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A b s t r a c t 

CMU is building a 32-bit floating-point systolic array that can cfficicndy per­
form many essential computations in signal processing like the FFT and convolu­
tion. This is a one-dimensional systolic array that in general takes inputs from one 
end cell and produces outputs at the other end, with data and control all flowing in 
one direction. We call this particular systolic array the Warp processor, suggesting 
that it can perform various transformations at a very high speed. 

We expect to have wide applications for the Warp processor, especially for the 
CMU prototype which has high degrees of flexibility at the expense of a relatively 
high chip count for each cell. The prototype has 10 cells, each of which is capable of 
performing 10 million floating-point operations per second (10 MFLOPS) and is 
build on a single board using only off-die-shelf components. This 10-ccll processor 
for example can process 1024-point complex FFrs at a rate of one FFT every 600 
jus. Under program control, the same processor can perform many other primidve 
computations in signal, image and vision processing, including two-dimensional 
convolution and complex matrix multiplication, at a rate of 100 MFLOPS. Together 
with another processor capable of performing divisions and square roots, the proces­
sor can also cfficicndy carry out a number of difficult matrix operations such as 
solving covariant linear systems, a crucial computation in real-time adaptive signal 
processing. 

This paper outlines the architecture of the Warp processor and describes how the 
signal processing tasks are implemented on the processor. 



I N T R O D U C T I O N 

1. INTRODUCTION 

Very high performance computer systems must rely heavily on parallelism, since 
there arc severe physical and technological limits on die ultimate speed of any single 
processor. The systolic array concept allows effective use of a very large number of 
processors in parallel. In recent years many systolic array algoridims have been 
designed and several prototypes of systolic array processors have been built 
[2,11, 21, 23]. Major efforts have now started in attempting to use systolic array 

processors in large applications. Practical issues on the implementation of systolic 
array processors have begun to receive substantial attention. 

To implement systolic array designs, appropriate architectures of the underlying 
processors must be developed. Architectural optimization for the implementation of 
a narrow set of algorithms is usually not very difficult, but designing an architecture 
which can efficiently implement a wide class of algorithms is a non-trivial task. The 
challenge is to achieve a balance between many conflicting goals, such as the 
generality of the system vs. ease of programming, flexibility vs. efficiency, and 
performance of the system vs. its design and implementation costs. Therefore, a key 
research issue regarding the implementation of systolic arrays is the identification of 
processor architectures that have the right tradeoffs between these conflicting goals. 
Along this line the CMU Programmable Systolic Chip (PSC), for example, 
represents a research effort in identifying architectures of general purpose 
microprocessors that can efficiently implement systolic arrays for a variety of ap­
plication areas [4, 6, 5]. The Warp processor considered in Uiis paper, on the other 
hand, resulted from research in identifying architectures for implementing very high 
performance systolic arrays only in the special area of signal processing. 

The design and construction of a prototype Warp processor arc cuircntly being 
carried out at CMU, using off-the-shelf components. This prototype will be used as 
an attached processor for a general-purpose host computer. 

Section 2 briefly describes the architecture of the Warp processor, and features 
of the CMU prototype. Main results of this paper are in Sections 3 to 5, which 
justify the architecture of the Warp processor by showing how it can efficiently 
implement convolution, interpolation, matrix multiplication and the FFT. Section 6 
contains some concluding remarks and brief discussions on the use of the Warp 
processor in solving linear systems. 

This paper does not address implementation details of the CMU prototype, 
which are subjects of other papers [16]. 
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WARP PROCESSOR A R C H I T E C T U R E 

2. THE WARP PROCESSOR ARCHITECTURE 

The Warp processor is a one-dimensional or linear systolic array that takes inputs at 
one end of the array and produces outputs at the other end, with data and control all 
flowing in one direction, as depicted in Figure 1. 

addr -
x — 
y -

cntl -

--> 

C E L L 1 C E L L 2 C E L L 3 

Figure /. The Warp processor 

There are several advantages of having this simple interconnection scheme, be­
sides the obvious ease of its design and implementation. Linear arrays require the 
minimum-possible I/O, in the sense that only the two end cells communicate with 
the outside world. Thus an rt-cell Warp processor can perform O(n) computations 
for each I/O operation. This property is desirable in practice, because usually it is 
the I/O bandwidth with the outside world a major limiting factor for achieving high 
performance. Linear arrays have the additional advantage that they can always be 
safely synchronized by a simple, global clock [3]. Finally, by having data and control 
all flow in one direction, we can use efficient fault-tolerant techniques to deal with 
faulty cells in a systolic array [14]. 

