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Abstract

CMU is building a 32-bit floating-point systolic array that can ¢fficiently per-
form many essential computations in signal processing like the FFT and convolu-
ton. This is a one-dimensional systolic array that in general takes inputs from one
end ccll and producces cutputs at the other end, with data and control all flowing in
one dircction. We call this particular systolic array the Warp processor, suggesting
that it can perform various transformations at a very high speed.

We cxpeet to have wide applications for the Warp processor, especially for the
CMU prototype which has high degrees of flexibility at the expense of a relatively
- high chip count for each cell. ‘The prototype has 10 cells, cach of which is capable of
performing 10 million floating-point operations per sccond (10 MFLOPS) and is
build on a single board using only off-the-shelf components. This 10-ccll processor
for examptle can process 1024-point comptex FFTs at a rate of one FF1 every 600
us. Under program control. the same processor can perform many other primitive
computations in signal, image and vision processing, including two-dimmensional
convoiution and complex matrix multiplication, at a rate of 100 MFLOPS, Together
with another processor capable of perfonning divisions and square roots, the proces-
sor can also efficiently carry out a number of difficult matrix operations such as
solving covariant lincar systems, a crucial computation in real-time adaptive signal
processing,

This paper outlines the architecture of the Warp processor and describes how the
signal processing tasks are implemented on the processor.
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1. INTRODUCTION

Very high performance computer systems must rely heavily on parallelism, since
there are severe physical and technological limits on the ultimate speed of any single
processor. The systolic array concept allows effective use of a very large number of
processors in parallel. In recent years many systolic array algorithms have been
designed and scveral prototypes of systolic array processors have been built
[2, 11, 21, 23]. Major efforts have now started in attempting to use systolic array
processors in large applications. Practical issucs on the implemcntation of systolic
array precessors have begun to receive substantial attention.

To implement systoiic array designs, appropriate architectures of the underlying
processors must be developed. Architectural optimization for the implementation of
a narrow set of algorithms is usually not very difficult, but designing an architecture
which can efficiently implement a wide class of algorithms is a non-trivial task. The
challenge is to achieve a balance between many conflicting goals, such as the
generality of the system vs. ecasc of programming, flexibility vs. efficiency, and
performance of the system vs. its design and implementation costs. Therefore, a key
rescarch issue regarding the implementation of systolic arrays is the identification of
processor architectures that have the right tradcoffs between these conflicting goals.
Along this line the CMU Programmable Systolic Chip (PSC), for example,
represents a research effort in identifying architectures of gencral purpose
microprocessors that can cfficiently implement systolic arrays for a variety of ap-
plication arcas [4, 6, 5]. The Warp processor considered in this paper, on the other
hand, resulted from research in identifying architectures for impleinenting very high
petformance systolic arrays only in the special area of signal processing.

The design and construction of a prototype Warp nrocessor are cutreatly being
carricd out at CMUJ, using off-the-shelf compornients. This prototype will be used as
an attached processor for a gencral-purpose host computer.

Section 2 briefly describes the architecture of the Warp processor, and features
of the CMU prototype. Main results of this paper are in Sections 3 to §, which
Justify the architecture of the Warp processor by showing how it can efficiently
implement convolution, interpolation, matrix multiplication and the FFT, Section 6
contains some concluding remarks and brief discussions on the use of the Warp
processor in solving linear systems.

This paper does not address implementation details of the CMU prototype,
which are subjects of other papers [16].
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2. THE WARP PROCESSOR ARCHITECTURE

The Warp processor is a one-dimensional or lincar systolic array that takes inputs at
one end of the array and produces outputs at the other end, with data and control all
flowing in one dircction, as depicted in Figure 1.
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Figure I. The Warp processor

There are several advantages of having this simple interconnection scheme, be-
sides the obvious ease of its design and implementation. Lincar arrays require the
minimum-possible 170, in the sense that only the two end cclls communicate with
the outside world. Thus an n-cell Warp processor can perfoerm @(n) computations
for each 170 operation. This property is desirable in practice, because usually it is
the }/0 bandwidth with the outside world a major limiting factor for achieving high
performance. Linear arrays have the additional advantage hat they can always be
safely synchronized by a simple, globai clock [3]. Finally, by having data and control
all flow in onc dircction. we can use cfficient fault-tolerant technigues to deal with
faulty cells in a systolic array {14].

