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I. INTRODUCTION 

The typical Artificial Intelligence system of the sixties labored within a highly 
constrained environment. The recent development of a number of powerful 
programming tools has made it feasible to build systems that can function intelligently 
in more interesting environments. The production system control structure [Davis and 
King, 1976; Newell, 1973; Rychener, 1976] is one such tool. In this paper we argue 
that the production system control structure — provided it makes use of a carefully 
devised conflict resolution strategy — is particularly suitable for systems that must 
respond in reasonable fashion to frequent, sometimes competing, and sometimes 
unexpected demands from their environments. 

A production system consists of a collection of productions held in production  
memory and a collection of assertions held in working memory. A production. P, is a 
conditional statement composed of zero or more condition elements, C's, and zero or 
more action elements, A's; a production has the form 

Pj <Cj C 2 ... C n —> A j A 2 ... A m ) 

Most action elements modify working memory by deleting, adding, or modifying working 
memory elements. Condition elements are templates; when each can be matched by an 
element in working memory, the production containing them is said to be instantiated. 
An instantiation is an ordered pair of a production and the elements from working 
voemory that satisfy the conditions of the production. The production system 
interpreter operates within a control framework called the recognize-act cycle. In 
recognition, it finds the instantiations to be executed, and in action, executes them, 
performing whatever actions occur in their action sides. The recognize-act cycle is 
repeated until either no production can be instantiated or an action element explicitly 
stops the processing. Recognition can be further divided into match and conflict  
resolution. In match, the interpreter finds the conflict set, the set of all instantiations 
of productions that are satisfied on the current cycle. In conflict resolution, it selects 
from the conflict set one or more instantiations to be executed. 

This paper will explore the role of conflict resolution in production systems 
designed to function intelligently in dynamic environments. In the next section we 
propose a set of criteria for determining the adequacy of conflict resolution rules. In 
section I I I , several specific rules are described. Then in section IV, these rules are 
evaluated in terms of the proposed criteria. It will become evident in this section that 
for systems designed for dynamic environments, no single rule is adequate, and thus 
that several rules have to be used in conjunction with one another. Finally, in section 
V, we describe a number of different combinations of rules that do meet the criteria of 
adequacy. 
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I I . CONFLICT RESOLUTION 

If a system is to be capable of functioning intelligently in an environment that 
makes varied and sometimes unexpected demands, it must meet two requirements. 
First , it must be responsive to its environment. When the environment makes a 
demand, the system must be able to attend to that demand, decide what action is 
necessary, and then, take that action. Secondly, it must be able to learn. When 
encountering a new aspect of the environment or when shown that a previously 
learned behavior is inadequate, the system must be ready to acquire a new behavior. 
Systems that are both responsive to their environment and able to augment and refine 
their knowledge of that environment would, given sufficient time and instruction, be 
able to behave appropriately in any situation. 

A production system, if it is to meet both of these requirements, must be given 
substantial support by its interpreter. Because a production system becomes aware of 
changes in its environment only during the recognize phase of the recognize-act cycle, 
responsiveness suffers if too much time is spent in the act phase. Thus to meet the 
responsiveness requirement, the number of productions fired on each cycle must be 
limited. Perhaps the most obvious way to limit the number fired is to make them 
applicable to mutually exclusive situations. But to do this requires that the productions 
be given knowledge of each others domains of applicability, and this severely restricts 
the system's ability to learn. For in order for a production system to add productions 
to its production memory without having to modify many of the productions already 
there, the productions must have a high degree of autonomy. Using conflict resolution 
to limit the number of productions fired enables the necessary degree of autonomy to 
be maintained. Since conflict resolution can select on the basis of global 
considerations unknown to the individual productions, each production is required to 
say only that if no other production more applicable to the current situation is ready, 
it is. As other productions are added, as more knowledge becomes available, as the 
overal l goals of the system change, the role of individual productions remains the 
same; each has to say only that it understands and is ready to respond to some tiny 
piece of the current situation. 

If a production system is to function by performing only a small number of 
actions per cycle, as we just argued it must in order to be responsive to its 
environment, it must meet a requirement in addition to the two mentioned above. 
Since some of the system's behaviors will involve long sequences of actions, it must be 
able to coordinate the firing of several productions, each of which will perform only a 
few actions. The most obvious way to effect this coordination is to require that each 
production explicitly evoke its successor. But if this path is taken, production 
autonomy is lost. Again, conflict resolution can provide a solution. With conflict 
resolution to make the final choice of the productions to be fired, a production need 
specify only what is to be done, rather than who is to do it. A small distinction, but 
enough. New productions may be added to a system employing this mechanism for 
control with no knowledge required of the existing system beyond the knowledge of 
the names of a few goals. 
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A production system which is responsive to the demands of its environment will 
be said to display sensitivity. One which is able to maintain continuity in its behavior 
will be said to display stability. We have argued that the function of conflict resolution 
is to provide a mechanism that can preserve sensitivity and stability without sacrificing 
production autonomy. We have not yet shown that conflict resolution can preserve 
both simultaneously. The following two subsections consider in detail what 
characteristics an interpreter must have in order for production systems having both 
stability and sensitivity to be implemented easily. Later sections will be more concrete 
and will show how particular conflict resolution rules contribute to sensitivity and 
stability. 

Sensitivity 

Attempts to build production systems capable of operating in dynamic 
environments have shown that such systems are significantly easier to construct when 
the interpreter provides support of certain kinds. Below we list five characteristic 
kinds of support which have proven useful. Of course, we make no claim of 
completeness. 

1. The interpreter should aid the system in its attempts to remain 
sensitive to its environment while focusing its attention on a single task. 

2. The interpreter should aid the system in its attempts to be sensitive 
simultaneously to multiple aspects of its own processing. 

3. The interpreter should aid the system in its attempts to deal 
intelligently with the existence in working memory of conflicting data. 

4. The interpreter should recognize when multiple instantiations are 
attending to aspects of the same situation and take some reasonable 
action. 

5. All actions taken by the interpreter should be observably deterministic 
to the system. 

In the following paragraphs we describe these five characteristics more fully. 

