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Geometry of Lebesgue-Bochner Function Spaces - Smoothness

I. E. Leonard and K. Sundaresan

ABSTRACT

This paper contains a complete solution to the problem of

the higher order differentiability of the norm function in the

Lebesgue-Bochner function spaces L (E,y>) , 1 <1 p <. oo , where E

is a real Banach and p- is an extended real-valued measure

defined on the measurable space (T,£). The order of smoothness

of L (E,\M) can be summarized as follows: if 1 < p < oo , then
P

(i) the norm in L (E,pO is differentiable away from zero if

and only if the norm in E is differentiable away from zero,

(ii) If p = 2, the norm in L (E,p,) is twice continuously

differentiable away from zero if and only if E is a Hilbert

space. (iii) If p i^ an even integer, p ^ 2, the norm in

L (E ̂ IO.) is p-times continuously dif ferentiable away from zero if
P

and only if the pth-power of the norm in E is a continuous

homogeneous polynomial of degree p. (iv) If p is an odd

integer, the norm in L (E,|j,) is (p-1)-times continuously

differentiable away from zero if and only if the norm in E

is (p-1)-times continuously differentiable away from zero and

the (p-l)-st derivative of the norm in E is uniformly bounded

on the unit sphere in E. (v) If p is not an integer, and

I(p) is the integral part of p, the norm in L (E,M-) is I(p)-

times continuously differentiable away from zero if and only if

the norm in E is I(p)- times differentiable away from zero and

the I(p)-th derivative of the norm in E is uniformly bounded

on the unit sphere in E.
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I. E. Leonard and K. Sundaresan

Introduction

The class of Lebesgue-Bochner function spaces, introduced

by Bochner and Taylor [4] in 1938, have been found to be of

considerable importance in various branches of mathematics,

and are discussed at length in Dinculeanu [11], Dunford and

Schwartz [12], and Edwards [13]. The study of the geometric

properties of the Lebesgue-Bochner function spaces dates back

about three decades: Day [8] and McShane [17], respectively,

characterized uniform convexity and smoothness of these spaces.

In fact, the only known result concerning the smoothness of the

Lebesgue-Bochner function spaces is due to McShane, and his

result concerns only the directional derivative (Gateaux

derivative) of the norm in this class of Banach spaces. Even

the Frechet differentiability of the norm has not been considered

anywhere. It might be mentioned in this connection that the

first systematic study of higher-order differentiability of the

norm in the classical Banach spaces was made by Bonic and

Frampton [5] and Sundaresan [18]. In [5] and [18], the

order of differentiability of the norm in the classical L

spaces, 1 < p < QD , is obtained; while in Sundaresan [20],

the smoothness of the norm in C(X,E) is discussed.

The material in this paper is a portion of a doctoral diss-
eration submitted to Carnegie-Mellon University. An abstract
of this paper will appear in the Bulletin of the American
Mathematical Society, May, 1973.



For an elegant up-to-date account of smooth Banach spaces,

and related concepts one might refer to the Lecture Notes by

S. Yamamuro [23].

This paper contains the first systematic investigation

of the higher-order differentiability of the norm function

in the Lebesgue-Bochner function spaces L (E,T,£,M>),

P

1 <[_ p <̂  oo , where E is a real Banach space and M< is a

non-negative extended real-valued measure defined on the measurable

space (T,2). The paper is divided into four sections. Section

1 contains the basic definitions of the various geometric and

analytic properties of Banach spaces to be studied as well as

the definition of the Lebesgue-Bochner function spaces L (E,|jb).

Section 2 contains the results on Frechet differentiability of

the norm in L (E,|jb). In Section 3, the results concerning the
P

higher-order differentiability of the norm in L (E,M<) are dis-

cussed. Section 4 contains a counterexample which shows that

even if the norm in E is of class C°° 9 the norm in L (E,y>),

for any p, 1 <̂  p <£ oo , need not be even twice differentiable;

thus pointing out the importance of the characterizations in

Sections 2 and 3.



1• Definitions and Notation

The definitions and notation used throughout the paper

are collected in this section for easy reference. In the

following definitions, E denotes a real Banach space and E

is the dual of E.

1.1. Definition. The unit ba.ll of E is U = (xeE|||x|| < 1}

and its boundary S = {xeE|||x|| = 1} is the unit sphere of E.

In the dual space E*, U* = {feE*[||f|| < 1} is the unit ball

of E* and S* = {feE*|||f|| = 1} is the unit sphere of E*.