As to be shown later in the paper, cells of the Warp processor do not have to be
complex either, in order to implement the target signal processing tasks. The fotlow-
ing are the major functional features of cach cell:

¢ MPY and AlL.U. These are arithmetic units for multiplication (MPY) and
ALU opecrations. Fer the CMU prototype, the MPY and ALU are
implemented with the Weitek 32-bit floating-point multiplier and ALU
chips, respectively [22]. To get the best-possible throughput for the
Warp cell, these chips are used in their pipcline mode. That is, a chip
starts a new 32-hit arithmetic operation every cycle, although the result
of an operation will not emerge from the chip’s output ports until five
cycles after the operation starts.

The Warp processor array built from these pipelined arithmetic units
therefore supports pipelining at both the array and the celt leveis, These
two levels of pipelining greatly enhance the system throughput. [14, 171

e MPY register file, and ALU register file. These are gencral register files,
each implemented with a copy of the Weitek 32X32 six port register file
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chip. The MPY register file can also compute approximate inverse and
inverse square root functions, using the look-up unit on the Weitek
register file chip.

Data Memory. Having a memory at cach ccll for buffering data, im-
plementing look-up tables. or storing intermediate results is cssential for
reducing the 1/0 bandwidth requirement of the cells. Also by using its
local memery to store temporary data, a cel! can be multiplexed to
implement the functions of multiple cells in a systolic array design. As a
result, for cxample, the Warp can implement algorithms designed for
two-dimensional systolic arrays, despite that it is a lincarly-connected
processor array. For the CMU prototype, the local data memory in each
cell has 4K words, and can be expanded to have 16K words in the
future. The memory can perform both a read and a write simul-
tancously every cycle, using address selected from the adr-file, crossbar,
or the data memory itself (i.¢., indirect addressing).

Two data 170 ports(x, y) and one address 170 port (addr). The Warp cell
can input as well as output two words, and a pair of (read/write) ad-
dresses for the data memory, every cycle.

x-file, y-file, and addrfile. These register files (of 128 words cach) are
provided mainly to implement programmable delays to ensure that x, y,
and addr streams are properly synchronized, 1s required by svstolic al-
gorithms. To implement programnmabic delays, these files are cquipped
with counters that can automatically increment read and write addresses
every cycle. When not implementing programmable delays, these fiies
can be uscd as scrawchpad register files, by sctting or holding the
couniers using the microcode,

Crossbar. The functional units, data memory, register files, and 1/0Q
ports of the Warp cell are linked by a crossbar. The crossbar has 8 read
ports, including one that accepts literals from microcode, and 6 write
ports. The crossbar can be reconfigured every cycle under control of
microcode to allow a read port to get data from any of the 6 write ports.

Input muxes. These are used to implement computations using the
wraparound mode or bi-directional dataflows. In the wrap around mods
the outputs of the cell is fod back to its inputs, hence wrapning around
the cell. The wraparound mode multiplexes the use of one ceil to impic-
ment the function of several. This mode is useful for increased utiliza-
tion of the Warp in case of host 170 bottleneck. It also increases the
virtual size of the array for problems requiring larger array size.
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Figure 2 summarizes the cell datapath for the CMU prototype. Note that by
setting the MUXes outputs of a cell can be used immediately as inputs w the same
cell in the next cycle, This “wraparound™ facility allows a single physical cell to
implement a number of consccutive logic cells.  Also, the y-input of cach cell can
take values from the y-output of the cell to the right. As to be discussed in Section 6,
this feature allows the Warp processor to implement lincar systolic arrays with bi-
directional data flows.
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Figure 2. Datapath for the Warp cell
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3. CONVOLUTION

We first present systolic array designs for one-dimensional (1-D)Y convolutions that
the Warp processor can implement cfficiently. Then we extend these designs to
handle (wo-dimensional (2-12) and higher-dimensional convolutions,

