

rial by reading only the following portions:

• Chapter 1: describes the type of problem this research addresses;

• Sections 2.1 and 2.2: provide the general context by defining and demonstrat-

ing the basic analogical inference process;

• Section 3.4: suggests intuitive ways of focusing this search for useful analogies;

• Sections 4.1 and 4.4: motivate and justify our proposed solution, viz., using

abstraction-based analogical inference;

• Subsection 5.4.1: provides a quick synopsis of the heuristics which focus this

analogical inference process;



1.3. EXAMPLE 7

• Section 7.2 and Subsection 7.6.4: demonstrate that this approach is effective

and summarize the results of the various experiments; and

• Section 10.3: explicitly lists the major contributions of this research.

The other parts of this dissertation provide additional comments, justifications and

extensions to this highlighted material. Most chapters, and many sections, begin

with an intuitive description of its objective and explain how this objective pertains

to our overall goals; these may help the reader decide whether to read the embellish-

ment which follows. (Some of the more tangential and technical sections have been

tagged accordingly, to allow the reader to skip those parts on the first reading.)

Our Model of the Reader: This dissertation in general, and Chapters 2 and

8 in particular, assumes that the reader is familiar with the basic concepts of logic

and semantics. The unfamiliar reader is referred to the superb logic text [End72].

Much of Chapters 2 through 5 is worded in terms of search; this fundamental

Artificial Intelligence paradigm is discussed at length in the Search chapter of "The

Handbook of Artificial Intelligence" ([vG82]) and in [Nil80]. N.b., while Appendix C

does provide brief summaries of many of the terms, these definitions rely on the

underlying concepts found in the texts.

1.3 Example

The Fluid Circuit diagram shown in Figure 1-1 describes a simple fluid dynamics

problem: given the pipe characteristics Ca and Ĉ  and total flowrate, Qo, determine

the flowrate, Qa, through the pipe Pa.

This problem is trivial to anyone who knows the first principles of fluid dynamics.

But what if you didn't know what FlowRate was? ... and never thought to consider

Ohm's or Kirchoff's Laws in this situation? That is, imagine all you knew about

Fluid Systems were deductions you could make from the problem statement and

Figure 1-1: e.g., that "pipes are objects", and that "the FlowRate function assigns

a number to each pipe". You would clearly be unable to solve the problem.



CHAPTER 1. INTRODUCTION

Pa

Figure 1-1: Simple Fluid Circuit

Now begins the learning process. You are told that

"FlowRate in a Fluid System is like Current in an Electric Circuit." (1.1)

This hint tells the learner to apply his knowledge of Electric Circuits (EC) to help

solve the problem. It suggests that a particular set of EC facts, known to the hearer

and related to Current, can be used to generate a corresponding set of Fluid System

propositions (FS) which, once incorporated, lead to a reasonable solution to this

FS problem.

The intended interpretation of this hint is that Ohm's and Kirchoff's Laws do

apply here, mutatis mutandis. That is, the learner should now conjecture that:

• the FlowRate into a junction must equal the FlowRate out, based on the

knowledge that Current has that property (« Kirchoff's Law #1);

• there is a VoltageDrop-like quantity associated with the junctions of a Fluid

System whose algebraic sum around any closed loop is zero — which a fluid-

dynamicist would call PressureDrop (« Kirchoff's Law #2); and

• the VoltageDrop-like quantity [viz., PressureDrop] across a Resistor-like de-

vices, [viz., Pipe] is proportional to the Current-like quantity [viz., FlowRate]



L3. EXAMPLE 9

entering it, using the device's Resistance-like term [viz., PipeCharacter] as

the constant of proportionality (« Ohm's Law).

FlowRate(ji,Pa) + Flov/Rate(ii,Pb) = Qo nKirchoff's Law #1
PressureDrop(yi,y2>[Pa]) = PressureDrop^'i^? [A])3 &KirchoffJs Law #2
PressureDrop(ji,,;2j [Pa]) = FlowRate(yi,Pa) • Co & Ohm's Law

' i , ^ * [Pb]) = FlowRate(yl5Pfe) * C& &Ohm's Law

Qa = FlowRate(y1?Pa) = [Cb/{Ca + Ch)\ * Qo

Figure 1-2: Solution to the "Find the f lowrate" Problem

Figure 1-2 shows that these proposed new facts do lead to an answer to this

problem. This solution is reasonable, given the above hints — and it is an excellent

approximation, at least in the case of laminar water flow (see [Coc80] and [Zie77]).4

We saw that the standard problem solver could not solve this "Find the f lowrate"

problem until the new FS facts had been added. NLAG's mission is to propose this

body of facts. However, the "FlowRate i s l ike Current" hint may lead to many

different sets of proposed conjectures. For example, given a sufficiently impoverished

knowledge base, the NLAG system might incorrectly use each pipe's cross-section

as the constant of proportionality in its hydraulics analogue to Ohm's Law; or even

each pipe's cost. It might also try to map the capacity or inductance model from

its original electricity context to this hydraulics domain.

In general, this hint allows us to infer that FlowRate satisfies some known prop-

erty of Current. Hence, it might suggest that that FlowRate's material (correspond-

ing to Current's charge) can be stored in a capacitor-like device, that FlowRate

obeys Faraday's Law, that the greater the FlowRate through a device, the more

heat is produced, or even that the modern study of FlowRate began with William

Gilbert's early treatise [Rob85].

3The arguments to this ternary PressureDrop function are a pair of jtmctions anil a path be-
tween them. Of course, KirchoJJ's Law #2 means that this third argument is superfluous. See
Subsection 9.3.2.

4Note: 1-2 both describes the "more correct" answer and discusses why I am not concerned that it
differs from this solution.



10 CHAPTER 1. INTRODUCTION

Of course, these variants will suggest different answers to the original problem;

and some would not lead to any solution. The interesting question — and main

topic of this research — is how the "correct" conjectures can be found efficiently.

Ideally, we would like NLAG to find that first set of conjectures (which included

Ohm's Law and PipeCharacter), and find it before any of the other possible conjec-

tures — i.e., before the ones which dealt with capacity or Faraday's Law. Jumping

up a level, my research goal is to determine how to use the analogical hint (Equa-

tion 1.1) and the target problem ("Find the flowrate") to find the appropriate

set of conjectures, first.

This hydraulics and electricity example plays a central role in this dissertation;

it is rich enough to illustrate essentially all of the relevant situations and rules. In

particular, more specific descriptions of the relevant analogical inferences appear

in Sections 2.2 and 3.3. A detailed trace appears in Chapter 7, which is further

elaborated in Appendix B.

Of course, the NLAG system is not limited only to these electricity-to-hydraulics

analogies; it is a general domain-independent learning-by-analogy system. Various

notes sketch examples of its operation in other fields: Note:7-2 describes how this

analogy process can use facts about one algebraic operator to learn about another;

and Note:7-3 and Note:9-6 describe how NLAG can be applied to the domain of

programming.

1.4- Objectives

"Analogies prove nothing, that is quite true, but they can
make one feel more at home."

New Introductory Lectures on Psychoanalysis. Freud (1932)

Like many other learn-by-analogy systems, NLAG uses facts known about one ana-

logue to propose new base-level facts about the other. Most other systems, however,

try to find the maximal similarity which connects the pair of analogues (c/., [IIM78],

[Win82], [Gen80b], [Hob83a] and [DM77]). My focus, instead, is on finding useful

new facts about the target analogue. This means that NLAG seeks analogies which



1.4. OBJECTIVES 11

suggest new target domain facts when those new facts are likely to help solve a

range of standard problems.

Using Section 1.3's example, many other analogy systems would try to find

all the ways in which FlowRate is like Current. (E.g., they might propose all of

the suggestioned analogies shown above.) NLAG, on the other hand, is interested

only in connections which (are likely to) lead to the new information needed to

find a solution to this particular hydraulics problem. (Section 3.4 further describes

this dichotomy; and Subsection 9.2.3 argues that this other "find the maximal

commonality" approach can be both inefficient and counter-intuitive. Section 9.4

supplies specific pointers to such "maximal commonality" systems.)

NLAG applies a model-based approach to this task, using known generalizations

(called "abstractions") to guide the search [Pol54]. While many other systems

implicitly address the task of acquiring new generalizations or modifying existing

ones, my interest is focused on demonstrating that such generalizations can be used

effectively to propose new conjectures about the target analogue.

Finally, I want to emphasize that we are describing a method of plausible rea-

soning. While the new facts this NLAG system proposes are guaranteed to be

reasonable, they may not be semantically correct. This is discussed further in

Note:l-2.



 



Chapter 2

General Analogical Inference

This chapter lays the foundation for this dissertation by defining the general analog-

ical inference process, commonly called "learning by analogy". Section 2.1 presents

a formal definition of this process, and Section 2.2, an example of its behavior.

To simplify the initial presentation, these first sections have suppressed certain

tangential details. The final sections present three of these elaborations. Section 2.3

describes the analogy relation and ties this definition to analogical inference. Sec-

tion 2.4 shows how this analogy formalism eliminates trivial analogies. Finally,

Section 2.5 discusses the complexities inherent in the process of finding analogical

inferences, providing first an informal synopsis followed by a quantitative descrip-

tion which demonstrates the exponential size of the analogy space. Other interesting

digressions appear as notes in SubAppendix A.2. Readers may wish to skip these

points on their first readings.

Various subsequent chapters extend and complement these ideas. Chapter 3

refines the general definition of analogical inference to consider only the analogies

which are useful to some given problem. Chapter 8 provides a semantic account

of this analogical inference process, corresponding to these syntactic definitions.

Finally, this model of analogy is slightly different from many of the more standard

descriptions. A comparison appears in Chapter 9, which also provides a justification

for my approach.

12



 



2.1. DEFINITION OF ANALOGICAL INFERENCE 13

2*1 Definition of Analogical Inference
a-nal-o-gy a-naVa-je . . . 3. Logic [An] inference that items
showing some resemblances will show others [as well].

Funk & Wagnalls Standard Dictionary (1980)

Intuitively, an analogical inference postulates new facts about a target concept based

on existing facts known about a source concept. In particular, it uses an analogical

hint "A i s l ike B" and known facts about B to postulate plausible but underivable

facts about A. For example, we used the hint "FlowRate i s l ike Current" and

the known fact, "Kirchoff 1 (Current)", to postulate "Kirchoff 1 (FlowRate)".1

This section provides a formal definition of general analogical inference. For

pedagogical reasons, it begins with the simplified version shown in Equation 2.1

below and works up to the full definition shown in Figure 2-1.

Th, A~B
where Common: Th t= £>(B) , .

^ v (2.1)
Unknown: Th ^ <p{k)
Consistent: Th \fc -i^(A)

The analogical inference operator, |~, uses a theory2 Th and a statement of the

form A~B to analogically infer a new fact about the target analogue, A. Here cp is

a formula which is known to hold for the source analogue B; this is encoded by the

Common condition. The other two requirements (Unknown and Consistent)

mean that an analogical inference only postulates those <p{A) which axe independent

of the starting theory, Th\ hence |~ does not accept any sentence which is already

derivable nor any which would lead to an inconsistent theory.

(These latter two conditions, Unknown and Consistent, alone provide a good

definition of learning in general. This reflects the view that analogical inference

is a learning process, constrained only by the requirement that the result be an

analogy.)

*By convention, base level facts - i.e.. symbols the user can type and see - are in this fixed-width
font. A complete summary of notation appears in SubAppcndix C.I.

2A theory is a deductively closed, consistent collection of axioms.



14 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

Putting all three conditions together, we see that an analogical inference is an

inference which consistently extends a theory by adding new (that is} undeducible)

facts about a target analogue} based on provable facts referring to the source ana-

logue.

While this notion of analogical inference is general, it is not vacuous. The two

conditions
Common: Th\=(p(B)

Unknown: Th ^ (A) '

alone eliminate many undesirable formulae, including

p{x) = x ^ x (2.3)

or

ip[x) = x = x (2.4)

or

<p{x) = Tall (Fred) (2.5)

or

<p(x) = ByxGy (2.6)

Case 2.3 would lead to the obviously "incorrect" fact "A^A"; and the other three,

to trivial analogies: Case 2.4 is a tautology, and the formula in case 2.5 does not

lexically include its parameter. For case 2.6, we assume that every concept is a

member of some class — i.e., Th |= \/x 3y x G y. This means that the facts

"Fido e Dogs" and "Democracy € Ideas" do not establish an analogical connection

linking Fido to Democracy.

There are also (A B Th) triples from which no analogical inferences can be

made. An extreme example is the empty theory, Th = {}. Here, no formula can

satisfy the three conditions specified in Equation 2.1. (In fact, no formula can

satisfy even Equation 2.2's two requirements.) More generally, no analogy formula

is possible if none of TTi's sentences lexically include B. As a different example,

imagine that everything known about A is directly contradicted by facts initially

known about B, e.g., Th = {foo(A),-nfoo(B)}. Here, any formula <p which passes

Equation 2.1's first condition (Common) will fail its third (Consistent) .



2.1. DEFINITION OF ANALOGICAL INFERENCE 15

As stated above, this formalization of analogical inference is not comprehensive;

we now motivate and supply two extensions. First, we need to deal with n-ary

formulae, as opposed to the unary formulae show in Equation 2.1. Given that we

want to infer

Ohms( FlowRate, PressureDrop, PipeCharacter, Pipes )

from Ohms( Current, VoltageDrop, Resistance, Resistors),

we need to deal with "Skolem variables" — such as VoltageDrop's dependency on

Current. Equation 2.1's unary <p formula is not enough for these cases; we need to

deal with n-ary formulae. Figure 2-1 shows the revised definition. Notice it uses

two sets of constant terms {ay} and {?by}.

(Before delving into the meaning of this definition, we want to clarify issues

about the form of the statement. First, there is an implicit universal quantifier

around the definition; i.e., it should read "VA, B, T7i, {a^}. •••". The ? prefix of

the ?bj terms indicates that they are existential variables. They are embedded

within the outer universal quantifier; in fact, another way of reading the Common

condition is

Common: Th f= <p\.(B).

(This uses the projection operator, | , to isolate the formula's ith argument; i.e.,

Plt:(v) <=> 3xJ& ^(xi> • • • V, • • • &n) (2.7)

refers to the projection of the ith argument of the n-ary formula (p.) Figure 2-1 shows

the actual existential variable, ?by, to explicate the connection between â  H-> ?by.

To allay a third possible confusion: each of the terms used to instantiate the (̂

equation — e.g., the term used for A — is a constant. In our context, some of these

constants are relation symbols, e.g., Current. Now, back to the plot...)

This embellishment forces the second change: the inclusion of an explicit Non-

Trivial condition, already included in Figure 2-1. To understand its purpose, imag-

ine we are told that Democracy~Fido" and knew that Fido GDogs. Should we be

allowed to analogically infer that Democracy £ Ideas, based on the common for-

mula, <Pt(x,y) = x G y? While this is clearly a meaningless and unmotivated

conjecture, none of f̂ 's other requirements prevent it.



16 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

Th, A~B

where Common:
Unknown:
Consistent:
NonTrivial:

,-. .an)

Th [= 9 ? ( ? b i , . . . B ,

Th |p ~~^(p\ a . j , . . .A ,

-^Trivial(<p\,, Th)

. . . ? b n )

... an)

... an)

Figure 2-1: Definition of Analogical Inference

How can we thwart such inferences? Consider the domain of y?e's first argument:

this is the set of values which could instantiate x in the formula "x G y" for some

value of y. As every concept is a member of some set, this domain is universal. The

observation that both Fido and Democracy qualify is meaningless, since any other

concept could have qualified as welL- We consider a formula to be "trivial" if its

domain is universal; and any analogy based on a trivial formula, uninteresting, as

it says nothing about the target analogue.

The NonTrivial requirement prevents such analogies. Repeating the above

arguments, a formula is trivial in its ith argument if any value could legally appear

there. The formal definition is

Definition 1 Trivial{ <p\., Th ) Vs # Th f= (p( . . . s,

Section 2.4 further justifies this definition.

This concludes the definition of general analogical inference. We end this section

with some final notes. The next section provides an example of this inference

process, based on the hydraulics and electricity situation shown in Section 1.3. The

following chapter defines a restricted sense of analogical inference, one whose goal

is finding only useful analogies.

Defnl. For notion, we refer to this (p as the "analogy formula", and to p(biy... B,. . . bn)

as the "source analogy sentence" or the "instantiation (of <p) in the source do-

main". Likewise, £>(ai,... A,... an) represents the "target analogy sentence" or



2.2. EXAMPLE OF ANALOGICAL INFERENCE 17

the "instantiation (of tp) in the target domain". We occasionally speak of the

target analogy sentence as the "analogy".

Defn2. This (̂  formulation allows the common formula to be any arbitrary combi-

nation of clauses. Note:2-1 discusses why this f̂  is not limited to simple conjuncts

of positive literals, but allows disjunctions and negations as welL

Defn3, Page 13 suggested that " Analogy x = Learningx + Common". This idea

also holds for the other versions of analogy presented in this dissertation; c/.,

Figures 2-1, 3-1 and 4-5.

Defn4. The observant reader may suggest that we use the unary £>| formula

throughout, rather than the full n-ary (p formula. This would eliminate the need

for Figure 2-1's extended definition, and allow us to use the simpler Equation 2.1.

Note:2-3 explains why this is inadequate, why analogical inference has to contend

with these full n-ary formulae. That note also illustrates why the Unknown
condition does not subsume the NonTrivial condition.

2.2 Example of Analogical Inference

The previous section presented a formal definition of analogical inference. To make

that definition more concrete, this section presents an example of its behavior, using

the example of Section 1.3.

As input, we are given the analogical hint "FlowRate~Current" and the target

problem, "Find the flowrate". We also have access to the theory ThcF> which in-

cludes the initial collection of facts known about Current and FlowRate. Figure 2-2

shows its relevant contents, using ellipses to avoid enumerating the huge collection of

irrelevant facts. (Notice it does not include either Kirchof f2(PressureDrop) nor

Ohms (FlowRate, PressureDrop, PipeCharacter, Pipes); these omissions will

be important later.)

Our task is to find a formula and instantiation which satisfies the constraints



18 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

Kirchoffl(Current),

Kirchoff2(VoltageDrop),

ConservedThru(Current, Resistors),

Ohms(Current, VoltageDrop, Resistance, Resistors), ..

CostPerHour(Current, $2.43),

Units(Current, Amperes),

Cost(Resistorl, $3.50),

Color(Wirel, Red),

ModernTreatise(Current, ^Gilbert, 1600),

InDiscipline(Current, Electric), ...

Kirchoffl(FlowRate),

ConservedThru(FlowRate,Pipes),

Units(FlowRate, Meter3PerSec), ...

Cost(Pipel, $2.73),

Color(Pipel, Red),

InDiscipline(FlowRate, Hydraulics), ...

Domain(Kirchoff1, 1, Functions),

Domain(Kirchoff2, 1, Functions),

Domain(0hms, 1, Functions),

Domain(Ohms, 4, Classes), ...

Vt Kirchoff l(t)

Vc Kirchoff2(c)

Vj ^ t(i,p) = O,
p:Conn(p,j)

V loop ] T c(i,j, [x]) = 0,

Vc,l. ConservedThru(t,l)

Vt,c,r,1.0hms(t,c,r,l) [Vcf ^ , j | , [d]) =
= 0],

r{d)}

Figure 2-2: Contents of Initial Theory, ThCF

(The notation "j*" refers to the first junction associated with the resistor r. In general, uj™ refers
to the iih junction associated with the device d. Also, u[d]" refers to the path which goes through
device d.)



2.2. EXAMPLE OF ANALOGICAL INFERENCE 19

ft c r 1)
^RKK

Target Instantiation = []

Kirchoffl(t)

& Kirchoff2(c)

& ConservedThru(t, l)

& Ohms(t, c, r, l)

riowRate, PressureDrop, PipeCharacter, Pipes ]

Source Instantiation = [Current, VoltageDrop, Resistance, Resistors]

Figure 2-3: Desired Analogy Formula and Instantiations

shown in Figure 2-1. The "correct" answer is the formula <pKKK
3 and target in-

stantiation [FlowRate, PressureDrop, PipeCharacter, Pipes] , both shown in

Figure 2-3. (That figure also shows the source instantiation, [Current, Voltage-

Drop, Resistance, Res i s tors ] , which is an intermediate, internal result.)

To verify that this qualifies as a legal analogical inference, we have to confirm

the following conditions:

V?RKK (Current, VoltageDrop, Resistance, Resistors)

: (FlowRate, PressureDrop, PipeCharacter, Pipes )

: (FlowRate, PressureDrop, PipeCharacter, Pipes )

Common: TLHQF r1

Unknown: THQF )f=-

Consistent: ThcF V1

NonTrivial: L
(2.8)

The first condition is easy to confirm. The second and third follow from

ignorance, that it knows sufficiently little about FlowRate that this 9?RKK instanti-

ation is independent of that starting theory. (This involves the claim that Figure 2-

2's ". . ."s do not hide anything important.) The NonTriviality condition follows

from the Domain(Kirchof f 1, 1, Functions) statement,4 which implies that only

3Chaptcr 4 explains why we chose this particular <PRKK formula. In particular, Figure 4-3 in
Section 4.1 shows this formula reified as the RKK relation.

4This is a second-order fact —- i.e., a fact about a relation. While this could have been worded in



20 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

functions can satisfy ^ R K K | • (Left implicit is the statement that the full universe

contains objects besides functions.)

This demonstrates that the particular formula and target instantiation shown

in Figure 2-3 form a legal analogical inference.

Of course, this answer is not unique: there are many both other target instanti-

ations for this formula, and other legal analogy formulae. Using this same <pKKK for-

mula, the target instantiation [FlowRate, PressureDrop, CrossSection, Pipes]

also qualifies, as does [FlowRate, VoltageDrop, PipeCharacter, Pipes]. While

neither of these is correct, none of (-̂ 's conditions prevents either conjecture from

being analogically inferred. (In particular, each constitutes a consistent extension

to the theory ThcF-)

There are many other target instantiations which violate some of Figure 2-1's

criteria. For example, [FlowRate, PressureDrop, PipeCharacter, Cost] is ille-

gal, as it violates the Consistent condition. (This uses T/i^^'s fact, Domain(Ohms,

4, Classes), together with the implicit Cost G Functions assertion.)

There are also a vast range of other legal analogical formulae. For example, we

can consider a formula which is more specific5 than <pKKK} such as

^More(t, c, r, 1,m) = <pKKK(t, c, r, l) & CostPerHour(t,m), (2.9)

or less specific, such as

t , c , r , l ) = Kirchoff2(c) & Ohms(t,c,r,l) (2-10)

t , c , r , l ) = Ohms(t,c,r,l). (2.11)

Other possible analogy formulae are less related to <pKKK, e.g.,

£>cost(t,m) = CostPerHour (t,m). (2.12)

On the previous page, we saw that only some instantiations of an analogy for-

mula lead to legal einalogies. Similarly, only some formulae qualify as analogy for-

mulae. As before, the facts in the initial knowledge base eliminate many candidates.

a first-order framework (i.e., V x Kirchoff l(x) => x £ Functions), this seemed pointless as the
arguments themselves (e.g., FlowRate) are already relations.

5The formula y?i(x) is more specific than <p2{x) if Vx <f\{x) => <Pz('£)- Here, we also say that <Pi{x)
is more general than ipi{x).



2.2. EXAMPLE OF ANALOGICAL INFERENCE 21

None of the following formulae are legal analogy formulae:

<pK2{x) = Kirchoff2(z) (2.13)

<pG(x) = Group(5R,x,0) (2.14)

£>units(aO = Units(z,Amps) (2.15)

pTaut(z) = x = x (2.16)

^Tnv(^,2/) = xey (2.17)

The first two cases violate the Common condition,

ThCF \^ <Pi(Current).

The third case violates the Consistent criterion,

ThCF \= --^uni

The fourth case, ^T«ut) violates both the Unknown and NonTrivial conditions;

the final (pTriyn only the NonTrivial condition.

This verification process suggests an algorithm for implementing Figure 2-1's

analogical inference process. Namely, it is sufficient to generate every possible for-

mula and every instantiation, and then test each against these requirements. These

examples, however, suggest the vast number of legal analogies; Section 2.5 demon-

strates it is exponential in size. Thus, while this approach may be epistemologi-

cally adequate, it is heuristically implausible as this task is inherently intractable

[MH69]. Section 3.3 presents a stronger argument against this blind generate-and-

test approach, by first explaining that we are searching for useful analogies and then

showing that few of the legal analogy formulae and instantiations qualify. The rest

of this dissertation provides a better approach to this problem.



22 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

2*3 Definition of Analogy Relationship6

The previous sections defined the analogical inference process. This section de-

scribes the AnalogyF relation, which defines what it means to claim that two con-

cepts are analogous. It then discusses how AnalogyF relates to the analogical in-

ference process, f̂ .

There are two main reasons for defining the analogy relation. First, making

explicit the distinction between the dynamic analogical inference process and the

static analogy relation may clarify some of the existing confusions concerning the

nature of analogy. Secondly, this definition facilitates the presentation of many of

the subsequent definitions; cf. Definitions 12 and 27.

Analogy Relation: Loosely stated, two concepts are analogous if these each

satisfies the same formula. This suggests the Analogy F definition of analogy, in

which A is deemed analogous to B if each appeaxs in some instantiation of the same

non-trivial formula, p:

Definition 2 AnalogyF( A, B, Th, ((p [a1}... A,... an] [bx,... B, . . . bn]) )

i...a f l) k Th f= pQ>u .. .B, . . .bn)

\u9 Th) . .

where the analogues A = a; and B = 6t for the same i used in tp\m. The Analogy F-

encoding of the analogy given in Section 1.3 is shown in Figure 2-3. (This formu-

lation differs from the one implies by Section 1.3's description. Note:2-4 describes

that alternate version of analogy, AnalogyT.)

Connection between Analogy and Analogical Inference: How is the four-

place AnalogyF relation described above related to the \^ rule of inference mentioned

in Section 2.1? Intuitively, an analogical inference completes an analogy by adding

the conjectures needed to establish an analogical connection between the given

analogues. Hence, the AnalogyF relation uses the result of the analogical inference,

6The rest of this chapter can be skipped on the first reading.



2.4. TRIVIALITY AND ABOUTNESS 23

which is the embellished theory

Excluding certain pathological cases,8 this <p establishes a legal analogical con-

nection between A and B in this newly formed theory; i.e.,

AnalogyF(A, B, Th! % (<p [ai,.. .B,. . .an] [bu .. .B,. . .bn]». (2.18)

Summary: To recapitulate the definitions presented so far: This section has

defined the static Analogy^ relationship, which describes when two concepts are

analogous. By contrast, Section 2.1 discussed the dynamic process of analogical

inference, describing a learning process in which facts were added to a growing

theory. The next chapters present various refinements of this analogical inference

process.

2.4 Triviality and Aboutness

The purpose of the -^Trivial clause in Definition 2 is to prevent trivial analogies.

The analogical inference process has similar reasons for using this same restriction

— encoded as the NonTrivial constraint in Figure 2-1. (There, this constraint

augments f-̂ 's other independence conditions, viz., Unknown and Consistent.

While those restrictions do prevent many trivial would-be analogies, they are not

sufficient.) This section formalizes this notion of triviality. In particular, it describes •

the Trivial relation, which defines when a unary formula,is trivial with respect to

a theory.

If we remove this -^Trivial condition from Definition 2, nothing prevents AnalogyF

from using <p(x) = T9 and thereby finding any pair of concepts trivially analogous.

7 The notation Th -f a abbreviates the larger theory, Th U {cr}.
8See Points TR4 and TR5 in Section 2.4.
9This T denotes "the true" [Thi68, p90]. Alternatively, we can view it as any ground tautology,
e.g., "0 = 0". Also, this section uses the syntax p(Z) ~ a to mean that the formula p "expands"
into the sentence a when the term Z is substituted from p's free variable. This means that



24 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

We avoid such embarrassments by insisting that <p(b\}... B, • • • bn) be not just prov-

able, but also non-trivially about B. This section leads up to the correct definition

of triviality by presenting two intuitive but inadequate strawmen, LexTrivial and

TrivialAll.

One way of avoiding the above tp(... B...) = <p(... A...) degeneracy is to insist

that tp deals with its arguments. That is, we want to forbid cases like <p(x) =

Tall (Fred). The LexTrivial relation states this proposal more formally:

Definition 3 -^LexTrivial(ip, Th) <=> [VX LexInclusion(X,<p(X)]

where LexInclusion(X, a) means that the symbol X is lexically included in the sen-

tence a. (For example, LexInclusion(X, "Foo(X)") and -^LexInclusionQ, "Foo(B)").

Notice this means that the universal quantifier in Definition 3 is ranging over sym-

bols; that is, the universe of discourse here is the language itself.

Unfortunately, Definition 3's criterion is too weak. While it does prevent some

undesirable formulae (by insisting that <p(B) •=/=• <p(A)), it still allows other vacuous

analogies to slip through. Consider any tautology with free variables, e.g., c/)(x) =

x = x. While -^LexTrivial (<f>, T7i), no analogy based on this (f> will be very useful.

As a second suggestion, perhaps we should use some proof-based notion of trivi-

ality. We might consider a sentence, a = £>(j/i,... x , . . . yn), to be trivial with respect

to the concept x if that same fact could pertain to any other concept as well. That

is, a is non-trivial for some concept x if it does not hold for some other concept,

mutatis mutandis.

Definition 4 -^Trivial All( x, <p(yu . . .x, . . .yn), Th)

While this is better than LexTrivial, it is still not enough. The problem is

Skolem constants. Recall again the formula <pe(x,y) = x G y, and assume we knew

p(Z) = Tall(Z) k Green(Z) if the formula p was defined as Vx p(x) = Tall(x) k Green(x). This
use of "=" is distinguished from the more general use of "=", which denotes logical equivalence.
Hence, using the same p defined above, we would have p(Z) = Green(Z) Sc Tall(Z) but p(Z) ^
Green(Z) & Tall(Z), This distinction is only important for this section.

10This TrivialAll relation does use a different set of arguments than the eventual Trivial relation
employs.



2.4. TRIVIALITY AND ABOUTNESS 25

that Vx 3y x G y. Could this formula serve as the common analogy formula? For

example, are the facts Fido G Dogs and Democracy G Ideas sufficient to consider

Fido analogous to Democracy?11 This issue reduces to the related question, is

Fido G Dogs about Fido?

The answer to both questions is "no": Fido's occurrence in Fido G Dogs is

trivial. Why? We could have used any other constant in Fido's place, knowing that

the needed second argument (here, Dogs) is guaranteed to exist. Stated another

way, Fido G Dogs does not say anything about Fido as any value could be used

in Fido's place. This observation fits our expectations for analogies: the fact that

both Fido G Dogs and Democracy G Ideas hold does not express any commonality

joining Fido and Democracy. This is why it should not constitute a legal analogy.

Unfortunately, even though we argued above that Fido G Dogs should be con-

sidered trivial in this situation, TrivialAll reports otherwise; i.e., TrivialAll(Fido,

Fido G Dogs, Th) does not hold. -y

The fault does not lie with the G relation itself. Consider, for example, the pair of

assertions "FidoGDogs" and "DukeGDogs", based on the common formula <pD(x) =

£>e(z,Dogs) = x G Dogs. These two assertions, together, do seem significant; i.e.,

<pDog is not trivial in its first argument, even though <pe is. The difference is in

terms of what is allowed to vary from one analogue to the other. When using the (pe

relation, G's second argument could vary and can therefore be set to different values

depending on the first argument — it was Dogs for Fido but Ideas for Democracy.

On the other hand, this 'Virtual" second argument is fixed when considering the

<Puog analogy formula: it is forced to be Dogs independent of the first argument.

This means that triviality must be with respect to the set of terms which are allowed

to vary from one analogue to the other.

This leads to the correct definition of triviality: an n-ary formula is trivial in its

ith argument if we could prove that any concept could occupy that position.

11 Yes, G's second argument did vary, from Dogs to Ideas. This does not render this question
meaningless. For example, that the two facts Ohms(Current, VoltageDrop, Resistance, Re-
sistors) and Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes) are sufficient to link
FlowRate to Current.



26 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

Definition 5 Trivial((p\.} Th)

Vs Th\=<p\(s)

Vs Th \= 3xj¥:i<p(xu... s , . . . xn)

As expected, this Trivial(tp,Th) relation is equivalent to Trivial All{x} £>(x), Th)

when ip is unary (i.e., when there are no other arguments to vary). Notice also that

this definition is syntactic. Chapter 8 presents a corresponding semantic version of

this triviality condition; see Definition 26.

We conclude this section with some final comments.

TR1. Limitations of Triviality:

While this Trivial relation does provide a technical sense of triviality, it does

not capture the full intuitive sense of "uninteresting". Consider, for example, the

non-trivial, but not interesting (p(x) = a ; / Fred. Subsection 9.2.2 extends this

binary triviality criterion to a specificity measure which gives this uninteresting

formula an appropriately low score. (By extending, we mean that this Trivial

criterion is the extreme point of the specificity continuum.)

TR2. Ties to Aboutness:

We can use this Triviality idea to define the related notion of abcutness. A

sentence >̂(x) is about a concept x, with respect to a theory Th, if

Definition 6 About{x9 p(x),'T/i) «=> [Th |= p(x)] & [3B Th ft <p{s)}-

The second conjunct on the right is the non-triviality condition, -iTrivial(tp, Th).

The extension to n-ary formulae is obvious.

This aboutness condition ties in with several other ideas: First, it is related to

Hempel's definition of the essential use of a constant in a sentence, see [Hem65,

p38]. (Glymour uses this in his implementation; see [Gly80,Gly83].) Secondly,

realize the underlying purpose of this aboutness condition is to determine the



2.4. TRIVIALITY AND ABOUTNESS 27

relevance of a given proposition. This seems similar to Carnap's distinction be-

tween the three types of sentences: object, pseudo-object and syntactic [Mar67,

p50]. Third, Note:8-1 presents the related concept of novelty, first defined seen in

[GG83]. (That paper also discusses the relation between aboutness and novelty.)

TR3. Applicability of Triviality condition:

Two comments: First, this Triviality condition holds in any situation where the

domain of the ith argument of some relation is the entire allowable space. Hence,

it pertains to the arguments of any total function and to the range of any onto

function.

Secondly, this triviality condition can selectively pertain to some arguments

of a relation but not to others. That is, Trivial( <p\t9 Th) can be independent

of Trivial(tp\ , Th ). For example, the <pe relation can still express a non-trivial

fact: even though D G Sjr> is trivial in its first argument, D, it is non-trivial in its

second. This is because this second argument can include only certain concepts,

viz., those which denote some class of objects.

As another way to think about this: consider how much the single statement

D G SD tells us about its arguments. While we still know absolutely nothing

about its first argument, D, we now know that Sjr> must denote some class. The

realization that D G Sjr> places a constraint on its second argument (here, that it

denotes some class), means that this relation, £>G, is not trivial in its argument.)

This is why Trivial(<pc.\ , Th ) and -^Trivial(<pe\ , Th ).

TR4 . ^Trivial ( fa Th) y^ -^Trivial ( 0, Th1):

As suggested on page 23, the result of analogical inference might not be a legal

analogy. As an example, imagine that the initial theory Th included a patholog-

ical clause of the form <t>(A) => [Vx </>(#)], together with (f>(B). Once we add (the

analogically inferred) (f>(A) to form Th\ the formula <f>(x) becomes trivial; i.e.,

Th1 f= Vx <p(x), meaning that Trivial (fa Th1). This is despite the fact that this

formula is not trivial with respect to the original theory, ~iTrivial(<f>} Th).

TR5. Analogy's Need for Triviality:



28 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

The point above indicated a situation where Equation 2.18 does not hold; where

the result of an analogical inference does not qualify as an analogy. One way of

avoiding the problem is to replace the -^Trivial condition with a slightly stronger

condition in Figure 2-1 (and arguably in Definition 2 as well). We could insist

that <p be strongly non-trivial with respect to A's position (the ith argument) and

the starting theory, i.e., StronglyNonTrivial( ip\t, Th ), where

Definition 7 StronglyNonTrivial(<f>, Th) <=> 3c Th [= -K£(C)

By monotonicity of consistent additions, this guarantees that StronglyNonTriv—

ial( <p\^ Th1), as desired.

I choose, however, not to impose this criterion, even though this means that

Equation 2.18 may fail. Why?

[1] In practice, the special instances of the learning by analogy task often impose

other constraints, which in turn, render this triviality check unnecessary. For

example, even the StronglyNonTrivial constraint is subsumed by the Abstrac-

tion constraint presented in Section 4.2.

[2] At a theoretical level, I still feel justified in imposing a weaker criterion for

establishing an analogy than for exhibiting an analogy. In the former case, we see

the theory "in transition", and observe the "novelty" of this new £>(A) fact. I feel

that this additional information is enough even for these pathological conjectures

to qualify as legitimate (if strained) analogical inferences.

2.5 Complexities of Analogical Inference

"O Nature, and O soul of man! how far beyond all utterance
are your linked analogies! not the smallest atom stirs or lives
on matter, but has its cunning duplicate in mind."

Moby Dick, Melville (1851)

This chapter has described what it means to learn by analogy. Based on Section 2.1's

description, one might assume that analogical inference amounts to simple instanti-

ation, that it is enough to merely instantiate a formula with new terms. Section 2.2,

however, has already indicated that the world is not so simple.



2.5. COMPLEXITIES OF ANALOGICAL INFERENCE 29

There are two reasons why analogical inference is a difficult task. One compli-

cation arises if new terms are generated; that is, when the starting information is

reformulated. (This dissertation only touches on this issue; c/. Section 9.3.) This

section discusses only second issue: the tremendous size of the search space, even

ignoring the issue of reformulation.

To repeat the situation: we are given a pair of analogues, A and B, and an initial

theory, Th. Our goal is to determine the relevant source fact, ^ ( b 1 ? . . .B , . . . b n ) ,

and the new target instantiation, [a i , . . . A,.. . an]. The key questions are:

• What source information is relevant?

i.e., what is

• How do we

i.e., what is

p ( b i , . . . B

use this to

the target

, . . . b n ) , the source of

derive the new target

instantiation, [a i , . . . t

the

fact

analogy?

,<p(*u. A . . O ?

Figure 2-4: Analogy Questions

Section 2.2 indirectly suggested some complexities of analogical inference. The rest

of this section states the issues more precisely, presenting an informal description

of the vast size of this space followed by some quantitative measures.

Informal: Consider the first question posed in Figure 2-4: what is the source of

the analogy? Imagine we are presented with a flat list containing all EC facts,12

and asked to select the facts which are relevant for this particular task. How did

we know that the analogy sentence should be the conjunction of the particular EC

facts shown in Figure 2-3, which describe Current, VoltageDrop, Resis tors , etc.?

Why didn't we consider the cost of electricity, the history of electricity, the owner

of the wires, or the timing characteristics of such circuits?

This unconstrained search through EC might be appropriate if all we know is

that

Fluid Systems are like Electric Circuits.

1? Recall EC is a collection of electric circuit facts. It is a subset of our initial theory, EOC
Similarly. FS is a collection of facts about fluid systems, FSc T



30 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

Here, however, we are told more. In particular, we are told that

FlowRate is like Current,

(We are also given a specific problem to solve. Chapter 3 shows how we can use

this objective as a further constraint.)

This leads to an obvious — but faulty — proposal: Perhaps the source anal-

ogy fact is composed of precisely those EC facts which lexically mention Current?

Unfortunately, this "syntactic inclusion" criterion is neither necessary nor sufficient:

Not Necessary: There may be EC sentences which mention Current but are ir-

relevant or, worse, lead to a contradictory theory. It is easy to find sentences

which we would not even consider: like facts about devices to measure Current

or equations which relate Current to the heat dissipated by associated devices.

While one may find possible analogues for these statements in the FS World,

they are not relevant to the "Find the f lowrate" task.

Not Sufficient: Recall that we need the conservation law for PressureDrop to

solve this FS problem, and realize that it could not have been derived without

the fact that

The sum of all VoltageDrops around any closed loop is zero.

It seems clear that the above EC fact must be included, even though it did

not lexically contain Current.

Further examination of the above "Sufficiency Argument" points to another com-

plication: Just where does VoltageDrop (and its analogue PressureDrop) come

from? Critical as it is to solving the problem, it is neither mentioned in the prob-

lem statement nor given in the hint. If we are allowed to add other EC terms,

why not add capacitance, or timing delays, or resistor color codes? (The range of

possibilities becomes unbounded if we are allowed to define new terms.)

Formal: The preceding informal arguments show that Definition 2's criteria is

incredibly general and woefully underspecified: it is trivial to generate an arbitrarily



2.5. COMPLEXITIES OF ANALOGICAL INFERENCE 31

large number of (uninteresting) analogies. Note:2-6 presents some quick, back-of-

the-envelope calculations based on lexical constraints. The rest of this section,

instead, uses some syntactic criteria for estimating the size of the space.

Begin by considering just the first of Figure 2-4's questions: how many source

facts, v^Cbi,... B , . . . b n ) , are a priori possible. As this fact is derivable from Th> we

can consider its finite support, STxh{ £>0>i, . . .B , . . .b n ) ), where STTH{ 0" ) is the

smallest subset of Th from which a can be derived:

Definition 8 STTh{ * ) = {pi}

MQTh k

(See [End72].) The STTh( ^(bi> • • -B,. . .bn) ) set is precisely the subset of Th's

sentences which need to be considered — i.e., the analogy would hold even if we

eliminated the other elements, Th — STrh{ pO>i> -. -B,. . . bn) ). As different analo-

gies may use arbitrary p(bi, . . . .B, . . .bn)s , this STTH{ £>(bi,.. .B , . . .bn) ) could be

any subset of Th. This means that the subtask of simply finding the relevant source

facts is itself exponential, as it could involve searching through the entire 2Th power

set.

This support set addresses only the first of Figure 2-4's questions; determining

the analogy involves two other considerations. (Hence, this exponential estimate

is only a lower bound on the number of possible analogically inferred conjectures.)

Figure 2-5 illustrates this, showing the various steps required to go from a given

theory to a possible analogy conjecture. The above discussion suggests that each of

the 2Th different subsets of the theory Th may lead to a distinct analogy; i.e., the

^ mapping, from theory to support set, branches exponentially.

The other two mappings are also non-trivial. Subsection 9.3.1 demonstrates

that different analogies can arise from semantically identical source facts. This

means that a given support set can lead to different analogies, i.e., the <* link is a

one to many map. (As another way to look at this, the actual formulation of the

. . . B, . . . bn) fact needs to be considered as well.)



32 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

theory support set formula re-instantiation

1/1 'V*. 0 I Th{ £H&1> • • • **, • • • »n' )

Figure 2-5: Number of Possible Analogies

A particular analogy formula can lead to many distinct analogies as well, each

corresponding to a different target instantiation. That is, there may be many differ-

ent sets {a*i}iS for which p (a* i , . . . A,... afc
n) is a legal analogical inference. Note:2-

6 addresses this consideration.

This matches our intuitions: the more Th includes about B, the more meaningful

support sets can be considered, and this leads to more analogies. The number also

depends on our knowledge of the target analogue, A. In particular, the more Th

includes about A, the fewer analogical inferences can be drawn. This is because

every fact about A serves as a constraint, reducing both the number of possible

analogy formulae, (pk, and then the number of {a*f-}t- sets which can be used to

re-instantiate any such formula.

The rest of this section makes this argument more precise, showing the the

exponential number of possible analogies. This follows from the observation that

analogies can be combined. Given any two legal analogical inferences,

Th, A~B

Th, A~B

we can define ij){x) = (p1(x)&c(p2(x)) and, barring pathological cases, find this ifi(A)

to be a legal analogical inference; Th, A~B \^ I/J(A).13

Actually only one of the formulae must be a legal analogy; it is sufficient that the

other (without loss of generality p2) only satisfy Th (= <p-2(B) and Th ^ -^p2(A):

Th, A~B ^

TH H " * - ' (2.19)
r / i tt K J

Th, A~B

13This "proof" would involve demonstrating that this t/> formula satisfies the four conditions shown
in Figure 2-1. Unfortunately, only three of those requirements are met. Note:2-7 describes some
pathological cases where the Unknown condition does not hold.



2.5. COMPLEXITIES OF ANALOGICAL INFERENCE 33

We can use Equation 2.19 to construct a subset of all legal conjunctive analogy

formulae. First, we need to define the class of "base unary existential formulae",

buefs:

Definition 9 A base unary existential formula is an atomic formula whose relation

has all but one of its formal arguments existentially bound.

Hence, a buef is a formula with one free variable, as the name implies. So, for

example, </>i(t) = Kirchoffi(t) and ^2(^2) — 3?i ?3 Group(?!,X2,?3) would each

qualify, but </>3() = 3?i Kirchof f 2(?i) and 04(zi,Z2) = 3?3Monoid(cci,X2, ?3) would

not. (We later complicate this situation by considering the actual values of these

existentially bound variables.)

Let \PA refer to the set of all buefs which qualify as legal analogical inference

formulae, and $2? to the buefs which qualify for the (p2 role shown in Equation 2.19

(but are not legal analogies). That 13-,

- { P l

Now consider the conjunction of any non-empty subset of \&i, emoted with the con-

junction of any subset of \fr2:

A A (2.20)

where {} C TIi C VÊ  and II2 C \&2- By construction, the resulting formula ipn is a

legal analogy.

This leads to an exponential number of lexically different analogies:

(2"*1" — 1) * 2"*2" (2 21)

As expected, this increases exponentially with the number of facts known about B,

especially if the corresponding A fact is not known. (This follows from the observa-

tion that the memberships of 3>x and #2 each increase with additional knowledge

about B, and decrease as more is learned about A.)



34 CHAPTER 2. GENERAL ANALOGICAL INFERENCE

This estimate is conservative. A more realistic value needs to consider the actual

values of the existential values included in each buef. This suggest we deal with bufs,

where

Definition 10 A base unary formula is an atomic formula whose relation has all

but one of its formal arguments instantiated to a ground term.

Each buef leads to at least one, and usually many, distinct bufs. Furthermore, a

particular analogical inference may use a pair of related but different bufs, rather

than a single buef

To illustrate this point, consider the Ohms Law relation:

Ohms(t,c,r,l)^[Vdl(d)^[c(yj,yj,[rf])= tfo1,*) * r(d)\ }

We can use it to form the buef <l>o{x) = 3 c r 1 Ohms(a;,c,r,l). This single buef

corresponds to several distinct bufs, including

<f>i[x) = 0hms(x, VoltageDrop, Resistance, Res is tors)

<f>2(x) = Ohms(x, PressureDrop, PipeCharacter, Pipes )

among many others. In a language with | |£| | distinct symbols, there are ||JC||3

different Ohms-induced bufs (including the two 04s shown above) all derived from

the single buef <f>o. There are many more if we allow arbitrary terms as well as

pre-defined constants.

Recall again the analogy discussed in Section 1.3. This single analogical inference

paired ^(Current ) with 02(FlowRate): i.e., it used one <f>{ for the source analogue

and another <j)j for the target. Hence, Th |= <f>i(Current), Th \£ <£2(FlowRate) and

Th )f=- -»02(FlowRate) are the necessary pre-conditions for a legal analogy.

We can now consider how many more analogies can be formed using these bufs

instead of the earlier buefs. First, let ty\ and \&2 resemble \&i and \P2, but contain

bufs as well as buefs. Not only is each \&[ much larger than its counterpart, but we

can construct an analogical inference using any pair of single-relation spawned bufs.

This means we must now consider the number of ways of selecting pairs of subsets,

rather than a single subset. For example, the Ohms relation alone could contribute



2.5. COMPLEXITIES OF ANALOGICAL INFERENCE 35

up to (||£||3)2 = | |£| |6 different buf pairs, rather than the single buef entry of the

earlier situation.

This analysis only considers conjunctions of bufs. If we add in other connectives,

like negation and disjunction, we get an even larger space. Note:2-7 further describes

this space, showing it is almost the full power-set of all possible literals!



 



Chapter 3

Useful Analogical Inference

The previous chapter defined cinalogical inference in its full generality and discussed

its use as a mechanism for proposing new information. Our goal is more specific.

We want to consider only certain analogical inferences, namely, only those analogies

which suggest useful conjectures. (We define useful in terms of expected utility in

solving standard problems.)

This chapter describes one way of using a particular problem to focus the search

for new facts. This leads to our notion of useful analogical inference, an important

refinement of the general analogical inference process. Section 3.1 motivates this

special case by describing other research with similar goals and demonstrating how

this objective fits within the underlying goals of my research. Section 3.2 formally

defines what we mean by a useful analogical inference. Section 3.3 extends the

example began in Section 2.2 to illustrate how this additional requirement constrains

the search. Here we see that there may still be more than a single possible useful

analogy; Section 3.4 presents some intuitions which suggest which of these should

be produced first — i.e., it begins to characterize good useful analogies. (Chapters 4

and 5 use these insights to propose heuristics which order and prune this space of

legal analogies, towards efficiently finding the useful analogies.)

36



 



3.1. ANALOGICAL INFERENCE FOR A PURPOSE 37

3.1 Analogical Inference for a Purpose

This section discusses how the objective of solving a specific problem can facilitate

a learning process. After describing the general approach, it focuses on how this

idea applies to the current analogy situation.

Almost all learning — both human and machine — is done within a context.

The canonical context is solving a particular problem. (Indeed, this problem-solving

context seems sufficiently encompassing that it is hard to find any situation which

cannot be worded in terms of solving some problem.) This is the basis of the

case method approach, where a series of specific problems are presented, each as

an impetus to learn certain new facts. (The [BvL81,vB79,vL85] research deals

extensively with this paradigm, to cite just one example from cognitive science.)

Much of the current research in machine learning deals with learning for a pur-

pose. Mitchell coined this phrase and demonstrated its effectiveness within the LEX

project (see [Mit83,Utg84]). This theme is repeated in the more recent LEAP work

[MMS85a], which is explicitly based on the claim that a typical learning episode

is learning to solve some problem. This leads to explanation-based learning, a

hot research topic in current machine learning research; see [Mit85], especially

[DeJ85,Leb85,Min85,MMS85b,Sch85],

Historically, analogy was almost always used for a specific purpose, often to

explain some unfamiliar phenomenon. This dates back (at least) to Plato, who, for

example, explained the Idea of the Good by the similarity analogy: "the Idea of

the Good makes knowledge possible in the intelligible world just as the sun makes

vision possible in the perceptual world" [Emm85]. More recently, Nagel discussed

the distinction between "useful analogies", which help to solve a problem (where

this "problem" may be to explain some phenomenon), and the others [Nag61].

Following this history, essentially all of the early analogy systems have been

constructed to work on a specific task. Evan's program tried to solve "geometric-

analogy intelligence-test questions", of the form A:B : : C:Dt, for one of the five

presented Dts [Eva68]. Kling's Zorba program similarly had a specific goal: to

effectively find a proof for a given theorem.



38 CHAPTER 3. USEFUL ANALOGICAL INFERENCE

This idea is even more prominent in recent analogy research. Most have a spe-

cific problem to solve; c/., [WBKL83], [AFS83,And83] and [EA81]. Kedar-Cabelli's

current work, as one example, discusses how the particular problem can be used to

determine which of the collection of available facts are relevant: i.e., which should be

considered part of the analogy [Ked84,Ked85]. Similarly, both Burstein [Bur84] and

Carbonell [Car81a,Car83a] employ a particular problem to help determine which

facts should be considered important.

In general, these analogies programs map the target problem into a correspond-

ing source problem, and use this analogous problem (or, usually, a symbolic solution

to this derived problem) to suggest how to solve the original target problem. For

example, Zorba used a particular problem in the source domain to suggest which

target domain facts are likely to be used in the proof. (Section 9.4 provides a more

complete description of these systems; see especially Point Lit3.)

The underlying purpose of each of these analogy programs, like mine, is to solve

some specific problem. The next section describes a model of analogical inference

which incorporates this additional criterion. The next chapters show how we can

move this constraint into the generator, by using abstractions.

3.2 Definition of Useful Analogical Inference

The previous chapter claimed that the result of a general analogical inference is

a new (i.e., independent) conjecture, which is then incorporated into the initial

knowledge base. That definition permits arbitrary new facts, which leads to the

tremendous number of legal analogical inferences which |^ allows.

The previous section discussed our more specific objective. Rather than consider

arbitrary new conjectures, we want to consider only the ones which allow us to

solve a specific problem. This leads to the notion of a useful analogical inference.

Its input includes a particular problem to solve (e.g., "Find the f lowrate") in

addition to the analogical hint (e.g., "FlowRate i s like Current") and the initial

knowledge base (e.g., the Thcr shown in Figure 2-2). It assumes, furthermore, that

finding the appropriate analogy leads to a solution to this target problem. Stated



3.2. DEFINITION OF USEFUL ANALOGICAL INFERENCE 39

Th, A~B

where Common:
Unknown:
Consistent:
NonTrivial:
Useful:

Th^= <p

<p\., Th)

• • a n )

•• an)

Figure 3-1: Definition of Useful Analogical Inference

formally, the objective of a useful analogical inference is to find a new conjecture,

pCai , . . . A,... a n ) , such that Th1 = Th + <p(&i,... A,... an) produces an answer to

the target domain problem. For notation, we use PT to refer to this target problem;

our canonical PT is "Find the flowrate".

This is the Usefulness condition:

Useful: Th + . . . A,. . . an) |= PT. (3.1)

When added to the definition of general analogical inference (shown in Figure 2-1),

we obtain the definition of useful analogical inference shown in Figure 3-1. This is

indicated using the f̂ ,, operator, which is the general analogical inference operator,

|~, adorned with a pf subscript to indicate this additional Usefulness constraint.

(To repeat Point Defn3 on page 17, if we omit the Common criterion, we are again

left with a good general definition of learning for a purpose — i.e., the remaining

conditions describe a way of acquiring an unknown fact which can be used to solve

a particular problem.)

This model of learning by analogy is honed to consider the task of learning the

new facts necessary to solve a given problem. While the more general |~ would con-

sider any way that FlowRate is like Current, \^T is more specific. It considers only

certain ways in which they are similar: namely, only the ways which suggest some

solution to the given problem. (Here, |^ seeks some FlowRate to Current similarity

which suggests a solution to this particular "Find the flowrate" problem.)



40 CHAPTER 3. USEFUL ANALOGICAL INFERENCE

To summarize (^T's desired behavior: a useful analogical inference processes

given a pair of analogues A and B, a problem PT and an initial theory Th. Its goal

is to expand this Th as necessary to form a new theory which exhibits an analogy

between A and B, and in which PT is solvable. This means it seeks a formula <p and

target instantiation [ai , . . . A,.. . an] such that

Analogy F{A, J3, T/i + ^ ( a 1 } . . . A,... a n ) , (p [a1? . . . A,... an] [bi , . . .B,. . .bn]))

and

. .A, . . . a n ) f= PT.

3.3 Example of Useful Analogical Inference

The previous section defined the Useful clause; this section describes how it is used.

The two main points are: [1] it does prune the space of \^ analogies, and [2] it still

leaves many remaining f̂T analogies.

Recall again the <pRKK formula of Section 2.2. Equation 2.8 has already demon-

strated that it qualifies as a legal \^ general analogical inference. To show that it

qualifies as a f̂T useful analogical inference, we must show that it also satisfies the

Useful constraint. That is,

Useful: ThcF + v?RKK(Fl°wRate, PressureDrop, PipeCharacter, Pipes)

|= "Find the flov/rate"
(3.2)

must hold. This proof uses the definitions of £>RKK'S f°u* component clauses, all

shown in Figure 2-2, and requires the claim that they are sufficient to solve the given

hydraulics problem. (The details are cumbersome to show, but can be inferred from

Figure 1-2. In particular, observe that the hydraulics versions of both KirchofPs

and Ohms laws are required.)

We now see that any formula more specific than <pnKK would also qualify as

a legal f̂ T analogy formula, provided it satisfies |~'s requirements. In fact, any

analogy formula more specific than <pMin (shown in Equation 2.10) can lead to a



3.3. EXAMPLE OF USEFUL ANALOGICAL INFERENCE 41

useful analogy,1 even if it is more general than <pKKK. Consider, however, the

yet more general formula, <pohm shown in Equation 2.11. While it does qualify as

a \^ general analogical inference, it is not a legal useful analogical inference for

this PT problem. This is because the hydraulic's Ohm's Law, by itself, is not

sufficient to solve this "Find the flowrate" problem; we also need to know that

Kirchoff2 (PressureDrop) holds.

What about less related formulae? Some of these might still qualify. For ex-

ample, assume the knowledge base included Faraday's Law, and had general rules

which use it to describe the behavior of alternating current through a circuit. This

might suggest various conjectures which describe "alternating flowrate", and these

might lead to an answer to the initial "Find the flowrate" problem. (While this

answer is, no doubt, very different from the earlier "correct" answer, |~ has no

means to ascertain it to be wrong: in particular, this conclusion is consistent with

all of its known facts.) y

All of these examples involve facts which a knowledgeable linear system engi-

neer would consider reasoncible. Of course, the initial ThcF knowledge base may

not be that smart. It might, for example, consider the Cost of each pipe to be

the Resistance-like constant of proportionality (which relates the PressureDrop

through a pipe to its FlowRate) and use this to determine an answer to the target

problem (albeit a strange one).

What about yet other possible general analogy formulae, which deal with, for

example, history of cost? It is unlikely that any of them would lead to useful

analogies. This is because there is no connection between the target "Find the

flowrate" problem and the conjectures those analogies would suggest.

To help understand this, compare the earlier ^RKK-based analogy with an anal-

ogy which suggests some fact about the history of FlowRate. The <pKKK analogy

suggests new conjectures like Kirchoff 1 (FlowRate). Such assertions provide ways

of computing the FlowRate through a pipe, and hence suggest some solution to the

target problem. By contrast, knowing more about the history of FlowRate does not

1Thc phrase useful analogy abbreviates "target instantiation of analogy formula of a useful ana-
logical inference'. It refers to just the analogies which are useful to the particular problem. Of
course, almost any possible* analogy is useful to some problem or other.



42 CHAPTER 3. USEFUL ANALOGICAL INFERENCE

lead to any rule which tells how to compute the FlowRate through a pipe. This

independence is also true in the source domain: there is no connection between the

history of current and the current through a wire either.

We likewise have no general rule which tells us how to use x's CostPerHour to

compute the value of x through a device. However, we do have a rule which uses

the assertion that x satisfies Kirchof f 1 to compute the x through a device.

These examples show that relatively few of the general analogies would qualify

as useful analogies. We also see that there are still a sizable number of useful

analogies. This exposes two other problems with Section 2.2's strawman proposal

that we use a blind generate-and-test process to find useful analogies. That section

discussed the problems of simply finding a qualifying (general) analogy formula and

its target instantiation. One problem is: As relatively few of the legal \^ analogies

qualify as |̂ , analogies, a yet smaller percentage of the generated assertions would

survive both pruning steps.

The second objection stems from the observation that there are still quite a few

remaining useful analogies. These analogies, however, are not all alike. Rather than

return these legal useful analogies in random order, they should be returned in a

meaningful order, with the more likely ones returned first.

This reflects one important objective of this research: to find (and return) the

better analogies first. Given the sparseness of useful analogies within space of legal

sentences, and the number of possible useful analogies, this is a difficult task for a

blind generate-and-test process.

All is not lost, though. Section 3.4 presents some intuitions which address these

problems; Chapters 4 and 5 expand these into operational heuristics. Chapter 7

demonstrates that these rules are effective, by enumerating the relatively few an-

swers the NLAG system actually produced in this specific situation.



3A. INTUITIONS ABOUT USEFUL ANALOGIES 43

3.4 Intuitions about Useful Analogies

The previous chapter defined analogical inference as a process for adding new con-

jectures which pertain to the target analogue. This chapter proposed the focus-

ing constraint that we consider only conjectures which are useful to a given prob-

lem. The next goal of this research is to characterize the space of these desirable

analogically-inferred useful conjectures, both by restricting which conjectures should

be postulated and by determining an effective ordering.

As one proposal, perhaps NLAG should produce only semantically correct facts.

Note: 1-2 discusses why this is both impossible and undesirable. Another possible

objective is that the analogy be easy to find: Note:3-1 analyzes this goal.

This section focuses on one aspect of this problem, addressing the issue of how

much (i.e., how many conjectures) should be added. It presents three "obvious"

intuitions, labeled iMost, luast a n d Iciose, &nd demonstrates the tension among

them. Much of this dissertation can be viewed as an attempt to resolve this conflict.

In particular, this issue motivates both the use of abstractions (Chapter 4) and the

least constraining heuristics (Section 5.3); it also surfaces in Subsection 9.2.2.

The IjMost intuition asserts that we should add as much as we can, insisting

only that these additions be "reasonable". (Its strongest argument is in terms

of efficiency: Given how simple it is to merely state one fact, it is inefficient to

use this elaborate analogy mechanism unless you are communicating a great deal of

information.) The opposing view, I Leasts asserts that we should not expect too much

of the analogy. It is easy to find anecdotes where the hearer has overextended the

analogy with disastrous effects. (See Figure 3-2, as well as [HM82] and [Bur83b].)

These two desires pull in opposite directions: I Most wants to tease as much

information from the analogical hint as possible: it advocates conjecturing every

possible connection between FlowRate and Current. luast, °n the other hand,

favors a more conservative approach, of making as few additional assumptions as

possible. Taken to the extreme, it would prefer adding in nothing, using only the

facts initially known about the analogues.. Stated another way, I Most seeks the

most constraining legal extension of the known facts, while I mast seeks the least



CHAPTER 3. USEFUL ANALOGICAL INFERENCE 44

(leiZf
Figure 3-2: Over-Extended Analogy

(from Ros Chast, [Cha84])

constraining extension.

One way of resolving this tension involves a third intuition, Iciose'- w e often

think of an analogical inference as "completing a whole", as adding in the other

facts which axe "causally connected" or interrelated (see [WBKL83], [Ked85] and

[Dav85]), which follow from some selective inference (as in [Hob83a]), or which fulfill

the n-ary relation (as in [Gen80b,Car81b]), etc. This reflects a compromise between

^Most and iLeast- Rather than require the learner to add as many facts as possible,

I Close claims it is sufficient to conjecture only those facts which are required to

complete some meaningful, complete chunk. 2

In our current problem-solving context, it is easy to define these "chunks" a

posteriori. Each meaningful chunk corresponds to the information required to solve

some problem. In particular, we axe happy to acquire just the facts needed to solve

the particular problem posed. Our challenge is to determine these chunks a priori.

Chapter 4 ties this notion of chunks to abstractions, arguing that an abstraction

2This is related to the notion of natural kinds: each chunk reflects a good (read "useful") way of
organizing the world. See [Iios73] and [Boy79].



3.4. INTUITIONS ABOUT USEFUL ANALOGIES 45

instance qualifies as a complete chunk, at least in this problem solving context.

This suggests that a good analogy is one which suggests just the facts required

to complete an abstraction instance, and no more. Section 5.3 then elaborates

this "and no more" point, arguing that the Iuast position (favoring the minimal

extension) is appropriate within this abstraction-based view of analogy.

Three final notes:

• This discussion here has been quite informal. Subsequent sections (in par-

ticular, Subsections 5.3.3 and 9.2.2) provide semantic formalizations of these

intuitions.

• The standard lore still agrees with 1Most > claiming that the maximally spe-

cific analogy (the one which expresses the greatest similarity connecting the

analogues) should always be used. Section 9.2 argues against this position,

demonstrating that such maximal analogies are not necessarily the best by

showing that they do not efficiently lead to the conjectures which are likely

to help solve problems.

• These three intuitions {iMosty I Least a n d Iciose) pertain to any learning process,

not just learning by analogy. Chapter 4 argues that their resolution, in terms

of abstractions, is as general.



 



Chapter 4

Use of Abstractions

The previous chapters defined the useful analogical inference process and discussed

its use in conjecturing useful new information. This chapter proposes a particular

method for finding these useful conjectures efficiently, based on abstractions.

Section 4.1 presents the intuitions behind our sense of abstractions, expressing

the view that each abstraction encapsulates some previous problem solving experi-

ence and arguing that this abstracted information can be used again to solve new

problems in new domains.

Section 4.2 formalizes this claim, stating my position that these abstraction-

based analogical inferences are sufficient to cover a large class of situations. This

section includes formal definitions of both the abstraction-based analogy relation,

AnalogycA) an (l the related abstraction-based analogical inference process, JyT.

Section 4.3 explains why it is desirable to use abstractions when learning by

analogy. It demonstrates how this approach constrains the search to useful analo-

gies and thereby side-steps many of the complexities associated with the general

analogical inference process. This section includes a behavioral description of the

abstraction-based analogical-inference engine, NLAG.

Having established that abstraction-based analogical inferences are desirable,

Section 4.4 demonstrates that they are possible. This requires the claim that these

abstractions are both ubiquitous and re-usable.

Section 4.5 concludes this chapter by comparing this notion of abstractions with

46



 



4.1. INFORMAL DISCUSSION OF ABSTRACTIONS 47

related ideas from both artificial intelligence and other fields.

The rest of this dissertation is oriented around this model of analogy. Chap-

ter 5 discusses various heuristics which make this search for useful abstraction-based

analogies more efficient; Chapter 6 describes how I operationalized these rules in my

NLAG implementation; and Chapter 7 demonstrates the effectiveness and utility of

this implementation.

4.1 Informal Discussion of Abstractions1

This section motivates a particular form of analogical inference, one based on ab-

stractions. It discusses the intuitions which underlie our sense of abstractions, by

describing what an abstraction is and illustrating how an abstraction can be formed

in one domain and re-used in another. This requires addressing both of the ques-

tions posed in Figure 2-4 on page 29: first characterizing which sentences should be

in the source of a useful analogy and then describing how to use this source infor-

mation to produce the plausible propositions which should be added to the target

theory.

Relevant Source Facts: Section 2.5 mentioned that we can consider the source

of the analogy, p(bi , . . .B,.. .bn), to be a subset of the starting Th theory. The

important observation here is that only a small number of the 2'lT/lU subsets of the

\\Th\\ element theory make sense. To understand this idea, forget about analogies

for a moment and just consider the general task of solving a "Find the current"

problem in the EC domain. The important realization is that only certain facts are

relevant, namely, only those which deal with

Current, VoltageDrop, Resistors, Topological connections, etc.

Stating this in the more important direction, all other facts are irrelevant. That is,

we do not have to even consider facts which pertain to the color of the wires, the

owner of this circuit, or the history of electricity.
lrFhe reader should not be concerned by the hand-waviness of this section. Its objective is only to
motivate the rest of this chapter; the actual validation of this "abstraction" concept is independent
of these arguments. (It appears in Section 7.6.) See also the disclaimer in Section 4.4.



48 CHAPTER 4. USE OF ABSTRACTIONS

This simple observation — that sets of facts tend naturally to clump together

— leads to our notion of a perspective:

Intuition 1 A Perspective is a single cohesive cluster of facts.

For example, the collection of facts we just described, which deals with Current,

VoltageDrop, Resistance and Res is tors , is one particular perspective. We refer

to this set as the "resistance ancilogue" perspective of Electric Circuits, or RKK-

EC. This collection of facts appears as the tagged subset of ThcF in Figure 4-

1; Figure 4-2 shows these facts in greater detail. (Notice that we derived this

perspective independently of any analogy or any analogical processing. Note:4-1

elaborates this description, demonstrating how one can derive an abstraction in

toto without appealing to any analogical process.)

There are other perspectives associated with Electric Circuits. In addition to

this RKK-EC one, other subsets of EC facts2 might deal with

• the history of electrical circuits — describing the design and construction of

the first circuit...

(What other events and people could have influenced this achievement?)

• biolelectricity — connection between electricity and biological effects . . .

(What caused Gnlvani's frog's muscles to contract?)

• timing information — describing in race conditions, stability of flip-flops, . . .

(Gould this particular bug be caused by a timing situation?)

• physical devices — describing space requirements, physical shape, . . .

(How much space does this circuit require?)

• commodity — describing who owns a particular circuit, the costs of its com-

ponents, . . .

(What type of equipment do rich people buy?)

2[Rob85] supplies a groat deal of information about all of these-perspectives.



INFORMAL DISCUSSION OF ABSTRACTIONS 49

Electric Facts (EC C THCF)

ModernTreatise (Current, W.Gilbert, 1600)

QuantifiedBy(Current, G.Ohms, 1827)

Kirchoff1(Current)

CostPerHour(Current, $2.43)

Kirchoff2(VoltageDrop)

UnitsOf(Current, Amperes)

ConservedThru(Current, Resistors)

f/ ̂  UnitsOf (Capacitance, Farads)
^(Current,...) " ̂

\
UnitsOf(Inductance, Henrys)

Ohms(Current, VoltageDrop,
Resistance, Resistors)

InDiscipline(Current, Electric)

Figure 4-1: Example of a Perspective: Electric Domain



50 CHAPTER 4. USE OF ABSTRACTIONS

RKK-EC

Ohms(Current, VoltageDrop, Resistance, Resistors)

Vd Resistors(d) =>
[VoltageDrop(j^,jj, [d]) — Current^,d) * Resistance^)]

"VoltageDrop = Current * Resistance"

ConservedThru(Current, Resistors)

Vd Resistors(d) => [Current(jj,d) + Current(yj,d) — 0]
"Current is conserved through Resistors."

Kirchoffl(Current)

Vj ] P C u r r e n t (3'-> ?) = 0
p:Conn(pJ)

"The sum of all Currents flowing into a junction is 0."

Kirchoff2(VoltageDrop)
V loop ]P VoltageDrop(i,j, [x]) = 0

"The sum of all VoltageDrops around any closed loop is 0."

Figure 4-2: Definition of the RKK-EC Perspective

• the structure of the circuit — used for the processes of design, debugging,

redesign.) . . . '

(Find the bug in a specific circuit.)

• other Lumped Element Linear System facts, describing inductance, transient

behavior, etc. (Some of these are supersets of the RKK-EC collection.)

(What is the impedance through a component of a specific circuit?)

By design, each perspective includes the facts needed to solve a certain class of

problems. The parenthetical note following each above description provides a rep-

resentative example of such a problem.

These perspectives play an important role in finding analogies: We claim that

the source of any useful analogy is such a perspective. This means we need to search

only a relatively small space to find these source sentences: rather than consider all

2^Th^ subsets of the collection of Th facts, we can just consider some of these subsets



4.1. INFORMAL DISCUSSION OF ABSTRACTIONS 51

— each corresponding to some perspective thought relevant to these analogues and

to the problem at hand.

Corresponding Target Facts: Even given this source information, we still

have to find the corresponding target sentences, viz.% the set of known facts to be

selected from the target theory, appended to the new propositions which should now

be conjectured. This task becomes relatively easy once the perspective is expressed

in the appropriate parameterized form. That is, rather than think of RKK-EC as

a subset of a theory, we can think of these resistance analogue facts as a relation,

instantiated with various concepts — here Current, VoltageDrop, Resistance and

Resistors. That is,

RKK(Current, VoltageDrop, Resistance, Resistors) = "
(4.1)

facts in RKK-EC perspective.

We call each such coherent relation an abstraction. Each abstraction specifies

certain conditions which its arguments must fulfill — both individual predicates

and various interrelations among the terms.3 Figure 4-3 provides RKK's formal

definition.

We call any ground clause which instantiates an abstraction (e.g., RKK (Current,

VoltageDrop, Resistance, Resistors)) an abstraction instance. Each such clause

is equivalent to a perspective; e.g., repeating Equation 4.1, RKK (Current, Volt-

ageDrop, Resistance, Resistors) = RKK-EC.

We see that the source of a useful analogy can be considered an instantiation

of some abstraction in the source domain. (Here, the source of the analogy is an

instantiation of the RKK abstraction in the Electric Circuit domain.) Similarly,

the target of a useful analogy is just an instantiation of the same abstraction in the

target domain. Hence, the target in this situation is an instantiation of the RKK

abstraction in the Fluid System domain.

This suggests that the analogical inference process should look for target terms

which satisfy the conditions of the RKK relation, conjecturing plausible new facts
3As many of these parameters are themselves functions mid relations, these conditions are often
second-order relations.



52 CHAPTER 4. USE OF ABSTRACTIONS

RKK(t ,c , r , l ) <=>•

Ohms(t, c, r , 1)

ConservedThru(t, 1)

Kirchoffl(t)

V; J2 t(i>p)
p:Conn{p,j)

Kirchoff2(c)
V loop £ c(i

[d]) =

= 0

t(Jld)*x(d)\

= o

Figure 4-3: Definition of the RKK Abstraction

and proposing new terms, as necessary. As we saw above, this leads to an abstrac-

tion instance in the target domain, RKK(FlowRate, PressureDrop, PipeChar-

acter, Pipes).

We refer to this process as abstraction-based (useful) analogical inference, and

represent it with the ||̂  operator symbol. Once again, the p? subscript means that

|f̂ T is used to suggest conjectures which help solve some problem. (The related non-

useful abstraction-based analogical inference process is encoded by the unadorned

h)
The rest of this section provides a high-level description of how one could im-

plement such a |(-̂ T system, and closes with several preliminary comments on this

process. The next sections flesh out this description.

J^T's Implied Process: The NLAG system implements this abstraction-based

analogical inference process by finding an abstraction which has a deducible instanti-

ation in the source domain and a consistent instantiation in the target domain. Any

standard deduction process can handle the first part. Finding the target abstrac-

tion instance is more problematic. As the initial hint told us to regard FlowRate as

Current, NLAG instantiates the RKK abstraction using FlowRate in Current's



4.1. INFORMAL DISCUSSION OF ABSTRACTIONS 53

position, that is, as RKK's first argument. This means NLAG searches for an in-

stantiation of the ?ts which satisfies the proposition RKK(FlowRate, ?2, ?3, ?4).

The satisfaction process used by the NLAG system postulates new conjec-

tures, as necessary. For example, it would add Kirchoffl(FlowRate) to the

theory if it is not already known. (I.e., NLAG would first check whether Th f=

Kirchoff l(FlowRate); if not, it would propose adding Kirchoff l(FlowRate).)

NLAG also has to fill in the other arguments, the ?t's of RKK (FlowRate ,?2, ?3, ?4).

In seeking an instantiation for ?2, for example, it would seek the FS function of a

pair of junctions which is conserved around any closed loop. This means NLAG

searches for an FS function which resembles the EC function VoltageDrop in this

particular way. Here, this prompts NLAG to propose that PressureDrop has this

property. (If this PressureDrop symbol was not in the language, an \\^T process

might create a new symbol, GOO173 to fill this position in the RKK relation —

i.e., which would (by definition) satisfy both this and all other RKK-induced

VoltageDrop-like properties. My particular NLAG system does not actually create

new symbols. See the Hp? r u l e m Subsection 5.3.6.)

In summary, NLAG uses an instantiation process to find the source of the anal-

ogy followed by a satisfaction process to find the target. The latter process finds

a set of target propositions, including both previously known facts and proposed

conjectures. These two sets of target facts, together, correspond to the relevant EC

facts, i.e., to the source of the analogy.

Comments: This section suggested that we seek only common abstractions when

searching for analogies, rather than arbitrary common formulae. This is clearly

more efficient, as there are an arbitrarily large number of possible formulae but

only a relatively small number of possible abstractions. (I.e., relatively few of the

possible |~ analogies correspond to common abstractions.) Fortunately, this smaller

class of common-abstraction analogies still covers a large number of important cases.

In particular, this research claims that they account for a large percentage of the

useful analogical inferences, i.e., of the possible |^ inferences. This is based on the

tacit assumption that



54 CHAPTER 4. USE OF ABSTRACTIONS

Most useful formulae have already been noted,

and already exist as abstractions.

This follows from the view that abstractions are compilations of solutions to past

problems: i.e., they are the "wisdom of the ages", gleaned from solutions to earlier

problems. In terms of our application, this means that each abstraction is a heuris-

tic: each claims that, given certain facts, it is reasonable to expect that certain

other facts — viz., those associated with the same abstraction — will hold as well.

This notion of abstractions ties in with the intuition labeled Iciose in Section 3.4.

There we claimed that a useful analogy should cover a "closed" collection of facts.

This section has argued that abstractions capture this sense of closure; as each

abstraction corresponds to the facts needed to solve a class of problems.

The rest of this chapter elaborates this insight. The next sections formally

define this important subclass of analogies — those based on common abstractions

— and elaborate many of the points suggested above, addressing why this model of

analogy is both efficient and possible. Section 4.3 also shows JVLAG's behavior in

more detail.

4.2 Use of Abstractions in Analogies

The previous section suggests that we consider only certain possible analogies, viz.,

only those which correspond to common abstractions. This section describes how

we realize this suggestion, in terms of the Common Abstraction Assumption for

Useful Analogical Inference, hereafter called H^bst-

The general definition of useful analogical inference (Figure 3-1's |^T) imposed

no restriction on the type of formula which could be used to link a pair of analogues.

This allows arbitrary combinations of clauses, leading to a huge number of possible

formulae. (See Section 2.5.)

This H^st rule prunes that space of possible analogies by legislating that only

"abstraction formulae" be considered. Stated more precisely, H^bnt restricts which

formulae can qualify as analogical formulae: It permits only atomic formulae, and



4.2. USE OF ABSTRACTIONS IN ANALOGIES 55

Formulae

RelationsN

/Abstractions >y

Figure 4-4: Formulae, Relations and Abstractions

of those, only the ones whose relation symbol has been "tagged" as an abstraction.