The conjugate norm will be denoted by || • || since there will be

no occasion for confusion. The unit ball and unit sphere of E

are defined analogously and are denoted by U and S

respectively.

1.2. Definition. A Banach space E is said to be smooth at

xeS if and only if there exists a unique hyperplane of support

at x, that is, there exists only one continuous linear functional

I eE with \\l II = 1 such that I (x) = 1 . Such a linear
X " X11 X
functional I eE is called the support functional of U at x,

and t~ ({1}) is called the hyperplane of support of U at x.
x —— ——

A Banach space E is said to be a smooth Banach space if it is

smooth at every xeS.

1.3. Definition. The norm || • || : E — > 1R is said to be Gateaux

differentiable at xeE if and only if there exists a functional

G eE such that



_ G (h) | = 0
x

for every h€E. G is called the Gateaux derivative of the

norm at xeE. A Banach space E is said to be uniformly

smooth if and only if

||x+th||-||x||-tG (h)
lim 7 = 0

t

uniformly for (x,h) eS * S, The norm || • || : E—>]R is said to

be differentiable (Frechet differentiable) at xeE if and only

if there exists a functional G eE such that
x

- x -G• • I . J M i i i

l i m — Hi—M = O .

The norm ]| • H : E—>JR is said to be uniformly Frechet

differentiable if and only if

l i m rrr-n = O

||h||—o1 I™

uniformly for xeS . The norm || • || : E — • IR is of class C

or continuously differentiable if and only if the mapping

G : E — {0}—*E ~ {0} given by G (x) = G is continuous.

1.4. Remark. Before turning to the definitions of higher-

order differentiability, note that the norm in E is:

(i) Gateaux differentiable at xeE if and only if

=



exists for all heE.

(ii) Smooth at xeE if and only if it is Gateaux

differentiable at xeE.

(iii) Frechet differentiable if and only if it is of class

C away from zero.

(iv) Uniformly smooth if and only if it is uniformly Frechet

differentiable.

Note that (i) is Mazur's theorem and can be found in Mazur [16]3

while (ii), (iii), and (iv) can be found in Day [9].

1.5. Definition. Let E and F be Banach spaces, then <£(E,,F)

denotes the Banach space of continuous linear mappings from E

into F with the usual operator norm. iS (E,F) denotes the

Banach space of continuous k-multilinear mappings

v : E X...X E—»F with the norm

Hvll- ___

The spaces 6 (E,F) may be identified with the spaces defined

inductively as follows:

A mapping $ : E —*> P is said to be a homogeneous polynomial of

degree k if tnere exists a k-multilinear mapping

f : E X...x E — * F such that

<p(x) = f (x, . . .,x)

for all xeE.



1.6. Definition, Let E and F be Banach spaces and let A

be an open set in E. A mapping f : A—>F is said to be

differentiable at XGA if there exists a mapping f!(x) e £(E,F)

such that

llf (x+h)-f (x)-f ' (x) -hll _ o

In this case f is continuous at xeA and f (x), which is

unique, is called the derivative of f at x. The higher-order

derivatives f : A—>B (E,F) are defined in the usual manner

(see Dieudonne [10]). The mapping f : A—»F is said to be

°f class C or k-times continuously differentiable if it is

k-times differentiable and the kth derivative f ^ : A—>Bk(E,

is continuous. The mapping f : A—*F is said to be of class

C if it is indefinitely continuously differentiable.

1.7. Remark.

(i) Let E and F be Banach spaces and let A be an

open subset of E. If the mapping f : A—»F is k-times

differentiable on A, then the multilinear mapping

fv ; (x) e B (E,F) is symmetric for each xeA.

(ii) Any continuous k-multilinear mapping is indefinitely

differentiable3 and all its derivatives of order >_ k + 1 are

zero.

A proof can be found in either Cartan [6] or Dieudonne [10].

Next the Lebesgue-Bochner function spaces are defined.

In the following (T̂ Ŝ jLt) is an arbitrary measure space, that is,



T is a non-empty set, 2 is a cr-algebra of subsets of T

and jLt : 2—>JR is a countably additive measure, (Here ji

is assumed to be non-trivial, that is, ji is not supported by

finitely many atoms and the range of \i contains at least one

non-zero real number.)

1.8. Definition. Let E be a normed linear space. If

f : T—>E, then f is U-measurable if and only if:

(i) f" (G)e2 for every open set G c E, and

(ii) there exists a set NeE, with |Lt(N) = 0, and a

countable set H c E , such that f (T - N) c H.