As to be shown later in the paper, cells of the Warp processor do not have to be 
complex either, in order to implement the target signal processing tasks. The follow­
ing are the major functional features of each cell: 

• MPY and ALU. These are arithmetic units for multiplication (MPY) and 
ALU operations. For the CMU prototype, the MPY and ALU are 
implemented with the Weitek 32-bit floating-point multiplier and ALU 
chips, respectively [22]. To get the best-possible throughput for the 
Warp cell, these chips are used in their pipeline mode. That is, a chip 
starts a new 32-bit arithmetic operation every cycle, although the result 
of an operation will not emerge from the chip's output ports until five 
cycies after the operation starts. 

The Warp processor array built from these pipelined arithmetic units 
therefore supports pipelining at both the array and the cell levels. These 
two levels of pipelining greatly enhance the system diroughput. [14,17]. 

• MPY register file, and ALU register file. These are general register files, 
each implemented with a copy of the Weitek 32x32 six port register file 
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WARP PROCHSSOR ARCI IITIiCTURE 

chip. The MPY register file can also compute approximate inverse and 
inverse square root functions, using the look-up unit on the Wcitck 
register file chip. 

• Data Memory. Having a memory at each cell for buffering data, im­
plementing look-up tables, or storing intermediate results is essential for 
reducing the I/O bandwidth requirement of the cells. Also by using its 
local memory to store temporary data, a cell can be multiplexed to 
implement the functions of multiple cells in a systolic array design. As a 
result, for example, the Warp can implement algorithms designed for 
two-dimensional systolic arrays, despite that it is a linearly-connected 
processor array. For the CMU prototype, the local data memory in each 
cell has 4K words, and can be expanded to have 16K words in the 
future. The memory can perform both a read and a write simul­
taneously every cycle, using address selected from the adr-file, crossbar, 
or the data memory itself (i.e., indirect addressing). 

• Two data I/O ports (x,y) and one address I/O port (addr). The Warp cell 
can input as well as output two words, and a pair of (read/write) ad­
dresses for the data memory, every cycle. 

• x-fde, y-fde, and addr-fde. These register files (of 128 words each) are 
provided mainly to implement programmable delays to ensure that x, >*, 
and addr streams arc property synchronized, as required by systolic al-
goridims. To implement programmable delays, these files arc equipped 
with counters that can automatically increment read and write addresses 
every cycle. When not implementing programmable delays, these files 
can be used as scratchpad register files, by setting or holding the 
counters using the microcode. 

• Crossbar. The functional units, data memory, register files, and I/O 
ports of the Warp cell are linked by a crossbar. The crossbar has 8 read 
ports, including one that accepts literals from microcode, and 6 write 
ports. The crossbar can be reconfigured every cycle under control of 
microcode to allow a read port to get data from any of the 6 write ports. 

• Input muxes. These are used to implement computations using the 
wraparound mode or bi-directional dataflows. In the wrap around mode 
the outputs of the cell is fed back to its inputs, hence wrapping around 
the cell. The wraparound mode multiplexes the use of one ceil to imple­
ment the function of several. This mode is useful for increased utiliza­
tion of the Warp in case of host I/O bottleneck. It also increases the 
virtual size of the array for problems requiring larger array size. 
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W A R P PROCESSOR ARCHITECTURE 

Figure 2 summarizes the cell datapath for die CMU prototype. Note that by 
setting the MUXcs outputs of a cell can be used immediately as inputs to the same 
cell in the next cycle. This "wraparound" facility allows a single physical cell to 
implement a number of consecutive logic cells. Also, the >-input of each cell can 
take values from the ^output of the cell to die right. As to be discussed in Section 6, 
this feature allows the Warp processor to implement linear systolic arrays with bi­
directional data flows. 

y 1*1 
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addr, . 
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X-FILE 
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DATA 
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j ^ addr i 

Figure 2. Datapath for the Warp cell 
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C O N V O L U T I O N 

3. CONVOLUTION 

Wc first present systolic array designs for onc-dimcnsional (1-D) convolutions that 
the Warp processor can implement efficiently. Then wc extend these designs to 
handle two-dimensional (2-D) and higher-dimensional convolutions. 