Figure 4-4 shows the relevant containments, among formulae, relations and abstrac-

tions. The fact that the space of abstractions almost fills the space of relations is

intentional. (See the discussions in both Section 7.6 and Note: 10-1.)

This section illustrates this "abstraction formulae" idea with some examples,

states the resulting definition formally and concludes with some relevant observa-

tions. . •

Examples: The formula

= Group(d, op,id)4

qualifies as an abstraction-based analogy formula, since the second-order assertion

Abs t r ac t i on ( G r o u p ) is included in the initial theory (i.e., as Th |= Abs t r ac t ion (Gro i

On the other hand, the atomic formula

(p.2(x,y,z) = +{x,y,z)

does not qualify since Abstraction(+) is not in our knowledge base, nor could the

4 We will continue to write the names of abstractions in this bold-face fixed-width font; e.g.,
Group.



56 CHAPTER 4. USE OF ABSTRACTIONS

compound formula

(p3(d,op,id) = Group(d}op>id) h ||rf|| > 10.

An abstraction formula is formally defined as an atomic formula whose relation

is an abstraction:

Definition 11 AbstForm(<p)
AtomicFormula(<p) & Abstraction( Relation(tp) )

Re-using the examples above, AbstForm((p3) is false because <p3 is not an atomic

formula (i.e., as ~^AtomicFormula('p3) ) and AbstForm((p2) is false because (p2$

relation, Relation((p2) = +, is not an abstraction. Notice that AtomicFormula

is a meta-level predicate, as it selects a subset of syntactically legal formulae; the

Relation function is both meta-level and second-order, as it maps formulae into

relations; and Abstraction is a second-order predicate, which selects a subset of

the relations.

Typical examples of abstractions include Group, Ring and Field from algebra,

and RKK (the "resistance analogue") and RCKK (the "resistance and capacitance

analogue") from the lumped linear system domain. Section 4.4 lists other abstrac-

tions from diverse domains.

Definitions: We use this notion of abstractions to define the AnalogycA relation,

which only accepts those analogies which are based on common abstractions (see

[Pol54,Gen80a]):

Definition 12 AnalogyCA{ A, B , T/i, (S [a1? . . . A,... an]- [b1}.. .B , . . .bn]) )

<=> AnalogyF(k, B, Th, {S [a i , . . . A,... an] [b l 5 . . .B , . . .bn]> )

&Th |= AbstForm(S)

where the analogues A = a2- and B = bt for the same i. We refer to the triple

(S [a i , . . . A,... an] [hi , . . . B,...bn]) as an abstraction-based analogy; or, in particular,

as "a common abstraction (which links A and J3)".5

5As a simplifying shorthand, wo will continue to equate the abstraction formula, S, with its



4.2. USE OF ABSTRACTIONS IN ANALOGIES 57

T/i, A—B

where Common:
Unknown:
Consistent:
Useful:
Abstraction:

, . . . a

Th
Th
Th
Th
Th

i n )

<p(?bu...B,
<p( a ^ . - . A ,

-xp{ a ^ . - . A ,
p ( a i , . . . A , . . .
AbstForm((p)

...?bn)

. . . an)

. . . an)
an) |= PT

Figure 4-5: Abstraction-Based (Useful) Analogical Inference

Figure 4-5 presents the related inference process, ||̂ T, which incorporates

Heuristic 1 -' Use formula ip only if AbstForm((p)

We conclude this section with various observations about this model of analogy.

CA1. Criterion for Abstraction Predicate:
The previous section suggested the essential a posteriori characteristic for an

abstraction, in terms of its applicability to standard problems. We also impose

an a priori requirement: an abstraction must be strongly non-trivial in all of its

arguments — that is, StronglyN onTrivial{ S| , Th ) must hold for all i. (See

Definition 7 on page 28). This is why Figure 4-5's fl^ does not need an explicit

NonTrivial condition. (The following comment, Point CA2, motivates another

reason for this requirement.)

This is not a major limitation. In general, each argument has (at least) some

type information: e.g., RKK(?i, c,?3, !±) => c 6 Functions. (See Figure 5-5

in Subsection 5.3.6.) As this implication eliminates many possible values, it is

sufficient to guarantee that StronglyN onTrivial{ RKK| , Th) holds.

CA2. Analogy c A =̂  Analogy pi

It is easy to see that this model of analogy is a refinement of the more general

included abstraction, S. Hence, the abstraction Group can be used to refer to the formula
Group (</, op, id), for variables </, op and id.



58 CHAPTER 4. USE OF ABSTRACTIONS

case given in Definition 2, i.e.,

Analogous CA{^-> B,T7I) =>• Analogous f(A,B,T7i) (4.3)

(where, by convention, Analogousx is the "exists-form" of the corresponding

Analogyx — i.e., Analogousx(A, B,Th) <& 3S Analogyx(A,B,Th> E)).

Proof: Simply let <p(xi... xn) be S(EI, . . . zn), and keep the same instantiations,

[ai,... A,... an] and [bj,. . . B, •.. bn]. As S|. is non-trivial, the S abstraction for-

mula is a legal analogy formula.

CA3. Analogy? ?4> AnalogycA:

Equation 4.3, above, is intentionally a one-way implication. This is consistent

with the comments first presented on page 53. Figure 4-6 succinctly restates that

claim. There axe two main salient features: For any given problem, PT, [1] few

(~ analogies are |^T analogies, and [2] most of Useful Analogical Inference (fyT)

is covered by Abstraction-Based Analogical Inferences (|^). That is, most of the

analogically derived new target facts which satisfy |^T correspond to abstractions

— i.e., satisfy |^T.

Figure 4-6: Different Types of Analogical Inference

CA4. Ties between J ,̂ and
An abstraction-based analogical inference establishes a legal abstraction-based



4.3. WHY ABSTRACTIONS SHOULD BE USED FOR ANALOGICAL INFERENCEl

analogy. (This mirrors the claim that a general analogical inference establishes

a general Analogy?] see page 22 in Section 2.3.) Furthermore, as an abstraction

is StronglyNonTrivial in all of its arguments, there can be no counter-examples

to this claim. (Thus, this claim is slightly stronger than the one for general

analogical inference. See Point TR4 in Section 2.4.)

CAS. Ties between ft^ and Ĵ T:

This definition of an abstraction-based analogical inference differs from the gen-

eral definition of useful analogical inference (in Figure 3-1) in only one respect:

it imposes the single additional constraint that only abstraction formulae are al-

lowed. Abstraction-based analogies differ from general analogies (in Definition 2)

in exactly this same manner.

This ends the basic definitions, describing what an abstraction is and how they

can be used. The following sections argue why this approach is both advantageous

(in Section 4.3) and possible (in Section 4.4).

4.3 Why Abstractions Should be Used for Analog-

ical Inference

This section discusses why abstractions are useful for this analogical inference task.

Understanding this point requires a more detailed description of how abstractions

are used. Below is a behavioral description of my abstraction-based analogical

inference process, NLAG. It is followed by a discussion of the benefits and limitations

of using this model of analogy.

Behavior: In a nutshell, the abstraction-based analogical inference process NLAG

seeks a common abstraction which links the two analogues, where the source instan-

tiation is deducible with respect to the source analogue and the target instantiation

is consistent with respect to the target analogue. Its input includes

• a pair of source (B) and target (A) analogues

(here B — Current and A = FlowRate)



60 CHAPTER 4. USE OF ABSTRACTIONS

• a problem to solve, PT

(here PT = "Find the flowrate")

• a theory Th which, by convention, includes

— many facts about the source analogue, B,

— relatively few facts about the target analogue, A, and

— a collection of tagged relations, the abstractions

(here, ThcF includes RKK and its definition).

Its output is

• an abstraction, S,

• its instantiation in the target domain, [ai, . . . A,... an], and

• a list of assumptions which had to be conjectured, {<5y},

(Following [Fin85], we call this a residue.)

where S's instantiation is

• Derivable with respect to the source domain

77if=S(b1 , . . .B,. . .bn)

• Consistent with respect to the target domain

Th ft - S . ( a 1 , . . . A , . . . a n )

Consistent{ThU {Sj})0

Figure 4-7 shows an example of JVLAG's output for our canonical electricity and

hydraulics situation. (The above listing suggests NLAG's inputs; one complete ex-

ample appears explicitly in Figure 4-8.) In addition to the common abstraction,

Figure 4-7 explicates the set of conjectures which NLAG postulates, labeled {<5y},

and the binding list used to instantiate the abstraction in the target domain, labeled

6The relation Conaintent^S) is true when the sentences in the set S are consistent.



4.3. WHY ABSTRACTIONS SHOULD BE USED FOR ANALOGICAL INFERENCB

Abstraction

s
Target Instantiation

[ai, . . . A, . . . an] =

Conjectures

is \ c
i y/ —

RKK

[FlowRate, PressureDrop, PipeCharacter, Pipes]

( Kirchoffl(FlowRate) )
1 Kirchoff2(PressureDrop) 1
| ConservedThru(FlowRate, Pipes) f
{ Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes) J

Figure 4-7: Components of Analogical Inference — Hydraulics Example

[ai , . . .A, . . .an]. The binding list is required because most abstractions are n-ary

relations and we initially know the value of only one of its arguments, namely, the

parameter occupied by the target analogue. (NLAG also finds an instantiation of

this abstraction with respect to the source analogue — a binding set [&!,... B , . . . bn]

such that Th (= S ( b i , . . . B,. . . b n ) ; here that binding set is [Current, Voltage-

Drop, Resistance, Res i s to rs ] . This is an intermediate, internal calculation.)

We can use the A(T7i, S ( a i , . . . A,... a n ) , {S3}) relationship to link these various

outputs together, where

Definition 13 A( Th, <r, E ) <=>

[r/iUE|= a] & Consistent(ThUY,).

Notice this A relation is not a function: there may be many different sets E which

each satisfy this criterion. In fact, this definition permits many undesirable conjec-

ture sets. (For example, it allows <5i = S ( a i , . . . A,... a n ) , trivializing the entire con-

jecturing process.) For the definition to be used meaningfully, we need to constrain

what qualifies as a residue. Subsection 6.2.3 describes an syntactic requirement

for the legal conjecturable propositions which eliminates many of these meaningless

cases.



62 CHAPTERS USE OF ABSTRACTIONS

Given;
AH = "FlowRate~ Current"

PT ="Find the flowrate"

Kirchoffl(Current),
Kirchoff2( VoltageDrop),
ConservedThru(Current, Resistors),
Ohms (Current, VoltageDrop, Resistance, Resistors), . . .
CostPerHour(Current, $2.43),
Units (Current, Amperes),
Cost (Resistor 1, $3.50),
Color(Wirel, Red),
ModernTreatise(Current, WGilbert, 1600),
InDiscipline(Current, Electric), . . .

Kirchoffl(FlowRate),
ConservedThru(FlowRate,Pipes),
Units(FlowRate, Meter3PerSec), . . .
Cost(Pipel, $2.73),
Color(Pipel, Red),
InDiscipline(FlowRate, Hydraulics), . . .

Domain(Kirchoffl, 1, Functions),
Domain (Kir choff2, 1, Functions),
Domain(Ohms, 1, Functions),
Domain(Ohms, 4, Classes), . . .

Vt Kirchoffl(t) o Vi ]T t{j,p) = 0,
p:Conn(ptj)

Vc Kirchoff2(c) *> V loop ] T c(s,i, [x]) = 0,
' <ij>eloop

Vc, 1. ConservedThru(t, l) <* Vc/ l(d) => [t(fi,d) + t(jj,d) = 0],
Vt,c,r , l .Ohms(t ,c ,r , l ) 4* [Md l(d)=>(c(ji,ij, [d\) = t(i],d) * r(d)]

Abstraction(.RKK), . . .
RKK(t, c, r, 1) O Kirchoffl(t) & Kirchoff2(c) & ConservedThru(t, 1)

& Ohms(t, c, r, 1)

Find:

Abstraction: RKK

Target Instantiation: [Flov/Rate, PressureDrop, PipeCharacter, Pipes]

Set of Conjectures:
Kirchoff2(PressureDrop)
Ohms (Flov/Rate, PressureDrop, PipeCharact, Pipes)

Figure 4-8: Example of Abstraction-Based Analogical Inference

(These ThcF facts repeat the sentences shown in Figure 2-2, on page 18. The only addition facts
are the two fined statements about RKK.)



4.3. WHY ABSTRACTIONS SHOULD BE USED FOR ANALOGICAL INFERENCE

Figure 4-8 elaborates this specific situation. Here, the initial theory already in-

cluded the two FlowRate-facts, Kirchof f 1 (FlowRate) and ConservedThru(FlowRate,

Pipes). This means that NLAG needs to add in only the other two facts,

Kirchoff2(PressureDrop)

Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes)

(4.4)

Notice how the RKK abstraction guides the search for the needed conjectures:

they are just the "missing parts" of RKK's target abstraction instance. In particu-

lar, these {6j} are a subset of the "component propositions" of the RKK abstraction

instantiation in the target domain; i.e., the conjectures shown in Equation 4.4 are

a subset of the four propositions shown in Figure 4-7. This means this resistance

analogue (in this guise of this RKK abstraction) provides a modeP which suggests

which new propositions should be postulated. (Subsection 6.2.3 describes what can

qualify as a "component proposition™.)

Possible Benefits: Why are abstractions useful for analogies? As hinted above,

they focus the search for new, analogically-inspired conjectures: Rather than search

for an arbitrary collections of facts, NLAG can consider only some of those sets,

only the ones which correspond to an instance of some abstraction. Hence, they

represent what Mitchell calls a bias of our learning system, pushing it towards some

sets of new facts over others [Mit83].

Why is this necessary? That [Mit83] article noted that every learning system

must use some biases to constrain an otherwise infinite search.8 Section 2.5 rein-

forced this concern by demonstrating the immensity of our analogy space: showing

that the number of possible analogies is exponential in the number of facts known,

7Here we use "model" in the sense of schemata or paradigm, not in the model theoretical sense.
See [Hes67] and [Dav85] for a summary of the historical connection between analogy and such
paradigms (from the Greek word napaSetifia, meaning "pattern").

8It has been argued that any epistemological system must begin with some biases. The best known
argument of this kind is in Kant's Critique of Pure Reason, wherein Kant deduces that humans
have categories by which they interpret the world [SmiG8]. This is also addressed in the Whorf-
Sapir Hypothesis which states that we "are very much at the mercy of the particular language
which has become the medium of expression for [our] society" [Man49, pl62]; i.e., the "real world"
is built up on our language habits.



64 CHAPTER 4. USE OF ABSTRACTIONS

and becomes infinite if we axe allowed to generate new terms.9 These abstractions

are explicit biases, used to avoid searching the full space exhaustively. (Section 7.6

makes their "source of power" more concrete, by describing which parts of the search

they help channel.)

Our use of abstractions makes this search for useful new facts more efficient.

Without any guidance, the best we could do would be a "bottom up" search through

an essentially infinite space. (Sections 2.2 and 3.3 discuss this approach, and the

data described in Section 7.5 confirms its limitations.)

The use of abstractions turns this into a top-down search. This is a big improve-

ment for two reasons: First, there axe usually very few abstractions which pertain

to a given pair of analogues and target problem. The other asset is that instanti-

ation is a goal-directed process. Once NLAG has selected a pertinent abstraction,

the rest of its work — finding the relevant facts which constitute first the source

and then the target of the analogy — is essentially a pair of top-down searches. In

each case, it seeks the specific facts which complete these respective RKK-related

perspectives. To find the source instantiation, NLAG performs a top-down search,

trying to prove each fact of this perspective which is not explicitly in the KB. In the

target case, it seeks just the particular facts which serve as the residue of a specific

formula — again, a very directed process.10

Possible Limitations: As with any bias, the use of abstractions presents some

drawbacks. Permitting NLAG to perform top-down searches does provide a greater

efficiency, but only for a narrow range of problems. Here, NLAG's coverage is

limited to those abstractions which it knows.

In particular, the reliance on abstractions means that an abstraction-based anal-

ogy cannot be found unless both Abstraction(S) and the definition of S are in

the initial theory, Th. {E.g., both Abstraction(RKK) and the definition of RKK

exhibited in Figure 4-3 must be included in the learner's starting theory.)

9Notice the simplification of using only known vocabulary represents another bias. See Subsec-
tion 9.3.2.

10This means that this learning-by-aiicilogy task can often be reduced to selecting and instantiating
the appropriate existing abstraction. Note:4-3 responds to the unfair charge that this renders the
overall task trivial.



4.4. WHY ABSTRACTIONS CAN BE USED FOR ANALOGICAL INFERENCE65

has already stated the claim that this restriction prunes away relatively few

of the useful analogies. Figure 4-6 illustrates this by showing how thin the difference

is between \^T and fyT. (Section 7.6 explains why.) As analogical inference is, at

best, a mechanism of plausible reasoning, eliminating this f̂T— |yT sliver is not that

serious a drawback (see Note: 1-2).

4.4 Why Abstractions Can be used for Analogical

Inference

The previous section demonstrated why it is efficient to use abstractions for analog-

ical inference. This efficiency is worthless if the needed abstractions do not exist or

if the resultant conjectures are not reasonable. This section addresses the question

of why this use of abstractions is possible, illustrating that [1] these abstractions do

occur in many different domains and [2] they do tend to suggest plausible conjec-

tures. (Another requirement is that each abstraction appears in a re-usable form.

This is trivial, as each abstraction is a relation with several formal parameters.

Hence, one can "re-use" an abstraction instance by re-instantiating the abstraction

with other terms.)

Section 4.1 suggested that each abstraction is a model, embodying the cohesive

cluster of facts needed to produce a useful analogy. We consider these clauses

cohesive because they work together to yield solutions to some problems. As an

abstraction helped to solve a problem in one domain, we intuitively believe that it

might work again in a new domain. That is, an abstraction provides a predictive

bias.

This claim is easy to justify in artificial domains, in which designers construct

artifacts. There we can assume that the human designer has built in certain features,

probably for cognitive simplicity or efficiency. In particular, we know that two

artifacts designed from the same plan will share a great many features — viz.,, those

derived from this original plan. Consider, for example, a pair of sorting programs



66 CHAPTER 4. USE OF ABSTRACTIONS

based on the same specification, or houses built using the same architectural floor-

plan, or dishes prepared using the same recipe.

This argument extends to "artifactual properties" of natural objects, for ex-

ample, their names. This is why we expect diseases with similar names to exhibit

similar manifestations; we can assume that the "name-designer" assigned the names

on this basis.

It also seems true that objects in diverse natural domains share many similarities.

Proving this intuition requires a strong inductive leap. It requires assuming that

facts which hold in one domain will also hold in another. The rest of this section

presents a number of examples which reinforce this claim.11

As one example, there are many places where some quantity is conserved at

every junction of devices — e.g., current and liquid flow-rate as well as force,

torque and heat flow-rate. In each of these, there is also another term which is

invariant around each loop of devices: we have already mentioned Pressure and

Voltage, now add velocity, angular velocity, and temperature. (See Table 4-

i.)
As a different example: remember when you learned that matrices were closed

under matrix addition. It then made sense to ask about things like inverses and

identi t ies . Why? Well, those properties held for the integers, reals, complex

numbers, etc. They appeared together again when considering rotations of a

cube (or even Ruble's cube); and again, in par t ic le physics. So, we argue, why

not here as well?

The Program Plans and cliches used in the Programmer Apprentice project

[Ric81,Wat71,Bro81,Ric79] are exactly the general re-usable clusters we call ab-

stractions.

This re-usability does not pertain only to hard scientific models. The case frames

used to understand natural language provide one common use of abstractions (c/.
11 Unfortunately, it appears that the only way to justify this claim is empirical; by observing that

the world seems to have this nice continuity property. This is clearly related to Hume's famous
dilemma [Hum()2]; see Note:4-4.
Note:4-5 is also relevant, as it explains why I do not care whether this continuity is an ontological
fact, relating to the true nature of the world, or epistemological, dealing only with our theories of
the world.



CHAPTER 4. USE OF ABSTRACTIONS 67

» 2.7.2

Nation

tion

rical

I

mal

-1 LIST OF ANALOGOUS VARIABLES AND ELEMENTS

DISCIPLINE

Force/*

Torque T

Current /

Volumetric
flow rate Q

Heat flow
rate?

INTEGRATED

THROUGH

VARIABLE

Momentum Mv

Angular
momentum J&

Charge q

Volume V

Heat flow B

ACROSS VARIABLE

Velocity
difference At?

Angular velocity
difference Aw

Voltage
difference A V

Pressure
difference &P

Temperature
difference AT

INTEGRATED

ACROSS VARIABLE

Displacement
difference AX

Angular
difference A0

Flux linkage AX

Pressure
momentum AT

—

ELASTIC OR

THROUGH STORAGE

ELEMENT/:'

Translatory
spring AT

Torsion
spring A,

Reciprocal
inductance \/L

Reciprocal
inertance I/I

—

CAPACmVE OR

ACROSS STORAGE

ELEMENT C

Mass A/

Moment of
inertia/

Electrical
capacitance C

Fluid
capacitance C

Thermal
capacitance C

ENERG

DISSIPAT

D'

Damper/)

Torsional
damper D

Reciprocal
resistance

Reciprocal
resistance

Heat condu<
or dissipa

gp*

Table 4-1: Other Examples of Lumped Element Linear Systems
(from [Coc80, p80])

[vGDB81, esp C4] and [Fil68]).

As another example, Lakoff and Johnson have a large compendium of other

instances of this abstraction idea, taken from day to day speech [LJ80]. For example,

notice that "height" has the nice property that every two heights are comparable.

When we start comparing emotions, like happy to sad, we see that it, too, embodies

a l inear ordering — and so we talk about

"feeling up in the clouds" or

"being down in the dumps",

as well as

I'm feeling up.

That boosted my spirits.
My spirits rose.

You're in high spirits.

He's really low these days.

I fell into a depression.

My spirits sank.

I'm feeling down.

Thinking about her always gives me a lift. I'm depressed.



68 CHAPTER 4. USE OF ABSTRACTIONS

Those authors went on to observe other systematic uses of this linear ordering:

Conscious is up

Health and life are up

Having control is up

More is up

Forseeable future events are up

High status is up

Good is up

Rational is up

Their book also describes many other systematically used hidden metaphors. (Their

"time is money" description is one of their best.) This idea is so convincing that

many others have followed suit, including [Red79], [Car81b,CM83] and [Hob83a,Hob83b],

The list in Section 1.1 includes yet other inter-domain connections. Table 4-2

shows that many of those analogies are based on well-known abstractions as well.

What is the impact of this use of abstractions? While this section has focused on

their utility in natural domains, I feel this application represents only the tip of the

iceberg. These abstractions may have far more applications in artificial domains, in

situations where we know the artifacts are designed. As mentioned above, people

often follow the same blue-print for several different items; for example, designing

one operating system in the same mold as a previous one, or modeling jets after

airplanes,12 or naming conventions, etc. In general, there are cognitive reasons

for not "re-inventing" the wheel, and instead re-using some existing idea, mutatis

mutandis}* These are exactly the conditions needed for abstractions to work.

Goal: This is a good point to repeat the goals first mentioned in Section 1.4:

this dissertation is solely concerned with the challenge of deriving useful analogies

12 They resemble one another structurally (i.e., each has a pair of opposing wings perpendicular
to the fuselage), "internally*' (i.e., each has a set of stewardesses serving the passengers) and
behaviorally (i.e., in both cases, the passengers first buys tickets before boarding), etc.

13()f course, in some cases we could claim that the world forces these constraints, as in deriving the
shape of a jet plane from that of airplanes. For this research, this is irrelevant; it is enough to
observe that designed artifacts do exhibit clusters of related features. See Note:4-5.



4 A. WHY ABSTRACTIONS CAN BE USED FOR ANALOGICAL INFERENCES^

• "Electric Analogues" (e.g., RKK, RCKK . . .)
Hydraulics, Electricity, Thermal, Translation, . . .

• Algebraic Structures (e.g., Group, Ring, Field, . . . )
Matrix, Numbers, Function spaces, Rotations, . . .

• Program cliches (e.g., Aggregation Loop)
Sum of Vector, Product of List

• Information Processing Systems
People, Computers

• Linear ordering
Happy, Up, Good, Quantity, . . .

• Domain principles (e.g., Anticipate Drug toxicity)
Cardiomyopathy, Hypercalcemia

• Naming Conventions
Chemical Nomenclature,Raines of Fonts, Related Diseases,

Table 4-2: Abstractions used for Useful Analogies

based a pre-specified set of known abstractions. The task of generating additional

abstractions on the fly, guided by the goal of finding the analogy which helps to

solve this problem, is a related but different line of research. Fascinating as this

possibility is, n.6., it is not the topic of this research. We assume, instead, that

these useful generalizations have already been accumulated.

Fortunately, abstractions exist all around us, and the scholars of the ages have

recorded just such information. As suggested above, there are books on abstract

algebraic structures (e.g., [Her64], Group), on lumped linear systems (e.g., [Coc80],

RKK), on program cliches (e.g., [Ric79], Aggregation-Loop), etc. Our goal is

to capitalize on this large corpus of stored information. NLAG does so by viewing

each abstraction as a useful heuristic, each claiming that a particular cluster of facts

will continue to Gt together, even in new domains.



70 CHAPTER 4. USE OF ABSTRACTIONS

4.5 Comparison of Abstractions

In many respects, the concept of abstractions is not new. AI researchers have

long considered clustered assemblages of related facts to be useful — consider the

literature on frames ([Min75], [BW77], [Bra79], [RG77], [SF80], [SGLS80], etc.),

scripts ([SA77]), program plans ([Ric79,RW81]), scenarios ([WR82]), and dating

back even to LISP's property-list construct (see [MAE*62]). Indeed, they have even

been utilized in a prior analogy related work, in Merlin's beta-structures [NM73].

The psychology literature also abounds with this idea, indicating that people are

believed to employ this facility internally as well (c/., [AB73]).

Abstractions, however, differ from the other clustering ideas in one important

aspect: in how the cluster is indexed and accessed. In each of the other systems,

there is but a single access point into each cluster of facts — through perhaps the

name of the unit or the lisp atom or a description of the activity. This facilitates the

most typical retrieval task, of finding the facts associated with that specific concept.

On the other hand, it is difficult to access this bundle of facts in any other manner,

rendering this information all-but-unavailable to other related objects, or even to

the other terms included in these sentences. Clever tricks — like Generalization

(Tangled) Hierarchies [Fin79], Event Units [Nil80], or even elaborate schemes like

Partioned Semantic Nets [FH77] — somewhat lessen these losses. Each of these is

still limited; each is only able to handle those situations for which it was explicitly

coded.

An abstraction, being a flat collection of facts, can have an arbitrary number of

"keys" — meaning that such a cluster can have more than one entry point. (The

plans used in the Programmer's Apprentice system are similar; each can be accessed

via any of its (multiple) internal roles [Ric79]. See also Sussman's notion of "Slices"

in [SGLS80].) Furthermore, a single concept can be associated with many clus-

ters. Consider, for example, the RKK-EC cluster of facts discussed in Section 4.1

above. There, it was found via the Current entry, together with facts related to

the "Find the Current" problem. We could have found this cluster from other



4.5. COMPARISON OF ABSTRACTIONS 71

starting points as well — from VoltageDrop for example, or from the facts asso-

ciated with a "Find the resistance in th i s series circuit" problem. The

other important realization is that there are other clusters which could have been

found from this same Current concept. (Section 4.1 elaborates this objective, and

Subsection 6.1.3 presents one possible implementation.)

Many of the tasks which seemed awkward from the "single focus" view-point,

fall out once one adopts this attitude. As one example, this is probably why Schank

both considers retrieval to be a complex indexing task, and regards it as a critical

objective in understanding intelligence [Sch85]. The general process of understand-

ing an analogy, however, is the canonical example. Much of the apparent "fuzziness"

associated with the way information is transferred (as the learner understands the

analogy) can be attributed to the view that a given concept can be associated with

but a single cluster of relevant facts — which follows perforce from this single focus

assumption. But given this multipla-focus perception and these abstractions, we

saw above how straightforward and logical this process is. (See also Note:9-2.)

There is, of course, a cost for this generality: the task of retrieving a cluster

from one (or more) of its keys is quite difficult, certainly more challenging than a

getprop. Indeed, this indexing problem — of going from various symbols and facts

to the pertinent abstraction — is a major issue in this research. ComAhs's first two

steps, Find-Kernel and Inst-Source, represent one approach. (See Section 6.1.)

As a final note, realize that most of the current research in analogy deals with

some notion related to abstractions; c/., [Gen80b], [Car81b], [WBKL83], [Hob83a],

[Ked85], etc. Each of these is quickly sketched in Section 3.4 and elaborated in

Section 9.4.



 



Chapter 5

Ranking Analogical Inferences

Chapters 2 and 3 defined the useful analogical inference process and demonstrated

that its search space is intractable. Chapter 4 then discussed how the use of ab-

stractions can focus the search. Unfortunately, this is not sufficient to eliminate

search; there may still be many possible common abstractions. This chapter sug-

gests several further criteria which can be used to rank these different analogies.

The next chapter shows how these rules are used to generate the a priori better

analogies first.

Section 5.1 sets the stage by posing the underlying question and describing

the general framework of the answer. The next two sections present two sets of

heuristics. Section 5.2 describes rules which Use the problem statement and context

to focus the search. Section 5.3 motivates and describes rules based on the "least

constraint" maxim. Section 5.4 presents a summary of all of the heuristics used to

constrain the legal analogies and describes their interactions.

5..1 Framework for Ranking Analogies

Given any theory, analogues and target problem, there may be many possible legal

analogies, each composed of an abstraction and a target instantiation which together

satisfy the requirements given in Figure 4-5. One objective of this research is to

determine, a priori, which of these legal analogies is most likely to be "correct"

72



 



5.1. FRAMEWORK FOR RANKING ANALOGIES 73

or "meaningful". NLAG uses this information to decide which of these analogies

should be considered and in what order.

Stated more precisely: we axe given a pair of analogies, ^(A) and ^2(A),1 where

Th, A~B |^T ^(A)

Th, A~B k T ^2(A).

The goal is to determine whether ^(A) is "better than" <p2(A): that is, which is a

more likely extention to the initial theory T7i, given the meta-level knowledge that

this hint is given to help solve the given problem. (It turns out that the analogies

suggested by this criterion can be found efficiently. This is serendipitous as efficiency

was not an original objective.)

The previous chapter discussed one important heuristic: restrict the <p{ to

abstraction formulae. This has already been incorporated in the definition of

abstraction-based analogies presented in Figure 4-5.

This chapter discusses several other heuristics, separated into two categories.

The first group, described in Section 5.2, consists of rules which apply only when

considering abstraction-based analogies. These two rules use the problem statement

and context (respectively) to focus the search for desirable ||^ analogies.

Section 5.3 discusses the "Least Constraint" maxim, an embodiment of the Iuast

intuition presented in Section 3.4. Basically, this maxim prefers "closer" analogies:

i.e., it favors ^(A) over £>2(A) if ipx{k) is "closer" to the currently known world than

<p2(A). Section 5.3 provides a semantic basis for this single idea and discusses three

heuristics used to implement it. Since these rules implement a method of focusing

general analogical inference, they have a greater utility than the ones discussed in

Section 5.2. (Recall the latter rules pertain only to abstraction-based analogical

inference.)

Section 5.4 summarizes the six rules presented in this dissertation (in this chapter

and the last) and discusses how this total collection of rules interact. The data

presented in Chapter 7 further demonstrates their synergism.

*Two notes: [1] This chapter is concerned with ways of comparing given analogies, not with
generating them. [2] Of course, analogical formulae are usually n-ary. We initially describe them
as nnary formulae for pedagogical reasons; this chapter deals with the more general case later.



74 CHAPTERS. RANKING ANALOGICAL INFERENCES

Chapter 6 is a continuation of this chapter in two ways. First, this chapter only

sketches how each rule is implemented; Chapter 6 provides the details. Secondly,

this chapter's rules do not completely specify an abstraction-based analogical in-

ference process: in particular, they do not completely specify the order in which

certain inferences should be made. The additional rules described in Chapter 6

complete the partial ordering. There is an important distinction between the rules

of this chapter and the next, though. The rules shown in this chapter are part

of the definition of abstraction-based analogical inference. By contrast, the rules

suggested in the next chapter are but nuances of my NLAG implementation, often

arbitrary decisions made to handle certain situations.

5.2 Abstraction-Based Heuristics

This section presents two heuristics and discusses their consequences. Both per-

tain only to the abstraction-based analogical inference process: i.e., each heuristic

depends critically on the fact that the analogy formula is an abstraction formula.

(Hence, each rule can be considered a modification of the overarching rule, Hj^9t?j

The first, HJK) provides a way of using the target problem to find the relevant

cibstractions. The second, Hcc> insists that all the arguments of an abstraction

belong to a single context.

(These rules may conflict with the rules presented in the next section. In all

cases, these rules take precedence. Section 5.4 explains why.)

5.2.1 HJKI Justification Kernel
"Look at the unknown! And try to think of a familiar prob-
lem having the same or a similar unknown."

How to Solve It, Polya (1957)

This rule uses the problem statement as a guide to determine which abstractions

should be considered and in what order. When it applies, it both reduces the space

of eligible abstractions and provides an ordering for those which remain. (I.e., it is

both an ordering and a pruning heuristic.)



5.2. ABSTRACTION-BASED HEURISTICS 75

In a nutshell, HJK u s e s the target problem to suggest a related query in the

source domain, then uses the support for this source query to suggest which ab-

stractions may be relevant. The first problem is finding an appropriate query

in the source domain. Ideally, it should be just like the given target problem,

but in the different source domain. For example, from the target problem PT =

"Find the f lowrate in a given hydraulics system", HJK finds the analogous source

domain problem, PS = "Find the current, in a [related] electric circuit". More

precisely, it derives PS = (current ?1 ?2 ?3 ?4)2 from PT = (f lowrate j-wc-

a pipel sO ?fr) by lexically replacing the source analogue with the target and

turning the other constants into variables.

The HJK rule then considers how to solve this analogous source query, PS: in

particular, it determines which facts would be relevant. This corresponds to the

support of this query from the initial theory. These are the "kernel facts", written

S = STrh{ PS )• (Definition 8 on page 31 defines the ST( ... ) support operator.)

The members of E include a trace of the facts which would be used to solve

this problem. Now recall Section 4.1's claim that the abstractions themselves were

originally formed from just such problem solving traces! This means that E contains

the facts which would have led to the formation of the relevant abstractions in the

first place, which suggests that we consider the abstractions derived from these

support facts.

To illustrate this, consider how a backward-chaining system would address the

"Find the current" query. It would use rules of the form

(If <ante> (Current . . . ) ) , (5.2)

which, in turn, is derived from the fact (Kirchoff 1 Current) together with the

rule

(If (Kirchoffl ?t) (If <ante> (?t . . . ) ) ) . (5.3)

This means the support for this source query, S = STTH{ (current ?i ?2 ?3 ?4) ),

includes this (Kirchoffl Current) fact. (I.e., (Kirchoffl Current) G S.) This

2Recall each ?i term denotes an existential variable. Also, some clauses are written in LISP's s-
expression notation rather than the other functional form; e.g., k i(current ?1 ?2 ?3 ?4)" rather
than "current(?1 ?2 ?3 ?4)w.



76 CHAPTERS. RANKING ANALOGICAL INFERENCES

derivation similarly depends on the other RKK-related facts, including (Kirchof f 2

VoltageDrop) and (Ohms Current VoltageDrop Resistance Resistors).3

We see that the support set £ contains many of the facts associated with in-

stances of the relevant abstractions. In fact, we can approximate how much this

problem has in common with an abstraction instance by measuring the size of the

intersection of its support set with that source kernel, preferring abstraction in-

stances whose supports include many elements in common with E. This suggests

that we seek the abstraction, S, which maximizes

STTh{PS) n. STri l(S(b1 , . . .B,. . .bn).) . (5.4)

This is the sense of the Hj% rule:

Heuristic 2 HJK: Using £ = STTh{ PS ),

(%) Prefer Si dver S2 if

(ii) Avoid Si if

EnST r *(S i (c 1 , . . .B , . . . c n ) ) = {}.

where Si and S2 are each abstractions and [ci, .. ,cn] and [di, . . .dm], their respec-

tive binding list. (For each abstraction, we use the binding list which maximizes

the size of the intersection.)

An example may help explain this ordering rule. Consider again the electricity

and hydraulics situation. When should the RKK abstraction be considered before

KK? HJK claims this should depend on the relative sizes of \I>i and \J/<2> where

$ i = S n STTh{ KK (Current, VoltageDrop) )

f 2 = Sf i STTh{ RKK (Current, VoltageDrop, Resistance, Resistors) ).
(5.5)

3In fact, this derivation actually uses all four of the RKK-facts. This is a further corroboration of
my belief in the coherence of abstractions.



5.2. ABSTRACTION-BASED HEURISTICS 77

As a first observation, notice that \&i C \I>2> as

STr/»( KK (Current, VoltageDrop) ) C

STrh{ RKK (Current, VoltageDrop, Resistance, Resistors)).
(5.6)

(That is, any fact which supports an instance of KK must also support the more

specific RKK instance.)

Now suppose the containment is proper, i.e., \&i C \I>2- This means that some

fact in $2 ~ *i Is used to support PS. (For example, perhaps the electric Ohms law

is needed to solve PS.) As RKK has more "parts" which contribute to solving the

source problem than KK, we feel RKK is a better common abstraction than KK,
and so should be considered first.

This example deals with abstractions whose support sets are tightly related;

Equation 5.6 shows that one is contained in the other. In general, a given E support

set might intersect the support sets of many diverse abstraction instances. HJK

handles these cases by comparing \\^i\\ with 11*211) rather than just *x and \J>2-

(I.e., it deals with the cardinality of the intersection of these sets, rather than with

the particular facts in that intersection.)

Of course, this definition is meaningless unless we constrain which facts can qual-

ify for membership in these support sets. We address this problem by considering

only the leaf clauses defined in Subsection 6.2.3.

The second part of Heuristic 2 indicates that HJK also prunes away the extreme

points of this measure. It tells NLAG not to consider an abstraction S if none of

its instances are supported by any member of PS"s support: i.e., where

En$T™(S(b 1 , . . .B , . . .b n ) ) = {}.

Why? Finding the intersection empty means that this abstraction includes no facts

which apply to this problem. (Of course, this requires the assumption that every fact

in the initial theory points back to its justification. Otherwise, if this "justification

tie" has not been established, the system might miss an applicable abstraction.)

We close this subsection with some final comments. First, realize that this rule

is only a heuristic: There is no intrinsic reason why the lexically derived PS should



78 CHAPTERS. RANKING ANALOGICAL INFERENCES

have anything in common with the original PT. Had we worded the PT target

query differently, this substitution might have produced a totally worthless source

query.

Secondly, HJK is not always applicable. In particular, for certain hints and

target problems, there may be no related source problem. Consider this same

"Find the f lowrate" target problem, but imagine we were given a different pair

of analogues, e.g., PressureDrop~VoltageDrop rather than FlowRate~Current.

Here, there is no corresponding PS. In these cases, NLAG uses a starting kernel

which consists of all sentences which lexically include the source analogue. (This

is E — Pfr(Th), using the notation defined in Note:5-1. That note also proves that

this set is adequate: i.e., that it finds all abstraction instances.)

Thirdly, this rule constrains which abstraction formulae may be used but says

nothing about how to re-instantiate this abstraction using the target analogue.

Fourth, as the current version of HJK deals only the cardinality of the intersec-

tion of the support sets, ||S7V/i( PS ) f! STTH{ S I (CI , . . . B, . . . cn) )||, it is, implicitly,

assigning equal weight to all component facts. Later versions may weigh different

facts differently, to encode how important each fact is towards establishing its as-

sociated abstraction. The current unweighted form proved sufficient for all of the

examples I tried.

Finally, NLAG operationalizes this HJK heuristic by using this set of support

facts, S = STT/I( PS ), as a starting kernel. It then applies a forward-chaining

scheme to find the abstraction instances which follow from this set, ordered by

the number of involved kernel fact. (This also means that our version of HJK

resolves ties in the order of fewest-deductions first: see Note:3-1.) Subsection 6.1.3

elaborates this description.

5.2.2 Hcc* Common context

This heuristic is a pruning rule. When instantiating the abstraction in the target

domain, Hoc instructs NLAG to consider only n-tuples of terms which all come

from the same context. This idea is best introduced by example:



5.2. ABSTRACTION-BASED HEURISTICS 79

Figure 4-3 shows that the only requirements RKK places on its second argu-

ment, ?2, is that it satisfy (Kirchoff2 ?2) and (Ohms ?1 ?2 ?3 ?4). Notice this

permits the ?2H-> VoltageDrop assignment. In fact, there is a good reason to con-

sider this possibility, as (Kirchof f 2 VoltageDrop) alone provides strong support

for VoltageDrop. Of course, the other proposition, (Ohms FlowRate Voltage-

Drop PipeCharacter Pipes), is not known to be true. This is easily surmounted,

as the |fyT process is allowed to simply postulate this assertion. (Recall that |^T is

expected to postulate clauses it cannot prove.)

The only reason this ?2*-> VoltageDrop assignment seems wrong to us is because

we know a bit more about VoltageDrop and FlowRate. In particular, we know that

VoltageDrop deals with electricity while FlowRate deals with hydraulics. As one

solution to this predicament, we could insist that each abstraction include an explicit

clause which forces all of its terms to be associated with the same "context". For

example, we could use an embellished R K K ^ relation rather than RKK, where

RKKcc includes an additional clause which insists that all of its instantiated terms

belong to the same sub-theory: i.e.,

RKK c c ( t , c, r, l) <>
RKK(t, c, r, 1) & SameTheory(t, c, r, l) .

where the additional SameTheory clause guarantees that all of RKKcc' s arguments

come from the same domain — here, either all from electricity or all from hydraulics.

As SameTheory (FlowRate, VoltageDrop, r , 1) is false, RKK^c would not con-

sider the ? 2 ^ VoltageDrop instantiation.

I choose, instead, to effect this "same context for all arguments" rule at the

ineta-level, using the HQC rule:

Heuristic 3 Hcc: Avoid S(ai , . . . A,... an) unless

Vj TheoryOf (A) = TheoryOf (ay).

This means we only consider a proposed target instantiation if all of its arguments

belong to the same context.



80 CHAPTERS. RANKING ANALOGICAL INFERENCES

This Hcc r u l e is basically a convenience, one which spares us the need to gener-

ate a more complex definition for each abstraction. (It is implemented using MRS's

theory context mechanism, see [Rus85, Chapter 9], Section 6.1.5 provides more

details.)

This rule may be justified by observing that all members of an abstraction's

n-tuple of concepts tend to come from the same theory. This follows from the ob-

servation that this co-participation in "reasonable" relations (read "abstractions")

is partly what defines and separates different theories.

5-3 Least Constraining Analogies

This section motivates, defines and operationalizes the "least constraint" maxim.

Stated simply, this maxim favors the analogy which imposes the fewest additional

constraints on the currently known world: i.e., it corresponds to the I Least intuition

of Section 3.4. Subsection 5.3.1 first discusses this idea intuitively, emphasizing

how it fits into our framework of useful analogies. Subsection 5.3.2 then proposes a

syntactic criterion. When that attempt fails, Subsection 5.3.3 successfully provides a

correct semantic account. Subsections 5.3.4 through 5.3.6 present three operational

heuristics which follow from this single idea.

5.3.1 Motivation for the Least Constraint Maxim

All of the heuristics presented until here deal with abstractions, realizing the Iciose

intuition presented in Section 3.4. That section also claimed that we should prefer

the minimal extension; suggesting that it is sufficient to consider the abstraction

which is "closest" to the known world. This subsection describes this "closeness"

intuition and argues why it is applicable to abstraction-based analogies.

Intuitively, we feel a conjecture is "close" to the known world if it imposes few

additional constraints. In the analogy context, this closeness measure describes how

likely the analogy formula is to hold for the target analogue.4 It is measured by

4 Wo say an abstraction holds for a concept if there is some instantiation of the abstraction including
that concept. E.g., "Group holds for +1% as Group(9?, +,()) holds.



5.3. LEAST CONSTRAINING ANALOGIES 81

considering how much more we must require of the world for this target sentence to

hold: the fewer additional requirements must be made, the closer this abstraction

is to holding for the target analogue.

Now to make that "how much more we must require of the world" comment

more precise. Consider what is required for the target instantiation, £>(A), to hold.

At one extreme, ^(A) may already be true; i.e., Th |= £>(A). This means the world

already satisfies this requirement; nothing else is required. Otherwise, if Th ^ £>(A),

we have to impose some additional constraints on the world before <p(k) can hold.

This amounts to finding some independent sentence, <5, such that Th + 8 |= ^(A).

The rest of this subsection illustrates this notion and describes how it can be used

to compare different analogies. The next several subsections attempt to quantify

this measure.

Imagine first that we know nothing about the target analogue, A. Now ask

whether Foo(A) is more likely to hold than Bar (A). Knowing nothing about A, the

choice seems arbitrary. The best we can do is consider the Foo and Bar predicates;

and compare their a priori likelihoods. (As an obvious example, imagine Foo (a:) &

Even(x) and Bar(x) <=> 3 < x < 6, where the universe of discourse is the natural

numbers. Here, Foo (A) is clearly more likely to be true than Bar (A), since there

are many more even numbers than natural numbers between 3 and 6.) This means

that the chance that any particular formula involving A holds should reduce to the

a priori likelihood of that formula.

This was the simple case. What if we know something about the target analogue?

With more information, A should "move" closer to some formulae and, relatively

speaking, further from others. (The discussion around page 88 makes this more

precise.)

The least constraint maxim suggests that we work first on the formula which is

nearest to becoming complete. The overall idea corresponds to the Iuast intuition.

Now to address Section 3.4's claim that this constraint is especially powerful when

coupled with the Icio.se insight. Recall Iciosc claims that we should seek cohesive

clusters of facts, where a collection of facts is considered cohesive if a subset of these

facts suggest the others. Hence, the Iciosc intuition claims that observing that some



82 CHAPTER 5. RANKING ANALOGICAL INFERENCES

facts hold suggests that the other facts in that cluster might hold as well. More

quantitatively, we can consider how many of a cluster's facts are known to hold

initially. Intuitively, the more that hold initially, the greater the chance that the

remaining facts (those which complete this closure) will hold as well.

Chapter 4 made this concept of clusters more concrete by proposing that each

abstraction instance is such a complete cluster of facts. We can now assemble

the I least a n ( l Iciose intuitions: together they suggest that we first consider the

abstraction which is closest to being complete; i.e., we seek the abstraction instance

which imposes the fewest additional requirements on the world. As another way of

thinking about this, this pair of intuitions state that a collection of facts is useful

if it contains just enough to solve some problem (i.e., if it corresponds to some

abstraction) and no more (i.e., if it is close to the known world).

So far, we have considered only the question of which facts should be added to

a theory, based on which related facts already hold. Why is this relevant for analo-

gies? It provides a means to determine which analogy (read "common abstraction")

is most likely to hold, as the likelihood that the same abstraction has instances in

both the source and target domain depends on how much the two analogues share

a priori, with respect to that abstraction. (I.e., it depends on how many of the

abstraction's component facts5 already hold for the analogues.) As the source ab-

straction instance already holds completely, this measure reduces to considering

how much is required for the target abstraction instance to hold. Hence, the less

we have to add to the initial theory to obtain the target instantiation, the more the

two analogues must have shared initially. The implicit claim is that the more these

two analogues have in common a priori, the more likely the resulting analogy is.

In summary, this least constraining maxim suggests that we work first on the

formula whose target instance is nearest to being complete. While this measure is

well-defined for arbitrary formulae (and hence arbitrary analogies), it is more useful

when coupled with the HAbst rule — i.e., when used to rank common abstractions.

Due to the coherence of the abstraction's clauses, this measure reflects the feasibility

5 The proposition, rx, is a component fact of the relation, R, if it is a member of R's leaf decomposition;
i.e., if <r € F for some F satisfying LD(Th> R( . . . ) , F). This uses Definition 20 from Subsection 6.2.3.



5.3. LEAST CONSTRAINING ANALOGIES 83

of the "completed" analogy (i.e., "common abstraction").

This is consistent with Section 3.4's claim that luast *s appropriate when dealing

with coherent sets of facts; i.e., as a refinement of Iciose - That is, a useful analogy

need only convey the information needed to solve the specific problem. As each

abstraction encodes such information, finding the "closest" abstraction is sufficient.

This also explains why these I Least -based heuristics take a back seat to the Iciose"

based ones. (See Section 5.4.)

5.3.2 Syntactic Criterion: Additions to the Theory

This subsection attempts to express this Iuast intuition syntactically. Section 4.3

indicated that each analogical inference requires that a set of conjectures be added

to the initial theory. Perhaps we should simply count the number of conjectures

required and use that number as a measure of how constraining the proposed ab-

straction instance is. The rest of this subsection defines, and then refutes, this "t/ie

fewer the number of conjectures, the better" proposal.

As our framework, consider

A~B fcT Pl(A) ^ T H A ^ ^ A )
(5.8)

Th, A~B kT pa(A) ^ Th + A2 f= pa

where each Az is a collection of conjectures; i.e., A(T7i, ip-x{A), A2). This proposal

advocates choosing <px over <p2 if AA has fewer conjectures that A2:

Definition 14 LessConstraintssyn{ £>i(A), ^2(A)) iff ||Ai|| < ||A2||.

Stating this proposal precisely requires quantifying the number of conjectures.

Unfortunately, this is rather difficult if not altogether meaningless. For example,

consider Kirchoff's two laws which deal with through and cross terms. By this

measure, it makes a difference whether we express this as a single fact or in an

expanded form, as a pair of facts. That is,

|| {KK(FlowRate, VoltageDrop)} || = 1
(5.9)

|| (Kirchoffl(FlowRate) , Kirchof f 2(VoltageDrop) } || = 2,



84 CHAPTERS. RANKING ANALOGICAL INFERENCES

even though

V t c K K ( t , c) <=»• [Kirchoffl(t) & Kirchof f2(c)]. (5.10)

Even worse, realize that we can satisfy Equation 5.8 by simply adding in the

desired fact, i.e., let Ai = {^(A)}. This means that ||Ai|| = 1- As this is true

for any (p{ (i.e., ||At-|| — 1 for any possible pi), this LessConstraints$yn measure is

meaningless.

The underlying problem is the assumption that every conjecture should be

weighted the same; i.e., the implied One Conjecture, One Vote policy. Though

some conjectures clearly contribute more, there is no way of stating this syntacti-

cally. Fortunately, it is possible to state this semantically.

5.3.3 Semantic Criterion: Constraints on Possible Worlds

This subsection discusses a semantic criterion for this luast idea, in terms of sets

of possible worlds. This requires a brief digression to present the basic framework.6

We employ this semantic system when comparing conjectures, using it to determine

which conjecture imposes the least constraints on our known model of the world.

This leads to a measure which iLeast can use.

We begin with some partial knowledge of the world. In particular, we assume

that we know the identity of all of the objects, but not all of the relationships:

i.e., each constant symbol is completely specified, while arbitrary relation symbols

may be only partially specified. Making this precise requires assuming a pre-defined

ontology, based a particular fixed lexicon and a known and finite universe of objects.

Within these assumptions, we can consider the class of worlds7 which are consistent

with our limited knowledge.

6 This is based on the partial interpretation model presented in Section 8.2. The reader has the
option of regarding the following arguments as intuitions, or of first reading that section. In the
former case, the reader should ignore the subsequent footnotes, as they serve only to reword the
text into Chapter 8's more precise notation.

7This dissertation considers the terms "world'", "modeF and "(partial) interpretation" to be
equivalent.



5.3. LEAST CONSTRAINING ANALOGIES 85

[KFL(FlowRate)]

W[RKK(FlowRate, . . . ) ] *

Legend:
K#l
K#2

RKK(FlowRate, . . . )

Figure 5-1: Possible Worlds

Kirchoff 1
Kirchoff2
RKK(FlowRate ,PressureDrop,PipeCharacter,Pipes)



86 CHAPTER 5. RANKING ANALOGICAL INFERENCES

Figure 5-1 shows an example of this. Every point in this space represents a

possible world. The overall box, labeled 1^[], contains all legal interpretations. We

insist that each of these satisfies the current theory, Th?

Adding a new conjecture constrains the set of allowable possible worlds. (See

Section 8.2.) Here, each member of the contained region labeled W[K#1 (FlowRate)]

represents a world in which KirchofFs First Law holds for FlowRate, as well as the

other facts included in the initial Th. (As shown in Figure 5-1's Legend, K#l is a

shorthand for Kirchoffl , K#2, for Kirchoff2. and RKK(FlowRate, . . . ) , for

R K K (FlowRate,PressureDrop, PipeCharacter ,Pipes) .) Semantically, finding

the interpretation I in that box, i.e., I £ W[K#1 (FlowRate)], means that the object,

FlowRate, is included in "bucket" of objects labeled Kirchoffl^. For comparison,

if we select an interpretation outside that box, i.e., J G W\\ — 1^[K#1 (FlowRate)], we

do not know whether FlowRate is in the bucket Kirchoffl^.9

There is a further embedded )V[ltKK(FlowRate, ...)] region. Each member here

represents a world in which this resistor analogue, R K K , holds for FlowRate and

some other arguments (e.g.', PressureDrop, PipeCharacter, Pipes). Finding in-

terpretation J in this box (i.e., J € W[RKK(FlowRate, • ..)]) means that FlowRate

is in the RKKl J bucket.

Each of these regions contains a collection of possible worlds. We imagine the

real world is one of these points, somewhere in this overall space (i.e., within W\\).

Now consider the a priori likelihood that it is in the W[K#1 (FlowRate)] region —'

i.e., that Kirchoffl (FlowRate) holds. In particular, how does this compare with

the chance that the real world is in the T^[HKK(FlowRate, ...)] region — i.e., that

RKK(FlowRate, . . . ) holds. Given the containment of these regions, it is clearly

more likely that the real world is in the larger 1^[K#1 (FlowRate)] region than in the

8Technically, we also insist that each interpretation is a comparable extension of the underlying
interpretation JZW. Hence, each point in this space represents an interpretation which is in
Allowed^ ZW,Th ). In general, the tag IV[a] refers to all the worlds consistent with Th -f <r: i.e.,
it abbreviates the set Allowcd( ZW,Th + a).

9Using Chapter 8's notation, I G W[K#1 (FlowRate)] means that FlowRate € ^Kirchoff 1 J , and

J € W[]-W[K#l(FlowRate)], that FlowRate £ .^irchoff 1 J or FlowRate G JQrchof f V1. Notice

we can write FlowRate rather than | FlowRate | as we assume that all constants are fixed. See
page 173 in Section 8.2.



5.3. LEAST CONSTRAINING ANALOGIES 87

smaller W[RKK(FlowRate,...)] region.

Why is this relevant? We can use this measure to compare how constraining a

new conjecture is. This, in turn, suggests a way of comparing analogical inferences.

Stating the problem: Given what we know (viz., a collection of known facts and

semantic assignments), we can ask how likely it is that the independent conjecture

Kirchof f l(FlowRate) is also true. In particular, how does this likelihood compare

with the chance that RKK (FlowRate, ...) holds? We answer this question by con-

sidering the Semantic Likelihood of each conjecture. This is defined in terms of the

size of the derived interpretation sets, W[K#1 (FlowRate)] and W[RKK(FlowRate, ...)].

Which of these conjectures imposes fewer constraints on the world? Clearly the

one which removes the fewest possible worlds; i.e., the one which leaves the largest

set of possible interpretations. This means that Ii^ast prefers the conjecture which

reduces the total space of interpretations the least, since this conjecture imposes

fewer additional constraints on the world.

This allows us to express the I^ast intuition semantically, leading to a way of

ranking of analogies based on semantic likelihood. Using the same framework shown

Equation 5.8, we prefer ipx(A) over <p2{k) if £>i(A) has a higher semantic likelihood

than £>2(A): i.e.,

Definition 15 LessConstraints^^ip^k), (p2(k)) iff

The rest of this subsection elaborates this description and presents some relevant

observations.

So far, we have handled the simplest of cases, dealing only with set containment.

Notice that containment corresponds to logical implication: i.e.,RKK| (FlowRate) =

Kirchoffl(FlowRate) means that W [RKK (FlowRate, ...)] C W[mi(FlowRate)].

We consider two complications. First, we may have to compare sets of possible

worlds which are not as closely related. Secondly, this measurement should be based

on what is currently known.

As a more complex example, imagine all we knew about FlowRate is that it is a

function. It might then participate in either the RKK or the Group abstraction.



88 CHAPTER 5. RANKING ANALOGICAL INFERENCES

Figure 5-2 shows this pictorially.

The LessC onstraints"Sem measure defined in Definition 15 is worthless here, as

neither set is contained in the other; in fact, the regions W[RKK (FlowRate, ...)] and

T^[Group(Js, FlowRate, Ji)] do not even intersect.

If we make the assumption that all possible worlds are equally likely, we can

extend LessC onstraintsli
Sem into the more comprehensive LessConstraintsl

Sem re-

lation, based on the cardinality of the sets.10

Definition 16 LessConstraints'Sem{ pt(A), pa(A)) iff ||W[PI(A)]|| >

We use (px(A) > £>2(
A) t o abbreviate LessConstraints'Sem( ^(A), £>2(A) ). This

says that the semantic likelihood of a is proportional to the area in the W [<?] region.

As

||V[Group(Js, FlowRate, Ji)]|| > ||W[RKK(FlowRate. ...)]| |,

Group(Js , FlowRate, Ji) would be preferred here, i.e.,

Group(Js , FlowRate, Jx) > RKK(FlowRate, . . . ) . (5.11)

The second consideration has been implicit in the description: the semantic

likelihood of a new fact should be relative to what is currently known. This means

we must first restrict the space of allowed worlds, in order to consider only the ones

which are consistent with the facts we now believe. This means that this likelihood

measure changes as more assertions are added to the theory.

We see that LessConstraints'Sem finds *M/[Group(Js, FlowRate, Ji)] better than

T^[RKK(FlowRate, ...)] in the current situation. Now the situation changes: imagine

we are now told that FlowRate satisfies KirchofTs First Law. This is represented

in Figure 5-3. Notice the ^ ^ ^ # 1 (FlowRate)] region has been double-circled; this

convention indicates that this fact is known to be true — here, it means that

Kirchoffi (FlowRate) now holds. The Th subscript is used to indicate the "base

10This measure is meaningful as these sets are finite. This follows from Definition 24's definition of
Allowed and the current assumption that the universe is finite.



5.3. LEAST CONSTRAINING ANALOGIES 89

( W[RKK(FlowRate, . . . ) ] ^

V J

W [Function(FlowRate)]

Ul[Group(Js1 FlowRate, J l )]

V J

Figiire 5-2: Non Overlapping Possible Worlds



90 CHAPTERS. RANKING ANALOGICAL INFERENCES

theory"; these are the set of facts which we accept as true. Hence, the notation

T^TJiH refers to the set of all worlds consistent with Th + a. (As this theory was

static for the purposes of the discussion above, it was left implicit.)

As we now know that the "real world" appears somewhere within this T̂

region, we need only consider the worlds within this smaller region rather than

the entire space (represented by the Wxh[Function(FlowRate)] region). That is, this

U/jvJi^l(FlowRate)] region now represents the total set of allowable worlds. Notice

that only some of the interpretations consistent with G r o u p ( J s , FlowRate, Jj)

are allowed: namely, only the worlds which occur within this double-circled re-

gion. This means that the semantic likelihood that G r o u p ( J s , FlowRate, JA)

holds is now proportional to the part of the Wxh[Group(Js, FlowRate, Jx)] region

which intersects the known set of allowed worlds, WX/I[K#1 (FlowRate)]. Hence, the

(relative) semantic likelihood of G r o u p ( J s , FlowRate, Jx) has decreased from

y$Th[Group(Js, FlowRate, J^] to
,>*

[Group(Js, FlowRate, Jx)] =

FlowRate, Jx)] fl Vr/i[K#l(FlowRate)],

where Th! refers to Th + K#l(FlowRate). Notice we are using the information

known (in particular, about Flowrate) to dictate the likelihood of the different

conjectures.

The size of the new IVTH1 [Group(Js, FlowRate, Jx)] region is considerably re-

duced; in fact, it is now smaller than )1V/1/[RKK(FlowRate, .. .)]. This means that

LC

RKK(FlowRate, . . . ) >lTh., Group ( J s , FlowRate, Jx), (5.13)

using 9?i(A) >[Thj ^i(A) to abbreviate LessConstraintss€m{ ^i(A), ^ (A) , Th),

where

Definition 17 LessConstraints Sem{ Pi(A), pa(A), Th) iff ||W™[y>i(A)]|| > \\W

Recall from Equation 5.11 that this had not been true earlier.

We conclude with some final comments. First, this semantic likelihood measure

has many of the desired properties. For example, logically equivalent statements



5.3. LEAST CONSTRAINING ANALOGIES

Wxh [Function(FlowRate)]

f "M/rh[K#l(FlowRate)] ^

/¥T/l[RKK(FlowRate, ...)] ^

V J

J

lyy/j 1 Group(Js, FIowRate, Ĵ  )J A

J
^T/ l ' l G r o u P( J s » FlowRate.Ji)]

Figure 5-3: Constrained Possible Worlds



92 CHAPTER 5. RANKING ANALOGICAL INFERENCES

lead to exactly the same set of interpretations; e.g.,

WT,jKK(FlowRate, PressureDrop)] = ^T/l[K#l(FlowRate) & K#2(PressureDrop)].

This means that "old55 facts do not impose any constraint on the known worlds:

if the "new55 conjecture a is already implied by the theory, Th (i.e., Th |= <r),

then WrTiM ~ ^r/J]- We can also consider what happens if we attempt to add

some inconsistent assertion to the theory. As Th + a is inconsistent, this expanded

theory can have no possible models; i.e., Wr/iH = {}• This is as constraining as

possible!

This calculation, in terms of the number of possible interpretations, is not com-

putable in general. We can, however, still catch some interesting subcases. These

lead to a body of related heuristics (described in the next three subsections) which

use this semantic likelihood measure both to guide this search and to restrict the

space.

First, though, notice that the least constraint criterion leads to good answers

only when there is some bias to prevent trivial instances. Consider, for example, the

B 7̂  Fred relationship induced by the analogy formula (p(x) = x ^ Fred. As this

imposes very few constraints on the world, it is probably near optimal, based on the
LC

>[Thj partial order. However, it is hard to imagine situations where this analogy

formula would be very useful or meaningful. This is why we consider this I

criterion only over the space of possible abstraction instances. (I.e., the H^bst

takes precedence. In fact, Section 5.4 explains why each of the abstraction-based

rules, discussed in the previous section, take precedence over this Iieast maxim.)

5.3.4 HMGA* Most General Abstraction

The "most general abstraction" heuristic, HMGA-> is an ordering one — it does not

reduce the size of the space of possible analogies but does order it by determining

which abstraction should be considered first.

It is used to compare different abstractions, e.g., RKK versus KK. Basically,

this rule catches the simple case of logical implication:



5.3. LEAST CONSTRAINING ANALOGIES 93

Heuristic 4 HMGA: If S i ( . . • Z,...) => S2( . . . x>...), f/ien pre/er S2 over Si .

The effect of this rule is to prefer KK to RKK to RCKK, and Monoid to Group

to Field.

Notice that this rule is always consistent with I Least* J-e-> it always favors the

analogy which imposes fewer constraints. This is because, for example, KK(t , c)

is never more constraining than RKK(t, c, r, l ) , independent of the facts in the

initial theory, Th.

In most cases, this is obvious. The one possibly problematic case occurs when

some proposition in STr/i( S i ( c i , . . . B , . . . cn) ) — STTH{ S 2 (d i , . . .B , . . .dm) ) is

known initially. For example, perhaps we know initially that Ohms(FlowRate,

PressureDrop, PipeCharacter, Pipes) held. Notice that this proposition is in

that difference between RKK's and KK's support,

Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes) G

STrh( RKK(FlowRate, PressureDrop, PipeCharacter, Pipes)) (5.14)

-STrh{ KK(FlowRate, PressureDrop)).

Even here, when Ohm(FlowRate, PressureDrop, PipeCharacter, Pipes) G Th,

we have

W^[RKK(FlowRate, PressureDrop, PipeCharacter, Pipes)]

C X^r/jKKCFlowRate, PressureDrop)].

Hence, the least constraint maxim holds, and so HMGA is justified in preferring KK

over RKK

We can be even more extreme: Suppose that every member of this difference is

included in the initial theory: i.e., that

STTh{ Si ( c i , . . . B , . . . cn) ) - STTh{ S 2 (d , . . . B , . . . dm) ) C Th. (5.16)

Under this circumstance, these two abstraction instances are equally likely:

WTh[Siici,...B,...cn)] - WT;JSa(d,...B,...dm)]. (5.17)

As a final comment, realize that, even though HMGA always follows I Least i it is

still just an heuristic. There are reasonable but contrary arguments which suggest



94 CHAPTERS. RANKING ANALOGICAL INFERENCES

that the more specific Si abstraction should be preferred to the less specific S2.

Section 5.4 returns to this point.

5.3.5 Hpc: Fewest Conjectures

The "fewest conjectures" heuristic, Hpci 1S a l s o an ordering rule. Here, we are

considering a single common analogy formula, and are deciding how to instantiate

it in the target domain. When comparing different instantiations, is there any way

to determine which should be considered first? In particular, how can we determine

which possible instantiation is least constraining?

For example, suppose we are comparing the abstraction instances

RKK(FlowRate, PressureDrop, PipeCharacter, Pipes)
(5.18)

RKK(FlowRate, PressureDrop, Cost, Pipes)

and imagine that we knew

Th |= Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes)

Th \fc Ohms(FlowRate, PressureDrop, Cost, Pipes) .

The fact that Ohms law holds for PipeCharacter suggests that the corresponding

RKK instantiation (involving PipeCharacter) holds in more of the possible worlds

than the other one, involving Cost. Figure 5-4 shows this pictorially.

Why should this be triie? Assume the two sets 'M/y/l[RKK(.. .PipeCharacter, ...)]

and U>2vl[RKK(...Cost, •••)] a r e initially the same size, relative to a starting the-

ory devoid of Ohm( ....) facts. Now we learn that Ohms(FlowRate, PressureDrop,

PipeCharacter, Pipes) holds: this means that we need only consider the interpre-

tations within the double-circled T^/JohmsC...PipeCharacter, ...)] region. How does

this affect the possible worlds associated with RKK(FlowRate, PressureDrop,

PipeCharacter, Pipes) and RKK(FlowRate, PressureDrop, Cost, Pipes)?

That is, what are the relative sizes of

..PipeCharacter, ...)] and



5.3. LEAST CONSTRAINING ANALOGIES

WTh[Ohms(.

V

V

.. Pipe Character, • . .)]

RKK(.. . PipeCharacter, . . . )]

J \
I) \

C(...Cost, .

K(...Cost,

J

Legend:
Ohms(.. .PipeCharacter, . . . ) *•» Ohms(Flov/Rate,PressureDrop,PipeCharacter,Pipes)

RKK(...PipeCharacter, ) <-* RKK(FlowRate, PressureDrop .PipeCharacter, Pipes)
RKK(.. .Cost, . . . ) <-> RKK(FlowRate,PressureDrop,Cost,Pipes)

Tti •-• Tft-f Ohms (...PipeCharacter, . . . )

Figure 5-4: Possible Worlds: Demonstration



96 CHAPTER 5. RANKING ANALOGICAL INFERENCES

using Tti = Th + Ohms(... PipeCharacter, . . . )?

By definition,

yi)Thf[a) = yTh[o] n T^r^[0hms(.. .PipeCharacter, ...)] (5.20)

holds for all sentences a. As

R K K (. . .PipeCharacter, . . . ) => Ohms (.. .PipeCharacter, . . . )

we know that

WThi [RKK (...PipeCharacter, ...)] = Wr/jRKKC. .PipeCharacter, . . .)];

this means the set of legal worlds associated with R K K ( . . .PipeCharacter, . . . )

is unaffected.

Now consider how this new assertion affects the set of Wrh[RKK(...Cost ...)]

interpretations. Figure 5-4 shows that this new assertion does cut into this set: i.e.,

lCrv[RKK(...Cost, ...)] is smaller than the original *WTh[RKK(...Cost, . . . )] .

Hence, learning that Ohms(FlowRate, PressureDrop, PipeCharacter, Pipes)

holds makes R K K (FlowRate, PressureDrop, PipeCharacter, Pipes) the clear

favorite, since the resulting IVxh'[RKK(...Cost, ...)] is much smaller than

T^2 /̂i'[RKK(.. .PipeCharacter, ...)].) This means that

LC
RKK (FlowRate, PressureDrop, PipeCharacter, Pipes) > {Th,j

R K K (FlowRate, PressureDrop, Cost, P ipes ) .

(5.21)

Can we state this syntactically? First, observe that there are only three conjec-

tures which must be postulated in this first case (the one dealing with PipeCharacter),

rather than the four in the second case, for Cost.

Perhaps we could just count these clauses? While Subsection 5.3.1 has demon-

strated that the simple "count the conjectures" idea is not meaningful in general,

this is a special case for two reasons. First, one set of conjectures is a subset of the

other. Secondly, each conjecture here is a leaf clause (see Definition 19 on page 121).

This leads to the fewest conjectures heuristic,



5.3. LEAST CONSTRAINING ANALOGIES 97

Heuristic 5 Hpc:

and ALR(T/i, S (dx,... A,... dn) ) = A2

and Ai C A2

Then Prefer [ci, . . . cn] over [di , . . . dn].

(This uses the A ^ function defined in Definitional in Subsection 6.2.3.)

We repeat the above example to illustrate this rule. Consider the minimal At-

for which

Apc (= RKK(FlowRate, PressureDrop, PipeCharacter, Pipes)
Th + ACo8t f= RKK (FlowRate, PressureDrop, Cost, Pipes)

(5.22)

using the theory described above. Here,

Kirchoff1(FlowRate)

Kirchoff2(PressureDrop)

ConservedThru(Flov/Rate, Pipes)

(5.23)
Kirchoff1(FlowRate)

Kirchoff2(PressureDrop)

ConservedThru(FlowRate, Pipes)

Ohms(Flov/Rate, PressureDrop, Cost, Pipes)

As Ape C Acosti HFC prefers the binding list [FlowRate, PressureDrop, PipeChar-

acter, Pipes] over [FlowRate, PressureDrop, Cost, Pipes] when instantiating

the abstraction RKK in the target domain.

In this simple case, when one set of conjectures is a subset of the other (i.e.,

Ai C A2), there is no need to worry about leaf clauses, or for that matter, about

instantiating the same abstraction. We can still guarantee the conclusion derived

from Ai (call it pi) is less constraining that the one derived from A2 {p2)> since

AA C A2 always guarantees that ||1^T/I[^I]|| > ||^T/I[/'2]||.

While NLAG could perform this test in general, evaluating for a possible subset



98 CHAPTERS. RANKING ANALOGICAL INFERENCES

relationship between every pair of abstraction instances even for different abstrac-

tions, this is too expensive to be worthwhile. (This is not too great a loss, because

the component parts of most pairs of abstractions are usually disjoint. In cases

where they overlap, it is usually the case that one abstraction logically implies the

other; and the HMGA already catches this case.)

NLAG actually uses a slight generalization of this simple rule. The rest of this

subsection describes this more general HFC rule, in terms of two extensions. It is

important to realize that these two rules (Hj?c and HFC) usually produce identical

advice. The only case when they differ is when Hpc considers the two possible

analogies to be incomparable: i.e., when it has no opinion. Hence, HFC is a proper

extension of HFc, o n e which is allowed to make different decisions in situations

when Hpc doesn't care.

The first extension allows us to compare different leaf clauses which differ by a

constant to constant mapping. For example, consider the binding lists

[FlowRate, PressureDrop, PipeCharacter, Orifices]

[FlowRate, PressureDrop, PipeCharacter, Pipes ]

in this same situation, i.e., using the theory Th! which includes Ohms (FlowRate,

PressureDrop, PipeCharacter, Pipes). This leads to the same Ape- However,

the new Aow/ is

Kirchoffl(FlowRate)

Kirchoff2(PressureDrop)

ConservedThru(FlowRate, Orifices)

Ohms(FlowRate, PressureDrop, PipeCharacter, Orifices)

(5.24)

The important observation is that A^w/ & &PC> a s ConservedThru(FlowRate,

Orifices)^ APc- However, this proposition is identical to ConservedThru (FlowRate,

Pipes), modulo the substitution of the constant Pipes for Orifices; and this re-

lated proposition, ConservedThru(FlowRate, Orifices), is in Apo

As H'FC is willing to accept the leaf clauses which differ only by a "homomor-

phism" transformation (one which changes constants into constants), it can compare



5.3: LEAST CONSTRAINING ANALOGIES 99

the clauses associated with the bindings [FlowRate, PressureDrop, PipeCharac-

t e r , Pipes] and [FlowRate, PressureDrop, PipeCharacter, Orifices], and so

can prefer the first.

While this extension to Hpc is not guaranteed to follow /least's edict, it does

seem fairly plausible. It follows from the assumption that any pair of improvable

leaf clauses which differ by a substitution of constants are approximately as likely.

That is,

^(d)] | | (5.25)

whenever <f>(x) is a leaf clause and Th \f=^ <f>(c) and Th

H'FC's other extension is not as well justified. In fact, this rule actually only

considers the total number of leaf conjectures, preferring the analogy which requires

the fewest. Unfortunately, there is no reason to assume that this rule follows the

luast principle. That would require two further assumptions, both unjustifiable.

First, we would have to assume that

| | TMPI ] I I«P™[P2] | | (5.26)

whenever pi and p2 are each leaf clauses and Th \fc pi and Th [£ p2- Second, we

would have to assume that these clauses axe fairly independent; i.e., that

for any pair of improvable leaf clauses. This, unfortunately, need not be true, even

for leaf clauses.

5.3.6 HFT: Findable Terms

The "findable terms" heuristic, //j?r, is a pruning rule which reduces the size of the

search space. It is closely related to the prior "fewest conjectures" rule, H'FC.

Instantiating the abstraction in the target space is a "residue" task, seeking an

instantiation of the abstraction which is consistent with the initial theory. (The term

"residue" is discussed in Subsection 6.2.3.) In its full generality, a residue process



100 CHAPTERS. RANKING ANALOGICAL INFERENCES

could bind the variables to almost arbitrary terms; the only major requirement on

the ?is in RKK (FlowRate, ?2, ?3, ?4) is that ThCw ^ ~«RKK (FlowRate, ?2, ?3

The HFT rule makes NLAG more selective. This subsection first illustrates this

rule with an example and then provides a formal description and justification.

Imagine ThCF includes no facts which lexically include the term, frob, which

is, however, included in £, the language of TI%CF- A complete satisfaction process

would have to consider RKK (FlowRate, PressureDrop, frob, Pipes), as

Th Y1 RKK (FlowRate, PressureDrop, frob, Pipes)

Th \fc -iRKK(FlowRate, PressureDrop, frob, Pipes)

HFT allows us to avoid such cases. It tells NLAG to consider only constants

which "have some support", that is, which can be proven with respect to some

derivable clause. This means it only allows ?i to be bound to at- if

3 63eMI(S). th [= 6j{xu . . . ah ...xn), (5.28)

for some Sj which is derivable from S and some set of other terms {x^}^. This

uses the set of material implications following from S,

Definition 18 M/(S) = {6 \ Th f= Vxt S(xu . . .*„)=• 6(xu . . . xn)}

Here, this means we axe considering only those Sj such that

Th \= Vxz R K K ( x 1 } . . . xn) => 6j[xu ...xn) (5.29)

We can find this {Sj} set by using RKK's definition, and following implication

links, see Figure 5-5.

Hence, when NLAG is determining the bindings to consider for its third argu-

ment r, the HFT heuristic may insist that only terms which are functions be con-

sidered: i.e., that r G Functions be provable. This would force NLAG to consider

only the terms which are known to be functions when instantiating this argument.

HFT ordains that some constraining clause be used for each variable; that con-

straint, however, is not limited to this type information. NLAG gets to pick which

constraining clause Sj to use for each ?i. In general, NLAG uses a set of meta-level



5.3. LEAST CONSTRAINING ANALOGIES 101

RKK(t,c,r,l)

f Kirchoffi(t)

Kirchoff2(c)

0hms(t, c, r, 1)

ConservedThru(t, 1)

t G Functions
c G Functions
r G Functions
1 G Classes

Figure 5-5: RKK's Material Implication

rules to select the generator for each argument from among the formulae present in

M/(S) which lexically include that argument (in the sense that the r G Functions

clause lexically includes RKK's third argument, r). The current implementation

defines the generator as the atomic formula which has the highest "coverage" value,

where coverage is based on the associated relation symbol. (As different functions

may be better for different data bases, this function is intentionally left underspec-

ified. My NLAG implementation employs a user-modifiable second-order function

to determine this coverage value.)

The HPT rule is sufficient to eliminate this frob case. That is, as frob does

not qualify as a function (i.e., Th \f=. f rob G Functions), HFT tells NLAG not to

consider it as a candidate for RKK's third argument.

Now for the formal statement:

Heuristic 6 HpT: Allow target instantiation S(. . . ap,...) only if

3 £, GMJ(S), xk?p. Th f= 6j{xu . . . ap,... xn).