1,9. Definition. If 1 ;< p <_ oo , the Lebesque-Bochner function

spaces L (E,p,) are defined as follows:

L (E,fX) = [f|f : T—>E is measurable, and J ||f (t) ||Pd/i (t) < oo
P J

T

for 1 < p < oo 3 and

L (E ĵLt) = { f | f : T—+E i s m e a s u r a b l e , a n d e s s s u p | | f ( t ) | | < oo }
teT

(as usual, identifying functions which agree jLl-a.e.). When T

is the set of positive integers and )Lt is the counting measure,

L (E,jU) is usually denoted by I (E) .
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2 • Frechet Differentiability of_ the Norm in L (E,\l) , 1 < p < oo

In this section a complete characterization of the Frechet

differentiability of the norm in the Lebesgue-Bochner function

spaces L (Ê /i) is given. It is shown that the norm in L (E^jl),

1 < p < oo s is differentiable away from zero if and only if the

norm in E is differentiable away from zero. Before proceeding

to the theorem a few useful lemmas are stated. The first can

be found in Vainberg [21, p. 43].

2.1. Definition Let E^F be Banach spaces and A an open

subset of E.

(i) A mapping f : A—>F is said to be locally bounded

on A if and only if for each xQeA there exists a p = Po (
x/0 > °

such that B(xQJ,p0) = [xeE | ||x-xo|| < pQ} ^ A and f is bounded

on B(xQ,po) .

(ii) A mapping f : A—*F is said to have a locally uniform

derivative f! on A if and only if given any e > 0 and

, there exist rj = 77(xo,e) > 0 and 6 = 6(xQ,€) > 0 such

that

f (x + h) - f(x) = f (x) -h + & (h)

where ||&x(h)|| < e||h|| for all xeA with ||x-xol| < 7j(xQ,€),

whenever ||h|| < 6{xQ.€) .

2.2. Lemma [Vainberg]. Let E,F be Banach spaces and

f : E—»F be dif ferentiable. Then f1 : E—^^(E^F) is continuous

in the ball B r = {xeE|||x|| < r] if and only if



(i) f has a locally uniform derivative in B , and

(ii) f1 : E—**<£(E,F) is locally bounded in B .

Note that the above lemma is valid if the ball B is replaced

by any bounded set in E.

2 o 3. Lemma. Let E and F be Banach spaces and g : E —*F

be continuously differentiable. If C ^ E is compact, then g

is uniformly differentiable on C.

The proof is a direct consequence of Lemma 2.2, and

standard compactness arguments.

The next lemma is known, and is stated here for

completeness.
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2.4. Lemma» Let E be a Banach space and (T,£,jLl) a measure

space. If f : T—>E is a measurable function, then f is

locally almost compact-valued; that is, if Pe£, 0 < jLt(P) < oo ,

and € > 0, then there exists Qe£, Q <=: p, with O < jLt(Q) < €,

such that f(P ~ Q) is precompact.

Proof: Let f : T—*E, n >̂  1, be a sequence of measurable

simple functions such that f *-f jLi-a.e., and let

0 < fi(P) < oo . From Egoroff!s theorem, there exists

Q cz p^ with 0 < /i(Q) < €, such that f —*. f uniformly on P ~ Q

If 5 > 0, choose n sufficiently large that

||f(t)-fn(t)|| < 6

for all teP ~ Q. Let the range of f : T —*E be {bn ,bo, . . . ,bv]

and let U(bi,6) = {XGE | ||bi-x|| < 6} , i = l,2,...,k. Then

k
f (P - Q) c U U(b 6),

i=l 1

hence f(P ~ Q) is precompact, that is, f is locally almost

compact-valued. q.e.d.

2.5. Theorem. Let E be a Banach space, (T,£,/i) a measure

space and 1 < p < oo . The norm || • || : L (E,pt)—•IR is

differentiable away from zero if and only if the norm

|| • || : E—+1R is dif ferentiable away from zero.

Proof: 1. Suppose that the norm in E is differentiable

away from zero. Define g : E—*-IR+ and g : L (E,jLt)—*- 3R+

by



11

g(x) = |||x||p for xeE

and

g(f) = | | |f ||P = i J ||f (t) ||PdM(t) for feLp(E,M) .