3.1. One-Dimensional Convolution 

The 1-D convolution problem is defined as follows: 

Given a kernel as a sequence of weights (wv w2, . . . . n^) 
and an input sequence (jq,^. • • • 

compute the output sequence (yvyv ... ,yn-k+i)> defined by 

Depicted in Figure 3 is one of the many possible systolic array designs for 1-D 
convolutions, given at an abstract level [10]. Weights are preloaded into the array, 
one for each cell. During the computation, both inputs xt and partial results for y>x 

flow from left to right, but the x-x move twice as fast as the y { . The speed difference 
ensures that each y { can meet all the k consecutive Xj that it depends upon. More 
precisely, each y t stays inside every cell it passes for one cycle, thus it takes twice as 
long to march dirough the array as does an It is an easy exercise to see that each 
y h initialized to zero before entering the leftmost cell, is indeed able to accumulate 
all its terms while moving to the right. For example, y \ accumulates wTjclf w2x2, and 
W3X3 in three consecutive cycles at the first, second, and third cell from the left, 
respectively. 

( a ) .Vi> ; 3 J ; 3 J 

( b ) V in y 
. . . J 

"y"\ 

1 -̂ ot 

I X^Ol 
•"'out 
yout 
y : = 

:= y 
yin + >v* 

Figure 3. (a) Systolic array for 1-D convolution using a kernel of size k 
and (b) the cell specification 

Figure 4 depicts the internal structure of two consecutive cells, assuming that 
multiplication together with addition can be done in one cycle. Note diat the y-data 
stream has two latches for each cell, as opposed to one latch for the case of the 
jc-data stream. Thus data on the two data streams travel at two speeds, as required 
by the systolic array algoridim of Figure 3. 
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MPY 

ADD 

— A 

MPY 

ADD 

— ) 

Figure 4. Cell structure for the l-D convolution array of Figure 3 

To use the Warp processor, we consider now the situation that the pipelined 
multiplier and adder each have five pipeline stages. From Figure 5 we sec that in 
this case it will take five steps, instead of two steps as in the case of Figure 4, for each 
y\ to pass a cell. To compensate the additional three delays on the >>-data stream, we 
use 4 ( = 3 + 1 ) latches on the x-data stream for each cell [14]. 

MPY 

J - 7 

ADD 

MPY 

i +1 

ADD 

1 
Figure 5. Two-level pipelined systolic array for l-D convolution 

Figure 6 shows another design that the Warp processor can implement. In this 
design weight w/ used by each cell at every cycle is selected on-the-fly from the data 
RAM by a systolic address flowing from cell to cell on the addr stream. By associat­
ing each yi with an address on the addr stream, this design [17] allows different sets 
of weights to be used to compute different yi9 as required, for example, in inter­
polation and resampling of signals. Note that by going through the same delay at 
each cell, that is, a delay of four steps for the design of Figure 6, both and its 
associated address are synchronized in the sense that dicy arrive at each ceil at the 
same time. 

3.2. Two-Dimensional Convolution 

The 2-D convolution problem is defined as follows: 
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MPY 

RAM 

ADD 

y 

addr 

RAM 

MPY 

ADD 

Figure 6. Systolic array using adaptive weights for interpolation and resampling 

Given the weights wy for /= 1,2,... ,kj= 1,2 p that form a kxp 
kernel, and an input image xy for /= 1,2,... , m , 1 , 2 , . . . ,/z, 

compute the output image y^ for /= 1,2,... ,m— 1, 
7 = 1 , 2 , . . . tn-p+l defined by 

* p 

/2=1 / = 1 

It has been shown diat any 2-D convolution problem can be converted into a 
1-D convolution problem with the 1-D input sequence and kernel defined as follows 
[12]. The input sequence is 

where */* = x^x^ xin. That is, the input sequence is the concatenation of the 
rows of die given 2-D image and has a total length of mn. The kernel is 

- p ) ! 0 , w 2 *,. . . ,(n-pV-0>Wk*> 

where wl+ = Wjl wip and (n—p)\0 stands for a vector of / 7 — / ? zeros. Thus the 
kernel is the concatenation of the rows of the given 2-D kernel, with a vector of 

p) zero elements inserted between each consecutive pair of rows. The length of 
the kernel is therefore n(k - 1) + p. 