102 CHAPTER 5. RANKING ANALOGICAL INFERENCES

Semantically, this rule means we are not considering the extremely constrain-

ing case where we would have to add in everything about a concept. Consider,

for example, how many previously allowed worlds are eliminated when we assert

RKK(FlowRate, PressureDrop, frob, Pipes). Notice this is far more than

axe eliminated by asserting RKK(FlowRate, PressureDrop, x> Pipes) for any

x which is known to be a function, i.e., where Th \= x €L Functions. (That is,

given how little we know about frob,

, PressureDrop, x> Pipes)]||

, PressureDrop, frob, Pipes)]||

for any x G Functions.)

In terms of the implementation, HJ?T means that NLAG can use one clause

(taken from M/(S)) as a generator for each variable. (See Subsection 6.1.5.)

Some final notes:

• In theory, this rule could constrain the search tremendously. In normal prac-

tice, though, it does not eliminate many otherwise possible values. This is

because few knowledge bases contain quantities as unknown as this frob.

Most systems tag each concept with at least some type information: i.e.,

most concepts axe at least in some I$.A-hierarchy or declared a member of

some class. As most abstractions include type restrictions on their arguments

as well, the general satisfaction process would already have eliminated most

such terms.

• Hpx means that NLAG does not deal with new terms. (See the comment on

page 53.) While our use of abstractions does make it straightforward to gen-

erate new terms (i.e., we could define a new constant as precisely the 'Value"

required to fill some formal parameter), we choose not to do so. Note:5-2

defends this decision.

• This rule is related to the abduction rule of the plausible inference: from

A => B and B, plausibly infer A. (This is also called "affirmation of the

consequent".)



5.4. SUMMARY OF HEURISTICS 103

5.4 Summary of Heuristics

So far, we have discussed several diverse heuristics which help us navigate about

the space of legal analogical inferences. This section wraps up the discussion. Sub-

section 5.4.1 first provides a thumbnail sketch of each rule together with a quick

classification. Subsection 5.4.2 then describes how the rules interact with one an-

other.

As a final note, we will hereafter use |j^T to refer to the abstraction-based use-

ful analogical inference process which incorporates the heuristics described in this

chapter. (Technically, we should use a new symbol for this more refined process,

but the reader is already, no doubt, overwhelmed with notation.)

5*4*1 Classification and Synopsis of Heuristics

The quickest summary of these rules comes from Section 3.4: find enough new

information about the target analogue to solve the target problem, and then stop.

The abstraction-based rules operationalize the find enough information clause, and

the Iuast rules, the then stop part.

There are several other ways of describing the specific rules. The basic outline

of this dissertation provides one structure, separating the overarching use only ab-

straction rule in Chapter 4 from the other abstraction-based rules of Section 5.2

and the general purpose rules of Section 5.3. Another cut divides the rules based

on whether the rule prunes or orders the space. A third property concerns the use

of the rule: whether it helps determine the common formul'a to use or describes how

to instantiate such an analogy formula.

Table 5-1 classifies the heuristics. It includes a quick summary of each rule, tells

where it is defined and describes how it fits into the dimensions mentioned above.

These are arranged in order of appearance. Another important classification is the

rule's applicability: the structuring below reflects this as well. (The next subsection

shows that this order of appearance mirrors the relative prominence of these rules;

the most prominent ones are shown first.)



104 CHAPTERS. RANKING ANALOGICAL INFERENCES

• Abstraction-Based Heuristics

— HAbst* Use Abstractions (Chapter 4, Heuristic 1 and Figure 4-5)
Summary: Permit only certain formulae (namely, abstraction formulae)
to be used as analogy formulae.
Pruning rule, pertains to common formula.

- HJK- Justification Kernel (Subsection 5.2.1, Heuristic 2)
Summary: Use the target problem to select relevant abstraction.
Pruning and ordering rule, pertains to common formula.

— Hcc: Common Context (Subsection 5.2.2, Heuristic 3)
Summary: Insist that all the constants used to instantiate an abstraction
come from the same theory.
Pruning rule, pertains to instantiation.

• I Least -Based Heuristics

— HMGA: Most General Abstraction (Subsection 5.3.4, Heuristic 4)
Summary: Prefer the most general abstraction.
Ordering rule, pertains to common formula.

- Hpc: Fewest Conjectures (Subsection 5.3.5, Heuristic 5)
Summary: For a given abstraction, prefer the instantiation instance
which requires the fewest conjectures.
Ordering rule, pertains to instantiation.

- HFT: Findable Terms (Subsection 5.3.6, Heuristic 6)
Summary: When instantiating an abstraction, consider just constants
which have some "support".
Pruning rule, pertains to instantiation.

Table 5-1: Synopsis of Heuristics



5.4. SUMMARY OF HEURISTICS 105

5.4.2 Interactions of Heuristics

How do these rules interact? In particular, what happens if a pair of rules provide

conflicting advice? The previous sections mentioned a few instances of such conflicts

on a case-by-case basis. There is a single, general meta-rule: always prefer an

abstraction-based rule over a luast -based rule. Why? The abstraction-based rules

are more definite; each has a specific reason to justify its use. By contrast, the

luast-inspired rules are weaker, based only on a general-purpose heuristic. Hence,

we only use the latter rules when nothing else pertains. (Notice this means that

almost any other rule should dominate these Iuast rules as well.) This is consistent

with the comments first presented in Section 3.4: vtar., that I^ast should be used as

a further refinement of the Iciose maxim.

Now for the particulars. Consider first the three rules which specify which

analogy formula to use: H^bst insists that the formula is an abstraction, HJK and

HMGA then determine which abstractions should be used and in what order. These

latter two heuristics often conflict: HJK may prefer the abstraction Si over S2, even

though Si is more specific (i.e., contrary to HMGA$ wishes). NLAG follows Hj/c's

advice in these situations. For example, in the electricity and hydraulics situation,

NLAG may consider the R K K abstraction before KK.

Why? The only reason HJK can prefer the more specific Si over S2 is if the

support for the source problem included a fact which is in Si's support but not in

S2's. Subsection 5.2.1 argued that this is desirable, even if it violates HMGA- (In

fact, the R K K versus K K example described in that subsection does just that.)

However, HJK rule takes no stand when the two sets of possible worlds are of

equal size; i.e., when ||W[Si(...)]|| = ||^[S2(--0]||- The HMGA
 ru-le is often relevant

here. For example, if ||)|/[RKK(...)]|| = ||W[KK(...)]||, HMGA would recommend that

K K be considered first. This makes sense: in this situation, we have no reason to

prefer the more constrained, and therefore more expensive, R K K abstraction over

KK. (The discussion at the end of Section 7.3 describes this interplay and explains

the advantages of our approach in this trade-off. See also Note:6-2, which explains

why NLAG would consider KK after R K K has failed.)



106 CHAPTERS. RANKING ANALOGICAL INFERENCES

The other three rules are used to determine the instantiation of this abstraction

formula in the target domain. We saw above that HFT *S a special case of HFc> aad

hence these two must be in agreement. The Hcc requirement is not so agreeable.

In cases of conflict, it takes precedence over both of the other rules. This is because

the Hcc rtlle supplies an essential part to each abstraction — a part which should

be present in the abstraction's definition but has been excised (as a convenient

shorthand) because we knew Hcc would re-supply it. That is, Hcc allows us to

write the simpler RKK (of Figure 4-3), knowing that it is, in effect, interpreted as

RKKCC (of Equation 5.7).

There are two final points. First, it is easy to find situations where HMGA seems

incorrect, where one might legitimately prefer the more specific Si abstraction over

the less specific S2. (E.g., it might make sense to prefer Group over Monoid,

in some situations.) This cirgues against this use of Iz^ast for chosing abstractions,

leaning instead towards the IjMost intuition. (The tension between these two insights,

iMost and iLeasti was first discussed in Section 3.4.) Subsection 9.2.3 discusses this

point in detail. For now, we want only to mention that this tension does not appear

when considering how to instantiate an abstraction, i.e., for the other set of rules.

It is hard to imagine any reason to prefer an instantiation which requires more

additional conjectures rather than lfcss (i.e., which violate Hpc)> o r to prefer an

unfindable term over one already present (i.e., which violate H^T)-

These anti-HMQA arguments point out that there is no real reason why lLeast

should be true. That is, there is no real reason why the semantically most likely

common abstraction should be the best. The only arguments are based on empirical

evidence and an intuitive notion of reasonableness, and either can have counterex-

amples.

The final point pursues this justification theme and deals with how one might

justify any of these rules. It is straightforward to express most of these rules seman-

tically. (Subsection 5.3.3 has already done this for the I Least -based rules; Section 8.4

does this for some of the other rules.) We can furthermore provide a semantic jus-

tification for the Iieast rules, in terms of semantic likelihood of the conjectures.

(This was done in Subsection 5.3.3.) However, we were unable to find a semantic



5.4. SUMMARY OF HEURISTICS 107

justification for any of the abstraction-based rules. (See Note:4-4.)



 



Chapter 6

Specification of the NLAG Process

The previous chapters defined and justified the behavior of the general abstraction-

based (useful) analogical inference process. This chapter specifies my particular

implementation of this process, the NLAG program. The next chapter discusses

results obtained with this system, to demonstrate its effectiveness.

Section 6.1 describes the structure of the NLAG learning-by-analogy system,

focusing on the module which seeks common abstractions, ComAbs. Section 6.2

describes important facilities which must be present to construct an NLAGAike

system. Section 6.3 demonstrates that this program finds all and only the JyT

analogies. It also includes an explicit set of conditions which, if satisfied, insures

that NLAG finds the "correct" analogies and does so efficiently.

The following two points may help in understanding both the NLAG algorithm

and this particular presentation of it. The first deals with the nature of the algo-

rithm. Section 6.3 demonstrates that NLAG is a bona fide Ĵ T algorithm. However,

even with the definitions and heuristics given in the previous chapters, the Ĵ T pro-

cess is not completely specified. In particular, the general Ĵ T process may be unable

to decide which of a pair of legal analogies should be considered first. NLAG uses

a variety of other rules to totally order the selection. As hinted in previous chap-

ter, I regard these additional rules as nuances of the implementation rather than

important principles. This justifies their rather informal treatment in this chapter.

The second point explicates the objective of this chapter. Its purpose is to

108



 



6.1. COMPONENTS OF NLAG SYSTEM 109

Analogical Hint
("Current i->FlowRate")

Problem Statement
("Find the flowrate")

Figure 6-1: Overall Behavior

describe the NLAG algorithm in sufficient detail that others can construct their

own versions, for their own representation systems and sets of facts. As such, this

description is relatively high-level, mentioning very few specific procedures. (To

avoid offending the competent reader, this chapter totally avoids showing low-level

LISP-y code.)

6.1 Components of NLAG System

This section presents a high-level overview and behavioral description of the NLAG

process. The subsections present various components in more depth. (The actual

code used, expressed as MRS assertions, appears in SubAppendix B.I.)

Figure 6-1 shows the basic behavior of the NLAG system. Its input is the

target problem PT (here, "Find the flowrate") and an analogical hint AH =

{Af->B} which maps the target analogue into the source analogue (here, AHQF =

{FlowRate*-->Current}). NLAG also has access to the facts in a theory, Th. Here,



110 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

Analogical
Hint

Problem

ft NLAG

Theory

New
Facts

A ComAbs )

I Common |

VerifyJ J
USER

Figure 6-2: Detailed Behavior of NLAG

F includes both EC and FS as well as a library of abstractions, which includes

RKK. Its output is a set of proposed new FS facts which leads to a solution of the

target problem.
(The previous chapters described the result of an \^T inference as a particular

abstraction (e.g., RKK) and the target instantiation (e.g., [FlowRate, Pressure-
Drop, PipeCharacter, Pipes]). To describe the NLAG process, it is easier to
view this output as a set of new facts to be added to the learner's theory. These
two descriptions are related: these new facts (the (NewFacts) box shown in the
lower left corner in Figure 6-1) are precisely the residue of the instantiated abstrac-
tion, S(ai , . . . A,.. . a^) — i.e.,

A( Th, RKK (FlowRate, PressureDrop, PipeCharacter, Pipes). (NewFacts))

holds.)

Figure 6-2 shows JVLAG's two conceptual modules. The first component, ComAbs,1

1 Wo will continue to vise this slanted fixed-width font when writing the name of both subroutines
and various internal processes. Notice that "NLAG" is already in this font.



6.1. COMPONENTS OF NLAG SYSTEM 111

is a generator: it seeks pertinent abstractions (e.g., RKK) which can be instantiated

in both the source and target domains, and passes each such common abstraction

to Verify. This second process acts as a pruner, deciding whether to add in the

suggested new conjectures based on their effectiveness in solving the problem as

well as interactions with the user.

The next subsection quickly describes the Verify module. The rest of this sec-

tion discusses ComAbs and its children. These latter modules are the meat of the

NLAG system: they perform, basically, the |^ part of Ĵ T. They are responsible for

everything but confirming the effectiveness of the conjectures, and, as such, embody

all of the heuristics presented in the dissertation.

6.1.1 Verify Module

Veri/y's purpose is to insure the appropriateness of the conjectures, hereafter labeled

{Sj}. It runs the following three tests: a set {Sj} must pass all three to be approved.

First, Verify verifies that these new facts provide a solution to the target problem.

This involves adding these conjectures to the initial theory, and running (TRUEP

(PT)) ? These conjectures pass this test if TRUEP returns an answer. If so, Verify

runs the second test: are these conjectures consistent with the initial theory and

each other? (While ComAbs does guarantee that Consistent {Th + Sj) is true for

each individual Sj> this is not sufficient to guarantee that Consistent{Th\J {Sj})

holds.) Verify performs this check by running (TRUEP (not Sj)) for each Sj,

each time in an environment which contains both the original Th and the other

conjectures, {8k}k£j- If every TRUEP call fails (i.e., returns MIL), we claim these

conjectures to be collectively consistent. The final test is user acceptance: the

user is asked whether he approves of each new conjecture.3 Unless all are judged

2MRS includes two basic querying subroutines. LOOKUP and TRUEP. Each takes a proposition
pattern, and returns the facts which match this pattern and are deducible from the current
theory. They differ in that TRUEP may perform various deductions when searching for a fact,
while LOOKUP does not. A fact is primitively stored if a simple. LOOKUP can find it: i.e., if it
can be found without any inferences. See [Rus85] for more details.

3In general, the same conjecture may arise in different iterations. To avoid annoying the user,
Verify only presents a proposed conjecture to the tiser once and records (and re-uses) his answer.



112 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

acceptable, this entire batch is rejected. If this {Sj} set fails any of these three tests,

NLAG asks ComAbs to produce a new set of conjectures.

There is some additional work required when an answer passes these tests, and

even more (involving elaborate clean-up steps) when a proposal is rejected. Many

of these are trivialized by the effective use of MRS's theory mechanism.

6.1.2 ComAbs Module

This subsection describes the ComAbs process, both behaviorally and structurally.

The subsequent subsections describe its internal modules in more detail.

Behaviorally, the ComAbs process has two subtasks. The first finds deducible

abstraction instances in the source domain, S(bi, . . .B,.. .bn). The second uses

this abstraction S and the analogical hint AH to find a corresponding abstraction

instantiation, S(ai , . . . A,... an) — one which can is consistent with the initial the-

ory. For each such target abstraction instantiation, ComAbs also determines the

residue, i.e., the additional facts which must be conjectured.

Structurally, ComAbs has three component parts, shown in Figure 6-3. The

first two subprocesses, Find-Kernel and Inst-Source, work on the first subtask.

Together, they return abstractions which have instances which are deducible in the

source domain. The third component, lust-Target, attempts to satisfy an instance

of this abstraction in the target domain. (Find-Kernel produces a single answer.

By contrast, each of the other two subprocesses may return many different answers.

Each is implemented as a "generator": that is, each generates a single answer at a

time.)

The following summary provides a quick synopsis of these modules and indicates

which heuristics (from the previous chapters) govern their operations. The next

subsections provide more complete descriptions of their respective behaviors.

1. Find-Kernel: From the problem statement PT and analogical hint AH, pro-

duce a kernel of possibly pertinent source facts. This uses the HJK heuristic

This also means that if the user over rejects a proposition, Verify never again asks him about this
clause.



6.1. COMPONENTS OF NLAG SYSTEM 113

Analogical
Hint

Problem

Theory

Legend:
1 = Find-Kernel
2 = Inst-Source
3 = lust-Target

Common
Abstraction

/7V
LF*£t8JlY yLj-tio

7

Figure 6-3: Detailed Behavior of ComAbs

(see Subsection 5.2.1).

2. Inst-Source: Forward-chain from those kernel facts to deduce abstraction

instances S(b i , . . .B , . . .bn) in the source domain. This uses the H^bst and

HMGA heuristics (defined in Section 4.2 and Subsection 5.3.4).

3. Inst-Target: From that abstraction and the initial map AHy find a cor-

responding abstraction instantiation, S ( a i , . . . A,.. . a n ) , which is consistent

with the initial theory. For each abstraction instantiation, Inst-Target also

returns the additional facts which must be conjectured. This uses the three

heuristics: HCc (Subsection 5.2.2), Hpc (Subsection 5.3.5) and Hp? (Subsec-

tion 5.3.6).

6.1.3 1: Find-Kernel Module

The goal of this first step is to determine the source facts which may be relevant

to the target problem. We call these the "kernel facts". Most of this subprocess



114 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

implements the HJK heuristic, defined in Subsection 5.2.1. As discussed there, this

process begins by syntactically deriving a source problem, PS, by lexically substi-

tuting B for A (i.e., the source for the target concept) in PT. In this hydraulics

from electricity situation, this leads to a "Find the current" query. Find-Kernel

next searches for the methods which would help solve this new query. Here, this

includes the specific rules which describe how to compute the current in a paral-

lel circuit. Find-Kernel then retrieves the justifications for these rules; here, the

electrical Kirchoff's and Ohms Laws. This set is returned as the kernel facts.

As mentioned above, this rule does not always apply: Recall that Hj%'s lexi-

cal substitution would not work if we had the same "Find the f lowrate" prob-

lem to solve, but were given the different hint, e.g., AH = {VoltageDrop i—>

PressureDrop}. In this situation, Find-Kernel defines the kernel to be all known

facts which lexically contain the source concept, here Current. That is, Find-Kernel

returns /^(T/i), using the "lexical A-projection" defined in Definition 35 in Note:5-L

(That note also shows that this set of facts is guaranteed to be sufficient.) Subse-

quent implementations of this system may uses other heuristics here — probably

domain dependent as well as general ones. Point FW4 in Section 10.2 discusses this

eventuality.

6.1.4 2: Inst-Source Module

This second step forward-chains from the kernel facts, searching for deducible

abstraction instances in the source domain; i.e., ground statements of the form

S(bj, . . .B,. . .bn), where S is an abstraction and B is the source analogue given

in the analogical hint. This can be considered a complex indexing task, using the

kernel to identify the proper abstractions. (See Section 4.5.)

In general, this forward-chaining process takes a theory Th and a kernel, $

(which is a subset of the starting theory, i.e., $ C Th), and seeks all facts, <r, which

• are (ground) abstraction formulae, i.e.,

AbstForm(a) (see Definition 11),

• lexically contain the source analogue, i.e.,



6.1. COMPONENTS OF NLAG SYSTEM 115

Lexlnclusion(k,a) (see definition on page 24), and

• require some member of the kernel, 3>, as a justification, i.e.,

(As we only deal with derivable sentences, the support STxh{ cr ) is guaranteed

to be defined and non-empty.)

Inst-Source operationalizes this by forward-chaining from the kernel facts, stop-

ping when it reaches an atomic expression whose relation is an abstraction and which

includes the source analogue as an argument. (This uses the FC-Find subroutine

described in Subsection 6.2.2.)

As this search is performed in a breadth-first fashion, Find-Kernel first finds the

abstraction whose instantiation required the fewest number of deductions. Note:6-1

formalizes this fewest deductions measure. (Note:3-1 mentions that this is but a

minor embellishment.)

As a final comment, this Inst-Source routine does consider more general abstrac-

tions, even after a more specific one has failed. (This is described in page A-88 in

SubAppendix B.3.1.) Note:6-2 discusses why this is appropriate.

6.1.5 3: Inst-Target Module

The third step tries to satisfy the sentence S ( ? i , . . . A,.. . ?n) , where S is the ab-

straction found in the previous step, A is the target analogue and each ?t- is an

existential variable. It returns both a binding list, {?*. K+ a^}, and the associated

residue, {Sj}. The residue {Sj} consists of the conjectures which must be postulated

to achieve this instantiation of the abstraction; i.e., A(T7i, S ( a x , . . . A,.. . a n ) , {<Sy}).

For example, satisfying RKK (FlowRate, ?2 , ?3, ?4') may lead to the binding list

[FlowRate, PressureDrop, PipeCharacter, Pipes] and may require postulat-

ing that Kirchoffl (FlowRate) and Kirchoff2(PressureDrop) each hold. This

attempt can fail if a proposed conjecture is inconsistent with the facts currently

known.

Section 4.3 already discussed some of the problems associated with finding a

meaningful residue. This is why Inst-Tnrget considers only leaf residues. As an



116 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

example, the only leaf residues of the R K K relation are the different subsets of

the {Sj} shown in Figure 4-7 on page 61. Subsection 6.2.3 provides a more formal

definition of this notion of leaf residues and describes CTruep, a process which finds

only these conjectures. In fact, the Inst-Target component reduces to a particular

invocation of CTruep.

6.2 Underlying System

This section describes the underpinings required to develop a system like the NLAG

program. My particular NLAG procedure is built on top of the MRS system, a ex-

pert system building tool described in [GGCS80,Rus85].4 Subsection 6.2.1 describes

why this system was used: i.e., which of its features made my analogy task easy

to implement. Powerful as that system is, NLAG required various modifications,

mostly additions to enhance its capabilities. The following subsections describe sev-

eral of those enhancements: Subsection 6.2.2 describes the FC-Find process used

by the Inst-Source module and Subsection 6.2.3, the CTruep process used by the

Inst-Target module. Subsection 6.2.4 closes this section by summarizing all of the

significant changes this project has prompted. This includes a host of more minor

embellishments, many of which have been incorporated into the growing MRS sys-

tem. (As such, these ideas and code represent an additional contribution of this

project.)

6.2.1 Why Use MRS?

This subsection discusses the MRS system and lists its salient features.

In a nutshell, MRS is like Prolog [CM81,Kow79], augmented with meta-level

control. Like Prolog, information is input in a predicate calculus format and re-

trieved by issuing general query commands. The major difference is that the MRS

user can also issue meta-level statement which alter the underlying inference pro-

cess, representations used, etc. This additional facility helped me produce a running

4 The nit ire system lives on Diablo, a VAX 11/780 running the Unix^'"1^ operating system, Version
4.2.



6.2. UNDERLYING SYSTEM 117

system quickly, and then alter it effectively.

MRS provides enough useful features that I would encourage anyone who wants

to implement an IVLAG-like system to use such a system. In particular, the support

package should include the following features (all present in MRS):

• Standard unification, [CL73,Nil80], using fully indexed propositions.

As MRS's basic LOOKUP facility does general retrieval automatically, I did

not have to worry about just how to retrieve which facts.

• A back-tracking, backward-chaining inference engine, capable of deriving valid

facts from consistent axioms.

(MRS includes this inference engine, named "BC", among others.) This meant

that I did not have to write specific programs to handle the bulk of NLAG's

processings; straightforward logical conclusions would be inferred automati-

cally from the inventory of facts. In fact, NLAG's actual "code" is actually

a set of production rules, and its overarching process is simple backward-

chaining using these rules. (This code appears in SubAppendix B.I.)

• A general procedural attachment facility.

This allowed me to write my own, more efficient routines as necessary. MRS

provides the hooks with which to use such LISP code.

• A meta-level control facility.

I found many uses of this facility. As its strongest asset, it allowed me to

cleanly separate domain information (e.g., the definition of a legal analogy)

from control information (e.g., whether one analogy should be returned before

another). To be more concrete, both Inst-Source and Inst-Target rely on this

capability to control the order in which they return their answers. Hence, this

control information is essential for a running production system.

It was even more useful to NLAG qua experimental vehicle: Many parts of Ex-

periment#3 involved re-arranging the order in which answers were returned.

Each of these required only changing a single meta-level instruction. See

Section 7.5 and related sections in Appendix B.



118 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

This evidence argues that such a meta-level language is the appropriate way to

add later domain-dependent control information, information used to further

order the abstractions and their instantiations. While this information can be

awkward and cumbersome to describe and use in general, it is natural in this

language.

This meta-level information is used in other places as well. For example, Find-

Kernel's work is greatly simplified by having access to the stored justifications

of earlier deductions.

(The last two points are where MRS improves on Prolog, as well as over most other

expert-system building tools.)

6.2.2 FC-Find Module

ComAbs's second step, Inst-Source, requires the ability to forward-chain from a

given set of facts, returning every derived fact which matches a given goal form.

The FC-Find module was designed to perform this task. In general, this module

starts from a collection of axioms and, in breadth-first manner, forward-chains from

each, returning each "goal" proposition as it is encountered. (A meta-level assertion

specifies these goal propositions.)

This process is modeled after MRS's standard forward-chaining system, FC. The

differences are:

• FC's input is a single proposition, and it always returns an arbitrary nonNIL

value. By contrast, FC-Find takes a list of propositions, (/>i,.. .p*), and re-

turns the goal propositions it finds (see next point).

• FC-Find succeeds when it finds a proposition which matches the goal state-

ment, and returns that goal proposition. That is, whenever FC-Find encoun-

ters a proposition p which satisfies (f c-goal p), it returns this p. (By using

MRS's agenda mechanism, FC-Find can be used as a generator, producing all

of the legal answers, one at a time.)



6.2. UNDERLYING SYSTEM 119

• FC-Find continues to process a proposition even if that proposition is primi-

tively stored in the theory: i.e., when (LOOKUP p) returns anonNIL answer.

(By contrast, FC stops on finding such a proposition.)

• While considering the other clauses of the antecedent of a rule, FC-Find does

a full TRUEP, while FC only does a more limited LOOKUP. To illustrate this:

Suppose FC is forward chaining from the proposition p, and encounters a rule,

(if (and pa) r ) . At this point, FC performs a simple (LOOKUP a)} and

fails if this call returns NIL. By contrast, if FC-Find was in this situation, it

would instead check the more encompassing (TRUEP <r).

6.2.3 CTruep Module

ComAbs's third step, Inst-Target, is a particular type of residue process, one which

returns a residue of a given proposition, with respect to a theory. ([Fin85] coins this

term "residue"; see also [Doy79,dK].) This is implemented as a separate subroutine,

named CTruep} (This allows it to be used independently — see the experiments

reported in Subsection 7.5.)

This subsection describes the CTruep process. The first part defines its behavior,

characterizing the conjectures it proposes. The second part describes the particular

algorithm used to achieve this behavior.

CTruep Behavior

Like all residue procedures, CTruep is similar to standard deduction procedures.

(In fact, it is built as a slight deviation of MRS's BC backward-chaining routine.)

All start with some variabilized proposition, here of the form S ( ? i , . . . A,... ? n ) ,

and seek some bindings for the ?t variables, {?& H-» &k}k- The difference is their

respective requirements on this [a i . . . an] instantiation: CTruep requires only that

the instantiated form be consistent with the starting theory, rather than be de-

ducible from it. This means it imposes the weaker requirement of Consistent(Th +

- .A^ . -an) ) , n o t 7 7 z [ = S ( a 1 , . . . A , . . . a n ) .

5for Conjecturing Truep.



120 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

A standard query-answering process returns only this binding list, {?^ i—> ajfe}̂ .

CFruep's output has another part as well: namely, a set of conjectures associated

with each binding list, {£y}. These are the conjectures which, when added to the

theory, enable proving S ( a i , . . . A,.. . a n ) . Using Definition 13, this means that

A(T/i ,S(ai , . . .A, . . .an) ,{fy}) must hold.

For this to be meaningful, we have to constrain which propositions can qualify as

reasonable conjectures. Otherwise (repeating the complaint aired on page 61), we

could simply assign 5i to be the sentence we were trying to satisfy, S ( a i , . . . A,... an)-.

(We use the term "satisfy" here in the sense of "constraint-satisfaction", not in

the model theoretic sense. This follows from the view that the theory, Th> is

a collection of constraints, and we are seeking some instantiation of the "to be

satisfied proposition" which is consistent with these constraints.)

CTruep is more restrictive. We now characterize the types of conjectures it

allows.

Leaf Residue: Subsection 5.3.2 mentioned that some conjectures seem "bigger"

than others, pointing out that the proposition KK(t, c) can be "decomposed" into

the "smaller" pair, Kirchof f l ( t ) and Kirchof f2(c) . Stated informally, CTruep

never conjectures a "decomposable" fact, such as the KK(t, c) proposition. It,

instead, conjectures only its component parts, here Kirchof f l ( t ) or Kirchof f 2 (c)

(or, if necessary, both of these facts).

This applies recursively: to satisfy a RKK query, CTruep does not consider con-

jecturing the full RKK proposition. Instead, it breaks RKK into its component clauses,

the Ohms, ConservedThru and KK facts. Rather than stop here, it further splinters

KK into Kirchof f 1 and Kirchof f 2, as shown above.

The only propositions CTruep considers conjecturing are these "leaf propositions",6

clauses which are not composed of other "smaller" ones. This prevents it from sim-

ply conjecturing the goal query or from postulating some full RKK clause. (This is

particularly useful if some component part, e.g., Kirchof f l ( t ) , is known to hold.)

6A nicer name for these would be "atomic propositions", as this convoys the sense of "not decom-
posable". However, that term was already busy.



6.2. UNDERLYING SYSTEM 121

These are the intuitions. Stating them more formally is not so simple. Sec-

tion 5.3 already discussed a semantic way of describing how "big" a proposition is;

here we are seeking a syntactic way of approximating this criterion. We begin by

defining leaf propositions, and use this to define a leaf decomposition of a relation.

This, in turn, leads to our definition of a leaf residue, which is the only type of

residue which CTruep considers.

First, we use leafj^(S, Th) to mean that the proposition 6 is a leaf proposition

with respect to a theory, T7i, and inference mechanism, IM:

Definition 19 leafj^(6, Th ) iff 8 has no non-trivial IM-based derivation in Th.

When IM is a backward-chaining engine, leafjj^(SyTh) means that Th contains

no rules whose conclusion matches the proposition 6.

Basically, this refers to propositions which have no non-trivial proofs. The in-

tuition below conveys the general idea:

Intuition 2 leafJM{6, Th ) <=> [AIM{Th,6, $) & $ = {6}}.

(This AIM relation is a slight variant of the A defined by Definition 13: While

A is based on logical inference, |=, this modified AIM is based on the (possibly

incomplete) IM inference Scheme.)

This means that these leaf propositions are the smallest units possible, for this

given theory and inference mechanism. We can use them to define the leaf decom-

position of a sentence a with respect to the theory Th:

Definition 20 LD(Th, a, .{6,} )

a.= /\Sj{xi9...xn) k Wy leaf^(Sy, Th).

A given relation R may have several distinct (even disjoint) leaf decompositions.



122 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

In our system, RKK has the single decomposition:

Kirchoffl(t)

(6.1)
ConservedThru(t, "x

Ohms(t, c, r , 1)

We now have the machinery needed to define the second part CTruep's output:

it is always a leaf residue. Given R(zi,.. .xn) as input, CTruep returns a binding

list [ai,... an] and a leaf residue, {6j}> where each S3 is a ground clause which is a

member of R(ai,... an)'s leaf decomposition.

To state this formally, {S3} is the leaf residue of the sentence a and theory Th,

written Ax,fl(T7i, a, {63}), if it is the minimal subset of cr's leaf decomposition which

must be added to Th (i.e., which needs to be conjectured) to derive a:

Definition 21 ALR{Th,a^) =*' [A(T/i,a, *) k 3T (LD{Th,a,T) k $CT) ]

By minimal, we mean that if there is another *&' which satisfies the right hand

side of Definition 21, then $ C $'. Hence, this $ is the minimal such set of leaf

propositions which is needed to satisfy a (i.e., ThU ^ \=^ a) and which is consistent

with Th (i.e., Consistent( Th U $ ) ).

Two final comments:

[1] In what follows, we pretend that this ALn relation is a function, mapping a

theory and a sentence onto a set of sentences:

ALR :2s x S •-> 2s,

where S is the set of all legal sentences.

In general, a relation R may have many independent leaf decompositions, leading

to many distinct possible leaf residues. As this does not happen in. our examples, I

was able to exploit this functional description.

[2] There are two potential problems with this definition of leaf decomposition:

First, while it works fine for conjunctions and for universally quantified variables,

disjunctions and existential variables can be quite problematic. (Reiter calls these



6.2. UNDERLYING SYSTEM 123

"indefinite terms", and comments on their complexities in [Rei78].) This particular

issue never came up in my system. This is because NLAG only considers conjec-

turing abstractions, and abstractions tend to be conjuncts of universally qualified

clauses.

Second, this definition can lead to an infinite loop if the proof for some relation

involves the same relation. (E.g., (if (and (parent $x $y) (ancestor $y $z))

(ancestor $x $z)).) We remove this complication by "taking the fix point" dur-

ing the proof. This has the effect of omitting the recursive clauses: e.g., clauses

in the antecedent of a rule which match the rule's conclusion. (This means that

LD(Th, ancestor (a ,z) ) is a set of parent clauses, as expected.) This issue, also,

never occurred. Once again, this is because NLAG only considers conjecturing ab-

stractions, and abstractions tend to be well-behaved — here, they tend not to be

recursive.

CTruep's Algorithm

This portion describes CTruep's actual algorithm. For efficiency reasons, it per-

forms this task in two stages: The first substep, CTruep-1, attempts to satisfy the

partially instantiated abstraction instance, using existential variable "place hold-

ers" as needed. The second substep, Resolve-Exists, then seeks consistent bindings

for those existential variables.

CTruep-1 begins by seeking all deducible bindings; that is, all [ai,...an] such

that Th |= S(a1} . . . A,.. .an) . It then finds the bindings which only satisfy the

formula S(?i , . . . A,... ?n). (This operating heuristic — find instantiations which

require zero conjectures before ones requires more than zero conjectures — follows

immediately from the Hpc r ule- See Subsection 5.3.5.)

When satisfying the formula, CTruep-1 ignores the issue of variable bindings

when conjecturing a new leaf proposition (here, some <5y), choosing instead to simply

use an existential variable for each underdetermined parameter. This leads to a

dummy binding list, which assigns each variable to an distinct existential variable,

• t»

This substep also returns the leaf residue associated with this bindings; that



124 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

is, a set {Sj} which satisfy A ^ ( Th, S ( ? i , . . . A,... ?n) , {6j} ). (As the previous

portion explained, insisting that each 6j is a leaf proposition means that CTruep-1

includes a proposition, <5y, as a conjecture only if that axiom could not have been

derived from other propositions via an already present rule.)

Hence, given RKK's definition (Figure 4-3) and a starting theory Th essentially

devoid of any FS facts, CTruep-1 would determine

, RKK(FlowRate.

Kirchoffl(FlowRate)

Kirchoff2(?c)

ConservedThru(FlowRate,

Ohms(FlowRate, ?c , ?r , ?

), (6-2)

where these ?c, ?r and ?/ symbols are existential variables. (Notice that the non-

analogue terms do not need to be existential variables. For example, if Th could

prove that ConservedThru(FlowRate, Pipes) held and that ConservedThru is a

function, it would use the Pipes binding rather than the ?/ shown above. Here, the

leaf residue would be

ALR{Th, RKK(FlowRate, ?c, ?r, Pipes),

Kirchoffl(FlowRate)

Kirchoff2(?c) ) •

Ohms(FlowRate, ?CI ? r , Pipes)

(6.3)

However, as ConservedThru is not a function, this did not happen.)

This concludes CTruep-Vs operation. Its underlying goal is to find the sets

{Sj}s which satisfy ALR(Th, S ( ? 1 } . . . A,. . . ?n) , {Sj} ). This {S3} set provides

constraints on the legal values for these ?i. These variables, [? i , . . . ? n ] , and their

associated constraints, {Sj}, are then given to Resolve-Exists.

This second substep seeks bindings for these variables, {?1 \-> a j , . . . ?n i—• a n },

which satisfy this Th theory. (Of course, this substep is vacuous when there are no

existential variables.) The current algorithm seeks only symbols already present in

the JC, the language of Th: i.e., each a ; 6 L for each j . (N.6., this means that NLAG

does not generate new terms. See Subsection 5.3.6 and Point N4 in Section 6.3.)

To find possible candidates, Resolve-Exists determines all of the facts known

about each of the variables by forward chaining from their respective defining



6.2. UNDERLYING SYSTEM 125

clauses. For example, "?c" is defined by Kirchoff 2(?c) and Ohms(FlowRate, ? c ,

?3, ?4). These, in turn, lead to facts like ?c £ Functions, etc. (See Figure 5-5 in

Section 5.3.6.) Resolve-Exists generates such a list for each variable and uses this ex-

plicit list of propositions to constrain the allowed values for that variable. This pro-

cess then splits each list into two parts: those which deal only with this specific vari-

able (here H 1 ^ ) = {"Kirchoff2(?c)", "?c G Funct ions", . . .} ) and those which

involve more than one variable (here TI2(?C) = {"Ohms (FlowRate, ?c , ?3 , ?4)" , . . .}) .

For each variable ? i , Resolve-Exists then uses a set of heuristics to order the

first sublist, II1(?i). The goal is to place the maximally constraining clauses first.

For notion, assume II1(?i) = (/>Q, . . . pl
m). The first member of this list, />Q, is used

as a generator, which (we pretend) generates all the possible candidates for this

variable.7 This means the possible referents of this ?i variable are the bindings of

this first proposition, as returned by (TRUEPS pl
0). (The HJ?T rule allows us to

make this simplifying assumption.) ;For notation, assume the legal values for the

variable ? i are {z*,. . . £**}•

The remaining members of this first sublist II1 (?i), viz., (pi,... /?™), become the

first wave of primers for this variable: the value a? is an acceptable value for ? i

only if every one of these p*[?i/a'] propositions is consistent with T7i, for all k.

This, Resolve-Exists "1-Consist" test, removes some of the initial candidates.

Without loss of generality, assume that {a^...a'1} remain for each ? i . We now

have to find the ones which satisfy the other constraints, the II2(?i)s. Resolve-

Exists merges these propositions together, forming IT2 = U?i II2(?i).

Now consider the cross-product of these sets of possible values, {a?}. Each

7If II1(?i) is empty, the generator is taken from Il2(?i) . As this latter set is guaranteed to be non-
empty, we will always find some generator. However, there are times when this clause cannot be
used as a generator. (This often happens when CTrucp is used solo: see Run#3-5 in Section 7.5.)
To avoid returning no answers here, the Resolve-Exists system has a built-in-heuristic: as a last
resort, it uses the domain information associated with the underlying relation (screened with
def ined-below data, if present) to produce a set of possible values. This is as if there was a rule
of the form:

(if (and (domain $r $i $s) ($r . . . ?x •. . .)) (mem ?x $s))
when the ?x is the ilh argument of the proposition. (The domain and def ined-below relations
are discussed in Section 7.2.)



126 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

member of this cross-product,

<a|\...ar>G{a]}x...x{a'n},

is then screened against the II2 list of propositions: Resolve-Exists applies the

{?1 H-» aj1 , . . .?n »-> a£n} substitution to each member of this list TT £ II2, and

tests if this 7r[?i/af,... ?n/a£n] is consistent with Th* Those n-tuples which

pass this second test are returned as Resolve-Exists* results. This binding, to-

gether with the related leaf residue (which is the instantiation of each member of

&LR{ Th, S (? i , . . . A,... ?n), {Sj} )) is the result of the CTruep process.

To tie this back with the NLAG system: this instantiation and residue pair is

then returned as the result of the final Inst-Target step, and is therefore returned

as the result of the overall ComAhs process.

We close this description with some final notes: First, this facility can be very

inefficient. One way of improving the situation is by "supercaching" various re-

sults. Point MRS1 discusses how to do this. Second, finding the appropriate leaf

decomposition of a sentence often involves more than simple backward chaining.

Point MRS3 discusses one useful embellishment.

The final issue deals with two decisions left implicit in the above discussion: [l]

how we order the various clauses (i.e., should (mem ?3 functions) be considered

before (domain ?3 3 2 numbers)), and [2] how to order the sets of consistent val-

ues (i.e., should the [flow-rate pressure-drop cross-section pipes] instan-

tiation be considered before [flow-rate pressure-drop cd-of tubes]). While

the general |^T process is silent on both issues, the particular NLAG process uses a

set of ad hoc rules to provide an ordering.

How should we order the various clauses? One approach would involve using

the most constraining clause as the generator. Here we would need to find the

maximally constraining clause. ([SG85] describes ways of doing this.) At the other

extreme, a more cautious and thorough method would advocate finding every pos-

sible abstraction instantiation IIFT would allow. To be totally comprehensive, we

would have to use all of the clauses as generators.
8This is a quick test. The Verify modulo later tests each proposition against that theory unioned
with the other propositions proposed: see Subsection 6.1.1.



6.2. UNDERLYING SYSTEM 127

NLAGy instead, employs the simpler convention of using a set of inexpensive (and

changeable) meta-rules to select which clause should be the generator. One version

insists that the generator is of the form (mem ?i (class)). Another version uses

the relation (InTheory ?i theory^*), where theory^* is the theory associated

with the abstraction, Abst. Both have been implemented; others may be proposed

and tested. (These are described in Section 7.2.)

These operations lead to a set of consistent values, each a potential instantiation

of the abstraction in the target domain. The second decision is how these possible

instantiations should be ordered: i.e., in what order should they be given to Verify

for further testing and possible presentation to the user? NLAG assigns a value to

each n-tuple of entries. The tuple with the highest value is returned first, then the

second highest, and so on. This value is computed as follows:9

• Lookup Clauses:

Associated with each existential variable is a set of constraints used to gener-

ate and prune the legal values for this variable. (For example, both (mem ?3

functions) and (domain ?3 3 2 numbers) are associated with the variable

?3.) Now consider some particular instantiation, e.g., {?2 ̂ pressure-drop, ?

cross-section, ?4 \—> pipes }. (This corresponds to the target conjecture

RKK(flow-rate pressure-drop cross-section pipes).) In how many

of the above clauses does this proposed value for ?3, cross-section, "prim-

itively participate"? For example, are either (mem cross-section func-

tions) or (domain cross-section 2 numbers) primitively stored in the ini-

tial theory? NLAG gives the proposed instantiation one point for each such

primitively stored fact, for each existential variable.'This means it adds to

this value the number of ?2-related facts which contain the pressure-drop

term and the number of ?4-related facts which contain pipes. As it is adding

the number of primitively stored facts associated with each variable, finding

that (domain cross-section 1 pipes) is primitively stored counts as two

— one for ?3>—>cross-section and one for ?4>->pipes.

This contribution is computed by the Weight-By-Lookup clause.

o final rule prrsmtrd in SubApprndix B.I shows the actual code- used.



128 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

• Associated Terms:

Consider the symbols lexically contained in the query (here (f low-rate j -

wc-a pipel sO $fr)). Now find all the primitively stored facts which include

any of these symbols, and then consider the set of symbols contained in these

facts. (This describes a two step spreading-activation process.) For example,

the term pipes leads to the sentence (mem pipel pipes) , and this provides

the associated term, pipes. This search quickly finds the relevant hierarchy

information. (.E.g., we see how pipel points to pipes.) Any candidate which

includes any of these resulting terms is given an additional five points.

This is computed by the Weight-By-Assoc clause.

• Common Theory:

This begins by considering the theories associated the symbols of the tar-

get query. (.E.g., p ipel is associated with the theory we I.10) Any candidate

instantiation which includes a term associated with any of these theories is

awarded an additional ten points. This measure does not consider the hierar-

chically included theories. Hence, a term immediately associated with LELS

receives no points.

This is computed by Weight-By-CommonTheory clause.

6.2.4 Summary of MRS Additions

NLAG necessitated several minor embellishments to the MRS system, in addition to

the FC-Find and CTruep facilities discussed above. This subsection presents a list

of some of these additions. (Some of these facilities have already been incorporated

into the core MRS system and others are available as loadable packages. The points

below indicate the status of each package.)

MRS1- "SuperCaching":

After TRUEP'mg a proposition />, it would be desirable to be able to re-use those

answers during a lciter computation. The current caching facility does some of

10 Sub Appendix B.2.1 sketches the relevant theories.



6.2. UNDERLYING SYSTEM 129

this by storing intermediate results, knowing that subsequent TRUEP calls will

find those stored values first. If MRS knows that these stored answers are the only

ones, it can simply return these answers; otherwise it is forced to consider back-

chaining to find other answers. Unfortunately, MRS seldom knows the number of

solutions to a query; in fact, the only times it knows it can stop are when a query

can return only a single answer. This means that caching is ineffective whenever

a query might return more than one answer or no answer. Here, as MRS does not

know that these stored answers are the only ones, it will continue backtracking,

albeit needlessly.

This SuperCache facility addresses this problem. Once all solutions to the

query p have been produced, the SuperCacheing mechanism stores those values.

A subsequent (TRUEP p) invocation uses this information; TRUEP now knows

it can simply stop and return just those values, rather than continue backward-

chaining.

This requires explicitly associating those answers with the query p. As an

example, imagine that query (Dog $x)n returned the two answers (Dog Fido)

and (Dog Shep). This SuperCache package then stores the fact (BCS-of (Dog

$x) ts (Dog Fido) (Dog Shep)), where ts is a time stamp. The upgraded

TRUEPing .mechanism is smart enough to use these values the next time this

query (or any specialization) is sought. This means that (TRUEP '(Dog $y))

will use this BCS-of fact to return (Dog Fido) and (Dog Shep) without any ad-

ditional backward chaining. Furthermore, this same BCS-of fact tells TRUEP

that the query (TRUEP '(Dog Felix)) should fail.

This SuperCache facility can be embellished to worry about the repercussions

of additional user-input facts. This is why the ts time-stamp is included.

CTruep made constant use of this facility. For example, when computing

the residue for the RKK abstraction, it found, as an intermediate result, the

residue associated with the KK abstraction. This SuperCache facility allowed

this computation to be re-used during CTruep's subsequent dealings with KK,

11 Variables in-queries are prefaced with a dollar sign, "$".



130 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

both directly and indirectly (e.g., when considering the CKK abstraction.) (See

SubAppendix B.3.1, especially page A-89.)

As a final note, the astute reader might imagine a slightly simpler process,

one which simply stored the number of solutions to a query, e.g., (#BCS p (n)),

as well as caching those (n) answers. In the above example, this would mean

storing (#BCS (Dog $x) 2) in addition to caching (Dog Fido) and (Dog Shep).

While this would work with the general BC backward chainer, it is not enough

for the CTruep residue process. For this, we need to store the actual conjectured

propositions, as shown above.

MRS2, Use of Constraints:

In the standard MRS system, the only direct way to compute the value of a

parameter is by deducing its value from other terms. While this works well in

many situations, it is sometimes more natural to describe the interconnections

between various parameter in terms of constraints on their mutual values. This

can be awkward to write, using a strictly rule-based system. For example, the

typical way of describing Ohm's Law is by stating that the product of the current

and the resistance of a resistor is the voltage drop through that device. This is

far more succinct than the alternative of stating three rules:12

1. to compute the voltage drop: determine the resistance and the current,, then

find their product;

2. to compute the resistance: determine the voltage drop and the current, then

find their quotient;

3. to compute the current: determine the voltage drop and the resistance, then

find their quotient.

Similarly, it is easier to state that the voltage drop between two points is

defined as the difference between the voltages of those points, rather than as a

triplet of specific rules.
12In its full generality, ihis could require having one rule for every one of the 2n possible subsets of

values. Each such rule would be responsible for deducing or constraining one of the parameters
based on the values of the other m < n known values.



6.2. UNDERLYING SYSTEM 131

The situation gets even messier when the only way to compute one quantity is

to compute a value of a related term; and this related value is, in turn, dependent,

on the initial quantity. Clearly, the way to solve such problems is by satisfying

constraints rather than by pure backward-chaining.

This motivated various researchers to consider a system of constraints. (C/.,

[SS77] and [SGLS80].) For this circuit work, I too designed a simple constraint

propagation system, one capable of both describing constraints which interrelate

various values and of symbolically using this intentional information to solve

problems.

This point describes the culmination of this work, the constraint package.

First, we need to define the format of a constraint. By example, the Ohm's Law

constraint is written

(constraint (* $c $r $vd)
(and (port $x 1 $jl)

(mem $x elect-devices)

(port $x 2 $j2))

(resistance $x $r)

(voltage-drop $jl $j2 $s $vd)

(current $jl $x $s $c))

The top line means that this fact describes a multiplication constraint. The next

s-expression is a screening clause, which defines when this rule may be pertinent

and establishes some bindings. Here, it specifies that the variable $x must be

bound to an electric device, whose two ports are (the values of) $j 1 and $j2. The

remaining clauses determine the other bindings, in particular, for the variables in

the "header", (* $c $r $vd). (The difference between the first clause — here

"(and (port ... ) . . . ) " — and the others is that the first one is LOOKUPed

while the others are TRUEPed.) The other clauses state that $r is bound to

the resistance of the device $x, $vd, to the voltage drop across the two ports

associated with that device (recall these ports are the values of $jl and $j2)



132 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

during the situation $s, and $c, to the current at the junction $ j i through the

same device during the same situation.

Many of these constraints may come into play when solving a complex prob-

lem. The Solve subroutine attempts to find solutions to such systems of equations.13

This overall facility is tied into MRS's basic backward chaining system, mean-

ing that the query (TRUEP ' (current . . . ) ) will use the Ohm's Law constraint

shown above, if necessary.14 These constraints have also been integrated with the

"Iflf" facility described below in Point MRS3 below.

M R S 3 . Double Backward Chaining: " H I P :

When a typical backward chainer (e.g., MRS's BC) attempts to prove a propo-

sition, /?, it finds rules of the form (if a />), and then considers a to be a

subgoal. However, the initial ThcF knowledge base included many rules of the

form (if r (if a p)): for example, (if (ki rchoff l $t) (if ( . . . ) ($t $j

$d $value))) . Here, even though both r and a may be provable, the standard

backward-chainer would not use this indirect rule to prove p. This point describes

the "double back chain" facility, which addresses this limitation.

In the example suggested above, when trying to prove a clause which matched

p, this "Iflf" addition would try to prove r. If that succeeded, it would cache the

rule (if a p). (Technically, proving r leads to a binding list, al. The rule stored

is (if a' />'), where a' (respectively p1) is the result of applying the substitution

al to a (respectively p).) This new rule can then be used toward proving our

initial goal, p.

Three final comments:

[1] This addition is fully recursive. It can use a rule of the form

( i f n ( i f r2 ( i f ••• ( i f rn / > ) • • ) ) )

13In certain complex situations, this constraint solving system simply asks the user for a binding
to the relevant variables. See Note Trace3 in SubAppendix B.3.1. (After all, this research is on
analogical reasoning, not algebraic simplification and symbolic evaluation.)

14This mechanism gives rise to the mysterious usecons t ra in ts clauses which appear throughout
SubAppendix B.3.3.



6.2. UNDERLYING SYSTEM 133

to prove a query p.

[2] This "find-embedded-methods" facility is fully integrated with the Constraint

package described in Point MRS2 above. That is, the rule (if (kirchoff 1 $t)

(constraint • • • ($t . . . ) • • •)) is considered when trying to prove something

matching ($t . . . ) .

[3] This facility is only active when the If If P flag is nonNIL. As this operation is

expensive, we only turn this flag on when we want the system to try as hard as

possible to tease everything possible out of the available facts. It was never used

with NLAG, since this system finds the facts it needs by working in the forward

direction. The only time it was used was when CTruep was working by itself.

(See Run#3-5 in Section 7.5.)

MRS4. Generator:

Consider the problem of deducing the possible answers to a conjunction of clauses.

The standard approach is to produce all possible answers for the first clause, and

then use the remaining clauses as filters. Unfortunately, that first query might

produce a large, or even infinite, number of possible answers.

In these situations, a better approach involves generating one value at a time.

This single value can then be tested against the other clauses. Only if that first

entry fails does the generator then produce another possible answer, and so on.

Unfortunately, MRS did not provide a general facility for this. I wrote such a

system, one which included the hooks needed to associate LISP procedures which

returns these one-at-a-time answers.

(This module is now a loadable package.)

MRS5- Existential Variables:

The initial MRS system has no mechanism for dealing with existential variables.

That is, there is no way of stating that we do not yet know the precise value of

some argument of a formula, one which may be co-referential with some known

term. This was required by the CTruep subroutine: see its description in Sub-

section 6.2.3.



134 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

MRS6. REPN and REPN-METHOD:

These MRS relations allow the user to easily declare the representation to be used

for a class of propositions. I also added an assortment of new representations

which NLAG required.

(This facility has been incorporated into MRS's starting code.)

MRS7. FUNPROC and RELNPROC:

These MRS relations allow the user to add a procedural attachment to an MRS

function or relation.

(This facility has been incorporated into MRS's starting code.)

M R S 8 . Rule direction information:

This package allows the user to declare which way a rule should be invoked:

exclusively in a forward direction, exclusively in a backward direction, or both

(the default). This was implemented by storing a meta-level tag with each rule.

(This was motivated by Novak's GLISP work [Nov83].)

(This facility has been incorporated into MRS's starting code.)

6.3 Requirements of the NLAG System

We claimed earlier that the NLAG algorithm is a faithful model of the theoretical

|^T process: i.e., that it does return the same answers |^T would. This section proves

this claim. In particular, it supplies an explicit description of what is necessary for

the NLAG algorithm to work effectively. These features constrain both the source

and target domains and the underlying computer language in which an iVLAG-like

system can be written.

First, just what does NLAG return? By construction, the Com A hs algorithm

produces only abstractions common to both analogues. For each such result to pass

Verify's test, it must lead to an answer to the initial PT query. Hence, NLAG

only returns useful common abstractions. It may, however, not be the correct

abstraction: that is, this common abstraction may lead to an incorrect answer to

PT. All we can guarantee is that any new conjecture is "reasonable"; that it can



6.3. REQUIREMENTS OF THE NLAG SYSTEM 135

be justified given these inputs and the starting knowledge base, Th. (See Note:l-2.)

This shows that JVLAG's algorithm is sufficient; that it never produces useless or

unreasonable common abstractions.

Now for the other direction: Will NLAG always find the correct answer, even-

tually? The answer is a qualified "Yes". The NLAG algorithm can only find an

abstraction (and hence, can only find the desired abstraction) when the following

conditions are met:

N l . The starting theory, Th must include a definition of the relevant abstraction.

This means a fact of the form "Vxz- RKK(xi, . . . xn) >̂ (& . . . )" must be included

in Th, for the needed abstraction. (See Figure 4-3 on page 52.) The theory must

also include a fact of the form Abstraction(RKK).

N2. The source instantiation of the abstraction must be derivable for the ini-

tial theory, and the target instantiation must be consistent. That is, Th \=

S(bi , . . .B, . . .bn) , and Th fc -»S(ai,... A,.. .a n) . Notice this means that NLAG

does not have to conjecture any facts to see that S (t>i,... B,.. . bn).

N3« A full instantiation of the appropriate abstraction must be sufficient to solve

the target problem — i.e., we assume that nothing else needs to be conjectured.

This is what we mean by Th + S(ai , . . . A,... an) \=^PT.

This turned out to be a non-trivial requirement. For example, imagine [1] we

used heuristic HJK to determine the analogous source domain problem PS ="Find

the current" from the given target problem "Find the flowrate", [2] that

PS's solution depended critically on some source fact which involved Voltage,

</>(Voltage), and [3] that the corresponding target conjecture ^(Pressure) is re-

quired to solve PT. Now recall that the source abstraction instantiation dealt

with VoltageDrop, not Voltage. This means we are viewing the concept Pressure

as an unseen dependent of this RKK abstraction, with respect to this formula

<t>.
We are making the strong assumption that we can derive all such dependent

statements, given only the newly conjectured abstraction instance. Here, this



136 CHAPTER 6. SPECIFICATION OF THE NLAG PROCESS

means that

Th + RKK(FlowRate, PressureDrop, PipeCharacter, Pipes) |= (^(Pressure).

Hence, the only fact which needs to be conjectured is this abstraction instance;

everything else needed must follow from it.

N4. All the concepts needed to instantiate the abstraction in target domain must

already be included in £, the language of Th. This means each instantiating

concept must already be reified as a pre-defined symbol. For example, NLAG

would fail if L did not already include a symbol for the PressureDrop concept

which is needed to fill the second position of the RKK abstraction. This does

not mean that Th must include all the relevant facts about this PressureDrop

concept. Indeed, we may know arbitrarily little about it: NLAG can find this

PressureDrop symbol even if it was included in only a single Th fact (the one

needed to make this PressureDrop symbol findable in the sense required by the

HFT rule: see Subsection 5.3.6).

N5. Each term used to instantiate the abstraction in the target domain must be

findable. To describe this, we need to use the material implications from S,

M = MI( S(?i , . . . A,...?n) ). (See Definition 18.) For each ?y in [?1}... ?n], we

can find a subset of M which deal with this j t h variable. Using the rules described

on page 127, we can order this into the list (/?y.. . p"J), where this symbol ?y is

lexically included in each pj and each p* is in M.

For each j \ assume the desired value of each ?y is ay. For this value to be

found, (TRUEPS p^ ) must return a binding list which includes ?yh->ay.

(Each pkj[tj/^j] must also be consistent with Th, but Point N2 already enforces

this constraint.)

If all the above conditions are satisfied, the NLAG system is guaranteed to

produce that correct answer, eventually. It may, however, find other answers, and

may find those other answers first. That is, (i) NLAG may first find a different

common abstraction or (ii) even if it finds the correct abstraction, it may first



6.3. REQUIREMENTS OF THE NLAG SYSTEM 137

find another instantiation. This depends heavily on the heuristics discussed in

the previous two chapters and their interactions with the particular facts in the

initial theory, Th. The intuitions below approximate the operations of this ComAbs

generator:

E l . To find the correct instance of the abstraction in the source domain early:

That instance should be "close" to the kernel facts — i.e.,- either explicitly men-

tioned or quickly found by a forward chaining process. That is, the proof of

S(bi , . . . B,... bn) from the kernel facts should be short.

Note:6-1 quantifies what it means to for a proposition, a (here, the source

abstraction instance S(bj , . . . B,... bn)), to be "close" to a particular set of facts,

$, (here, the kernel) with respect to the theory, Th.

E2. To find the correct instance of the abstraction in the target domain early:

There should be enough facts in the target domain that the correct bindings for

the remaining variables of the abstraction are found soon.

This is easy to quantify in terms of the Am relation defined in Definition 21:

namely, the sentence <p will be found before the sentence p whenever

\\ALR(Th,<p)\\<\\ALR(Th,p)\\ . (6.4)

(This simply paraphrases the H^Q heuristic, using A ^ qua function.)

In case of ties, JyT does not specify an order. Our particular NLAG im-

plementation prefers those instantiations whose derivations require fewer steps.

(This can be quantified using an obvious variant of the K{ relation discussed in

Note:6-1.)



 



Chapter 7

Experimental Results

This dissertation has provided a particular definition of analogical inference, based

on finding common abstractions. The previous chapter described the NLAG routine

which implemented this |(̂ T process.j-This chapter discusses the utility of these (up

until now, just ethereal) ideas, demonstrating that they are not only intuitive,1 but

realizable and general as well.

The first section sets the stage, describing which facts, rules and abstractions are,

and are not, present in the initial knowledge base. The next four sections present

a series of demonstrations and experiments using this data, designed to demon-

strate the viability of this abstraction-based analogical inference process. Table 7-1

provides a preliminary overview of these tests. (Many of the terms used in this

sketch are clarified in the various sections.) Each deals with the specific example

presented in Section 1.3, or a closely related variant, and all use the NLAG routine.

Section 7.6 then analyzes this data and proposes conjectures on the nature and

utility of abstractions in general.

Two other preliminary comments: Two other analogy situations were consid-

ered and partially implemented. The first, dealing with the Group abstraction, is

sketched in Note:7-2. The other, based on the Programmer's Apprentice work, ap-

pears in Note:7-3. Second, we make frequent references to the algorithm presented

*Note:7-l addresses this claim, discussing some of the ways this model of analogy fits the standard,
pro-theoretical sense of analogy.

138



 



7.1. INITIAL SET UP 139

1. Functionality — Section 7.2

• Run#l-1: Using Generator#l

• Run#l-2: Using Generator#2

2. Sensitivity

(a) Initial Theory — Section 7.3

• Run#2a-1: Add Irrelevant Facts
• Run#2a-2: Delete Relevant Source Facts
• Run#2a-3: Add Directly Relevant Target Facts
• Run#2a-4: Add Indirectly Relevant Target Facts

(b) Abstractions — Section 7.4

• Run#2b-1: Add Irrelevant Abstractions
• Run#2b-2: Delete Relevant Abstractions
• Run#2b-3: Add Relevant Abstractions

3. Ablation of "Analogy" — Section 7.5

• Runs#3-2a, #3-2b: ^Maximally General

• Runs#3-3a, #3-3b: -^Abstraction

• Runs#3-4a, #3-4b: -^Maximally General, ^Abstraction

• Runs#3-5a, #3-5b: CTrucp alone

Table 7-1: Overview of Tests Run

in Chapter 6 in describing and analyzing the experiments. The reader is advised to

that chapter a strong prerequisite for this one.

7.1 Initial Set Up

This section quickly sketches the basic set up, corresponding to the "Find the

flowrate" problem first presented in Section 1.3. (SubAppendix B.2 describes this

information in detail.) Each of the experiments described below either uses this

exact set of facts, or some slight variant.

To be compatible with the actual data, as shown in Appendix B, the expressions

appearing in this chapter are the ones actually used by the NLAG program. This



140 CHAPTER 7. EXPERIMENTAL RESULTS

means that the expressions are written in standard LISP notation (i.e., (kirchoff 1

current) rather than Kirchoff 1 (Current)) and everything will be in the same font

and lower case.

First, JVLAG's specific inputs were:

Query: (flow-rate j-wc-a pipei sO $fr)

Analogical Hint: ((current . flow-rate))2

The initial knowledge base, ThcF contained the following four lumped element

linear system abstractions:

kk which consists of KirchofPs two laws.

rkk which represents resistor circuits. It includes the resistance law (aka Ohms

Law) and conservation rule for* the through-term (e.g., flow-rate) through

the load element (e.g., pipes), in addition to KirchofFs Laws. This is exactly

the relation shown in Figure 4-3 in Section 4.1.

ckk which represents capacitor circuits in the same way rkk represents resistor

circuits; i.e., it includes the capacitance law in addition to KirchofFs Laws.

lkk which represents inductor circuits in the same way rkk represents resistor cir-

cuits; i.e., it includes the inductance law in addition to Kirchoff's Laws.

(These, and all other abstractions, are described in the glossary, Appendix C. Their

actual MRS code appears in SubAppendix B.2.1. That sub'appendix also discusses

the other general information included in the initial theory, ThcF — these are the

facts which are in common to the two subtheories, EC and FS.)

ThcF also includes a fairly complete collection of electricity facts. (EC), including

the needed LD(ThcF> (rkk current voltage-drop resistance elect-devices))3

This ((current . flow-rate)) notation encodes the same information as the {Flov/Rate i—>
Current} form shown in the previous chapter.

3 The class of elect-devices consists of both resistors and wires.



7.1. INITIAL SET UP 141

clauses:

(kirchoffl current)

(kirchoff2 voltage-drop)

(conserved-thru current elect-devices)

(ohmslaw current voltage-drop resistance elect-devices)

It also includes domain specification for the variety of functions, including

capacitance current inductance resistance voltage voltage-

drop volt-batt . . .

As one example,

(mem voltage-drop functions)

(domain-spec voltage-drop junctions junctions states numbers)

means that voltage-drop is a function of three arguments — the first two are

junctions, the third is a state, and the result (the final argument of the relation), is

a number.

It also includes facts about classes of EC objects, including

batteries capacitors elect-devices inductors res is tors wires

as well as things like units,

amperes colombs ohms volts . . .

(Full details of this EC subtheory appear in SubAppendix B.2.2.)

On the other hand, there were relatively few facts about hydraulics systems

(FS). This FS subtheory contained little beyond the information which could be

inferred from the Section 1.3's Figure 1-1: just domain specification facts, about

the functions

cd-of cross-section flow-rate pipe-charact pipe-shape pres-

sure pressure-drop pump-press water-height ...

and the classes

orifices pipes tanks thin-pipes tubes water-devices ...



142 CHAPTER 7. EXPERIMENTAL RESULTS

In particular, it included none of the clauses in

.*t '" i Then (rkk flow-rate pressure-drop pipe-charact pipes)) ,

e.g., it iid not include (kirchoffl flow-rate). (SubAppendix B.2.3 explicates

this set of facts.)

The problem statement contains descriptions of the devices and junctions,

pumpl pipel pipe2 j-wc-a j-wc-b

e.g.,

(mem j-wc-a junctions)

(port pipel 1 j-wc-a)

(flow-rate j-wc-a pumpl sO -50.0)

(cross-section pipe2 1000.0)

(Full details appear in SubAppendix B.2.4.)

7.2 NLAG's Functionality — Runs#l

Given all of this data, did NLAG work? This first demonstration (Run#l-1) shows

that the answer is "Yes". This run demonstrates the NLAG system in operation,

describing how it solves the "Find the flowrate" problem.

NLAG did find the correct answer: the target abstraction instance,

(rkk flow-rate pressure-drop pipe-charact pipes), (7.1)

via the source abstraction instance,

(rkk current voltage-drop resistance elect-devices), (7.2)

This required conjecturing all of

(kk flow-rate pressure-drop)

(kirchoffi flow-rate)

(kirchoff2 pressure-drop) (7.3)

(conserved-thru flow-rate pipes)

(ohmslaw flow-rate pressure-drop pipe-charact pipes).



7.2. NLAG'S FUNCTIONALITY - RUNS#1 143

That information, in turn, led to the rules and constraints needed to solve the

problem. An actual trace of NLAG's behavior when performing Run#l-1 appears

in SubAppendix B.3.1. Various peripheral information appear in nearby subap-

pendices; in particular, SubAppendix B.3.3 explicates the specific set of proposed

conjectures.

As Section 2.5 mentioned, the analogy problem is underconstrained. NLAG also

considered several other possible formulae and various other possible instantiations.

One was

(rkk flow-rate pressure-drop cross-section pipes). (7.4)

Based on information NLAG had (just domain specifications), this cross-section

binding looked perfect; it just happened to be wrong.

In fact, NLAG considered a variety of different abstraction instances. After

summarizing this set, this preliminary subsection concludes by discussing the size

of search space. -*

NLAG explicitly considered ten different possible target instantiations of (rkk

flow-rate ?2 ?3 ?4), where each ?i is an existential variable. These are shown in

SubAppendix B.3.4. Five of these were useful; i.e., lead to an answer to the target

problem.

NLAG also considered each of the three other abstractions. Thanks to HJK*$

advice, the next abstraction considered was kk. Its only proposed instantiation was

(kk flow-rate pressure-drop). This was rejected since it was not a useful anal-

ogy: i.e., this conjecture does not lead to a solution to the "Find the f lowrate"

problem. (In SubAppendix B.3.1, this analogy corresponds to the ##ll t ; i analogy

candidate.)

NLAG next considers ckk. Here, too, there is but a single possible target instan-

tiation: (ckk flow-rate pressure-drop water-height tanks). (The water-

height term satisfied what turned out to be the most constraining condition asso-

ciated with ckk's third argument, viz., that it be a function of three arguments.)

As this conjecture does not solve the "Find the flowrate" problem, it too was

discarded.

The final abstraction, lkk, also had but a single possible instantiation, (lkk



144 CHAPTER 7. EXPERIMENTAL RESULTS

flow-rate pressure-drop water-height tanks). (This abstraction also imposed

the same ternary-function condition on its third argument.) SubAppendix B.3.1

shows that NLAG is unable to find any other common abstractions when this final

candidate fails, and gives up, (Of course, NLAG has already found the desired

answer, the (rkk flow-rate pressure-drop pipe-charact pipes) one shown

above. It was vetoed to further exercise NLAG.)

All told, NLAG found these thirteen proposed Ĵ  analogies. Only five of these

were |^T analogies; i.e., only five target abstraction instances produced an answer to

the "Find the flowrate" query. (Tables 7-3 and 7-4 summarize this information.)

How big is the actual search space? The MRS environment contained some 636

distinct symbols.4 Even assuming we knew the common abstraction would be rkk,

there are still some 6363 = 257,259,456 different possible instantiations. For all

four possible abstractions, the total is 771,779,004.

How many of these instantiations were actually considered? This number de-

pends on which proposition played the role of generator for each existential variable.

As the HFT rule leaves this question open (see Subsection 5.3.6), I experimented

with different generators.

Recall Subsection 6.2.3's description of the CTruep algorithm: NLAG deter-

mines, for each variable, which associated proposition had the highest score. This

proposition is used as the generator. Here, this ranking of atomic propositions is

based on a user-defined ordering of their respective relations. The next subsections

describe two different ways of ranking these relations; these systems select different

propositions as generators.

7.2.1 Using Generator#l

Using the "Generator#l" system, the preferred generator is the set membership

test: i.e., this version defines the eligible constants for each existential variable as

the members of a particular set.

4 This includes the virgin MRS system, plus miscellaneous additional facts which describe hierar-
chy, etc. Of the total of 1,357 facts (which included some 128 rules), only the facts listed in
SubAppendix B.2 are directly used.



7.2. NLAG'S FUNCTIONALITY - RUNS#1 145

Var Generator In i t i a l
16
16
8

Final
1
4
8

?2 (mem ?2 functions)
?3 (mem ?3 functions)
?4 (subclass* ?4 devices)

Table 7-2: Generated and Accepted Values for Variables

Its relation-ranking function considers the following relations to be special, and

ranked them in the order:

subclass* mem arity domain (7-5)

The other relations were ranked equally, below these four. (The one exception is

the def ined-below relation, which associates a symbol with some theory. That

relation was simply ignored.)

Table 7-2 shows the three propositions which served as generators for the three

existential variables. (These can been seen in SubAppendix B.3.1's trace.) We see

that there are 16 qualifying functions and 8 known subclasses of devices.5 The other

constraints quickly honed these values to 1, 4 and 8. (The corresponding data for

the other three abstractions appear in SubAppendix B.3.1.)

As per Subsection 6.2.3's description, CTruep prunes these candidate entries in

two phases. Table 7-2 shows only the first, which uses the single-variable clauses.

(For example, the second row shows there are 16 possible values generated for ?3,

generated using the clause, (mem ?3 function). Only 4 of these values pass the

1-Consist test; i.e., only these satisfy all of the TI1(?3) propositions.) The far right

column corresponds to the "After 1-Consist:" row in Table 7-3. The second

phase involves all n-tuples of acceptable entries; Table 7-3's "After n-Consist:"

row shows that only 10 of the 32 possible entries pass this test. Notice that the

space of a quarter of a billion possible rkk abstraction instances is cut to about

2,000 by the use of a good generator, and then to a mere ten by these consistency

considerations.
5These numbers would probably be much larger in a general data base: i.e., there may be hundreds
of known functions. Of course, most would be quickly pruned by the subsequent filters. This was
one reason I considered the other possible generator. See Run#1-2, discussed in Subsection 7.2.2.



146 CHAPTER 7. EXPERIMENTAL RESULTS

Generated:
After 1- Consist:
After n-Consist:
Useful:

Find-Kernel:
Inst-Source:
CTruep-l:Q

Resolve-Exists:7

Verify?

rkk
2,04s1

322

10
5

kk
16
1
1
0

ckk
2,048x

163

1
0

lkk
2,04s1

163

1
0

ALL
6,160

65
13
54

of Deductions

TOTALS:

(% Resolve-Exists:

14
25

401
284

18
13

118
75

10
18

315
17

7
18

316
17

33
505

74
1,150

393

358 l,7088

67%)

724 224 360

55% 53% 88%

Notes:

1 In all three cases, this 2,048 was derived as the product of 16 * 16 * 8; see Table 7-2.

2 This 32 is 1 * 4 * 8 = 32; see Table 7-2.

3 In both cases, this 16 is 1 * 2 * 8.

4 Entry mtmber # # 4 is the "correct" answer. It required some 535 + 4 = 539 steps.

5 This total of 50 reflects the 49 deductions shown on this row, plus 1 additional entry, run
after the final abstraction (lkk) was considered. (Here, List-Source determines that there
were no other abstractions to consider.)

6 This refers to the first part of Just-Target, up until the call to Resolve-Exists. Hence the total
time spent in Inst-Turget is the sum of this row and the next (the one labeled Resolve-Exists).

7 Tables B-1 and B-2 (in Point Trace4 on page A-94) derive these estimates for both Resolve-
Exists and Verity.

8 This figure reflects the other numbers shown above (and to the left); plus an additional 8
steps: 4 to initialize the NLAG system, and 4 to terminate it.

Table 7-3: Data for Run#l-1 (using Generator #1)



7.2. NLAG'S FUNCTIONALITY - RUNS#1 147

The subsequent usefulness test weeds out half of the candidates, leaving only

five possible useful analogical inferences. Of these, the correct (rkk flow-rate

pressure-drop pipe-charact pipes) answer is the 4t/l useful analogy found. (It

is also the ##4th overall analogy considered, as all three earlier analogies were also

useful.)

(Once again, the trace in SubAppendix B.3.1 describes corresponding figures

for the other abstractions. This section only presents the quick summary shown in

Table 7-3.)

Table 7-3 also presents timing information. Each of these numbers corresponds

to the number of deductions required. Hence they include all backward and forward

chaining steps and all conjecturing steps, as well as all of the start up time. (Certain

control-related tasks present unavoidable fence-post problems when determining

these figures. For example, there is no systematic way of determining which module

is responsible for the tasks involved in returning an answer. So these numbers, while

approximately correct, may be off by 1 or 2 in either direction.)

These figures are broken down in terms of the module involved. The Find-Kernel

number is independent of the abstractions, as is the time spend in various overhead

tasks. Each of the other figures can be attributed to one of the abstractions. The

Inst-Target module is split into its t\yo components, CTruep-1 and Resolve-Exists.

There are several important bits of information. The two most relevant are: [1]

This NLAG process is non-trivial: Its task, of finding the possible abstractions and

then reducing the space from about a billion possible instantiations down to the five

shown to the user, required over 1,700 deductions. [2] The Resolve-Exists module

took a large chunk of NLAG's time. Based on this example, it required about

two-thirds of the processing time. (Section 7.6 later returns to this observation.)

Answers not found:

We see that a lot of analogies are found. There are other possible abstraction instan-

tiations (which might suggest other analogies) which are not found. For example,

the type information alone reduced the space to the 6,160 potential abstraction in-

stances which NLAG generated. For example, when considering the value to use for

rkk's second argument, NLAG only considered functions (and not classes nor units



148 CHAPTER 7. EXPERIMENTAL RESULTS

nor people). Of those, it further narrowed down the possibilities by considering

only functions of three arguments.

The next sections consider how additional information restricts this selection

even further; and how NLAG reacts to the addition of both relevant and irrelevant

abstractions.

We close this section by considering the importance of the generator. The cur-

rent hierarchy-based generator did amazingly well. Table 7-3 demonstrates that an

abnormally high number of its suggestions were right on the money and relatively

few were wasted. This is unusual, even for this generator. In general, we might ex-

pect to have a knowledge base with, for example, hundreds of functions and dozens

of devices. (This related to Footnote 5 on page 145.) For these reasons, I tested

NLAG with a less smart, but still meaningful, generator. This is discussed in the

next subsection.

7.2.2 Using Generator#2

The only difference between Run#l-2 and Run#l-1 is that Run#l-2 used a dif-

ferent function to rank the propositions. This lead to a different set of generators

for the various existential variables. The ranking function embodied by the Gener-

a t o r ^ system made the context information highest.6 This system considers only

symbols which are associated with the same (MRS)theory as the abstraction being

considered. For example, the rkk abstraction is affiliated with the LELS lumped

element linear system domain. This means that Generator#2's generators would

produce only terms similarly affiliated with LELS and its contained theories, e.g.,

wcl. This is implemented by elevating the rank of the def ined-below relation,

placing it higher than any of the relations shown in Equation 7.5. (Reaill that this

relation was totally ignored in the Generator^l system.)

Table 7-4 shows the results of Run^l-2, which uses the Generator^2 system.

Its top part is a close match to Table 7-3, showing that Generator#2 is functionally

virtually identical to Generator/^ 1. SubAppendix B.4.1 shows that it produces the

6This was partially motivated by the common context heuristic,



7.2. NLAG'S FUNCTIONALITY - RUNS#1 149

rkk kk ckk lkk ALL
Generated:
After 1-Consist:
After n-Consist:
Useful:

Find-Kernel:
Inst-Sonrce:
CTruep-1:
Resolve-Exists:®
Verify:6

TOTALS:

(% Resolve-Exists:

195,1121

322

10
54

# o f

14
25

554
284"

877

63%

58 195,1121

1
1
0

163

1
0

Deductions

18
13

181
75

287

63%

10
18

468
17

513

91%

195,1121

163

1
0

7
18

469
17

511

92%

585,394
65
13
5

33
505

74
1,672

393

2,2307

75%)

Notes:

1 In all three cases, this 195,112 is derived as the prodtict of 58 * 58 * 58.

2 This 32 is 1 • 4 • 8.

3 In both cases, this 16 is 1 * 2 * 8.

4 Entry number # # 5 is the "correct" answer. It requires some 703 + 4 = 707 steps.

5 Once again, this total of 50 reflects the 49 deductions shown on this row, plus 1 additional
entry, run after the final abstraction (lkk) was considerered.