Since the norm in E is continuously differentiable away from

zero (Cudia [7, Corollary 4.11]), and since p > 19 then g is

continuously differentiable at all xeE and

gT (x) = ||x||p~ G for x ̂  0

g'(0) = 0

where G eE is the derivative of the norm in E at x. Now.

HVY)II
g(x + y) = g(x) + g» (x) -y + &x (y) where — ^ n ^ 0 as

| | y | | — ^ 0 . L e t f € L ( E , \l) w i t h ||f|| = 1 , a n d l e t h e L ( E , | i ) ; t h e n
P P

g(f(t)+h(t)) = g(f(t)) + g« (f(t))-h(t) +»f(t)(h(t)) (2.1)

for all teT. The mapping y : T — > E , given by Y(t) = g1 (f(t))

for t€T, being the composition of a measurable function and

a continuous function, is measurable; and from the definition

of g1 y it follows that yeh (E , |j,) . The measurability of y,

together with (2.1), imply that the mapping ti—> &f/t\(
h(t)) ^-s

measurable. Thus,

lg(f(t)+h(t))d(i(t) = f g(f (t))djx(t) + f g' (f(t)) -h(t)dfi(t)
T T T

+ [ & ^ /4- x (h(t) )djLl(t) . (2.2)
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(E,n), then
A *
g'(f) € Lp(E,M) , and in order to show that £, (f) i s t h e

derivative of § at feL m u) from (7 o\ •+. *
',^, rrom (2.2) it suffices tc

T

(JT

value theory (Cartan [ 6 ] ), n o t i n g t h a t ,|g,(f(t))|| . ,

it follows that 11 i Ml

S
f(t)(h(t))| i 2|!h(t)|Uap ||f(t)+¥h(t)||P-l

The rest ° f «» aiscuSsi u aivided into
two cases.

- a s e -̂ : M(T) < 00 (assume u(T) = n mh

r{1) L> • The mapping
~^IR defined by

M G ) = J lif(t)||PdM(t, for Ge2

finite, positive measure. w h i c h i s absolutely continuous
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with respect to /i. Therefore, given € > 0, there exists a

61 = 6]_(f>€) > ° s u c h t h a t

J ||f(t)||PdM(t) < i(f)9 (2.4)

G

whenever Ge£ and ^(G) < 6 . (Here — + — = 1.)

Let 0 1 cp 1 1, from the mean-value theorem,

| ||f(t)+cph(t) ||P-||f(t) |p| 1 2p||<ph(t) || sup ||f(t)+^ph(t)|p~\

and it follows immediately that

I sup ||f(t)+<ph(t)||p-||f(t)||p| 1 2p||h(t)||[||f(t)|| + ||h(t)||]p-1.

From Holder's inequality,

J | sup | | f ( t ) - n p h ( t ) | |p - | | f ( t ) | | P | d f i ( t )
T Q £ £ l

T

and thus,

2p(J |ih(t) | | P d M ( t ) ) 1 / p ( J [ | | f ( t ) | | + | |h(t) | | ] P d M ( t ) ) 1 / q ,
T T

J | sup | | f ( t )+<ph(t) | |p - | | f ( t ) | |p |dM(t) - * 0 as ||h|| —* 0.

Since for a r b i t r a r y GeS,

f [ s u p ||f(t)+<ph(t) | | P - | | f ( t ) | |P]diU(t)|
G (X££1

1 J I sup ||f(t)+<ph(t) | | p - | | f ( t ) | | P | d / i ( t ) ,
T 0 ^ £ l

G

given any e > 0, there exists a 62 = 62(f,e) > 0 such that

BINT U88ABY
CARNEIIE-IEUiX 8«iVERSiTY
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f [ s u p | | f ( t ) - fcph( t ) | | P - | | f ( t ) | | P ]dM(t ) | < | ( | ) q (2-5)
JG 0 ^ 1 Z b

for a l l Ge%, whenever ||h|| < 6^.

Also, from Lemma 2.4, there exists T^H, with 0 < MC^) <

such that f(T ~ T\) is precompact; hence given any e > 0,

there exists by Lemma 2.3, 6- = 63(f,e) > 0 such that

I V Y ) I < %1|y|1 ( 2-6 )

f o r a l l x G f ( T ~ T , ) , w h e n e v e r | |y | | < 6 3 . L e t

and l e t heL (E,/i) with ||h|| < 6 .

Since ^(T^) < 6^ (2.4) implies that

||f(t)|pdn(t) <^(f)q,
Tl

and thus from (2.5) it is inferred that

J sup ||f(t)-Hph(t) ||PdM(t) < (f)q.