3.1. One-Dimensional Convolution

The 1-D convolution problem is defined as follows:

Given a kernel as a sequence of weights (w, w,, ..., wy)
and an input sequence {X,X,, . . . .X,),
compute the output sequence (4,1, . . . . ¥p—k + 1) defined by

yEwxg Tt m et X e

Depicted in Figure 3 is one of the many possible systolic array designs for 1-D
convolutions, given at an abstract level [10). Wcights are preloaded into the array,
one for each cell. During the computation, both inputs x; and partial results for y;
flow from left to right, but the x; move twice as fast as the y,. The speed difference
ensurcs that cach y; can meet all the & consecutive x; that it depends upon. More
precisely. cach y; stays inside every cell it passes for onc cycle. thus it takes twice as
long to march through the array as does an x;. It is an easy excrcise to sce that each
¥, initialized to zero before entering the lefumost cell, is indeed able to accumutate
all its terms while roving to the right. For example, v accumulates w,x,, w,x,, and
wyx; in three consccutive cycles at the first, second, and third cell from the feft,
respectively.
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Figure 3. (a) Systolic array for I-D convolution using a kernel of size k.
and (b} the cell specification

Figure 4 depicts the internal structure of two consccutive cells, assuming that
multiplication together with addition can be done in one cycle. Note that the y»-data
stream has two latches for each cell, as opposed to one iatch for the case of the
x-data stream. Thus data on the two data streams travel at two spceds, as required
by the systolic array algorithm of Figure 3.
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Figured. Cell structure for the [-D convolution array of Figure 3

To use the Warp processor, we consider now the situation that the pipelined
multiplier and adder cach have five pipeline stages. From Figure 5 we sce that in
this case it will take five steps, instead of two steps as in the case of Figure 4, for cach
y; to pass a cell. To compensate the additional three delays on the y-data stream, we
use 4 (=34 1) latches on the x-data stream for each cell [14],
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Figure 5. Two-level pipelined systolic array for 1-1) convolution

Figure 6 shows another design that the Warp processor can implement. In this
design weight w; used by each cell at every cycle is selected on-the-fly from the data
RAM by a systolic address flowing from cell to ccli on the addr stream. By associat-
ing cach y; with an address on the addr stream, this design [17] allows different sets
of weights to be used to compute different y,, as required, for example, in inter-
polation and resampling of signals. Note that by going through the same delay at
cach cell, that is, a delay of four steps for the design of Figure 6, both y; and its
associated address are synchronized in the sensc that they arrive at cach ceil at the
same time,

1.2. Two-Dimensional Convolution

The 2-D convolution problem is defined as follows:
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Figure 6. Systolic array using adaptive weights for interpolation and resampling

Given the weights w;; for i=12,... .k j=12,... pthat form a kX p
kernel, and an input image xifori=12,...m j=12,...,n,

compute the output image y; for i=12,... m—k+1,
i=L2,....n—-p+1 Eeﬁned by

P
Yij= Z th!xi+h-1_j+!—1-

h=1 [=1

It has becn shown that any 2-D convolution problem can be converted into a
1-1D convolution problem with the 1-D input sequence and kernel detined as follows
[12}. The input scquence is

BT o¥ NP Xppye,

where X« = Xp), X, .. . . X;, That is, the input sequence is the concatenation of the
rows of the given 2-D image and has a total length of mn. The kernel is

wis, (11 = PO, wys, ... (= p)0, Wy,

where wa=wy, ... ,w;, and (n—p)!0 stands for a vector of n—p zeros. Thus the
kernel is the concatenation of the rows of the given 2-D kernel, with a vector of
(n—p) zcro clements inserted between cach consccutive pair of rows, The length of
the Xernel is therefore n(k — 1) + p,

The method described here, that converts a 2-I) problem into a 1-D one, will
generate p— 1 invalid results for every set of # outputs [12). Forwnately, the fraction
of invalid results, which will be ignored, is very sinall because p« n.