6 Table B-3 derives the estimates for these two rows.

7 Once again, this figure includes an additional 4 steps to start the system and another 4 steps
to stop it.

Table 7-4: Data for Run#l-2 (using Generator #2)



150 CHAPTER 7. EXPERIMENTAL RESULTS

exact same answers, but in a slightly different order. The only important difference

is the number of terms generated; here, there were 58 members in the LELS context.

(These are shown in Sub Appendix B.4.1.) This leads to a space almost 100 times

larger than the one shown in Table 7-3 — 585,394 versus 6,160.

Notice, however, how close the "# of Deductions" figures are! In fact, the

Resolve-Exists row is the only (primitive) row in this cluster which differs from its

correspondent in Table 7-3. Even here, the difference is not very large, from 1,150

to 1,672. This means that Resolve-Exists now required about 75% of the deductions

rather than 67%.

This run convinced me of the advantages of the first generator. iV.6., Genera-

tor#l is used in all of the subsequent tests.

7.3 NLAG's Sensitivity to Initial Theory— Runs#2a

This set of demonstrations uses the basic theory described in Section 7.1, with

minor modifications. First, in Run#2a-1, I added various irrelevant facts: here

facts about numbers, e.g., (associative +) and (mem 0 reals). There was no

change in functionality (i.e., the same set of answers were returned) and no change in

timing or ordering. That is, as we expected, NLAG simply ignored this information.

As a second trivial demonstration, Run#2a-2 involved deleting some relevant

source facts. Removing just

(kirchoff2 voltage-drop) (7.6)

was sufficient. This meant that no source abstraction instances were derivable —

i.e., Th Y1 S(ai , . . .Current,... an), for all known abstractions, S, and all sets of

other terms, {a,,}. As this means there are no possible common abstractions, NLAG

returned no answer.

The final two sub-experiments involve adding some relevant target facts. This

led to two experiments. Run#2a-3 involved adding some of the facts from

LD(Thcjr, (rkk flow-rate pressure-drop pipe-charact pipes)).



7.3. NLAG'S SENSITIVITY TO INITIAL THEORY- RUNS#2A 151

In particular, I added

(kirchoff2 pressure-drop)

(conserved-thru flow-rate pipes) (7-7)

(ohmslaw flow-rate pressure-drop pipe-charact pipes)

together with their entailments, to the starting theory. (Notice that these suggest a

binding for all of rkk's arguments. Subsection 7.6.1 comments on this point.) Here,

establishing the correct analogy required postulating only the single conjecture,

(kirchoffl flow-rate).

Here, we found no change in functionality, but an improvement in the time re-

quired to find the "correct" answer, (rkk flow-rate pressure-drop pipe-charact

pipes). Thanks to the fewest conjecture heuristic Hpci NLAG is able to zero in to

this instantiation much faster, finding it first, not fourth. (It required only 180 de-

ductions, not the earlier 539.) Full details appear in Table B-4 in SubAppendix B.4.
The effects of Run#2a-4 are more subtle. Here, I added information which

indirectly helped to prune the space:

(if (ohmslaw $tt $ct $rt $load)

(monotonic $tt $rt decrease))

(monotonic flow-rate pipe-charact decrease)

(monotonic flow-rate cross-section increase)

(function monotonic)

This first rule states that the through term ($tt) decreases inonotonically as

the resistance term ($rt) increases. The second and third statements assert that

flow-rate decreases inonotonically as pipe-charact increases, but that flow-rate

increases as cross-section increases. The fourth asserts that this monotonic

relation is a function.

Once again, this new information lets NLAG focus in on the desired pipe-charact

much more effectively. Here, it again finds the correct abstraction instance first,

requiring only 412 steps. (SubAppendix B.4.2's Table B-4 summarizes the time

required by the various submodules in finding this answer.) NLAG's functionality



152 CHAPTER 7. EXPERIMENTAL RESULTS

on this run is slightly different, though, as the (rkk flow-rate pressure-drop

cross-section pipes) instance is now eliminated, along with the other three instan-

tiations which involve cross-section. Table B-5, also in SubAppendix B.4.2 shows

the full list of answers.

The message from both Run#2a-3 and Run#2a-4 is that additional facts can

be used to focus the search, by (indirectly) providing both ordering and pruning

information. This means that additional knowledge eliminates search, as desired:

the more one knows, in particular about the target analogue, the less is left to

random factors. This results in a more directed search, and hence to superior

analogies, faster.

7A JVLAG's Sensitivity to Abstractions — Runs#2b

These three runs involve adding and removing abstractions. For Run#2b-1,1 added

irrelevant abstractions: viz., ones which deal with historical relationships and ab-

stract algebra relations. These are listed below (and are fully defined in SubAp-

pendix B.4.3):

historical-event

monoid,' group, abelian-group

ring, commutative-ring, r ing- id , commutative-ring-id, f ield

There were no surprises: we found no change in functionality and no change in

timing. That is, NLAG simply ignored these, as we wished. (See also Note:7-4.)

The second sub-demonstration, Run#2b-2, involved deleting the relevant ab-

straction, here rkk. Again the results are as expected: As NLAG did not have

the needed abstraction, it returned no answer. (Here, ComAbs did consider some

common abstractions, but Verify rejected them all as useless — i.e., none led to a

solution to the problem.)

The third experiment, Run#2b-3, involved adding other abstractions to the sys-

tem, ones which could be relevant to this target problem and so might be confusing

to the system as a whole. These are:



7.4. NLAG'S SENSITIVITY TO ABSTRACTIONS - RUNS#2B 153

lrkk which is the "union" of the rkk and Ikk abstractions: it includes information

which describes both resistance (Ohm's Law) and inductance.

rckk which is the "union" of the rkk and ckk abstractions: it includes information

which describes both resistance and capacitance.

lckk which is the "union" of the Ikk and ckk abstractions: it includes information

which describes both inductance and capacitance.

rlckk which is "union" of the rkk, Ikk and ckk abstractions: it includes information

which describes resistance, inductance and capacitance.

(These are fully defined in SubAppendix B.4.4.)

As expected, these additional abstractions gives the overall system more breadth:

this run found a great many more analogies. (The first table in SubAppendix B.4.5

provides a summary of all 44 analogies NLAG produced.)

The other important feature is the order in which these answers are produced:

in particular, rkk is still the first abstraction considered. In fact, the "correct" con-

jecture, (rkk flow-rate pressure-drop pipe-charact pipes), took the same

number of steps now as it did in Run#l-1, 539. Hence, these additional abstrac-

tions did not lengthen the time required to find the "correct" conjecture.

This shows one benefit of the HMGA heuristic: without it, NLAG might have

first considered a more specific, and costlier, abstraction. This heuristic is especially

worthwhile in situation like this, when the needed information is included in a

relatively general abstraction.

Of course, this is not always the case. Imagine the desired common abstraction

was a more specific oner e.g., rlckk. In a theory cluttered with more general

abstractions — like rlkk, rkk and kk — NLAG could take longer to reach the

desired answer, since it now has to walk through these more general possibilities

before finding the desired one.

At first blush, one might consider the IIMGA heuristic to be inappropriate in

these situations. I have two responses to this charge. The first is fairly minor:

clever programming tricks like the SuperCache facility partially recaps this loss.



154 CHAPTER 7. EXPERIMENTAL RESULTS

(This facility is especially useful in situations where the abstractions fit into a

hierarchy, as they do in this case.)

The second response is more direct: HMGA is n ° t NLAG's only source of advice

when deciding which abstraction to consider; the HJK rule also provides input.

Assuming a well-worded target problem, this HJK rule rule will select the most

likely abstractions, even ones which are relatively specific. (Recall that rkk is

considered before the more general kk in each of these examples: this is / / /# 's

doing.) If rlckk is the appropriate abstraction for some problem, we feel safe in

similarly assuming that that problem would do its share by providing HJK with the

"support set" information it needs to select this r lckk abstraction over the more

general ones.

Table 7-5 summarizes the basic results of this run. The abstractions are listed,

from left to right, in the order in which they were selected.

7.5 Ablation of Analogy — Runs#3

This is the interesting experiment. Based on the description given so far, the way to

infer the new facts needed to solve the problem PT is to find a Maximally-General

Common Useful Abstraction. (See Figure 4-5 in Section 4.2 and Subsection 5.4.1.)

This uses

• [Com] <p(A) if <p(B)

• [Abs] AbstForm(ip)

• [M G] <px before <p2 if <p2 => tpj

• [Use] Th + <p{A) \= PT

Were all of these characteristics essential? To find out, I subtracted out various

attributes from this set. To avoid meaningless results, I only considered useful

7 Hence, this [M G] label refers only a subset of the ILeast least const raining maxim In particular,
it deals only with the H\K;,\ rule. As we discussed at the end of Subsection 5.4.2, it is difficult
to imagine any reason to violate the other two I Least rules, Hpc «ul(l



7.5. ABLATION OF ANALOGY - RUNS#3 155

rkk rlkk rckk rlckk kk ckk Ikk lckk ALL
Generated:
1-Consist:
n-Consist:
Useful:

Notes
1 The chore here is to instantiate (rlkk flow-rate ?2 ?3 ?4 ?5 ?6). The table below shows

the number of values for each existential variable:

2,048
32
10
5

262,1441

5121

105

55

262,144Z

5122

105

55

33,554,
8,

4323

196s

105

55

16
1
1
0

2,048
16

1
0

2,048
16

1
0

262,1444

2564

1
0

34,347,
9,

024
541
44
20

Var
Initial
Final

?2
16
1

?3
16
4

?4

00 00

?5
16
2

?6

00 
00

Total
262,144

512

2 The chore here is to instantiate (rckk flow-rate ?2 ?3 ?4 ?5 ?6). The resulting table is
identical to the one above.

3 The chore here is to instantiate (rlckk flow-rate ?2 ?3 ?4 ?5 ?6 ?7 ?8). The table
below shows the number of values for each existential variable:

Var
Initial
Final

?2
16
1

?3
16
4

?4

00
 

00

?5
16
2

?6

00 
00

?7
16
2

?8

00 
00

Total
33,554,432

8,196

4 The chore here is to instantiate (lckk flow-rate ?2 ?3 ?4 ?5 ?6). The table below shows
the number of values for each existential variable:

Var
Initial
Final

?2
16
1

?3
16
2

?4

00
 

00

?5
16
2

?6

00
 

00

Total
262,144

256

5 Each of these answers corresponds to some <inswer to the rkk abstraction, extended with as
many meaningless extra arguments as the more specific abstraction requires.

Table 7-5: Data for Run#2b-3



156 CHAPTER 7. EXPERIMENTAL RESULTS

systems, ones which produced an answer to the given problem. This meant I did not

subtract the [Use] property. This suggests the five pairs of experiments described

below.

1. -[] Useful Maximally-General Common Abstraction: Runs#l-1 and #2b-3

((Pi before ip2 if <p2 => (pi\ <p{A) if ip{B); AbstForm(ip))

(These are the base cases, described in Sections 7.2 and 7.4)

2. -[M G] Useful Common Abstraction: Runs#3-2a and #3-2b

if (p(B)\ AbstForm{(p))s

3. -[Abs] Useful Maximally-Ceneral Common Relation: Runs#3-3a and #3-3b

(ipx before <p2 if tp2 => <px\ <p{A) if <p{B))

4. -[Abs]-[M G] Useful Common Relation: Runs#3-4a and #3-4b

(<p{A)\i<p{B))

5. - [Com]-[Abs]-[M G] Useful Relation: Runs#3-5a and #3-5b

(CTruep alone,9 i.e., this system simply conjectures any leaf clause it thinks might

help.)

For each of these situations, I tested to see how many deductions were required

to reach the desired abstraction instance. I ran each ablated variant of NLAG on

two data sets. The cases suffixed with an "a" used only the initial four abstrac-

tions; those suffixed with a "b", all thirteen abstractions including all eight lumped

element linear system ^lbstractions. Table 7-6 summarizes the results in terms of

number of deductions. For cases #3-1 and #3-3, when HMGA
 w a s present, the

results were identical. (I.e., Run#3-3a and Run#3-3b required the same amount of

8Here, the modified system did not insist on finding the most genera! abstraction in fact, it
actually sought the most specific abstraction. This corresponds to the H^ISA i'ul(N defined by
Heuristic 7 in Subsection 9.2.2.

9I actually used a slightly modified CTruep routine, changed to search harder for relevant rules.
This required modifying MRS's backward chaining subroutine to find and use rules of the form (If
(antci). (If (ante2) (concl))) when trying to derive some proposition which matched (concl).
See Points MRS2 and MRS3 in Section 6.2.4.



7.6. ANALYSIS 157

Run#
1-la, 2b-3
3-2a
3-2b
3-3a,b
3-4a
3-4b
3-5a,b

Com

+
+
+
+
+
+
-

Abs

+
+
+
-
-
—
-

MG
+
-
—
+
-
—
-

Deductions

539
5401

8,6492

8163

5401

8,6492

)25,0004

Notes:

1 Why is this number different the reading from Run#1-1, shown on the line above? This is
due to a minor side effect of "turning off" the HMGA

 ru^e: n°w certain additional overhead
inferences must be taken.

2 These numbers reflect the number of deductions required to conjecture all four rkk-related
sentences; namely, the ones shown in Equation 7.3. In both cases, this involved the rlckk
abstraction, meaning that other (incorrect) conjectures were postulated as well. Had I insisted
that only the four rkk conjectures be postulated, the wait would have been much longer: In
each case, the correct rkk abstraction instance appears on the 21,506^ deduction.
The full set of answers for Run#3-2b appears in the second table in SubAppendix B.4.5.

3 Here, NLAG had to consider various other relations, including conserved-thru and
kirchoff 1, before finding the desired rkk.

4 Here, Franz Lisp ran out of atom name space.

Table 7-6: Ablation of Analogy Data

time.) Notice also that the runs in the first row (which should be labeled "3-lz")

corresponds to Run#l-1 (which would be Run#3-la) and Run#2b-3 (which would

beRun#3- lb) .

7.6 Analysis

This section analyzes these experiments, concentrating on the data shown in Ta-

ble 7-6. At the end, it summarizes the results of all four sets of experiments.



158 CHAPTER 7. EXPERIMENTAL RESULTS

7-6.1 Utility of Analogies

Consider first Table 7-6's bottom line. It was nice to see that our NLAG system

was something more that just a smart residue-system: here we see that it did find

the correct answer much more efficiently than the simple CTruep alone.

This had been a sincere worry: the initial theory includes a lot of information in

the form (if (kirchoff 1 $x) (rule)))] furthermore, we built CTruep to exploit

just such information. Did we still need the analogizing process? As a strawman,

why not just let CTruep alone solve the problem, and allow it to conjecture, willy

nilly?10

While CTruep would eventually find the answer, its unguided search is far too

slow. In each of the two runs, CTruep performed over 25,000 deductions when

Franz Lisp ran out of atom name space. While it was definitely searching correct

space (and so would have found the correct answer, eventually), it took too long to

instantiate the variables of non-grouiid clauses.

Given such a clause (e.g., (kirchoff2 ?2)), CTruep could do nothing better

than use it (plus derivable information, such as domain specification) as a generator,

to find all derivable terms which could instantiate it. This would sprout k new

subtasks, one for each proposed binding. As the derivation continued, each of these

tasks could encounter yet other non-ground clauses (e.g., the ?4 of (conserved-

thru flow-rate ?4)) which would each, in turn, sprout off its own k! subtasks,

each corresponding to some proposed instantiation of that second clause. This soon

leads to a combinatorial explosion.

As an example, imagine one of the k candidates for ?2 was PressureDrop.

When the task "containing" this ?2 i—> pressure-drop 'binding encounters the

conserved-thru clause, k1 new tasks would be sprouted, each corresponding to

some instantiation of ?4 consistent with this second clause. A similar set of k1 related

tasks would be generated by each other proposed instantiation of ?2, leading to k*k'

tasks. When encountering a third clause (e.g., (ohmslaw flow-rate, ?2, ?_3, ?4)),

10(7Truoj>'s first try actually failed, as the rules wore* too directional. It took some of Fort to make
the rules equi-directional. (In particular, this prompted the ' 'IfIf" facility described in Subsec-
tion 6.2.4 V Point MRS3.) These additions did cause some degradation in the performance of the
original system but fair's fair.



7.6. ANALYSIS 159

another k" possible instantiations need to be considered, etc.

What we have described so far is the best possible situation, when CTruep hap-

pens to select the proper clauses to consider. Notice it is already combinatorial. In

general, there may be other, spurious clauses mixed in. Not guided by abstractions,

nothing prevents CTruep from considering a cost-per-hour or function clause

during this derivation, which would add an additional multiplicative factor of knl to

the already huge space.

The NLAG system, on the other hand, used abstractions. This allowed it to

consider many clauses at once, using all m statements which derive from S, i.e., all

of M/(S). This meant that, for each variable, NLAG could

1. Choose the best — i.e., most constraining — clause to be the generator, and

2. Use the other m —1 clauses to quickly prune many of those candidates.

That is, these m-tuples could work synergistically, helping each other prune the

space.

This insight is consistent with several other observations. First, much of NLAG's

time (over 65%) was spent finding instantiations for variables — i.e., was spent in

the Resolve-Exists part of the CTruep process.

Second, as noted in Run^2a-3, the search is significantly faster when NLAG

starts with additional facts which removed the need for a conjecture, and especially

when that conjecture suggested a bindings for some variable.

I also ran CTruep after loading in the same "LD facts". Instantiation is not a

problem in this easier case. Not only did CTruep find the correct answer, but it

did so in only 94 steps, faster than JVLAG's 180 steps. (This is because CTruep has

much less overhead, not needing to derive any instantiation in the source domain,

etc.)

Third, all of these results continued to hold when I tested NLAG in other do-

mains: e.g., the two suggested by the comments in Note:7-2 and Note:7-3.

This evidence suggests that this abstraction-based approach is particularly useful

(i.e., better than CTruep) when attempting to flesh out a sparse system, one with

many "existential" variables to fill in. Hence, the biggest payoff occurs when the



160 CHAPTER 7. EXPERIMENTAL RESULTS

knowledge base designer knows the "shape of the space", corresponding to the

structures imposed by the abstractions, and in particular, when he can identify

where the big "holes" of the knowledge base are. (For example, the linear system

abstractions provide the basic shape of the (initially empty) hydraulics knowledge

base. Its initial absence of the "LD facts" constitute its major "hole".) This

example shows how the appropriate abstractions helps to fill such gaps.

7.6.2 Utility of Maximal Generality

Now consider Table 7-6's other data points. The Maximally General rule clearly

made a difference; observe the effect of turning it off in Run#3-2b and Run#3-4b!

When the knowledge base has a lot of specific abstractions, the NLAG-ish. system

found the desired answer over 15 times faster when running with this rule than

without it. Furthermore, the performance does not degrade when the knowledge

base has relatively few specific abstractions: in fact, it is virtually the same. (.E.g.,

notice we did not need distinct "a" and "b" subcases for Run#3-1 and Run#3-3.)

This reinforces the arguments first made in Section 3.4 and repeated as con-

jectures in Section 4.1 and Section 5.3: The "find maximally general abstraction

approach" is advantageous. This follows from the "completeness" of each abstrac-

tion, and means that it is sufficient to propose the conjectures associated with any

relevant abstraction, and nothing more. (Of course, we still need to find the ap-

propriate abstraction. Here, we rely on HJK to provide the information needed to

home in on the sufficiently specific abstraction — see the discussion at the end of

Section 7.4.)

Why is it detrimental to chose a too specific abstractio'n first? The arguments

appearing in Subsection 7.6.1 still apply: it is very expensive to instantiate the

other, unneeded variables. We also saw that the less we know about a variable,

the more expensive this instantiation process is. As we know almost nothing about

these unnecessary variables, they become a considerable burden.

Two final comments: First, Section 9.2 describes this alternate approach, of

seeking the maximally specific formula, as an incarnation of Section 3.4's iMost in-

tuition. Subsection 9.2.3 provides a variety of reasons against this position. Second,



7.6. ANALYSIS 161

we saw that adding additional relevant abstractions did not slow the system down

at all, for this particular set of experiments. In general, though, adding such ab-

stractions could force NLAG to consider these other possible analogies. This slight

degradation of speed is the price of the greater coverage afforded by including these

additional generalizations.

7.6.3 Questionable Utility of Abstraction Label

"A rose, by any other name, would still smell as sweet...

Romeo and Juliet, Shakespeare

Now compare the results of the systems which differ only in terms of the [Abs]

attribute: i.e., compare Run#3-1 with Run#3-3, Run#3-2a with Run#3-4a and

even Run#3-2b with Run#3-4b. Notice that their results were about the same.

This was disappointing at first, since it seems to suggest that abstractions did not

make very much difference. After all, we apparently did just about as well with

common relations as with common abstractions.

Seeing that arbitrary relations worked about as well as abstractions seemed

to falsify Chapter 4's central claim. Then I remembered that the actual claim:

viz., that abstractions were superior to arbitrary formulae. Of course, the final

experiment was not comparing abstractions with arbitrary formulae; rather, it was

comparing them with pre-defined relations — which the ancient scholars, and others,

have defined and named earlier. This data shows that these relations do correspond

to useful collections of facts, which in turn suggests that people do a pretty good

job of recording only things which are useful. On further thought, this made sense:

Why would anyone bother to reify a worthless formula? We tend only to have

names for formulae which occur naturally; that is, for conjuncts of clauses which

co-occur when solving some problems. But this is precisely Section 4.1's defining

criterion for abstractions! This leads to the punch line:

Forget about the abstraction label!

as essentially any pre-defined relation probably qualifies.



162 CHAPTER 7. EXPERIMENTAL RESULTS

This claim is not asserting that the idea of abstractions is irrelevant, but only

that this notion has been linguistically trivialized: almost any relation which has

been named probably corresponds to a concept worth using again. Hence, it seems

the class of abstractions is probably not that much smaller than the class of relations.

(This was reflected in Figure 4-4, way back in Chapter 4: the space of Abstractions

was intentionally drawn only slightly smaller than the space of Relations.)11

7.6.4 Summary

We can summarize the analyses of this section by stating that this analogical in-

feience process is an effective mechanism for finding useful new conjectures, and,

within this system, the abstraction label is not that important (as ordinary rela-

tions work almost as well) but the maximally general rule is. This suggests that

future analogy systems should seek, the maximally general common relation, like

the ablated version used for Run#3-3. (Such systems would differ from NLAG

only by accepting arbitrary relations for its common formula, rather than insist on

abstractions.)

Table 7-7 summarizes the findings of all of the experiments. (To complement

this empirical validation, see also Note:7-1, which addresses the claim that this

model of analogy does match our intuitions.)

11 Note: 10-1 discusses for a slight refinement of the idea that all relations are abstractions, proposing
a non-boolean measure for "abstract ion-nesjr (read "reusability").



7.6. ANALYSIS 163

• NLAG does propose Useful Conjectures, efficiently

• Matched intuitions

— Add irrelevant facts »-> no difference

— Add irrelevant abstractions H-> no difference

— Add pertinent target facts »-» faster

— Add pertinent abstractions »-> greater coverage
(but could slow down system)

— Delete needed abstraction or source facts »-> no answer

• Useful maximally-general common relations sufficient?

Table 7-7: Summary of Findings



 



Chapter 8

Semantic Definition of Analogy

This chapter provides a semantic account of analogy. Section 8.1 motivates the util-

ity of a semantic definition and provides the intuitions that the rest of this chapter

will formalize. Section 8.2 argues that the standard Tarskian notion of semantics

is inadequate and presents an alternative semantic system. Sections 8.3 and 8.4

use this framework to define the analogy relation and analogical inference process,

respectively; each also demonstrates that its semantic definition is equivalent to

the corresponding syntactic one presented in Chapter 2. Section 8.4 also provides

semantic versions of many of the heuristics shown in Chapters 4 and 5.

8.1 Motivation and Intuitions

There are several reasons to seek a semantic (as opposed to purely syntactic) basis

for analogy. First, a semantic criterion is more general: As it reflects the world

itself, it is not tied to the particulars of any formalism. This means its single

definition covers the processes of adding a new sentence to an incomplete theory,

setting the value of a some unit's slot, or generating a new rule for a rule base.

The second reason stems from the view that the analogy relationship is inherently

semantic: that it pertains to objects in the world rather than descriptions of those

objects. Once again, we want to describe properties of the world, not those of some

164



 



8.1. MOTIVATION AND INTUITIONS 165

particular representation.1 Third, these semantic considerations suggest ways of

pruning and ordering the space of legal analogies. Several of these insights have

been incorporated into the heuristics discussed in the previous chapters.

Of course, as one cannot put (the actual referents of) pipes and water into a

computer, a semantic definition is, in and of itself, unusable. However, once these

semantic [=-based relations are re-expressed within a syntactic h-based framework,

this formulation can be implemented and used. (Chapter 2 supplies this syntactic

formulation, Chapter 6, the implementation, and Chapter 7, the validation.)

We can now repeat some of the questions posed earlier, and supply semantic,

rather than syntactic, answer. First, what is an analogy? Intuitively, claiming

that two concepts are analogous means that they (or actually, their referents in

the world) belong to the same class of objects. Not every class of objects should

qualify: in particular, finding that both objects are members of the entire universe

of discourse is meaningless. SectionJ8.3 characterizes which classes are legal: i.e.,

which classes can correspond to non-trivial analogies. There are also ways of ranking

these eligible classes (c/., Chapters 4 and 5). This ordering is especially important

when forming an analogy, that is, during the process of analogical inference.

What is this analogical inference process? Chapter 2 claimed it was a type of

learning, where learning means acquiring independent facts.2 This syntactic process

translates into the semantic process of reducing the total set of possible interpreta-

tions. An analogical inference imposes certain constraints on which interpretations

should be eliminated. Loosely stated, an analogical inference further specifies the

target analogue [T].3 After an analogical inference, this object is "localized" to some

set, one which is known to include the source analogue |B|. ,

To make this precise requires defining a particular notion of semantics, one

*This position seems contrary to the apparent view of most AI researchers, who appear to view
analogy in purely syntactic terms. This may reflect a confusion between the analogy relationship
and the learning step labeled as analogical inference.

2This, of course, refers only to "Learni" processes, as defined in Note:2-2. Many of these points,
especially about the inapplicability of Tarskian semantics, also apply to Lvarni activities a fortiori.

3This chapter distinguishes symbols from their (real world) denotations by I boxing the latter. A
complete synopsis of the fonts and notational conventions employed in this chapter appears at the
end of Sub Appendix C.I.



166 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

which can encode the partial knowledge known to the learner. Section 8.2 explains

why the standard Tarskian notion of semantics is inadequate and presents a formal

definition of Partial Interpretation Semantics.

8.2 Partial Interpretations

This section answers three questions: [1] why we are not using the standard notion

of Tarskian semantics, [2] what is partial interpretation semantics, and [3] how this

semantic framework can be used to describe a learning process. The next sections

apply this systems to the specific task of analogy.

8-2.1 Why Not Use Tarskian Semantics

There are three reasons for not using the standard Tarskian semantics ([Tar52]).

Note:l-2 presents the first two, arguing that this notion of truth is neither attainable

nor desirable for the analogy relationship. The third reason is that Tarskian seman-

tics, in the strictest sense, is unable to describe any learning process, and hence is

an inappropriate formalism for describing analogical inference. Why? Learning is

the process of embellishing an ignorant system, one which has only partial knowl-

edge of some concepts. Unfortunately, because the Tarskian framework deals only

with complete models, it cannot describe such partial knowledge. Thus, it cannot

be used to describe learning in general, nor analogical inference in particular.

The semantic system described in this section can express such partial informa-

tion. It stems from the same set of needs which led to the "conversational semantics"

discussed in [BP83] and to the possible worlds semantics of [Kri80], [M008O], et aL

(Page 177 ties my idea of partial interpretations to some of these other systems.)

8.2.2 Partial Interpretation Semantics

This subsection has several parts. After presenting the basic framework, it defines

the notion of the partial extention of a relation, and then extends this to a larger

collection of labels. This leads to the notion of a partial interpretation. Second, it



8.2. PARTIAL INTERPRETATIONS 167

discusses satisfaction within this system of partial interpretation. Third, it presents

a particular way of restricting the set of allowed interpretations; this is used to form

the basi£ of our semantics. The next subsection then discusses how this system could

be used to describe learning.

Partial Interpretation Semantics is a modification of the Tarskian notion of

semantics. As with the standard Tarskian framework, we are given a set of linguistic

symbols, £, a universe of objects £/, and typing information which specifies the arity

of each relation. We consider functions and constants to be special kinds of relations.

A standard Tarskian interpretation (which we will call a "total interpretation")

is a function which maps each linguistic symbol onto some set of tuples of elements

of the universe. In particular, the total interpretation I maps each n-ary relation

symbol, R, to some set of n-tuples, J[R] C Un. For example, I maps the constant

symbol c onto the singleton set consisting of a single 1-tuple, I[c] = { {[c]) }.

Partial Extentions: Unlike total interpretations, a partial interpretation might

not completely specify the extentions4 of its symbols. We define RJ to be the

(positive) extention of the relation symbol R under the interpretation I. RJ is the

complement of that set: this is the set of n-tuples which are known not to belong

to the R relation. When I is total, these sets are both complementary and disjoint:

+RJn_RJ = {} • (8.1)

+RJUJR7 = IT (8.2)

A partial interpretation may violate Equation 8.2, the second constraint above.

This means that a given partial interpretation, >P, may not have complete knowledge

of some of the relations. We define fip as the unknown members of this relationship:

jLp = Un~y-JLP (8.3)

Both extreme points are relevant: ftp = Un means that P knows nothing at all about

R. The other extreme, fip = {}, means that P has totally specified this relation R.

4This chapter uses extension with a V when referring to the result of enlarging (extending) a set,
and extention with a "t" when discussing the real world object corresponding to a symbol. See
[Hin62].



168 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

This is why Tarskian interpretations are called "total interpretations": Saying that

the interpretation I is total means that every relation is totally specified; i.e.,

fi1 = {} for every relation symbol R.

For notation, the term "interpretation" refers to any partial interpretation. (The

phrase "total interpretation" refers to only Tarskian interpretations.) We define

the (partial) extention ofR (under the interpretation P), written R ,̂ as the pair of

known positive and negative instances of the relation R, R̂  = (̂ R̂  _R^). When

the interpretation is obvious from context, or irrelevant, we omit the P superscript

and write simply R.

As desired, this partial interpretation model of semantics allows us to specify

the learner's ignorance. For example, in the same manner that ( Abe ) G
means that Abe is a dog and ( Beth ) G Dogs^ indicates that Beth is not a dog,

we can use ( Shep ) G ̂ ogs^ to indicate that we simply do not know whether Shep

is a dog — i.e., ( Shep ) £ +Dogsp and ( Shep } $ Dogs .
Using more relevant examples, we may know that { JR̂  [+] [o]) is in Group^,

in .proup^; or that the RKK relation includesbut have ( E)
( Current [VoltageDrop Resistance Resistors )

as a positive instance and

(1 FlowRate | PressureDrop] [ Cost] Pipes )

as a negative instance, and does not know about

(FlowRate PressureDrop PipeCharacter Pipes I).

That is,

Current

FlowRate

FlowRate

1VoltageDrop1

I PressureDrop

IPressureDrop

Resistance| [Resistors ) G +RKK

Cost [Pipesj
PipeCharacter [Pipes] ) G

Constructible Labels: While this subsection has discussed partial extentions of

relations alone, this same notation can be used for a larger class of syntactic labels.



8.2. PARTIAL INTERPRETATIONS 169

This class of labels contains all relation symbols, and is extended by (recursively)

combining existing labels using the operations of intersection, union, complement,

cross-product and projection. The equation below defines the partial extention of

each such constructible label:

1 I I l 2 — \ - K * 1 ' 4 - 2 _yl ^ _y2 /

Cj uc 2 = ( Ci u ,c2 cx n c2 )

Hili - \ M +W / • (8.4)

C2 = (+Ci X +C2 _Ci x Un U UmX _C2)XC2 =

When necessary, we use CL^C) to indicate that C labels a constructible term.

(Hence, the set CL^ is the smallest class which includes the relation symbols in

the language £ and which is closed under intersection, union, complement, cross-

product and projection.) This uses h and U to represent the standard set operators

of intersection and union. The binary operator x takes two sets and returns their

cross-product. If we assume that Ci is a set of m-tuples and C2 is a set of n-tuples,

then each member of fCi x +C2 is an m + n-tuple, formed by joining some m-tuple

from Ci with an n-tuple from C2.

The projection operator, | , is defined by

Definition 22 R|. = {|T)| 3 d3yi . ( dx •••[([]••• dn ) e R }

(This corresponds to the related syntactic operator shown in Equation 2.7 on

page 15.) In all cases, £ is defined as the set of remaining elements; d la Equa-

tion 8.3.

We can define other connectives using these in the obvious manner; e.g., Cj =>C2

corresponds to -iC|UC2.

Every constructible set is labeled by the description used to generate it. For

example, another label for the set of all fathers is "Parent D (Male x £/)". This

means that Parent n (Male x U) encodes the pair

( Parent n (Male x Ul) Parent U (Male x i/1)).



170 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

(This uses £/ = (U1 {}) where U1 is the set of 1-tuples taken from the universe U.)

We refer to the positive extention of each constructible label as a "constructive

set" or a "bucket".

Satisfaction: In standard Tarskian semantics, the notation

hr<7 ' (8.5)

means that the interpretation I satisfies the sentence a. This same notation can

be used for partial interpretations as well. As the base case, consider only atomic

formulae, i.e., relationships. The syntactic statement 3xR(x) means that there is an

object in the universe which is a known positive instance of the R relation. Hence,

J=j 3a: R(x) means there is some [d] € +RJ, which means that ||+RJ|| > 0.

Universal quantification is also with respect to the known positive instances of

the relation; Vxli(x) means that +RJ includes every object in the universe: \=j VxR(x)

is true when RJ = Z/1. This means that R's allowable domain contains all possible

objects. (This sounds like a semantic analogue to the syntactic Trivial relation,

and inspires Definition 26.)

So much for the base case, of quantified variables in simple relations. The

inductive step uses the translation which maps the composition processes of set

union, set intersection and set complement into formula disjunction, conjunction

and negation, respectively. If we use cross-product and projection appropriately,

we can find a constructible label C which corresponds to any formula (pc. {E.g., the

formula Parent (x, y)& (Male(x)&y = y) corresponds to the label Parent Pi (Male x

£/).) As above, \=j 3x (pc{
x) nieans that ||+CJ|| > 0 and J=j \/x pc{x) means that

Ĉ  = U. A simple induction proof shows that this extends to formulae with more

than one variable.

The only remaining task is to define the truth conditions for instantiating a

formula with a constant. If we think of a constant as a unary relation, then (f)(d)

translates to Vz d(x) => 4>{x). (We also know that 3a; d(rc), but that is a separate

consideration.) This suggests that

f=j 4>{d) holds when dJ C 0 J . (8.6)



8.2. PARTIAL INTERPRETATIONS 171

This uses the extention-subset relation Q, defined by

Definition 23 R7 C S7 <=> ,R7 C ,S7 & R7 D S7.

Unlike the Tarskian interpretation, satisfaction using these partial interpreta-

tions is not complete; there can be sentences a for which neither |=j a nor \=j -^a

hold. For example, using the interpretation shown above, fcp Dogs(Fido) and

\(=^p -iDogs(Fido).

Allowed Interpretations: We can easily generate a gigantic space of possible

interpretations: each n-ary label C can induce some 3"^"n different interpretations,

based on whether each n-tuple in Un is assigned to +C, C or £. There are usually

some constraints on which interpretations should be allowed. For example, knowing

that Fido is a constant, we should insist that +FidoJ contain at most one entry.

(That is, we reject any interpretation I in which ||+FidoJ|| > 1.) We may also want

to connect different relations to one another: for example, by insisting that all dogs

are animals, i.e., DogsJ C Animals1. As a third situation, we may know precisely

the extention of Fido, and want to consider only those interpretations which map

Fido onto this particular real world object, |Fido |. (Technically, this means I must
satisfy FidoJ = ({([Fido |)> {}).)

Our goal now is to specify the particular collection of partial interpretations

which satisfy these types of restrictions. We achieve this by defining the set as those

interpretations which satisfy three types of requirements. First, the interpretation

I must match a particular domain and range specification: viz., I must map from

the given language (Dom[I] — £), onto the given universe of discourse (|J| —

U), using the given typing information. We use the notation Eligible(I) to mean

that I satisfies these constraint. (The particular fixed language, universe and type

information is implicit in the Eligible definition.)

Secondly, I must satisfy a particular theory. To deal with the first two restric-

tions mentioned above, the theory can include constraints like

3x [Fido(x) & Vy Fido(y) => y = x] (8.7)

VxDogs(x) => Animals(x) (8.8)



172 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

This satisfaction requirement, even when coupled with the Eligible constraint,

is still not enough to precisely specify the extention of a symbol: i.e., to handle the

third situation. This means we need yet a third type of specification. We can achieve

this objective by considering only those interpretations which agree with a certain

base interpretation. That is, viewing each partial interpretation as a mapping, we

only consider those interpretations which consistently extend the assignments of

that base partial interpretation.
E

We say that one interpretation extends another, written I D J, if the interpre-

tation I consistently extends what J knows about each relation:
R' D ,R-> &

VRGJC
RJ (8.9)

We can think of an interpretation as "expressing an opinion" about the extention

of the symbol R whenever it includes, an object in either +R or +R. In this framework,
E

h 5 h nieans that I± agrees with all of fys opinions. Of course, I± may have other

opinions as well.

This is the third component needed to constrain the allowed interpretations.

We use the term Allowed(J,Th) to specify the set of allowed interpretations. Each

I e Allowed(J\Th) must be an eligible interpretation, must model the theory Th

and must extend 7's assignments. That is, '

Definition 24 Allowed{J\Th) = { I \ Eligible(I) k f=j Th k I 5 J }

This Allowed relation is the cornerstone of our notion of semantics. At any

instant, we consider only those legal interpretations which model a given theory

and extend a particular privileged partial interpretation, ZW.5 That is, rather

than allow arbitrary interpretations of the symbols, this system allows only those

which belong to Allowed(JZW,T/i). We refer to Th as the underlying theory and

JZW as the base interpretation.

This means that certain symbols are "grounded": that is, have a particular fixed

interpretation. This follows from Equation 8.9's monotonicity conditions, which

5I think of ZW as encoding one's knowledge of the £eal World.



8.2. PARTIAL INTERPRETATIONS 173

guarantee that every n-tuple in +R^^ will remain in ^R7 in every allowed J; this

holds for each n-tuple in _R*̂  as well. In many cases, a constant symbol c will

have a unique interpretation in ZW — that is, || ,c*^|| = 1 a nd H^^ll = 0. In such

cases, c, refers to this same real world object in every allowed interpretation. (By

convention, we can refer to this symbol as \~c].)

We conclude this subsection with some quick observations. The next subsection

uses this partial interpretation model to describe the phenomenon of learning.

P H . Both Semantic and Syntactic Constraints: This Allowed relation re-

quires both a semantic JZW and a syntactic Th. Why do we need both? We

already discussed why Th alone is inadequate. On the other hand, the base

interpretation JZW does seem sufficient to describe the current situation. How-

ever, the next subsection shows that the intentional relationships defined by TTi's

sentences are essential when describing a dynamic learning process.

PI2. Need for Partial Interpretations: Notice that everything stated above

(and below) still holds if we just modify the Allowed set to include just those

interpretation which are total: that is, we could instead use the Allowed1 rela-

tionship, where

Allowed!{ ZW,Th) = {I E Allowed( RW, Th) | VR G L Jl1 = {}. } (8.10)

Of course, the base interpretation Z1V is still partial. As we have to deal with par-

tial interpretations anyway, I choose to use Allowed over this alternative Allowed*

version.

PI3. Density of Allowed: We require that this Allowed set of interpretations ex-

hibit a certain density property: Given any [c] G .jR*v, Allowed(Z*W,T/i) must

include a pair of interpretations Jj and J2 such that [c] G {R
Jl. and [c] G R^2.

(This [c] can be an n-tuple of constants.) iV.6., this does not mean that semantic

assignments are totally arbitrary: the |Fido | G .Dogs => |Fido | G Animals ex-
ample shows that an assignment to one symbol (Dogs) can force some assignment

to another symbol (Animals).



174 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

This means that any set of eligible interpretations uniquely determines its base

interpretation: it is precisely the pointwise intersection of those interpretations.

That is, given the set S of eligible interpretations and theory Th, such that \=j Th

holds for each J G S, we can define the base interpretation, S, of this 5 set as

les

To confirm that B, observe that S = Allowed(B,Th). The next point defines

what it means to intersect two or more interpretations.

PI4. Intersection of Interpretations: Equation 8.11 is based on intersecting

interpretations. Intuitively, the intersection of the interpretations I and J is the

most complete interpretation which can be extended to both J and J. That is,

K = J n J if K consists of exactly the opinions shared by I and J; i.e.,

K = I n J implies I D K and JD K] (8.12)

E

and if, for any other K' which satisfies Equation 8.12's right-hand side, K* D K.

We can realize this by defining /C's extention of each symbol as the (pointwise)

intersection of J's and J's values for that symbol:

L R J n L R J = R* & 1 ,
r r v ( 8 ' 1 3 )

As this operator is obviously associative and commutative, its n-ary form fit ̂ s

well defined.

8.2.3 Using Partial Interpretations to Describe Learning

At any instant, this semantic system considers only some of the eligible interpreta-

tions: viz., the members of the set Allowed(ZW,Th). This set of allowed interpre-

tations may change over time. In particular, the more the system learns, the fewer

interpretations remain. If Before is the initial collection of allowed interpretations,

and After, the set of interpretations which remain after the learning step, we claim

that After is a proper subset of Before, i.e., After C Before.



8.2. PARTIAL INTERPRETATIONS 175

For our current purposes, we consider only a particular type of learning: viz., the

process which "fills in" some unknown entries — e.g., by adding ( Shep ) to .Dogs,

or { FlowRate PressureDrop PipeCharacter Pipes ) to RKK. In particular, if

we consider the process of learning that Shep is a Dogs (sic), we see that

After = {I e Before | (| Shep |) € +Dogs/} (8.14)

We were able to use the Allowed relation to specify Before, as Before =

Allowed(Z"W ,Th). This subsection shows that we can find a similar definition for

After, defining it as the set of interpretations allowed from some more refined base

interpretation ZW: i.e., After = Allow ed{ZW ,Th). Hence, this type of learning

reduces to the process of extending the initial base interpretation to a more com-

plete ZW'. This ZW1 partial interpretation is the minimum extension of ZW in

which some tuple of objects (e.g., ( Shep )) is in some labeled {<bucket}) of tuples

(e.g., Dogs,/.

What can we say about this ZW7 Notice we can not define ZW1 as

ZW\x]

when x = Dogs

otherwise
(8.15)

for all symbols x 6 £. Here, knowing that dogs are animals, an interpretation I

should be declared illegal unless Dogs7 C Animals7. This means ( Shep ) should

now be in Animals*^', contrary to Equation 8.15's simplistic claim. (This is

because ZW did not know that Shep I was an animal: i.e., nothing prevents us

from assuming that ( Shep ) G ^nimals^ . ) This shows that ZWs extentional

information is not enough. We need the additional, intentional information that

relates dogs to animals.

The syntactic Th portion of Allowed(ZW,Th) provides this connection. In par-

ticular, we can utilize TTi's intentional content by considering the full set of Allowed

interpretations, since this, by construction, "embodies" Th. Using Equations 8.11

and 8.14, we can define ZW1 to be the intersection of the subset of currently allowed

interpretations in which Shep is known to be a dog:

ZW = MinExt( Allowed(Zlti,Th), (Shep ), Dogs ), (8.16)



176 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

where

Definition 25 MinExt{ 5, [T|, C ) = f | U G 5 | |T] 6 +C J}.

As implied by this usage, MinExVs first argument is a set of interpretations,

its second argument is a particular n-tuple of objects, and its third is a label which

denotes a "bucket" into which to deposit this n-tuple.

Definition 25's intersection ranges only over allowed interpretations. This means

that whenever interpretation I is in this set, if ( Shep ) is in DogsJ, we know that

( Shep ) is in Animals^ as well. This guarantees that { Shep ) is in Animals*^ ,

as desired. This solves the problem mentioned above. We also know that this

embellished JZWf will be an eligible partial interpretation, guaranteeing that the

range of this new interpretation is the same universe U used above (i.e., the world

is not generating new objects).

Commentary: This ends our definition of Partial Interpretation Semantics in

general. Before using this system to discuss analogies, it is worth digressing to

discuss some relevant issues.

First, why should we use this particular notion of semantics? While Subsec-

tion 8.2.1 already argued that Tarskian semantics is inappropriate, it did not specif-

ically promote this particular framework. I chose this semantic system because it

describes a fairly typical situation, one which occurs whenever people converse.

Namely, both speaker and hearer usually know a great deal in common. In particu-

lar, they will agree on both the referents of many of the terms used in the discourse,

and on some of the extentions of some of the relations. This partial interpretation

semantics framework captures this situation very well.

Secondly, we have discussed only one type of learning, one implemented by this

single means of embellishing the base interpretation by using the MinExt relation.6

We might also consider other ways of modifying the Allowed set. For example, we

may want to manipulate classes of object rather than just single elements. This

6This system of partial interpretations can be used to formally describe various aspects of learning.
For example, Note:8-1 uses it to define the claim that some sentence is novel with respect to a
particular concept.



8.4. SEMANTIC DEFINITION OF ANALOGICAL INFERENCE 179

While this definition is worded in terms of partial interpretations, it holds for

the Tarskian sense of semantics as well. (One need only replace each occurrence of

« r£W » with the usual Tarskian extention.) This partial interpretation form is used

to be consistent with the rest of this chapter, and in particular, with Section 8.4's

semantic definition of analogical inference.

Analogysem is equivalent to AnalogyF:

This Analogy sem is> by construction, equivalent to Analogy p, modulo the obvious

identification of Analogy>'s initial theory Th to Analogysem's underlying theory

Th and base interpretation ZW. The actual proof begins by mapping each rela-

tion symbol R into the corresponding extention, R*v. As each constant symbol

c is assumed fixed, we can identify £ with the single real world object, [cT]. This

means that (| â  | • - * [I] • • * | an |) G ^C*^ whenever Th |= £>c(ai,... A,. . . a n ) and

[BT|* * * I b n) £ .C*V W ^ e n e v e r ^ N ^c(^ i j . . . B , . . . fen), using the formula

<pc which corresponds to the set labeled C. As -iTrivialSem{ C|., JSli1) is equivalent

to -^Trivial( ^ c | . , T7i), we are done.

8.4 Semantic Definition of Analogical Inference

This section reconsiders the syntactic view of analogical inference presented in Sec-

tion 2.1 within Section 8.2's semantic framework. Here, the syntactic process of

adding an independent fact corresponds to the process of reducing the set of possi-

ble interpretations.8 This involves resetting the base interpretation, JZW, to a more

refined ZW, and thenceafter only considering comparable extensions of this ZW

interpretation.

An analogical inference induces a certain type of restriction on the possible

interpretations. Namely, the |XJ~[¥] analogical inference selects a certain subset of

the possible interpretations. As with the syntactic situation, the driving intuition

is that an analogical inference completes an analogy (see Section 2.3).

This section formalizes this idea. For pedagogical reasons, it begins with a

8This is also true with the standard possible worlds semantics. It follows immediately from Godcl's
Completeness Proof; see [End72].



180 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

simplified version, which is later embellished to describe the full nature of analogical

inference.

Simple Analogical Inference: Each [ A ] ~ [ B ] analogical inference reduces the

space of possible interpretations. In particular, the interpretation I remains only if

[X] G ,CJ , where this class C is a constructive set that is known to include [B] and

initially does not include [T] — i.e., [¥] G +C*^ and |T| G fzw .9 Looking at it the

other way, this inference eliminates all interpretations, J, in which either |A| G jpJ

or (Xj G C*7. This means we are defining a new base interpretation, ZW, as the

intersection of the remaining Is . Using Definition 25,

ZW = MinExt{Allowed(ZW,Th), [T], C). (8.18)

The object [T| becomes more "localized" with respect to this more constraining

ZW: it now has to participate in the known extention of C, i.e., [A] G C * W \

After the inference, ZW becomes the new base interpretation. This means that

the set of allowed interpretations is reduced; it now includes only those interpreta-

tions in Allowed{ZW,Th). (Since ZW 5 ZW, we know that Allowed{ZW,Th) C

Allowed(ZW,Th).) Hence, subsequent learning steps are with respect to this in-

terpretation, and further reduce the set of allowed interpretations associated with

this base interpretation ZW.

Notice that changing the base interpretation has no effect on the extention of

any totally specified relation. Because we assumed that all constants are totally

specified, this means that constants are iineffected: both A*v and Ae^ refer to the

same object. However, C's extention has changed: in particular, , C ^ D C ^ .

General Analogical Inference: This above description corresponds to the sim-

ple form of analogical inference, whose syntactic version was shown in Equation 2.1.

The general process is slightly more complex. We need to consider sets of n-tuples

rather than only sets of singletons. This means we mast deal with some set C which

satisfies the requirements shown in Figure 8-1, using some pair of sets {[ay]} and

} taken of objects in the universe, U.

9Of course, the LAJ /V/L?J analogical statement may lead to several different analogical inferences,
each corresponding to a different common set (labeled C). We consider only one of these.



8.4. SEMANTIC DEFINITION OF ANALOGICAL INFERENCE 181

Allowed(RW,Th),

where Common:

Independent: (|~a7

NonTrivial:

• [¥]
.fXl

+
*n} e f'

Figure 8-1: Semantic Definition of (General) Analogical Inference: \a

To read the notation, the \z process generates a new set of allowed interpreta-

tions, Allowed(R.W,Th), based on a new base interpretation, R.W'.10 We require

that ZW extends the earlier base interpretation R.W and satisfies the right-hand

side of the \& form: i.e., (| ai | • • -[kj- • • aw |) G +C* . As we saw earlier, this means

JZW = MinExt{ Allowed(ZW,Th), , C ). (8.19)

We conclude this section with some final comments.

Semi. Comparison with f~:

It is easy to see that Figure 8-1's semantic definition corresponds to Figure. % l's

syntactic f-̂ . The two criteria with the same name (Common and NonTrivial)

match directly and |=s's Independent condition matches both |^'s Unknown

and Consistent.

Sem2. Extension to correspond to j ^ T :

Figure 8-1 corresponds to general analogical inference. To extend it to correspond

to useful analogical inference (whose syntactic form is seen in Figure 3-1), we need

only add the semantic analogue to the Useful criterion. As before, an analogy

is deemed useful if, in the resultant situation (be it a new theory Tin! or a new

10This corresponds to the claim that 77i, A~B (̂  <p(A) means that a new theory, 77i', is generated,
where this Th! extends the earlier theory Th and contains the sentence on the right-hand side,



182 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

base interpretation, Z"W), the target problem PT has some solution. Here, this

means that

fPT*w' ? {}. (8.20)

All free variables lexically within this PT are assumed existentially bound for

this query. See also the discussion on page 170.

(We can assume that ^PT*W = {} with the original interpretation; otherwise,

there was no need to acquire this new information.)

Sem3. Connection to Analogysem
:

As suggested above, this analogical inference usually establishes an Analogysem

connecting the analogues,

AnalogySem{\k\, g ] , H1V\ {C TO-••[][]• " [ 0 ( bi ••-[BJ.•• b n » ) (8-21)

(Notice this uses the new base interpretation, RW.)

Unfortunately, this is not quite guaranteed. We saw above that the \z inference

changes what we know about C: i.e., C^^ is different from C*^. In particular, it

is possible that +C|.*W' = U> which would mean that Trivial$em(C\., HW). This

parallels Point TR5 in Section 2.4.

Once again, we could sidestep this problem by defining a stronger version of

non-triviality:

Definition 28 StronglyNonTrivialSem( cf>, I) <=> J>J ^ {}

Here, Equation 8.9's monotonicity conditions assure us that <f> stays StronglyNon—

Trivialsem as we embellish this interpretation.

Sem4. Semantics of AnalogyCA ar*d f̂ :

Chapter 4 refines the syntactic notion of analogical inference by allowing only

certain formulae [viz., abstraction formulae) to be eligible as analogy formulae.

We can trivially express this additional requirement semantically, by allowing

only certain sets to be eligible for the common set status. That is, the syntactic



8.4. SEMANTIC DEFINITION OF ANALOGICAL INFERENCE 183

constraint that only abstraction formulae qualify translates into the semantic re-

quirement that only certain buckets qualify: viz., JyT considers only those buckets

which correspond to (the extention of) some relation, and furthermore, only of

those relations which have been tagged as abstractions.

This means the abstraction-based analogical inference process deposits an

n-tuples of objects into some bucket, where this bucket corresponds to some

abstraction.

(While we can state this Hj^st rule semantically, we have no semantic justifi-

cation for why it works. See Note:4-4.)

Sem5. Further Refinements of jĵ T, expressed Semantically:

Parts of Chapter 5 already used this semantic account as a basis by which to

rank legal analogies. In particular, Section 5.3 discussed how to find the least

constraining inference. This Jj^a^maxim prefers the analogical inference whose

set of remaining interpretations is the largest. To state this formally: we may be

considering several analogical inferences Let St be the set of interpretations which

remain after the ith possible analogical inference. Of these, Iuast advocates the

j t h inference, where ||Sy|| = maXj{||Si\\}.n (It is difficult to express semantically

the particular syntactic heuristics which operationalize this maxim. In particular,

the interactions between HMGA a n d H'FC might lead to a violation of this maxim,

and there seems no semantic way of expressing the inherently syntactic Hp? rule.)

The other abstraction-based rules, HJK ^ d Hcc> a r e a l s o virtually impossible

to express semantically, as each specifically refers to some lexical terms, e.g., the

way HJK lexically generates the source problem PS from the target problem PT.

We could handle this HQC rule by using the collection of SameTheoryn buckets:

e.g., by insisting that RKK C SameTheory4, where SameTheory4 represents the set

of all 4-tuples which belong to the same theory. This is quite cumbersome.

11 To see that there is an upper bound, notice that the Unknown condition guarantees that S% C
Allowtd{ RW,Th) for all i.



 



Chapter 9

Standard Definitions of Analogies

"There is no word which is used more loosely or in a greater
variety of senses, than Analogy."

A System of Logic, J. S. Mill (1900)

This dissertation has presented a particular definition of analogical inference, one

which differs from many standard views of analogy in both major and minor ways.

This chapter discusses several of these differences and explains my position.

The first part of this chapter provides a series of specific analyses. Section 9.1

provides a quick preface, summarizing the major issues. The next two sections focus

on the two general categories in which my approach differ from others. Section 9.2

emphasizes how the NLAG analogical inference process (fyT) differs from many

others. Section 9.3 is concerned with how NLAG's underlying definition of analogy,

AnalogyJP, differs from the traditional view.

These contrasts may seem vague in the abstract. Section 9.4 makes these dif-

ferences more concrete by describing other related research in the field of artificial

intelligence, covering both general learning and analogy per se. This survey high-

lights the key distinctions between these systems and mine.

Several other parts of this dissertation have provided brief literature surveys

and comparisons. In particular, Note:2-2 contrasts various types of learning pro-

grams, Note:2-5 mentions two minor ways in which my view of the analogy relation

differs from the standard view, Section 3.1 discusses many other research projects

184



 



9.1. COMMON VIEWS OF ANALOGY 185

which examine how to "learn for a purpose", Section 4.5 compares my model of

abstractions with various related notions, and Section 8.2.3 compares my "Partial

Interpretation Semantics" with other flavors of possible worlds semantics.

9.1 Common Views of Analogy

Different people have very different notions of what an analogy is. This preliminary

section characterizes the general issues and outlines the basic differences between

the traditional view and mine. The summary at the end serves as an outline into

the next two sections.

The relevant questions are (i) what is an analogy and (u) how can an analogy

be found and then used in learning. The accepted view holds that an analogy is a

symbol-to-symbol mapping and that the learning by analogy process uses this map-

ping to map existing source sentences into new target sentences; c/. [Hes66], [Eva68],

[KH71], [NM73], [DM76], [DM77], [MU77], [McD79], [Bro79], [Win80], [Gen80b],

[Cle81], [Car81a], [Len82a], [Hob83a,Hob83b], [Bur83b], [Hof84], . . - 1 My view is

basically compatible with these positions. (This may be more apparent using the

Analogy? framework described Note:2-4. We can use the realization that these two

formulations are equivalent to include other analogy systems — those based on a

common relation — within this fold; c/., [Ari52], [Pol54], [Thi77], [Bla62] [Pai79],

[Gen80a], [Gen83] and [Mar84].)

The next relevant question is how to guide the search for good analogies. Repeat-

ing Figure 2-4, this requires finding first the relevant source sentences and then the

appropriate symbol-symbol mapping. Here we start to see some differences. Most

systems begin by establishing that some soiirce terms correspond to analogous tar-

get terms. This suggests a sentence-to-sentence mapping, pairing together source

and target sentences which contain these (respective) symbols. These other systems

then follow a bottom-up, spreading-activation procedure in the source domain to

find other connected source facts. These derived source sentences are mapped over

1Somc of this research describes the related linguistic phenomenon of metaphor. The distinction
between metaphor and analogy is not relevant to this dissertation in general, nor to this discussion
in particular.



186 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

to propose new sentences in the target domain. These new sentence-to-sentence

correspondences may suggest a new set of analogous terms; and the process contin-

ues.

While accepting the utility of the above process, NLAG is based on a slightly

different approach. I assume that a wealth of relevant connections have already

been "cached" into what I call "abstractions". This lets NLAG follow a top-down

strategy: after finding an abstraction which holds in the source domain, it tries to

instantiate this same abstraction in the target domain. This leads to the view that

most useful analogies are common abstractions.

This is the major difference between NLAG's Ĵ T process and most other systems.

It, in turn, induces many of the other differences. These distinctions, as well as

several others, are summarized in the list below. The parenthetical note following

each point states my particular slant on that issue.

• Useful Analogy

(The result of an analogical inference should be a collection of useful new

conjectures. This is opposed to the view that analogies must be "maximal".)

• Exactness of Analogy

(It is possible to state, statically, what an analogy is. This is opposed to

the procedural view, which holds that analogies are inherently "slippery" and

inexact.)

• Explicit Model of User

(Different people understand different analogies. This translates into an aware-

ness that the contents of the underlying theory is important.)

• Explicit Description of Analogical Connection

(Certain properties vary from analogue to analogue while others remain in-

variant. This information should be explicit.)

• Semantic Relation

(Analogy deals with real world objects, rather than their representations.

Hence the form of that underlying theory is not important.)



9.2. HOW | ~pr DIFFERSFROM OTHER VERSIONS OF ANALOGICAL INFERE1S

The first two points deal mainly with the analogical inference process and are

discussed in Section 9.2. There we see how they each closely tie in with JVLAG's

model-based approach. Section 9.3 addresses the latter three points, which axe

concerned with the basic definition of an analogy. That is, they pertain more to

the analogy relation than to the analogical inference process.

9.2 How Ik Differs from Other Versions of Ana-
nP T

logical Inference

Many analogy seeking systems consider only "novel" analogies: i.e., analogies which

must be "deduced" on the fly. The NLAG system, on the other hand, deals with

less novel situations. In particular, it assumes that the commonality between the

analogues is already known.2 Its objective is to utilize this general information in

"fleshing out" useful additional facts about the target analogue.

This section compares NLAG's flavor of analogical inference with many of the

others. Subsection 9.2.1 discusses the prevalent bottom-up view of analogy and

shows how this leads to view that equates an analogy with "maximum commonal-

ity" . It also ties this view to each of the first two issues of the previous section.

Subsection 9.2.2 follows this intuitive definition of maximum commonality with a

more rigorous one. Subsection 9.2.3 describes limitations inherent in the "maximum

commonality" approach.

9.2.1 View that Analogies must be Constructed

Much of the current research in analogy is based on the premise that an analogy

must be assembled as needed: that is, each analogy is constructed piecemeal. This,

in turn, suggests the bottom-up approach to analogical inference sketched above:

First establish some kernel of correspondence between the analogues. New facts

2The common abstraction encodes this commonality, alternatively called "ground*' ([Pai79],
[Ric36]) or "common" [Bla62]. Also, Point Lit 10 in Section 0.4 returns to this issue of how
much is known initially.



188 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

are then "analogically inferred" by extending this kernel in all possible ways. This

suggests that an analogy is inherently the union of all such commonable features,

where a feature is commonable if it is shared initially by both analogues or if it

can be shared by both analogues by adding additional facts. The first category,

of initially common features, corresponds to the starting kernel, and the full set

of features (including also the features which can be made common), to the full

analogy. Since this process seeks every possible commonality, I refer to it as the

"maximal commonality view of analogy".

We still have to define what a "common feature" is: i.e., what it means to claim

that "a feature is shared by the two analogues". In its full generality, this refers

to some formula which can be instantiated by either analogue. (This is consistent

with the definitions appearing throughout this dissertation.) Many analogy systems

impose other restrictions on what qualifies as a commonable feature: for example,

some consider only formulae which can be reached from some initially common for-

mulae using only "causality" links. The precise definition of a commonable feature

is not that important here. Instead, the critical observations are that these systems

work bottom-up, starting from all initial common features, and they attempt to

generate the full set of all commonable features. This means that an analogy is not

considered complete until all of these commonable features have been found.

My view of analogy, as embodied in the NLAG subroutines, shares some sim-

ilarities with this "maximal commonality" position. In particular, my approach

also involves first finding and then embellishing an initial kernel of correspondence.

The important distinction is that NLAG does not seek all commonable features

connecting the two analogues. Instead, it seeks only the minimal connection, under

the additional constraint that this connection be useful. (Section 5.3 discussed this

sense of minimality and Chapter 3 defined usefulness.) This leads to my model-

based orientation: NLAG only searches for certain specific clusters of connections

— those corresponding to an abstraction — and stops as soon as it has found such

a set.

This distinction — between my top-down NLAG system and the traditional

bottom-up approach — ties in with the first two questions posed on page 186:



9.2. HOW I ~pr DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFEREh

First, this distinction arises from the different purposes of our respective systems.

While most analogy systems attempt to find the greatest similarity connecting the

analogues, NLAG's objective is to find an analogy which suggests additional new

facts which can be used in solving some problem.

Second, this maximum commonality approach invites the view that analogy is a

slippery and inexact phenomenon.3 Almost all researchers appear to agree with this

position. For example, some computational linguists view metaphor interpretation

as a process of successively lifting constraints. (See [Rus76] and [Lev77].) This

view is implicit in other systems which suggest that an analogy must be the result

of continuing modifications, that it must "grow" dynamically or change continuously

(c/., [Eva68], [Hes66], [Win80], [Hob83a], etc.). It also underlies the view that an

analogy is inherently anon-decomposable", c/., [Bla62], [Boy79] and [Sea79].

How is this related to the maximum commonality maxim? This maxim asserts

that an analogy gets better as more common features are found. Unfortunately,

there are always more commonable features. Furthermore, there are many different

sets of additional postulates, and these additions may be incompatible with one

another. They consider an analogy "slippery" because there are always additional,

incompatible ways in which the analogues can be placed in correspondence. (Sub-

section 9.2.2 expresses this formally, noting both that one can generate many diverse

common formulae and that a given formula may have different (and incompatible)

instantiations in the target domain.)

"Inexactness" is related to slipperiness. Any process is inexact unless there is

an effective a priori way of deciding both which of the distinct branches to take and

when to stop seeking additional information. This means most analogical inference

processes are inexact. (Note:9-2 describes some other independent factors which

reinforce the contention that the process of understanding an analogy is inexact.)

NLAG addresses both of these issues by using abstractions. By describing what

type of new information is required, they make NLAG a (more nearly) exact and

less slippery process. (Going back on further level, we can attribute this solution to

NLAG's goal of finding just useful conjectures, as this led to its use of abstractions.)

3Hofstadter coined the particular phrase, "slippery" [Hof84].



190 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

The rest of this section defines more precisely the notion of "maximal common-

ality" and presents arguments which first support and then refute it.

9.2.2 Definition of Maximal Commonality

As suggested above, many analogy systems seek the maximally common connection

between the two analogues. This maxim, first expressed as the iMost intuition in

Section 3.4, holds that

Intuition 3 Better analogies express more in common between the analogues.

This subsection provides a semantic criterion for commonality and tells how it

can be measured. (Note:9-3 proposes various lexical measures of commonality and

shows that all are inadequate.) We can use this measure to define the analogy which

expresses the maximal commonality of the analogues. The next subsection argues

why we may not want to use this maximally common analogy.

Consider a simple example. Assume you know nothing about Duke, and are

told that Duke~Fido. Knowing that Fido G Dogs and Dogs C Animals, we might

analogically infer either Duke G Dogs or Duke G Animals.

Which of those two says more about Duke? Clearly the first. It leads to many

more conjecture about Duke — e.g., that he has a cold nose, probably enjoys digging

holes, etc., in addition to all the things you know about animals in general. Thinking

semantically, there are fewer extensions of that first common formula <pD(x) <=> x G

Dogs than the second <pA(x) <& x G Animals: that is, {x | x G Dogs} C {x | x G

Animals}.

Figure 9-1 shows this graphically. Claiming that Duke is a dog "specializes" him

to be in the inner Dogs box, which means that everything known to be true about

dogs in general holds for Duke. On the other hand, knowing only that Duke is an

animal allows him to roam anywhere within the larger Animals box, meaning that

only those facts which are true for all animals are guaranteed to hold for Duke. This

means there must be fewer new things which we can conjecture about Duke in this

latter case.



9.2. HOW I ~ P r DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFEREN

( Animals >

/ ^ Dogs\

Fido /

V
^ o •

, DllkeiDukeeDogsj J

( Animals ^

/ " Dogs\

Fido
o

\. D u k e :Duke€ Animals/

Figure 9-1: Why Duke G Dogs is more specific than Duke 6 Animals.

This motivates the claim that fewer extensions is better, which suggests seeking

the analogy which minimizes the number of extensions. The argument goes: the

fewer the number of extensions of the common formula, the more constraining that

relation is. That means it is more special to see that both analogues qualify — it is,

a priori, less likely. (This resonates with Shannon's concept of information theory:

that information is inversely related to the number of values [Gal78].) This view

holds that better analogies are based on more specific formulae.

Fewer extensions =>

More specific =>

Better Analogy

Figure 9-2: Commonality Intuition

Definition 29 states this formally, defining what it means to claim that (px is

more specific than <p2, written (px > lTh] <p2:

Definition 29 >(Th] £>2 ^ = ^ \\{x\Th\=<p.2(x)}\\

This describes only unary formulae. What about n-ary formulae, for n > 1?

One option is to consider the total number of extensions of all arguments, i.e., all

(d op id) triples which satisfy Group. This still favors Group over Monoid, and

either of these (and almost anything else) over r(x,y) <=> (x = x & y = y). It,



192 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

however, has the problem that irrelevant arguments can interfere. For example, we

could define

SGroup( d, op, id, x ) 4^4* Group( d, op, id ) &; (a: = x). (9.1)

Notice that the number of (d op idx) quadruples that satisfy this SGroup relation

far exceeds the number of (d op id) triples that satisfy Group. This says nothing,

however, about the specificity associated with the second argument: that is, + and

* express as much commonality by participating in the SGroup relation as they do

by participating in the Group relation. The fact that every possible concept could

qualify for SGroup's final position is irrelevant.

This suggests we "existentially quantify away" the other n — 1 arguments and

define specificity in terms of the domain of the particular argument of the formula.

Now we can compare two analogical formulae <pl and (p2, which have the analogues

in the ith and j t h position, respectively.

Definition 30 <pt\m >{Th) (p2\ m

If we use standard Tarskian semantics, these sets are usually infinite.4 We can, in

any case, easily catch logical implication — Vx tpx (... x, ...)=>• p.2(... x , . . . ) — and

use this measure to rank the analogies. This means that I Most would prefer Group

over Monoid, and the through term, "t", in R K K ( t , c, r , 1) over K K ( t , c) .

(As these examples suggest, abstractions often fit into such an implication-based

hierarchy. This would allow us to make good use of this measure; see Note:9-1.)

This leads to the "use most specific formula" heuristic,

4However, the model of semantics presented in Chapter 8 leads to sets which can be finite in size.
Here, this u <" comparison is meaningful. Notice also that Definition 30 falls out of our semantic
considerations, as ll;[SGroup| (*)] = )l/[Group| (*)].

2 2



9.2. HOW I ~pr DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFEREN

Heurist ic 7 HMSA: If Th} A~B f~ ^ ( a j , . . . A,.. . a\)

and 77i, A~B | - <p2{a\,... A,.. . a^)

(involving the analogues in the ith and j t h positions, resp,)

and <pi\i >(Th] jp
2|.,

Then prefer <pl over <p2.

To help understand this HMSA rule, consider the extreme formula

<f>(x) & [x = FlowRate V x = Current]. (9.2)

This is clearly the most specific common formula which can join FlowRate and

Current, since it has only these two extensions.5

As another source of examples, recall that we can generate a new analogy from

any pair of analogies, using the fact that the conjunction of any pair of analogical

inferences is also a legal analogical inference (see Section 2.5):

77i,A~B \~ip2{A) (9.3)

Th, A~B f {)

Now consider the resulting tf)(x) <$> V?i(x) & 4̂ 2 (z)- Notice that HMSA prefers this
s s

conjunct over its components: ip >[Thj V\ *m^ *!> ^{THI P2-

We can generalize this: assume that each formula in { ^ } ^ 1 qualifies as an

analogy formula joining A and B. This means that the conjunction of any possible

subset of this set is also a viable analogical formulae.6 Since this specificity measure

prefers any m-tuple of conjuncts to any of its m— 1-tuple children, we see that

prefers the "largest" formula, ipAll = Ai&i-
5The claim that this is actually maximal docs depend on the expressiveness of the language. If the
language is completely expressible, one could define a yet more specific formula, one satisfied only
by a single object. Note:9-4 explains why this does not imply that A and B are co-referential.

6This description is overly simplistic as certain instantiations of these a, may be incompatible; see
Point NotMS3 in Subsection 9.2.3. Also, this does not exhaust the set of all possible analogies;
see Section 2.5 and Note:2-7.



194 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

The points in the next subsection critique this approach, arguing against using

this (pAU formula. We close this subsection with two comments.

First, this HMSA rule, as described above, is only a way of comparing analogy

formulae: e.g., it tells us to prefer Group over Monoid. If we view it as an

instance of the IMOSI maxim (see Section 5.3), it can be extended to determine how

to instantiate a formula with free variables. (J5.g\, it could suggest which term

should be used to instantiate the ?i in Monoid (?i, +, 0).)

Second, this commonality measure sheds light on the Triviality condition: Fig-

ure 3-1's NonTrivial constraint eliminates the minimal elements of this commonal-

ity space, allowing us to discard those formulae whose argument could accept 100%

of the possible values. The motivation is that such formulae express no commonality

and so would be worthless as an analogy.

(To state this semantically: we claim that a formula <f) is trivial whenever its

extention includes the full universe of,possible values: i.e., </> = £/. This is reflected

in Definition 27.)

9.2.3 Limitations of the HMSA Rule

Many other analogy system seek the maximally specific formula that joins the two

analogues, based on the implicit assumption that this is both desirable and sufficient.

This subsection presents five arguments against this HMSA position. The three main

ones are: [l] it does not lead to natural (or coherent or useful) analogies, [2] it is not

efficient and [3] it may still miss the correct answer. Two less important points are:

[4] it ignores the a priori knowledge (and so violates the least constraint principle)

and [5] it leads to formulae with limited applicability. (Note:9-5 presents yet an

another reason, describing situations where the user might not like the analogies

suggested by this rule.) After presenting these arguments in order, this subsection

concludes by discussing the trade-off between HMGA and

NotMSl. HMSA Leads to Unnatural Analogies:

This point addresses the specific claim that HMSA alone is a sufficient criterion

on which to determine desirable analogies. (By contrast, the remaining points



0.2. HOW \~pr DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFERENi

discuss limitations of HMSA which hold even when when this rule is coupled with

HAbst"- i e > even when only considering common abstractions.)

Consider first the <f> formula defined in Equation 9.2. While it is maximally

specific, it is neither more natural or more useful than the other formulae we have

mentioned, in particular, Figure 2-3's <pnKK. We could, perhaps, legislate away

these problematic disjunctions. (See Note:2-3.) However, similar problems can

occur even if we consider only conjunctive formulae. Consider, for example, the

uninteresting formula

CostPerHour(x,t/) &
(9.4)

DiscoveredBy(x,;z) &;

This could be an analogy formula linking FlowRate to Current. While this

strained 0 formula expresses more in common than its component <pRKK (i.e., it

is more specific), it is certainly less intuitive.

As this example suggests, we can define (almost) arbitrary collections of facts,

and get more and more information into successive formulae. While this certainly

leads to better similarities, are they leading to more usable analogies? In partic-

ular, is <pMl, the aforementioned conjunction of the <7t, the best possible analogy

formula?

I argue the answer is "no"; that certain partial subsets are more meaningful

than the full set. In particular, those which represent coherent clusters (and

which give rise to a useful corpus of new facts) should be considered better than

those which represent little beyond a chance co-occurrence. (Recall the 9 shown

above.) This means that the desired analogy formula need not be the maximal

points in this space of possible analogy formulae.

The upshot of this point is that, while HMSA d ° e s push toward greater simi-

larity connecting the analogues, it is not pushing towards more coherent or more

useful analogies. This is why this specificity criterion, by itself, is inadequate. In

turn, this explains why NLAG is based on finding common abstractions, rather



196 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

than maximally specific common formulae. (The points below provide other ar-

guments, which oppose even seeking the maximally specific common abstraction.)

NotMS2. HMSA Can be Very Inefficient:

Point NotMSl above argued that we do not necessarily need the most specific

formula. However, it did not state any reason why we should not seek it anyway.

This point and the next argue that this is a bad idea; each provides a reason for

preferring some non-maximally-specific formula.

Consider again the set of possible analogy formulae, {cr,-}^. If every a,-

is unary, this analogical inference requires only conjecturing some of the 0\-(A)

clauses. (I.e., we need only conjecture the sentence at(A) if it is independent of

the starting theory).

In general, though, some formulae are non-unary; each O{ is really a formula

of U{ parameters. To simplify notation, assume that each is a formula with N

arguments. This means we are really considering the analogy formula

PAH(SJL> •••&*) = A ^ f a i ' - - ' * * ) - (9-5)
i

Finding the target instantiation of <pAU requires finding bindings for this AT-tuple

of variables'. As we saw from Section 7.6, this can be quite expensive.

Now imagine that solving the problem requires only some subset of these crts,

say, {tftKLi- If w e u s e
 PAID

 w e have to deal with the other m — p formulae which

are not used in solving the problem. These needless clauses can prove quite

expensive: First, simply conjecturing these auxiliary formulae is not free. The

real cost, however, is in instantiating the unneeded variables which these unused

formulae contribute.

As an example, recall that the R K K abstraction is sufficient to solve the

"Find the flowrate" problem. If we erroneously used the RLKK abstraction,

we would need to find instantiations for the two variables associated with the

Induct-Law clause, $indt and $ind-load, in addition to the four variables used

by RKK-related clauses. Of course, we never use the instantiation of these



9.2. HOW I ~pr DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFEREh

additional variables. This means that the additional work of instantiating those

unused variables is simply wasteful.

To generalize: one reason not to use the maximally specific formula tpM{ is

that, in general, only a subset of its component clauses are used to solve any given

problem. Adding the additional conjectures is both unnecessary and expensive.

The major additional cost is in instantiating the additional free variables, the ones

associated only with clauses not used. This theoretical argument was empirically

verified in Section 7.6, where we saw how enormous this additional expense can

be.

NotMS3« HMSA IS Not Guaranteed:
The point above discussed how expensive it can be to find a maximally specific

analogy. This cost might be acceptable if the resulting analogy was guaranteed

to be correct or at least as encompassing as possible. Unfortunately, this is not

the case.

Consider, once again, the analogy formula ^AHC^I? • • • XN) formed as the con-

junction of all of the {fft}^. Now realize that there may be many distinct target

instantiations for this formula, each corresponding to a legal analogical inference.

This means that even finding a maximal element might not be correct: the desired

answer might follow from a different instantiation. (I.e., this specificity measure

is really just a partial ordering, which may have more than one maximum.)

In fact, this desired instantiation might force a less specific formula: Imagine

that <Ti(A, 7) is the only new fact needed to solve the given problem, and that

<72(A,7) is provably false.7 This prevents us from analogically inferring £>An(A,7).

Hence, the desired analogy cannot use the maximal formula, <p>AU, but must settle

for a subset of it.

NotMS4, HMSA Ignores Initial Knowledge:

Another objection to this HMSA idea is that this measure often runs counter

to the least constraint proposal discussed in Section 5.3, which is based on

7Of course, this <72 must still bo a legal analogical formula joining A and B; but. that connection
may be "witnessed*' by a different instantiation, e.g., Th, A~B \~ ^ (A , 12).



198 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

the Section 3.4's Iuast intuition. The maximal specificity principle favors the

most specific abstraction instance, even if it means postulating many additional

conjectures. For example, HMSA prefers conjecturing Group(3ft, *, i ) over

Monoid(8J, *, 1), even if Inver t ib leC*,^) is not derivable from Th. The

"least constraint" maxim would suggest Monoid (Si, *, 1) instead, as it is

closer to the current world: that is, as it requires that fewer conjectures be

made. (Note:9-5 further motivates this position by discussing additional situa-

tions where HMSA'S choice may not be found appropriate. This also ties in with

Point NotMS5 and is elaborated in the summary at the end of this subsection.)