The method described here, that converts a 2-D problem into a 1-D one. will 
generate /?— 1 invalid results for every set of n outputs [12]. Fortunately, the fraction 
of invalid results, which will be ignored, is very small because /?< n. 

If the systolic array design of Section 3.1 is applied directly to perform the 1-D 
convolution derived from a 2-D convolution, then a large number of cells, that is, 
n(k — l) + p cells would be needed in die array, and cells with zero weights would 
perform no useful work. From Figure 5, we see diat the only effects of a cell witii a 
zero weight are to delay data on the j>-data stream by five cycles and those on the 
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jt-data stream by four cycles. Therefore this cell can be replaced with a cell that just 
introduces zero cycle delay for the jc-data stream and a single cycle delay for the 
ydata stream. This degenerate cell may in turn be absorbed into the cell to the right 
by introducing one shift register stage to that cell. In general, if there arc q non-zero 
elements in die kernel, then the systolic array needs only q cells. 

Applying the above cell-saving technique to 1-D convolutions derived from 2-D 
convolutions, we conclude that the convolution of an mxn image with a kxp kernel 
can be performed on a systolic array of kp cells, where cells ip+ 1, / = 1,2, . . . , k— 1, 
each have a shift register of n—p stages. Figure 7 depicts such a two-level pipelined 
systolic array for 2-D convolutions. The data RAM of each cell is used to implement 
the required shift register that may be needed. The read and write addresses re­
quired at every cycle for the implementation of die shifter are supplied by the addr 
stream. It is straightforward to see that the Warp processor can efficiently imple­
ment this systolic array design. 

MPY 

WA 
ADD 

MPY 

ADD 

addr 

LrnJ 
^ RAM 

Figure 7. Two-level pipelined systolic array for two 
or higher dimensional convolutions 

Three or higher dimensional convolutions can also be converted into 1-D con­
volutions in a similar way [12]. By using the conversion and cell-saving techniques, 
the architecture of the Warp processor can handle convolutions of any dimen­
sionality. But the size of the data RAM at each cell must increases as does dimen­
sionality. For example, convolving an nxn image with a kxk kernel the data RAM 
must be large enough to hold n—k words, as shown above, whereas convolving an 
nxnxn 3-D image with a kxkxk kernel the data RAM must be large enough to 
hold (n- k)(n+l) words. 

The design of Figure 7 has a dual design for which data on the y-data stream 
travel at a higher speed than those on the x-data stream. More precisely, each cell of 
the dual design has six instead of four delays in the x-data stream, as depicted in 
Figure 8 [12]. The dual design has die property that die data RAM keeps data from 
die x-data stream rather than from the ydata stream. This allows a reduction on the 
size of the data RAM for each cell, when the word size for data on die (input) x-data 
stream is smaller dian that for data on the (output) y-data stream. 
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addr 

pP A H |- | 
J* 

RAM 

•a 
MPY MPY 

ADD ADD 

Figure 8. Another two-level pipelined systolic array for two or higher 
dimensional convolutions 

For convolutions with very large kernels, well known transform methods based 
on the FFT should be used instead. In Section 5 we will describe how the Warp 
processor can be programmed to perform the FFT. 
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MATRIX MULTIPLICATION 

4. MATRIX MULTIPLICATION 

Given nxn matrices X=(xj.) and W=(w7y), we want to compute their product F = 
(yij). We present two systolic array designs for matrix multiplication diat the Warp 
processor can efficiently implement—the design of Figure 11 for real matrix mul­
tiplication and die design of Figure 12 for complex matrix multiplication. 

Figure 9 depicts a simple linear systolic array at an abstract level for the matrix 
multiplication problem [18], with // = 8. Fach cell of the array performs a multiply-
accumulatc operation every cycle. The y-th cell from the left computes the inner 
product )>j of vectors (x^x^ xin) and (wl7,w>2y wnfi% for each /. By pumping 
die entries of X into the array serially in the row-major ordering and by recirculating 
(wfy.wy,... ,wnj) at cell j for each y, entries in the product matrix Y=XW will be 
computed, and output also in the row-major ordering. 

N ^ 3 1 N ^ 2 2 

( a ) 
* 2 1 Xl X\2^ -*Ty 

N•/^38 

. 4 . 

i 
\ 
/ i yt j -> . • V 

• / 
•j y*\ 

' - - - - « J 

Xir. 