Although the needs of sensitivity and stability are not conflicting, an 
implementation strongly biased towards one could be weak in its treatment of the 
other. The first characteristic above implies only that the interpreter should ignore 
neither. (Since this characteristic concerns the interaction between sensitivity and 
stability, it could have been proposed instead in the following subsection.) 

The second characteristic, like the first, concerns the interaction between the 
need for sensitivity in a system and the need for direction in the system's processing. 
For the second characteristic, however, the sensitivity is sensitivity to the results of 
its own actions. As the system engages in activity directed toward a particular goal, 
there is the possibility that, at any time, an important, but unexpected event may 
transpire as a side effect of its processing. For example, the system might generate 
evidence (such as a repeated state) that it is looping, or it might, while working on one 
piece of a problem, transform the problem in some significant way. In such cases, it is 
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certainly desirable for the system to recognize what has happened and take action 
accordingly. 

A production system, with its single global data base (working memory) and no 
local memory, is particularly vulnerable to the frame problem. For example, a group of 
productions might communicate using structures similar in form to structures used 
earl ier by another group, or the environment might force on the system information 
that conflicts with information already in working memory. An interpreter that 
possesses the third characteristic can aid production systems in their attempts to deal 
with the problem of distinguishing relevant information from information that is no 
longer relevant. 

In contrast to the first three characteristics, which are concerned with ways in 
which the interpreter can aid a production system in its quest for sensitivity, the 
fourth characteristic is concerned with a sensitivity that the interpreter itself must 
possess. Since a production system needs knowledge of varying degrees of specificity 
to function in a complex environment, a given demand will often find more than one 
production ready to respond. Preventing this situation is quite beyond the power of 
the production system; attempting to be always ready to recognize the situation and 
take appropriate action would be highly constraining for the system, even with support 
from the interpreter. Thus, it must be the responsibility of the interpreter to 
recognize the situation and take some kind of action. 

The fifth characteristic, that the actions of the interpreter be observably 
deterministic*, is important if systems using the interpreter are to learn from 
experience. Experience would, after all, be of small value in a world without causality. 

Stability 

As pointed out in the previous subsection, attending too closely to the needs of 
either stability or sensitivity can result in a loss of the other. In particular, if 
sensit ivity is not to be lost, the designer of a production system must walk a narrow 
path when building stability into his system, carefully dividing the responsibility for 
stabil ity between the interpreter and the system itself. The designer cannot put all of 
the responsibil ity on the interpreter, in essence adding a program counter to the 
production system, without losing the potential for sensitivity. Neither can he put all 
of the responsibility on the production system, essentially using the production system 
to program an interpreter for another language, for this extreme also results in a 
system that has lost the potential for sensitivity. 

The method employed here to arrive at a reasonable division of responsibility 
was to determine the forms the needed coordination of firings could take, and then to 
determine the minimum support that must be provided by the interpreter in order to 
allow these forms to be implemented without the use of executive productions. The 
forms the coordination can take were determined by an examination of existing 

1 Presumably all actions taken by a computer are deterministic, but that determinism 
is of little value to the system if it depends on state variables the system cannot 
examine. 



5 

production systems. It could be argued that the number of existing production 
systems is too small to give validity to results obtained in this fashion. However, this 
w o r r y seems unfounded. The forms of coordination that we found correspond closely 
to the major control constructs used in conventional languages, and the few deviations 
are easily explained. These forms will be presented below in terms of the analogous 
conventional control constructs. 

In general, there is only one way to coordinate production firings and that is 
by modifying the contents of working memory. A data element placed in working 
memory to enable the firing of some production or group of productions will be called 
a signal. Signals can have a significance beyond their control function, but only the 
control function is of interest here. A data element used to effect control will be 
called a signal regardless of any other uses. 

The basic control construct in conventional languages is the GOTO (and 
sequential execution which is, after all, just a variant of the GOTO). The use of signals 
to evoke productions and groups of productions is closely analogous to the use of 
GOTOs ~ provided there is assurance that the enabled productions will be the next to 
f i re. 

The FOREACH construct provides iteration over a set of data. Since the 
condition part of a production describes elements of a set, an analogous control 
construct in production systems is one that allows each of the instantiations of a single 
production to be executed once, effectively causing the production to loop over the 
set of data it selects from working memory. 

As the FOREACH provides for iteration over a set of data, the FORK-JOIN 
provides for iteration over a set of processes. At the FORK a number of parallel 
processes (parallel in the weak sense that there is no specified ordering among them) 
are initiated; at the JOIN the multiple control paths are merged back into one. In 
production systems, the FORK enables a number of productions without giving a 
p re fe r red order of firing. The JOIN is a production that fires upon completion of the 
processing initiated by the enabled productions. 

One control construct often used in production systems has no close analogue 
among the conventional control constructs. (It has, perhaps, a distant analogue in the 
ASSIGN-GOTO.) This construct, called EXTERNAL SEQUENCING, allows one production to 
enable multiple productions and to specify the order in which their instantiations are 
to be executed. 

To implement SUBROUTINES requires the capabilities of transfering control to 
the SUBROUTINE, passing data to the SUBROUTINE, and returning control to the calling 
process. Transfer of control to the SUBROUTINE entails only the execution of a GOTO, 
discussed above. Return of control to the calling process in conventional languages 
entails execution of a GOTO to an address passed to the SUBROUTINE. Something 
similar can be accomplished in production systems by passing to the SUBROUTINE a 
signal encoded so that it will not take effect immediately and then relying on the 
SUBROUTINE to decode the signal as its last operation. It is perhaps simpler, though, 
to use EXTERNAL SEQUENCING to cause the production at the return point to be fired 
on termination of the SUBROUTINE In this case the SUBROUTINE need do nothing to 
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effect the return. Data can be passed to SUBROUTINES reliably only if it can be 
guaranteed both that the SUBROUTINE will get all of the data passed to it and that it 
will be able somehow to distinguish this data from all other elements in working 
memory. 

Since a single control construct used in isolation provides little power, an 
ability to create hierarchies of control constructs is necessary. If the system is using 
one construct and some production initiates another type of control, the first must be 
suspended until the second completes. If for example, a production in a FORK-JOIN 
initiates a FOREACH, the FOREACH must be allowed to finish before the FORK-JOIN 
resumes. If strictly hierarchical control is assumed, nothing more than a stack of 
control signals is needed. 