NotMS5, More Clauses leads to Less Generali ty:

Each conjunct included in the analogy formula limits the applicability of that

formula, since it means that fewer terms can qualify. As a trivial example, the

terms which satisfy <?i(x) h <J2(z) *S a subset of the ones which satisfy <7i(x)

alone. Because more specific formulae hold less often, they have less potential

usefulness. (Recall that the extreme formula, <f> from Equation 9.2, applied only

to this particular pair of analogues.) We prefer analogy formulae which pertain

to a host of different pairs of analogues.

The maximize applicability maxim encourages re-usable analogy formulae: i.e.,

formulae like abstraction formulae which pertain to many diverse situations. This

maxim favors using as few conjuncts as possible, since this leads to the formula

with the greatest range of applicability. The summary below elaborates this

point.

We can summarize these objections by discussing the tension between maxi-

mizing commonality and applicability, as suggested by various points above. We

already discussed the positive features of these two end-points; there are objec-

tions to each position as well. The maximally specific point usually represents an

arbitrary hodge-podge of facts, whose instantiation is needlessly expensive, i.e., is



9.2. HOW fl ~ P r DIFFERS FROM OTHER VERSIONS OF ANALOGICAL INFEREN

More
More

More

More

Specific
General

Specific

General

=> more new facts can be conjectured
=$• more concepts can apply

=» "too rich"
more irrelevant facts must be conjectured

=> "too impoverished"
less information can be transfered from one analogue to the other

Table 9-1: Tension between Commonality and Applicability

overkill for any problem. On the other hand, the maximally general formula is use-

less for a different reason: it says absolutely nothing.8 While we do not advocate

the extreme point in either direction, we still feel the opposing pressures, respec-

tively pulling us towards analogy formulae which approach each of these extrema.

Table 9-1 summarizes these points, showing the major positive and negative factors

for each position.

It should be apparent that this dichotomy is the (by now familiar) struggle

between the IMOSI and I Least intuitions. The I Most intuition (embodied in the HMSA

maximal specificity rule) examines only the conclusion of an analogical inference,

all but ignoring the starting state of knowledge, Th. It basically tries to maximize

the a posteriori commonality, maximizing the similarity between the two analogues

after the analogical inference. The least constraint principle Iuasti °n the other

hand, uses the initial knowledge, to tell NLAG when stop seeking yet other new

facts. When combined with Icioso it stops the search as soon as the batch of new

conjectures, together with the initial facts, form the minimal, acceptable collection.

In effect, Iu>ast deals with how common the two analogues are a priori, before adding

8It is, in fact. Trivial in the sense defined in Section 2.4. This means it would not even qualify as
a legal \^ analogical inference.



200 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

any analogically conjectured facts. (Subsection 5.3.1 elaborates this argument.)

As an example, compare the possible abstraction formulae Group and Monoid

(for the same argument), in an empty target theory. I Least prefers Monoid, since

it is more likely, a priori, to be true than Group. On the other hand, iMost prefers

Group because, once conjectured, the derived Group statement says more about

that argument, and so seems more likely to be useful.

Each of these intuitions has factors which encourage, and discourage, its use.

While this specificity measure might still be sufficient if our only goal was to find the

maximal similarity joining the two analogues, our goal is different: the underlying

purpose of the analogy is to (efficiently) conjecture the new facts needed to solve

some problem. This is why we are seeking a common formula which leads to a

useful analogy, as opposed to a maximally specific one.

Following Section 3.4's suggestion, we resolve the I^ast versus IMOSI tension by

using Iciose- Chapter 4 shows that this* translates into finding a common abstraction.

That is, it is sufficient to find that each analogue satisfies the same abstraction;

NLAG then stops seeking additional facts.

9.3 How Analogy? Differs from Other Versions of

Analogy

Most systems view an analogy as a symbol-symbol mapping, where every occurrence

of a source symbol is mapped into a corresponding target symbol. This section

describes the main ways in which my Analogy? approach extends the standard

version.9 This preface first sketches the final three points of page 186 in order; it

then summarizes these points and tells where the more elaborate arguments can be

found.

The first two points deal with explicitness, first with respect to the model of the

user and then with respect to the analogy itself.

An analogy is inherently a subjective phenomenon; in a given situation, different

°This section considers only the general Analogy]? relationship; Chapter 4 has already motivated
why this is specialized to the Analogy c A relation.



9.3. HOW ANALOGY? DIFFERS FROM OTHER VERSIONS OF ANALOG Y201

learners may "understand" the same analogy differently. I attribute this to the

learner's initial collection of facts: i.e., different learners reach different conclusions

because they know different things initially. (Fraser provides some empirical data

which corrobates this obvious claim [Fra79].) In many analogy systems, this theory

is left implicit. We prefer to deal with the initial theory explicitly, having it available

for inspection and evaluation. This is why it appears in both our notion of analogical

inference, f~, and in our definition of the analogy relation. In all cases it is encoded

as the Th argument.

Having stated that an analogy depends on this theory, we now need to specify

how. This leads to the second point: what precisely is an analogical connection?

To represent it explicitly, we have to specify both which sentences are in the do-

main of the sentence-to-sentence mapping and then how these source sentences are

transformed into the desired target domain sentences. First, what are the relevant

source sentences? Point NotStdl in Note:2-5 demonstrated that an analogy may

only deal with a subset of the facts known about the analogues.10

How is this source information mapped over to form target sentences? Sub-

section 9.3.1 discusses the importance of the form of these source facts, showing

that different formulations of the same facts can lead to different analogies. This

means that just describing the semantic content of these source sentences is not

sufficient. (The "semantic relationship" point justifies our claim that all of these

possible analogies should be found.)

There is another way to consider this second sub-issue: it forces us to state

precisely what is common between the analogues and what changes. That is, the

analogy must specify which "source" constants are invariant and which are mapped

to new target terms. (Of course, the Analogyp formalism makes this a non-issue:

the <p common formula encodes precisely what remains invariant, and the different

sets of arguments, what changes.)

10Subsection 9.2.3 extends that argument, explaining why the domain of the analogy should not even
be the most specific analogy formula. Rewording this into Analogy^* terminology: consider all
possible source sentences which do not lead to a contradiction. While the union (i.e.. conjunction)
of all of these is still a legal source domain for the analogy mapping, that subsection demonstrates
that this may not be the best possible useful analogy.



202 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

The fact that we are considering syntactic manipulations does not mean that we

view analogy as a syntactic phenomenon. On the contrary, we consider an analogy

to be a semantic relationship, one which deals with a pair of objects "in the world"

rather than with their representation. (This was first stated in Section 8.1.) This

attitude justifies our freedom to reformulate the analogues as necessary: to consider

implicit new sentences (see Point NotStd2 in Note:2-5) and even generate implicit

new terms (see Subsection 9.3.2) when formulating the analogical correspondence.

The list below summarizes these basic differences and tells where these issues

are discussed.

• Explicit Model of Learner

An analogy should vary from individual to individual, based on what the

learner already knows.

- Explicate initial theory

(Section 2.3)

• Explicit Description of Analogical Connection

An analogy should explicate what features are invariant between the analogues

and what changes.

- Explicate domain of sentence-to-sentence mapping

(Point NotStdl in Note:2-5)

- Explicate what is common between the analogues and what changes.

(Subsection 9.3.1)

• Semantic Relation

An analogy is a semantic relationship, which deals with a pair of objects "in

the world", rather than with their representation.

- Prima facie facts are not enough

(Point NotStd2 in Note:2-5 and Subsection 9.2.3)

- Initial vocabulary is not enough

(Subsection 9.3.2)



9.3. HOW ANALOGY? DIFFERS FROM OTHER VERSIONS OF ANALOG Y203

9.3.1 Exact Formulation is Important

Essentially all analogy systems operate by transferring some information which

pertains to the source analogue over to the target analogue. Some information is

preserved over this mapping and some is altered from one analogue to the other.

Unfortunately, many analogy formalisms do not explicate what is invariant and

what is local to the analogues.

This subsection explains why this distinction is important by showing that the

same source facts can lead to different target facts, depending on what information

is invariant. After illustrating this point with an example, it closes with a statement

of the general problem, showing that the form of the analogy formulae matters.

Imagine we want to understand how a dam's output is controlled and are told

to consider dams as transistors.11 Assume we know that CValve(Transistor,

Current, Current), which means that a transistor is a controllable valve which

regulates the flow of electrons (i.e., of Current), using energy supplied in the form

of Current. This suggests that we consider the analogy formula,

Pcv(d,t) & CValve(d,t,t). (9.6)

As we know that a dam regulates the flow of water (i.e., of FlowRate), this seems

perfect. The target instantiation is simply ĉvCDam, FlowRate), which is equiva-

lent to CValve (Dam, FlowRate, FlowRate).

On the other hand, we might instead have used a slightly different formulation

of the same facts, one based on the analogy formula,

) <» ControlledByCurrent(d,t) (9.7)

where

Definition 31 Vd, t. ControlledByCurrent(d, t) <=> CValve(d, t , Current).

Here the resultant analogical inference would be ControlledByCurrent (Dams , FlowRat

which is equivalent to CValve(Dams, FlowRate, Current).

11A possibly more natural example of this phenomenon appears in Note:9-6. We tise this
Transistors~Dams example here as it deals with FlowRate and Current.



204 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

Here, even though <pcv(Transistor, Current) is equivalent to ^CbC(Transistor, Cur:

£>cv (Dam, FlowRate) is not equivalent to ^Cbc(Dam, FlowRate). Which of these is the

intended meaning of the Dams ~Transistors hint? That is, should we assume that

our teacher means

Dams are like Transistors in that

• each uses energy in the form of energy it is regulating,

(if so, we should conclude CValve(Dams, FlowRate, FlowRate))

or

• each regulates energy in the form of current,

(if so, we should conclude CValve(Dams, FlowRate, Current)).

Figure 9-3: How are Dams like Transistors?

Both answers are reasonable. While the first alternative seems more proba-

ble than the second here, we certainly can imagine a dam whose output energy is

regulated in a feed-back manner — using the flowrate out to open or close the val-

ues. However, for another analogy, the second option may be more reasonable. For

example, one may be told that "A Pressure Regulator i s like a Transistor",

using the Pressure Regulator shown in Figure 9-4, for the purpose of communicating

the (correct) target conjecture that the FlowRate through a PressureRegulator

is controlled by some FlowRate — i.e., CValve(PressureRegulator, FlowRate,

FlowRate) — which follows from the source fact that the Current through a

Transistor is controlled by some Current — i.e., CValve (Transistor, Current,

Current).

(Of course, this transistor analogue does not convey all the possible information

about pressure regulator. In particular, as a transistor's current is not used to

control the current through the transistor, this PressureRegulator~Transistor

analogy cannot be used to describe the way a pressure regulator's flowrate controls

the flowrate through the pressure regulator.)

This example shows there may be many different meanings for a given "A is



CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES 205

Figure 9-4: Simple Pressure Regulator
(from [dKB84, p9])

l i k e B" hint, and which interpretation is selected depends not only on the infor-

mation included in the source of the analogy (content) but on the formulation of

that information as well (form). This, in turn, shows that the same information

(here, CValve(Transis tors , Current, Current)) may lead to different meanings

under different analogy contexts.

To state this issue more precisely: We may have different ways of expressing

the same source facts: e.g., either as p ( b i , . . . B , . . . b n ) or as 99'(bx,.. . B , . . .b n )

Since they represent the same information, we of course have <p(bi,.. . B , . . .bn) =

<p' ( b x , . . . B , . . . b n ) . For example,

<pcy (Transistor, Current) = v^cbc(Transistor, Current).

As shown above, we can derive different target facts depending of which formulation

is used. Here,

£>cv(Dam,FlowRate) ^ ^cbc(Dam,FlowRate).



206 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

The general observation is,

. . .B,. . .bn) = tp'(bu...B,...bn)} & fo?(ai,.. .A,...an) = *?'(ai,.. .A,.. .an)]

(9.8)

In essence, which target sentence is derived depends on what constants remain

constants (these are the constants lexically contained in the analogy formula) and

which correspond to a formal parameter.

This versatility suggests that an analogy system must be able to consider de-

ductions which follow from the starting theory. That is, it should be able to

produce either interpretation for the analogy, given only the above CValve fact

and Definition 31 Js definition of ControlledByCurrent — even if this requires

deriving the needed ControlledByCurrent (Transistors, Current). (Note:2-5's

Point NotStd2 reiterates this point.)

9.3.2 Need for Reformulation

Definition 33 in Note:2-4 suggested that an analogy is a simple parameter sub-

stitution. This certainly works when Th stores its facts correctly. (In this case,

the analogy is considered degeneratively obvious — a trivial isomorphism.) Unfor-

tunately, Th reserves the right to encode its contained information in completely

arbitrary ways. The previous subsection demonstrated that different representa-

tions of the same information can lead to different analogies. The discussion below

elaborates this point, showing how the nuances of a representation can hide an oth-

erwise apparent analogies. Indeed, much of the complexity of our analogy system

follows from our desire to recover such hidden analogies.

Why go through these contortions? Why should an analogizing system attempt

to find such apocryphal connections? Our motivation steins from our belief that

analogy should be a semantic relation, which depends on the analogues themselves,

rather than on their representations. (See Section 8.1.) Wem unfortunately, must

depend on a particular representation of these analogues: this is encoded in Th.

While the content of this theory dictates which analogies can be found, we can



9.3. HOW ANALOGYF DIFFERS FROM OTHER VERSIONS OF ANALOGY207

still ignore much of its form — this is why AnalogyF downplays the nuances of the

representation as much as possible*

Focus now on the predicate calculus notation used throughout this dissertation.

This partial theory encoding stores certain facts explicitly, (i.e., each p G Th is

explicit to Th) and others implicitly (those a £ Th such that Th |= a).n Note:2-

5's Point NotStd2 argues that we should ignore this distinction by dealing with

DC{Th)y the deductive closure of the starting Th. This subsection shows that the

desired language of the target instantiation may include symbols not in the language

of Th. This means that finding a desired analogy from a fixed initial theory may

involve adding new symbols to the initial language as well as new facts to the initial

theory: incorporating these additions constitutes the learning process.

As an example, consider the arity of the VoltageDrop relation symbol. Kir-

choff's Second Law, which states that the voltage drop between a pair of points is

independent of the path taken, renders the third argument to VoltageDrop irrele-

vant. Knowing this, the Th theory might have used a binary VoltageDrop2 function

instead of the ternary VoltageDrop one shown throughout this dissertation. If Th

continued to use the ternary PressureDrop function, we are in trouble: there is no

single formula which, when instantiated with VoltageDrop2, produces

Vloop. ]T VoltageDrop2(i,;) = 0, (9.9)
<ij>€loop

and with PressureDrop,

V loop. ]P PressureDrop(i,y, [x]) = 0. (9.10)

A better way to find the desired correspondence between these theories begins by
defining a binary PressureDrop2 function,

Definition 32 Vji,j2- PressureDrop2(ii, J2) = PressureDrop( ji,j2, [AnyPath(ji,32)] ),

12This distinction between explicit and implicit information is related to the ideas presented in
[MG84].



208 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

where this AnyPath function returns an arbitrary path between its arguments.

This can be used to derive a correspondent to Equation 9.9,

V loop. ]P PressureDrop2(i,y) = 0. (

(Alternatively we could have derived a ternary VoltageDrop3 function from the

given VoltageDrop2-13 In general, we prefer to change the representation of the less

known target rather than the more established source. The abstractions discussed in

Chapter 4 provide a top-down (and hence, better) criterion for determining which

must be reformulated.)

This PressureDrop2 from PressureDrop example provides one reason why new

symbols may need to be added: viz., to provide additional needed constants. An-

other reason is to hide certain values, leaving them invariant from one analogue to

another.

Consider the CValve example presented in Subsection 9.3.1, and imagine we

wanted the Transistors~Dams hint to communicate the message CValve (Dams,

FlowRate, Current). This is possible only if we have something like the Con-

trolledByCurrent relation, which makes the second occurrence of Current one of

the analogy's invariants. This means that if Th did not include this relation, we

would have to generate (something like) it for this message to get through. (Note:9-

7 shows that we never need to generate a new symbol to expose a hidden value to

some symbol-symbol transformation.)

In line with the theme which prefaces this subsection, an analogy should not

depend on which particular concepts happen to be explicitly defined (i.e., reified)

in the source and target theories. This means that we may have to generate new

symbols to find an analogy joining two concepts. That is, given an initial theory,

we need something slightly stronger than its deductive closure when seeking an

analogy: we may have to add definable new symbols to the language, as well as

deducible new facts to the theory.

We close this subsection with some final comments on the nature of this implicit

versus explicit issue.

13Yes, this VoltageDrop3 -is just another name for the VoltageDrop we used above.



9.3. HOW ANALOGYF DIFFERS FROM OTHER VERSIONS OF ANALOGY209

Ell . Ties to Efficiency of Finding Analogy, Not Goodness of Analogy:

These representational nuances do determine how easy it is to find a particular

analogy. While this does affect how easy it is to find an analogy, it should not

determine whether it is an analogy, nor how good that analogy is. (See Note:3-1.)

EI2. Form, not Content:

It is the form of the representation which is irrelevant, not its content — which

facts are included in DC(Th) is important in determining the analogy, but how

such facts are encoded (e.g., whether they are implicit or explicit) is not. For

example, if (the deductive closure of) our theory did not include Ohm's Law, we

should not be surprised if it does not lead to an analogy useful for the "Find the

flowrate" problem.

EI3, Reformulation:

This implicit versus explicit issue ties in with the notion of reformulation, as

discussed in [Ama68], [SGLS80], [Tap81] and [Low84]: in all of these cases, solving

a problem requires (or is aided by) the addition and use of new terms.

EI4. Tie to Abstractions:

We can use abstractions to dictate which representations to seek. This infor-

mation bounds both the search for new facts and for new symbols. (These ab-

stractions can also serve to hide invariant values, the second role mentioned in

above.)

EI5, Is Reformulation Ever Needed?

This final point addresses the claim that, perhaps, reformulation is never really

needed. Some might argue that the Knowledge Base designer should know, at

data input time, how the facts will be used and store them accordingly. As

evidence, they cite the number of existent Knowledge Bases which use only prima

facie facts, without the need for reformulation. I argue otherwise, claiming that

a versatile learning system must be able to reformulate its facts as necessary,

making this "reformulation pre-step" an important part. (See Note:3-.l.)



210 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

Another way to think of this is in terms of biases (see [Mit83]). One way

to bias the learning system is to force it to use only the initial representation*

This is unnecessarily limiting. The use of abstractions is a more general biasing

technique, allowing a collection of facts to have, in effect, many different repre-

sentations. That is, as each abstraction provides a different "interpretation" of

the initial data. (Of course, some form of bias is necessary: permitting arbitrary

reformulations would lead to an infinite space. This use of abstractions provides

the constraints needed to restrict this space, focusing it into a manageable size.

See also Footnote 8 on page 63.)

Recall the caveat contained in Equation A.4: that any analogy could be ex-

pressed as a sentence-to-sentence mapping induced by some symbol-to-symbol

mapping, provided the analogues are represented appropriately. The ability to

add derivable new facts and create derivable new symbols as needed means that

this analogy process can re-represent the initial facts, allowing it to learn any

legal Analogy p. This also explains the observation that every analogy is obvi-

ous in retrospect: understanding an analogy requires first finding, or deriving,

the apt representation. Once one has the appropriate formula <p, the analogy

itself become an obvious isomorphism, and the learning step reduces to a triv-

ial parameter substitution, mapping each term in the source instantiation into a

corresponding target term. This means that every analogy can be reduced to an

isomorphism by representing the analogues appropriately.

9.4 Literature Survey

"The Lord is my shepherd, . . . "

Psalm 23

This section provides a quick summary of how my model of analogy compares with

those of other AI researchers, both in the area of analogy and learning.

L i t l . Non-AI Views of Analogy — Philosophy, Psychology, Linguistics . . .

Many fields have tried to understand the phenomenon of analogy, often in terms



9.4. LITERATURE SURVEY 211

of its literary cousin, metaphor. The recent artificial intelligence interest in this

subject has been pre-dated (often by millenia — c/., Aristotle's description of

"educing the correlate" [Ari52, Rhetoric, III, iv, 1-3]) by the tremendous body of

literature on this topic from philosophers, linguists, psychologists and poets, to

name just a few. Ortony's excellent anthology [Ort79] provides one smattering of

the diverse fields interested; see also [Pol54], [Hes66], [Dar78], [Hru83], [Mar84],

[She84], . . . 1 4 (Of course, this Artifical Intelligence dissertation is not the place

to delve into a long description of the history of analogy and metaphor. The

interested reader is referred to [Bea67] and [Dav85], for a summary of the core

philosophical positions, and to [Fer67], for the basic theological positions.)

It is reassuring to find that researchers in other fields share a similar view

of analogy; i.e., their view is similar to one shown at the start of Section 9.1.

Mill epitomizes the traditional approach, claiming that ". . . a fact em m, known

to be true of A, is more likely to be true of B if B agrees with A in some of

its properties..." [MilOO, p394]. As a more contemporary example, Hesse, a

philosopher of science, employs a similar description of analogy [Hes66]. She uses

the term "positive analogy" to refer to the set of features which are known to

match from analogue to analogue; this is what I have labeled the starting "kernel

of correspondence". One learns more about target analogue by investigating the

"neutral analogy"; these are the features which are not known to correspond.

Those features which are found to contradict are labeled the "negative analogy",

and are explicitly eliminated. (Harre slightly refines this description, describing

different types of models which can be used to guide the process [Har72, esp pl75-

75]. Darden describes some of the obvious issues which arise when one attempts

to use this formalization [Dar83].)

As a example more relevant to my research, it was Polya who first claimed

thcit an analogy is a common abstraction [Pol54]. Much of this dissertation can

be viewed as an attempt to formalize this general idea. (Indeed, much of AI can

be viewed as attempt to formalize many of Polya's insights...)

14In Fact, the Stanford University libraries include several hundred citations under the entries "Anal-
ogy" and "Metaphor".



212 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

Lit2. General Induction

There are many AI programs which search for a generalization of one or more

instances. (These include [HM78], [And83] and [Mic83], as well as [FHN72] and

[Sus75]. See [DLCD82, esp Section D] and [DM83] for a general overview.)

The underlying analogy process is quite similar. (In fact, Anderson refers to

the GRAPES system's generalization process as "analogy compiling" [And83].15)

Each of these induction techniques is based on maximizing commonality. My ap-

proach is based on the realization that certain clusters of facts are a priori more

useful than others. These coherent clusters are our "abstractions".

Of course, my approach only applies to domains and tasks which admit such

clustering. In those cases, exploiting these biases (read "abstractions") has proven

a useful way of constraining the search.

Lit3. Re-Using Past Problems

A great deal of recent research has been devoted to one particular way of gener-

ating (what I would call) abstractions: viz., by watching the performance el-

ement solve some problems. The primary example is the excellent work on

chunking by Rosenbloom, Laird, and Newell [Ros83,RN82]. Mitchell's recent

[MMS85a] project is also in this camp, as is Carbonell's use of derivational analo-

gies [Car81a,Car83b]. This clearly ties in with the general area of learning for a

purpose; see the survey presented in Section 3.1.

Those works describe one way of generating abstractions; NLAG demonstrates

that analogical inference is a real application of such compiled knowledge.16 As

such, those methods are complementary to, but independent of, my NLAG re-

search. We all agree that solutions to past problems are useful.

Lit.4. Caiisal connection

15This apparently stems from the view that the variabilization process used here is a type of symbol-
to-symbol mapping, and hence akin to the mapping used in its analogy processing.

1 This also fits the definition of a heuristic presented in [Len82b]: a heuristic is information which,
if only you had had earlier, would have helped to solve the problem.



9.4. LITERATURE SURVEY 213

. Winston's sense of "causal connection" [Win79,Win80,Win81] is somewhat re-

lated to my use of abstractions: each is used as a way of conjecturing plausible

propositions. There are several important differences, though. Winston's causal

connections tend to be local and "bottom up": from one fact, postulate another.

This new fact may then lead to other conjectures, and so on. My abstractions

tend to be more global: each defines, in toto> the way in which a pair of analogues

axe usefully interrelated. While causal connections attempt to construct (possi-

bly useful) similarities; my common abstraction approach, by its nature, leads to

some collection of useful facts. (Section 9.2 already elaborated this point.)

Another difference is in terms of directionality: Causal connections are uni-

directional, from one fact to another. We think of abstractions in terms of co-

occurrence: as such, any subset of its clauses can suggest the others. This relates

to the general issue of indexing: abstractions are more generally indexed, and so

are accessible from any derivable term. (See Section 4.5.)

The final issues deals with explicitness of the information. Abstractions are

very explicit about what remains invariant and what is expected to change: the

variables change (by instantiation), and the rest is fixed. It is not as clear what

is invariant in a causal connection. (See Subsection 9.3.1.)

Winston's most recent work ([WBKL83], in collaboration with Binford, Katz

and Lowry) extends the earlier work in several significant ways. After providing

a brief description of the [WBKL83] analogy process, this point discusses those

extensions.

Its underlying task is to derive form from function: given a functional descrip-

tion of an object, the program proposes a physical description which can be used

to identify that object. The approach exploits the observed co-occurrences of

certain functionalities with certain physical properties: e.g., that "stable" objects

tend to be have flat bottoms.

As with the other systems, this program starts with a kernel correspondence

between the source and target objects and then extends this to propose new

properties of the target. Here, the kernel consists of the functional specification



214 CHAPTER 0. STANDARD DEFINITIONS OF ANALOGIES

common to both objects. (E.g., the source "brick" and the target "cup" should

each be stable.) This is extended by following causal links which tie those func-

tional attributes to physical properties; this results in new conjectures about the

target object. (Hence, the fact that bricks have a flat bottom is used to suggest

that a cup should have a flat bottom.)

This work differs from Winston's earlier systems in one important aspect, viz,

it is motivated by a specific problem. Here, for example, the task is to build a cup-

identifier. This means it can use partial matches. Rather than seeking all ways

in which a cup is like a brick, it notes only that each is stable, and then considers

the plausible entailments this suggests. (This also leads to another, albeit minor,

difference: this analogy system may find and use many different source objects

for a given target, each suggesting its own specific set of properties. In addition

to using "bricks" to sixggest the physical properties associated with stability, it

uses "suitcase" to learn about lift ability, "bowl" when considering how to contain

liquids, etc. Kedar-Cabelli provides a further extension in this direction [Ked85].)

This reflects an awareness that an analogy should be "bounded", focused to

the needs of some problem. The resulting, more constrained approach is much

more similar to my NLAG work, as well as many of the others discussed below.

Lit5. Selective Inference

Hobb's research holds that an analogy is formed by first considering the facts

which are known to be shared by both analogues, and then extending this con-

nection by applying various legal inferences to posit additional facts about the

target analogue [Hob83a,Hob83b]. Like my NLAG model, this perspective also

considers the analogy process to be a form of inference. It differs by using many

little steps to form the full analogical connection, rather than posit the full body

of new information at once. (I.e., it goes "bottom-up" rather than "top-down".)

In this respect, it resembles Winston's work, described in Point Lit4 above:

in each, the analogy "spreads" from certain known connections to others. Once

again, this leads to the maximal commonality view of analogy. (See Section 9.2.)

In particular, the selective-inference-analogy draws all inferences which might be



9.4. LITERATURE SURVEY 215

acceptable: i.e., it finds all connections which do not lead to a contradiction. Like

Winston's latest system, Hobbs' selective inference model uses the context of a

specific problem to help determine which inferences should be used.

Lit6. Concept Acquisition

Lenat [Len82a] and Burstein [Bur83a,Bur84] each discuss how one might learn

new concepts by analogy. Lenat's system, AM, was able to use a noticed analogy

between a pair of concepts to suggest values for some slots of the target concept.

These new values would often require that some new concept be created. For

example, the "Bag to Number" analogy was used to suggest that new "Number-

operators" be generated to resemble known "Bag-operators". (See [Len82a, esp

Section 5.2.6 and Appendix 3.2.4].)

Burstein uses several analogies.to teach the computer operation of assignment

to his CARL program: for example, one analogy links variables to boxes and

another links the assignment operator to algebraic equality.

His papers explicitly discuss many of the same issues addressed in my dis-

sertation, and it is encouraging to see that we reached very similar conclusions.

In particular, he discusses why reformulation is necessary during the analogical

learning process and uses this to explain why a top-down approach is needed to

focus and delimit the search. (He also distinguishes between exhibiting an anal-

ogy and learning by analogy, and even uses the term "abstraction" to refer to the

models CARL uses!)

Our approaches do differ. We had slightly different objectives: Since Burstein's

work was partially motivated by psychological studies, his validation involves

demonstrating that his CARL program would make the same errors students fre-

quently made. (My interest is more theoretical — just what is an analogy, and

how can they be used effectively.) A more significant difference is our respective

views on the exactness of an analogy. While I maintain that an analogy can

be exact (see Subsection 9.2.1), Burstein feels they are inherently approximate,

claiming that the relationships in one domain are only similar (as opposed to



216 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

identical) to ones which hold in another. That is, he does not insist that a rela-

tion which holds in the source domain also holds in the target domain; instead,

he claims that one may need a "more general version" of that source relation.

(This may follow from his attempt to accurately model the limitations of his hu-

man subjects: in particular, this may accurately reflect their confusion concerning

second-order relationships. See Note:9-2.) This leads to his interest in debugging

incorrect inferences.

A final difference is our respective uses of the idea of abstractions. My ab-

stractions are "bigger" than his: each of mine encodes the full way in which a

pair of analogues are interrelated. This means that NLAG forms the analogical

connection all at once, by instantiating a single abstraction. By contrast, the

CARL system builds the analogical correspondences incrementally, using a vari-

ety of abstraction-ettes. (This means his use of abstraction resembles Winston's

use of "causal connection" or Hobbs' "selective inferences": each represents a

single connection.)

Lit7. Invariance Hierarchy and Structure Mapping

Both Gentner and Carbonell make the claim that n-ary relations are more likely

to be preserved than unary predicates ([Gen80b,Gen80c], [Car81b]). Why? One

answer is in terms of commonality: Finding that a term — e.g., hovercraft —

qualifies in some position of a relation — e.g., transportation — by itself, is

sufficiently special to suggest other terms as well. This suggests that relationships

are likely to be preserved, modulo substitution of terms.

This, of coarse, depends on how which relations were codified. Fortunately,

people do quite well at finding natural and useful relations — see Subsection 7.6.3.

One way in which these versions of analogy resemble the ||̂ T system is that

they all deal, in essence, with the variables of some formula, rather than the values

of these variables. (This also appears in ACT's use of a functional template

[And83, p204], and in the Programmer Apprentice work, e.g., [Ric79].) That

is, we all feel it is the formal interconnections between the sets of analogous

terms which are important, not the details of what the terms happen to be. This



9.4. LITERATURE SURVEY 217

explicates what remains invariant between the analogues: viz., those connections.

Lit8. Derivation Analogy

The NLAG system deals only with one type of learning, where the goal is to

acquire new, independent facts. Another purpose of an analogy may be to focus

a search: for example, to provide hints which guide a deduction.17 This is the

purpose of Kling's Zorba system [Kli7l]. There, a detailed proof of a theorem in

the source domain is used to guide the proof of a related theorem in the target

domain. In essence, Zorba uses the analogy to specify which clauses should be

considered first during the deduction.

Carbonell's recent derivation analogy work (an extension to his ARIES sys-

tem) has a similar theme [Car83a]. His system begins by storing the decisions

made during a problem solving session: in particular, which branches proved suc-

cessful and which did not. It then tries to re-use this meta-level information when

solving a similar problem: this information is used to suggest which branches to

take and which to avoid, to guide the search for a solution to this target problem.

Of course, these systems can only offer advice if they find the current situation

sufficiently similar to the original situation. This analysis is based on a base-level

similarity between the two problems/ Hence the kernel of analogy is not strictly

at the meta-level, even though the information transferred is.

Lit9. Similarity Analogy

This includes the work of Evans [Eva68], Thibadeau [Thi77] and Hofstadter

[Hof84], as well as the earlier ideas of Aristotle [Ari52].18 My major comment

about these cases is that my NLAG system is unable to handle them. This is be-

cause NLAG relies on abstractions, and abstractions only make sense when there

are a priori clusters of facts. Unfortunately, the space of similarity analogies is

too homogeneous.

That is, given some A:B : : C:? problem, the wisdom of the ages extends only

17Note:2-2 elaborates this distinction.
18In fact, even the word, "analogy", derives from the Greek "a^ttAo-ym," which means proportional.



218 CHAPTER 9. STANDARD DEFINITIONS OF ANALOGIES

as far back as that first A i-» B trial. That is, there is no reason beyond the one

earlier case to make any predictions.

Compare this to, e.g., the Group axioms: when some operation is Associative,

it does seem a good bet that it is Closed over some domain; etc. That is r these

naturally occurring facts do seem to cluster.

NLAG also cannot handle the related case of similarity metaphors. Why in

the world should East, Sun and Stars fit together, in describing J u l i e t ? . . . and

in particular, her balcony, Juliet, and her eyes? ([Sha72]) Ask yourself what

possible set of problems you could solve with this information.

LitlO. Types of analogy

The recent [FG83] paper discussed three types of analogy-like situations, viz.,

abstractions, analogy and similarity. My work is squarely in understanding the

first process, giving some teeth to [Pol54]Js claim that analogy can be viewed

as a common abstraction. (I see another contribution of my work is in further

distinguishing these categories.)

This seemed related to the philosophical and linguistic discussions on live

versus dead metaphor. (C/., [Mar84], [Sea79] and [Pyl79].) A dead metaphor19 is

a phrase which can now be semantically understood without appeal to the original

metaphor. (The canonical example is the "leg of a table".) A live metaphor, on

the other hand, is semantically false, and can only be understood if it is regarded

qua metaphor. (An example is referring to the person, Bill, as a chair.) There

seems a full spectrum between these cases — e.g., consider phrases like "social

butterflies".

By analogy, a "live analogy" is one where the connection between the two

analogues is totally novel and does not correspond to any known generality. Let

me define a "dead analogy" as one where the connection is deducible. Within my

abstraction framework, this would mean that not only is the common abstraction

known, but so is the full instantiation of both the source and target analogues —

i.e., each is deducible from the initial theory.

}[OM83] refers to these as "frozen metaphors.



9A. LITERATURE SURVEY 219

Recall that JyT insists that the target instantiation is not deducible. This

places NLAG between these two end-points: while both the abstraction and the

source instantiation must be known, the target instantiation is not.



 



Chapter 10

Conclusion

"Perhaps every science must start with metaphor and end
with algebra... "

Models and Metaphors, Black (1962)

This final chapter fits my NLAG model of analogical inference into the overall pic-

ture of both analogy and learning systems. Section 10.1 begins by placing this work.

Section 10.2 describes some future research directions, continuing both the main

line of this research as well as pursuing themes tangentially related. Section 10.3

concludes by listing the major contributions of this research.

10-1 Placement

This section states the objectives of the NLAG system, in order to place it within

the space of Artificial Intelligence systems. Many of these general comments reflect

and generalize some of the specific differences discussed in Section 9.4.

First and foremost, NLAG is primarily a learning system, in that the overall

system exhibits superior performance on subsequent occurrences of the same and

similar problems (paraphrased from [Sim83, p28]). This is because NLAG adds

additional facts to the underlying knowledge base during each run, facts which

allow the standard inference engine to solve the original target problem, as well

as many similar problems. (As this inference engine had been unable to solve the



 



10.2. FUTURE WORK 221

problem using the initial knowledge base, this is a definite improvement.) Using

the definitions presented in Note:2-2, this means that NLAG is a Learni process.

Another obvious characteristic of this NLAG system is that it deals with analo-

gies, here, for the purpose of conjecturing underivable facts. This follows from the

Common condition appearing throughout, c/., Figures 2-1, 3-1 and 4-5. This tells

the conjecturing process — here, analogical inference —to select only particular

underivable facts, namely those which correspond to facts known to hold for the

source analogue.

The third relevant characteristic is that NLAG is concerned with solving a par-

ticular problem. In particular, NLAG attempts to find just useful conjectures, i.e.,

just conjectures which suggest ways of solving that specific problem. This means

it is seeking useful analogies, as opposed to establishing arbitrary commonalities

between the analogues. NLAG is, basically, following the case method approach:

using particular problems to motivate and guide the search for new information.

Another distinguishing characteristic of this process is its top-down nature. Each

abstraction is a specific model, which serves to focus NLAG's search. Many other AI

systems (especially analogy-seeking programs) work in a bottom-up fashion, often

attempting to form the "generality" during the process. (See Note:4-3.)

A final difference between this research and many others is methodological.

While many reports describe only an effective algorithm or relate their results

to psychological observations, my primary goal is to provide a clean and formal

conceptual framework for this analogy process. This is why this dissertation has

provided a semantic account of analogy, various syntactic definitions and a collec-

tion of formally stated heuristics, as well as a detailed description of a running

implementation.

10.2 Future Work

While this research has provided several insights in the area of abstraction-based

useful analogical inference, it is not the solution to either the "learning problem"

or the "analogy problem". This section discusses some future issues and describes



222 CHAPTER 10. CONCLUSION

how they extend the NLAG model.

FW1. Abstractions:

The Ĵ  model of analogy deals exclusively with utilizing known abstractions. A

more comprehensive analogy system may be able to acquire new abstractions "on

the fly", based on the current situation (which may include the particular task

at hand, any hints given, the learner's initial state and internal biases, etc.).

Other than the quick discussion in Note:4-1, this dissertation has not ad-

dressed the question of how to generate these re-usable formulae, which we la-

beled as abstractions. An important prerequisite is a better understanding of

what these abstractions axe. For example, should every relation qualify? (Sub-

section 7.6.3's comments imply the answer may be "yes".) Or perhaps just every

n-ary one, where n > I?1 A related question is "How else might they be used?";

this is partially addressed in Note:4-2.

The rest of this point addresses the question of finding abstractions in gen-

eral, extending the comments made in Note:4-1. This task appears to have two

components: first find a useful perspective (see Definition 1 in Section 4.1) and

then re-express this collection of facts in a more general, re-usable form.

Section 4.1 described one possible solution to the first part. (Rosenbloom's

recent work discusses many of the subtle complexities in this straightforward-

seeming task [Ros83].) The second part, determining which constants should

become variables and which remain fixed, seems more problematic. For example,

why is OhmsLaw considered a fact about Current and VoltageDrop (which are

allowed to vary to for example, FlowRate and PressureDrop), but not about

multiplicationj junctions or equality, which remain as fixed constants?

A semantic understanding of learning may provide useful insights on this issue.

This is discussed in the next point.

FW2. Semantic Analysis of Learning:

Learning is often described in purely syntactic terms, in terms of incorporating
1This relates to Note: 10-1. Notice also that a great many abstractions deal with second-order facts

that is, many take functions and relations as their arguments. This may be significant...



10.2. FUTURE WORK 223

new facts [DLCD82]. It is, as such, subject to the nuances of the particular

representation involved. This research on analogical inference has produced, as

a side-product, a preliminary description of a semantic approach to learning.

This is discussed extensively in Chapter 8 and is used in defining Triviality and

Aboutness (in Section 2.4), determining how constraining a fact is (in Section 5.3),

and defining Commonality (in Section 9.2). (In a separate but related work,

[GG83] used this semantic approach to define an extentional definition of novelty.

See Note:8-1.)

I feel this semantics-based approach will prove useful to learning in general.

For example, it may help us understand how abstractions are generated. The

prior point mentioned how bundles of sentences might be produced, but did

not discuss how these facts can be "variabilized". Note:10-2 suggests how this

semantic approach may provide an answer.

This ties in directly to the issue of new term creation in three ways. First, we

suggested above how this process could be used to produce those terms we label

as abstractions. This, in turn, leads to the second use: of reifying some term used

to instantiate an abstraction. (This was mentioned in Section 4.1.) The third use

is even more grandiose: perhaps this semantic account leads to an effective way

of defining .the ontology itself, based on an understanding of efficient methods

of grouping the known objects. Such a semantic analysis could help define an

ontology which effectively "cuts the world at its joints" [Boy79].

Given the relatively quick progress made in the areas of defining triviality,

aboutness, commonality and novelty, and in quantifying how constraining a con-

jecturing is, the area of learning semantics seems ripe for future research.

F W 3 . Other senses and uses of analogy:

This dissertation has explored only one type of analogy task: using analogy as

a mechanism for acquiring unprovable base facts. Furthermore, it has exploited

only one way of focusing the search: via the goal of solving a particular problem.

It also assumes the inference system used by the learning system's performance

element ([BMSJ78]) was deductively complete. The remaining points consider



224 CHAPTER 10. CONCLUSION

some variants of these conditions.

The intuitive notion of learning by analogy covers many other cases. For ex-

ample, an analogical hint could suggest that the learner focus on some derivable

but "hidden" fact, especially in situations when the learner's deductive capa-

bilities are incomplete (e.g., resource limited). Here, the analogy may serve to

"re-arrange" the learner's theory rather than add to it.2 We could extend the JyT

model to capture this case by changing the logical inference operator, |=, which

appears in Figure 4-5, to a different deductive operator, one which may be neither

sound nor complete. It is not clear what new problems this change will cause.

A different but closely related extension involves weakening |(^T's requirements

for the source analogue. For example, we might require that the source abstrac-

tion instance be only satisfied by the initial theory, rather than deduced from

it. This means that the source and target analogues would be treated symmet-

rically. (I suspect that the Iciose and iLeast intuitions would still apply; it would

be interesting to see if this is true.)

We have only considered the task of learning by analogy. This seems related

to the task of using analogies as a tool for explanation: there the teacher is

attempting to use the learner's (̂  process to laconically communicate a large

corpus of information. Do special problems arise in this situation?

Section 9.4's Point Lit9 already discussed why this abstraction-based model of

analogy is inappropriate for proportional analogies, as that task involves educing

the particular common formula. Is this task, of generating a locally re-usable

formula, different from the process of generating the globally re-usable formulae

we call abstractions? Do some or all of the processes suggested in the points

above apply? That is, what are the special issues associated with producing

general utility formulae (aka abstractions) versus the special re-usability needed

for proportional similarity. Perhaps other behavior would be required; and almost

2Using the terms defined in Note:2-2, we have only considered Learni purposes: an analogy might
be used for Learn* purposes as well.



10.2. FUTURE WORK 225

certainly other heuristics would be preferable.3

Going one step farther, how does this sense of analogy compare with analogy

qua classification scheme — a la Wittgenstein's "game" (see [Wit53])?

FW4. Space of heuristics:

This dissertation presents a variety of heuristics which guide NLAG through the

space of possible analogies. (The important ones are summarized in Section 5.4.)

They do not exhaust the full space of possible heuristics. There are certainly other

rules which either enhance those Section 5.4 rules, or offer advice in situations

where they do not apply.4 (As the rules presented in Section 5.4 are well justified,

I am not considering additional (or alternate) rules which violate them.5)

All of these rules are domain independent; there axe domain-dependent ways

of ordering the search as well. For example, Subsection 5.2.1 noted how weak

the HJK rule was. There must be other, more specific ways of using the problem

statement to find the relevant abstraction. (Each would propose a more special-

ized way of using the target problem to determine the appropriate abstractions

and abstraction instances.)

Another set of rules may operationalize some standard observations. For ex-

ample, for many source analogues, one abstraction tends to be a priori more likely

than the others. (Consider the phrase "John is a pig", and notice that only

one of pig's set of possible abstraction seems obvious.) One type of rule might

use such domain-specific information to dictate that this particular abstraction

be considered first. This is related to the use of a "salience" measure and to
3Shepard provides a wealth of evidence that the process of finding a common fornmla is essential to
general human problem solving [She84]. That article describes the incredible contortions people
go through to see two (consecutive') objects as instances of the same one object, but somehow
distorted. This suggests that people automatically try to find the commonality joining a pair of
possibly related objects, however muddled and well camouflaged it may be. See also Footnote 23
in Note:4-5.

4There is tremendous latitude here, as many of those heuristics are just approximations to the
underlying ideas; e.g., many are syntactic approximation to semantic constraints. This alone
gives us license to modify them, providing we stay within their frameworks.

5The only rule I considered changing was HJUQA* The empirical evidence presented in Section 7.5
argues against this change, demonstrating H^a^s superiority over its direct competitor,



226 CHAPTER 10. CONCLUSION

frozen metaphors (see [Sea79] and [CM83]). Each of these could lead to a class

of relevant domain-dependent heuristics.

FW5. Other forms of Analogical Hints:

So far, we have considered only one type of analogical hint, always of the form

A~B.6 In later implementations, this initial AH parameter may encode other

information as well: e.g., "A i s l i k e B and C i s l i ke D", "A i s l i ke B, in

some manner C", or "A i s l i k e B, except in tha t C", etc.

We have also assumed that there is a single target problem to solve. Could this

requirement be weakened or eliminated? Perhaps a more elaborate system could,

instead, utilize a set of positive and negative instances of some phenomenon.

(To tie this in with Point FW4, such extended systems would need other rules

to use this other type of information.)

10.3 Contributions

This section lists the major contributions of this research effort. Its primary goal is

the construction of an effective procedure for using a given analogical hint to pro-

pose conjectures which are useful for a particular problem. En route, I addressed

the issues: [l] what is an analogical inference in general, [2] what is a useful analog-

ical inference within the context of solving a particular problem, and [3] how can

such useful analogies be found effectively. My dissertation also describes a running

program to demonstrate that this model of analogy can be implemented and that

it works effectively. To demonstrate its generality, this research also provides a se-

mantic account of this analogical inference process, based on a variant of Tarskian

semantics.

In my mind, the most significant long-term contribution of this work is a clarifi-

cation and formalization of many of the issues related to analogy. In particular, this

dissertation has defined the general concept of analogical inference, and discussed

6In [OM83]\s notation, this means wo arc describing "metaphorical reasoning". By contrast, "ana-
logical reasoning" occurs when the learner must first find the analogues.



8.3. SEMANTIC DEFINITION OF ANALOGY 177

could allow us to specify that all members of one class must belong in another

class. (One interesting objective would be to produce any arbitrary Allowed set by

using various learning steps, starting from the full set of all eligible interpretations.

This starting set is Allowed(A, {}), where this A knows nothing about any symbol;

i.e.yx
A = {{} {}) for all x e £.)

A parallel approach involves augmenting the underlying theory Th (e.g., by

adding a new sentence), and coordinating this with related modifications to Z*W.

(Notice that if every object can be (syntactically) named, then each semantic mod-

ification (read "change to ZW") can be stated syntactically.) However, this disser-

tation does not address either of these issues. (See Point FW2 in Section 10.2.)

Finally, this semantic system is related to several others. The semantic and syn-

tactic arguments to Allowed relation resembles the (L S) pair of language and con-

nectives mentioned in Weyrauch's FOL system [Wey78]. Also, we observed above

that the base partial interpretation RW is the point-wise intersection of the set

of all allowed interpretations. From this perspective, we see that Z1V corresponds

to what [Kri80] calls "implicit knowledge". We can also think of each member of

I £ Allowed{ ZVi), Th ) as a world reachable from ZW, using the notation from

[M008O], et al. (This connection is even tighter if we used the Allowed' relationship

defined in Point PI2.)

One advantage of this Partial Interpretation Semantics notation over the others

is that my system explicates exactly what is known, and not known. Rather than

assign a multi-valued truth value to full propositions, this system operates at a

smaller grain size, assigning partial extentions to the symbols. In particular, we

can see just what is known about each lexical symbol: these are precisely the set of

members of its known (positive and negative) extentions.

8*3 Semantic Definition of Analogy

This section uses the partial interpretation notion of semantics to define the analogy

relation. The next section uses this definition of analogy to describe the analogical

inference process.



178 CHAPTER 8. SEMANTIC DEFINITION OF ANALOGY

Intuitively, an analogy conveys some similarity between the objects \~k\ and [1].

In particular, it means that both objects are members of the same class of objects.

We need to refine this by considering only non-trivial sets.7 That is, we eliminate

many degeneracies by imposing the non-triviality constraint, -^Trivialsem{c>

to mean that the set C*w is not all encompassing:

>RW = U.Definition 26 TrivialSem{ <P, ZW ) J

(It is straightforward to verify that Trivial corresponds to Trivial sem-)

This non-triviality constraint makes sense: claiming that both [Xj and [1] are mem-

bers of the same class is meaningless if that class is universal.

The actual definition of analogy uses one further assumption, viz., that each

constant symbol c is totally specified: i.e., +c*v = {([c])} and ? c ^ = {}. (See

page 168.) This means the simple underlined form, c} uniquely designates c's

"standard" denotation, [c]. (Equation 8.9's monotonicity conditions guarantee that

this term is unambiguous; i.e., it always refers to this "standard" interpretation.)

This leads to a formal semantic definition of the analogy relation, Analogys

Definition 27 AnalogySem{[k], [BJ, ZW, (C (fall• • • [AJ• • b n » )

( b i

& -^TrivialSem{C\., O ) .

Hence, one way that [+] is like

included in Group; that is,

is that each is a known member of a tuple

€ Group"5*

e .Group™

Likewise, [Current [ is like |FlowRate | in that each is a member of

object can appear as the first "argument" of RKK.

(8.17)

, i.e., each

7In all that follows, wo consider just constructible sots, i.e., we only consider C G GI*£. This
additional constraint will be left implicit in the subsequent definitions. In general, this corresponds
to the "constraint'- that syntactic definitions (e.g., for Analogyp or \~) deal only with formulae.



10.3. CONTRIBUTIONS 227

a series of refinements — [a] General Analogical Inference, [6] Useful Analogical In-

ference, [c] Abstraction-Based (Useful) Analogical Inference, [d] additional ordering

and pruning heuristics and [e] various operational details. These culminate in an

actual implementation, the NLAG program. Furthermore, the various models of

analogy have been described semantically, syntactically and operationally.

Empirical results from this implementation confirm many of our intuitions about

analogies, as well as provide other insights, especially on the nature of abstractions.

In particular, the ensuing analysis explains the source of power underlying this

abstraction-based approach (in terms of the synergy found by using the abstraction's

coherent clauses) and suggests that the abstraction label is not that important

(arguing that it has been linguistically trivialized). This leads to a characterization

of the tasks and domains where this abstraction-based approach can be particularly

effective.

The semantic account of these processes should allow future researchers to repeat

these results in other systems, built using other representations. The formality of

these descriptions, especially when augmented by the comparison to other systems,

should facilitate extending this work in new directions.

This work has made a variety of secondary contributions as well. The for-

mal definitions explicate many relevant distinctions, ones often blurred in other

descriptions. Two examples are the differences between the analogy relation and

the analogical inference process, and between the processes of general analogical

inference and useful analogical inference.

Understanding the useful analogical inference process led to a series of discus-

sions about the I Most and I Least intuitions, and to their resolution, in terms of the

Iciose maxim. Many parts of this dissertation elaborate this Iciose insight, and

demonstrate how our notion of abstractions realizes this idea. This research has

described what these abstractions are (both intuitively and formally) and discussed

how they can be used during the analogy process, why they can be used, and why

they should be used.

I feel that this notion of clustering interrelated facts will continue to play an



228 CHAPTER 10. CONCLUSION

important role in both learning and Expert Systems. (This is especially true in arti-
factual domains, where each such cluster corresponds to a design or plan.) Note:4-2

elaborates this position.

Another contribution is the analysis of how this model differs from (and ex-

pands on) the standard models of analogy found in the literature. To summarize

some of the arguments presented in Chapter 9: This work demonstrates certain

shortcomings of the prevalent view, which holds that the best analogy is the one

which express the "maximal commonality" between the analogues. In particular, we

found that the resulting analogy is often inappropriate, can be extremely inefficient

to find, and still might not lead to useful conjectures.

Chapter 9 also argued that an effective model of analogy should explicate the

similarities and differences between the analogues, have an explicit model of the

learner (in terms of his initial collection of facts) and, since an analogy is a semantic

phenomenon, permit this collection of facts to be reformulated.

Other contributions of this project include the preliminary discussion of a se-

mantic basis of learning, a better understanding of abstractions and the variety of

useful additions added to the MRS system.

To conclude, the phenomenon of analogy appears ubiquitous in essentially all

modes of reasoning, and especially in that elusive reasoning step called "learning".7

A comprehensive analogy system must incorporate the abilities both to use a rele-

vant abstraction when it exists, and to generate such an abstraction "on the fly",

based on the current situation. This research addresses one important part of that

process: how to effectively find and use appropriate abstractions. The resulting

abstraction-based routine, NLAG, represents an effective way of implementing this

task. I anticipate a refined version will be an essential part in future, more elaborate

learning systems.

7In fact, many psychologists describe learning in terms of assimilation, accommodation and adap-
tation ([McD79], [Pyl79]). Analogical reasoning plays an important role in all three.



Bibliography

[AB73] John R. Anderson and Gordon H. Bower. Human Associative Memory.

Winston and Sons, Washington, D C , 1973.

[AFB78] R. Albrecht, L. Finkel, and J. R. Brown. BASIC for Home Computers.

John Wiley & Sons, Inc., New York, 1978.

[AFS83] John R. Anderson, Robert Farrell, and Ron Saners. Learning to Pro-

gram in LISP. Technical Report NR 157-465, Carnegie-Mellon Univer-

sity, September 1983.

[Ama68] Saul Amarel. On representations of problems of reasoning about ac-

tions. In B. Meltzer and D. Michie, editors, Machine Intelligence,

pages 131-171, American Elsevier Publishing Company, New York,

1968.

[And83] John R. Anderson. Knowledge Compilation: The General Learn-

ing Mechanism, pages 203-212. University of Illinois at Urbana-

Champaign, Monticello, Illinois, June 1983.

[Ari52] Aristotle. Rhetorics, de rhetorica ad alexandrum, poetica. In W. D.

Ross, editor, The Works of Aristotle, Clarendom Press, Oxford, 1952.

Translated by W. R. Roberts.

[Aus62] John Austin. How to do Things with Words. Harvard University Press,

Cambridge, 1962.



[Bar79] David Barstow. Knowledge-Based Program Construction. Elsevier,

North Holland, 1979.

[BCEM78] James E. Bennett, Lewis Creary, Robert Englemore, and Robert

Melosh. SACON: A Knowledge-Based Consultant for Structural Analy-

sis. HPP Working Paper STAN-78-699, Computer Science Department,

Stanford University, September 1978.

[Bea67] Monroe C. Beardsley. Metaphor. In Paul Edwards, editor, Ency-

clopedia of Philosophy, pages 284-89, The Macmillan Company and

The Free Press, New York, 1967.

[Bla62] Max Black. Models and Metaphors. Cornell University Press, Ithica,

1962.

[BMSJ78] Bruce G. Buchanan, Thomas M. Mitchell, Reid G. Smith, and C. R.

Johnson, Jr. Models of learning systems. In Encyclopedia of Computer

Science and Technology, Dekker, 1978.

[Boy79] Richard Boyd. Metaphor and theory change: what is "metaphor" a

metaphor for? In Andrew Ortony, editor, Metaphor and Thought,

pages 356-408, Cambridge University Press, Cambridge, 1979.

[BP83] Jon Barwise and John Perry. Situations and Attitudes. The MIT Press,

Cambridge, MA, 1983.

[Bra79] Ron Brachman. On the epistemological status of semantic networks. In

Nicholas V. Findler, editor, Associative Networks: Representation and

Use of Knowledge by Computers, pages 3-49, Academic Press, 1979.

[Bro79] Richard Brown. Use of Analogies to Achieve New Expertise. Technical

Report AI-TR-403, Massachusetts Institute of Technology, April 1979.

[Bro8l] D. C. Brotsky. Program Understanding through Cliche Recognition.

Master's thesis, MIT, August 1981.

ii



[Bro84] Rodney A. Brooks. Model-Based Computer Vision. UMI Research

Press, Ann Arbor, 1984.

[Bro85] William J. Broad. Subtle analogies found at the core of Edison's genius.

The New York Times, 15-16, March 1985.

[BT78] Harry G. Barrow and J. Martin Tennenbaum. Recovering intrinsic scene

characteristics from images. In A. R. Hanson and E. M. Riseman, edi-

tors, Computer Vision Systems, pages 3-26, Academic Press, New York,

1978.

[Bur83a] Mark H. Burstein. Concept formation by incremental analogical rea-

soning and debugging. In Ryszard S. Michalski, editor, Proceeding of

the International Machine Learning Workshop, pages 19-25, University

of Illinois at Urbana-Champaign, Monticello, Illinois, June 1983.

[Bur83b] Mark H. Burstein. A model of learning by incremental analogical rea-

soning and debugging. In AAAI-88, pages 45-48, AAAI, Washington,

DC, August 1983.

[Bur84] Mark H. Burstein. Leafning by Reasoning from Multiple Analogies.

PhD thesis, Yale University, New Haven, CT, 1984.

[BvL8l] John Seely Brown and Kurt van Lehn. Repair theory: a generative

theory of bugs in procedural skills. Journal of Cognitive Science, March

1981.

[BW77] D.G. Bobrow and T. Winograd. An overview of KRL, a knowledge

representation language. In IJCAI-77, Massachusetts Institute of Tech-

nology, August 1977.

[Car81a] Jaime G. Carbonell. A computational model of analogical problem

solving. In IJCAI-81, pages 147-152, University of British Columbia,

August 1981.

in



[Car81b] Jaime G. CarbonelL Invariance hieraixhy in metaphor interpretation.

In Proceedings of the Third Annual Conference of the Cognitive Sci-

ence Society, pages 292-295, Cognitive Science Society, University of

California, Berkeley, August 1981.

[Car83a] Jaime G. Carbonell. Derivational analogy in problem solving and

knowledge acquisition. In Ryszard S. Michalski, editor, Proceeding of

the First International Machine Learning Workshop, University of Illi-

nois at Urbana-Champaign, Monticello, Illinois, June 1983.

[Car83b] Jaime G. CarbonelL Learning by analogy: formulating and general-

izing plans from past experience. In Ryszard S. Michalski, Jaime G.

Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Ar-

tificial Intelligence Approach, Tioga Publishing Company, Palo Alto,

1983.

[Cha84] Roz Chast. Possible Universes: An Assortment of Cartoons. Harper

and Row Publishers, Inc., New York, 1984.

[CL73] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and

Mechanical Theorem Proving. Academic Press, Inc., New York, 1973.

[Cle81] John Clement. Analogy generation in scientific problem solving. In

Proceedings of the Third Annual Conference of the Cognitive Science

Society, pages 137-140, Cognitive Science Society, University of Cali-

fornia, Berkeley, August 1981.

[CM81] William F. Clocksin and Christopher S. Mellish. Programming in Pro-

log. Springer-Verlag, New York, 1981.

[CM83] Jaime G. Carbonell cind Steven Minton. Metaphor And Common-Sense

Reasoning. Technical Report CMU-CS-83-110, Carnegie-Mellon Uni-

versity, March 1983.

[Coc80] Ira Cochin. Analysis and Design of Dynamic Systems. Harper and Row

Publishers, Inc., New York, 1980.

iv



[Coh80] Paul Cohen. 1980. Indirect Personal communcation. (E.g., unofficial

subtitle of Professor Silver's Logic Class was "Why Anyone Could have

Discovered Forcing Theory"; UC Berkeley, 1975).

[Cyp82] D. Scott Cyphers. Programming Cliches and Cliche Extraction. Work-

ing Paper 223, Massachusetts Institute of Technology, February 1982.

[Dar58] Francis Darwin. The Autobiography of Charles Darwin and Selected

Letters. Dover, New York, 1958.

[Dar78] Lindley Darden. Discovery and the emergence of new fields in science.

Philosophy of Science, 1:149-160, 1978.

[Dar83] Lindley Darden. Reasoning by analogy is scientific theory construc-

tion. In Ryszard S. Michalski, editor, Proceeding of the First Interna-

tional Machine Learning Workshop, pages 32-40, University of Illinois

at Urbana-Champaign, Monticello, Illinois, June 1983.

[Dav85] Todd Richard Davies. Analogy. June 1985. Bachelor of Science with

Honors in the Humanities.

[DDH72] O. J. Dahl, E. Dijkstra, and C. A. R. Hoare. Structured Programming.

Academic Press, 1972.

[DeJ85] Gerald DeJong. A brief overview of explanatory schema acquisition. In

Thomas M. Mitchell, editor, Proceeding of the Third International Ma-

chine Learning Workshop, Rutgers University, Skytop, Pennsylvania,

June 1985.

[Der83] Nachiim Dershowitz. Programming by Analogy, pages 26-31. University

of Illinois at Urbana-Champaign, Monticello, Illinois, June 1983.

[Die85] Thomas Glen Dietterich. Learning at the knowledge level. 1985. forth-

coming. (Based on his presentation given during the Third International

Workshop on Machine Learning.).



[dK] Johan de Kleer. An assumption-based tms. A unpublished XEROX

PARC manuscript (1985),

[dKB84] Johan de Kleer and John Seely Brown. A Qualitative Physics Based

on Confluences, pages 7-84. Elsevier Science Publishers B.V., 1984.

Reprinted from Artificial Intelligence: An International Journal, Vol-

ume 24.

[DLCD82] Thomas G. Dietterich, Robert London, Ken Clarkson, and G. Dromey.

Learning and inductive inference. In Paul Cohen and Edward A. Feigen-

baum, editors, The Handbook of Artificial Intelligence, William Kauf-

man, Inc., Los Altos, CA, 1982.

[DM76] Nachum Dershowitz and Zohar Manna. The Evolution of Programs: A

System for Automatic Program Modification. Technical Report AIM-

294, Computer Science Department, Stanford University, December

1976.

[DM77] Lindley Darden and Nancy Maull. Interfield theories. Philosophy of

Science, 44:43-64, 1977. .

[DM83] Thomas G. Dietterich and Ryszard S. Michalski. A comparative re-

view of selected methods for learning from examples. In Ryszard S.

Michalski, Jaime G. Carbonell, and Thomas M. Mitchell, editors, Ma-

chine Learning: An Artificial Intelligence Approach, Tioga Publishing

Company, Palo Alto, CA, 1983.

[Dou83] Sarah Ann Douglas. Learning to Text Edit: Semantics in Procedural

Skill Acquisition. PhD thesis, Stanford University, June 1983. Depart-

ment of Cognitive Ergonomics.

[Doy79] Jon Doyle. A truth maintenance system. Artificial Intelligence: An

International Journal, 12(3), 1979.

vi



[EA81] R. Elio and John R. Anderson. The effects of category generalization

and instance similarity on schema abstraction. Journal of Experimental

Psychology: Human Learning and Memory, 7:397-417, 1981.

[Emm85] Dorothy Mary Emmet. Analogy. In Philip W. Goetz, editor, Ency-

clopedia Britannica, page 337, Encyclopaedia Britannica, Inc., Chicago,

1985.

[End72] Herbert B. Enderton. A Mathematical Introduction to Logic. Academic

Press, Inc., New York, 1972.

[Eva68] Thomas G. Evans. A Program for Solution of Geometric-Analogy In-

telligence Test Questions, chapter 5. The MIT Press, Cambridge, 1968.

[Fei63] Edward A. Feigenbaum. Part 1: Artificial Intelligence: Introduction.

In Edward A. Feigenbaum and Julian Feldman, editors, Computers and

Thought, pages 1-10, McGraw-Hill Book Company, San Francisco, 1963.

[Fel78] Jerome Feldman. 1978. Personal Communication: AI Colloquium at

Stanford.

[Fer67] Frederick Ferre. Analogy in theology. In Paul Edwards, editor, En-

cyclopedia of Philosophy, pages 94-97, The Macmillan Company and

The Free Press, New York, 1967.

[FG83] Kenneth D. Forbus and Dedre R. Gentner. Learning physical domains:

towards a theoretical framework. In Ryszard S. Michalski, editor, Pro-

ceeding of the International Machine Learning Workshop, pages 198-

202, University of Illinois at Urbana-Champaign, Monticello, Illinois,

June 1983.

[FH77] Richard F. Fikes and Gary G. Hendrix. A network-based knowledge

representation and its natural deductive system. In IJCAI-77, MIT,

August 1977.

vii



[FHN72] Richard Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and execut-

ing generalized robots plans. Artificial Intelligence: An International

Journal, 3:251-288, July 1972.

[Fil68] Charles Fillmore. The case for case. In E. Bach and R. Harms, edi-

tors, Universals in Linguistic Theory, pages 1-88, Holt, Rinehart and

Winston, New York, 1968.

[Fin79] Nicholas V. Findler, editor. Associative Networks: Representation and

Use of Knowledge by Computers, Academic Press, New York, 1979.

[Fin85] Joseph Jeffrey Finger. Residue: A Deductive Approach to Design

Synthesis. Technical Report Stan-CS-85-1035, Heuristic Programming

Project, Stanford University, 1985. Also #HPP-85-l. (Submitted to

IJCAI-85).

[Flo78] Robert W. Floyd.. 1978 ACM Turing award lecture: the paradigms of

programming. Journal of the ACM, 22(8), August 1978.

[FM83] Edward A. Feigenbaum and Pamela McCorduck. The Fifth Generation:

Artificial Intelligence and Japan's Computer Challenge to the World.

Addison-Wesley Publishing Co., Menlo Park, CA, 1983*.

[Fra22] Sir James G. Frazer. The Golden Bough: A study in Magin and Reli-

gion. Macmillan, New York, 1922. Abridged version.

[Fra79] Bruce Fraser. The interpretation of novel metaphors. In Andrew

Ortony, editor, Metaphor and Thought, pages 172-185, Cambridge Uni-

versity Press, Cambridge, 1979.

[Fre32] Sigmund Freud. New Introductory Lectures on Psychoanalysis. W. W.

Norton, New York, 1932.

[Fri79] Peter Fricdland. Knowledge-Based Experiment Desin in Molecular Ge-

netics. PhD thesis, Stanford University, October 1979.

viii



[Fri84] Peter Friedland. 1984. Personal Communication, related to MOLGEN

project.

[FW80] Funk and Wagnalls. Funk and Wagnalls Standard Dictionary. Lippin-

cott and Crowell, 1980.

[Gal78] Robert G. Gallager. Information Theory and Reliable Communication.

John Wiley and Sons, Inc., New York, 1978.

[Gen80a] Micheal R. Genesereth. Metaphors and models. In AAAI-80,

pages 208-211, Stanford University, August 1980.

[Gen80b] Dedre Gentner. The Structure of Analogical Models in Science. Tech-

nical Report 4451, Bolt, Beranek and Newman Inc., July 1980.

[Gen80c] Dedre Gentner. Studies of metaphor and complex analogies. In Sym-

posium on Metaphor as Process, A.P.A, Montreal, September 1980.

[Gen83] Dedre Gentner. Structure-mapping: a theoretical framework for anal-

ogy. Cognitive Science, 7(2), 1983.

[Gen85] Micheal R. Genereseth. April 1985. Personal Communication.

[GG83] Russell Greiner and Michael R. Genesereth. What's new? a semantic

definition of novelty. In IJCAI-83, pages 450-54, Karlesruhe, Germany,

August 1983.

[GGGS80] Micheal Genesereth, Russell Greiner, Milton R. Grinberg, and David E.

Smith. MRS Manual December 1980. HPP Working Paper HPP-80-24

(Updated Dec 1984).

[GL80] Russell Greiner and Douglas B. Lenat. A representation language lan-

guage. In AAAI-80, pages 165-169, Stanford University, August 1980.

[Gly80] Clark Glymour. Theory and Evidence. Princeton University Press,

Princeton, 1980.

ix



[Gly83] Clark Glymour. Two programs for testing hypothesis of any logi-

cal form. In Proceeding of the Second International Machine Learn-

ing Workshop, pages 96-98, University of Illinois, Urgana-Champaign,

1983.

[Goe85] Carl Gustav Hempel. In Philip W. Goetz, editor, Encyclopedia Bri-

tannica, page 828, Encyclopaedia Britannica, Inc., Chicago, 1985.

[Gri75] H. P. Grice. Logic and conversation. In Peter Cole and Jerry L. Morgan,

editors, Syntax and Semantics, pages 44-45, Academic Press, New York,

1975.

[Har72] R. Harre, editor. The Philosophies of Science: An Introductory Survey.

Oxford University Press, New York, 1972.

[Hay85] Barbara Hayes-Roth. A blackboard architecture for control. Artificial

Intelligence: An International Journal, 26(3):251-321, July 1985.

[Hem65] Carl Gustav Hempel. Aspects of Scientific Explanation and other Es-

says in the Philosophy of Science. The Free Press, New York, 1965.

[Hem66] Carl Gustav Hempel. Philosophy of Natural Science, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1966.

[Her64] I. N. Herstein. Topics in Algebra. Xerox College Publishing, Waltham,

MA, 1964.

[Hes66] Mary Hesse. Models and Analogy in Science. University of Notre Dame

Press, Notre Dame, 1966.

[Hes67] Mary Hesse. Models and analogies in science. In Paul Edwards, editor,

Encyclop&dia of Philosophy, pages 354-59, The Macmillan Company

and The Free Press, New York, 1967.

[Hin62] K. Jaako J. Hintikka. Knowledge and Belief: An Introduction to the

Logic of the Two Notions. Cornell Press, Ithica, 1962.



[HM78] Frederick Hayes-Roth and John McDermott. An inference matching

technique for inducing abstractions. Communications of the ACM,

21(5):401-411, May 1978.

[HM82] Frank Halasz and Thomas P. Moran. Analogy considered harmful. In

Human Factors in Computer Systems, National Bureau of Standards,

Gaithersburg, Maryland, March 1982.

[Hob83a] Jerry R. Hobbs. Metaphor interpretation as selective inferencing: cog-

nitive process in understanding metaphor (part 1). Empirical Studies

of the Arts, l(l):17-33, 1983.

[Hob83b] Jerry R. Hobbs. Metaphor interpretation as selective inferencing: cog-

nitive process in understanding metaphor (part 2). Empirical Studies

of the Arts, 1(2):125-142; 1983.

[Hof84] Douglas Hofstadter. The COPYCAT Project: An Experiment in Non-

determinism and Creative Analogies. Artificial Intelligence A. I. Memo

755, Massachusetts Institute of Technology, January 1984.

[HR70] David Halliday and Robert Resnick. Fundamentals of Physics. John

Wiley and Sons, Inc, New York, 1970.

[Hru83] Poetics Today. 1983. Special Issue on "Metaphor", Benjamin

Hrushovski, editor, 4(2), Israel Science Publisher Ltd., Jerusalem.

[HumO2] David. Hume. An Enquiry Concerning Human Understanding. Oxford

Univeristy Press, Oxford, second edition, 1902. (Rewrite of Book I of

"A Treatise of Human Nature", 1758).

[Kan82] Takeo Kanade. Vision. In Paul R. Cohen and Edward A. Feigen-

baiim, editors, The Handbook of Aritificial Intelligence, chapter XIII,

pages 125-322, William Kaufman, Inc., Los Altos, CA, 1982.

xi



[Ked84] Smadar Kedar-Cabelli. Analogy with Purpose in Legal Reasoning from

Precedents. Technical Report LRP-TR-17, Rutgers, Laboratory for

Computer Science Research, July 1984.

[Ked85] Smadar Kedar-Cabelli. Purpose-directed analogy: a summary of cur-

rent research. In Thomas M. Mitchell, editor, Proceeding of the Third

International Machine Learning Workshop, pages 80-83, Rutgers Uni-

versity, Skytop, Pennsylvania, June 1985.

[Kim81] Scott Kim. Inversions: A Catalog of Calligraphic Cartwheels. BYTE

Books, A division of McGraw-Hill, Peterborough, N.H., 1981.

[KH71] Robert E. Kling. A paradigm for reasoning by analogy. Artificial In-

telligence, 2:147-178, 1971. Also IJCAI-71, British Computer Society,

London, 1971.

[Kow79] Robert Kowalski. Logic for Problem Solving. North Holland, Elsevier

Science Publishing Company, Inc., New York, 1979.

[Kri80] Saul Kripke. Naming and Necessity. Harvard Press, Cambridge, MA,

1980.

[Kun82] Jeffrey R. M. Kunz, editor. The American Medical Association Family

Medical Guide. Random House, Inc., New York, 1982.

[Lam84] Leslie Lamport. The I^TgX Document Preparation System. February

1984. Second Preliminary Edition.

[LE77] Victor R. Lesser and Lee D. Erman. A retrospective view of the hearsay-

ii architecture. In IJCAI-77, pages 790-800, Massachusetts Institute of

Technology, 1977.

[Leb85] Michael Lebowitz. Complex learning environments: hierarchies and

the use of explanation. In Thomas M. Mitchell, editor, Proceeding of

the Third International Machine Learning Workshop, pages 110-112,

Rutgers University, Skytop, Pennsylvania, June 1985.

xii



[Len82a] Douglas B. Lenat. AM: discovery in mathematics as heuristic search. In

Randall Davis and Douglas B. Lenat, editors, Knowledge-Based Systems

in Artificial Intelligence, McGraw-Hill International Book Company,

San Francisco, 1982. (Also PhD thesis, Stanford Report STAN-CS-76-

570, July 1976).

[Len82b] Douglas Bruce Lenat. The nature of heuristics. Artificial Intelligence:

An International Journal, 19(2):189-249, 1982. (Also Stanford Techni-

cal Report HPP-80-26, Dec 1980).

[Len83a] Douglas Bruce Lenat. EURISKO: A program that learns new heuristics

and domain concepts. The nature of heuristics III: program design and

results. Artificial Intelligence: An International Journal, 21(1-2):61-98,

1983.

[Len83b] Douglas Bruce Lenat. The role of heuristics in learning by discovery:

three case studies. In Machine Learning: An Artificial Intelligence Ap-

proach, Tioga Publishing Company, Palo Alto, CA, 1983.

[Len84] Douglas B. Lenat. 1984. Personal Communication, related to Eurisko.

[Lev77] S.. Levin. The Semantics of Metaphor. The Johns Hopkins University

Press, 1977.

[Lit73] C. Scott Littleton. The New Comparative Mythology: An Anthropo-

logical Assessment of the Theories of Georges Dumezil. University of

California Press, Los Angeles, 1973.

[LJ80] George Lakoff and Mark Johnson. Metaphors We Live By. The Uni-

versity of Chicago Press, Chicago, 1980.

[Lor74] K. Z. Lorenz. Analogy as a source of knowledge. In Lez Prix Nobel en

1973, pages 185-195, Elsevier, New York, 1974.

[Low84] Micheal Lowry. The use of reformulation in computational geometry.

1984. Thesis Proposal.

xiu



[MAE*62] J. McCarthy, P.W. Abrahams, D.J. Edwards, T. P. Hart, and M.I.

Levin. LISP 1.5 Programmer Manual MIT Press, Cambridge, MA,

1962.

[Man49] D. G. Mandelbaum, editor. Selected Writings of Edward Sapir. Univer-

sity of California Press, 1949.

[Mar67] Normal M. Martin. Rudolf Carnap. In Paul Edwards, editor, En-

cyclopedia of Philosophy, pages 25-33, The Macmillan Company and

The Free Press, New York, 1967.

[Mar84] A. P. Martinich. A theory for metaphor. Journal of Literary Semantics,

13:35-56, 1984.

[McC79] John McCarthy. Ascribing Mental Qualities to Machines. AIM STAN-

CS-79-725, Computer Science Department, Stanford University, March

1979.

[McD79] John McDermott. Learning to use analogies. In IJCAI-79, pages 568-

576, Tokyo, August 1979. (Also as CMU Tech Report).

[McD80] John McDermott. Rl : an expert in the computer systems domain. In

AAAI-80, pages 269-271, Stanford University, Stanford, CA, August

1980.

[Mel51] Herman Melville. Moby Dick or A Whale. Harper & Brothers Publish-

ers, New York, 1851.

[MG84] Jock Mackinlay and Micheal R. Genesereth. Implicit languages. In

AAAI-84, pages 226-232, University of Texas at Austin, August 1984.

[MH69] John McCarthy and Patrick Hayes. Some philosophical problems from

the standpoint of artificial intelligence. In D. Michie and B. Meltzer,

editors, Machine Intelligence 4, Edinburgh University Press, Edinburgh,

Scotland, 1969.

xiv



[Mic83] Ryszard S. Michalski. A theory and methodology of inductive learning.

In Ryszard S. Michalski, Jaime G. Carbonell, and Thomas M. Mitchell,

editors, Machine Learning: An Artificial Intelligence Approach, Tioga

Publishing Company, Palo Alto, CA, 1983.

[MilOO] John Stuart Mill. A System of Logic. Harper &; Brothers Publishers,

New York, 1900.

[Min75] Marvin Minsky. A framework for representing knowledge. In P. Win-

ston, editor, The Psychology of Computer Vision, McGraw-Hill, New

York, 1975.

[Min85] Steven Minton. Overview of the prodigy learning apprentise. In

Thomas M. Mitchell, editor, Proceeding of the Third International Ma-

chine Learning Workshop, pages 120-122, Rutgers University, Skytop,

Pennsylvania, June 1985.

[Mit79] Thomas M. Mitchell. Version spaces: a candidate elimiation approach

to concept learning. In IJCAI-79, pages 305-310, Massachusetts Insti-

tute of Technology, 1979.

[Mit83] Thomas M. Mitchell. Learning and problem solving. In IJCAI-88,

Karlesruhe, Germany, August 1983. Computers and Thought Award

Lecture.