( b ) 
: = x in * >v:>: + >> 

: = x, 

F/gare 9. (¿7) Systolic array for matrix multiplication, and (b) cell specification 

Figure 10 shows the internal structure of two consecutive cells for computing yt 

and y l + l i assuming that multiplication together with addition can be done in one 
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MATRIX MULTIPLICATION 

cycle. Each cell performs a multiply-accumulatc operation every cycle and the result 
is kept in the y register. After n multiply-accumulatc operations, the contents of the 
y register is transferred to the corresponding latch on the y-data stream. These 
computed results on die >^data stream shift to die right systolically at the rate of one 
cell every cycle. When they reach the right end cell of the systolic array, they are 
output. Note that on the jc-data stream two rather than one latch is provided for 
each cell. This ensures that computation for y t be completed two cycles earlier than 
that for and therefore the computed y { and y i + l will not collide with each other 
on die y-data stream. 

To facilitate the recirculation of (w l y i w 2 y, . . . ,w n j ) , we store at cell j these values in 
a shifter implemented by a RAM. The particular w to be used in any given cycle is 
picked up by an address (addr), which is input to the cell every cycle. Since the 
address patterns for all the cells arc the same, they are passed systolically from cell to 
cell. To synchronize the addr stream with die x-data stream, two latches are 
provided for the addr stream at each cell. 

MPY ADD 

addr 

y 

RAM 

4T 
MPY ADD 

RAM 
ft* 

•I 
Figure 10. Cell structure for the systolic matrix multiplication array of Figure 9 

4.1. Interleaving Multiple Matrix Multiplicadons 

We now consider the case that the multiplier and adder each have five pipeline 
stages. Since the adder has five stages, accumuladons can take place only once every 
five cycles. In order to make full use of the adder and multiplier, we interleave 
computations for five independent matrix multiplications on the systolic array. 
(These matrix multiplications may actually be subtasks of a single, large matrix 
multiplication.) This implies that a new task can enter the adder every cycle, and 
that live independent accumulations can be updated simultaneously at various 
stages of the adder at any given cycle. However, with this interleaving scheme, cells 
will output results in bursts. That is, at every /rdi cycle a cell will stait outputting 
results for five consecutive cycles. To avoid collisions on die j'-data stream, among 
outputs from different cells, we use 6 (=- 5 + 1 ) latches on the x-data stream for each 
cell, as depicted by Figure 11. 

4.2. Complex Matrix Multiplication 

Complex matrix multiplications are common in many signal processing applica-
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RAM 

MPY ADD 

addr 

y 

RAM 

I 
7F-

MPY ADD 

Figure 11. Two-level pipelined systolic array for matrix multiplication 

tions like beamforming. A complex multiply-accumulate operation, 

(xr+jxD>(wr+jWi) + (yr+jyt) 
= [ ( * R W R - Xi• W/) + yr] +j[(xr> W/ + JC,• W , ) + 

involves four real multiplications and four real additions. They will be done in four 
cycles using the multiplier and adder of each cell. The real and imaginary parts of a 
complex number arc processed in separate cycles; in particular, the real part of a 
result is computed two cycles earlier than its imaginary part. In the scheme of 
Figure 12, die four multiplications, xr-wn X / ' W / . xr-wh and xrwr, occupy four con­
secutive stages of the multiplier. The resulting products enter directly into the adder 
to form xr-wr— JCFTV .-and xr-w:+ xrwr, and these two additions occupy two stages of 
the adder. Interleaved with these two stages are stages for performing the other 
additions involving yr and yt. We append a three-stage shift register to die adder, so 
diat two independent (complex) accumulations, that involve updating a total of four 
real numbers, can be simultaneously maintained inside the eight-stage pipeline. 

Figure 12. Two-level pipelined systolic array for complex matrix multiplication 
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5. FAST FOURIER TRANSFORM 

The problem of computing an tt-point discrete Fourier transform (DFT) is as fol­
lows: 

Given x0, xlt..., xn-l% 

compute y0, yv ..., yn-x defined by 

where co is a primitive «-th root of unity. 