T w o control constructs commonly used in conventional languages, the IF and 
the WHILE-DO, are seldom explicitly constructed in production systems. The IF is 
already provided, of course, in the form of productions. The WHILE-DO is provided in 
the recognize-act control paradigm, which on every cycle determines if there is 
anything to do (i.e., if there is at least one instantiation ready to be executed) and if 
so, does it (i.e., executes one or more of the instantiations). 

I I I . POSSIBLE CONFLICT RESOLUTION RULES 

Conflict resolution rules can be distinguished from one another in a variety of 
ways . Perhaps the most obvious is to distinguish among them on the basis of the 
criteria each uses to determine the appropriateness of an instantiation. Each of the 
rules we will consider makes use of one or more of the following five criteria: 

A pr ior i ty ordering between productions. Instantiations of a production with 
the higher priority are preferred to instantiations of a production with the 
lower priority. 

A special case relationship between instantiations. There are a variety of ways 
of specifying when one instantiation is a special case of another. Either the 
general or the special case may be preferred. 

The relative recency of the data of instantiations. The rules in this class differ 
in their choice of which subset of data to order on, their interpretation of 
recency, and whether they prefer more or less recent data. 

Whether an instantiation is distinct from previously executed instantiations. 
There are several ways of specifying when two instantiations are distinct. 
Ordinarily, instantiations that are distinct from previously executed 
instantiations are given preference. 

An arbitrary decision. The rules in this class give preference to some subset 
of instantiations without making use of any information about the instantiations. 
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There are many conflict resolution rules in each of the five classes defined 
above. Within each of these classes, rules can be distinguished from one another on 
the basis of the sources of knowledge on which they depend. The knowledge sources 
which are used by the rules in the classes defined above are production memory, 
working memory, and a memory maintained by the interpreter. Conflict resolution 
rules can also be distinguished on the basis of their selectivity. Some rules can 
guarantee that a single instantiation will be selected to be executed. Other rules are 
much less selective and cannot be used in isolation without introducing the danger that 
the number of instantiations executed on a given cycle, and hence the number of 
actions performed, might be arbitrarily large. 

In this section we will describe 14 rules. They will be grouped according to 
the criteria by which they judge the appropriateness of instantiations. Within each 
group, the rules will be distinguished on the basis of their selectivity as well as on the 
basis of what knowledge sources they use. The rules that we will present do not 
cover the space of possible rules.^ Our aim was simply to select a few representative 
rules having interesting properties. We have included most of the conflict resolution 
rules used by existing production systems. 

Production Order Rules, POs 

Production order rules use a pre-established priority ordering on productions 
as their criterion of selection. Their source of knowledge, then, is always production 
memory. We will consider only two such rules. Under the first, which we will call P O l , 
the relation of dominance totally orders the productions. The second rule, P02, is a 
generalization of rule P01. The relation of dominance under P02 is given by a 
directed graph where the vertices in the graph represent productions and the edges 
represent dominance relations between the vertices joined by the edges. The graph 
for P02 is disconnected. Each component of the graph contains productions all of which 
are applicable to the same task, and hence, there is no relation of dominance between 
productions related to different tasks. 

P O l is a strongly selective rule. Given a completely ordered set of productions 
and the set of instantiations of those productions, it prefers instantiations of the 
production that is highest in the priority ordering. This rule is, of course, of limited 
usefulness to systems designed to function in multi-task domains in which the 
productions germane to different tasks cannot be meaningfully ordered. In such 
domains, a less constrained rule, such as P02, is more appropriate. 

P02 is much less selective than POl . Using the pre-established dominance 
relation on productions to establish a dominance relation on instantiations, P02 prefers 
e v e r y instantiation not dominated by another. Since the graph for P02 is 
disconnected, each component of the graph which contains an enabled production will 
contr ibute at least one instantiation to the set of preferred instantiations. Moreover, 

2 In particular, we do not consider rules that can be appropriately used only by 
systems that place very weak restrictions on the amount of processing that can be 
done during the action phase of a cycle. For a discussion of such rules, see 
Hayes-Roth and Lesser [1977]. 
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since the productions within each component need not be completely ordered, each 
component may contribute several instantiations. 

Unlike the other rules we will describe, production order rules require the 
production system to specify for each production built where in the priority ordering 
that new production is to lie. One scheme for adding productions to a system using a 
production order rule was proposed by Waterman [1974]. His system, which uses P O l , 
inserts a newly built production just before the first production that has either a 
condition element or an action element in common with the new production. The 
rationale for this scheme is that a production being added should mask (or at least 
partially mask) other productions with a similar function, but should do so in a way that 
interferes as little as possible with the already established ordering. The system uses 
as a heuristic the assumption that if two productions have a condition or action 
element in common, they have a similar function. 

Special Case Rules, SCs 

Special case rules use the presence of a special case relationship between 
instantiations as their criterion of selection. They may use production memory, 
working mermoryt or both as their source of knowledge. We will present four special 
case rules, SC1-SC4. S C I , which has production memory as its knowledge source, is 
sensitive to a special case relationship between the productions of instantiations. SC2, 
which has working memory as its knowledge source, is sensitive to a special case 
relationship between the data of instantiations. The two other rules, SC3 and SC4, 
make use of both of these knowledge sources. Because not all pairs of instantiations 
have a special case relationship, SC rules are only weakly selective. 

S C I defines the special case relationship in the following way: A production, P s 

is a special case of another production, Pg, if (1) P $ has at least as many condition 
elements as P a , (2) for each condition element in P a containing constant elements, 
there is a corresponding condition element in P $ containing those elements as a subset, 
and (3) P $ and P g are not identical. SCI prefers the instantiations of those 
productions that do not have a special case.3 

The definition of special case used by SC2 is very different from the definition 
used by S C I . SC2 considers instantiation I s to be a special case of instantiation I g if 
I s contains as a proper subset all of the memory elements contained in Ig. SC2 
prefers those instantiations that do not have a special case. 