[Mit85] Thomas M. Mitchell, editor. Proceeding of the Third International Ma-

chine Learning Workshop. Rutgers University, Skytop, Pennsylvania,

June 1985.

[MMS85a] Thomas M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg. Leap:

a learning apprentice for VLSI design. In IJCAI-85, Los Angeles, 1985.

[MMS85b] Thomas M. Mitchell, Sridhar Mahadevan, and Louis I. Steinberg. A

learning apprentise for vlsi design. In Thomas M. Mitchell, editor,

Proceeding of the Third International Machine Learning Workshop,

pages 123-125, Rutgers University, Skytop, Pennsylvania, June 1985.

xv



[M008O] Robert C. Moore. Reasoning about Knowledge and Action. Technical

Note 191, SRI Interational, October 1980.

[MP77] David Marr and T. Poggio. A Theory of Human Stereo Vision. AI

Memo 451, Massachusetts Institute of Technology, 1977. Cambridge,

Massachusetts.

[MU77] Robert Moll and John Wade Ulrich. Program synthesis by analogy.

SIGART Newsletter, 12(8):22-28, August 1977.

[NA79] H. Penny Nii and N. Aiello. AGE (Attempt to GEneralize): a

knowledge-based program for building knowledge-based program. In

IJCAI-6, Tokyo, August 1979.

[Nag61] Ernest Nagel. The Structure of Science. Harcourt, Brace &: World, New

York, 1961.

[NB81] R. Nevatia and K. R. Babu. Linear feature extraction and description.

In IJCAI-81, pages 639-641, British Columbia, 1981.

[Nil80] Nils J. Nilsson. Principles of Artifical Intelligence. Tioga Press, Palo

Alto, 1980.

[NM73] Allan Newell and James Moore. How can Merlin understand. In L. W.

Gregg, editor, Knowledge and Cognition, Erlbaum Associates, Potomac,

Md., 1973.

[Nov83] Gordon S. Novak Jr. Knowledge-based programing using abstract data

types. In AAAI-83, pages 288-291, Washington, DC, August 1983.

[NS72] Allan Newell and Herbert A. Simon. Human Problem Solving. Prentise-

Hall, Englewood Cliffs, 1972.

[Ort79] Andrew Ortony, editor. Metaphor and Thought. Cambridge University

Press, Cambridge, 1979.

xvi



[Pai79] Allan Paivio. Psychological processes in the comprehension of

metaphor. In Andrew Ortony, editor, Metaphor and Thought,

pages 150-171, Cambridge University Press, Cambridge, 1979.

[Pla61] Plato. The republic. In Edith Hamilton and Huntington Cairnos, edi-

tors, The Collected Dialogues of Plato, pages 574-844, Bollingen Series,

Pantheon Books, 1961. Translaged by Paul Shorey.

[Pol54] George Polya. Induction and analogy in mathematics. In Mathematics

and Plausible Reasoning, Princeton University Press, Princeton, 1954.

[Pol57] George Polya. How to Solve It: A New Aspect of Mathematical Method.

Princeton University Press, Princeton, second edition, 1957.

[Pyl79] Zenon W. Pylyshyn. Metaphorical imprecision and the 'top-down5 re-

search strategy. In Andrew Ortony, editor, Metaphor and Thought,

pages 420-436, Cambridge University Press, Cambridge, 1979.

[Qui60] Wilhelm Quine. Word and Object MIT Press, Cambridge, Mas-

sachusetts, 1960.

[Red79] Micheal J. Reddy. The conduit metaphor — a case of frame conflict

in our langauge about language. In Andrew Ortony, editor, Metaphor

and Thought, pages 284-324, Cambridge University Press, Cambridge,

1979.

[Rei78] Raymond Reiter. Deductive question-answering on relational data

bases. In Herve Gallaire and Jack Minker, e'ditors, Logic and Data

Bases, pages 149-177, Plenum Press, New York, 1978.

[RG77] R. B. Roberts and Ira P. Goldstein. FRL Users Manual. Artificial

Intelligence Laboratory, MIT, Cambridge, Massachusetts, 1977. A.I.

Memo 408.

[Ric36] I. A. Richards. Metaphor. In I. A. Richards, editor, The Philosophy of

Rhetoric, Oxford University Press, London, 1936.

xvii



[Ric79] Charles Rich. A Library of Programming Plans with Applications to

Automated Analysis, Synthesis and Verification of Programs. Technical

Report, MIT, 1979.

[Ric81] Charles Rich. Inspection Methods in Programming. PhD thesis, MIT,

June 1981.

[Ric83] Alex Rich. Research news: Professor Alex Rich and Z DNA. Science,

222:496, November 1983.

[RN82] Paul S. Rosenbloom and Allan Newell. Learning by chunking: summary

of a task and a model. In AAAI-82, August 1982.

[Rob85] Frank Neville H. Robinson. Electricity and magnetism. In Philip W.

Goetz, editor, Encyclopedia Britannica, pages 201-292, Encyclopaedia

Britannica, Inc., Chicago, 1985.

[Ros73] E. Rosch. On the internal structure of perceptual and semantic cat-

gories. In T. E. Moore, editor, Cognitive Development and the Acquisi-

tion of Language, Academic Press, New York, 1973.

[Ros83] Paul S. Rosenbloom. The Chunking of Goal Hierarchies: A Model of

Practice and Stimulus-Response Compatibility. PhD thesis, Carnegie-

Mellon University, August 1983.

[Rus76] S. W. Russell. Computer understanding of metaphorically used verbs.

American Journal of Computational Linguistics, 1976. microfiche 44.

[Rus85] Stuart Russell. The Compleat Guide to MRS. June 1985. Stanford

KSL Report HPP-85-12.

[RW80] Brian K. Reid and Janet H. Walker. SCRIBE: Introductory User's

Manual, third edition, May 1980. Preliminary Draft.

[RW81] Charles Rich and Richard C. Waters. Abstraction, Inspection and De-

bugging in Programming. AI Memo 634, Massachusetts Institute of

Technology, June 1981.

xviii



[SA77] Roger C. Shank and Robert P. Abelson. Scripts, Plans, Goals and Un-

derstanding: An Inquiry into Human Knowledge Structures. Lawrence

Erlbaum Associates, Hillsdale, NJ, 1977.

[Sch85] Roger Scliank. Questions and explanations. In Thomas M. Mitchell,

editor, Proceeding of the Third International Machine Learning Work-

shop, Rutgers University, Skytop, Pennsylvania, June 1985. (Based on

invited presentation, not appearing in the proceedings.).

[Sea79] John R. Searle. Metaphor. In Andrew Ortony, editor, Metaphor and

Thought, pages 92-123, Cambridge University Press, Cambridge, 1979.

[SF80] Reid G. Smith and Peter Friedland. Unit Package User's Guide. De-

cember 1980. (HPP-80-28, and Defense Research Establishment At-

lantic # 80/L).

[SG85] David E. Smith and Micheal R. Genesereth. Ordering conjunctive

queries. Artificial Intelligence: An International Journal, 26(2):171-

215, May 1985.

[SGLS80] Gerald Jay Sussman and Jr. Guy Lewis Steele. Constraints — a lan-

gttage for expressing almost-hierarchical descriptions. Artificial Intelli-

gence: An International Journal, 14:1-39, 1980.

[Sha72] William Shakespeare. The Complete Signet Classic Shakespeare. Har-

court Brace Jovanovich, Inc., San Francisco, 1972.

[She84] Roger Shepard. Ecological constraints on internal representation: res-

onant kinematics of perceiving, imaging, thinking, and dreaming. Psy-

chological Review, 91(4), October 1984. Expanded version of the third

James J. Gibson Memorial Lecture, presented at Cornell University on

21 October 1983.

[Sho84] Edward H. Shortliffe. 1984. Personal Communication, related to On-

cocin.

x ix



[Shr79] Howard E. Shrobe. Dependency Directed Reasoning for Complex Pro-

gram Understanding. PhD thesis, MIT, April 1979.

[Sim83] Herbert A. Simon. Why should machines learn? In Ryszard S. Michal-

ski, Jaime G. Carbonell, and Thomas M. Mitchell, editors, Machine

Learning: An Artificial Intelligence Approach, Tioga Publishing Com-

pany, Palo Alto, CA, 1983.

[Smi68] Norman Kemp Smith. A Commentary on Kant's (Critique of Pure

Reason9. Macmillan &; Company, Limited, Portway, Bath, 1968.

[SS77] Richard M. Stallman and Gerald Jay Sussman. Forward reason-

ing and dependency-directed backtracking in a system for computer-

aided circuit analysis. Artificial Intelligence: An International Journal,

9(2):135-196, 1977.

[SSB*81] Edward H. Shortliffe, A. C. Scott, M. B. Bischoff, William van Melle,

and C. D. Jacobs. Oncocin: an expert system for oncology protocol

management. In IJCAI-81, pages 876-881, International Joint Confer-

ences on Artificial Intelligence, August 1981. Vancouver, B.C.

[Sus75] G. J. Sussman. A Computer Model of Skill Acquisition. American

Elsevier, New York, 1975.

[Swa81] William R. Swartout. Producing Explanation and Justification of Ex-

pert Consulting Programs. PhD thesis, Massachusetts Institute of Tech-

nology, January 1981.

[Tap81] Steve Tappel. Examples of reformulation. 1981. Thesis Proposal.

[Tar52] Alfred Tarski. The semantic conception of truth and the foundations

of semantics. In L. Linsky, editor, Semantics and the Philosophy of

Language, pages 13-47, University of Illinois Press, Urbana, 1952.

[Thi68] Christian Thiel. Sense and Reference in Fregefs Logic. D. Reidel Pub-

lishing Company, Dordrecht-Holland, 1968.

xx



[Thi77] Robert Thibadeau. Reaching (For) an Understanding about Analogy.

Department of Computer Science DCS-TM-8, Rutgers, May 1977.

[Utg84] Paul E. Utgoff. Shift of Bias for Inductive Concept Learning. PhD

thesis, Rutgers, Laboratory for Computer Science Research, October

1984.

[van85] Kurt vanLehn. 1985. Personal Communication, during Induction Ses-

sion at IML-85.

[vB79] Kurt van Lehn and John Seely Brown. Planning nets: a representa-

tion for formalizing analogies and semantic models of procedural skills.

In R. E. Snow, P. A. Frederico, and W. E. Montague, editors, Aptitude

learning and instruction: Cognitive process and analyses, Lawrence Erl-

baum Associates, Hillsdale, 1979.

[vG82] Anne vdl Gardner. Search. In Avron Barr and Edward A. Feigenbaum,

editors, The Handbook of Aritificial Intelligence, chapter II, pages 19-

140, William Kaufman, Inc., Los Altos, CA, 1982.

[vGDB81] Anne v.d.L. Gardner, James E. Davidson, and Avron Barr. Under-

standing natual language. In Avron Barr and Edward A. Feigenbaum,

editors, The Handbook of Aritificial Intelligence, chapter IV, pages 223-

321, William Kaufman, Inc., Los Altos, CA, 1981.

[vL85] Kurt van Lehn. Learning procedures one disjunct at a time. Artificial

Intelligence: An International Journal, 1985. In press.

[Wal75] David Waltz. Generating semantic descriptions from drawings of scenes

with shadows. In Patrick Henry Winston, editor, The Psychology of

Computer Vision, chapter 2, McGraw-Hill Book Company, New York,

1975. (Also, Project MAC Technical Report AI-TR-271).

[Wat7l] Richard C. Waters. Automatic Analysis of the Logical Structures of

Programs. PhD thesis, MIT, December 1971.

xxi



[WBKL83] Patrick H. Winston, Thomas O. Binford, Boris Katz, and Micheal

Lowry. Learning physical descriptions from functional definitions, ex-

amples, and precedents. In AAAISS, pages 433-39, Washington, DC,

August 1983.

[Wey78] Richard W. Weyhrauch. Prolegomena to a Theory of Formal Reasoning.

Technical Report AIM-315, Stanford University, December 1978.

[Wil83] Robert Wilensky. Planing and Understanding. Addison Wesley, Read-

ing, MA, 1983.

[Win79] Patrick H. Winston. Learning and Reasoning by Analogy: The Details.

Artificial Intelligence AIM 520, Massachusetts Institute of Technology,

April 1979. Revised from June 1979.

[Win80] Patrick H. Winston. Learning and reasoning by analogy. Communica-

tions of the ACM, 23(12):689-703, December 1980.

[Win8l] Patrick H. Winston. Learning New Principles from Precedents and Ex-

ercises: The Details. Artificial Intelligence AIM 632, Massachusetts

Institute of Technology, November 1981. Revised from May 1981.

[Win82] Patrick H. Winston. Learning by Augmenting Rules and Accumulating

Censors. Artificial Intelligence AIM 678, Massachusetts Institute of

Technology, September 1982. Revised from May 1982.

[Wit53] Ludwig Wittgenstein. Philosophical Investigations. Macmillian, New

York, 1953.

[WK84] Joe Weening and Arthur Keller. Dover fonts as of October 15, 1984.

October 1984. (File found on {SAIL} GRANTF.TEX[TEX,SYS]).

[WR82] Rajendra S. Wall and Edwina L. Rissland. Scenarios as an aid to plan-

ning. In AAAI-82, pages 193-196, Washington, DC, 1982.

xxii



[Zie77] Olgierd Cecil Zienkiewicz. The Finite Element Method, Third Edition.

McGraw Hill Book Company, Limited, London, 1977.



 



Appendix A

Notes from the Text

"The first rule of style is to have something to say. The
second rule of style is to control yourself when, by chance,
you have two things to say; say Grst one, then the other, not
both at the same time."

How to Solve It, Polya (1957)

A.I Notes from Chapter 1

Note: 1-1. Other Examples of Analogies: (from page 3)

This note lists a variety of other examples of analogies, to embellish the entries

shown on page 2.

• Strategies: Many game-playing plans and strategies carry over from check-

ers to chess, and even to less related games, like blackjack (see [Bro79] and

[Car83a]).

• Programming: Recall how much easier it was to write the second recursion

program than it was to write the first.

• History of Science: Professor Yanosky used his knowledge of the "trp"

operon to explain one aspect of the observed behavior of the "his" operon

([Fri84]). The DNA translation process can be regarded as a railroad train

on a track (see [Ric83]). Taking a different slant, Lenat discusses how one

might view DNA as a program [Len83b].

A-l



A-2 APPENDIX A. NOTES FROM THE TEXT

• Medical Findings: It is often easier to understand a second medical treat-

ment once one had grasped the nuances of a prior, related case. For example,

several protocols require that a drug be administered periodically, but in at-

tenuated dosages ([SSB*81,Sho84]).

• Artifacts (e.g., names): Another researcher correctly guessed that the

name of the bold-face extended font associated with the computer modern

family would be CMBX10, basing his conjecture on the observations that the

computer modern roman font was CMR10, and that the name of the almost

computer modern bold-face extended font, AMBX10, was derived from the

related roman font, AMR10, by changing the embedded "R" (for Roman) to

"BX" (for Bold face eXtended). ([WK84, p4] later confirmed this assump-

tion.)

Note:l-2, "Correct" Analogies:

"It would be foolish to regard the plausibility of such [analog-
ically inferred] conjectures as certainty, but it would be just
as foolish, or even more foolish, to disregard such plausible
conjectures."

How to Solve It, Polya (1957)

(from pages 9, 11, 43, 65, 135, 166 and A-49)

An analogical inference suggests that certain new conjectures be added to a the-

ory. Its goal, like that of any learning process, is to add correct conjectures. This

note asks what it means to claim that some analogically-inferred conjecture is

correct. This discussion has several parts. First, it presents two reasons why the

standard goal of "semantically correct" information is inappropriate here. Sec-

ond, it defines and discredits another possible meaning of correctness, one based

on conversational goals. This leaves a purely syntactic measure of correctness,

which is discussed next. Finally, this note points out that this "concession" is

neither that major nor that limiting.

As the first proposed criterion of correctness, perhaps we should insist that

these new conjectures be semantically correct in the standard Tarskian sense



A.I. NOTES FROM CHAPTER 1 A-3

[Tar52]: an analogical inference is considered correct only if its conjectures actu-

ally correspond to the world. Hence, we want NLAG to propose that "Snow is

white" only when, in fact, snow is white.

There are two objections to this correctness criterion. First, it is not obtain-

able. NLAG has only representations of the objects in the world, not the objects

themselves. Since it lacks direct access to the outside world itself, it is restricted

to syntactic manipulations. This means that such a "real world semantics" is

impossible.1

Secondly, it is not always desirable to generate only semantically correct state-

ments. For example, given the "Snow is like this Ice Cream" analogical hint, a

sufficiently naive learner might reasonably conjecture that snow is green, as the

speaker was referring to mint ice cream. In fact, in a sufficiently convoluted sit-

uation, this "Snow is Green" conjecture might even be the intent of the speaker.

If this example seems.implausible, consider closely the "FlowRate is l ike

Current" analogy discussed throughout this dissertation. The desired conclu-

sion includes the claim that FlowRate obeys Ohm's Law. This, however, is

not quite true. Once turbulent flow is considered, FlowRate is proportional

to PressureDrop to an empirically derived kth power, where 0.5 < k < 0.7

[Coc80,Zie77].2 The simple "hydraulic Ohm's Law" — pressure equals flowrate

times pipecharacter — is still considered a useful "fact" to learn and this cinalog-

ical hint, an appropriate means for communicating it.

The gist of this second critique is that the purpose' of an analogy is often

conversational and, while the speaker's intended message is often a semantically

correct fact, there is no reason to force this. Hence, the desired message need

not be semantically valid. (This is related to various linguistic views of prag-

matics, including the Barwise/Perry theory of conversational semantics [BP83],

1In particular, the NLAG system dors not go out, buy the needed pipes, mill them to size, hook
them together, and measure the flow-rate...

2See also Equation A. 12 in Note:4-1.



A-4 APPENDIX A. NOTES FROM THE TEXT

Searle's theory of speech acts [Sea79] and Grice's notion of conversational postu-

lates [Gri75].)

The points above argue against the use of a Tarskian form of semantics as a

criterion for determining the correctness of analogy. (Subsection 8.2.1 presents yet

another argument, explaining that this framework is inappropriate for describing

a learning process.) The second argument above suggests a different form of

semantics, one based on conversational standards. Here, an analogy is judged

correct if it conveys the message the speaker intended, independent of whether

or not this corresponds to the real world.

The argument against "conversational semantics" is similar to the first one

used to defeat Tarskian semantics: the NLAG system cannot read the speaker's

mind. Of course, it can still use its knowledge of the speaker's knowledge and

its estimates of his accuracy, when such information is included in its initial

theory. This then reduces to syntactic considerations. Beyond this observation,

this dissertation does not explicitly address this collection of issues.3

This leads to our third proposal: a syntactic criterion for correctness. We

insist that any conjecture generated be "reasonable"; that the answer be justi-

fiable in terms of the hint, problem, and current knowledge base. The hardest

pruning rule we can offer along these lines is the Consistent criterion shown

in Section 2.3's Figure 3-1. Hence, the "correctness" objective reduces to the

requirement that the analogy provide a consistent extension to the theory.

The upshot of this analysis is that we cannot expect NLAG to derive only

facts which are semantically or conversationally correct. The final point of this

note argues that this is not a major sacrifice.

First, view NLAG as a Knowledge Acquisition program. The objective of cap-

turing only correct information is seldom met by such Expert System building

31 avoid this for several reasons. The most obvious is that it represents a major digression from my
analogy theme. Also, it invariably leads to the issue of pragmatics: what did the speaker really
mean when he gave the analogical hint. This requires understanding what the speaker knew of the
learner's knowledge, which might, in turn, include the learner's knowledge of the speaker, and so
on. . . Of course, we already saw that our model can still consider such issues; we need only encode
them as additional information within the learner's theory and reason about them accordingly.



A.2. NOTES FROM CHAPTER 2 A-5

tools anyway, for both unavoidable reasons (e.g., because the correct answer is

simply not known or the teacher is ignorant) as well as avoidable ones (e.g., based

on efficiency considerations, both with respect to the Knowledge Acquisition pro-

cess and to the eventual performance system).

The second realization is that people, too, often misunderstand analogies,

even when the teacher was trying to communicate a semantically correct fact.

Consider again the scenario given in Section 1.3. Given a naive understanding of

hydraulics, it seems quite reasonable to use each pipe's cross-section, rather

than its pipe-characterist ic, as the constant of proportionality. Here, once

you "get" the analogy, you would believe that the pressure drop is the product

of the flow rate through the pipe and its cross section.4

Notice, however, that few people are not bothered by this realization: most

consider the analogical inference process inherently a method of plausible reason-

ing, for proposing likely sentences.

A.2 Notes from Chapter 2

Note:2-1. Why Consider Disjunctions and Negations?

(from page 17)

Equation 2.15s definition of analogical inference places no type restriction on

what might qualify as an analogy formula. This means |~ permits disjunctions

and negations in addition to conjunctions of positive literals. This can lead to

strained examples of analogy formulae, e.g.,

<Px{x) t> -i(z = Fred) (A.I)

ipo{x) <&• x ~ B V U n l i k e l y ( x ) . (A.2)

(In fact, we could use <pol(z) <=> Ri(x) V R^x) for almost any relations Ri and

i?2j insisting only that Ri(B) holds and that R<> is not known to be false with

4This is, of course, wrong: wider pipes should exhibit less pressure-drop than thinner pipes, not,
more. See Run#2a-4 in Section 7.3.



A-6 APPENDIX A. NOTES FROM THE TEXT

respect to A. Such a tpor formula would qualify even if Rx(A) is provable false —

Th \= -ii*i(;4). See also Note:2-7.)

I did consider restricting the allowable analogy formulae, to permit only con-

junctions of positive literals. This is not enough, as every other researcher in the

field of learning has noticed. For example, we need the -»(a; = Fred) clause to

explain that Alice is like Beth in that each is a "non-Fred" occupant of a room.

An example of disjunction occurs when we want to say that Birdl is like Bird2

in that each is either a Robin or a Cardinal. (This could arise in a lexically

impoverished situation, in which we lack the terms needed to describe the class

of Red-Birds.)

This dissertation discusses two ways of sidestepping this issue. First, the

Abstract ion restriction (discussed in Chapter 4) renders it academic. Secondly,

Subsection 9.2.2 defines a quantitative measure (labeled specificity) which gives

low ratings to the more counterintuitive (read "less likely") of these cases.

Note:2-2. Types of Learning:

(from pages 165, 217 221 and 224)

The goal of the most analogy systems is to acquire new base-level facts. In

particular, the resulting knowledge base contains more facts after the analogical

inference, where these additional facts were not derivable from the initial knowl-

edge base. This means there may be problems which the resulting system can

solve, but the initial system could not. (This says nothing about how long it

may take to arrive at this solution; indeed, the timing behavior of this system

may degrade for other problems. Here, we are considering only functionality -—

whether or the knowledge base contciins enough information to solve a particular

problem.)

The rest of this note focuses on learning systems in general (as opposed to our

general concentration on only the specialized form of learning by analogy). We

define consider any system which adds such new facts to be a Learni system.

It is easy to express this condition formally: Start with a complete deductive

system which "knows" the facts in the theory T/i, we say that this system has



A.2. NOTES FROM CHAPTER 2 A-7

Learriied a new fact, a, if Th ^ a. Of course, we do not want our system to

learn inconsistent facts, we only consider learning a if Th \fc -i<x.

The astute reader will recognize these as the Unknown and Consistent

criteria, where a = <p(A). (See Equation 2.1.) This means our model of general

analogical inference, [>-», is a Learni process. (Its Common condition means it

is an analogy system as well.)

There are other types of learning systems. Another possible objective is in-

creased efficiency: to enable a fixed inference engine to solve a particular problem

in fewer steps. Here, the overall system can still solve the same collection of prob-

lems, but after the learning step, it can reach the (same) answers faster. (I think

of such systems as "re-arranging" the knowledge base, rather than adding to it.)

We consider such systems to be Learni systems.5

These Learns systems are clearly important: Once we have coded the rules

of chess, nothing more can be Learned. We still consider a learning program a

success if it can learn to play better. (The purpose of this note is not to downgrade

such programs, but only to characterize them as Learni systems.)6

The chunking work [RN82] falls under this Learn2 rubric, as does the LEAP

program [MMS85a] and many recent works in explanation based learning [Mit85].

In the area of analogical reasoning, Kling's Zorba program, designed to use an

analogical connection to shorten proofs, is a Learni process [KH71], as is Car-

bonell's work on finding T-space operators [Car81a].

There are connections and trade-offs between these two types of learning. One

connection which blurs the distinction between these two types is the realization

that few systems use a deductively complete inference system. Hence, the learn-

ing system can propose an entailed proposition which this incomplete deductive

process woixld never have derived. While this is clearly a Learni step (as it added

a derivable proposition), it may appear to be a Learnx step since this proposition

5Dietterich calls this (Learn?) knowledge level learning, which he distinguishes from non-deductive
learning (Learni) [Die85].

6 Of course, many of these systems do acquire new information about chesa playing .strategies, rather
than about chess itself. Hence, such systems are Learniing facts in the "meta-space above chess".



A-8 APPENDIX A. NOTES FROM THE TEXT

is outside the space of derived propositions. (Perhaps we should define these as

"Learn 1.5" systems?)

A related problem arises when a problem is "sufficiently intractable" that the

complete deductive system would not find the answer in any reasonable amount

of time. (Recall the chess example mentioned above.) Here, again, are situa-

tions where a learning system produces a derivable answer that, for all practical

purposes, would never have been found.

As an example of a trade-off between these variants of learning, the perfor-

mance of many (deductively-complete) systems degrades as new facts are entered,

meaning that a Learrti step may have a negative effect with respect to Learr^'s

efficiency measure.

Note:2-3. Why not Existentially Bound Unary Formulae:

(from page 17 and 195)

The simple definition of analogical inference shown in Equation 2.1 does not

include the NonTrivial constraint. This is because the Unknown condition

( T h \^ <p(A) ) means that 99's domain is not universal (3s Th )£ <p(s) ) when

the analogy formula <p is unary; this is sufficient to guarantee that the unary

(p is NonTrivial. This claim is not true when considering non-unary formulae,

explaining why Figure 2-1 needs an explicit NonTrivial constraint. This obser-

vation suggests that we might "existentially quantify away" <p(xi>.. .xn)5s other

n — 1 arguments, and simply use the unary v?|.(x)- This note argues against doing

so.

The problem is that a given formula may have more than one instantiation

involving the target analogue, and the <p\t existential form merges all of these

instances together. For example, imagine we want to infer Group (9?, +, 0)

from the hint "+ i s l i ke *", via the fact Group(3£0> *. 1) (i.e., 77i+* f=

Group(%. *•

To use Equation 2.1, we must use the analogy formula Group) (x): i.e., we

would want to conjecture Group) (+). This is problematic if the initial theory



A.2. NOTES FROM CHAPTER 2 A-9

included another instance of this Group| relation which involved +: e.g., when

Th+* ^=Group(Z. +, 0). (A3)

Since Equation A.3 means that T/i+* |= Group| (+), we see that Group| (+)
2 2

does not pass Equation 2.1's Unknown test. This prevents us from analogically

inferring Group (8ft, +, 0).

One possible solution would be to use different relations: e.g., Groupi and

Group2. Here Group2 could state the provable form, Group2(Z, +, 0). This

leaves Groupl| free, as 77i+* ^ Groupl| (+) still holds (even though Th+* \=

Group2| (+) ). This means that f̂  allows Group!(5R, +, 0) to be analogically
2

inferred as desired, i.e.,
Th+*, +~* |- Groupl(3£, + , 0).

(Of course, this assumes that 77i+* (= Groupl(3J0 • * > 1); it makes no difference

whether or not Group2(9fto » *> 1) is in Th+*.)

Unfortunately, the Abstraction constraint shown in Chapter 4 means that

we do not get to choose the vocabulary: we have to abide with the relations

explicitly given. (Besides, this trick would not work if our theory included the

obvious Group 1 <$> Group2 connection.)

This forces \** to deal with n-ary formulae, which necessitates the explicit

-^Trivial((p\^ Th) check included in Figure 2-1. The discussion leading to Defi-

nition 1, as well as all of Section 2.4, explain this constraint.

Note:2-4. Theory-Based Definition of Analogy, Analogy?:

"Merohedral isomorphism may be considered as [a] very pre-
cise sort of analogy."

How to Solve It, Polya (1957)

(from pages 22, 185, A-18 and A-39)

In Section 1.3's fluid dynamics example, we implicitly assumed that an analogy

is a correspondence between the facts about the two analogues. This is slightly



A-10 APPENDIX A. NOTES FROM THE TEXT

different from the "common formula" conceptualization defined in Section 2.3.

This note restates this "correspondence of facts" intuition more formally, in terms

of the Analogy? relation. It also demonstrates that Analogy? is equivalent to

the Analogy^ relation defined in Definition 2.

As with AnalogyF> this Analogy? relation is syntactic and with respect to a

particular theory, Th. (In our standard example, it uses the theory ThcF which

includes many sentences about Current and few sentences about FlowRate.) We

claim that A and B are analogous with respect to Th if some of Th's facts about A

directly correspond to a related set of Th's facts about B — i.e., if some mapping

takes each sentence of PA into a sentence of Pg, where PA is a set of sentences

which is about A in the same manner that P& is about B.

Many (in fact, most) of the possible sentence-to-sentence mappings produce

meaningless results. We are only interested in systematic mappings, which take

one set of interrelated sentences (which all deal with one analogue) into a simi-

larly interrelated set of sentences (dealing with the other). Hence, the PQ to PA

mapping can be viewed as a sentence-to-sentence mapping, induced by a symbol-

to-symbol mapping. That is,

Any analogy can be expressed as an isomorphism

— as a symbol-to-symbol—based mapping between

a pair of (partial) theories.

(AA)

This condition is both necessary and sufficient, once the analogues are represented

appropriately. (Subsection 9.3.2 describes the problems in seeking an analogical

connection between a pair of uncooperative representations.)

As an example, the correspondence discussed in Section 1.3 mapped PQ (the

EC facts known as Ohm's and Kirchoff's Laws) into the new FS facts Pp. It is

derived from the symbol-symbol mapping SQF shown in Figure A-l.

Definition 33 formally expresses the claim that an analogy is a sentence to

sentence mapping induced by a symbol to symbol mapping, which takes a particular



A.2. NOTES FROM CHAPTER 2 A-ll

SnF =

Pry =

J Current»—• FlowRate, VoltageDrop*-->PressureDrop,
1 ResistanceH-vPipeCharacter, Resistor»-+Pipe

Vjf Y2 Current (j, p) = 0
p:Conn(p,j)

V loop Y^ VoltageDrop(i,y, [a;]) — 0

P, =

Vd Resistor (cf)=̂ > [Current (ij,rf) + Current (ij,cf) = 0]
VdResistor((i)=>[VoltageDrop(7'J,jJ, \d\) = Current(jJ,d) * Resistance(d)]

Vj ^ FlowRate (y,p) = 0
p:Conn{pJ)

V /oop ^ PressureDrop(z, j , [r]) = 0

[ ^ r f ) + FlowRate(iJ,d) = 0]
VdPipe(c/)=>[PressureDrop(jJ,<y'j,[d]) = Flov/Rate(jJ,d) * PipeCharacter(d)]

Figure A-l: Desired Analogy Mapping, M = (SCF P C -PP)

sef o/ sentences about B mio a related set of sentences about A.7

Definition 33 AnalogyT( A, B, Th, (S PA PB) )

TermMap(S) & S(B) = A

|= PA & T7i (= PB
8

k , PD} Dom[S], Th)

where TermMap(m) means that m is a function which maps terms to terms

and Dom[f] refers to the domain of the function / . The Trtvia/j«(x, P, A, Th)

relation corresponds to the earlier Trivial and means that the axioms P are not

about the concept x. For now, it is sufficient to consider Trivialxfai P, A, Th) to

mean that x's mention in P is tautological, with respect to the theory Th and to

the terms allowed to vary from one analogue to the other, A. (See Definition 34.)

7Hesse calls such mappings "formal analogies11; see [Hes67].
8Point NotSt(12 in Note:2-5 shows that PA C Th is not sufficient.



A-12 APPENDIX A. NOTES FROM THE TEXT

We refer to this overall (5 PA PB) triple as the mapping M. In a slight abuse

of notation, we allow S to refer to the obvious sentence-to-sentence mapping

induced by the underlying symbol-symbol mapping, or even the extension which

deals with sets of sentences — hence, PA = "5[PB].9 This means that the pair

(S PB) is sufficient to define a unique M. Section 9.3 demonstrates that each of

these semi-independent parameters must be specified precisely.

We still have to define Trivial?- Based on the arguments given in Section 2.4,

a term x appears trivially in a set of facts P (with respect to the set of terms

allowed to vary, A, and a background theory, TTi), if we can prove (within Th)

that any term could appear in xVplace, for some "setting" of those varying terms,

A.

Definition 34 TrivialT(x, P, A, Th)

TerpMap(Z) & 2(x) = s k Dom[R] = A &

Th \= Z[P]

The balance of this note proves that Analogy? is equivalent to Analogyj?, and

provides a quick comparison of these definitions.

Proof that Analogy? is Equivalent to Analogy?:

This proof uses, as a lemma, the equivalency of their respective Triviality con-

ditions. That second proof follows.

AnalogousT(AyByTh) <=> AnalogousF(A,ByTh)i0 (A5)

==>: (Given Analogy^k^ B, Th, {S PA PB)), find a corresponding

AnalogyF(k, B, Th, (<p [a1} . . . A,... an]

9By convention, B (and hence PQ) refers to the source analogue, and A, to the target analogue.
This explains why the S mapping may appear backwards.

10By convention. Analogousx is the "exists-form" of the corresponding AnalogyY i.e.,
Analogousx(A,B,Th) <=> 3S AnalogyX(A, B,Th, S). (This repeats the comment hi Point CA2
on page 58.)



A.2. NOTES FROM CHAPTER 2 A-13

Begin by writing PB as a single conjunction, <pB = l\p^pB P- Then let the formula

<p(xi,... xn) be the "variabilized form" of <pB, formed by replacing each occurrence

of the the j t h member in the S's domain, bj £ Dom[S], with the (assumed

currently unused) variable ?y in this ips* i.e., <p = ^ B [ ^ I / ? I ? • • •6n/?n]-11 By

construction, this £>B (and hence Pg) is equivalent to 40(61,.. .6n). Similarly, PA

is equivalent to <p(ai,... an), where ay is the j t h term in S's range. This means we

can construct an AnalogyF triple (<p [a*,... an] [fei,... bn]) from any Analogy?

triple (5 PA P B ) .

« = : Given Analogy F{AyB1ThJ (tp [ai , . . .an] [b1?.. .b n ]» , let S = {ayH-»by}y,

, . . . an)} and PB -

Now to prove the required lemma: Using the (<p i) to (B P& Dom[S])

correspondence defined above, we show that

Trivial{ <p\mi Th ) <==> TrivialT( B, PB , Dom[S), Th ) (A.6)

i B, Pe , Dom[S], T/i ) guarantees that there is some constant s

such that, Th \fc Z[PB] for any term-term mapping Z where £(B) = s. Letting

[ci , . . . s , . . . cn] be the range of any such Z, we see that Th \fc 99(01,... s , . . . c n ) ,

using the <p defined in the proof above. Since this holds for any set { c y } ^ , we

see that -^Trivial{ tp\mi Th), as desired.

< = : Given -iTrivial( tp\i} Th), there is an s such that Th =̂ ip(zx,... s , . . . zn)

for any set { z y } ^ . Using Dom[S] = {by}^,- U {B}, define Z as {by H-> zy}y t̂- U

{B \—> s} for any such instantiation. Observe now that Z[B] = s and Th \£

Z[PB\* This demonstrates the existence of the constant s needed to establish

^TrivialT{ B, P B i Dom[S\, Th ).

D

As a quick summary: we have defined two equivalent syntactic definitions

of analogy: Analogyj? is based on a common Formula, and Analogy?, on an

11 The simple notation (f>[x/y] means that the term x is lexically replaced by the term y throughout
the formula <f>. It extends to the n-ary form, ^[#1/2/1,.. .xn/yn], in the obvious manner.



A-14 APPENDIX A. NOTES FROM THE TEXT

interrelated pair of Theories (read "collection of sentences"). Both use the full

deductive closure of the theory, rather than just the facts explicitly included. As

both PB and ^ ( b j , . . . B , . . . bn) refer to the same collection of facts, they are used

interchangeably as the source of the analogy. (Similarly PA and £>(ai,... A,... an)

each encode the same target of the analogy.) Section 8.3 provides a corresponding

Semantic definition, Analogys€m, based on objects and extentions of relations.

Finally, while many other researchers use a notion of analogy similar to this

Analogyx conceptualization, there are some important differences. Two are pre-

sented in Note:2-5, and others appear in Chapter 9.

Note:2-5. How Analogy? Extends the Traditional View of Analogy:

"And we must at all cost avoid over-simplification, which one
might be tempted to call the occupational disease of philoso-
phers if it'were not their occupation."

How to do Things with Words, Austin (1962)

(from pages 201, 202, A-ll , and A-56)

The traditional view holds that an analogy is simply a mapping, one which maps

a set of source terms onto a corresponding set of analogous target terms. Our

Analogy? fits this description: in particular, its S is precisely this term-to-term

mapping.12

However, many analogy systems explicate only the terms mapped across, and

implicitly assume that all and only the prima facie source facts13 should be con-

sidered. Analogy? extends this pre-theoretical conception by applying the term-

to-term mapping more selectively, applying it only to a specified subset of the

derivable source facts. Hence, Analogy? explicates the set of relevant facts which

should be mapped from source to target. This is why its definition includes a

particular domain of relevant facts (denoted by the PB) as well as this 5 mapping.

12Many systems map only atomic terms, i.e., symbols. The fact that S generalizes this by permitting
non-atomic terms as well is irrelevant to this discussion.

13These are facts primitively stored: i.e., the ones MRS's LOOKUP would return. See also Foot-
note 2 on page 111.



A.2. NOTES FROM CHAPTER 2 A-15

There are many advantages in explicating this range of applicability. It means

the analogy [1] is not mislead by a spurious occurrence of one of these analogous

symbols, especially when it does not appear in a sentence of the relevant per-

spective; [2] does not "over-extend" itself (this responds to the challenge posed

in [HM82]); and [3] can be considered "partial", to permit multiple analogies (see

[DM77] and [Bur84]).

This note explains and further justifies this extension. First, Point NotStdl

shows why one cannot use the entire set of facts as the domain of the mapping.

The second point shows why the set of prima facie facts is not sufficient. While

many analogy system deal only with facts primitively stored in their knowledge

base, Point NotStd2 demonstrates that the analogy system may first have to

perform some deductions before it can find the pertinent source sentences to map

over.

Two other preliminary comments: First, we re-express these points within the

Analogyp formulation at the end of this note. Second, there are several other

distinctions between this Analogy? version of analogy and the more traditional

view. Section 9.3 presents some of these, demonstrating that the different formu-

lations of the same facts can lead to different analogies and that a general analogy

system may need to extend the language.

NotStdl. Just Subset: (i.e., PD ^ Th)

Once we have a symbol-to-symbol mapping, S, why not just apply it to every

Th fact which is about B, or even to all of Th?14 The intuitive answer is that

the mapping may only apply in certain contexts. That is, the initial theories

may include many irrelevant facts, and there is no reason to insist that we

find analogues for this superfluous information before we can claim to have an

analogy. Worse, it can lead to a contradiction:

14One possible motivation is that, while Analogy?'** Trivial? condition does bound P& from below,
it does nothing to limit the size of set: i.e.. it is easy to show that

[-irriwolr(x, P, A, Th) & P C P'\ => [-^Trivial? (x, P ' , A, Th)].



A-16 APPENDIX A. NOTES FROM THE TEXT

For example, imagine that

"Discoverer(Current) = Discoverer(VoltageDrop)" G PQ

and

"Discoverer(FlowRate) 7̂  Discoverer(PressureDrop)" ^THQF*

Here, the SCF mapping we found so useful above (which included {Current i—>

FlowRate, VoltageDrop i-> PressureDrop}) would lead to the inconsistent the-

ory:

Scif^Discoverer (Current) = Discoverer (VoltageDrop)"] -\-ThcF-

Since we axe dealing only with consistent extensions, (~ would not allow

this "Discoverer (FlowRate) = Discoverer (PressureDrop)" addition. This

means that PB cannot be the full theory: only some subsets are possible. (In

Hesse's notation, this "Discoverer (Current) = Discoverer (VoltageDrop)"

clause is considered a "negative analogy" [Hes66].)

NotStd2, Deductive Closure: (i.e., PB C Th is not sufficient)
This point discusses some situations where we need to use the deductive closure
of the starting theory to find an analogical connection. For example, imagine
that T/i's only mention of Ohm's Law was embedded in a proposition which
included other facts which are irrelevant to this analogy, e.g.,.

[Vc/Resistor(c/)=>VoltageDrop(yJ,yJ,[̂ ]) = Current(ij,d) * Resistance(d)]
G ThcF*

& [Discoverer(Current) = Discoverer(VoltageDrop)]
(A7)

Point NotStdl demonstrated that we cannot just include this full conjunct in

Pc, meaning that we cannot use this useful Ohm's Law unless we have access

to such derivable facts.

As another example, imagine that the only mention of Ohm's Law in the

starting ThcF *s embedded in a clause which indicates that the relationship

holds independent of temperature. (See [HR70].) Once again, this is a situation

where an entire source fact cannot be mapped into the target domain, but a

weaker, derivable phrase can (and should) be.



A.2. NOTES FROM CHAPTER 2 A-17

These examples demonstrate that two concepts should be deemed analogous

even when needed facts are only implicit to the representation. Hence, we must

allow PB C DC(Th), rather than only PB C Th. This is why Analogy? uses

Th |= PB rather than PB Q Th, see Footnote 8 on page A-11.

Now to quickly repeat the above arguments using the Analogy? formulation:

First, to parallel Point NotStdl: Notice that the Trivial requirement only bounds

the set of legal analogical formulae in one direction: i.e.,

[~iTrivial( (p, Th) k \/x <p'(x) => <p(x)] => ~^Trivial( \p\ Th )]

This lets us consider conjoining together all source facts, to form a huge for-

mula. This is refuted by considering the formula <p(x,y) <& Discoverer(x) =

Discoverer(y) and imagining, for argument sake, that ^(Current, VoltageDrop)

held but that ^>(FlowRate,PressiireDrop) did not. (Of course, all of the argu-

ments presented in Subsection 9.2.3 apply here as well.)

For Point NotStd2's claim to be non-vacuous, we can consider the source

facts to be the leaf decomposition of the instantiated formula: i.e., PB must satisfy

LD( Thy p(t>i,... B,. . .bn), PB ), using the LD relation defined in Definition 20.

We similarly require LD( Th, £>(ai,... A,... an), PA ). We can now apply the

same arguments shown above to these PB and P& collections of clauses.

Note:2-6. Lexical Measures for Number of Analogies:

(from pages 31 and 32)

It is almost impossible to make general quantitative stateriients about the number

of possible analogies based only on lexical features (i.e., the number of symbols

and number of initial sentences) since this involves computing the number of con-

sistent extensions to a given theory. We can, however, derive order-of-magnitude

approximations by ignoring many of the syntactic and semantic requirements we

have imposed. For a quick, back-of-the-envelope calculation, we do not insist that

the analogy be unknown, consistent or non-trivial. (This means our estimate is

too large.) We also disregard the comments made in Note:2-5 and Section 9.3



A-18 APPENDIX A. NOTES FROM THE TEXT

concerning exact formulation, deductive closure and new terms. (Any of these

factors could lead to an infinite search space.)

This note approximates a finite lower bound by considering a pair of simplified

versions of this analogical inference task. Both simplifications are described in

terms of the Analogy? relation, defined in Note:2-4 above.

Approach 1:

One simplification is to restrict the sentence-sentence mapping M to the theory

Th: i.e., only consider the submap of M which maps Th into Th. The search

space for this simplified problem is still enormous. The number of possible partial

mappings taking N = \\Th\\ source facts into the N target facts is (N + l)N\i6

(We do need to consider all of Th\ Section 2.5 demonstrates that it is not enough

to consider only those sentences which lexically include Current.)

Approach 2:

This second approach decomposes the task of finding an analogy into the two

considerations posed in Figure 2-4. Page 32 shows we should consider the full set

of 2'!™l possible P/js. Now consider 5: how many constant-constant mappings

are there? If the language £ has ||£|| constant symbols, there are about ||JC||"£"

such partial mappings. (If we follow Section 9.3.2's advice to allow reformulation

(read "new terms"), this number becomes unbounded.)

If we assume that PD and 5 are independent, the number of possible analo-

gies is approximately their product. Figure A-2 summarizes the numbers. (Once

again, realize that this is an overestimate in one sense, since it includes incon-

sistent, known and trivial mappings; and an underestimate in another, since it

considers only sentences explicitly in Th and only pre-defined constants.)

Note:2-7. Full Number of Possible Analogical Inferences:

(from pages 32, 35 and 193)

15This "!" indicates amazement,, not factorial, fortunately... and that "15" refers to this footnote,
not exponentiation.



A.2. NOTES FROM CHAPTER 2 A-19

• Any PB C Th

Any symbol-to-symbol map, S:
\\c\\m

If independent:

Figure A-2: Number of Analogies

This note extends the composition scheme discussed on page 32, especially Equa-

tion 2.19. In particular, it considers other ways of extending an analogy.

First, to elaborate the comment in Footnote 13 on page 32: the conjunction

of two analogies is not guaranteed to be an analogy. The problem is that the

two analogy formulae may not be independent. In particular, Th ^ -^p^A) and

Th Y1 ̂ <p2{A) does not guarantee that Th ^ ^{tpx{A)k <p2{A)).

As an example, consider the theory

, g(B), V-g(A),

It is easy to confirm that

Now consider the formula

Does

T/i,A~B h
77i,A~B hg(A).

h(x) ^ f(x)&g(x).

(A.8)

Thy A-B ^ h(A) ?

Unfortunately not, as it violates the Consistent condition; i.e., Th \= -^h(A).

Fortunately, such cases are rare. This is why I chose to ignore this situation

for this analysis. A similar situation occurs when we consider disjoining analogies;

this note disregards such cases as well.



A-20 APPENDIX A. NOTES FROM THE TEXT

Th

Th\

Thty
Thty

= MB)

<-- p(B)

)

* - + %0+

Table A-l: Classification of Unary Formulae

Now to describe other ways of extending an analogy. One approach involves

disjoining any legal analogy formula with some <p2(x), where <p2(A) is independent

of Th. That is,

Th, A~B f~ ipt (A)

• T h * ^ (A.9)
Th \k K '

Th, A~B

As before, this motivates us to consider unary formulae in general. Any-such

formula, ip(x)y falls into one of the nine categories shown in Table A-l. The indices

of this three-by-three grid encode whether <p{A) or ~*<p(A) is derivable from Th]

and, independently, whether <p(B) or -^p(B) is derivable from Th. (As Th is

consistent, we do not have to consider the fourth "[Th |= p{A)] & [Th |= -~^p{A)Y

option.)

Each entry in Table A-l corresponds to a set of formulae, where each member

of each set satisfies the conditions specified by that row and column. For example,

each member of the \I>ot corresponds to a legal "A~B" analogy formula, as it

16As mentioned above, we should include an additional check, Th ^ <pi(A) V <p2(A), to eliminate
trivial cases like <P\{x) = ~i(pi(x). For purposes of this approximation, we do not count it. (That
is, we will not worry about this condition in the rest of this note.)



A.2. NOTES FROM CHAPTER 2 A-21

satisfies
Th |= tp(B)

<p(A)

Towards building up the class of legal analogies, we now restrict these $ xs

to consist of only general base unary formulae, where a gbuf is either a buf (as

defined in Definition 10 on page 34) or the negation of a buf. (This means that

<f>i{t) = Kirchoff l(t) and ^{o) = ->Group(3ft,o, 0) each qualify as a gbuf, but

03Q = Kirchoff2(FlowRate) and <£4(d,o) = Monoid(d,o, l) do not.)

We can generate a subset of the legal analogies by combining members of these

sets. Let II represent a collection of subsets, where IIX is an arbitrary subset of

\£x for each \I>X in Table A-l. We require that IIo+ be non-empty; any other

subset can be empty. For any such collection of subsets, we can form

<pn(x)

V

A &

V V

A v-
en++

V ^ V

V

V
V

V (A.10)

Using Equations 2.19 and A.9, we see that this <pn{%) is (usually) a legal

analogy.17 How many such <pns can be generated? Assume there are nx members

in each \I>X: i.e., nx = ||\I>X||. {E.g., there are no+ "base" analogies.) As there is

one formula <pu for every legal II, this leads to

(2no+ - 1) * 2n++ * 2n°~ * 2n°° * 2n~+ * 2 n ~ * 2n-° (A.u)

lexically distinct analogy formulae! To a first approximation, this corresponds to

the power set of all general base unary formulae. (It omits only members of $+„

and $fo> and has the additional requirement that at least one member of \&of

be included.) Each of these 3/x sets is huge, since it includes all possible distinct

bindings for each relevant n-ary relation. (See page 35.) This shows, again,

17R<Tall from Footnote 16 that we are incorrectly assuming that this (pu formula is Consistent.



A-22 APPENDIX A. NOTES FROM THE TEXT

that the space of all possible analogies is gigantic, even with the "trivializing" no

reformulation..assumption.

Two final notes:

• This set of analogy formulae does not include all possible analogies. For

example, imagine that Th contains only one B-sentence which is not a base

unary formula:

Th = (frob(B) Vgorf(B) }

Since there are no unary base relations in \I/ot-> the method described above

would be unable to construct any analogies. However, of course,

Th, A~B f~ frob(A) Vgorf(A).

• While the ipns generated in this manner are guaranteed to be lexically dis-

tinct, some will certainly overlap semantically; i.e., Th will be able to prove

that some different (ps are equivalent.

A.3 Notes from Chapter 3

Note:3-:L Ease of Finding Analogies: Two Considerations;

(from pages 43, 78, 115, 209, A-26 and A-82)

One possible measure of how good an analogy is might be how easy it was to find

that analogy. This note presents two comments on this measure. First, it does

say something, albeit very little, about the utility of the analogy itself. Second,

this easiness measure can be quantified in terms of the number of deductions and

conjectures which were required to find the analogy. This means it depends on

both the lexical form and semantic content of the starting theory, Th, This note

discusses why the first (form) is of little worth, while the second (content) is quite

important. (Section 9.3 echoes this view.)

First, why consider this easiness measure at all? While it certainly is relevant

when analyzing the difficulty in finding the analogy (e.g., when determining how

long the learner may require to Uesh out an analogy), there are no obvious ties



A.3. NOTES FROM CHAPTER 3 A-23

connecting it to the "absolute goodness" of an analogy, once it is found. Even

though this measure does not, in and of itself, provide any direct insight into

what constitutes a good analogy, there are secondary reasons why it should be

considered.

Its significance follows from the indirect reason that people (and hence their

programs) have cached away pertinent facts, in a form which leads to important

analogies first. To restate this same observation from another angle: People use

a certain vocabulary to encode their observations. This ontology reflects both

our perceptual abilities and our notions of salience. Different cultures will have

different set of concepts; consider examples like the inability of certain African

tribesmen to express any number above four, or our inability to conceptualize a

proposition which is both true and false. This set of terms restricts our ability to

conceptualize, and constitutes what van Lehn considers an absolute bias [van85].

Even with this fixed vocabulary, there are still many ways of describing any

phenomenon. Here, again, we tend to express the phenomena in certain ways

and not others. For example, we may prefer to state "Fred is married to Jane"

rather than "There was a marriage event which involved Fred and Jane". Even

though these two formulations are semantically equivalent, this preference also

reflects a bias (here, a relative one). My claim is that these biases emphasize

those aspects which we consider salient, often at the expense of down-grading

other less-important features.

Of course, this bias dictates how we specify objects in general, and the ana-

logues in particular. (I view this as a projection process: each object is projected

onto a certain vocabulary and description conventions.)

Now consider the task of finding the analogy between two analogues. This

process is trivial if the analogues are represented appropriately. Here the analogy

isomorphism requires only matching explicitly known features of the analogues.

Otherwise, the mapping may involve "implicit" facts, which must first be exposed.

(See Subsection 9.3.2.) This requires a reformulation pre-processing, which means

performing some number of additional deductions.



A-24 APPENDIX A. NOTES FROM THE TEXT

This suggests that the complexity of the analogical inference process depends

on our ontological bias. Fortunately, this bias seems to work in our favor: we

tend to represent things in a way which reflects their salient features. Given this

assumption, we should prefer analogies which are closest to our representation;

i.e., which require the fewest number of deductions (i.e., which exposes the fewest

"implicit" facts).

This is the indirect justification suggested above. It is still only a weak heuris-

tic, completely dependent on strong assumptions about not only our internal en-

coding of the world, but also on the particulars of the goal analogy, since an

encoding which favors one analogy may disfavor another.

(Of course, this only begs the question one step farther, since we do not know

why these particular vocabulary items and relations (but not others) were deemed

sufficiently important to have been selectively cached. We simply accept this as

given, and attempt to use this stored a priori information. Section 7.6 provides

some empirical evidence that suggests that people's linguistic conventions have

done pretty well at this task. See also Note:4-4.)

Our implementation includes both of these criteria (favoring fewer deductions

and fewer conjectures) as heuristics: HJK is an example of the first and HMGA,

Hfc a n d HFT exemplify the second. (All appear within Chapter 5.)

Onto the second part of this issue: the claim that these two measures have

very different levels of importance. Despite the hand-wavy arguments above, the

number of deductions measure is still totally syntactic, which is contrary to my

view that an analogy is a semantic relationship. (See Section 8.1.) Hence, this

measure is only considered "at the noise level", as a final tie-breaker, in one part

of one heuristic. This seems an appropriate role, given its weak and indirect

justification.18

On the other hand, the minimum number of conjectures principle does have

18This measure appears much more prominently hi many other analogy systems: [Win82]'s reliance
on pritna facie facts is a prime example. In fact, that system uses this criterion to prune the space,
not only to order it. Subsection 9.3.2 argues that this criterion should not play so prominent a
role.



A.4. NOTES FROM CHAPTER 4 A-25

a solid semantic relevance and should play a major role in evaluating an analogy.

Section 5.3 argues this position.

A,4 Notes from Chapter 4

Note:4-1, How Can Abstractions be Derived?

(from pages 48 and 222)

As a preliminary disclaimer, realize that this research is specifically not concerned

with the problem of generating abstractions. The focus, instead, is on providing

a mechanism capable of using such already-known abstractions effectively. How-

ever, these abstractions would seem rather contrived and uninteresting if their

derivation required analogies as well. This note demonstrates that this is not the

case: that these abstractions can be derived in a way that is independent of any

analogy process. (See also Note:4-2 for a discussion of the general utility of ab-

stractions, which illustrates other uses beyond this specific analogy application.)

Section 4.1 mentioned that each abstraction can be viewed as a system of

co-occurring relationships, and then described each abstraction as a generaliza-

tion from prior experiences. How does one generalize from an experience? The

chunking [Ros83] and Leap [MMS85a] research each point to the need for a thor-

ough analysis of that situation, to determine, in particular, which factors .were

important and which tangential. From this perspective, generalization is a pro-

cess which preserves only relevant features, in a form which allows them to be

used in a new situation.

There may be many different ways of finding situations to serve as base cases.

Section 4.1 suggested that traces of a general problem solver at work can be

used. Expanding that argument, consider the general task of solving a "Find

the Current" problem, independent of any analogy. As mentioned earlier, we

need deal only with relations like Current, VoltageDrop and Resistance, and

with objects like wires and junctions. Imagine that these associated facts

— those used to solve this problem — were gathered together. After solving

several of these problems, patterns would emerge: certain sets of facts would be



A-26 APPENDIX A. NOTES FROM THE TEXT

used together consistently, while others would never be considered. Each such

(near-)clique would become a perspective: the R K K - E C collection of facts is

one example.

When enough examples of these clusters are found, they could be variabilized

(a la [FHN72]) to form the abstractions — such as the R K K one used so effec-

tively above. Of course, this parameterizing task depends critically on selecting

which scenarios should go together, as it is the commonalities and differences

between the members of such collections that determines which of the constants

should become formal variables.19 Although life is easier if a teacher supplies

the abstraction-finding program with such "Scenario A is like Scenario B" infor-

mation, this is not necessary. A sophisticated {tvariabilizer" might use a set of

general heuristics to determine which scenarios seem to fit together, based, for ex-

ample, on second-order information about syntactic properties of the relations.20

(See Points FW1 and FW2 in Section 10.2.)

This task of generating abstractions remains a very difficult learning problem,

one which involves many hard processes, including cluster analysis and induction.

However, we see that it can be done independently of any a priori analogical

information.

An important subcase of this cluster-as-needed idea is to generate new ab-

stractions from old. Three different methods are discussed below.

Method^ 1 involves combining sets of abstractions together, e.g., two merging

group structures into a field.

10It is often sufficient to simply find cases whore different constants are used in the same position
in two different situations, and then change this pair of constants into a single formal parameter
(possibly one scoped by moving up some hierarchy, a la the Candidate Elimination Algorithm
[Mit79]). This tact only works when given the proper ontology: i.e.. only when the world is "exit
at its joints" [Boy79]. Of course, we know that this approach works quite often. I view this as
a further reinforcement of my claim that problem solving activities should induce the choice of
vocabulary: see Note:3-1 and Subsection 7.6.3.

20As evidence that this may be possible, notice that pooplo seem able to generalize quite well from
a single example. The relates to Qnine's idea of ostension [QuiGO] as well as various recent AI
research on learn ing- from-ono-oxaniple (e.g., [Cyp82]) as well as the body of work on oxplanation-
based learning [Mit85].



AA. NOTES FROM CHAPTER 4 A-27

Method#2 is based on weakening a single abstraction. This has two forms.

One involves removing only some component sentences, but leaving all of the

formal variables. For example, this would let us derive the ring abstraction (or

the integral domain abstraction) by weakening the notion of field.

The other variant involves is to "ignore" some of the parameters. We can

think of something as general as a script as an abstraction, one with dozens of

arguments [SA77]. For some tasks, it is sufficient to specify only certain relevant

ones parameters, and allow the other ones to be defaulted (or simply disregarded,

if they are irrelevant to the current task). That is, we may only need a partial

instantiation of some abstraction. This suggests two related ways of generat-

ing abstractions: [1] filling in default values for some variables (to derive the

VelvetTurtle-Script from the more general Restaurant-Script) and [2] re-

moving some of the arguments, together with the component clauses that deal

with these alone — this would let us derive Group from Field.

Method^3 involves turning some (possible implicit) constant in an abstraction

into a new variable. This suggests two ways of generalizing the RKK abstraction.

One involves replacing the constant junction with a variable. This leads to the

definition of RKK-June which appears in Figure A-3. Here, we use j(d,i) to

denote the %th connection of type j associated with the device d: (This obsoletes

the more restrictive jl
d notation which dealt exclusively with junctions; i.e., jx

d =

junction(d,i).) As we are not restricted to devices meeting at junctions, we

can now talk about freeways meeting at clover-leafs, etc.

The other generalization is more subtle. In Note:l-2, we saw that a more

nearly correct resistance analogue should deal with a power of the through term.

This suggests expanding the R K K ( t , c , r , l ) relation into the more compre-

hensive version, RKK-Exp( t , c ,r , l , e ) , which explicates this exponent. This

differs from RKK only in using the Ohm-Exp rule rather that the Ohm rule, where

Ohms-Exp(t, c, r , 1, e) <=>



A-28 APPENDIX A. NOTES FROM THE TEXT

RKK-Junc(t,c,r,l,j)

Ohms-June(t, c, r, 1, j)
,2), [d\)=t(i(d,l), d) * x(d)}

ConservedThru-Junc(t, 1, j)
,l), d) +

Kirchoffl-Junc(t,

p:Co

Kirchoff2-Junc(c,

t(k,p) =

Figure A-3: Definition of the RKK-Junc Abstraction

This allows us to express RKK-Exp(Current, VoltageDrop, Resistance,

Resistors, 1) and RKK-Exp(FlowRate, PressureDrop, PipeCharacter, Pipe

0.6).

Another reason to add an addition term is to expose a definable term. For

example, suppose we wanted to explicitly (and externally) reason about the in-

verse of a group's operation. We would need to use the new Group' abstrac-

tion, which explicitly included the extra argixment. By example, we would have

Group'(3f, + ,0 , - ) . (This relates to the discussion on page 135.)

Note:4-2, Other Future Uses of Abstraction:

(from page 228 and A-25)

This note discusses other possible applications of coherent clusters of facts, i.e.,

abstractions. In particular, it considers their eventual applicability and utility to

both machine learning and expert system.

This research shows the advantages of acquiring a connected set of facts at a

shot, rather than the more piecemeal approach of ingesting a single fact at a time.

While I only tested this claim when considering learning by analogy, it is hard



AA. NOTES FROM CHAPTER 4 A-29

to imagine that this principle would not apply to other forms of learning as well;

hence, this clustering idea will have an important impact on the general area of

machine learning. (Of course, this idea is not new: this approach is implicit in any

system which, for example, instantiates a complete frame whenever it proposes a

new concept; cf [Len82a,Len83a].)

This suggests a role for abstractions during the education of future Expert

Systems, i.e., during their Knowledge Acquisition phase. I claim that abstractions

can be used upgrade their performance as well. To be able to address a variety

of tasks over a multitude of domains, such systems will undoubtedly use massive

Knowledge Bases. This means that only a very small percentage of the facts will

be applicable to any problem. Without the effective use of some focusing tool,

their problem solving efficiency, and hence their effectiveness, can easily degrade

as these systems expand. These abstractions suggest a mechanism of focusing

attention on certain clusters of facts, thereby effectively permitting the problem-

solver to ignore the remaining, probably irrelevant facts. This facility becomes

essential when the inference engine is expected to deduce (as opposed to simply

retrieve) necessary facts.

Note:4-3. Importance and Generality of Model Based Approach:

(from pages 64 and 221)

Section 4.3 demonstrated that the learning-by-analogy task can often be reduced

to selecting and instantiating the appropriate existing abstraction. This note

discusses this model-based approach in general, expressing both its prominence

and relevance.

The NLAG project represents just one approach to the problem of learning by

analogy, one based on pre-existing models. A variety of other tasks are also based

on this underlying top-down process, including many sophisticated Artificial In-

telligence programs: e.g., the ACRONYM'S model-based vision system [Bro84],

Molgen's skeletal plan instantiation process [Fri79], the Programmer's Appren-

tice cliche and plan instantiation [Ric79,Ric81,Bro81],21 Barstow's PECOS code

21 The transitive closure of relevant references leads to [Flo78] and [DDH72]. These, too, discuss the



A-3G APPENDIX A. NOTES FROM THE TEXT

generation program [Bar79], Wilensky's plan instantiation schemes [Wil83], and

the XCON's (nee Rl) configuration program [McD80]. Other "model-based sys-

tems" include the various "how-to" books which describe complex tasks such as

preparing a resume, giving a presentation, or wood-working. Each case (book,

algorithm or system) describes one or more abstractions by providing, for each

abstraction, the relevant parameters (e.g., the introduction, statement and con-

clusion of a talk, or the various parts of a wooden ship,...) and certain properties

and constraints of those components, both individually (e.g., specifying what goes

into an introduction, or how to build certain subparts, . . . ) and collectively, giv-

ing relevant interconnections among these parts (e.g., the whole talk should be

on the Scime theme, or the wood's colors should match, . . . ) .

There is, of course, another way of addressing many of these tasks: One could,

instead, work bottom-up, constructing successively higher-level interpretations

based on lower-level primitives. Other systems follow this approach.

These two approaches have different merits and limitations. Section 4.3 men-

tions some of the benefits and limitations inherent in the top-down approach,

demonstrating that such systems can be quite focused (and hence efficient) when

dealing with situations they can handle, i.e., when some known model applies. A

model-based system, however, is inherently dependent on its models: its scope is

limited to the space defined by these structures. Systems which use a bottom-up

approach, on the other hand, can cover a relatively unbounded space. The cost

is efficiency: bottom-up systems do not have the focus associated with top-down

searches.

This dichotomy appears prominently in computer image understanding sys-

tems. Some, including the ACRONYM system mentioned above, work top-down,

attempting to locate specific models. Others work bottom-up; c/., [Wa.175],

[NB81], [BT78] and [MP77]; see also [Kan82] for a comprehensive survey. Sec-

tion 9.2 illustrates that this holds for research in analogy as well

use of (diversely named) abstractions during algorithm design.



AA. NOTES FROM CHAPTER 4 A-31

As suggested above (and discussed on page 53), NLAG only finds those analo-

gies which correspond to a known, pre-defined abstraction. This reliance com-

pares with ACRONYM'S dependency on its specific three-dimensional models.

Each system "interprets" its data (be it pixels or propositions), and each finds

instances of a general object only when that general object is included in its initial

data base. (E.g., ACRONYM could not, for example, find a person in a picture

unless it had an explicit model of a person.) Neither they nor I would claim that

our respective systems can fully solve the general vision (respectively, analogy)

problem; their objective, like mine, is to establish the utility and effectiveness

of using such models. Each system is providing one step towards the general

solution (see Section 10.2).

While this instantiation process has not received the glamour accorded to

other learning tasks (notably induction and learning generalizations [DLCD82]) it

is nevertheless an important and complex undertaking — well worthy of the Nobel

laureates and university professorships it has earned its practitioners: consider

the descriptions of such notables as Darwin and Edison shown on page 2, as well

as Lorenz ([Lor74]), Cohen ([Coh80]), . . . Although their tasks involve "merely"

instantiating one of the abstractions explicitly present, few would claim these

accomplishments were trivial.22

Note:4-4. Justification for Abstractions:

(from page 66, 107 and 183)

This note presents two comments, each related to the question of how one can

justify using abstractions. The first is the quick observation that there seems to

be no semantic justification for abstractions. The second elaborates this lack of

justification position, arguing that there is no intrinsic reason why abstractions

should work at all.

While we can state the abstraction-based analogical inference process semanti-

cally (this is done in Section 4.2's Point Sem4), it is surprising that there seems no

22If only it were so trivial to instantiate the "how to write a good dissertation*' skeleton with respect
to, say, the topic of analogy...



A-32 APPENDIX A. NOTES FROM THE TEXT

semantic justification for the use of abstractions, neither for analogies in particu-

lar nor for learning in general. (By contrast, we can provide semantic reasons for

many of the other heuristics, including Subsection 5.3's least constraint rule and

Subsection 9.2.2's (unused) maximal specificity rule.) Instead, the abstraction's

raison d'etre seems inherently computational, that is, syntactic. This non-result

holds for all of the abstraction related rules, including this IlAbst r u l e as well as

the other two refining rules, HJK and HQC (described in Section 5.2).

We can, however, provide some syntactic justifications for this concept of

abstractions, in terms of traces of past performances. (See Section 4.1 and Note:4-

1.) Unfortunately, on closer examination, even this is suspect. One can view

the process of generating abstractions as an induction process: Knowing that

some collection of facts holds in one domain, we inductively infer that it will

hold together in others as well. How can we justify this claim; that is, why

does this domain-induction work? Well, it worked from hydraulics to electricity,

and from natural numbers to matrices, and from people to computers, etc.} and

so, by induction, it will work in general. But why should this induction, from

certain pairs of domains to the general collection of pairs of domain, work? We

face the same problem in justifying this claim that confronted Hume, and lead

him to his famous dilemma [HumO2], Of course, the assumed continuity here is

over domains, rather than (just) over time. This means we are exploiting the

"continuity of the world" [Len84] — in a conceptual, rather than just temporal,

sense.

Note:4-5* Is the World Really Simple, or is it only Our Perception:

"The feeling that harmonious simple order cannot be deceit-
ful guides the discoverer [...} and is expressed by the Latix
saying: simplex sigillum vcri (simplicity is the seal of truth)."

How to Solve It, Polya (1957)

(from page 66)

I claimed that one can eflfectively use abstractions in natural domains. There

are two possible justifications for this position. View#l holds that the world



A.5. NOTES FROM CHAPTER 5 A-33

really is simple, that is, the world really does exhibit this continuity property.

Alternatively, View#2 claims that this simplicity is all in our perception; that

the world is really quite complex, but we have simplified it to permit us to deal

with it.23 For the purposes of this research, it is irrelevant which of these views

really holds.24 It is enough that we can effectively model the world as continuous,

whether or not the world really is.

As a final aside, realize that analogies (read "common abstractions") were

thought to have a firm ontological basis until relatively recently. For example,

scholars in the Middle Ages believed that the universe was ordered such that the

"macrocosmic pattern of the whole is reproduced in the microcosmic pattern of

the parts" [Emm85]. This perceived associated allowed them to draw inferences

from one to the other. (Of course, many of these beliefs still persist, consider

Astrology. See also the Law of (Magical) Sympathy, discussed in [Lit73] and

[Fra22].)

A,5 Notes from Chapter 5

Note:5-1. Facts Lexically Including the Source Analogue are Sufficient:

(from pages 78 and 114)

Given a theory, Th, and a symbol, A, NLAG searches for all derivable abstraction

instances which contain A: i.e., all S such that

Abstraction(S)
[

3a,¥iTfc|=S(a1,...A,...an)
23Shepard has amassed a great deal of evidence to support the claim that people will do almost

anything to establish a "continuity" [She84]. For example, people prefer to see an object simply
moving or being somehow distorted, rather than accept the possibility that one object disappeared
and was replaced by another.

24Unfortunately, we derive no insights from the attempt to "apply"' each view to itself: If the world
really is simple, then this simple claim that "Abstractions apply to many domains" should hold.
On the other hand, suppose we only think that the inherently complex world is really simple.
Once again, we would deceive ourselves into believing this simplistic "Abstractions apply to many
domains" idea. Hence each view is consistent, even when applied to itself.



A-34 APPENDIX A. NOTES FROM THE TEXT

This note proves that the derivation of any such abstraction instance must involve

a member of Th which lexically includes this symbol A. Stating this formally

requires two definitions:

• The support for a conclusion a with respect to a theory, Th, STrh{ & )•

(See Definition 8 on page 31.)

• The "x" lexical projection of a theory, Th, which is the subset of T/i's

sentences which lexically include the symbol x:

Definition 35 Px{Th) ™ {ceTh\ Lex Inclusion {a, «x")}

(See definition on page 24.)

Given these two definitions, we claim that

T / i | = S ( a 1 , . . . A > . , . a n ) and

Abstraction(S)

guarantee that

This note actually proves that Equation A.15 holds for any formulae (not just

abstraction formulae), providing the term A appears non-trivially. (Definition 5

defines triviality.) Since abstraction formulae must be non-trivial in all of their

arguments (see Section 4.2's Point CA1), they automatically qualify: i.e., this

proof is sufficient.

Proof: Towards a contradiction, assume that

ST™(S( a i , . . .A, . . .a n))n/>A( :Z7i) = {};

i.e., that no a G S7V/i( S(ai? • • • A,.. . an) ) lexically includes the symbol A. This

can only happen if there is some Oj of the form Vx <p{x) which is instantiated to

A. (If there are more than one such universal formulae, choose one arbitrarily,

as if it is the first one to be instantiated.) This means that A's occurrence in

that instantiated form is trivial: by the nature of instantiation, any other term



A.5. NOTES FROM CHAPTER 5 A-35

could have been used as well. Since nothing else distinguishes A in this derivation,

the full proof could have used any other symbol in A's place. That is, this 3ame

STTH{ S ( a i , . . . A,.. . an) ) could prove S (x i , . . . X,.. . xn) for any X we like (with

a possibly different set {z;}, i.e., {x{} ^ {a;})- So A's appearance in the original

S ( a i , . . . A,.. . an) is trivial, violating our initial non-triviality assumption. D

As a final comment, it is easy to see that this lexical inclusion criterion is

not sufficient if we allow trivial formulae. For example, observe that f (A) can be

be derived from Th = {"Vz f (z)"}. However, its support contains no member

which lexically contains the symbol A: i.e., P^(Th) n STTH{ f (A) ) = {}. (In fact,

Note:5-2. No New Terms:
(from page 102)

The NLAG process does not generate new terms. This was a deliberate decision,

based on the realization that such new terms seldom help to solve the given

problem since they lack the (usually necessary) ties to the current situation.

For example, imagine we had generated a new Resistance-like hydraulics

term for the "Find the f lowrate" problem; call it G0091. Notice we still can

not solve the problem, since that solution would require computing the value of

that function applied to the various pipes, and we have no way of ascertaining

that value. (That is, we have no way of determining Pipe3's G0091 value.)

One the other hand, this claim is not universally true. There are situations

where generating a new term would help to solve a problem. For example, notice

that the PressureDrop constant played only a place holder role in our canonical

hydraulics problem. This means that an arbitrary GOO 17 would have done as

well.



A-36 APPENDIX A. NOTES FROM THE TEXT

A.6 Notes from Chapter 6

Note:6-1. Ordered based on Number of Deductions:

(from pages 115 and 137)

This note discusses how to order the space of deductions which follow from a

kernel, $, with respect to a theory Th. By assumption, the kernel is a subset of

the theory ($ C Th) and the theory is consistent ( Consistent (Th)).

This ordering is defined in terms of the distance between a proposition and

the kernel, with respect to an underlying theory. We use the Ki(Th,$) family of

relations to define this distance, where

#) =Kn(Th,9) U
{K I 3 po € Kn(Thy *) , {*}£, c DC{Th). {A}£0 ̂ m «}

(A16)

where DC(Th) is the deductive closure of the theory Th and the hj^ operator

encodes our particular inference mechanism. As our current implementation is

based on production rules, some p3- is of the form Vi & ... & am =» /c'", where

this K1 can be instantiated to K and each <Jk, to some pt.

We can define the distance of a proposition from a kernel in terms these K{

relations: vizn

dist{ <p, $, Th ) = min( ip e Ki(Thy $ ) ) . (A17)

This dist metric defines "closeness" in the obvious way: ip is closer than

p (with respect to the kernel $ and theory Th) whenever dist((py$,Th) <

dist(p,$,Th).

(In case of ties, the order depends on various idiosyncrasies of the underlying

MRS implementation. In MRS's current implementation, the order depends on

when the various base facts and defining rules were asserted. We could redefine

this dist measure to break ties accordingly.)

Note:6-2. Why Inst-Source Considers More General Abstractions?

(from pages 105, 115 and A-l



A.6. NOTES FROM CHAPTER 6 A-37

Page A-88 shows that NLAG considers KK to be a possible common abstraction

even after the more specific RKK has failed. This point discusses why this makes

sense.

After RKK has failed to qualify as a useful analogy, one might wonder

whether we should bother to try KK at all? After all, how could a subset

of RKK's facts lead to an answer to this query when RKK, en masse, could

not? To state this intuition formally: from Th + £>(A) ^ PT> we know that

Th + p(k) Y2 PT for any more general p (i.e., whenever <p(x) =$> p{x))\

<p{k) fc PT
Th f= Vz ip{x) => p{x) (A.18)

^ PT

While Equation A.18 is correct, there are two reasons why it does not apply here.

First, it pertains only to usefulness, but not to the other part of being a useful

analogy, namely, that the new conjecture is a legal analogy. All NLAG knows is

that RKK(FlowRate, . . . ) is not a legal |f̂ T analogy. It does not know whether

this conjecture failed the analogy test or the usefulness test. Since

FlowRate~Current |(- KK(FlowRate, . . . ) (A19)

might hold (and thence lead to a useful analogical inference J^T), even though

FlowRate~Current Ĵ  RKK(FlowRate, ...) (A20)

does not, it behooves NLAG to consider this abstraction even after the more

specific one has failed.

This first reason, by itself, is not sufficient. A more thorough analysis might

still have caught this case: that is, NLAG could have observed that Equation A.20

did hold. This means that KK(FlowRate, . . . ) must have failed the usefulness

test, since this is now the only way that RKK(FlowRate, . . . ) could fail to be

a legitimate fyT analogy.

Equation A. 18 seems to imply that this information is now enough to eliminate

the KK abstraction. However, that equation deals only with unary formulae, and



A-38 APPENDIX A. NOTES FROM THE TEXT

so does not consider the other "Skolem variables"; the more general abstraction

might permit other bindings for these arguments, ones not permitted for the

more specific one. (That is, knowing that \fx [3y (p(x,y)] =>> [3z p(xyz)] does

not guarantee that Va; Vy <p{x>y) => p(x,y).) These alternate other terms might

make this new information useful to this problem.

A further analysis of these KK and RKK abstractions could solve this prob-

lem too; that is, we could observe that RKK is more specific in every argument

If NLAG used a truly complete deductive mechanism, this would be conclusive:

that is, we could now positively eliminate KK once RKK had failed. How-

ever, NLAG uses various heuristics which leave it incomplete. At this point, it is

worth the (minor) additional expense of actually considering these more general

abstractions, rather than perform the increasingly vast amount of computation

to determine whether or not we would need to consider this abstraction. (Thanks

in part to the SuperCache facility, described in Subsection 6.2.4's Point MRS1,

this computation is usually relatively inexpensive, anyway.)

A.7 Notes from Chapter 7

Note:7-1. How f̂ . Compares with Our Intuitions:

(from pages 138 and 162)

While it has never been an explicit goal of the research, the NLAG system does

seems to correspond to the way people (or at least the author) use analogy. For

example, the idea of abstractions is clearly consistent with many psychological

theories: i.e., people do tend to clump facts into "cohesive" groups, rather than

view them in isolation (see [Ros73,Min75]). This is true not only in general prob-

lem solving activities, but for learning as well: people do tend to learn coherent

clusters of facts at once.