From (2.3) and Holder's inequality, it is verified that

| ( 9 f ( t ) ( h ( t ) ) | d M ( t ) < - | | | h | ! . ( 2 . 7 )
T l

Now l e t T« = T ~ T-. and define

T3(h) = [t6T2

then
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< J ||h(t)||pd^(t) < J ||h(t)HPdM(t) < 6g < 61-6P,
T3(h)

that is, )i(T,(h)) < 6, . The preceding inequalities together with

(2.4) imply that

J ||f(t)||PdM(t) < | ( f ) q

'T3(h)

and s i n c e llhll < 6_ < 6 (2 .5 ) i m p l i e s t h a t

J sup ||f(t)+(p(t)h(t)||PdM(t) < (f)q

T3(h) 0^<^l

From (2.3) and Holder's inequali ty,

J \®f[*.\ (h(t)) |dfi(t) < f||h||. (2.8)
J T ( h ) f ( t ) 3T3(h)

Now let T4(h) = T_ - T 3 (h) , then T 4 (h) c T ~ T̂ ,̂ and

since f (T ~ T±) is precompact, and ||h(t)|| < 63 for all t€T4(h),

(2.6) implies that

l f m | < f J ||h(t)||dM(t)
T4(h)

 f ( t ) 3 JT4(h)

< f f ||h(t)||dji(t) .
J T

From H o l d e r ' s i n e q u a l i t y , s i n c e pi(T) = 1 ,

f \^(t\ ^(t)) |dpi(t) < f||hl|. (2.9)
J T ( h ) f ( t ) 3T4(h)

Combining (2.7), (2.8), and (2.9), since T = 1^ U T 3 (h) U T 4 (h) ,

(disjoint union), then



16

T

What has been shown i s that given any e > O, there

exis t s a 6 = 6 (f,e) > 0, such that

J |<&f ( t ) (h(t)) |dji(t) < e||h|| (2.10)

whenever heL (E, (J.) and ||h|| < 6Q.

Case 2: fi(T) = co . In this case, since the support of f

is CT-finite, it can be assumed without loss of generality

that the measure space (1,T>,^) is cr-finite. Let (A } >, be

a pairwise disjoint sequence of sets from 2 such that

CD

ji(A ) < co for all n >_ 1 and T = U A .
n n=l n

Let feL (E,/i) with ||fl| = (f ||f (t) ||Pdfi(t)) 1 / p = 1, then
P T

J ||f(t)||Pd^(t) = J ||f(t)|pdM(t) = 'z J ||f(t)llPdM(t) = 1
T co n=l A

U A n

n=l n

Given € > 0^ there exists a positive integer N n such that

oo
2 J ||f(t)HPdjx(t)

n=N 0 + l

that is^

J
oo
u K



17

Since the mapping P : L (E,ji) *]R given by
P

sup ||f(t)+<ph(t)
0 0 Q
U A

n

is continuous, there exists a 6, = 6,(f ,e) > O such that

J SUp ||f(t)+cph(t) ||PdjLl(t) < ( f ) q

oo O^ifK^l
U A

n=N0+l n

whenever ||h|| < 6, . Proceeding exac t l y as in the previous case ,

i t i s obtained that

J | & f ( t ) (h(t)) |dji(t) < -|||h|| (2.11)

U An
n=N0+l n

whenever ||h|| < 6̂  .

N o N o
Now^ jLt( U A ) = 23 jLt (A ) < GD , and from t h e r e s u l t of

1 11 i nn=l

Case 1, there exists a 6 = 6 (f,e) > O such that

J |& . (h(t)) |dfX(t) < f||h|| (2.12)
NO

whenever ||h|| < 6 .

Letting 5 = min(6 6 ) , then
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I,'
whenever ||h|| < 6 .

Thus, in either case,

and g : L (Ê JLI) *~TR is dif ferentiable at feL (E,Jl), with
P P

gl (f) -h = J g' (f (t)) -h(t)d|x(t)
T

for all heL (E,jx). Therefore, the norm || • || : L (E^jLt)—*IR+ is
P P

differentiable away from zero.