SC3, which uses both production memory and working memory as knowledge 
sources, defines the special case relationship in much the same way that SC2 does. It 
simply augments SC2's definition in such a way that negated condition elements are 
taken into account. For SC3, I s is a special case of I g if (1) I s contains all of the 

3 S C I could have been presented as a production order rule. We chose to present it 
as a special case rule because (1) it is worthwhile to compare its use of a special 
case relationship with other rules making use of that relationship, and (2) most 
systems that make use of production order use criteria for ordering productions 
that are more complex (or at least less easy to make explicit) than the special case 
criterion given above. 
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memory elements contained in L as a proper subset, and (2) P s has more condition 
elements than P g . SC3, like S£2, prefers those instantiations that do not have a 
special case. 

SC4 defines the special case relationship in exactly the same way that SC3 
defines it. The two rules differ only in the instantiations which they prefer. SC4 
prefers those instantiations that do not have a general case. 

Figure 1 shows which instantiations in the conflict set ( I I ^143) would be 
p re fer red by each of the special case rules. It also shows the instantiations that 
would be preferred by the recency rules, which we will consider next. Assume that 
the memory elements (P S) and (Q T) were asserted on the previous cycle, (P T) and 
(R V ) two cycles ago, <Q S) three cycles ago, (P V) four cycles ago, and (W V) and (W T ) 
101 cycles ago. Note that the symbol M - " in a production signifies that the symbol 
immediately following it is to be treated as a variable. If the same variable occurs 
more than once on the condition side of a production, all occurrences must be bound to 
the same value in order for the match to succeed. The symbol preceding a 
condition element signifies that the match is to fail if there is an assertion in working 
memory which matches that condition element. 

Recency Rules, Rs 

Recency rules use the amount of time (e.g., number of cycles) that elements 
have been in working memory as their selection criterion. In most cases, and for a 
number of different reasons, the rules favor more recent elements. All recency rules 
use working memory as their knowledge source. We will consider five recency rules, 
R1-R5. To make it easier to state the various definitions of recency used by these 
rules, we will assume that working memory contains (A j A2 A3 ... B j 82 B3 ... C j ...), 
where all elements beginning with the same alphabetical character were asserted 
during a single cycle, Aj after Bj, Bj after Cj, and where for any two elements, Xj and 
X j ^ j , Xj was asserted after X j + 

Rules R l , R2, and R3 are all quite selective. The first of these, R l , considers a 
memory element, Mj, to be more recent than another, M k , if Mj was asserted after M k . 
For example, A j is more recent than A ^ This rule orders instantiations on the basis of 
the most recent memory element contained in each. If B j is the most recent element 
in I m , B£ is the most recent element in both I n and I Q , and C j is the most recent 
element in Ip, then when this rule is applied, I m will be preferred to I n , I 0 and Ipj I n 

and I 0 would be considered equivalent and both would be preferred to Ip. Applying 
this rule results in a complete ordering on equivalence classes. The instantiations in 
the highest equivalence class are preferred to all other instantiations. 

R2 is similar to Rl in that it also orders instantiations on the basis of the most 
recent element that each contains. R2, however, uses a different definition of recency. 
All memory elements asserted during a single cycle are equally recent and are more 
recent than any element asserted on a previous cycle. Using the example above, when 
this rule is applied, I m , I n and I 0 will be selected in preference to I p . 

The third rule, R3, uses still another definition of recency. R3 considers two 
memory elements to be equally recent if the cycles, CYCj and C Y C k , on which they 
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WM ( (P S) (Q T) (P T) (R V) (Q S) (P V) . . . (W V) (W T ) ) 

P I < < Q - X ) ( P - X ) - - > . . . ) 
I I j [ P I « Q T ) ( P T ) ) ] 
I l 2 [ P I ( ( Q S X P S ) ) ] 

P2 ( (P S) (P - X ) (W - X ) - - > . . . ) 
\2{ [ P 2 ( ( P S X P T M W T ) ) ] 
I 2 2 [ P 2 ((P S) (P V) (W V)) ] 

P3 ( ( - X S) ( - X - Y ) (W - Y ) (R - Y ) (Q S) - - > . . . ) 
13 [ P 3 ((P S) (P V) (W V) (R V) (Q S » ] 

P4 < (Q S) -<U S) (P - X ) - (U V) -*(U T ) ~ > . . . ) 
I 4 X [ P 4 ( ( Q S X P S ) ) ] 
14 2 [ P 4 ( ( Q S X P T ) ) ] 
14 3 [ P 4 < ( Q S X P V » ] 

S C I {12! I 2 2 13 I4 X I 4 2 I 4 3 } 
SC2 { I I ! I2 j 13 I 4 2 } 
SC3 { I I i 12j 13 M j . I 4 2 I 4 3 } 
SC4 { I I J I l 2 12! I 2 2 I 4 2 I 4 3 } 

R l { I l 2 I2 j I 2 2 13 I 4 : } 
R2 { I I t I l 2 I 2 X I 2 2 13 I 4 X } 
R3 { I I ! I l 2 I4 j I 4 2 } 
R4 { H i I l 2 I 4 X I 4 2 I 4 3 } 
R5 { 1 2 ^ 

Figure 1: Conflict Resolution Using Special Case and Recency Rules 

were asserted have the following relationship: [ log 2 CYCjJ - L ' o g 2 CYC^J; otherwise, it 
considers the element asserted on the later cycle more recent. Thus if A j was 
asserted on the previous cycle and D j was asserted three cycles before that, they are 
not considered to be equally recent. After three more cycles, however, they become 
equally recent.^ R3 orders instantiations on the basis of the least recent element that 
each contains; it prefers the instantiation whose least recent element is most recent. 
For example, if Z j is the least recent element in I m and C j is the least recent element 
in I n , then R3 will prefer I n to I m . As with Rl and R2, applying this rule always results 
in a complete ordering on equivalence classes. The instantiations in the highest 
equivalence class are preferred to all other instantiations. 