If the systolic array design of Secction 3.1 is applied directly to perform the 1-D
convolution derived from a 2-D convolution, then a large number of cells, that is,
n(k=1)+ p cells would be needed in the array, and cells with zero weights would
perform no useful work. From Figure 5, we see that the only effects of a cell with a
zero weight are to delay data on the y-data stream by five cycles and those on the
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x-data stream by four cycles. Therefore this cell can be replaced with a cell that just
introduces zero cycle delay for the x-data stream and a single cycle delay for the
y-data stream. This degenerate cell may in turn be absorbed into the cell to the right
by introducing one shift register stage to that cell. In general, if there are g non-zero
elements in the kernel, then the systolic array neceds only g cells.

Applying the above cell-saving technique to 1-ID convolutions derived from 2-D
convolutions, we conclude that the convelution of an mXxa image with a AXp kernel
can be performed on a systolic array of kp cells, wherecells ip+ 1, i= 1.2,... k=1,
cach have a shift register of n— p stages. Figure 7 depicts such a two-level pipelined
systolic array for 2-D convolutions. The data RAM of cach ccll is used to implement
the required shift register that may be needed. The read and write addresses re-
quired at every cycle for the inplementation of the shifter are supplied by the addr
stream. It is straightforward to scc that the Warp processor can cfficiently impie-
ment this systolic array design.
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Figure 7. Two-level pipelined systolic array for two
or higher dimensional convolutions

Three or higher dimensional convolutions can also be converted into 1-DD con-
volutions in a similar way [12]. By using the conversion and ceil-saving techniques,
the architecture of the Warp processor can handle convolutions of any dimen-
stonality. But the size of the data RAM at cach cell must increases as does dimen-
sionality. For example, convolving an nx2x image with a kxk kernel the data RAM
must be large enough to hold n—k words, as shown above, whercas convolving an
nxaxn 3D image with a kxk<k kernel the data RAM must be large enough to
hold (n—~ k)(n-+ 1) words.

The design of Figure 7 has a dual design for which data ¢n the y-data stream
travel at a higher speed than those on the x-data stream. More preciscly, cach cell of
the dual design has six instcad of four deiays in the x-data strcam, as depicted ia
Figure 8{12}. The dual design has the property that the data RAM keeps data from
the x-data stream rather than from the y-data strecam. This allows a reduction on the
size of the data RAM for each ceil, when the word size for data on the (input) x-data
stream is smaller than that for data on the (output) y-data stream,
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Figure 8.  Another two-level pipelined systolic array for two or higher
dimensional convolutions

For convolutions with very large kernels, well known transform methods based
on the FFT should be used instead. In Section 5 we will describe how the Warp
processor can be programmed to perform the FFT,
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4. MATRIX MULTIPLICATION

Given nxn matrices X'=(x;) and W={(wy), we want to compute their product Y=
(yy). We present two systo ic array designs for matrix multiplication that the Warp
processor ¢an ¢fficiently implement—the design of Figure 11 for real matrix mul-
tiplication and the design of Figure 12 for complex matrix multiplication.

Figure 9 depicts a simple lincar systolic array at an abstract levet for the matrix
multiplication problem [18], with #=8. Iiach ccll of the array performs a multiply-
accumulate operation cvery cycle. The j-th celi from the left computes the inner
product y; of vectors (xp.Xp, .. . . X;,) and {wy;,wy;, ... W, for cach i By pumping
the cntries of X into the array serially in the row-major ordering and by recirculating
(wyjmas, . . owp) at cell j for each j, entries in the product matrix Y=XW will be
computed, and output also in the row-major ordering.
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Figure 9. (a) Systolic array for matrix multiplication, and (b) cell specification

Figure 10 shows the internal structure of two consecutive cclis for computing y;
and y,,.;, assumning that multiplication together with addition can be done in one

10
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cycle. Fach cell performs a multiply-accumulate operation cvery cycle and the result
is kept in the y register. After n multiply-accumulate operations, the contents of the
y register is transferred to the corresponding latch on the y-data strcam.  These
computed results on the y-data stream shift to the right systolically at the rate of one
cell every cycle. When they reach the right end cell of the systolic array, they are
output. Note that on the x-data stream two rather than one latch is provided for
cach cell. This ensures that computation for y; be completed two cycles carlier than
that for ;. ,, and thercfore the computed y; and y;4. wiil not collide with each other
on the y-data stream,