Assume that n is a power of two. The well known fast Fourier transform (FFT) 
method solves an «-point DPT problem in 0(n log n) operations, while the 
straightforward mcdiod requires 0(r?) operations. 'Hie FFT involves log 2n stages 
of n/2 butterfly operations, and data shufflings between any two consecutive stages. 
The so-called constant geometry version of the FFT algorithm allows the same 
pattern of data shuffling to be used for all stages [20], as depicted in Figure 13 with 
A? = 16. In the figure the butterfly operations are represented by circles, and number 
h by an edge indicates that the result associated with the edge must be multiplied by 

Figure 13. Constant geometry version of the FFT algorithm 

We show that the constant geometry version of the FFr can be implemented 
efficiently with the Warp processor. In the systolic array, all the butterfly operations 
in the Hh stage are carried out by cell /, and results are stored to the data RAM of 
cell / + 1 . While the data RAM of cell i+1 is being filled by the outputs of cell /, 
cell / + 1 can v/ork on the butterfly operations in the ( / + l)-st stage of another FFT 
problem. In practical applications, there are often a large number of FFFs to be 
processed, or there are FFT problems being continuously generated. Thus it is 
possible that a new FFT problem can enter the first cell, as soon as the cell becomes 
free. In this way all the cells of the systolic array can be kept busy all the time. 
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We now describe how butterfly operations are executed by each cell. A butterfly 
operation, 

(ar+jai) ± (br+jbi)iwr+jwj) 
= [ar ± (Zy w r - b( • wy)] +j[ai ± (br- wt + b{ • ny)], 

involves four real multiplications and six real additions. Thus, just to do the neces­
sary additions, it will occupy six cycles of the adder of the cell. By techniques similar 
to those used in the design of Figure 12, we can derive a two-level pipelined systolic 
design of Figure 14, for which each cell can in fact process a new butterfly operation 
every six cycles. At any time, executions of up to four independent butterfly opera­
tions arc interleaved at various stages of a cell. Note that inputs of the butterfly 
operation each arc used twice and so are the intermediate results. As illustrated in 
Figure 14, this can be efficiently supported by the pipeline registers linked to the 
input registers of the arithmetic units. 

Inputs an ah br and b{ of the butterfly operations are obtained from the data 
RAM of each cell. And the outputs of the butterfly operations are stored in the data 
RAM of the next cell on the right. The constant geometry version of the PTT allows 
the use of the same address patterns for all the cells. Therefore addresses for the 
RAM of each cell can be passed from cell to cell systolically along the addr stream. 

The other inputs wr+jwb needed for the butterfly operations, are obtained from 
the .x-data stream. For illustration, consider the 16-point problem depicted in 
Figure 13. The >v>+jwj needed by the eight butterfly operations at each stage are 
various powers of a primitive 16-th root of unity co. In particular, we use 

i o 0 , ^ 0 , ^ 0 , ^ 0 , ^ 0 , ^ 0 , ^ 0 , ^ 0 for the first stage, 

cj0,co0,a)0,w0,(o4,co4,a)4,co4 for the second stage, 

<o0,co0,tj2,(o2,a)4,co4,(j6,co6 for the third stage, and 

C J % J \ C O 2 , W 3 , U A < ^ < O 6 , < O 7 for the fourth stage. 

For each cell to obtain the proper uh at each cycle, we pump elements in 
( w 0 , ^ 1 , ^ 2 , ^ 3 , ^ 4 , ^ 5 , ^ 6 , ^ 7 ) sequentially into the leftmost cell of the systolic array, and 
move them from left to right systolically along the .x-data stream. Cell 1 buffers the 
first entry co0 and uses it for eight butterfly operations. Ceil 2 buffers the first entry 
<o° and uses it for four butterfly operations, and after that it buffers the fifth entry CJA 

and uses it for four butterfly operations. Similarly cell 3 buffers its inputs co°, to2, co4, 
and <o6, and use each of them for two butterfly operations. Cell 4 just uses whatever 
entry on ;c-data stream at every cycle. All these operations can be easily controlled, 
for example, by a counter at each cell, which is denoted by CNT in Figure 14. 

The CMU prototype of die Warp processor has ten cells, each having a data 
RAM of 4K words. Thus by double-buffering the RAMs, the machine can do 
computations of ten independent 1024-point complex FFTs simultaneously. More 
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CNT •4 CNT 

MPY 

j RAM 
ADD 

MPY 

7FT RAM 
ADD 

—> 

Figure N. Two consecutive cells in the two-level pipelined systolic array for the FFT 

precisely, at any given time all these FFTs are in different stages being carried out 
by different cells. Since the machine has a cycle time of 200 ns, a cell takes 1.2 /xs to 
process a butterfly operation. This implies that we can process 1024-point complex 
FFTs at a rate of one FFr every (l/2)-(1024> 1.2 p.s ( = 614.4 ps). 