2. Conversely, suppose the norm || • || : L (E,fi)—*IR is

differentiable away from zero; since E is isometrically iso-

morphic to a closed subspace of L (Ê jLt), the norm

-3R is differentiable away from zero. q.e.d.E
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3 . Higher-Order Differentiability of the Norm in L (E, fi)

In this section a complete characterization of the higher-

order differentiability of the norm in the Lebesgue-Bochner

function spaces L (Ê /i) is given. The first result shows
P

that if p > k, then the norm in L (E,,|i) is k-times con-

tinuously differentiable away from zero if and only if the

norm in E is k-times continuously differentiable away from

zero and the kth derivative of the norm in E is uniformly

bounded on the unit sphere in E. This is proved first for the

case k = 2^ and then a straightforward induction argument

completes the proof for k > 2. (Note that the induction

cannot start with k = 1, since the first derivative of the

norm in E is automatically bounded on the unit sphere.)

3.1. Theorem. Let E be a Banach space, (T,£,|Ll) a measure

space and p > 2. If the norm || • || : E—>TR is twice continuously

differentiable away from zero and the second derivative of the

norm in E is uniformly bounded on the unit sphere in E, then

the norm || • || : L (E,jJ.)—+ IR is twice continuously dif ferentiable

away from zero.

Proof: Suppose the norm in E is twice continuously

differentiable away from zero and the second derivative of the

norm in E is uniformly bounded on S. Define g : E—^3R

and g : L (E, JLI) *IR by

g(x) = i||xllp for xeE
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a n d

g(f) = | | | f HP = | J ||f (t) ||PdfX(t) for

Since the norm in E is twice differentiable away from zero

and p > 2, then g is twice differentiable at all xeE and

gM(0) = 0.

If ||g"(x)|| < M for all xeE, ||x|| = 1, then

gMpu0 = |A|p~2g"(x) for A ^ O

implies that ||gff(x)|| < M||X||P~2 for a l l xeE, x ^ 0. Hence g

is twice continuously differentiable at a l l xeE. Now,

g' (x + y) = g> (x) + g"(x) -y + \(y)

" X II II

where —n—n * 0 a s y —+ 0 .

Let feL (E,M) with ||f|| = (f ||f (t) ||PdM(t)) 1 / p = 1, and
P T

l e t heL (E,p) ; t h e n

g ' (f ( t ) + h ( t ) ) = g ' (f ( t ) ) + g " ( f ( t ) ) - h ( t ) + <9 f ( t ) (h ( t ) )

(3.1)

for all t€T. The mapping Y : T—^^(E^E ) given by

Y(t) = g"(f(t)) for teT, being the composition of a measurable

function and a continuous function, is measurable; and from

(3.1) this implies that the mapping t\—• ̂f/t\ (h(t)) is

measurable. <-

Define the mapping Sf (h) : T—»-E by



21

& f(h)(t) = f e f ( t ) ( h ( t ) ) for teT.

From (3.1) and the mean-value theorem (Cartan [6]), since

||g"(x)|| < M||X||P"2 for a l l xeE, i t follows that

|| < 2M||h(t)|| sup l|f(t) + (ph(t)||p-2

for all teT. Therefore, from Holder's inequality, it follows

that

< (2M)q(( | sup ||f(t)+(ph(t)
T 0<cp<l

(3.2)

.(J
A •*•

and hence, &f (h) e L (E ,\i) with

l|fc£(h)H = ( I 11&
f JT

Now le t g"(f) : L (E , \i) XL (E , \x)—^ IR be defined by
P P

g"(f) .(h^h,,) = j gM(f(t)) • (h 1 ( t ) ,h 2 ( t ) )d( i ( t )

for a l l h, ,h_ e L (E,a) . Then from Holder's inequality i t
1' 2 p

follows that ||g"(f) |1 < M||f||P"2. Hence g"(f) : L (E,ji) X
P

L (E.a)—•IR is a bounded, symmetric bilinear form,p

From (3.1) it follows that
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f gi (f (t)+h (t)) -h (t)dM(t) - f g< (f (t)) -h (t)dji(t)
T T

- J g"(£(t)) •(h1(t),h2(t))dfi(t) = | &f (t) (hx(t)) -h2(t)d»i(t),

that is,

g' (f+h^ -h2 - g< (f) -h2 - g"(f) • (hL,h2) =

Taking the supremum over those hoeL (E,(i) for which ||h9|| = 1,

then

||g« (f+hx) -g'(f) - g"(f) '\\\ = 11^(^)11. (3.3)

2
In order to show that gff(f) e B (L (E.jLt), 3R) is the second

derivative of g at feL (E, fi) 3 from (3.3) it suffices to

show that

(J.