R4 makes use of a definition of recency which effectively partitions working 

4 This somewhat bizarre definition of recency can be justified if it is the case that as 
memory elements become older, their absolute age becomes less significant. 
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memory into two sets of elements: recent and non-recent. Recent elements are those 
that were asserted during any of the previous 100 cycles. Non-recent elements are 
those that were asserted earlier. R4 is weakly selective since it prefers any 
instantiation which contains only recent elements. 

The fifth recency rule. R5, uses the definition of recency used by R l : a memory 
element, Mj, is more recent than another, M k , if Mj was asserted after M^. Unlike the 
other recency rules, R5 considers the recency of all data elements of an instantiation. 
To order two instantiations, it first compares their most recent elements; if those 
elements are equally recent, it compares their next most recent elements, and so on. 
When it finds a pair of elements that are not equally recent, it prefers the instantiation 
containing the more recent element. If it exhausts the data of one instantiation without 
finding a pair of differing recency, it prefers the instantiation not exhausted. Only if 
the instantiations are exhausted simultaneously, and, hence, contain exactly the same 
data, are they considered equivalent under R5. If Ij is (B| Z 2 ) , I|< is ( B j Z 2 ) , and I m 

is ( B j Z j ) , then the rule would order the instantiations: I:, I m , 1̂ . R5 has the 
propert ies of a special case rule as well as the properties of a recency rule. If an 
instantiation I s would be preferred to I g by SC2, it would also be preferred by R5 
either because I s would contain an element more recent than the corresponding 
element of I g , or (if the data of I g were the most recent data of I s ) because the data 
of I g would be exhausted first. This rule, then, is the most strongly selective of the 
recency rules. 

Distinctiveness Rules, Ds 

Distinctiveness rules select on the basis of the similarity or dissimilarity of the 
instantiations in the conflict set to previously executed instantiations. Knowledge of 
what instantiations have been executed is provided by the interpreter. We will 
describe two rules, D l and 02, both of which are weakly selective. 

D l considers two instantiations to be distinct if the productions of those 
instantiations are different. It prefers instantiations of productions that did not fire on 
the previous cycle to instantiations of productions that did fire on the previous cycle. 

D2 uses a stronger criterion. It considers two instantiations to be distinct if 
either the productions or the data of two instantiations are different. D2, like D l , 
gives preference to distinct instantiations. After an instantiation is executed, it 
becomes a member of the set of instantiations that are never to be preferred.^ 

Arb i t rary Decision Rules, AD$ 

The final rule that we will consider, AD1, stipulates what is to be done in the 
absence of any information that would indicate that Ij should be preferred to 1̂ . This 
rule simply selects one instantiation at random. 

5 A set of distinctiveness rules which we will not consider in this paper, but which are 
of some interest, are those that treat two instantiations as non-distinct if they have 
a special case relationship to one another. These rules can be used to disable all 
but one of a set of instantiations that bear on the same situation. 
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IV. EVALUATION OF THE RULES 

In this section we evaluate the rules described in the previous section using 
the criteria developed in section II. We indicate first which rules support which of the 
sensit ivity and stability characteristics. Then we show the degree to which each of 
the rules considered in isolation provides an adequate h^»s fcr f ^ 4 resolution 

Rules Supporting Characteristics 1 and 2 

The first two characteristics are concerned with the problem of building 
systems which display both sensitivity and stability. The first characteristic is 
concerned with a system's sensitivity to its environment, the second with a system's 
sensit ivity to the results of its own actions. The problem can be solved by building 
systems that are sensitive, not to the state of working memory, but to changes in the 
state of working memory. Sensitivity of this type is quite sufficient to yield a system 
able to interrupt its processing and respond to important events. It is, at the same 
time, the basis of coherence in processing. If the system is strongly sensitive to 
change, the changes made by the firing of one production will strongly influence the 
choice of which production to fire on the next cycle. Four of the rules that we have 
studied promote a sensitivity to change of state. 

Three of these rules, R l , R2, and R5, are recency rules. Since they achieve 
their effect by dynamically ordering instantiations on the basis of the most recent 
element contained in each, these rules are strongly sensitive to change. If there are 
instantiations that make use of elements added on the previous cycle, whether by the 
system itself or by the environment, these instantiations will be preferred by all three 
rules. The slightly different interpretation of recency used by R2 makes its response 
to change somewhat more uniform than is the case with the other two. Since R2 
considers all elements added during a single cycle to be equally recent, the response 
of a system using R2 to an element added to working memory by the environment will 
be the same regardless of whether the element is added before, during, or after the 
action part of the interpreter's cycle. 

D2 also promotes a sensitivity to change, but in a manner different from, 
though complementary to, that of the recency rules. If D2 is used in combination with 
R l , R2, or R5, the resulting strategy will display an eminently useful form of sensitivity 
to change. The recency rule will encourage the system to go forward either with its 
current task or with some other more urgent task; when progress can no longer be 
made, the combined strategy will cause the system to go back to the last choice point 
still open (the recency rule will discourage the system from backing any further than 
necessary) and take an alternate path. 

The other rules are essentially indifferent to these first two characteristics. If 
any of the other rules are used in conjunction with rules that support characteristics 1 
or 2, they do not (or at least do not necessarily) weaken the support. Neither, 
however , do they do anything to promote these two characteristics. 
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Rules Supporting Characteristic 3 

The third characteristic is concerned with the problem of dealing with 
conflicting memory elements. Implicit in characteristic 3 is the notion that the 
interpreter must make some decision about the relative usefulness of the conflicting 
data. A reasonable heuristic for a system trying to function in a changing environment 
is to assume that the older information is, the more likely it is to describe a no longer 
existing state. Hence, a conflict resolution rule which makes the system ignore old data 
when there is more recent data available supports characteristic 3. Rules R3 and R4 
both have this property. A second heuristic is to assume that if information has 
already been used, then it should make way for other information. By this heuristic, 
the use of D2, which prefers instantiations that have not been executed to those that 
have been executed, is justified. 

R3 may be preferable to R4. R4, which effectively disables all instantiations 
containing an element which has been in working memory for more than 100 cycles, in 
essence stipulates that all data more than 100 cycles old must be considered suspect. 
R3, with its relative definition of recency, does not tie the probability that an element 
accurately represents a current state of the environment to the element's absolute 
age. 