To facilitate the recirculation of (wy;, way, . . . wy), we store at cell j these values in
a shifter implemented by a RAM. The particular w to be used in any given cycle is
picked up by an address (addr), which is input to the ccll every cycle. Since the
address patterns for all the cclls are the same, they are passed systolically from cell to
celi. To synchrenize the addr strcam with the x-data stream, two latches are
provided for the addr stream at each cell.

x ﬂm ,m S ..
MPY ADD MPY ADD
- — -
RAM -} P ¥ RAM —},
addr ,m N | \E/ >m T
y u

Figure 10. Cell structure for the systolic matrix multiplication array of Figure 9
4.1, Interleaving Multiple Matrix Multiplications

We now consider the case that the multiplier and adder cach have five pipeline
stages, Since the adder has five stages. accumulations can take place only once every
five cycles. In crder to make full use of the adder and multiplier, we interleave
computations for five independent matrix multiplications on the systolic array.
(These matrix multiplications may actually be subtasks of a single, large matrix
multipiication.} This implics that a new task can enter the adder every cyele, and
that five independent accumulations can be updated simultancously at various
stages of the adder at any given cycle. However, with this intcricaving schome, cells
will output reselts in bursts. That s, at every a-th ¢ycle a cell will start vutputting
results for five consecutive cveles. To avoid celiisions on the y-data streamn, among
outputs from different cells, we use 6 (== 5+ 1) Iatches on the x-data stream for each
cell, as depicted by Figure 11,

4.2. Camplex Matrix Muitiplication

Complex matrix multiplications are common in many signal processing applica-

Il
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Figure {1. Two-level pipelined systolic array for matrix multiplication

tions like beamforming. A complex multiply-accumulate operation,

ot jx - (wptjw) + e+ i)
= [(x, w,— xpw+yd+ jlx, Wi+ x;owy) +)’f]v

involves four real multiplications and four real additions. They will be done in four
cycles using the multiplier and adder of each cell. The real and imaginary parts of a
complex number are processed in scparate cycles; in particular, the real part of a
result is computed two cycles carlier than its imaginary part. In the scheme of
Figure 12, the four multiplications, x, w,, x;-w;. xw;, and x;-w,, occupy four ¢con-
sccutive stages of the multiplicr. The resulting products enter directly into the adder
to form x, w,— x; w: and x,w;+ x;-w,, and these two additons ececupy two stages of
the adder. Intericaved with these two stages are stages ior performing the other
addidons involving y, and y;, We append a three-stage shift reaister to the adder, so
that two independent (complex) accumulations, that invoive updating a total of four
real numbers, can be simultancously maintained inside the cight-stage pipeline,

X — T >
I9 MPY L MPY
|-—> ADD '9 B AND
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RAM RAM L
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y ,TJ _}TUT > vt
Y ¥
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Figure [2.  Two-level pipelined systolic array for complex matrix mulitiplication
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5. FAST FOURIER TRANSFORM

The problemn of computing an #-point discrete Fouricr transform (DFT) is as fol-
lows:

Given Xoy X4 vty Xpes
compute Yy Y ..., Y-y defined by

yi= xowi(n—l)+x1wi(n—2)+ s +xn—-1'
where w is a primitive s-th root of unity,

Assume that » is a power of two. The well known fast Fourier transform (FFT)
mcthod solves an n-point DFT problem in O(nlogn) opcrations, while the
straightforward method requires O(n') operations. The FFT involves log, # stages
of n/2 butterfly operations, and data shufflings between any two consecutive stages.
The so-called constant gcometry version of the FFT algorithm allows the same
pattern of data shuffling to be used for all stages [20]. as depicted in Figure 13 with
n=16. In the figure the butterfly operations are represented by circles, and number
h }t')y an cdge indicates that the result associated with the edge must be multiplied by
(73 R