NLAG's underlying mechanism also seems "humanly reasonable": going first

bottom up to develop an hypothesis (here, a possible common abstraction) and

then top down, trying to instantiate it, first in the source and then in the target

domain. (This resembles visual perception or speech understanding. See [Fel78]



A.7. NOTES FROM CHAPTER 7 A-39

and [LE77,NA79,Hay85].)

Many of the particulars of the NLAG model of analogy resemble pre-theoretical

intuitions of analogy as well. (Table 7-7 provides some empirical evidence sup-

porting many of these claims.)

• Depends on Learner: Given A and B, the analogical connections which

can be found depends on the learner's initial knowledge, T7i, as well as

the problem-solving context. (See [Fra79] for psychological evidence of this

obvious idea; as well as Chapter 2 and Section 9.3.)

• Not Unique: Even given A, B and Thy there is often more than one pos-

sible analogy. (The goal of solving a problem does reduce the number of

candidates, but usually not to a single member.) (See Sections 2.2 and 3.3.)

• Obvious, in Hindsight: Analogies tend to be obvious in hindsight, al-

though not a priori. That is, an analogy becomes almost self-evident once it

is "deciphered". This is because an analogy is a simple isomorphism when

viewed in the correct framework (i.e., using the appropriate abstraction).

(See Note:2-4 and Section 9.3.2.)

• Symmetric Relation, Non-symmetric Inference: The analogy relation

is symmetric between source and target analogues: i.e., Analogyp is sym-

metric in its first and second arguments. Of course, the analogical inference

process is not, since it relies on facts known about one analogue to postulate

unknown facts about the other. This also makes sense: the A~B analogical

hint may be used to state that some B-fact pertains to A, even though we

would not think of using B~A to go the other way: i.e., to transfer the related

A-fact to B. (Searle discusses this one-way transference [Sea79]'.)

• Knowledge (usually) Constrains Search: Knowing more relevant infor-

mation about the target analogue helps: it means less searching is required,

as there are fewer wrong candidates.25 On the other hand, knowing more
25In the current NLAG implementation, it is possible that a new target domain fact might in-

crease the number of analogies. For example, adding "(mem F00 functions)" means that F00
is now known to be function, and so is eligible for any variable whose generator is, e.g., (mem ?2
functions). This is due to the nuances of my operationalization of the HpT rule.



A-40 APPENDIX A. NOTES FROM THE TEXT

about the source analogue can be problematic, if these facts suggest multiple

abstractions. Here, additional search may be required to determine which

abstraction should be considered.

Finally, knowing more abstractions is a mixed blessing. It does provide

greater coverage, but may mean that understanding any given analogy may

be slower, since there may be more possible commonalities to consider. (This

can vary, depending on the sophistication of the Find-Kernei-like process —

i.e., on how effectively the target problem can be used to focus the search.)

In each of the latter cases, the degradation is significantly lessened if the

new information is somehow disjoint from the target facts sought (or desired

abstraction). In such cases, this new information does not interfere.

Note:7-2. Another Example of Analogy: + is like *:

(from pages 2 and 138)

Consider the following scenario: The algebraic expert system, AES, knows a lot

about the addition operation (+), but very little about multiplication (*). It is

given the target problem:

Find the x which solves ( = ( * 3 4 x 10) 600) (A.21)

Knowing almost nothing about *, AES is unable to answer this query. It is then

told the analogical hint,

* is like +.

Its learning component (read "NLAG") now determines that the Group abstrac-

tion is appropriate, because solving the analogous equation

Find the x which solves ( = ( + 3 4x 10) 600) (A22)

requires the observations that

• + must be closed under the integers

[to guarantee that the result is defined],

• + must be associative

[to regroup the addends], and



A.7. NOTES FROM CHAPTER 7 A-41

• + must be invertible

[to cancel out the left and right terms in the x-containing left side of the

equation].

From Inst-Source's finding that (Group reals + 0) holds, Inst-Target tries

to satisfy the template (Group ?dom * ?id), where ?dom and ?id are existen-

tial variables. Assuming its initial lexicon is sufficient, it (eventually) finds the

bindings {?domn-> reals-0, ?idh-+ l} , where reals-0 is the set of all non-zero

numbers. The solution to this target problem requires this Group conjecture,

together with the fact (InvertOp * / reciprocal), and the rule

(if (and

(if

(group $op $dom $id)

(InvertOp $op $inv) )

(and (Express $data as ($list-l .

(= ($op ($inv ($op". $list~l

(= ($op . $data) $ans) ) )

$x . $list-2))

)) $ans ($inv ($op . $list-2)) )

Figure A-4: Rule Used to Solve A Group Problem

(The (Express $data as . . . ) clause abbreviates the code which takes the $data

list (3 4 $x 10) and returns the binding {$list-li-> (3 4), $list-2»-» (10)},

leaving the variable $x as $x.)

Notice that the target problem (Equation A.21) is now solvable: i.e., an an-

swer to (= (* 3 4 x 10) 600) can be derived from the initial theory plus this

analogically derived (Group reals-0 * 1) conjecture.

Note:7-3. Another Example of Analogy: Programming:

(from pages 2, 138 and A-54)

This description owes much to the Programmer's Apprentice work (PA) done at

MIT by Dr.s Rich and Waters. In particular, their notion of a program plan is

essentially the same as my abstraction: Each plan deals with a set of "roles",

which are formal parameters. The plan constrains these roles, both individually



A-42 APPENDIX A. NOTES FROM THE TEXT

(by type information) and collectively. Furthermore, the idea of an overlay (see

[Ric81, p66]) is almost identical to my notion of analogy: it is an explicit mapping

between parts of the analogues.

Their articles discuss several possible types of problems that the PA system

currently addresses, including analysis, verification and construction of programs.

However, they have not (yet) focussed on how to use analogies for these tasks.

The scenario below is one possible approach.

Imagine the initial PA' system is unable to solve a target problem, PT, which

deals with program PgmA, because it knows too little about this program. It is then

told the analogical hint, PgmA^PgmB, where PgmB is a better known program. This

suggests that PA' transfer some of the PgmB facts over to PgmA, mutatis mutandis.

But which PgmA facts, and how they should map over? Here we use the problem

PT: We are seeking new PgmB facts which, once incorporated, provide a solution

to the motivating problem PT.

Consider first the task of constructing a program. Here, the target problem is

of the form "Construct a program which satisfies a particular behavioral specifi-

cation". Within this framework, this task reduces to selecting the relevant plan(s)

and then finding the appropriate instantiations for its various roles.

As an example, imagine that all we knew about the target TimesAll subrou-

tine is that it takes one argument, which is a list, and returns the product of the

elements of that list. The PT problem, now, is to produce code which implements

this behavior.

Of course, this specification is not sufficient — we need to know more about

TimesAll before we can generate the appropriate code. Now conies the analogical

hint:

TimesAll is like PlusAll. (A.23)

Of course, we know essentially everything about this source analogue, PlusAll.

This includes not only its input/output specification (that it returns the sum

of the elements of its single argument), but also its derivation as an instance

of the I terative-Aggregation plan, instantiated using SUM for the ".add" part,



A.7. NOTES FROM CHAPTER 7 A-43

temporally composed with an instance of "OAR+CDR+NULL", for the iteration

part. (The interested reader is referred to [Ric81, p236, p211] for a detailed

description of these terms.)

This plan can be used as a commonable abstraction, suggesting that NLAG

produce the TimesAll program by instantiating this Iterative-Aggregation

plan using PRODUCT as the ".add" term. This leads to executable code which is

essentially the same as PlusAll's, changing only the + to * and the 0 to 1. That

is, TimesAll should be written in the same language as PlusAll (i.e., LISP), keep

its underlying code structure, expect the same type of "data structure" (i.e., list

of numbers), etc.

We present some comments on this scenario before considering other ways of

using analogies in this programming domain:

[l] This "re-instantiate the same plan" approach (viz., go up to a common plan,

then come down by instantiating it) solves the "Skolem variable" issue: that is, it

tells us what else should change, once SUM is replaced with PRODUCT. Here, it tells

us to replace that 0 with a 1. (Notice that this works even if the code happened

to contain other spurious "0"s which should remain "0"; see Note:9-6.)

[2] In general, the hint may only suggest a partially instantiated program. "Par-

tial" means that additional user-interaction may be necessary before PA' can

produce the desired code. That is, this hint may suggest a plan which is more

general than the executable code.

"Suggest" means that these facts are really only conjectures, which may have to be

retracted later. For example, the desired TimesAll subroutine may use a differ-

ent data structure or perform a different (non-aggregation) type of accumulation.

The retraction process can utilize the explicit derivation of the not-quite-correct

TimesAll program. Hence the redesign may require viewing the desired TimesAll

program as an instantiation of some other plan, one which is more abstract than

Iterative-Aggregation. (This approach, of ascending the abstraction hierarchy,

seems to work in a great many cases.)



A-44 APPENDIX A. NOTES FROM THE TEXT

[3] There are, of course, a number of other target programs which can be con-

structed using PlusAlI — an iterative LISP procedure which operates on a list

structure — as a source. Some might exhibit the same I/O behavior as PlusAlI,

but differ by

• being written in Pascal, not LISP;

• using an array, rather than a list structure;.

• being written using tail recursion, rather than iteration.

All of these would use the same basic Iterative-Aggregation plan structure.

Others might use related but different plans and perform different tasks. For

example, the common abstraction might be a more abstract generalization of

Iterative-Aggregation. Examples include programs which

• compute the average of the tgrms,

• add up only the positive terms of a list,

• recur through the full s~expression, adding up all nonNIL atoms.

While the focus, so far, has been on learning for the purpose of plan construc-

tion (read "plan generation"), there are other applications for such "analogically-

motivated" new facts. Many follow directly from the realization that PgmAis an

instance of a PlanY, where this plan is suggested by the analogical hint. For

example, reiterating some of the themes which appeared in [Wat71,Ric81]:

Debugging One might search for the particular types of bugs known to be com-

monly found with instances of PlanY.

(Examples include the typical fence post problems, divide-by-0 situations,

etc.)

Verification Specific plans may suggest that certain (loop) invariants be consid-

ered.

Optimization (More) efficient data structures may be associated with a given

plan.



A.8. NOTES FROM CHAPTER 8 A-45

Explanation Describing PgmA as being like PgmB (since each is known to be an

instance of some plan PlanY) may be a nice, succinct way to communicate

its operations, structure, etc.

Note:7-4. Could NLAG Have Considered Group?

(from page 152)

It would have been cute if NLAG had conjectured something like

(group junctions flow-rate j-wc-a)

There is certainly some support for this candidate:

• j-wc-a6 junctions

• flow-rate £ Functions

• Domain(flow-rate, 1) = junctions

However, there is pretty strong evidence to the contrary as well:

• Domain(flow-rate, 2) = Devices ^ junctions

• Arity(flow-rate) = 3

Even though it looked feasible at first, the type information alone would elim-

inate it from contention. In fact, the HJK heuristic prevented this Group ab-

straction from even being considered.

A.8 Notes from Chapter 8

Note:8-1. Semantic Definition of Novelty:

(See pages 27, 176 and 223)

This note states-expresses the novelty criterion of [GG83] within the current

partial interpretation framework. That paper uses the Newpj(Th, x, a) relation

to mean that the sentence a is a new fact about the concept x with respect to

the theory Th. Basically, this relation holds when adding a to Th restricts the

extentions allowed to the symbol x.



A-46 APPENDIX A. NOTES FROM THE TEXT

Now to express this within the partial interpretation notation: Let Before

be the initial set of allowed interpretations, i.e., Before == Allow ed^lVW ,Th).

Similarly, let After be the set of interpretations allowed after adding the sentence

a to the theory Th: i.e., After = Allowed(JZW, Th + a). Standard semantic

theory tells us that After C Before; as a is assumed independent of Th, this

inclusion is proper; i.e., After C Before.

[GG83] claims that a is a new fact about the symbol A if A's set of possible ex-

tentions is reduced, under some assignment to the other symbols in £. To capture

this notion of assignment to other symbols, we need to partition the allowable in-

terpretations, subtracting out the extention of a particular symbol. This requires

a new operator for comparing interpretations. The expression I =^ J means

the interpretations I and J are identical, except possibly for their respective

assignments to the symbol A:

Definition 36 I^^J <=> VRGJC. R ̂  A =» RJ = RJ

Since this —j^ operator is an equivalence operator, it induces a partitioning

over the set of allowed interpretations. For any set of interpretations 5, we

define Is /k to be the subset' of 5's interpretations which disagree only on their

assignments to A:

Definition 37 Is/A = {J e S \ J =A 1}

(Although it may not be obvious, Is/A need not equal Js jk for J, J G 5. This

depends on J's (respectively J's) assignments to the other members of £.)

In what follows, we consider just the set of initial interpretations, Before.

We now use the /A partitioning to define the set of partitions, {IDcf°re/k | I G

Before}.

For each such JD<'f°rejk cluster, consider how it changes after adding a to Th.

That is, how is ID*f°™/k related to IAftcr/k? First, this IAfter/k is a smaller set



A.8. NOTES FROM CHAPTER 8 A-47

of interpretations. In fact, it is the intersection of J/A and After, i.e.,

jAfter/A = ^Befo

Three cases might occur:

This means the set of allowed interpretations consistent with this assignment

to £ — {A} does not change, and hence, A's extention is unchanged (for this

particular assignment of the other (non-A) symbols).

This means that adding a eliminated all interpretations based on this set of

other assignments. That is, there is no longer any assignment to A which is

consistent with the other assignments.

• {} C IAfter/k C /*/«*/A

This means there was an J G IDef°re/k which is not in J e IAfUr/k. This,

in turn, means there is some assignment to A which was possible based on

TTi, but is no longer possible, using Th + a. This is, again, with respect to

7's particular assignment to the other symbols of t — {A}. Furthermore,

this assignment is not inconsistent, since this IA^ter/k set is non-empty.

The final case above is exactly the condition specified (and justified) in [GG83].26

This means we can express this Newpj relation as

Definition 38 NewPI( Th, x, a )
3J, J. IeAllowed(JZW,Th) & JeAllowed(RW,Th

The implied dependency on the JZW real world interpretation is not a major

limitation. In fact, this assignment can be arbitrary.

26A thorough justification of this criterion is beyond the scope of this dissertation; the intrigued
reader should look in that article for such details.



A-48 APPENDIX A. NOTES FROM THE TEXT

How does this tie in with analogical inference? Notice the analogically inferred

conjecture, <p(&), is a new fact about the (formula) symbol <p since it definitely

restricts the set of possible interpretation of this symbol. We now know that [T]

must be a positive instance of ip\ i.e., [T] G <p*w'> using RW* as the new base

interpretation induced by Th + a. This means Newpi(Th, tp, "<p(.A)" ) holds.

However, £?(A) is not necessarily about the concept A. In fact, if A is a constant

symbol with a fixed extention, we can guarantee that <p(&) is not new for A, since

there can be no Newpj sentences about A, period.

A.9 Notes from Chapter 9

Note:9-1. How can other analogy systems work at all?
(from page 192)

In light of all of these criticisms leveled at many existing systems, one might

wonder why they have worked at all. There are several reasons. The most

prominent is that most deals only with a small set of hand-picked facts, which have

been (consciously or not) honed to work in this situation. Hence, these systems

are spared the worry of seeking deducible but implicit facts, and of expanding

the vocabulary.27

A second feature is that abstractions naturally tend to fit into a hierarchical

organization. Thus, even after finding a natural-seeming cut off point (i.e., after

conjecturing the facts needed to establish one abstraction), it may be worth

extending it later. There may be additional conjectures which follow from this

same initial kernel and belong to that more specific abstraction. That is, given

that the analogical inference S ( a i , . . . A,... an) holds, it may be worth seeing if

S ' ( a i , . . . A,... aw) holds as well, where S5 => S (i.e., S' is a specialization of S in

the sense that Field and Abelian-Group are each specializations of Group).

This explains why it can be worthwhile seeking additional relations even after

27Of course, this same "y°u built it in1' objection could be raised with respect to my NLAG system.
The critical feature is that NLAG could accommodate such implicit information this follows
from its top-down mechanism.



A.9. NOTES FROM CHAPTER 9 A-49

one abstraction has been found. This is especially true if relatively little is actually

stored about analogues, and if everything known corresponds to one particular

perspective.

Note:9-2. Why are Analogies Considered Inexact?

(from pages 71, 189 and 216)

Subsection 9.2.1 provided one set of reasons why many people view analogy as

an inherently slippery process. This note describes three other possible factors

which may indirectly contribute to this view.28

People may think of an analogy as being inexact because it is semantically

"incorrect". For example, the metaphoric statement, "John is a wolf", is not

correct, in the strict Tarskian sense. ((?/., [Bea67], [Mar84] and various entries

in [Ort79].) This ties in with the comment that analogy inference is a process of

plausible reasoning, one which not guaranteed to be correct; see Note:l-2. This

means that conjectures may have to be retracted or modified in light of additional

information.

Pylyshyn also considers certain scientific uses of metaphor to be instances

of "referential imprecision", as opposed to "logical imprecision". [Pyl79] de-

scribes how, for example, the current sense of the term "mass" emerged from

this metaphoric process.

Another possible reason why analogies why analogies seem inexact is many

analogies deal with second-order facts. For example, Hobbs discusses how the

(Pitcher, Batter, Ball, Hit) quadruple can resemble the (Congress, President

Bi l l , Sign) collection [Hob83b]. Intuitively, we want to express this in terms of a

pair of related relationships, e.g., Hitting-Event (Pitcher, Batter, Ball) and

28Yet a fourth complication stems from the distinction between the analogy relation and the analogi-
cal inference process. (Recall now the footnote adjoining Section 2.3.) The fact that the analogical
inference is inexact does not mean that the resultant analogy (relationship) is inherently ufuzzy".



A-50 APPENDIX A. NOTES FROM THE TEXT

Signing-Event(Congress, President, Bi l l ) , and then focus on the second-

order correspondences between these relations, Hitting-Event and Signing-

Event. Many confusions may arise from attempts to express this within a first-

order framework.

Similarly, Burstein wants to associate the physical Put-In-Box containment

relation with the computer-based Put-In-Var relation [Bur83b]. Using the second-

order StorageReln abstraction, this analogical connection is straightforward:

the instantiations are StorageReln (Put-In-Box, Physical-Object, Physical-

Box) and StorageReln (Put- In-Var, MumericValue, ComputerVariable). Bursteii

instead, considers this only a partial analogy, arguing that this connection requires

a "more general version" of the relations Put-In-Box and Put-In-Var.

Note:9-3. Lexical Measures of Commonality are Inadequate:

(from page 190)

This note proposes a pair of lexical measures for commonality; then shows each

to be deficient.

To motivate the first proposal, consider how the sentence <p(a,i,... an) differs

from £>(&i,... 6n). This can be expressed in terms of the lexical difference between

the lists of terms [ax,...an] and [6i,...6n]. Perhaps commonality can also be

expressed in terms of lexical constraints — in terms of the number of symbols

which are common, rather than distinct? This suggests that commonality can

be defined in terms of the number of symbols shared by the facts describing the

two analogues. (Or, equivalently, in terms of the number of non-logical symbols

which remain fixed across the symbol-to-symbol mapping.)

This seems to work when considering how much each of the pairs of sentences

below says about Fido and Duke:

Senti h-> Sent2 # Common Symbols

Mem(Fido, Dogs) *-> Mem(Duke, Dogs) [2]

Mem(Fido, Dogs) »-> Mem(Felix, Animals) [1]

Mem(Fido, Dogs) H-» OwnedBy(Duke, Fred) [0]



A.9. NOTES FROM CHAPTER 9 A-51

Here, the number of symbols in common correctly mirrors our intuitions; e.g.,

"Mem(Fido, Dogs)" to "Mem(Duke, Dogs)" seems a better analogy than either of

the other two. This suggests that we express commonality in terms of #SymbolspF^

where

Definition 39 #SymbolsPF[A0{Au...an)%BQ{Bu...bn)) = ||{t : At; = JBf.}||

There are some problems with this measure. First, it would, claim that

Monoid(3ft, +, 0)i->Monoid(S, + , 0) is as good as Group(3R, +, 0)f->Group(3, + , 0),

as each has three symbols in common. Second (and worse), it would favor

Monoid(&, +, 0) •-> Monoid(S, +,0) over Group(&, +, 0 )^Group(Z 7 , +7, 07),

since the first has three symbols in common, and the latter, only one.

So much for that proposal. Clearly a meaningful similarity measure should

extend beyond the superficial syntax and deal with the underlying "meaning" of

the statement. For example, even though Group is the only symbol superficially

shared by the sentences Group(%, +,0) and Group(8J0> *? 1), these facts clearly

express quite a bit in common. Group's definition exposes several other invariants,

viz., the fact that both (5R + 0) and (9?o * 1) triples satisfy Group means that

• (+) and (*) are each instances of associative operators,

• (+ 8?) and (* 9?o) a r e e a c h instances of closed relations,

• (+ 0) and (* 1) are each instances of operator identities, and

• (+ 8i) and (* JRQ) a r e e a c h instances of invertible operators.

Expressing this within a lexical framework: any two instances of Group share

several "syntactic fix-points", here in the form of the relationships Associative,

Closed, Iden t i ty and I n v e r t i b l e . This suggests that the list of commoned

symbols should include the symbols included in facts implied by the formula's

definition.

We can express this formally using

Definition 40 #SymbolsD[<f>li^2] = max [#SymbolsP



A-52 APPENDIX A. NOTES FROM THE TEXT

This certainly seems about right: As

Group(rf, op, id) <=$> Monoid(d, op, id) & Invert ible(op, rf),

this measure seems to rank Group over Monoid.

Unfortunately, this "include other equivalent statements" criterion turns out

to be meaningless. Every formula <f> is equivalent to a related formula ft with an

arbitrarily large number of symbols, equal to the number of symbols defined in

the language. [Proof: Define <t>l(x) <==> (f>(x) & f\ (ct- = cf-).] This means that
CiEC

every formula is equivalent to one with ||j£|| constants, rendering this measure

worthless. So much for that second hypothesis.

Now consider why this "(cx- = cf-)
w trick feels so unintuitive. Clearly, the

resultant $ sentence is not about ct. This suggests that we only consider symbols

which the formula is about This ties in with the Triviality criterion discussed

in Section 2.4, and suggests that we axe dealing with a semantic relationship.29

Subsection 9.2.2 confirms.this intuition, by presenting a meaningful measure of

commonality using such a semantic basis.

Note:9-4. When does Maximal Commonality Force Co-referentiality?

(from page 193)

As an extreme case of analogy, it may be possible that everything known about

the source analogue holds for the target analogue, mutatis mutandis. Does this

necessarily mean that the analogues are co-referential: i.e., that they refer to the

same object? How does this situation relate to the claim that some formula is

maximally specific? In particular, does the existence of such a maximally specific

formula guarantee both concepts to refer to the same object? This note answers

these questions.

These issues reduce to the question of what the initial theory Th can distin-

guish. The maximally specific formula can be a formula whose domain is that

29The inadequacies of these syntactic approaches is consistent with the Logical Positivist position
that logical and mathematical statements reveal only the bask structure of the language, but
need not be descriptive of the physical world [Goe85]. Of course, these logical positivists would
not think a semantic approach would work either...



A.9. NOTES FROM CHAPTER 9 A-53

single element. While Th may be unable to distinguish among the terms which

satisfy this formula, it does not mean the two concepts are co-referential: For

example, imagine that Th = { associative(+) }, and we axe given "* i s l ike

+" as an analogical hint. Here the only (and hence the best) thing we can say

about * is that it is associative, associative (*). This, of course, does not mean

+ and * axe co-referential, but only that they are indistinguishable.

Of course, simply finding the maximally specific formula does not mean that

the two analogues are even indistinguishable: The theory Th might begin by

knowing that some B-fact does not hold for A, meaning B and A cannot refer to

the same object. For example, consider

Th — {UniqueFactorization(*) -iUniqueFactorization(+)},

or

Th = {DistributesOver(+ *), ~iDistributesOver(+ +)};

or even

Tfc={(+ ± *), -.(+ ^ +)}.

Note:9-5, Other times when HMSA *S Inappropriate:

(from pages 194 and 198)

The maximal specificity rule, HMSA (see Heuristic 7), prefers the formula <px over

ip2 whenever ipx is more specific. There axe, however, times when <p2 might seem

better than tpx. (E.g., where we would want to consider Monoid before Group.)

For example, due to (p^s additional information, it might not have a derivable

instantiation in the source domain, or may have no consistent instantiation in the

target domain. (Since this means that (pL is not a legal candidate, this situation

does not violate

The other (pseudo)counter-example occurs when the user exercises his right

to specifically reject a qualifying analogy, pl (a i , . . . A,... an). (For example, he,

but not Th, may know enough to suspect that integers axe not invertible with

respect to multiplication, and so might accept the conjecture Monoid (Z, *, 1)

but reject Group(Z, *, 1).)



A-54 APPENDIX A. NOTES FROM THE TEXT

(defun PlusAll (a)
(do ((index 1 (+ index i ))

(total 0 (+ total (arrayfetch a index))) )
((greaterp index (arraylength a))
total))

))

Figure A-5: Definition of PlusAll

Note:9-6. Exact Formulation: TimesAll~PlusAll:
(from pages 2, 203 and A-43)30

Subsection 9.3.1 describes one situation where the exact form of the formula

matters. This note presents another example of this situation. This presenta-

tion describes the source information as a collection of sentences (i.e., use the

Analogy^s formulation). This formulation partially explains why it is so tempt-

ing to blur the distinction between what the analogy keeps invariant and what

changes from one analogue to the other. (Since the program code is already

expressed in a formal language, this note does not rewrite it into the obvious

predicate calculus notation.)

Suppose you want to write a program which computes the product of the

elements of an array, and you are told that this Times All subroutine should be

like the existent PlusAll program shown in Figure A-5. The obvious first step is

to substitute "*" for "+" throughout the program code. Of course, this alone is

not sufficient: these two different operators require different identities (here, +'s

"0" should be mapped to *'s "1") and the old program name should be changed to

anew one. This leads to the { +>->*, 0»->l, PlusAllf->TimesAll } substitution.

If we apply this to entire body of PlusAll's code, we arrive at the faulty program

shown in Figure A-6.

The problem is the spurious "+" which appears in the code used to incre-

ment the index counter; since this is transformed to "*", the index counter is

30This work was motivated by the Programmers Apprentice work, [Ric81,Wat71,Shr79,Bro81,Cyp82].
See also Note:7-3.



A.9. NOTES FROM CHAPTER 9 A-55

(defun TimesAll (a)
(do ((index i (* index 1))

(total i (* total (arrayfetch a index))) )

((greaterp index (arraylength a))

total))

))

Figure A-6: Faulty Definition of TimesAll

never incremented. This substitution would work correctly if we rewrote PlusAll

to use "(addi index)" rather than the current "(+ index 1)". This leads to

PlusAll-addl of Figure A-7.

(defun PlusAll-addi (a)

(do ((index 1 (addi index))

( total 0 (+ to ta l (arrayfetch a index))) )
((greaterp index (arraylength a))
to ta l ) )

))

Figure A-7: Definition of PlusAll-addi

Realize these two subroutines are (behaviorally) equivalent, since

Definition 41 Vx (addi x) =f (+ x l ) .

This example shows a situation where "(addi index)'" works but "(+ x 1)"

fails. The reverse situation can happen as well. Suppose we want to generate a

subroutine which adds up the values of every second element of the array; the

obvious goal is the Plus-2-All subroutine of Figure A-8. Applying the simple

{ii—>2,...} mapping to Figure A-5's PlusAll code works perfectly, changing both

"l"s into "2"s. Notice that PlusAll-addl's code is not desirable; here the "1" in

"(+ x 1)" must be explicit. (By contrast, it is only implicit in PlusAll-addl's

"addi" component.)



A-56 APPENDIX A. NOTES FROM THE TEXT

(defun Plus-2-All (a)

(do ((index 2 (+ index 2))

(total 0 (+ total (arrayfetch a index))) )

((greaterp index (arraylength a))

total))

Figure A-8: Definition of Plus-2-All

As a final variant on this theme, imagine all we about some unknown program

was that it resembles PlusAll behaviorally (here, assume all we know about

PlusAll is that it add up the elements of a list), but it differs (structurally) by

a {it-»2} mapping. What is the behavior of that resultant program?

If PlusAll is the structure to be altered, the result would be Plus-2-All,

which adds every second element. What if PlusAll-addi was the altered struc-

ture? Here the result would be a subroutine which adds up all but the first

element of the array. (This is assuming we did not map PlusAll-addl's "addl"

into an "add2" subroutine.)

It is easy to argue for either of these answers; in different situations either

of these would be appropriate. This final example shows there may be many

different meanings of a given "A is like B" hint, and which interpretation is

selected depends not only on the information included in the mapping's domain,

but on the formulation of that information as well. This also means that the

same information (here, "... (+ index 1) . . ." versus "... (addi index) . . .")

may lead to different meanings, under different analogy contexts.

Of course, this versatility requires that we consider the deductive closure of

the starting theory. That is, we should be able to produce either interpretation

for the analogy given only the above "+" fact and Definition 41's definition of

addi, even if this required deriving the needed (addl index). (Point NotStd2

in Note:2-5 reiterates this point,)

Note:9-7. No need to generate new symbol to Expose Hidden Value:



A.10. NOTES FROM CHAPTER 10 A-57

(from page 208)

We never need to generate a new symbol to expose a hidden value to some symbol-

symbol transformation.

Proof: The only way we can know that some relation is hiding a value is if there

is some defining sentence, as Definition 31 was for the ControlledByCurrent

relation. In this case, it would have been sufficient to use that defining form,

CValve, rather than ControlledByCurrent. Of course, this alternate form may

contain spurious symbols which must be "reformulated" away. The point here is

that the cause of this reformulation was not in the first step (of exposing some

constant), but rather in eliminating some constant (here, the one inadvertently

exposed in the first step).

A. 10 Notes from Chapter 10

Note:10-1. Diffuse "Abstractionness" Measure:
(from pages 55, 162 and 222)

Most recognized abstractions tend to be fairly specific relations, often involving

many arguments. This note begins with an intuitive argument for why this may

be true and concludes with a proposal for a non-boolean measure for re-usability.

At one extreme, consider a formula with a single argument, consisting of a

single clause: e.g\, (p(x) = Kirchoff i(a;). While such a formula might not be

useful in-and-of-itself (that is, it may not be sufficient to solve some standard

problem), it might prove a useful building block of other more useful formulae.

This general claim holds for formulae consisting of relatively few clauses:31 that

is, there may be some utility to supplying names to "small" general relations

which are not, by themselves, abstractions. However, the number of formulae

with n clauses grows combinatorially with n, and it becomes increasingly less

cost-effective to continue naming all such specific formulae. This suggests that

people begin focusing their names to relatively few of these n-clause formulae,

selecting only the ones which have proven to be directly useful. This argues that,

31Hcre "clause" refers to any member of the leaf decomposition of the formula; see Subsection 6.2.3.



A-58 APPENDIX A. NOTES FROM THE TEXT

for large n, the only named formulae of n clauses are the relevant ones, i.e., are the

ones which constitute coherent and complete clusters of clauses. This implies that

any relation (read "reified formula") which corresponds to a non-trivial cluster of

clauses will be useful: i.e., an abstraction.

Now consider the further heuristic that the number of arguments of a relation

tends to be positively correlated with the number of its clauses. This suggests

that m-ary relations tend to be relevant, for large m. This provides an intuitive

justification for the claim that m-ary relations (for m > 1) are more significant

than unary features. This principle is discussed in [Gen80b] and [Car81b].

Despite these arguments, the current NLAG system applies a boolean condi-

tion: certain formulae are deemed re-usable (these are the atomic formulae which

axe based on the relations tagged as "abstractions"), and every other formula is

considered totally un-re-usable. The "Find Maximally General Common Rela-

tion" analogy system proposed in Section 7.6.4 also uses a boolean measure of

re-usability, viz., one which ranks all and only relations as re-usable.

Perhaps we should rank some relations as more re-usable than others, via a

multi-valued (or even continuous) "re-usability" measure? This measure would

probably rank certain relations very highly (like our canonical abstractions, RKK
and Group), and others less highly, like the simple unary relations (e.g., Kirchof f l) .

Most likely, it would leave arbitrary, un-reified formulae at 0.

The future analogy system would take this measure into account when finding

and ranking useful analogies. This proposal, however, is but fodder for future

work.

Note:10-2. How to Variabilize:
(from page 223)

Consider again OhmsLaw, now written out in prefix notation:

Vd (Resistors d) =J>

(= (VoltageDrop (junction d 1), (junction d 2), id]) (A25)

(* (Current (junction d 1) d) (Resistance d) ) )



A.10. NOTES FROM CHAPTER 10 A-59

Which terms should be variabilized? We can think of every term as a variable

(see Equation A.26), and consider what constraints it must satisfy. (The result is

something like a Ramsey sentence, cf. [Gly80].) Given our partial interpretation

semantics, some symbols may be forced to be a single value — e.g., perhaps the

only interpretation for ?7 is the multiplication symbol, *. Others, like the ?8 [nee

Current), should clearly be variables, which can have multiple instantiations. But

what about ?4 — must it be junctions? It is in the middle; as we discussed in

Note:4-1, we may want to talk about freeway-intersections.

Vrf (?1 d) =>
d ?5), (?4 d ?6), [d]) (A26)

d ?5) d) (?9 d) ) )



 



Appendix B

Data for the Experiments

This appendix includes details of the NLAG system and of the experiments run.

SubAppendix B.I presents NLAG's actual code, embellishing Chapter 6's descrip-

tion. The other subappendices provide data associated with the experiments de-

scribed in Chapter 7. SubAppendix B.2 explicates the contents of the initial theory,

ThcF- SubAppendix B.3 provides an annotated run of the NLAG system, working

through the demonstration sketched in Section 7.2. SubAppendix B.4 describes

the additional facts added to the initial theory for the other studies, discussed in

Subsection 7.2.2 and Sections 7.3 through 7.5, and the results obtained.

B.I Actual NLAG Code

This section presents JVLAG's actual code, listed in a breadth-first order. This

system of rules is run by the MRS backward-chaining routine, BC, as called by

TRUEP. (This actually uses a slight variant of the standard version of BC, modified

only by the additions discussed in Chapter 6.)

The purpose of this code is to convey the basic organization of the modules and

to illustrate the flow of information. It is not to present a specific detailed account

of what each module does. This is why many nuances of the code are not explained

in detail. For example, each of the relation symbols which is underlined below is

"performed" by an attached procedure. A coarse description of the associated LISP

A-60



 



B.I. ACTUAL NLAG CODE A-61

code appears at the end, in alphabetical order.

(if (and (ComAbs $im $Purpose $Abst $fs $ft $th)

(Verify $Purpose $th ($Abst . $ft) ))

(NLAG $IN $Purpose ($Abst . $fs) ($Abst . $ft) $th))

(if (and (Find-Kernel $Map $Purpose $facts $ti)

(Inst-Source $facts $tl ($Abst . $fs))

(Inst-Target $Map $Purpose $Abst $fs $ft $t2))

(ComAbs $Map $Purpose $Abst $fs $ft $t2))

(if (xor (H-jk1 $M $Q $facts $Th)

(AllLexIn $M $Q $facts $Th))

(Find-Kernel $M (Query $Q) $facts $Th))

(if (and (rsublst $M $Q $Q2)

(unknown (= $Q $Q2))

(Map-Domain $M $d)

(Find-Theory $d $Th)

(Activate-Theory $Th)

(merge-of $f (consider-facts $v $Q2 $f) $facts)

. (DeActivate-Theory $Th) ).

(H-jk $M $Q $facts $Th))

(if (and (current-theory $th)

(merge-of $f (and (Map-Domain $M $d) (member $e $d)

(pr-facts $e $f))

$facts) )

(AllLexIn $M $Q $facts $th))

(if (and (useful-rules $q $r)

(just $r $x . $justs))

(consider-facts (rule $r) $q $justs))

(if (and (useful-constraints $q $r)

1This is the HJK heuristic.



A-62 APPENDIX B. DATA FOR THE EXPERIMENT.

(just $r $x . $justs))

(consider-facts (constraint $r) $q $justs))

(if (FC-FindN $facts $th ($Abst . $fs))

(Inst-Source $facts $th ($Abst . $fs)))

(Generator-Lisp FC-FindN FC-Find-1 FC-Find-Next $i $th $o)

(if (and (make-tgt $Map ($Abst . $fs) $ftQ $nm)

(Conj-TruepN $ftQ $ai $tl)

(Resolve-Exists $tl $al $Purpose $t2 $a2)

(plug $ftQ $a2 ($Abst . $ft)))

. (Inst-Target $Map $Purpose $Abst $fs $ft $t2))

(Generator-Lisp Conj-TruepN Conj-Truep-1 Conj-Truep-Next $x $al $th)

(if (and (Get-Exists $al $vs)

(Get-Relevant-Facts $vs $tl t $facts)

(Satisfy-Facts $vs $facts $Purpose $a2)

(Compose-Map $al $a2 $a3))

(Resolve-Exists $tl $al $Purpose ($tl . $a2) $a3))

(if (and (Useful $Purpose $th ($Abst . $ft) )

(Check-Consistent $th)

(Check-Dep-Th $th) )

(Verify $Purpose $th ($Abst . $ft) ))

(if (truep-given $Q $th $al)

(Useful (Query $Q) $th $ca))

(if (and (Split-Facts $vs $facts ($mult . $ps))

(Single-Props $ps $pcl)

(Order-Cands $pcl $Purpose $pc2)

(Find-Best-Cand $pc2 $a2)

(Consistent-List $mult $a2) )

(Satisfy-Facts $vs $facts $Purpose $a2))

(if (and (Weight-By-Lookup $pcl 1 $pc2)



B.i. ACTUAL NLAG CODE A-63

(Weight-By-Assoc $pc2 $Query 5 $pc3)

(Weight-By-CommonTheory $pc3 $Query 10 $pc4)

(Order-All $pc4 $pc5))

(Order-Cands $pcl (Query $Query) $pc5))2

Many of the above relations — including unknown, if, and, member, Generator-

Lisp — are defined in MRS. The interested reader is referred to [Rus85] for a

description of their operations. (That manual also describes the notational con-

ventions used, including prefacing the name of each variable with a dollar-sign and

using the dot syntax ( (a . $b) ) to refer to a sublist.)

Other relations perform exactly what their name implies. For example, "xor"

is exclusive or, of course; and plug corresponds to the MRS subroutine of the same

name. Similarly, merge-of is like MRS's bagof, but it assumes that each binding

is a ordered list and merges them together.

Now for the other relations:

Activate-Theory, DeActivate-Theory: These relations work by side effect, caus-

ing an MRS theory (its sole argument) to be activated or deactivated, respec-

tively.

(Check-Consistent $th) holds when the theory bound to $th is found to be con-

sistent. This check involves individually removing each of the conjectures

associated with this theory, and attempting to prove its negation in that

diminished context. (This process assumes that the base theory (sans con-

jectures) is consistent, and that the (TRUEP '(not a)) procedure call is

effective.)

(Check-Dep-Th $th) holds when the user approves of all of the conjectures asso-

ciated with the theory bound to $th.

(Compose-Map $al $a2 $a3) means that $a3 is bound to the mapping derived by

composing the mappings associated with $ai and $a2. Hence, (Compose-Map
2This rule implements the ordering described on page 127 in Subsection 6.2.3.



A-64 APPENDIX B. DATA FOR THE EXPERIMENTS

((current . flow-rate)) ((?2 . pressure-drop)) ((current . flow-

rate) (?2 . pressure-drop)) holds.

Conj-Truep-i, Conj-Truep-Next: These relations implement the CTruep facility;

see Subsection 6.2.3. Conj~Truep-l sets up the context and returns the first

answer; Conj-Truep-Next returns the subsequent values.

(Consistent-List $mult $a2) first plugs each of the propositions bound to $mult

with the substitution bound to $a2. This relationship holds when each of these

resultant propositions is found to be consistent with the current theory.

(Current-Theory $th) means that $th is bound to the currently active theory.

FC-Find-1, FC-Find-Next: These relations implement the FC-Find facility; see

Subsection 6.2.2. FC-Find-i sets up the context and returns the first answer;

FC-Find-Next returns the subsequent values.

(Find-Best-Cand $pc $al) holds when $al is bound to the best remaining can-

didate for a binding of the existential variables. This requires examining the

cross product of the possible values for each variable; this is encoded by $pc.

This relation is implemented as a generator, returning a single value each

time.

(Find-Theory $d $Th) means that $Th is bound to the most general theory as-

sociated with the elements of the list $d. Here, (Find-Theory (current)

electr ic) holds.

(Get-Exists $ai $vs) means that $vs is bound to the list of existential variables

which appear in the value associated with $al. Hence, (Get-Exists (rkk

flow-rate ?2 ?3 ?4) (?2 ?3 ?4)) holds.

(Get-Relevant-Facts $vs $t l t $facts) means that $facts is bound to the

list of derivable facts which each lexically contain one of the existential vari-

ables which appear in the value associated with $vs. $tl is bound to the most

complete (temporary) theory which contains those propositions.



B.l. ACTUAL NLAG CODE A-65

(make-tgt $map $fsQ $ftQ $nm) means that $ftQ is bound to target abstrac-

tion instance. Hence, (make-tgt ((current . flow-rate)) (rkk cur-

rent voltage-drop resistance res is tors) (rkk flow-rate ?2 ?3 ?4) $ni

holds.

(Map-Domain $m $d) means that $d is bound to the domain of the mapping $m.

Hence, (Map-Domain ((current . flow-rate)) (current)) holds.

(Order-All $pc4 $pc5) holds when the sorted form of the propositions bound to

$pc4 is bound to $pc. Each entry associated with $pc4 consists of both a

proposition and a numeric value; the sorting is based on that numeric value.

(Pr-Facts $e $f) means that $f is bound to the set of facts currently known

which contain the symbol to which $e is bound.

(rsublst $m $q $q2) means that $q2 is bound to the result of applying the in-

verse of the mapping $m to the expression $q. Hence, (rsublst ((current .

flow-rate)) (flow-rate j-wc-a pipel sO $fr) (current j-wc-a pipel

sO $fr)) holds.

Single-Props: finds all bindings which are consistent with the single-variable ex-

pressions. This corresponds to the first part of Resolve-Exists, and thence to

the "1-Consist" tests reported later.

Split-Facts: is used to divide up the facts which deal with the existential variables.

(truep-given $q $th $al) holds when the query bound to $q returns an answer

(bound to $al) when run in the context of the theory bound to $th.

Useful-Rules, Useful-Constraints: These relations are used to find the rules

(respectively, constraints) which might be used to determine the value of its

first argument.

Overall Storage Requirements:

A total of 12 theories (each in its own file) are used in the experiments; these



A-66 APPENDIX B. DATA FOR THE EXPERIMENTS

require 116,741 bytes. NLAG also had access to an additional 12 theories, using

an additional 39,672 bytes. These other theories provided additional test cases

to the NLAG system. Some encode other lumped element linear systems. Others

hold other types of information relating to current, like wave-guides, as well as

less related things, e.g., matrices and programs (the latter in a program-apprentice

style).

An additional 154,985 bytes of source code, divided into 18 files, went into

overhead facilities (including some of the features described in Section 6.2).

The entire system lives on Diablo, a VAX 11/780 running the Unix^m^ operating

system, Version 4.2.

B.2 Initial Theory

We divide the initial knowledge base into four categories. The first, shown in

Sub Appendix B.2.1, describes general facts; this information is applicable to al-

most all domains (and in particular, to the domains of electricity and hydraulics).

It includes the definitions of all the abstractions present. The second, shown in

SubAppendix B.2.2, lists the facts initially known about the source domain of elec-

tricity, EC. Subappendix B.2.3 shows the few facts initially known about the target

domain of hydraulics, FS. (The analogically derived conjectures extend this do-

main.) Finally, SubAppendix B.2.4 lists the facts which define the target problem,

"Find the flowrate".

In general, only the "primitive" facts are shown. Once these propositions are

asserted, other derivable facts may be stored as well. (As the one exception, some

of the facts shown at the end of SubAppendix B.2.2 are derived.)

B.2.1 General Information

This subappendix summarizes the general information included in the initial theory.

Using MRS's theory context mechanism, this information is partitioned into several

logical "theories", each in its own physical file. After sketching these theories, we



B.2. INITIAL THEORY A-67

focus on the least general of these general theories, LELS.

Hierarchy of Theories: From the most general down, these theories are

global holds the information needed for MRS to work. (Much of it comes with the

core MRS system.) It includes the basic hierarchy of terms (e.g., (subclass

function relations)), descriptions of the core MRS relations (e.g., "if",

"=" "member" and "function"), and the meta-level facts which describes

much of MRS's processing (e.g., "tostash" facts). It also houses the essential

facts about things like arithmetic operators (e.g., "+"), files and theories.

This requires about 450 propositions. An additional 145 propositions are

used to store the context associated with each term. (This is used especially

by Generator#2; see Subsection 7.2.2.)

domain holds both the domain specifications for the various relations and the

information required to use these facts. An example fact is (domain-spec

domain relat ions integers classes), which means that domain is a re-

lation which takes three arguments; the first is a relation, the second is an

integer and the third, a class. (This theory includes about 30 propositions.)

functional holds various relations used to manipulate relations. For example, it

defines the starring relation, which could be used to generate the ancestor

relation from parent. (This theory includes about 40 propositions.)

class holds a more elaborate hierarchy of terms and additional facts about the

connectives, e.g., subclass*. (This particular function is defined using the

assertion (starring subclass subclass*).) (This theory includes over 100

propositions.)

com-abs holds the two facts which define the abstraction relation.

genl-info holds general information about the world. (By contrast, most of the

facts described above were about MRS operators and relations.) This includes



A-68 APPENDIX B. DATA FOR THE EXPERIMENTS

general facts about physical objects, people, time, composition of objects, etc.

It also describes some mathematical entities, like sin and cos. (This theory

includes about 75 propositions.)

lels holds general facts about lumped element linear systems. Most of its 127 facts

axe shown below.

(We later consider two additional theories, t/ur., algebra and number. These are

discussed in Section B.4.)

LELS Theory:
Facts about port, junctions, etc.

(mem port functions)

(domain-spec port devices integers junctions)

(mem junctions physical-objects)

(mem sO states)

General typing information about the abstractions and related relations.

(domain-spec kirchoff1 functions)

(domain-spec kirchoff2 functions)

(domain-spec conserved-thru functions classes)

(domain-spec ohmslaw functions functions functions classes)

(domain-spec capac-Law functions functions functions classes)

(domain-spec induct-Law functions functions functions classes)

(mem Drop-Of functions)

(domain-spec Drop-Of functions functions)

(domain-spec Wire-Like classes classes)

(mem kk abstract-reins)3

3This forward chains to assert (abstraction kk).



B.2. INITIAL THEORY A-69

(domain-spec kk functions functions)

(mem rkk abstract-reins)

(domain-spec rkk functions functions functions classes)

(mem ckk abstract-reins)

(domain-spec ckk functions functions functions classes)

(mem lkk abstract-reins)

(domain-spec lkk functions functions functions classes)

Rules which interrelate these concepts:

(Page A-74 shows some conclusions derived from these rules.)

(if (and (domain-spec $x . $1)

(member states $1))

(state-dependent $x))

(if (and (port $x 1 $ji) (port $y 1 $jl)

(port $x 2 $]2) (port $y 2 $j2))

(connected-in $x $y parallel))

(if (and (port $x 2 $jl) (port $y i $jl))

(connected-in $x $y series))

(if (drop-of $ct-l $ct)

(constraint (+ $v2 $vd $vl)4

(and (port $x 1 $jl)

(port $x 2 $J2))

($ct $jl $j2 $s $vd)

($ct-l $jl $s $vl)

($ct-l $j2 $s $v2)) )

(if (kirchoffl $tt)

(constraint (num-= (+ . $vs) 0.0)



A-70 APPENDIX B. DATA FOR THE EXPERIMENTS

(and (bagof $d (port $d $i $j) $ds)

(form-list $d $ds ($tt $j $d $s +NewVar+) $curs)

(finals $curs $vs))5

($tt $j $x $s $e) . $curs))

(if (conserved-thru $tt $load)

(constraint (+ $cl $c2 0.0)

(and (mem $x $load)

(port $x $i $ji)

(port $x $k $j2)

« $i $k))

($tt $ji $x $s $cl)

($tt $j2 $x $s $c2)))

(if (ohmslaw $tt $ct $rt $load)

(constraint (* $c $r $vd)

(and (port $x 1 $ji)

(mem $x $load)

(port $x 2 $j2))

($rt $x $r)

($ct $ji $j2 $s $vd)

($tt $jl $x $s $c)) )

(if (induct-Law $tt $ct $indt $ind-load)

(constraint (* $1 $vd $di)

(and (port $x 1 $jl)

(mem $x $ind-load)

(port $x 2 $j2))

($indt $x $1)

($ct $jl $J2 $s $vd)

4See Point MRS2 in Subsection 6.2.4 for a description of this constraint syntax.
5These clauses are used to bind the variable $curs to a set of propositions of the form, e.g.,

( (flowrate j - a dl s3 $1) (flowrate j - a d2 s3 $2) ...(flowrate j - a dn s3 $n) ),where
j - a is the junction shared by the devices dl through dn, during situation s3. The variable $vs is
bound to the list of final variables, here, to ($1 $2 .. .$n).



B.2. INITIAL THEORY A-71

($tt $jl $x $s

(d-dt $tt $ji $x $s $di)) ) 6

(if (capac-Law $tt $ct $capt $cap-load)

(constraint (* $c $dv $i)

(and (port $x i $jl)

(mem $x $cap-load)

(port $x 2 $j2))

($capt $x $cl)

(minus $cl $c)

($ct $jl $j2 $s $v)

($tt $jl $x $s $i)

(d-dt $ct $jl $j2 $s $di))

The rules below convey type information.

(if (KK $tt $ct)
(and (mem $ct functions)

(domain-spec $ct junctions junctions states numbers)

(mem $tt functions)

(domain-spec $tt junctions devices states numbers)))

(if (ohmslaw $tt $ct $rt $load)

(and (mem $rt functions)

(domain-spec $rt $load numbers)

(subclass* $load devices))

(if (capac-Law $tt $ct $capt $cap-load)

(and (mem $capt functions)

(domain-spec $capt $cap-load states numbers)

(subclass* $cap-load devices)) )

6This d-dt relation is used to express derivative with respect to time. It was never implcmexited
in its full generality; instead, it utilized only a few specific patterns.



A-72 APPENDIX B. DATA FOR THE EXPERIMENTS

(if (induct-Law $tt $ct $indt $ind-load)

(and (mem $indt functions)

(domain-spec $indt $ind-load states numbers)

(subclass* $ind-load devices)) )

Finally, the definitions of the abstractions:

(if (and (kirchoff1 $tt)

(kirchoff2 $ct) )

(kk $tt $ct))

(if (and (kk $tt $ct)

(conserved-thru $tt $load)

(ohmslaw $tt $ct $rt $load) )

(rkk $tt $ct $rt $load))

(if (and (kk $tt $ct)

(capac-Law $tt $ct $capt $cap-load) )

(ckk $tt $ct $capt $cap-load))

(if (arid (kk $tt $ct)

(induct-Law $tt $ct $indt $ind-load) )

(lkk $tt $ct $indt $ind-load))

B.2.2 Initial Electric Facts, EC

(kirchoff1 current)

(kirchoff2 voltage-drop)

(conserved-thru current Elect-Devices)

(ohmslaw current voltage-drop resistance Elect-Devices)

(capac-Law current voltage-drop capacitance capacitors)

(induct-Law current voltage-drop inductance inductors)



B.2. INITIAL THEORY A-73

(mem batterys classes)

(mem resistors classes)

(mem wires classes)

(mem capacitors classes)

(mem inductors classes)

(mem amperes units)

(mem volts units)

(mem coulombs units)

(mem ohms units)

(mem voltage functions)

(domain-spec voltage junctions states numbers)

(units-of voltage 3 volts)

(mem voltage-drop functions)

(domain-spec voltage-drop junctions junctions states numbers)

(units-of voltage-drop 4 volts)

(mem current functions)

(domain-spec current junctions devices states numbers)

(units-of current 4 amperes)

(mem resistance functions)

(domain-spec resistance resistors numbers)

(units-of resistance 2 ohms)

(mem capacitance functions)

(domain-spec capacitance capacitors numbers)

(units-of capacitance 2 farads)

(mem inductance functions)

(domain-spec inductance inductors numbers)

(units-of inductance 2 henrys)

(mem volt-batt functions)

(domain-spec volt-batt batterys numbers)



A-74 APPENDIX B. DATA FOR THE EXPERIMENTS

(units-of volt-batt 2 volts)

(dimensions amperes (divides coulombs seconds))7

(dimensions volts (divides (times nev/tons meters) coulombs))

(dimensions joules (times newtons meters))

(dimensions ohms (divides volts amperes))

(UnitOf volts voltage)

(UnitOf ohms resistance)

(UnitOf amperes current)

(UnitOf coulombs quantity)

(wire-like wires Elect-Devices)

(subclass wires Elect-Devices)

(subclass resistors Elect-Devices )

(drop-of voltage voltage-drop)

Rules:

(if (and (mem $b batterys)

(port $b 1 $ji)

(port $b 2 $j2)

(volt-batt $b $v))

(voltage-drop $jl $j2 $s $v))

The facts below are all derived by forward chaining from the facts and rules above.

(if (and (mem $w wires)

(port $w 1 $ji)

(port $w 2 $j2))

(voltage-drop $jl $j2 $s 0.0))

7 This symbolically describes the dimensions of these units.



B.2. INITIAL THEORY A-75

(constraint (+ $cl $c2 0.0)

(and (mem $x elect-devices)

(port $x $i $jl)

(port $x $k $j2)

« $i $k))

(current $jl $x $s $cl)

(current $j2 $x $s $c2))

(constraint (* $c $r $vd)

(and (port $x 1 $jl)

(mem $x elect-devices)

(port $x 2 $J2))

(resistance $x $r)

(voltage-drop $ji $]2 $s $vd)

(current $jl $x $s $c))

(constraint (num-= (+ . $vs) 0.0)

(and (bagof $d (port $d $i $j) $ds)

(form-list $d $ds (current $j $d $s +NewVar+) $curs)

(finals $curs $vs))

(current $j $x $s $e) . $curs) ))

B.2,3 Initial Hydraulics Facts, FS

(subclass water-devices devices)

(subclass pumps water-devices)

(subclass tanks water-devices)

(subclass tubes water-devices)

(subclass pipes tubes)

(subclass thin-pipes tubes)

(subclass orifices tubes)

(mem pressure functions)



A-76 APPENDIX B. DATA FOR THE EXPERIMENTS

(domain-spec pressure junctions states numbers)

(units-of pressure 3 pressure-units)

(mem pressure-drop functions)

(domain-spec pressure-drop junctions junctions states numbers)

(units-of pressure-drop 4 pressure-units)

(mem flow-rate functions)

(domain-spec flow-rate junctions devices states numbers)

(units-of flow-rate 4 meters3-by-sec)

(mem cross-section functions)

(domain-spec cross-section tubes numbers)

(units-of cross-section 2 square-meters)

(mem pipe-charact functions)

(domain-spec pipe-charact pipes numbers)

(mem Cd-of functions)

(domain-spec Cd-of tubes numbers)

(units-of Cd-of 2 dimension-less)

(mem pipe-shape functions)

(domain-spec pipe-shape Pipes shapes)

(mem water-height functions)

(domain-spec water-height tanks states numbers)

(units-of water-height 3 meters)

(mem Pump-Press functions)

(domain-spec Pump-Press Pumps numbers)

(units-of Pump-Press 2 pressure-units)

(if (and (cross-section $p $cs)

(cd-of $p $cd)

(/ $cd $cs $pc))

(pipe-charact $p $pc))8



A-78 APPENDIX B. DATA FOR THE EXPERIMENTS

(mem pipel pipes)

(mem pipe2 pipes)

(mem pumpl pumps)

(mem j-wc-a junctions)

(mem j-wc-b junctions)

( i f (mem $p pipes)

(pipe-shape $p straight))9

B.3 Run# 1-1 Data

This subappendix elaborates the description of the first demonstration, summa-

rized in Section 7.2. SubAppendix B.3.1 first shows a transcript of the actual run.

Subsequent subappendices present the specific details suggested by parts of the

transcript. SubAppendix B.3.2 describes the set of kernel facts returned by Find-

Kernel. SubAppendix B.3.3 presents the actual facts proposed for each instantiation

of each abstraction considered (rkk, kk, lkk and ckk). In addition to these conjec-

tures themselves, it also includes their entailments — i.e., the addition consequences

found by forward-chaining from them. (This is the information used to constrain

selection of possible values for the existential variables.) SubAppendix B.3.4 sum-

marizes the results, listing the various abstraction instances which are returned by

ComAbs.

B.3.1 Trace of NLAG's Actual Run

This subappendix presents an actual transcript of the NLAG system, during Run#l-

1. At the end of this run is a list of points, elaborating several of the issues which

arose.

Much of this trace information is included only for explanation and documenta-

tion. They are controlled by various tracing flags. If all were turned off (e.g., during

°This states that all pipes are straight.



B.2. INITIAL THEORY A-77

(if (pipe-shape $p straight)

(cd-of $p 1))

(if (and (mem $b pumps)

(port $b 1 $jl)

(port $b 2 $j2)

(Pump-Press $b $v))

(Pressure-drop $jl $j2 $s $v))

(if (and (mem $b tanks)

(port $b 2 $j)

(water-height $b $s $w)

(press-from-ht $v/ $p))

(pressure $j $v))

(if (and (mem $b tanks)

(port $b 1 $j))

(pressure $j $s 0.0))

B.2A Facts about the Target Problem, PT

(mem sO states)

(cross-section pipel 1000.0)

(cross-section pipe2 1000.0)

(flow-rate j-wc-a pumpl sO -50.0)

(port pumpl 2 j-wc-a)

(port pipel.1 j-wc-a)

(port pipel 2 j-wc-b)

(port pipe2 1 j-wc-a)

(port pipe2 2 j-wc-b)

(port pumpl 1 j-wc-b)

8Two comments: [1] This rule is but a crude approximation. [2] Notice tliere are no primitive facts
stored which describe the pipe-charact of any specific pipe. Thanks to this rule, this system can
derive its values as they are needed.



B.3. RUN#1-1DATA A-79

a production run), the user would only see the questions asked. A nice intermediate

setting allows NLAG to print out only those questions and the abstraction currently

being considered.

To describe the information shown below: Everything typed by the user appears

underlined. My subsequent comments appear in this font, against the right side of

the page.

The -> appearing on the far left is Franz Lisp's prompt. Interspersed below is

the value of the to ta l - tasks variable, which tells how many tasks have been run

at this point, before executing the current task. It is a list of dotted pairs. The

first element of each is tag for a particular type of task and the second is a count of

how many tasks of this type have been run. (Point Trace2, at the end of this trace,

presents a summary of the various task types.)

This trace differs from the description in the text is a few minor ways: [1]

essentially everything shown below is in lower-case; [2] every token, including ab-

stractions and procedure names, appear in the same font; and [3] some names are

slightly different. As three representative samples, flow-rate refers to FlowRate,

pipe-charact to PipeCharacter, and ohmslaw to Ohms.

Finally, I did perform some cosmetic modifications to the actual output; basically

to reformat it to fit nicely on the page. (I also explicitly mention the few places

where some irrelevant part of the dialogue is flushed.)



A-80 APPENDIX B. DATA FOR THE EXPERIMENTS

This is run Run#M, first performed 10/X/84; rerun 2/V/85. To distinguish it:

It uses Generator^l, and so ranks highest the relations subclass* and mem. It

does include the HMGA heuristic. The initial theory has only the four abstractions

shown on page 140; in particular, it does not include rlkk, rckk, lckk or rlckk.

-> (nlag)

The (nlag) routine performs some overhead, and then calls Truep on the
expression

(nlag (AH) (query (PT)) $fs $ft $th),
where (AH) is the analogical hint and (PT) is the target problem. It re-
turns bindings for the final three variables: $f s corresponding to the source
fact (e.g., (rkk current voltage-drop resistance resistors)^, $ft,
to the target fact /e.g., (rkk flow-rate pressure-drop pipe-character
pipes)^ and $th, to the resulting theory (e.g., %Q"). This theory holds the
conjectures needed to satisfy this target fact, i.e., the leaf residue of the tar-
get fact.
Notice that MRS designates variables by names which begin with "$".

About to run the task

(find-kernel ((current . flow-rate))

(query (flow-rate j-wc-a pipel sO $fr))

$677 $678)
NLAG just entered the Find-Kernel module, on this particular set of ar-
guments. The analogical hint, "((current . flow - r a t e ) ) *, and target
problem "(query (flow-rate j-wc-a pipel sO $fr ) )" appear promi-
nently.

Timing: 4
((bcdisp . 4))

The figure on the top line (beside "Timing:") tells the number of tasks run
so far. We see here that the overhead has taken 4 steps. (Point Tracel
explains why this is used as a measurement of time.) The next line is a
break-down of the tasks actually executed. So far, all of the tasks have been
"'bcdisp*. Point Trace2 explains all of the different tasks.

About to run the task
(inst-source (pi107 pl205 pllO8 pl206 pllOB pl203)

electric ($674 . $676))

Find-Kernel has finished, and passed its result, the list (pi 107 p!205
pi 108 pl206 pi 105 pl203), to the next process, Inst-Source. This list
represents the kernel of relevant source facts; SubAppendix B.3.2 explicates
these propositions.

Timing: 37

((bcdisp . 33) (succeed . 4))

* * * Abstraction: rkk * * *



B.3. RUN#1-1DATA A-81

About to run the task

(inst-target ((current . flow-rate))

(query (flow-rate j-wc-a pipel sO $fr))

rkk (current voltage-drop resistance elect-devices)

$675 $th)

NLAG has proposed the rkk abstraction. Here, at the start of the 51th step
(see below), it starts the Inst-Target task.

Timing: 51

((bcdisp . 41) (succeed . 5) (ff-disp . 3) (fc-only . 2))

[Conj-Bcl] is conjecturing that (kirchoffl flow-rate) is true!

into theory t5

Conj-Bcl is a submodule of Inst-Target. Here, it is considering the con-
jecture (kirchoffl f low-rate). It stores these proposals in temporary
theories; this first one is stored in the theory *t5". The contents of this
temporary theory (as well as the others) appear in Subappendix B.3.S.

[Conj-Bcl] is conjecturing that (kirchoff2 ?2) is true!

into theory t6

As discussed in Subsection 6.2.3, CTruep uses dummy existential variables,
such as this "12", during its first sub-step, CTruep-1.

[Conj-Bcl] is conjecturing that (conserved-thru flow-rate ?4) is true!

into theory t7

[Conj-Bcl] is conjecturing that (ohmslaw flow-rate ?2 ?3 ?4) is true!

into theory t8

Now for the real work: instantiating these three existential variables. Each
term represents an argument of the rkk relation. Associated with each
is a collection of propositions implied by the various conjectures. These
propositions are stored in the theory t8 (which includes the theories t5
through tl). See SubAppendix B.3.S.

About to run the task
(resolve-exists t8

(($TH$ . t8) ($704 . ?2) ($706 . ?4) ($705 . ?3) (t .

(query (flow-rate j-wc-a pipel sO $fr))

$th $703)

Timing: 76

((bcdisp . 61) (succeed . 6) (ff-disp . 3) (fc-only . 2)

(conj-bc . 4))

The conj -be tasks are called by the CTruep process. Each indicates one
conjecture which has been posited.

Initial values for ?3: (pump-press water-height pipe-shape cd-of pipe-charact

cross-section flow-rate pressure-drop pressure drop-

of port units-of / * - +)



A-82 APPENDIX B. DATA FOR THE EXPERIMENTS

This ?3 existential variable serves as a place holder for rkk'a third argu-
ment. Using the proposition (mem ?3 functions) as a generator (it is
shown on the next line), we see there are 16 possible values. This includes
various "irrelevant" functions /'e.g., arithmetic ones) which are soon elimi-
nated. (Run#l-2 is based on another possible generator. While this gener-
ator avoids these particular extraneous candidates, it does consider others.
See Subsection 7.2.2.)

Using (mem ?3 functions)
Legal values for ?3: ((cross-section . 2) (pipe-charact . 2) (cd-of . 2)

(pump-press . 2))
After a quick pruning, only these 4 possible values remain for ?3. The
number following each entry tells the number of sought facts which were
primitively stored for this possible value. This is later used to help order
these entries. (See page 121 in Subsection 6.2.S and Note:3-1.)

Initial values for ?4: (devices water-devices pumps tanks tubes pipes thin-
pipes orifices)

Using (subclass* ?4 devices)
Legal values for ?4: ((orifices . 1) (thin-pipes . 1) (pipes . 1) (tubes

i) (tanks . 1) (pumps . i) (water-devices . 1)
(devices . i))

We see above that all 8 values for ?4 (rkk's fourth argument) remain.

I n i t i a l values for ?2: (pump-press water-height pipe-shape cd-of pipe-charact
cross-section flow-rate pressure-drop pressure drop-
of port units-of / * . - + )

Using (mem ?2 functions)
Legal values for ?2: ((pressure-drop . 6))

We are almost to the end of ComAbs processing. It has found both the
abstraction rkk and this set of possible instantiations. The array below
shows the number of entries generated for each existential variable followed
by the number which pass the first consistency check, noted by 1-Consist
below. (This is described on page 125 of the text. This data also appears in
Table 7-2.)

Var
?3
?4
?2

Total

Generated
16
8

16

2048

1-Consist
4
8
1

32

This leaves only a scant 32 possible binding lists for this rkk abstraction,
each formed by appending FlowRate to the front of an entry from the cross-
product of these sets.10

10The fact that each entry in this table is a power of 2 is a curious coincidence. In earlier runs, with
slightly different data, this was not the case.



B.3. RUN#1-1DATA A-83

Next, Inst-Target tests each of these 32 quadruples. The ones which pass
this test are handed to Verify for another series of pruning tests. (These
tests are described in Subsection 6.1.1.)

##1: (+)
About to run the task

(verify (query (flow-rate j-wc-a pipel sO $fr))
(t8 (?3 . cross-section) (?4 . pipes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cross-section pipes))

This (rkk flow-rate pressure-drop cross-section pipes) target ab-
straction instance is the first entry which ComAbs returns. We now see if
Verify approves.

The (t8 (?3 . cross-section) (?4 . pipes) (?2 . pressure-drop))
notation refers to the theory based on the temporary theory t 8 , but in which
the existential variable ?3 is "aliased" to the constant c ross - sec t ion , etc.
The "##n" before each Verify invocation is included to facilitate subsequent
references to this particular instantiation. The token (+) has been appended
afterward to indicate that this instantiation led to an answer to the target
problem.

Timing: 352
((bcdisp . 255) (succeed . 47) (ff-disp . 3) (fc-only .
2) (conj-bc . 4) (fcdisp . 41))

NLAG does have a crude algebraic simplified and problem solving facility.
Point TraceS mentions that this problem solver is not that smart; this par-
ticular answer was supplied by the user.

In Solve (1)
ExVarsList = ((?3 . cross-section) (?4 . pipes) (?2 . pressure-drop))
Timing: 364

((bcdisp . 267) (succeed . 47) (ff-disp . .3) (fc-only .
2) (conj-bc . 4) (fcdisp . 41))

Found soln: (flow-rate j-wc-a pipel sO 25.0)

So this first J^ analogical inference, (rkk f low-ra te pressure-drop
c ros s - sec t ion p i p e s ) , also passes feT's test: i.e., it does produce a so-
lution to the ( f low-ra te j-wc-a p ipel sO $fr) query. As Verify has
already confirmed that this new conjecture is consistent, it needs only get
the user's acceptance to be added to the theory. Below it asks the user if he
approves of each member of the leaf residue:

Is (kirchoffl flow-rate) reasonable? y

Verify is asking for my approval of this individual conjecture. Typing y
means that I do.

Is (kirchoff2 pressure-drop) reasonable? y
Is (conserved-thru flow-rate pipes) reasonable? y
Is (ohmslaw flow-rate pressure-drop cross-section pipes) reasonable? n



A-84 APPENDIX B. DATA FOR THE EXPERIMENTS

Had I said y, NLAG would have returned this answer. I said no because
this particular proposition is not true, of course. This causes Verify to fail
on this instantiation. By back-tracking, NLAG then asks ComAbs for the
next instantiation.

Timing: 374
((bcdisp . 276) (succeed . 48) (ff-disp . 3) (fc-only .

2) (conj-be . 4) (fedisp . 41))

##2: (+)

About to run the task

(verify (query (flow-rate j-wc-a pipel sO $fr))
(t8 (?3 . cd-of) (?4 . pipes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cd-of pipes))

Timing: 396
((bcdisp . 298) (succeed . 48) (ff-disp . 3) (fc-only .
2) (conj-bc . 4) (fedisp . 41))

In Solve (2)

ExVarsList * ((?3 . cd-of) (?4 . pipes) (?2 . pressure-drop))

Timing: 431
((bcdisp . 331) (succeed . 50) (ff-disp . 3) (fc-only .
2) (conj-bc . 4) (fedisp . 41))

Found soln: (flow-rate j-wc-a pipel sO 25.0)
Conjecture (kirchoff2 pressure-drop) already OKed.

Notice Verify is smart enough to know that this proposition has already
been approved, and so does not even ask. The "(kirchoffl f low-rate)"
ex-conjecture is not even mentioned here, for reasons given in Point TraceS.

Conjecture (conserved-thru flow-rate pipes) already OKed.
Is (ohmslaw flow-rate pressure-drop cd-of pipes) reasonable? n

Once again, I say n as this proposition is not correct.

Timing: 440
((bcdisp . 339) (succeed . 51) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fedisp . 41))

##3: (+)

About to run the task

(verify (query (flow-rate j-wc-a pipel sO $fr))
(t8 (?3 . cross-section) (?4 . tubes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cross-section tubes))

Timing: 452
((bcdisp . 351) (succeed . 51) (ff-disp . 3) (fc-only .
2) (conj-bc . 4) (fedisp . 41))

In Solve (3)

ExVarsList = ((?3 . cross-section) (?4 . tubes) (?2 . pressure-drop))

Timing: 464

((bcdisp . 363) (succeed . 51) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fedisp . 41))



B.3. RUN#1-1DATA A-85

Found soln: (flow-rate j-wc-a pipel sO 25.0)

Conjecture (kirchoff2 pressure-drop) already QKed.

Is (conserved-thru flow-rate tubes) reasonable? y

The above fact is true, if irrelevant.

Is (ohmslaw flow-rate pressure-drop cross-section tubes) reasonable? n

Timing: 473

((bcdisp . 371) (succeed . 52) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

##4: (+)

About to run the task
(verify (query (flow-rate j-wc-a pipel sO $fr))

(t8 (?3 . pipe-charact) (?4 . pipes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop pipe-charact pipes))

Timing: 481

((bcdisp . 379) (succeed . 52) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))
In Solve (4)

ExVarsList = ((?3 . pipe-charact) (?4 . pipes) (?2 . pressure-drop))

Timing: 526

((bcdisp . 422) (succeed . 54) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))
Found soln: (flow-rate j-wc-a pipel sO 25.0)

Conjecture (kirchoff2 pressure-drop) already OKed.

Conjecture (conserved-thru flow-rate pipes) already OKed.

Is (ohmslaw flow-rate pressure-drop pipe-charact pipes) reasonable? n

Timing: 535

((bcdisp . 430) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

NLAG has found the correct answer on this 4ife iteration. At this point,
only 8 questions have been asked, and only 535 tasks have been run. Had I
typed y, NLAG would take 4 more steps before returning this correct answer,
therefore requiring a total o/539 steps.LiIn the interest of finding all possible
solutions, I said no instead.

##5:
About to run the task

(verify (query (flow-rate j-wc-a pipei sO $fr))

(t8 (?3 . cross-section) (?4 . thin-pipes) (?2 . pressure-dro]
(rkk flow-rate pressure-drop cross-section thin-pipes))

Timing: 543

((bcdisp . 438) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

nOf these, 318 steps (60.0%) were spent in the Resolve-Exists module. See Table B-l.



A-86 APPENDIX B. DATA FOR THE EXPERIMENTS

Using bindings ((?3 . cross-section) (?4 . thin-pipes) (?2 . pressure-drop))

Found nil answer to (flow-rate j-wc-a pipel sO $fr).

All four of the previous proposed |~ analogies qualify as legal |~T analogies,
since each leads to an answer to the initial query. Here, this fifth binding
set did not: i.e., it qualifies only as a J~ analogy, not as a |^T one.

Timing: 560
((bcdisp . 455) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

##6:

About to run the task
(verify (query (flow-rate j-wc-a pipe! sO $fr))

(t8 (?3 . cross-section) (?4 . orifices) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cross-section orifices))

Timing: 568
((bcdisp . 463) (succeed . 55) (ff-disp . 3) (fc-only .
2) (conj-bc . 4) (fcdisp . 41))

Using bindings ((?3 . cross-^section) (?4 . orifices) (?2 . pressure-drop)):

Found nil answer to (flow-rate j-wc-a pipel sO $fr).

Timing: 585

((bcdisp . 480) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp .41))

##7:

About to run the task
(verify (query (flow-rate j-wc-a pipel sO $fr))

(t8 (?3 . pump-press) (?4 . pumps) (?2 . pressure-drop))
(rkk flow-rate pressure-drop pump-press pumps))

Timing: 593

((bcdisp . 488) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))
Using bindings ((?3 . pump-press) (?4 . pumps) (?2 . pres sure-drop)):

Found nil answer to (flow-rate j-wc-a pipei sO $fr).

Timing: 624

((bcdisp . 519) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

##8: (+)

About to run the task

(verify (query (flow-rate j-wc-a pipel sO $fr))
(t8 (?3 . cd-of) (?4 . tubes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cd-of tubes))

Timing: 644

((bcdisp . 539) (succeed . 55) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))



B.3. RUN#1-1DATA A-87

In Solve (8)

ExVarsList = ((?3 . cd-of) (?4 . tubes) (?2 . pressure-drop))

Timing: 679

((bcdisp . 572) (succeed . 57) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

Found soln: (flow-rate j-wc-a pipel sO 25.0)

Conjecture (kirchoff2 pressure-drop) already OKed.

Conjecture (conserved-thru flow-rate tubes) already OKed.

Is (ohmslaw flow-rate pressure-drop cd-of tubes) reasonable? n

This is the last question asked.

Timing: 688

((bcdisp . 580) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

##9:

About to run the task
(verify (query (flow-rate j-wc-a pipei sO $fr))

(t8 (?3 . cd-of) (?4 . thin-pipes) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cd-of thin-pipes))

Timing: 696

((bcdisp . 588) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp .41))
Using bindings ((?3 . cd-of) (?4 . thin-pipes) (?2 . pressure-drop)):

Found nil answer to (flow-rate j-wc-a pipei sO $fr).

Timing: 713

((bcdisp . 605) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

##10:

About to run the task
(verify (query (flow-rate j-wc-a pipel sO $fr))

(t8 (?3 . cd-of) (?4 . orifices) (?2 . pressure-drop))
(rkk flow-rate pressure-drop cd-of orifices))

Timing: 721

((bcdisp . 613) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))
Using bindings ((?3 . cd-of) (?4 . orifices) (?2 . pressure-drop)):

Found nil answer to (flow-rate j-wc-a pipel sO $fr).

Timing: 738

((bcdisp . 630) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

The fc'Gnd-ucxt subroutine, seen below, marks the end of NLAG's focus on
the rkk abstraction. /I.e., all of the possible rkk abstraction instances have
been considered.) Fc-Gnd-ncxt now seeks another abstraction which can be
instantiated in the source domain.



A-88 APPENDIX B. DATA FOR THE EXPERIMENTS

To summarize the results so far: ComAhs produced a total of 10 legal \^
analogies, of which 5 are useful (i.e., only 5 satisfied \^T 's requirements).
These are numbered 1,2,3,4 and 8. As shown below, NLAG has used 761
deductive steps so far. The first 37 were spent on overhead and in the Find-
Kernel subroutine. The remaining 724 were devoted to this rkk abstraction.
Notice that about 401 of these 724 steps (about 55%j involved instantiating
the variables. (Point Traced derives this number.)

About to run the task
(fc-find-next (p!107 pl205 pllO8 pl206 pllOB pl203)

electric ($2172 . $2174) $2195 116)
All of the arguments on the second line are overhead.

Timing: 761
((bcdisp . 653) (succeed . 58) (ff-disp . 3) (fc-only .

2) (conj-bc . 4) (fcdisp . 41))

* * * Abstraction: kk * * *
Inst-Source next proposes the abstraction, kk. Point Trace6 discusses why
kk was chosen in this position. Note:6-2 discusses why Inst-Source bothers
to consider kk at all, after rkk had failed.

About to run the task
(inst-target ((current . flow-rate))

(query (flow-rate j-wc-a pipel sO $fr))
kk (current voltage-drop)
$675 $th)

Timing: 779
((bcdisp . 657) (succeed . 59) (ff-disp . 10) (fc-only
. 8) (conj-bc . 4) (fcdisp . 41))

[Conj-Bel] is conjecturing that (kirchoff2 ?2) is true!