Rules Supporting Characteristic 4 

The fourth characteristic, like the third, implies the need for a decision by the 
interpreter . The decision to be made in this case is whether two instantiations are 
attending to the same situation. Either working memory or production memory can 
provide knowledge on which to base this decision. If the interpreter uses working 
memory, it may base the decision on any of a number of possible criteria, from 
requiring that the data of one instantiation be a subset of the data of another, to 
requiring only that the data of the instantiations have at least one element in common. 
However , since much of the data in working memory may have global significance, it is 
hard to justify any but the first of these criteria. If the interpreter uses production 
memory as its only knowledge source, it is restricted in the decision criteria it may 
use. It must assume that for each pair of productions, either the instantiations of one 
should always be treated as a special case of the instantiations of the other, or a 
special case relationship will never hold between instantiations of the two productions. 
Five of the rules described above are (to varying degrees) useful in determining which 
instantiations attend to the same situation and in prescribing a response. 

Rules SC1-SC3 and R5 are consonant with the demands of characteristic 4; rule 
SC4 actively works against characteristic 4. If a system is to respond intelligently in 
situations where there is little information about how to satisfy the current demand of 
the environment as well as in situations where there is a good deal of information, the 
system must have a range of methods, from weak to strong. A system which chose a 
weak method in preference to a strong method when both were apparently applicable 
would not be behaving in a reasonable way. All of these rules except SC4 would, in 
choosing the instantiation making the strongest informational demand, choose the 
strong method. 
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Among the five rules, there are four different definitions of special case. S C I 
defines the relation using information from production memory only. SC2 and R5 use 
working memory only. SC3 and SC4 use both memories. Of the four rules that use 
working memory as a knowledge source, SC2 is the only one that employs exactly the 
cr i ter ion suggested above, finding one instantiation to be a special case of another if 
the data of the first is a superset of the data of the second R5 is somewhat stronger 
since it will order all instantiations having that relation, plus others that do not. SC3 
and SC4 are weaker since they require more than the above relation before 
considering one instantiation to be a special case of another. 

Since SC3 requires more evidence than either SC2 or R5 before it will grant 
that two instantiations have a special case relationship, it might seem to provide more 
support for characteristic 4. What this observation misses is that the more evidence a 
rule demands, the more likely it is that the rule will fail to recognize two instantiations 
that are attending to aspects of the same situation. Thus the danger that two 
instantiations might be falsely viewed as bearing on the same situation must be 
weighed against the danger that two instantiations that do bear on the same situation 
might not be recognized as such. 

Rules Supporting Characteristic 5 

All of the rules except AD1, because their effects are observably deterministic, 
support characteristic 5. Thus, any conflict resolution strategy not employing A01 will 
support characteristic 5. Unfortunately, the use of AD1 is often necessary to prevent 
the loss of sensitivity that results from executing multiple instantiations. None of the 
other rules presented here is sufficient by itself to produce a preferred set containing 
only a single instantiation. Certain combinations of rules are sufficient to produce such 
a set, but most are not. If the conflict resolution strategy used by a system has the 
p roper t y that it will not generate a unique choice, the system will sometimes execute 
multiple instantiations and, as pointed out in the general discussion of sensitivity, lose 
some sensitivity because of the lengthened cycle. To force the system always to 
produce a unique preferred instantiation is to use AD1. 

Rules Supporting Stability 

Rules R l , R2, and R5 support GOTOs; rule Dl is somewhat in conflict with the 
needs of GOTOs. A GOTO cannot be implemented in production systems unless it is 
possible for a production to specify that some subset of the set of instantiations is to 
be preferred. Rules R l and R5 make this possible. If the final action performed by a 
production asserts a signal that enables a group of productions, then the instantiations 
of these productions will have precedence over all other instantiations. Rule R2, if 
applied in isolation, also guarantees that instantiations containing a signal asserted on 
one cycle will be executed on the next cycle. However, instantiations not containing 
that signal may be executed as well. Thus if R2 is used in combination with other 
rules, instantiations not containing the signal may be selected in preference to those 
containing the signal. Rule D l would work against a production performing a GOTO to 
itself. 

T w o forms of the FOREACH are in common use. Each requires different 
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support . A FOREACH can be implemented either by executing all instantiations on one 
cycle or by executing each on a separate cycle. Executing all instantiations on one 
cycle requires only that rule AD1 not be used. Executing the instantiations on 
separate cycles is made easier by the use of rule D2 and is made more difficult by the 
use of D l . When D2 is used there is no need to explicitly disable each instantiation 
after it is executed. Use of rule D l makes it impossible to have a one production loop. 

As with the FOREACH, there are two ways to implement a FORK-JOIN, executing 
all instantiations on one cycle, or executing each on a separate cycle. Executing all on 
one cycle again requires only that AD1 not be used. If the instantiations are to be 
executed on separate cycles, there must be a way to guarantee that the JOIN 
production is the last to be executed. Use of P01 or P02 with the JOIN production 
having lower priority than the other productions is one possibility. Use of a special 
case rule with the JOIN production being a general case or a special case of the other 
productions is another. If the JOIN production is made the general case, use of S C I , 
SC2, SC3, or R5 is appropriate. If the JOIN production is made the special case, rule 
SC4 can be used. To make the JOIN production a special case is restrictive, however, 
since the system cannot then add to its production memory FORK productions 
containing condition elements not already contained in the existing productions. D2 is 
again helpful in eliminating the need to disable instantiations after they are executed, 
though it is less essential here than in the case of FOREACH 

The simple implementation of EXTERNAL SEQUENCING requires a conflict 
resolution strategy which orders instantiations on the basis of the most recent element 
each contains and which is sensitive to element, rather than class, order so that the 
production performing the EXTERNAL SEQUENCING can order its signals as required. 
Only rules R l and R5 meet these conditions. 

As discussed above, the only mechanism needed to implement SUBROUTINES, 
g iven GOTOs, is a parameter passing mechanism. The parameter passing mechanism 
must insure that the subroutine will process exactly the data passed to it, and nothing 
more nor less. No rule described here can guarantee that the subroutine will process 
all of its data before terminating. Rule R3 can, however, guarantee that the subroutine 
will not process more data than it should. If the data to be passed is asserted after a 
signal that enables the production that terminates the subroutine, R3 will cause that 
production to fire and terminate the subroutine before any of the other productions of 
the subroutine can make use of data asserted earlier than the signal. 