Figure 13.  Constant geometry version of the FFT algorithm

We show that the constant geometry version of the FFT can be implemented
efficiently with the Warp processor. in the systolic array, all ihe butlerfly operations
in the i-th stage arc carried out by cell £, and results arc stored to the data RAM of
cell i+1. While the data RAM of cell i+ 1 is being filled by the outputs of cell |,
cell i+ 1 can work on the butterfly operations in the (/4 1)-st stage of another FFT
probicm. In practical applications, there are often a large number of FFI's to be
processed, or there are FFT problems being continuously generated. Thus it is
possible that a new FFT problem can enter the first cell, as soon as the cell becomes
free. In this way 2ll the cells of the systolic array can be kept busy all the time.
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We now describe how butterfly operations are cxccuted by cach cell. A butterfly
operation,

(a,+ japy = (b, + jbp)-(w.+ jw)
= [ari (br W= bf' wi)] +.j[ait (bf W:"‘f" bi' W,.)l,

involves four rcal multiplications and six real additions. Thus, just to do the neces-
sary additions, it will occupy six cycles of the adder of the cell. By techniques similar
to those used in the design of Figure 12, we can derive a two-level pipelined systolic
design of Figure 14, for which cach cell can in fact process a new butterfly opcration
every six eycles. At any time, exccutions of up to four independent butterfly opera-
tions arc interleaved at various stages of a ccll. Note that inputs of the butterfly
operation cach are used twice and so are the intermediate results. As illustrated in
Figure 14, this can be efficiently supported by the pipeline registers linked to the
input registers of the arithmetic units,

Inputs a,, a;, b, and b; of the butterfly operations are obtained from the data
RAM of cach celi. And the outputs of the butterfly operations are stored in the data
RAM of the next cell on the right. The constant gecometry version of the FFT allows
the use of the same address patterns for all the cells. Therefore addresses for the
RAM of each cell can be passed from cell to cell systolicaily along the addr stream.

The other inputs w,+ jw; nceded for the butterfly operations, are obtained from
the x-data streain. For illustration, consider the l6-point problem depicted in
Figure 13. The w,+ jw; neceded by the cight butterfiy operations at cach stage are
various powers of a primitive 16-th root of unity «w. In particular, we use

w® W’ W’ w?w? W’ w? W for the first stage,

@ wY w? wl Wt w'w w® for the second stage,

W% w" w? ! wt w wb w for the third stage, and

Wl ! wh W’ wh W’ wh W for the fourth stage.

For each ccll to obtain the proper w” at cach cycle, we pump elements in
(0% wlw? e w' e’ w ") sequentially into the leftmost cell of the systolic array, and
move them from left to right systolically along the x-data stream. Cell 1 buffers the
first entry w? and uscs it for eight butterfly operaticns. Cell 2 buffers the first entry
w® and uses it for four butterfly onerations, and after that it buffers the fifth entry w®
and uses it for tour butterfly operations, Similarly cell 3 buffers its inputs «°, w? w,
and w®, and use cach of ther for two butterfly operations. Cell 4 just uses whatever
entry on x-data strcam at every cycle. All these operations can be casily controtled,
for example, by a counter at cach cell, which is denoted by CN'T in Figure 14.

The CMU prototype of the Warp processor has ten cells, each having a data

RAM of 4K words. Thus by double-buffering the RAMSs, the machine can do
computations of ten independent 1024-point complex FFTs simultancously. More

14
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Figure 14, Two consecutive cells in the two-level pipelined systolic array for the FFT

precisely, at any given time all these FFTs are in different stages being carried out
by different cells. Since the machine has a cycle time of 200 ns, a cell takes 1.2 us to
process a butterfly operation. This implics that we can process 1024-point complex
FFTs at a rate of one FFT every (1/2)-(1024)- 1.2 ps(=614.4 ps).