About to run the task
(resolve-exists t9

(($TH$ . t9) ($1346 . ?2) (t . t))
(query (flow-rate j-wc-a pipel sO $fr))
$th $1345)

Timing: 792

((bcdisp . 668) (succeed . 60) (ff-disp . 10) (fc-only

. 8) (conj-bc . 4) (fcdisp . 41) (check-out . 1))
Initial values for ?2: (pump-press water-height pipe-shape cd-of pipe-charact

cross-section flow-rate pressure-drop pressure drop-
of port units-of / * - +)

Using (mem ?2 functions)
Legal values for ?2: ((pressure-drop . 8))

There is only a single existential variable to consider, and only a single
possible value it might assume. (Notice this kk target instantiation was a
subgoal of the earlier rkk abstraction target instantiation task. The Super-
Cache facility allowed us to store these intermediate results, making this
search trivial. See Point MRSi in Subsection 6.2.4')



RUN#1-1 DATA A-89

to run the task
erify (query (flow-rate j-wc-a pipel sO $fr))

(t9 (?2 . pressure-drop))

(kk flow-rate pressure-drop))
This t9 theory is identical to the earlier t6, as expected.

;: 898

((bcdisp . 739) (succeed . 76) (ff-disp . 10) (fc-only

. 8) (conj-be . 4) (fedisp . 60) (check-out . i))
bindings ((?2 . pressure-drop)):
nil answer to (flow-rate j-wc-a pipei sO $fr).

;: 973
((bcdisp . 814) (succeed . 76) (ff-disp . 10) (fc-only
. 8) (conj-bc . 4) (fedisp . 60) (check-out . 1))

Onto the third abstraction.

to run the task
:c-find-next (p!107 pl205 pi108 p!206 pilO5 p!203)

electric ($2172 . $2174) $2195 !16)
;: 985

((bcdisp . 826) (succeed . 76) (ff-disp . 10) (fc-only

. 8) (conj-bc . 4) (fedisp . 60) (check-out . 1))

Abstraction: ckk * * *

to run the task

.nst-target ((current . flow-rate))

(query (flow-rate j-wc-a pipel sO $fr))

ckk (current voltage-drop capacitance capacitors)

$675 $th)

;: 995

((bcdisp . 830) (succeed . 77) (ff-disp . 13) (fc-only
. 10) (conj-bc . 4) (fedisp . 60) (check-out . 1))

Bel] is conjecturing that (kirchoff2 ?2) is true!
•Bel] is conjecturing that (capac-law flow-rate ?2 ?10 ?11) is true!

.nto theory til

to run the task
•esolve-exists til

(($TH$ . til) ($1824 . ?2) ($1826 . ?il) ($1825 . ?10) (t . t)

(query (flow-rate j-wc-a pipel sO $fr))

$th $1823)
;: 1013

((bcdisp . 845) (succeed . 78) (ff-disp . 13) (fc-only

. 10) (conj-bc . 5) (fedisp . 60) (check-out . 2 ) )



A-90 APPENDIX B. DATA FOR THE EXPERIMENTS

Initial values for ?10: (pump-press water-height pipe-shape cd-of pipe-charact

cross-section flow-rate pressure-drop pressure drop-

of port units-of / * - +)

Using (mem ?10 functions)

Legal values for ?10: ((pressure .* 3) (water-height . 3))

Initial values for ?li: (devices water-devices pumps tanks tubes pipes thin-

pipes orifices)

Using (subclass* ?11 devices)

Legal values for ?11: ((orifices . 1) (thin-pipes . 1) (pipes . 1) (tubes

1) (tanks . 1) (pumps . 1) (water-devices . 1)
(devices . 1))

Initial values for ?2: (pump-press water-height pipe-shape cd-of pipe-charact
cross-section flow-rate pressure-drop pressure drop-

of port units-of / * - +)
Using (mem ?2 functions)
Legal values for ?2: ((pressure-drop . 8 ) )

##12:

About to run the task

(verify (query (flowrrate j-wc-a pipel sO $fr))
(til (?10 . water-height) (?11 . tanks) (?2 . pressure-drop))
(ckk flow-rate pressure-drop water-height tanks))

Timing: 1301
((bcdisp . 1053) (succeed . 119) (ff-disp . 13) (fc-only
. 10) (conj-bc . 5) (fcdisp . 99) (check-out . 2))

Using bindings ((?10 . water-height) (?11 . tanks) (?2 . ptessure-drop)):

Found nil answer to (flow-rate j-wc-a pipel sO $fr).

Timing: 1318

((bcdisp . 1070) (succeed . 119) (ff-disp . 13) (fc-only

. 10) (conj-bc . 5) (fcdisp . 99) (check-out . 2))

Onto the fourth and final abstraction.

About to run the task

(fc-find-next (pllO7 p!205 pllO8 pl206 pllO5 pl203)
electric ($2172 . $2174) $2195 !16)

Timing: 1345

((bcdisp . 1097) (succeed . 119) (ff-disp . 13) (fc-only

. 10) (conj-bc . 5) (fcdisp . 99) (check-out . 2))

* * * Abstraction: lkk * * *



RUN#1-1 DATA A-91

t to run the task
(inst-target ((current . flow-rate))

(query (flow-rate j-wc-a pipel sO $fr))

lkk (current voltage-drop inductance inductors)

$675 $th)

ng: 1352

((bcdisp . 1101) (succeed . 120) (ff-disp . 14) (fc-only

. 11) (conj-be . 5) (fedisp . 99) (check-out . 2))

j-Bcl] is conjecturing that (kirchoff2 ?2) is true!

j-Bcl] is conjecturing that (induct-law flow-rate ?2 ?13 ?14) is true!

into theory tl3

t to run the task
(resolve-exists tl3

(($TH$ . tl3) ($1957 . ?2) ($1959 . ?14) ($1958 . ?13) (t

(query (flow-rate j-wc-a pipel sO $fr))

$th $1956)

ng: 1370

((bcdisp . 1116) (succeed . 121) (ff-disp . 14) (fc-only

. 11) (conj-bc . 6) (fedisp . 99) (check-out . 3))

ial values for ?13: (pump-press water-height pipe-shape cd-of pipe-charact

cross-section flow-rate pressure-drop pressure drop-

of port units-of / * - +)

g (mem ?13 functions)

1 values for 713: ((pressure . 3) (water-height . 3))

ial values for ?14: (devices water-devices pumps tanks tubes pipes thin-

pipes orifices)

g (subclass* ?14 devices)

1 values for ?14: ((orifices . 1) (thin-pipes . 1) (pipes . 1) (tubes

) (tanks . 1) (pumps . 1) (water-devices . 1) (devices . 1))

ial values for ?2: (pump-press water-height pipe-shape cd-of pipe-charact

cross-section flow-rate pressure-drop pressure drop-

of port units-of / * - +)

g (mem ?2 functions)

1 values for ?2: ((pressure-drop . 8))

t to run the task

(verify (query (flow-rate j-wc-a pipel sO $fr))

(tl3 (?13 . water-height) (?14 . tanks) (?2 . pressure-drop))

(lkk flow-rate pressure-drop water-height tanks))



A-92 APPENDIX B. DATA FOR THE EXPERIMENTS

Timing: 1658

((bcdisp . 1324) (succeed . 162) (ff-disp . 14) (fc-only

. 11) (conj-bc . 6) (fcdisp . 138) (check-out . 3))
Using bindings ((?13 . water-height) (?14 . tanks) (?2 . pressure-drop))

Found nil ansv/er to (flow-rate j-wc-a pipel sO $fr) •

Timing: 1675

((bcdisp . 1341) (succeed . 162) (ff-disp . 14) (fc-only

. 11) (conj-bc . 6) (fcdisp . 138) (check-out . 3))

Are there any other abstractions to consider?

About to run the task
(fc-find-next (pllOT pl205 pllO8 pl206 pllOB pl203)

electric ($2172 . $2174) $2195 !16)
Timing: 1703

((bcdisp . 1369) (succeed . 162) (ff-disp . 14) (fc-only

. 11) (conj-bc . 6) (fcdisp . 138) (check-out . 3))
nil

At this point, NLAG gives up, having tried everything it can. Notice it did
in fact find the correct answer in its search, which I vetoed.

-> (show-info)

Timing: 1708

((bcdisp . 1373) (succeed . 162) (ff-disp . 14) (fc-only

. 12) (conj-bc . 6) (fcdisp . 138) (check-out . 3))

All told, this search required 1708 tasks. A total of 13 f̂  analogies were
considered, only 5 of which produced an answer. These are listed in Sub-
Appendix B.S.\. A total o/6 distinct conjectures were considered for the 4
different abstractions.



B.3. RUN#1-1DATA A-93

Tracel. Why not use CPU Time?

There are several reasons why this run does not show CPU times. The most

important reason is that it is really not important. This system is but a pilot

implementation, one whose raison d'etre is simply to demonstrate the nature of

analogical inference; a functional specification is all I wanted. Since it is not

meant as a production grade system, I did not mind writing it in Franz LISP,

and running it on a relatively slow VAX 11/780 running UNIX^m^. The second

reason is that one can readily estimate the timing cost, using the estimate of 500

Logical Inferences Per Second. (This pertains to MRS running in MacLisp on a

DEC20 running TOPS20 [Gen85]). This means NLAG would reach the desired

answer in a bit over 1 CPU second (about 539/500 second), and full run would

require about 1708/500 « 3.5 CPU seconds.

TVace2. Types of Tasks:

The NLAG process used various types of tasks, whose names appear in the t o t a l -

tasks list seen throughout this trace. This point describes these tasks.

bcdisp is the standard task used by the backward-chainer, BC.

fcdisp is the standard task used by the straightforward forward-chainer, FC.

succeed is used to indicate the successful completion of some earlier task and to

pass along its answer. (These top three axe all described in [Rus85].)

ff-disp) fc-only are used by the Inst-Source forward-chaining module. (Inst-Source

also uses additional bcdisp tasks.)

conj-bc tasks are employed by CTruep. These are used to postulate that some

proposition holds. (CTruep also uses additional bcdisp tasks.)

check-out tasks axe employed by CTruep when trying to re-use data SuperCached

earlier.

Trace3. Constraint Solver:

The problem solver associated with constraint information does a fair amount

of algebraic simplification in its attempt to solve a system of linear equations.



A-94 APPENDIX B. DATA FOR THE EXPERIMENTS

However, there are many places when it knows there is a solution, but is not

clever enough to know what that solution is. (E.g., , In the situation shown in

the trace above, it has 5 linear equations and 5 unknowns.) In these situations,

it simply asks the user for assistance. In this presentation, this asking step has

been flushed and the correct answer, simply volunteered.

Trace4. Number of Resolve-Exists Steps:

It may not be obvious how to compute the number of Resolve-Exists steps. There

ctre 276 deduction steps from the start of Resolve-Exists to the start of the first

Verify call; all are in the service of Resolve-Exists. When this Verify invocation

fails, Resolve-Exists was asked to determine the next candidate. To a first ap-

proximation, Resolve-Exists began immediately after the final question was asked

(at step 377), and returned its answer at the start of the ##2 Verify call, at step

399. Hence, Resolve-Exists required an additional 22 steps to find this second

candidate.

Similarly, we can determine that Resolve-Exists took 12 steps to find the third

abstraction instance, and then 8 steps to find each of the fourth, fifth and ninth

instances. To find the sixth abstraction instance, we as3ume the Resolve-Exists

took over just when the Solve procedure "Found n i l answer to . . . " for the

##5</l proposed abstraction instance, i.e., it began on step 563. Hence, Resolve-

Exists required 8 steps here. Likewise, it took 8 steps to find seventh and tenth

abstraction instance, and 20 to find the eighth. It also used the 21 steps after the

failure of ##10 (on step 741) and the start of the f c-find-next on step 764.

We can use this analysis to find the number of steps required by Verify. Ta-

ble B-l summarizes these numbers. The totals are used in Table 7-3.

Table B-2 provides corresponding figures for the other three abstractions. For

the kk abstraction: Resolve-Exists uses the 106 steps to find candidate ##11

(from step 795 through step 901) plus the 12 steps (from 944 through 956) to

conclude there are no other instances. Similar numbers can be seen for the ckk

and lkk abstractions.

Trace5. Why is (kirchoff 1 flow-rate) not Mentioned?



B.3. RUN#1-1DATA A-95

Abst # # ? Resolve-Exists Verify
rkk 1

2
3
4
5
6
7
8
9

10

2761

223

12
84

8
8
8
20
8
8
236

222

44
21
54
175

17
31
44
17
17

Total 401 284

Notes

1 from Resolve-Exists step 79 through the start of the first Verify, at step 355.

2 from start of the first Verify (step 355) through the last question, at step 377.

3 from that last question (step 377) through the start of the second Verify, at step 399.

4 if we add up these top four instances of Resolve-Exists, we derive the 318 figure used earlier.

5 from last question of ##4 (step 538) through Solve'a NIL answer, at step 563.

6 This reflects List-Targets unsuccessful search for another target instantiation of the rkk ab-
straction. (This is also why this row is tagged "?11".) We attribute all of it to Resolve-Exists
(even though a few steps are probably spent on CTruep-i's behalf).

Table B-l: Deductions for Resolve-Exists and Verify, for the rkk Abstraction



A-96 APPENDIX B. DATA FOR THE EXPERIMENTS

Abst # # ? Resolve-Exists Verify |-T?

kk 11 106 75
12

118 75

ckk 12 288 17
27

315 17

lkk 13 288 17
?14 28

316 ~17 ~ ~

Table B-2: Deductions for Resolve-Exists and Verify, for the other Abstractions

This is because (kirchoff 1 flow-rate) has already been added to the theory,

as a result of the y response given to the question asked at around deduction step

number 377. Of course, this same can be said of the (kirchoff2 pressure-

drop) fact: it has been accepted as well Why then is this second case (dealing

with kirchoff2) mentioned here, but the first case (dealing with kirchoff l) is

not? The problem arises because this second conjecture first appears as (kir-

choff 2 ?2); that is, it is burdened with an existential variable as an argument.

This makes it more difficult to determine the derivability of this fact a priori.

Trace6- Why Pick kk Next?:

As the above trace shows, the abstraction kk is selected before the more specific

ckk and lkk abstractions, even though all three were in the running. As the

HJK "set of support" measure ranks all of these candidates equally, the HMGA

is allows to decide. It choose the most general abstraction, kk, first. (Of course,

this is after rkk had been tried and (apparently) failed. Subsection 5.4.2 explains

why kk is even considered in this situation.)



B.3. RUN#1-1DATA A-97

B.3.2 Source Kernel

pi107: (if (conserved-thru $tt $load)

(constraint (+ $cl $c2 0.0)

(and (mem $x $load)

(port $x $i $jl)

(port $x $k $j2)

(< $i $k))

($tt $jl $x $s $cl)

($tt $j2 $x $s $c2»

pl?05: (conserved-thru current elect-devices)

pi108: (if (ohmslaw $tt $ct $rt $load)

(constraint (* $c $r $vd)

(and (port $x 1 $jl)

(mem $x $load)

(port $x 2 $j2))

($rt $x $r)

($ct $jl $j2 $s $vd)

($tt $il $x $s $c)))

pl206: (ohmslaw current voltage-drop resistance elect-devices)

pi105: (if (kirchoffl $tt)

(constraint (num-= (+ . $vs) 0.0)

(and (bagof $d (port $d $i $j) $ds)

(form-list $d $ds ($tt $j $d $s +NewVar+) $curs)

(finals $curs $vs))

($tt $j $x $s $e) . $curs))

p!203: (kirchoffl current)

Notice that (kirchoff2 voltagedrop) is not included here. This is because

NLAG does not actually do the entire computation of finding the current; instead



A-98 APPENDIX B. DATA FOR THE EXPERIMENTS

it uses various heuristics to guess the needed facts. Since this statement is the only

omitted justification, we see this quick heuristic worked quite well. .

B.3.3 Conjectures Considered

This subappendix presents the set of conjectures which are considered, organized in

terms of the temporary theories involved. That is, each theory houses a particular

conjecture and various entailments. The list below shows the six different theories

mentioned in the above run. In each, one particular conjecture spawned all of the

entries; it is listed first. Each theory also specifies which other theories it includes.

At the end of this subappendix, we provide a brief description of some of the

more obscure propositions.

Theory t5:
This is the topmost temporary theory. It directly includes the permanent wcl

theory, which, recall, which describes the target problem.
pl37i: (kirchoffl flow-rate)

pl520: (if (useconstraints (flow-rate $723 $722 $725 $719)) (flow-rate

$723 $722 $725 $719))

pl558: (constraint (num-= (+ . $735) 0.0) (and (bagof $736 (port $736

$737 $738) $739) (form-list $736 $739 (flow-rate $738 $736 $740

+NewVar+) $741) (finals $741 $735)) (flow-rate $738 $742 $740 $743)

. $741)



B.3. RUN#1-1DATA A-99

Theory t6:

This temporary theory includes t5 . (Since inclusion is transitive, it therefore in-

cludes wci, and all of wcl's parents as well.)

pl472: (kirchoff2 ?2)

pl489: (defined-below ?2 le ls )

pl541: (arity ?2 4)

pl543: (domain ?2 1 junctions)

p!545: (domain ?2 2 junctions)

pl547: (domain ?2 3 states)
p!549: (domain ?2 4 numbers)

pl536: (domain-spec ?2 junctions junctions states numbers)

pl532: (mem ?2 functions)

pi474: (kk flow-rate ?2)

Theory t7:

This temporary theory includes t6.
pl479: (conserved-thru flow-rate ?4)

pl520: (if (useconstraints (flow-rate $723 $722 $725 $719)) (flow-rate

$723 $722 $725 $719))

pl522: (constraint (+ $726 $727 0.0) (and (mem $728 ?4) (port $728 $729

$730) (port $728 $731 $732) (< $729 $731)) (flow-rate $730 $728

$733 $726) (flow-rate $732 $728 $733 $727))



A-100 APPENDIX B. DATA FOR THE EXPERIMENT,

Theory t8:

This temporary theory includes t7.
pi483: (ohmslaw flow-rate ?2 ?3 ?4)

pl520: (if (useconstraints (flow-rate $723 $722 $725 $719)) (flow-rate

$723 $722 $725 $719))

pl518: (if (useconstraints (?2 $723 $724 $725 $721)) (?2 $723 $724 $725

$721))

pl516: (if (useconstraints (?3 $722 $720)) (?3 $722 $720))

pl514: (constraint (* $719 $720 $721) (and (port $722 1 $723) (mem $722

?4) (port $722 2 $724)) (?3 $722 $720) (?2 $723 $724 $725 $721)

(flow-rate $723 $722 $725 $719))

pl489: (defined-below ?2 lels)

pl491: (defined-below ?3 lels)

pl493: (defined-below ?4 lels)

pi5il: (subclass* ?4 devices)

pl512: (mem ?4 classes)

pl504: (arity ?3 2)

p!506: (domain ?3 1 ?4)

pl508: (domain ?3 2 numbers)

pl501: (domain-spec ?3 ?4 numbers)

pl497: (mem ?3 functions)

pl485: (rkk flow-rate ?2 ?3 ?4)



B.3. RUN#1-1DATA A-II

Theory t i l :

This temporary theory includes tiO. The theory tlO is not shown, since it

identical to t6.
pl520: (if (useconstraints (flow-rate $723 $722 $725 $719)) (flow-rate

$723 $722 $725 $719))

pl518: (if (useconstraints (?2 $723 $724 $725 $721)) (?2 $723 $724 $725

$721))

pl688: (if (useconstraints (?10 $1840 $1843)) (?10 $1840 $1843))

pl686: (constraint (* $1837 $1838 $1839) (and (port $1840 1 $1841) (mem

$1840 ?11) (port $1840 2 $1842)) (?10 $1840 $1843) (minus $1843

$1837) (?2 $1841 $1842 $1844 $1845) (flow-rate $1841 $1840 $1844

$1839) (d-dt ?2 $1841 $1842 $1844 $1846))

pl652: (capac-law flow-rate ?2 ?10 ?11)

pl489: (defined-below ?2 lels)

pl659: (defined-below ?10 lelsK

pl661: (defined-below ?11 lels)

pl684: (mem ?11 classes)

pl683: (subclass* ?11 devices)

pl674: (arity ?10 3)

p!676: (domain ?10 1 ?11)

pl678: (domain ?10 2 states)

pl680: (domain ?10 3 numbers)

pl669: (domain-spec ?10 ?11 states numbers)

pi665: (mem ?10 functions)

pl654: (ckk flow-rate ?2 ?10



A-102 APPENDIX B. DATA FOR THE EXPERIMENTS

Theory ti3:

This temporary theory includes t i2 . This t l2 is identical to t6, shown above.
pl520: (if (useconstraints (flow-rate $723 $722 $725 $719)) (flow-rate

$723 $722 $725 $719))

pl518: (if (useconstraints (?2 $723 $724 $725 $721)) (?2 $723 $724 $725

$721))

pl741: (if (useconstraints (?13 $1973 $1970)) (?13 $1973 $1970))

pl739: (constraint (* $1970 $1971 $1972) (and (port $1973 1 $1974) (mem

$1973 ?14) (port $1973 2 $1975)) (?13 $1973 $1970) (?2 $1974 $1975

$1976 $1971) (flow-rate $1974 $1973 $1976 $1977) (d-dt flow-rate

$1974 $1973 $1976 $1972))

pl705: (induct-law flow-rate ?2 ?13 ?14)

pl489: (defined-below ?2 lels)

p!712: (defined-below ?13 lels)

pl714: (defined-below ?14 le ls)

pl715: (mem ?14 classes)

pl736: (subclass* ?14 devices)

p!727: (arity ?13 3)

pl729: (domain ?13 1 ?14)

pl731: (domain ?13 2 states)

pl733: (domain ?13 3 numbers)

p!722: (domain-spec ?13 ?14 states numbers)

pl718: (mem ?13 functions)

pl707: (lkk flow-rate ?2 ?13 ?14)

Explanation: This comment explains some of the propositions seen above. Many

are easy to understand. These includes the propositions whose relation symbol is

subclass, subclass*, ar i ty, domain, domain-spec, mem, etc.] each does exactly

what its name implies.

Others have discussed already. These include propositions whose relations are

kirchoffl, kirchof f 2, kk, ohmslaw, etc. (This list is not comprehensive.)

Propositions of the form (constraint . (p)) (e.g., pl558) are used to encode



B.3. RUN#1-1DATA A-103

constraints. See Point MRS2 in Subsection 6.2.4.

Each proposition of the form (if (useconstraints (p)) (p)) (e.g., pl520) in-

dicates that there are some constraints which deal with the proposition (p), and

hence one way of solving it is to use the constraint solution method, Solve, Again,

see Point MRS2 in Subsection 6.2.4, especially Footnote 14 on page 132.

A proposition of the form (def ined-below (term) (th)) (e.g., pl489) encodes

the fact that the term (term) is defined in a theory which is below the theory (th).

This information is used heavily by the Generator#2. (See Subsection 7.2.2.)

B.3-4 All Analogical Inferences Found — Run#l-1

1: rkk(flow-rate, pressure-drop, cross-section, pipes )+ 374

2: rkk(flow-rate, pressure-drop, cd-of, pipes )+ 440

3: rkk(flow-rate, pressure-drop, cross-section, tubes )+ 473

4: rkk(flow-rate, pressure-drop, pipe-charact, pipes )* 535

5: rkk(flow-rate, pressure-drop, cross-section, thin-pipes) 560

6: rkk(flow-rate, pressure-drop, cross-section, orifices ) 585

7: rkk(flow-rate, pressure-drop, pump-press, pumps ) 624

8: rkk(flow-rate, pressure-drop, cd-of, tubes )+ 688

9: rkk(flow-rate, pressure-drop, cd-of., thin-pipes) 713

10: rkk(flow-rate, pressure-drop, cd-of, orifices ) 738

11: kk(flow-rate, pressure-drop ) 973

12: ckk(flow-rate, pressure-drop, water-height, tanks ) 1318

13: lkk(flow-rate, pressure-drop, water-height, tanks ) 1675

These abstraction instances are listed in the order in which they were proposed.

The number at the end represents the number of the task at which NLAG gave up

on this this proposed abstraction instance (i.e., either after this analogical inference

proved not useful or after final question had been posed). The entries marked with

+ were useful analogical inferences, and the one tagged with an asterisk, *, is the

"correct" answer.



A-104 APPENDIX B. DATA FOR THE EXPERIMENTS

B.4 Data from Other Runs

This subappendix describes the other runs. SubAppendix B.4.1 describes the an-

swers found during Run#l-2, see Subsection 7.2.2. Subappendix B.4.2 presents

the data from Run#2a-3 and Run#2a-4, see Section 7.3. The next two parts

present the additional additional facts added to the knowledge base for the abstrac-

tion sensitivity studies, see Section 7.4. SubAppendix B.4.3 describes the bank

of irrelevant abstractions added for Run#2b-2 and SubAppendix B.4.4 describes

the relevant abstractions added for Run#2b-3. (These are also used during the

Run#3-zb runs.) SubAppendix B.4.5 presents the answers found during Run#2b-

3 and Run#3-2b. (Here, all of the abstractions described in SubAppendices B.4.3

and B.4.4 are present.)

B.4.1 All Analogical Inferences Found — Run#l-2

This subappendix describes the analogies found during Run#l-2. Here, NLAG

used Generator#2, which used def ined-below as its primary generator; all other

conditions for this second run were the same. Notice exactly the same set of values

are returned, but they appear in a slightly different order. Also, the times requires

were slightly greater. The data are shown below:



B.4. DATA FROM OTHER RUNS A-105

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

rkk(flow-

rkk(flow-

rkk(flow

rkk(flow-

rkk(flow-

rkk(flow-

rkk(flow

rkk(flow-

rkk(flow-

rkk(flow-

rate,

rate,

rate,

rate,

rate,

rate,

rate,

rate,

rate,

rate,

pressure

pressure

pressure

pressure

pressure

pressure

pressure

pressure

pressure

pressure

-drop,

-drop,

-drop,

•drop,

•drop,

•drop,

-drop,

•drop,

-drop,

•drop,

cross-section,

cross-section,

cd-of,

cross-section,

pipe-charact,

cross-section,

pump-press,

cd-of,

cd-of,

cd-of,

pipes )+ 525

orifices ) 560

pipes )+ 614

thin-pipes) 639

pipes )* 703

tubes )+ 732

pumps ) 785

orifices ) 810

thin-pipes) 835

tubes )+ 887

11: kk(flow-rate, pressure-drop

12: ckk(flow-rate, pressure-drop, water-height, tanks

) 1189

1691

13: lkk(flow-rate, pressure-drop, water-height, tanks ) 2201

As before, this is the order in which these abstraction instances were proposed.

The number at the end represents the number of the task at which NLAG gave up

on this proposed abstraction instance. The useful analogical inferences axe marked

with + , and the "correct" answer, with *.

Here, every existential variable used the same generator proposition. As an

example:
Initial values for ?2: (sO junctions wire-like drop-of induct-law capac-law ohm-

slaw conserved-thru lkk ckk rkk kirchoff2 kirchoffl kk port

press-from-ht pump-press water-height pipe-shape cd-of pipe-

charact cross-section flow-rate pressure-drop pressure pressure

units curved straight orifices thin-pipes pipes tubes tanks

pumps devices water-devices ohms coulombs volts amperes volt-

batt inductance capacitance resistance current voltage-drop

voltage inductors capacitors wires resistors batterys elect-

devices j-wc-b j-wc-a pumpl pipe2 pipel)

Using (defined-below ?2 lels)

Table B-3 presents the number of deductions associated with each call to Resolve-

Exists and Verify for this run; this information corresponds to Tables B-l and B-2.



A-106 APPENDIX B. DATA FOR THE EXPERIMENTS

Abst # # ? Resolve-Exists Verify |~T?

rkk

kk

ckk

lkk

1

2

3

4

5

6

7

8

9

10
?11

11

?12

12

?13

13

T14

427

18

10

8

10

8

22

8

8

8

27

554

169

12

181

445

23

468

445

24

22 +

17

44 +

17

54 +

21 +

31

17

17

44 +

284

75

75

17

17 .

17

469 17

Table B-3: Deductions for Resolve-Exists and Verify, using Generator # 2

B.4.2 Relevant Data Added — Runs#2a-a;

Table B-4 presents the timing data from Run#2a-3 and #2a-4. Table B-5 lists the

answers returned during Run#2a-4.



B.4. DATA FROM OTHER RUNS A-107

Find-Kernel:
Inst-Source:
CTruep-1:
Resolve-Exists:
Verify:

TOTALS:2

Run#2a-3
33
14
22
501

53

180

Run#2a-4
33
14
25

277
55

412

Notes:
1 Even without existential variable, there is still work to be done. This subtask is responsible

for adding in the entailments of each conjecture.

2 In both cases, this includes the additional 8 steps of overhead: an initial 4 steps required to
start up the overall NLAG process, plus a final 4 steps to "pop" back to the top level.

Table B-4: Number of Deductions for Run#2a-3 and #2a-4

B.4.3 Irrelevant Abstractions Added — Run#2b-2

Various additional abstractions were added by loading in additional theories. After

describing the theories (see below), this subappendix describes the contents of the

Algebra theory.

algebra holds facts about algebraic structures. For example, this is where the

Group axioms appear, together with descriptions of its component parts, e.g.,

identity. (This theory includes over 130 propositions.)

number holds additional facts about numbers, sets of numbers (e.g., reals), nu-

meric operators, e.g., +, and interconnections, e.g., (domain * 2 reals) and

(monoid reals * 1). (This theory includes over 100 propositions, as well as

some 60 justification-links.)

ALGEBRA facts:

(domain-spec closed binary-operations classes)

(domain-spec commutative binary-operations)

(domain-spec associative binary-operations)



A-108 APPENDIX B. DATA FOR THE EXPERIMENTS

. 1: rkk(flow-rate, pressure-drop, pipe-charact, pipes )* 408

2: rkk(flow-rate, pressure-drop, cd-of, pipes ) + 480

3: rkk(flow-rate, pressure-drop, pump-press, pumps ) 519

4: rkk(flow-rate, pressure-drop, cd-of, tubes )+ 583

5: rkk(flow-rate, pressure-drop, cd-of, thin-pipes) 608

6: rkk(flow-rate, pressure-drop, cd-of, orifices ) 633

7: kk(flow-rate, pressure-drop ) 895

8: ckk(flow-rate, pressure-drop, water-height, tanks ) 1,228

9: lkk(flow-rate, pressure-drop, water-height, tanks ) 1,553

(Total tasks: 1,618)

Table B-5: Answers Returned for Run#2a-4

(mem identity functions)

(domain-spec identity binary-operations classes things)

(domain-spec invertible binary-operations classes)

(mem invert-op functions)

(domain-spec invert-op binary-operations unary-operations classes)

(mem inverse functions)

(domain-spec inverse binary-operations binary-operations classes)

(domain-spec distributive binary-operations binary-operations)

(mem monoid abstract-reins)

(domain-spec monoid classes binary-operations things)

(mem group abstract-reIns)

(domain-spec group classes binary-operations things)

(mem abelian-group abstract-reins)

(domain-spec abelian-group classes binary-operations things)

(mem ring abstract-reins)

(domain-spec ring classes binary-operations things binary-operations)



BA. DATA FROM OTHER RUNS A-109

(mem commutative-ring abstract-reins)

(domain-spec commutative-ring classes binary-operations

things binary-operations)

(mem ring-id abstract-reins)

(domain-spec ring-id classes binary-operations

things binary-operations things)

(mem commutative-ring-id abstract-reins)

(domain-spec commutative-ring-id classes binary-operations things

binary-operations things)

(mem field abstract-reins)

(domain-spec field classes binary-operations

things binary-operations things)

(if (and (mem $x functions)

(arity $x 3))

(binary-operations $x))

(if (and (restriction $op . $lst)

(every $i $lst (= $i $d)))

(closed $op $d))

(if (and (domain $op 1 $d)

(bagof $m (domain $op $i $m) $s)

(every $i $s (= $i $d)))

(closed $op $d))

(if (closed $op $s)

(all $a $b in $s (mem ($op $a $b) $s)))

(if (commutative $op)

(= ($op $a $b) ($op $b $a)))

(if (associative $op)

(= ($op ($op $a $b) $c) ($op $a ($op $b



A-110 APPENDIX B. DATA FOR THE EXPERIMENTS

(if (identity $op $s $id)

(all $a in $s (= ($op $a $id) $a)))

(if (and (known (identity $op $s $id))12

(subclass $c $s)

(mem $id $c) )

(identity $op $c $id))

(if (and (invertible $op $s)

(identity $op $s $id))

(all $x in $s (= ($op $x $y) $id)))

(if (and (invert-op $o $i $s)

(identity $o $s $1))

($o $x ($i $x) $1))

(if (and (invert-op $o $i $s)

(subclass* $c $s))

(invertible $o $c))

(if (inverse $o $i $d)

(if ($o $x $y $z) ($i $z $y $x)))

(if (inverse $o $i $d)

(invertible $o $d))

(if (inverse $o $i $d) .

(if (and ($o $x $y $z) (mem $y $d)) ($i $z $y $x>)

(if (distributive $oi $o2)

(and (= ($o2 $a ($ol $b $c)) ($oi ($o2 $a $b) ($o2 $a $c)))

(= ($o2 ($ol $b $c) $a) ($ol ($o2 $b $a) ($o2 $c

12The known operator is part of the initial MRS system. This clause is true if a proposition unifying
with ( identity $op $s $id) has been primitively stored. This additional constraint prevents
MRS's back-chaincr from going into infinite loops.



BA. DATA FROM OTHER RUNS A-lll

And the abstractions,

(if (and (identity $op $s $i)

(closed $op $s)

(mem $s classes)

(binary-operations $op)

(mem $i $s)

(associative $op))

(monoid $s $op $i))

(if (and (invertible $op $s)

(monoid $s $op $i))

(group $s $op $i)) .

(if (and (group $s $op $i)

(commutative $op))

(abelian-group $s $op $i))

(if (and (abelian-group $s $ol $il)

(associative $o2)

(binary-operations ,$o2)

(distributive $oi $o2)

(closed $o2 $s))

(ring $s $ol $ii $o2))

(if (and (ring $s $ol $il $o2)

(commutative $o2))

(commutative-ring $s $ol $il $o2))

(if (and (ring $s $oi $ii $o2)

(identity $o2 $s $i2))

(ring-id $s $ol $il $o2 $i2))

(if (and (ring-id $s $ol $il $o2 $i2)

(commutative $o2))

(commutative-ring-id $s $ol $il $o2 $i2))



A-112 APPENDIX B. DATA FOR THE EXPERIMENTS

(if (and (commutative-ring-id $s $ol $ii $o2 $i2)

(not (= $ii $i2))

(set- $s $i2 $r)

(invertible $o2 $r))

(field $s $ol $ii $o2 $i2))

All of these abstractions have been from formal system. There is also a less technical

abstraction. (This is usually resident in genl-inf o.)

(mem historical-event abstract-reins)

(domain-spec historical-event events person time)

(if (historical-event $type $bywhom $when)

(if (and ($bywhom $thing $whom)

($when $thing $date))

(AliveAt $whom $date)))

B.4.4 Relevant Abstractions Added — Runs#2b-3 and # 3 -
xb

These abstractions and related facts are usually resident in the LELS theory.

(if (and (rkk $tt $ct $rt $load)

(induct-Law $tt $ct $indt $ind-load) )

(rlkk $tt $ct $rt $load $indt $ind-load))

(if (and (rkk $tt $ct $rt $load)

(capac-Law $tt $ct $indt $ind-load) )

(rckk $tt $ct $rt $load $indt $ind-load))

(if (and (lkk $tt $ct $rt $load)

(capac-Law $tt $ct $capt $cap-load) )

(lckk $tt $ct $rt $load $capt $cap-load))

(if (and (rckk $tt $ct $rt $load $indt $ind-load)



BA. DATA FROM OTHER RUNS A-113

(induct-Law $tt $ct $capt $cap-load) )

(rlckk $tt $ct $rt $load $capt $cap-load $indt $ind-load))

(mem rlkk abstract-reins)

(domain-spec rlkk functions functions functions classes functions classes

(mem rckk abstract-reins)

(domain-spec rckk functions functions functions classes functions classes

(mem lckk abstract-reins)

(domain-spec lckk functions functions functions classes functions classes

(mem rlckk abstract-reins)

(domain-spec rlckk functions functions functions classes

functions classes functions classes)

B.4.5 Results Found, Using all Eight Relevant Abstractions

This subappendix describes the analogies NLAG finds during Run#2b-3 and Run#3-

2b, mentioned in Sections 7.4 and 7.5, respectively. In both cases, all eight lumped

element linear system abstractions are present. The first table describes Run#2b-3,

in which the HMGA
 rule *s turned on. (Hence rkk appears first.) The second table

describes Run#3-2b, in which the HMGA
 r u l e is turned off. (Here the most specific

abstraction, rlckk appears first.)

(The "..." below always encode "flow-rate, pressure-drop", and is used

only to fit this information on a single line.)



A-114 APPENDIX B. DATA FOR THE EXPERIMEN

Run#2b-3's Data:
1: rkk(..., cross-section,

2: rkk(.

3: rkk(.

4: rkk(.

5: rkk(.

6: rkk(.

7: rkk(.

8: rkk(.

9: rkk(.

10:

cd-of,

cross-section,

pipe-charact,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

rkk(..., cd-of,

11: rlkk(..

12: rlkk(..

13: rlkk(...

14: rlkk(...

15: rlkk(..(

16: rlkk(...

17: rlkk(...

18: rlkk(...

19: rlkk(..,

20: rlkk(..,

21: rckk(...

22: rckk(...

23: rckk(...

24: rckk(...

25: rckk(...

26: rckk(...

27: rckk(...

28: rckk(...

29: rckk(...

30: rckk(...

cross-section,

cross-section,

cd-of,

pipe-charact,

cd-of,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

cross-section,

cross-section,

cd-of,

pipe-charact,

cd-of,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

pipes

pipes

tubes

pipes

thin-pipes

orifices

pumps

tubes

thin-pipes

orifices

)*

)

)

)

) +

)

)

pipes, water-height, tanks )+

tubes, water-height, tanks )+

pipes, water-height, tanks )+

pipes, water-height, tanks )+

tubes, water-height, tanks )+

thin-pipes, water-height, tanks)

orifices, water-height, tanks )

pumps, water-height, tanks )

thin-pipes, water-height, tanks)

orifices, water-height, tanks )

pipes, water-height, tanks )+

tubes, water-height, tanks )+

pipes, water-height, tanks - )+

pipes, water-height, tanks )+

tubes, water-height, tanks )+

thin-pipes, water-height, tanks)

orifices, water-height, tanks )

pumps, water-height, tanks )

thin-pipes, water-height, tanks)

orifices, water-height, tanks )

374

440

473

535

560

585

624

688

713

738

1308

1340

1709

1778

1833

2007

2034

2367

2418

2453

3416

3718

3547

3616

3671

3845

4872

4205

4256

4291



B.4. DATA FROM OTHER RUNS A-ll!

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

rlckkC,
rlckkC,
rlckkC,
rlckkC,
rlckk(...,

rlckk(...,

rlckk(...,

rlckk(...,

rlckk(...,

rlckkC,

cross-section

cross-section

cd-of,

pipe-charact,

cd-of,

cross-section

cross-section

pump-press,

cd-of,

cd-of,

41:

, pipes, water-height, tanks )+ 8875

, tubes, water-height, tanks )+ 8904

pipes, water-height, tanks )+ 15028

pipes, water-height, tanks )+ 15102

tubes, water-height, tanks )+ 15162

, thin-pipes, water-height, tanks) 16427

, orifices, water-height, tanks ) 16470

pumps, water-height, tanks ) 20493

thin-pipes, water-height, tanks) 20546

orifices, water-height, tanks ) 20611

) 22013

42: ckk(..,, water-height, tanks ) 22347

43: lkk(..., water-height, tanks ) 22707

44: lckk(..., water-height, tanks, water-height, tanks ) 23247

The final figures were

Timing: 23758

((bcdisp . 22829) (succeed . 492) (ff-disp . 18) (fc-only . 16)

(conj-bc . 10) (fcdisp . 386) (check-out . 7))



A-116 APPENDIX B. DATA FOR THE EXPERIMENTS

Run#3-2b's Data:

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

rlckk(...,

rlckkC,
rlckkC,
rlckk(...,

rlckk(...,

rlckk(...,

rlckkC..,

rlckk(...,

rlckk(...,

rlckk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rlkk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(...,

rckk(_.,

rckk(...,

cross-section,

cd-of,

cross-section,

pipe-charact,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

cd-of,

cross-section,

cross-section,

cd-of,

pipe-charact,

cd-of,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

cross-section,

cross-section,

cd-of,

pipe-charact,

cd-of,

cross-section,

cross-section,

pump-press,

cd-of,

cd-of,

pipes, water-height, tanks )+ 3130

pipes, water-height, tanks )+ 8502

tubes, water-height, tanks )+ 8575

pipes, water-height, tanks )+ 8645

thin-pipes, water-height, tanks) 8676

orifices, water-height, tanks ) 8707

pumps, water-height, tanks ) 14694

tubes, water-height, tanks )+ 14802

thin-pipes, water-height, tanks) 14833

orifices, water-height, tanks ) 14864

pipes, water-height, tanks )+ 18004

tubes, water-height, tanks )+ 18029

pipes, water-height, tanks )+ 18404

pipes, water-height, tanks )+ 18471

tubes, water-height, tanks )+ 18526

thin-pipes, water-height, tanks) 18706

orifices, water-height, tanks ) 18739

pumps, water-height, tanks ) 19076

thin-pipes, water-height, tanks) 19123

orifices, water-height, tanks ) 19158

pipes, water-height, tanks )+ 19753

tubes, water-height, tanks )+ 19787

pipes, water-height, tanks )+ 19930

pipes, water-height, tanks )+ 19999

tubes, water-height, tanks )+ 20056

thin-pipes, water-height, tanks) 20208

orifices, water-height, tanks ) 20257

pumps, water-height, tanks ) 20650

thin-pipes, water-height, tanks) 20723

orifices, water-height, tanks ) 20766



3.4. DATA FROM OTHER RUNS A-117

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

rkk(.
rkk(.
rkk(.
rkk(.
rkk(.
rkk(.
rkk(.
rkk(.
rkk(.
rkk(.

., cross-section, pipes

., cross-section, tubes

., cd-of, pipes

., pipe-charact, pipes

., cd-of, tubes

., cross-section, thin-pipes

,, cross-section, orifices

., pump-press, pumps

,., cd-of, thin-pipes

,., cd-of, orifices

)+ 21413

)+ 21442

)+ 21502

)* 21566

)+ 21618

) 21659

) 21690

) 21735

) 21766

) 21795

41: lckk(..., water-height, tanks, water-height, tanks) 22324

42: ckk(..., water-height, tanks ) 23149

43: lkk(..., water-height, tanks ) 23509

44: kk(... ) 23766

The final number of deductions was 23,786.



 



Appendix C

Glossary

This appendix defines many of the terms and symbols used in this dissertation.

Subappendix C.I first presents some of the notational conventions we follow. Sub-

appendix C.2 then lists many of the,symbols, terms and phrases, and supplies the

relevant definition or pointer.

CM Notation and Conventions

This section describes some of the notation and conventions used throughout this

dissertation. The particular conventions used just in Chapter 8 appears at the end.

Fonts:

Base-level facts (13)

Base level facts — i.e., symbols the user can type an'd see — appear in this

fixed-width font.

abed (is)

Constants (including constant, function and relation symbols) are indicated

by English letters in this math style.

$univ (no)

Universal variables are prefaced with a dollar sign, "$".

A-118



 



C.L NOTATION AND CONVENTIONS A-119

?exist (is)

Existential variables are prefaced with a question mark, "?'\

X (64)

Refers to the vector [zi,•.. zn]. Often used in reference to some list of instan-

tiations.

a (13)

Propositions are indicated by small Greek letters, e.g., a, 7.

E (82)

Sets of propositions are indicated by capital Greek letters, e.g., S, F.

Group (55)

The names of abstractions appear in this bold-face fixed-width font; e.g.,

Group, RKK.

TRUEP

The name of both subroutines and various internal processes appear in this

slanted Gxed-width font. .E.g., JVLAG, ComAbs.

C (167)

These calligraphic symbols usually denote interpretations, especially I', Jy K

and P.

See the description of Partial Interpretations in Section 8.2.

The notation defined in Chapter 8 follows:

C is syntactic symbol.

[c] is supposed to "be" the actual object in the world, rather than just a syntactic

symbol (which designates some such object).

C1 is semantic, referring to a collection of objects. In particular, it refers to the

positive cxtention of the symbol (or label) C.

CJ is semantic, referring to a collection of objects. In particular, it refers to the

negative cxtention of the symbol (or label) C.



A-120 APPENDIX C. GLOSSARY

f1 is semantic, referring to a collection of objects. In particular, it refers to the

unknown extention of the symbol (or label) C, See Equation 8.3 on page 167.

JM _C, f are each semantic, each referring to a collection of objects corresponding

to C^, _CP and ,pp respectively, with respect to the understood interpretation,

P.

C1 refers to the pair of positive and negative extentions of the symbol (or label) C,

with respect to the (partial) interpretation I , ( C* _C*).

C refers to the pair of positive and negative extentions of the symbol (or label) C,

( Ĉ  _CP), with respect to the understood interpretation, P. When dealing

with constants, it often describes the unique referent of that symbol.

C.2 Glossary of Terms

Standard Logical Symbols:

h (A-36)

Refers to the syntactic operation of proving; £ h o means that a is provable

from £. It may refer to some incomplete or unsound derivation process.

See the IM entry.

(== (14)

Refers to the semantic notion of logical implication; E \= a means that a

can be logically inferred from S. It is equivalent to any complete and sound

derivation process.

Y1 (13)

Refers to the negation of logical implication; S j£ a means that a can not

be logically inferred from E. In general, the "slash" operator, / , negates the

operation through which it is slashing.

(fe (19)

Refers to the logical "and" operation, i.e., conjunction.



C.2. GLOSSARY OF TERMS A-121

V (A-6)

Refers to the logical "or" operation, i.e., disjunction.

~» (13)

Refers to the logical "not" operation, i.e., negation.

A <121>
i

Refers to conjunction over a set of indexed propositions.

f | ("<>
i

Refers to intersection over a set of indexed sets.

= (33)

"Is (logically) equivalent to"

Used to compare two propositions; e.g., "/> &; a = a & p."

<==> (16)

"If and only if"

Used to compare two propositions; e.g., "p &; a <=$> a h p".

= > (20)

"Implies"

Used to compare two propositions; e.g., "/> & a ==> />"

Also, when => and -<= are used in equivalence proofs, they refer to the

sufficiency and necessity conditions, respectively.

See the -4= entry.

< = (A-13)

"Is implied by"

Used to compare two propositions; e.g., p <= p h a

Also, when = > and <= are used in equivalence proofs, they refer to the

sufficiency and necessity conditions, respectively.

See the =$> entry.

• (A-13)

"Quo Eratis Demonstratus"

indicates that the proof is complete.



A-122 APPENDIX C. GLOSSARY

Indicates lexical substitution of the symbol y for the symbol x within the

formula <f>.

C (29)

Refers to proper subset.

See the C entry.

Q (3D

Refers to the subset, which need not be proper.

See the C entry.

= (24)

Refers to equality in general. When comparing formulae and sentences, the

expression p(Z) = a means that the formula p "expands" into the sentence

a when the term Z is substituted from p's free variable. This use of "=" is

distinguished from the more general use of "=", which denotes logical equiva-

lence.

+ (23)

The notation S + a abbreviates the larger set, E U {cr}. (Of course, S can be

a set of axioms, i.e., a theory.)

— (77)

The notation E — T is the set difference between the sets S and F; i.e., E —F =

Special Symbols:

~ (13)

Read "is like".

See A~B entry.

Refers to the general analogical inference operator, defined in Figure 2-1.



C.2. GLOSSARY OF TERMS A-123

fer (39)

Refers to the useful analogical inference operator, defined in Figure 3-1.

See the (̂  entry.

IH <52>
The abstraction-based analogical inference operator.

See the JyT entry.

kr <52>
The abstraction-based useful analogical inference operator, defined in Figure 4-

5.

See the J^ entry.

I. (l5>
Refers to the projection operator. See Equation 2.7 on page 15 and Definition 22

on page 169.

<P (13)

The symbol (p, with or without some subscript (e.g., <pnKK) generally refers

to some "analogy formula". By convention, the analogues occupy its "ith"

argument.

PRKK 09)

Refers to a particular analogy formula; see Figure 2-3.

See also RKK entry.
LC
> (8«)

LC

Resembles the >|Thj relationship, but with an implicit theory.
i L C

See the >[Thj entry.
LC
> |Th] <9°)

LC

The expression <J|(A) >[rhj ^2(A) abbreviates LessConstraintssem{&ii &2 Th).

See the LessConstraints s€m entry.
s
>JTh] 092)

The expression tpx >!Thl <p2 means that the unary formula ip{ is more specific

than <p2 (based on information in the theory Th).

See Definition 30 on page 192.



A-124 APPENDIX C. GLOSSARY

E
Refers to the extention-subset relation.

See Definition 23 on page 171.
= A (A~46)

The expression I ~ ^ J means the interpretations I and J are identical, except

possibly for their respective assignments to the symbol A.

See Definition 36 on page A-46.

IS/k (A-46)

Refers to a partition of the set of interpretations S induced by =^.

See Definition 37 on page A-46.
E
D (172)

E
The expression I D J means that the interpretation J is a consistent extension

of*/.

See Equation 8.9 on page 172. ^

Means that the set of conjectures $ must be added to the theory Th to deduce

the sentence a.

See Definition 13 on page 61.

Holds when * is a leaf residue of the sentence a with respect to the theory Th.

See Definition 21 on page 122.

Alphabetical Listing:

Refers to our canonical analogical hint, "A is like B".

See the analogical hint entry.

AbelianGroup

Refers to the abelian group abstraction defined in the Algebra theory; see

SubAppendix B.4.3.



C.2. GLOSSARY OF TERMS A-125

AbstForm(<p) (56)

Means that the formula <p is an abstraction formula.

See Definition 11 on page 56.

See also the Abstraction Formula entry.

abstraction (se)

An abstraction is an important pre-specified relation. Examples include Group

and RKK. See Chapter 4.

abstraction instance (5i>

Refers to an instantiation of an abstraction. E.g., (group reals + 0) is an

abstraction instance, of the abstraction Group. Each abstraction instance is

equivalent to a perspective.

See the Perspective entry.

abstraction formula (56)

Refers to an atomic formula whose relation symbol is an abstraction.

See the AbstForm entry.

abstraction-based analogical inference (52)

Refers to the Ĵ T process which seeks a common abstraction between a pair of

given analogues, conjecturing new facts about the target analogue as necessary.

(Technically, this is the abstraction-based useful analogical inference process.)

See Figure 4-5.

abstraction-based analogy (57)

Refers to the result of the |v process; viz., the analogically-derived new con-

jecture about the target analogy. Unlike analogies in general, this conjecture is

always an instance of an abstraction.

(an) abstraction holds for a concept (so)

We say "the abstraction S holds for the concept A" if there is some instanti-

ation of S which includes A as a parameter. E.g., "Group holds for +", as

Group(5ft, +,0) holds.



A-126 APPENDIX C. GLOSSARY

AH (no)

Refers to the Analogical Hint, e.g., A~B.

See the Analogical Hint entry.

Allowed{JZW, Th) (i72)

Refers to the set of allowed interpretations.

See Definition 24 on page 172.

analogical hint (is)

A statement of the form "A i s l ike B", often represented as A~B.

analogical inference (13)

Any of a variety of plausible inferences.

Flavors include:

• General analogical inference (see Figure 2-1)

• Useful analogical inference (see Figure 3-1)

• Abstraction-based (useful) analogical inference (see Figure 4-5)

analogical inference situation (202)

Refers to the initial situation, from which an analogical inference can be drawn.

It includes a specification of the analogical hint and initial knowledge base; and

possibly a specific problem to solve as well.

Analogous (22)

We say that the analogues A and B are analogous if they share a common formula.

See the Analogy? entry.

Analogousx (58)

By convention, Analogousx is the "exists-form" of the corresponding Analogyx

— i.e., Analogousx{A,ByTh) & 3 S Analogy x(A,B,Th, E).

analogy o?)

Often used in reference to the Analogy? relation or the (~ process. It can also

refer to the "result" of that process, i.e., p (a j , . . . . A,... a n ) .



C.2. GLOSSARY OF TERMS A-127

analogy formula (IT)

The formula used to connect the analogues.

AnalogycA (*«>

"The common abstraction relationship".

See Definition 12 on page 56.

Analogy? (22)

The formula-based definition of analogy.

See Definition 2 on page 22.

(ITS)

The semantic definition of analogy.

See Definition 27 on page 178.

Analogy? (A-H) .?

The theory-based definition of analogy.

See Definition 33 on page A-11.

assert ion (25)

Refers to an element in the theory. It is synonymous with proposition or fact

See the fact entry.

AtornicFormula{<j>) (56)

Means that (f> is a single relationship; i.e., the formula <f> has no boolean connec-

tives. (As opposed to compound formula.)

base interpreta t ion (172)

Refers to the "real world" interpretation, JZW, as used in Allowed(JZ*W, Th).

See the Allowed entry.

base-level fact (117)

Refers to facts about the particular domain, e.g., about hydraulics. By contrast,

a meta-level fact is a fact about some propositions.

See the meta-level fact entry.



A-128 APPENDIX C. GLOSSARY

binding (100)

Refers to the instantiation of some parameters) in a formula.

buef (33)

Refers to the class of base unary existential atomic formulae. See Definition 9

on page 33.

buf (34)

Refers to the class of base unary atomic formulae.

See Definition 10 on page 34.

C K K (140)

Refers to the Capacitor abstraction defined in the LELS theory; see SubAp-

pendix B.2.1.

cohesive (65)

A collection of facts is considered cohesive if a subset of these facts suggest the

others.

ComAbs (my

Refers to the module of the NLAG system which finds the common abstraction

between the source and target analogues. See Subsection 6.1.2.

Common (13)

Refers to the condition imposed by the analogical inference process which in-

sists that the new conjecture corresponds to some fact known about the source

analogue (i.e., it means that the inference is an analogy).

See Figure 2-1 on page 16.

common abstraction (53)

S is a common abstraction to A and B if both S(ai , . . . A,.. .an) and S(bi,.. .B,. . .bn)

hold, where S is an abstraction and A and B occur in the corresponding position.

E.g., Group is a common abstraction linking + and *, as Group(8?, + , 0)

and Group (9?o» *. 1) each hold.

See the AnalogycA a nd |(̂ T entries.



C.2. GLOSSARY OF TERMS A-129

CommutativeRing (152)

Refers to the commutative ring abstraction defined in the Algebra theory; see

SubAppendix B.4.3.

CommutativeRingld (152)

Refers to the commutative ring with identity abstraction defined in the Algebra

theory; see SubAppendix B.4.3.

concept (i)

Refers to some syntactic symbol (or string of symbols); which, in turn, refer to

some object in the world.

conjecture (i)

Refers to a proposed addition to the theory. Also called "proposed element of

the data base".

Content (of representation) (is?)

Refers to the actual information encoded, as opposed to the "form" of that

information.

Consistent (13)

Refers to the condition imposed by all of the analogical inference processes

which insists that the new conjecture be consistent with the facts present in the

initial theory.

See Figure 2-1 on page 16.

Consistent (S) (eo)

Holds when the set of propositions, E, is consistent.

constraint (132)

Each constraint is a type of proposition used to constrain the values of various

terms.

See Point MRS2 in Subsection 6.2.4.

See also the Solve entry.



A-130 APPENDIX C. GLOSSARY

Current (8)

Refers to the quantity which relates to electron flow through an electric device,

in the electrical domain.

jDC(S) (207)

Refers to the deductive closure of the set of propositions, S.

deducible (M)

A proposition p is deducible from a collection of axioms, S, if E \= p.

Dom(f) (A-II)

Refers to the domain of the function / .

domain (»)

This term is used in three senses in this dissertation:

[1] as in "source domain" or "target domain"

[2] as in domain type specifications.

[3] as opposed to "range" (related to Sense [2]).

EC (8)

Refers to the subset of the theory which pertains to electric circuits; i.e., ECc

ThcFy where TKQF *S that initial theory. For this application, EC is the source

theory, as it describes the source analogue, Current.

See also the FS and source theory entries.

extension

Extension with a "s" refers to the result of enlarging (extending) a set.

See also the Extention entry.

extention (i6?)

Extention with a "t" refers to the real world object(s) corresponding to some

symbol.

See also the Extension entry.



C.2. GLOSSARY OF TERMS A-131

fact (i)

A fact is a proposition, one which is an element of a knowledge base. This term

refers to base-level data, as well as rules, constraints, meta-level information,

etc. This term is synonymous with assertion. (This is as opposed to conjecture

or postulate, which are known not be in the knowledge base, and to proposition

or clause, which are neutral in this regard.)

FC (us)

The forward chain module of the MRS system; see [Rus85].

Field (56)

Refers to the field abstraction defined in the Algebra theory; see SubAp-

pendix B.4.3.

"Find the flowrate" (©)

Refers to our standard target problem.

See target problem entry.

Find-Kernel <IM)

Refers to the module of the NLAG system which finds the kernel from which

source instantiations of the abstraction can be derived. See Subsection 6.1.3.

See also the kernel entry.

first-order fact (20)

Refers to facts whose arguments pertain to objects rather than function or

relations. By contrast, second-order facts may quantify over functions; e.g.,

Kirchoff l(FlowRate) is a second order fact as the argument, FlowRate, is

itself a function. However, Member (5 Numbers) is a first order fact.

See the second-order fact entry.

FlowRate (8)

Refers to the quantity which relates to the flow through a hydraulics device, in

the hydraulics domain.



A-132 APPENDIX C. GLOSSARY

Form (of representation) (i87>

Refers to how some information is encoded within a formalism. In particu-

lar, this considers which facts are explicit (prima facie) and which are implicit

(require deduction). (This phrase refers to the actual information encoded, as

opposed to the "form" of that information; i.e., it is a property of the represen-

tation, not of the formalism.)

See the representation and formalism entries.

formalism (is?)

Refers to a way of encoding facts. Hence fully indexed predicate calculus is

one formalism; another is the Unit:Slot = Value encoding. (This differs from

"representation".)

formula (13)

A well-formed syntactic expression with zero or more free variables. (A formula

with no free variable is called a sentence.)

FS (8)

Refers to the subset of the theory which pertains to fluid systems; i.e., FSc

ThcFy where ThcF ls that initial theory. For this application, FS is the target

theory, as it describes the target analogue, FlowRate.

See also the EC and target theory entries.

function (ios)

A function is a mathematical entity. To distinguish a function from the code

used to implement it, we refer to the latter as a subroutine or program.

gbuf (A-21)

Refers to a general base unary formula] see page A-21.

general analogical inference (ie)

Refers to the process which adds independent facts to a theory TTi, where these

additions establish an analogical connection between the given analogues A and

B. See Figure 2-1 on page 16.



C.2. GLOSSARY OF TERMS A-133

generality (of a formula) (IOS)

Refers to the number of terms a formula can accept; more general formulae

accept more terms then less general ones.

See the >[Th] entry.

Group (se)

Refers to the group abstraction defined in the Algebra theory; see SubAp-

pendix B.4.3,

(54)

This heuristic is used by the analogical inference process to prune its search;

here, to just consider abstraction formulae.

See Heuristic 1 on page 57.

This heuristic is used by the abstraction-based analogical inference process to

prune its search; here, to insist that all terms used to instantiate the abstraction

come from the same theory.

See Heuristic 3 on page 79.

This heuristic is used by the analogical inference process to order its search;

here, to prefer analogies which require that fewer conjectures be postulated.

See Heuristic 5 on page 97.

This heuristic is used by the analogical inference process to prune its search;

here, to insist that all terms used to instantiate the abstraction be "findable";

i.e., be involved in some proposition relevant to the abstraction.

See Heuristic 6 on page 101.

HJK (74)

This heuristic used by the useful analogical inference process to focus its search;



A-134 APPENDIX C. GLOSSARY

here, to use the target problem to suggest which abstractions to consider.

See Heuristic 2 on page 76.

This heuristic is used by the abstraction-based analogical inference process to

order its search; here, to prefer the more general abstractions.

See Heuristic 4 on page 93.

This heuristic is not used. It suggests ordering the search for common abstrac-

tions by prefering the most specific abstractions.

See Heuristic 7 on page 193.

HistoricalEvent (xs2)

Refers to the historical event abstraction defined in the Genllnfo theory; see

SubAppendix B.4.3.

Iciose (43)

Refers to the intuition that the source of a useful analogy is composed of facts

which form a coherent cluster.

See the coherent, 1Least and Ibtost entries.

iff (83)

Refers to the connective, uif and only if".

See the <=$> entry.

^Least (43)

Refers to the intuition that a useful analogy should add as few new conjectures

as possible.

See the LessConstraints <ycm, Iciosc and ^Most entries.

IM (121)

Refers to some inference mechanism. For example, it can denote the particular

implementation of MRS's backward-chaining system.

See the h entry.



C.2. GLOSSARY OF TERMS A-135

Refers to the intuition that a useful analogy should add as many new conjectures

as possible.
s

See the >[Th], ICiOSe and IUa8t entries.

independent (13)

A proposition p is independent of a collection of axioms, S, if E ^ p and S ^ -»p.

Inst-Source

Refers to the module of the NLAG system which finds the source instantiations

of the relevant abstractions. See Subsection 6.1.4.

Inst-Target (us)

Refers to the module of the NLAG system which finds the target instantiations

of the relevant abstractions. See Subsection 6.1.5.

instance (45)

Synonymous with instantiation.

See the instantiation entry.

instantiation (22)

An instantiation of a formula is a binding list for its arguments. Hence, an

instantiation of Group might be the binding list [?ft, +, 0],

See the source instantiation and target instantiation entries.

instantiation (of ip) in the source domain o?)

Refers to the source analogy sentence.

instantiation (of ip) in the target domain (17)

Refers to the target analogy sentence.

instantiate the abstraction (in the source domain) (17)

Refers to a binding list of the abstraction which involves the source analogue.

instantiate the abstraction (in the target domain) (17)

Refers to a binding list of the abstraction which involves the source analogue.



A-136 APPENDIX C. GLOSSARY

interpretation (ies)

Shorthand for partial interpretation. This forms a proper superset of Tarskian

Interpretations. See Section 8.2.

3d <18)

Refers to the ith junction associated with the device d.

justification (31)

The justification of a proposition, /?, is any collection of propositions, {tf;}, such

that {ai} \= p. Used synonymously with support set

See the support set entry.

kernel (113)

The kernel is a subset of facts from the initial theory. These are used to derive

source instances of the relevant abstractions. The HJK heuristic derives these

kernel sentences from the target problem and analogical hint.

Kirchoff's Laws (8)

Originally referred only to a pair of facts in the electricity domain.

1. The algebraic sum of all potential drops around a close loop is 0.

2. The algebraic sum of all currents flowing into a junction is 0.

Subsequently generalized to deal with general "through" and "cross" variables.

See KK entry.

KK (143)

Refers to the Kirchoff's Laws abstraction defined in the LELS theory; see Sub-

Appendix B.2.1.

See also the Kirchoff's Laws entry.

knowledge base (9)

Used synonymously with theory.



C.2. GLOSSARY OF TERMS A-137

t (167)

Refers to a language (of a theory),

LCKK ass)

Refers to the Inductance and Capacitance abstraction defined in the LELS the-

ory; see Sub Appendix B.4.4.

LD(a, T/i, E) aai)

Holds when E is a leaf decomposition of the sentence a with respect to the

theory Th.

See Definition 20 on page 121.

leafIM{6yTh) (m)

Means that the sentence 6 is not "decomposable" with respect to the theory Th

and inference mechanism IM.

See Definition 19 on page 121.

leaf decomposition (121)

Refers to a decomposition of a given relation which consists of only leaf propo-

sitions.

See Subsection 6.2.3.

See the LD entry.

leaf proposition (120

See the leafIM( 6y Th) entry.

leaf residue (121)

Refers to a type of residue, one consisting of only leaf clauses.

See the A^jj entry.

Learn 1 (A-6)

Refers to the class of learning processes which add independent conjectures to

a theory. Afterwards, the basic performance engine can solve new problems.

See Note:2-2.



A-138 APPENDIX C. GLOSSARY

Learn 2 (A-7)

Refers to the class of leaxning processes which learn to solve a particular set of

problems more efficiently.

See Note:2-2.

learner <s)

This model of analogy deals explicitly with a learner acquiring additional infor-

mation. The theory, T7i, contains the collection of facts we assume he (or she

or it) initially knows, before the analogical inference process.

learning by analogy (4)

Refers to the common term for "analogical inference".

LessConstraintssem{&i) 02 Th) (oo)

Holds when the sentence ax constrains the known world (as encoded by the

theory Th) less that the sentence cr2.

See Definition 17 on page 90.

Lexlnclusion(&, V " ) (24)

means that the symbol s is lexically included in the sentence a.

See page 24.

LKK (HO

Refers to the Inductance abstraction defined in the LELS theory; see SubAp-

pendix B.2.1.

LOOKUP(s) or.)

LOOKUP is one of MRS's basic querying subroutines (the other is TRUEP). It

takes a proposition pattern as input and returns the facts which are primitively

stored in the theory and match this pattern.

See the TRUEP(s) and primitively stored entries.

mem (127)

The MRS expression (mem (a) (c)) is true if the concept (a) is a member of

the class (c).



C.2. GLOSSARY OF TERMS A-139

meta-level fact (m)

Refers to facts about the some propositions, as opposed to base-level facts which

pertain to a some "base" domain, e.g., about hydraulics.

See the base-level fact entry.

metaphor (iss)

Refers to a linguistic phenomenon. The distinction between metaphor and

analogy is not relevant to this dissertation in general.

MJ(S) (ioo)

Refers to the set of sentences which are "materially implied" by S.

See Definition 18 on page 100.

Monoid (33)

Refers to the monoid abstraction defined in the Algebra theory; see SubAp-

pendix B.4.3.

model (1) (63)

Used synonymously with schemata or paradigm, to refer to some structure

which a top-down process can use to guide its search.

model (2) (84)

Here, model is used in the model theoretical sense; see [End72] and [Tar52].

more general formula (20)

The formula a is more general than the formula (j> if Vx.a(x) => </>(z). Hence,

Monoid is more general than Group, as Vx.Group(x) ^> Monoid(f) . (If the

two formulae have different sets of formal variables, take the larger set. Hence

Field is more general than Group.)

See also the more specific formula entry.

more specific formula (20)

The formula <f> is more specific than the formula a if Vx.a(x) ==> </>(£). This is

the inverse of the more general formula relation; see that entry.



A-140 APPENDIX C, GLOSSARY

MRS (ioo)

Refers to the expert system building program on which NLAG was built.

See [Rus85].

mutatis mutandis (2)

Is Latin for "with changes as necessary".

NLAG (5)

The NLAG system is my implementation in the ideas presented in this thesis. In

particular, it follows the |[^T model of analogical inference (presented in Figure 4-

5 on page 57), augmented with the ordering and pruning rules discussed in

Chapter 5. Chapter 6 presents further details of its structure.

Ohms Law (8)

Originally referred only to the electricity domain fact that the voltagedrop

across a device (e.g., a resistor) is the product of the current entering that device

times its resistance. Subsequently generalized to deal with general "through",

"cross" and "resistance" terms and "load bearing" elements.

See RKK entry.

partial interpretation

A partial interpretation differ from a total (read "Tarskian") interpretation in

that a partial interpretation need not completely specify the extentions of its

symbols. See Section 8.2.

perspective (48)

A perspective is a collection of facts; in particular, it is a subset of the facts in

an theory which all pertain to some common notion. E.g., the group axioms

form one perspective of number theory.

prima facie (202)

A fact is considered prima facie if it is stored explicitly in the knowledge base.

Equivalently, each such fact is primitively stored] i.e., it would be returned by



C.2. GLOSSARY OF TERMS A-141

LOOKUP.

See the primitively stored and LOOKUP(s) entries.

primitively stored on)

The LOOKUP subroutine returns just primitively stored information. (By con-

trast, other implicit information can be found only after some inferences are

performed; the TRUEP subroutine returns these facts as well.)

See the LOOKUP(S) and prima facie entries.

problem statement (30)

Refers to some specific query; that is, a proposition to be TRUEPed.

See the target problem and TRUEP(s) entries.

proposition (8)

A proposition is a syntactically^well formed string of symbols. Propositions

present in the knowledge base are called "assertions" or "facts". "Conjectures"

are propositions which have been proposed for inclusion in the knowledge base.

(By assumption, each conjecture is independent of the knowledge base.)

See the fact and conjecture entries.

PT (39)

Refers to the target problem of a useful analogy.

See the target problem entry.

PS (75)

Refers to the source problem associated with a useful analogy.

See the source problem entry.

5ft (80)

Refers to the set of all real numbers.

5ft() (A-8)

Refers to the set of all non-zero real numbers.



A-142 APPENDIX C. GLOSSARY

range

Refers to the destination (or target) of a mapping.

See the domain entry.

RCKK (56)

Refers to the Resistance and Capacitor abstraction defined in the LELS theory;

see SubAppendix B.4.4.

Relation(<f>) <56)

Refers to the relation symbol used in the atomic formula <f>.

representation (i87)

Used synonymously with "theory", and refers to the collection of information

which describe some concepts.

(This differs from "formalism".)

R i n g (56)

Refers to the ring abstraction defined in the Algebra theory; see SubAppendix B.4.3.

R i n g l d (152)

Refers to the ring with identity abstraction defined in the Algebra theory; see

SubAppendix B.4.3.

R K K (5i)

Refers to the Resistance abstraction defined in the LELS theory; see SubAp-

pendix B.2.1.

See also Figure 4-3 on page 52.

RKK-EC (48)

Refers to the Resistance perspective of the electricity domain.

See Figure 4-2 on page 50.

c (79)

Refers to the elaborated RKK abstraction, embellished to accept only those

instantiations which come from a common context.

See Equation 5.7 on page 79.



C.2. GLOSSARY OF TERMS A-143

R K K - E x p (A-27)

Refers to a modification of the RKK abstraction, one which begins to model

non-laminar flow.

Equation A. 12 on page A-27 defines the modified version of Ohm's Law.

RKK-Junc (A-27)

Refers to the elaborated RKK-abstraction, embellished to explicate the junctions.

See Equation A-3 on page A-28.

R L C K K (153)

Refers to the Resistance, Inductance and Capacitor abstraction defined in the

LELS theory; see SubAppendix B.4.4.

R L K K (i53)

Refers to the Resistance and Inductance abstraction defined in the LELS theory;

see SubAppendix B.4.4.

residue (eo)

Refers to the additional conjectures which must be added to a theory to permit

a desired proposition to be proven.

See the A entry.

(172)

A particular privileged partial interpretation used by the partial interpretation

semantics framework; as in Allowed(ZW, Th).

See the Allowed entry.

S a m e T h e o r y ( a i . . . a m ) (79)

Refers to the relation which holds when all of its arguments, {at}j, are associated

with the same theory.

I n T h e o r y ( c , t h ) (127)

Refers to the relation which holds when the concept c is associated with the

theory th.



A-144 APPENDIX C. GLOSSARY

satisfy (20)

We say a theory, £, satisfies a formula, <f>> if there is some instantiation of <j>

which is not inconsistent with S; i.e., if 3 {xt} £ \fc "^<f>{xi9 • . . xm).

second-order fact (20)

Refers to facts whose arguments pertain to function or relations. Hence, Kir-

choff l(FlowRate) is a second order fact as the argument, FlowRate, is itself

a function.

See the first-order fact entry.

sentences (13)

Refers to syntactically well-formed formulae with no free variables. (Used syn-

onymously with proposition.)

See the formula and proposition entries.

s-expression (131)

Refers to the data structures used in LISP. See [MAE*62] and [Rus85].

Skolem variable (is)

Refers to some term which is dependent on another, in the sense that VoltageDrop

is dependent on Current, with respect to the RKK abstraction. In our system,

reinstantiating an n-ary abstraction for the target analogue requires determin-

ing values for the other n — 1 Skolem variables.

Solve (132)

Refers to the subroutine which uses constraints to solve some query.

See the constraints entry.

source analogue (13)

Refers to the source concept of the analogy. By convention, it is represented by

the symbol B.

See the target analogue entry.

source analogy sentence o?)

Refers to the instantiation of the analogy formula involving the source analogue;



C.2. GLOSSARY OF TERMS A-145

usually written <p(a*,... A,... a n ) .

See the analogy formula and source analogue entries.

source instantiation (of the analogy formula) (ir)

Refers to the terms used in the particular instantiation of the analogy formula

which involves the source analogue; i.e., it is the [ai,. • • an] of £>(ai,... A,... an)•

See the source analogy sentence entry.

source of the analogy (ir>

Refers to the source analogy sentence.

See the source analogy sentence entry.

source problem (77)

Refers to a problem which deals with the source analogue which resembles the

target problem (which deals with the target analogue). In current implement,

it is generated by the HJK heuristic.

See the HJK entry.

source theory <s)

Refers to the collection of facts associated with the source concept; it is a subset

of the initial theory. E.g.} EC is the target theory associated with the target

analogue Current.

See the EC entry.

subrout ine oos)

Refers to a body of LISP code. The term "function" is used to refer to mathe-

matic entities (which, of course, may be realized by some subroutine). Subrou-

tine is synonymous with procedure and module.

Refers to the support set of the sentence a from the theory Th.

See Definition 8 on page 31.

See also the support set entry.



A-146 APPENDIX a GLOSSARY

support set (31)

Refers to the minimal subset of a theory which are sufficient to prove a sentence.

Used synonymously with justification.

See the justification entry.

T (167)

Refers to "the true".

target analogue (13)

Refers to the target concept of the analogy. By convention, it is represented by

the symbol A.

See the source analogue entry.

target analogy sentence (17)

Refers to the instantiation of the.analogy formula involving the target analogue;

usually written <p (b*,... B, . . . bn) .

See the analogy formula and target analogue entries.

target instantiation (of the analogy formula) o?)

Refers to the terms used in the particular instantiation of the analogy formula

which involves the target analogue; i.e., it is the [bi,.. .bn] of £>(t>i,.. .B,., .bn) .

See the target analogy sentence entry.

target of the analogy (17)

Refers to the target analogy sentence.

See the target analogy sentence entry.

target problem (39)

Refers to a problem which deals with the target analogue. In the context of the

useful analogical inference process, the "goal of the analogy" is the addition of

the new facts needed to return an answer to this query.

See the PT entry.

target theory <»)

Refers to the collection of facts associated with the target concept; it is a subset



C.2. GLOSSARY OF TERMS A-147

of the initial theory. .E.g., FS is the target theory associated with the target

analogue FlowRate.

See the FS entry.

Tarskian Interpretation (165)

Refers to the standard notion of interpretation, as contrasted with partial in-

terpretations.

See the Partial Interpretation entry.

task (in)

Refers to a (sub)process which must be executed. Within the MRS system, tasks

are usually placed on an agenda, and pulled off and run in an order determined

by various meta-rules. In general, a task can be an arbitrary chore, which might

be performed, e.g., by the NLAG system or its writer.

term <A-U)

Refers to a syntactic expression which evaluates to some concept.

TermMap(f) (A-H)
Holds when / is a function which maps terms to terms.

Th (13)

Refers to the initial theory used in an analogy situation.

See the theory entry.

TK (39)

Refers to a final theory, the result of an analogical inference.

See the Th entry.

The particular initial theory used for our FlowRate~Current analogy situation.

See the theory entry.

theory (is)

Refers to a deductively closed, consistent collection of axioms. Used synony-

mously with "Knowledge Base".



A-148 APPENDIX C. GLOSSARY

TheoryOf (79)

The (MRS) function which maps each symbol into its "defining" theory. Used

hy HCc-
See Heuristic 3 on page 79.

Trivial (26)

Defines when a formula is trivial, with respect to some theory. See Section 2.4.

Trivial? (X-n)

Defines when a set of sentences is trivial with respect to some constant.

See the Trivailp entry.

TRUEP(s) (in)

The MRS subroutine which determines whether a proposition is provable from

the current theory.

W (167)

Refers to a possible world, especially in Chapter 5.

lV[a] (8«)

Refers to the set of possible worlds in which S + a are true, for some defaulted

theory E.

Refers to the set of possible worlds in which Th + a are true.

world (73)

Used synonymously with model (in second sense).

See the model (2) entry.

U (167)

Refers to the universe of discourse.

underlying theory (172)

Refers to the Th theory used in Allowed(ZW, Th).

See the Allowed entry.



C.2. GLOSSARY OF TERMS A-149

Unknown (is)

Refers to the condition imposed by all of the analogical inference processes

which prevents the process from conjecturing any fact already deducible from

the initial theory.

See Figure 2-1 on page 16.

Useful (39)

Refers to the condition imposed by the useful analogical inference process which

insists that the new conjecture leads to an answer to the given target problem.

See Figure 3-1 on page 39.

useful analogy (4o>

An analogy is considered useful if it is likely to suggest useful new conjectures,;

and in particular, when those suggested conjectures help to solve the specific

given problem.

useful fact (<to)

In general, a fact is considered useful if it helps to solve standard problems.

Verify

Refers to the NLAG module which verifies that the new conjectures are consis-

tent with each other and the initial theory, are useful (i.e., lead to an answer to

the given problem) and are acceptable to the user.

See Section 6.1.1.

Z (A-9)

Refers to the class of integers.