as ||h|| = (f ||h(t) ||PdjLt(t))^^ —-*0.
JT

Proceeding exactly as in Theorem 2.5, two cases are

considered:

Case 1: jl(T) < oo (assume fi(T) = 1) . From (3.2), for

any Ge^s

||f(t)4tp(t)h(t)||PdM(t))«(p-2)/p||h|
G

(3.3)
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(where 0 < cp(t) £ 1 is chosen so that sup ||f (t) +<ph (t) || =

||f (t)+<p(t)h(t) ||) . Given € > 0, choose 6 = S^f^e) > 0

such that

J ||f(t)|pd|i(t) < \ { ^Z)9^"2 (3.4)
G 2M • 3

whenever JLt(G) < 6 .

Choose 6 = 6 (f^e) > O such that

|J ||f(t)+cp(t)h(t)||p - ||f(t)HP)dM(t) | < \{ V7q ) P / P~ 2 (3-5)

for all G€^ whenever ||h|| < 6 .

Choose T-^S with 0 < ^(T-L) < 6± such that f (T

is precompact^ and choose 6 = 6 (f^e) > O such that

x

for all x€f (T ~ T^) whenever ||y|| < 5 .

Now let 6Q = min(62,63,6^/
p.63) and let heL (E,fi) with

||h|| < 6 . Proceeding as in the proof of Theorem 2.5, it is

seen that

(J
whenever ||h|| < 6Q.

Case 2: jLt(T) = oo . Again^ since the support of f is

a-finite, it can be assumed that (T̂ Ŝ /i) is a-finite. Let

be a sequence of pairwise disjoint sets from 2 such
oo

that yL(A ) < oo for all n > 1 and T = U A . Since
n ~ n=l n
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oo (.
f||P = £ J ||f (t) ||pdM(t) = 1, choose NQ such that

oo
£

n = l "An

J | | f ( t ) | p d M ( t ) < i (
oo Z 2Moo Z 2M-2
U A n

n = N Q + l

B y t h e s a m e p r o c e d u r e a s a b o v e , t h e r e e x i s t s a 6-. = 6 , (f,e) > 0

such that

J
U

n = N Q + l

NO
whenever heL (E,H) and ||h|| < 5 . Since \i ( U A ) < oo , from

p •"" n = l n

Case 1, t h e r e e x i s t s a 6 = 6 ( f ,e ) > O such t h a t

f II&
N

U A
n=l n

whenever h€L (Ê fX) and ||h|| < 6 .

Let 6 = min(6 5 ) , then

(J | | » f ( t ) (h(t))||qdM(t))1/q < €

whenever ||h|| < 6O.

Thus, g : L (E ĵLt)—^ IR+ i s twice dif ferentiable at

feL (E,ji) with
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"(f) -(h^h^ = J g"(f (t)) •(h1(t),h2(t))dM(t)

for all h p h . e L (E,H) . It remains only to show that the

mapping g" : L (E,jLt) — * £ (L (E, JJ,) ,L (E , fi) ) is continuous.

Again, two cases are considered.

C a s e 1 : \j>{T) < o o ( a s s u m e M*(T) = 1 ) . L e t f * f e L ( E , ^
n p

for n ;> 1, and suppose f —* f in L (E,M<) • It must

be shown that g" (fn) —+ g" (f) in £ (L (E,fi) ,L (E,fA)*) . Since

f ^ f in L (E,H), there exists a subsequence [f ^ i>± such
n P i —-

-*
that f (t)—^f(t) in E /i-a.e., and since g" : E—*£(E,E )

i

is continuous, g"(f (t))—• gn(f(t)) in £(E,E^) )jb-a.e.
ni

For h.,,h2 e L (E, uO ,

gll(f) -(h^hj = f gM(f(t)) - ( ^ (t),h.(t))dfi(t),

and therefore,

| g " ( f n )
i

J llg"(f
n ( t))-g"(f(t)) | | | |h (t)||||h (t)Hdjx(t). (3.7)

T i

From the Vitali convergence theorem (Dunford and Schwartz [12]),

since f —*• f in L (E, H) , given any € > O, there exists a

6 = 6(c) > 0 such that
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J ||fn (t)||
pdM(t) < (~)P/P~2 for all i > 1

G l

and (3.8)

J ||f(t)||PdM(t) < (^)P/P-2,
G

whenever JU(G) < 6(c). (Here ||glf(x)|| < M for all xeS.) From

Egoroff's theorem, there exists an F<=X with 0 < jLl(P) < 6 (e)

such that

iig"(fn (t)) - g
lf(f(t))||-*O, as

i

uniformly on T ~ F; that is^ given any € > 0, there exists

an N(e) such that

I l g f ! ( f n ( t ) ) - g f l ( f ( t ) ) | | < I ( 3 . 9 )
i

for all teT ~ F, whenever n. > N(€) .