If a strictly hierarchical control discipline is used, no more machinery is needed 
to implement nested control structures than is needed to implement single control 
structures. In such a control discipline, the order of instantiations in the control stack 
is exactly the order of their enabling. Hence, a conflict resolution rule sensitive to that 
order , such as R l , R2, or R5, is suitable for implementing the stack. 

An overview of the relationships between each of the 14 conflict resolution 
rules and the characteristics of an adequate interpreter is given in Figure 2. A M + " 
indicates that a rule supports a characteristic, though in some cases additional rules 
are required in order to fully support that characteristic. A M - M indicates that if the 
rule is used, even in combination with other rules, then the characteristic cannot be 
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SC2 + 
SC3 + 
SC4 

R l + + 
R2 + + 
R3 + 
R4 • 
R5 + + • 

+ + 
+ + 

• + + + 

D l + 
D2 • + • «»• • 

A D I 

Figure 2: Rule Contributions 

realized. The absence of a V or indicates that the rule neither actively supports 
nor actively works against the characteristic, and that the rule can generally be 
combined with rules which do provide support without weakening that support. 

V. COMBINATIONS OF CONFLICT RESOLUTION RULES 

Since, as Figure 2 shows, no single rule supports all of the characteristics, any 
conflict resolution strategy using only one rule will be deficient. In this section we will 
show how rules can be combined so that all of the haracteristics can be supported at 
least to some extent. 

The most frequently used technique fo^ combining rules is to place a priority 
ordering on the rules and then select the instantiations to be executed by means of a 
lexicographic sort. In other words, the first rule is applied to the instantiations in the 
conflict set to yield a subset of preferred instantiations; then the second rule is 
applied to this subset, and so on. Use of this technique gives the first rule the 
greatest significance and the last rule the least significance. In those cases in which 
one wants two or more rules to be ecually significant, an alternative technique can be 
used. Each of the rules is applied tc -he same set of instantiations; the intersection of 
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the resulting subsets is the set of preferred instantiations. A single conflict resolution 
st rategy may use both of these techniques. More precisely, the lexicographic 
technique can be modified so that at each step either a single rule or a set of rules is 
applied to the current set of preferred instantiations. We will use the connective 
to indicate that two rules are to be applied to the same set of instantiations, and the 
connective "->M to indicate that the second of two rules (or sets of rules) is to be 
applied to the set of instantiations preferred by the first. always has precedence 
over 

It is possible that when a rule is applied to a set of instantiations, no 
instantiation will be preferred. This would occur, for example, if D2 were applied to a 
set of instantiations all of which had been previously fired. Thus, for each rule (or set 
of rules) which proscribes certain instantiations, it is necessary to specify what is to 
be done if the set of preferred instantiations is empty. The alternatives, of course, 
are either to execute no instantiation or to continue with the lexicographic sort on the 
non -p re fe r red set. If the instantiations in the non-preferred set are there because 
they are believed to be inappropriate (as opposed to less appropriate), then none of 
them should be executed. In our discussion below of specific conflict resolution 
strategies, we will indicate by enclosing a rule (or set of rules) in brackets that it 
excludes from further consideration all instantiations not in its preferred set. 

Figure 3, which contains the same production system as Figure 1, shows the 
instantiations that would be preferred by the strategies that we will consider in this 
section. Again it should be assumed that (P S) and (Q T) were asserted on the 
previous cycle, (P T ) and (R V) two cycles ago, (Q S) three cycles ago, (P V) four cycles 
ago, and (W V) and (W T) 101 cycles ago. In addition, assume that I2 j has already 
been executed. 

Before looking at conflict resolution strategies which combine rules in such a 
w a y that both the sensitivity and stability characteristics are adequately supported, 
w e will examine a strategy which, although clearly inadequate, is of some historical 
interest. 

One of the conflict resolution strategies used by PSG [Newell, 1973; Newell and 
McDermott, 1975] is typical of the strategies used in many early production system 
in te rpre te rs . 6 This strategy is [R4*] -> P01 -> R5\ Rule R4* is identical to R4 except 
that rather than using the number of cycles that an element has been in working 
memory as its criterion of recency, it uses the number of elements; only the first N 
elements in working memory are considered to be recent, where N is specified by the 
user. R5\ unlike R5, uses both production memory (specifically, the order of conditions 
within each production) and working memory as knowledge sources. Since R5* uses 
the order of condition elements in a production as one of its criteria, it can be applied 
only to the instantiations of a single production. Those instantiations that contain the 
most recent element matching the first condition element in the production are 
p re fe r red to all others. Within this set, those instantiations that contain the most 
recent element matching the second condition element are preferred, and so on. 

6 PSG offers the user a choice of conflict resolution strategies. The one described 
here is the default strategy. 
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WM ( ( P S ) ( Q T ) ( P T ) ( R V ) ( Q S ) ( P V ) . . . (W V) (W T) ) 

P I < ( Q - X ) ( P - X ) - - > . . . ) 
I I x [ P I « Q T > ( P T ) ) ] 
I l 2 [ P I ( ( Q S ) ( P S ) ) 3 

P2 ( ( P S ) ( P - X ) ( W - X ) - - > . . . ) 
I 2 j [ P 2 ((P S) (P T) (W T)) ] 
I 2 2 [ P 2 ((P S) <P V) (W V)) ] 

P3 < ( - X S) ( - X - Y ) (W - Y ) <R - Y ) (Q S) - - > . . . ) 
13 [ P 3 « P S) <P V) (W V) (R V) <Q S)) ] 

P4 < ( Q S ) - ( U S ) ( P - X ) - ( U V ) - ( U T ) - - > . . . ) 
I 4 X [ P 4 ( ( Q S ) ( P S ) ) ] 
14 2 [ P 4 ( ( Q S X P T ) ) ] 
14 3 [ P 4 ( ( Q S ) ( P V ) ) ] 

[R4*]-» P 0 1 R 5 * { I I { ) 

[D2] •+ R l -» SC2 •* R3 {13} 

[D2 • R 4 ] - » R l •* SC2 { I l 2 14^ 

[D2 • R 4 ] - » R5 { I l 2 14^ 

[D2 • R4] •* R5 -• POl -» AD1 { I l 2 } 

Figure 3: Conflict Resolution Using Combinations of Rules 

The conflict resolution strategy is applied in the following way: R4* excludes 
from consideration all instantiations containing an element whose position in working 
memory is greater than N. Then POl is applied to the remaining instantiations. Finally, 
R5' selects the single instantiation to be executed/ This strategy supports only 
characteristics 4 and 5, the FORK-JOIN, and to a limited extent, the GOTO. 