The 170 bandwidth requirement for the Warp processor when performing FFTs
is modest, in view of its high performance in throughput. I[nputs w,+ jw; and addr
to cell 1 are constants and thus can be supplicd, for cxampie, by a memory external
to the host, as depicted in Figure 15. The host needs only to deliver one set of inputs
for a buuerfly operation, which amount to four words, every 1.2 ps. This is equiv-
alent to a data rate of 13.4 Mbytes/second. At the saime rate the host collects ontputs
coming out from ccll # along the j-data stream. Thus the total data bandwidth
requirement between the host and the Warp need not excess 27 Mbytes/second in
order to make full utilization of the Warp processor when performing FFTs.

addr d
MEM [T - = R D e mm Sl '
: —3 . —3 i
X Jocer 1 CELL 2 '
7 1
cnil 7 ‘
'---“-3 F - F= D e = -2 i
1 1 1
1 1
1 1
] L]
as e el - X
HOST >4 1H vee e— :
CELL 7 LLn-
te Co — Z '
(- - S K- === <

Figure 15, I/0 interface of the Warp processor when performing FFTs
The linear array of Figure 15 is wrapped around so that both cell 1 and cell n are

adjacent to the host. This layout arrangement allows an indefinite expansion of the
array while maintaining the [/0 interface with the host,
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6. CONCLUBDING REMARKS

When performing convolution, matrix multiplication and QR-decomposition, the
multiplicr and adder of cach cell are fully utilized every cycle. Thercfore, for the
10-cell CMU prototype, cach cell can deliver 10 MFLOPS, and results in an ag-
gregate computation rate of 100 MFLOPS,

The Warp processor is highly modular in the sensc that the number of cells in
the lincar array can cxpand indefinitely to deal with problems of larze sizes. For
example, to make the CMU prototype to handle 2-1) convolutions for 3x5 kernels at
the original rate of one output cvery 200 ns, we can simply extend the processor
array to 25 cells.

As discussed at the end of Section 2, by wrapping around data each cell can
perform the functions of scveral consccutive cells. and thus large problems can often
be handied by a small array. For example, a 5-ccll CM U prototype can perform 2-D
convolutions for 5X5 kernels at a rate of one output every microsccond instead of
200 ns. In this casc the 170 bandwidth requirement for the prototype to communi-
cate with the outside world is reduced. Thus multiplexing cells is also a useful
technique to make full use of the Warp processor when the communication speed
with the cutside world cannot keep up with the cell speed.

The Warp processor can solve problems beyond those considered in this paper.
For example, it can perform polynomial evaluation and discrete Fourier transform
at the peak speed {13]. I[n general, most of the so-called *local™ vperaticus in signal
and image precessing can b etficientdv carried ot by the Warp provessor. Since
Batcher's sorting network is realizable witn the constant geometry interconnection of
Figure 13 [9], the Warp can also be used for sorting.

Together with another precesser for performing fast divisions and square roots,
the Warp processor can efficiently implement most of the systolic arrays proposed in
the literature for solving various kinds of linear systems. For example, it is known
that a linear systolic array of Figurc 16 can solve triangular lincar systems [15], and
perform the QR-decomposition of a Hessenberg matrix {7], a key step in real-time
adapiive signal processing [1, 19]. The boundary pracessor, drawn in dotted lines in
the figure, is assumed to be capable of performing hard arithmetic operations such
as divisions and square roots.

1. T T T T th

T T T T T T
Figure 16.  Bi-directional systolic array with a boundary processor

Figure 17 shows that the Warp precessor augmented with the boundary processor
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can impiement the systolic array of Figure 16. Note that the y-input of cach cell
now takes values from the p-output of the cell to the right, so that the required
bi-directional data flows can be implemented.

(a)

r
' [P S :
1 ¥
¥ I
) (L
| p— |
P
(b} : ',x
] ]
'
[

Figure 17. (a) Bi-directional systolic array, implemented by (b) the Warp processor

Programming the Warp processor is, however, a non-trivial task, since the ar-
chitecture is highly pipelined. To ensure correctness of the code, we basically rely
on software simulations at this time. One of the current rescarch efforts at CMU is
1o construct comgilers for machines of this type.

Future implementations of the Warp processer arc cxpecied to be much more
compact than the current CMU prototype descrsbed in this paper. For cxample,
wient the CMU link and interconnection chip (LINC) [8] (that can efficiendy impie-
ment data communication in a processor) becomes available in 1935, we will be abie
to build on a single board three or more Warp cells. Within ten years, we expect
that advances in semiconductor technology wili allow a Warp cell 1o be imple-
mented on a single chip.
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