The I/O bandwidth requirement for the Warp processor when performing FFTs 
is modest, in view of its high performance in throughput. Inputs wr4-y'w,- and addr 
to cell 1 are constants and thus can be supplied, for example, by a memory external 
to the host, as depicted in Figure 15. The host needs only to deliver one set of inputs 
for a butterfly operation, which amount to four words, every 1.2 / AS . This is equiv­
alent to a data rate of 13.4 Mbytes/second. At die same rate the host collects outputs 
coming out from cell n along the y-data stream. Thus the total data bandwidth 
requirement between the host and the Warp need not excess 27 Mbytes/second in 
order to make full utilization of the Warp processor when performing FFTs. 

MEM 

HOST 

Figure 15. I/O interface of the Warp processor when performing FFTs 

The linear array of Figure 15 is wrapped around so that both cell 1 and cell n are 
adjacent to the host. This layout arrangement allows an indefinite expansion of the 
array while maintaining the I/O interface with the host. 
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6. CONCLUDING REMARKS 

When performing convolution, matrix multiplication and QR-dccomposition, the 
multiplier and adder of each cell are fully utilized every cycle. Therefore, for the 
10-ccll CMU prototype, each cell can deliver 10 MFLOPS, and results in an ag­
gregate computation rate of 100 MFLOPS. 

The Warp processor is highly modular in the sense that the number of cells in 
the linear array can expand indefinitely to deal with problems of large sizes. For 
example, to make the CMU prototype to handle 2-D convolutions for 5x5 kernels at 
the original rate of one output every 200 ns, we can simply extend the processor 
array to 25 cells. 

As discussed at the end of Section 2, by wrapping around data each cell can 
perform the functions of several consecutive cells, and thus large problems can often 
be handled by a small array. For example, a 5-ccll CMU prototype can perform 2-D 
convolutions for 5x5 kernels at a rate of one output every microsecond instead of 
200 ns. In this case the I/O bandwidth requirement for the prototype to communi­
cate with the outside world is reduced. Thus multiplexing cells is also a useful 
technique to make full use of the Warp processor when the communication speed 
with the outside world cannot keep up with the cell speed. 

The Warp processor can solve problems beyond those considered in this paper. 
For example, it can perform polynomial evaluation and discrete Fourier transform 
at die peak speed [13]. In general, most of the so-called "local" operations in signal 
and image processing can be efficiently carried out by the Warp processor. Since 
Batcher's sorting network is realizable with the constant geometry interconnection of 
Figure 13 [9], die Warp can also be used for sorting. 

Together with another processor for performing fast divisions and square roots, 
die Warp processor can efficiently implement most of the systolic arrays proposed in 
the literature for solving various kinds of linear systems. For example, it is known 
that a linear systolic array of Figure 16 can solve triangular linear systems [15], and 
perform the QR-dccomposition of a Hessenberg matrix [7], a key step in real-time 
adaptive signal processing [1,19]. The boundary processor, drawn in dotted lines in 
die figure, is assumed to be capable of performing hard arithmetic operations such 
as divisions and square roots. 

i t t T t 1 1 I 
1 

N 
/ — * \ 

/ 

**-
1 t w t 

i— 

t t 
Figure 16. Bi-directional systolic array with a boundary processor 

Figure 17 shows that the Warp processor augmented with the boundary processor 
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can implement the systolic array of Figure 16. Note that the >Hnput of each cell 
now takes values from the ^'-output of the cell to the right, so that the required 
bi-directional data flows can be implemented. 

Figure 17. (a) Bi-directional systolic array, implemented by (b) the Warp processor 

Programming the Warp processor is, however, a non-trivial task, since the ar­
chitecture is highly pipelined. To ensure correctness of die code, we basically rely 
on software simulations at this time. One of the current research efforts at CMU is 
to construct compilers for machines of diis type. 

Future implementations of the Warp processor arc expected to be much more 
compact than the current CMU prototype described in this paper. For example, 
when the CMU link and interconnection chip (LINC) [8] (that can efficiently imple­
ment data communication in a processor) becomes available in 1985, we will be able 
to build on a single board three or more Warp cells. Within ten years, we expect 
that advances in semiconductor technology will allow a Warp cell to be imple­
mented on a single chip. 
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