One might wonder why such a weak strategy was chosen for PSG. Part of the 
answer is that since PSG had no older siblings, the disadvantages of its conflict 
resolution strategy were not well understood. The rest of the answer is that when 
PSG was designed, no one knew how to efficiently implement a system capable of 
computing the entire conflict set.** Several of the rules described in section I I I are 
completely beyond the power of a system that, like PSG, does not compute the entire 
conflict set. 

7 For reasons of efficiency, this strategy was implemented in PSG in a way that makes 
generating the entire conflict set unnecessary. 

8 See Forgy [1977] for a description of an interpreter which can efficiently compute 
the entire conflict set. 
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The remainder of this section will be devoted to a discussion of four conflict 
resolution strategies that are among the more adequate combinations of rules from 
section I I I . Since the rules are chosen from the same small set, these four strategies 
are all rather similar. We will not attempt to decide which of the four is best. 

The first of these strategies is [D2] -> Rl -> SC2 -+ R3. If we ignore negative 
interactions among these rules, then this strategy, which has at least one rule 
supporting each of the characteristics, has no apparent weaknesses. And in fact, 
combining the rules in this order causes few negative interactions. One of the few is 
between R l and R3. Preceded by R l , rule R3 no longer gives effective support to the 
SUBROUTINE construct. To reverse the order and put Rl after R3 is unacceptable, 
however . If R l were preceded by R3 it would no longer support any of the 
characteristics. Another effect that should be noted is that since SC2 precedes R3, an 
instantiation, I $ , which is a special case of another instantiation, I g , will be preferred to 
Ig even if it contains an element which is less recent than the least recent element 
contained in I g . This effect could be eliminated by putting SC2 after R3. We elected 
not to do so because the justification for the R3 -+ SC2 combination, which would 
sever l y restrict the scope of the special case rule, seems rather weak. Finally, there 
is a positive interaction between Rl and SC2. Preceding SC2 by R l causes the 
strategy, in effect, to use data recency (Rl ) to choose what to do next and then to use 
special case relationships (SC2) to choose how to do it. 

The second strategy is like the first except that R3 is replaced by R4. One 
apparent advantage of R3 over R4 is that R3 helps in the implementation of 
subroutines while R4 does not. But, as pointed out above, R3 loses this advantage if it 
follows R l . Since R4 is used to exclude instantiations from consideration, it is applied 
first (together with D2). Thus, this second strategy is [D2 • R4] -+ Rl SC2. Since no 
instantiation which contains a memory element more than 100 cycles old can ever f ire, 
an obvious way to implement this rule is to delete memory elements automatically 
when they reach the age of 101 cycles. This implementation has a positive side effect: 
Since a production containing a negated condition element will be enabled only if no 
element in working memory matches that condition element, an indefinitely long 
working memory makes using negated condition elements somewhat difficult. When 
working memory has a limited size, negation has an essentially local effect which 
complements characteristic 3. 

The third strategy is [D2 • R4] -» R5. This strategy takes advantage of the fact 
that R5 has both data recency and special case characteristics to allow this one rule to 
replace the two rules, Rl and SC2, used in the first two strategies. The support 
prov ided by this strategy is virtually identical to that provided by the second strategy. 
Since R5 is a stronger ordering rule than R l , the number of instantiations executed on 
each cycle is likely to be less under this third strategy than under the second. 

The first three strategies all allow multiple firings. Since multiple firings can 
result in a large number of actions being performed during a single cycle and thus in a 
possible loss of sensitivity, a strategy which always produces a unique preferred 
instantiation may be desirable. Such a strategy results if the third strategy above is 
extended with POl and A01 to give [D2 • R4] -> R5 -> P01 -> AD1. An interaction 
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between P01 and R5 causes them almost always to prefer a unique instantiation. The 
equivalence class of instantiations preferred by R5 will have exactly the same data; 
each will be an instantiation of a different production unless one or more of the 
productions can instantiate the same set of data elements in more than one way. 
Consequently, P O l , since it uses a complete ordering on productions as its ordering 
cr i ter ion, will ordinarily select one instantiation. In the rare case in which POl selects 
more than one instantiation, AD1 will produce a unique instantiation. 

ACKNOWLEDGMENTS 

The development of many of the ideas discussed above owes much to the 
members of a production system project at Carnegie-Mellon University. The members 
of this project, in addition to the authors, are P. Langley, A. Newell, K. Ramakrishna, and 
M. Rychener. 

REFERENCES 

Davis, R. and King, J . An overview of production systems. Technical report . 
Department of Computer Science, Stanford University, 1976. 

Forgy , C. A production system monitor for parallel computers. Technical Report. 
Department of Computer Science, Carnegie-Mellon University, 1977. 

Hayes-Roth F. and Lesser, V. Focus of attention in the Hearsay II speech 
understanding system. Technical Report. Department of Computer Science, 
Carnegie-Mellon University, 1977. 

Newell , A. Production systems: models of control structures. In Chase, W. (ed.), Visual 
Information Processing. Academic Press, 1973, pp. 463-526. 

Newell , A. and McDermott, J . PSG manual. Department of Computer Science, 
Carnegie-Mellon University, 1975. 

Rychener, M. D. Production systems as a programming language for artificial 
intelligence applications. Technical Report. Department of Computer Science. 
Carnegie-Mellon University, 1976. 

Waterman, D. A. Adaptive production systems. Technical Report. Department of 
Psychology. Carnegie-Mellon University, 1974. 