Therefore^ from (3,7) and Holder's inequality^

J l|g"(fn ( t ) ) -g"( f ( t ) ) | | | | h 1 ( t ) | | | | h 2 ( t ) | |dM(t ) < fllhj^Hllh^l (3.10)

for a l l h , ,h 2 e L (E,p) , whenever n. > N(c) .

Now, since ||g" (x) || < M||X||P~2,

J ||g" (fn. (t)) -g» (f (t)) || | | n i (t) ||||h2 (t) ||dfi(t)
F i

< M J nif ( t ) | p - 2
+ ||

Pi

and from Holder's inequality,
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f l|g"(fJ
F
 ni

<M[(J ||fn (t)|pdp(t))P-
2/P+ (J ||f(t)|pdM(t))P-

2/P]||h1||||h2||.
n

(3.11)

From ( 3 . 8 ) , s i n c e p,(F) < 6 (e) ,

J ||g"(f (t))-g"(f(t)) | | | lh (t)||||h (t)||dfi(t) < fII^IIH^|| (3.12)
F i

for a l l n^, and for a l l h 1 , h 2 e L (E,ji) .

Combining (3 .10) and (3 .12) i f n i > N ( e ) , then

J llg"(f ( t ) ) -g" ( f ( t ) ) | | | | h 1 ( t ) | | | | h (t)Udji(t) < €||h ||||h II

for a l l h^h^ e L (E ĵu); that is,,

|g"(fn ) ' ( ^ ,^2 ) -g"(f) • (h-L,h2) I < €11̂ 1111̂ 11

f o r a l l n T ^ h
2
 e L ^ E ^ ^ whenever n. > N(c) .

Taking t h e supremum over a l l h^yhj e L (E,/i) w i t h

||h11| = | |h2 | | = 1 , t h e n , l | g M ( f n . ) - g"( f ) | l < € whenever

n. > N ( € ) . Thus, g"( f ) — g " ( f ) i n £ (L (E, fX) ,L (E, fi) *)

as n . — • 00 .

What has actually been shown is that every subsequence

of the sequence [g!!(f )} >. contains a convergent subsequence,

and they all converge to the same limit, namely, g11 (f) .

Therefore the entire sequence [g"(f )} > 1 converges to g"

that is, g"(fn) ^ g " ( f ) in £(Lp(E,fi),Lp(E,»i)*) .
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Case 2; H(T) = 0 0 . Let f , f e L (E, fi) , n > 1, with

f—*. f in L (E,|l) . Again, there exists a subsequence {f

such that f (t)—^f (t) in E jl-a.e.; and by continuity of

g", g"(fn (t)) — gfl(f(t)) in i(E,E*) |i-a.e.
i

By the Vitali convergence theorem (Dunford and Schwartz

[12]), given € > 0, there exists a set E^e^ with 0 < fi(Ê ) < oo

such that

J IIfn (t)Pd/i(t) < (|^)
P/P"2 for all n.

T~E i

and .(3.13)

J ||f(t)|pdM(t) < (fvr)p/p-2.
"T~E€

By the previous case, since fi(E ) < 00 , given any € > 0,

there exists an N(e) such that

J llg''(fn<(t))-g
ll(f(t))||||h1(t)||Hh2(t)||d/i(t) < fHh1||||h2H

E i

for all h i ^ h
2
 G L (E>^ whenever n. > N(e) .

From (3.13), reasoning as above,

J !lg"(f ( t ) ) -g" ( f ( t ) ) | | | | h (t)| | | |h (t)Hdfi(t) < f||h ||||h II (3.14)
T~E i

€

for all h,,!^ € L (E,)Lt)5 and for all n..

Thus,

g"(fn.) ' (h13h2)-g" (f)
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for all h1,h2 € L (E,)Li) whenever ni > N(e) . Therefore,

A
||g"(f ) - g"(f)|| < e whenever n. > N(€) ; that is,

g"(f )_^g"(f) in £ (L (E,|i),L (E,ji) ) . Reasoning as before,
^i

this implies that g" (f )—g"(f) in £ (L (E, |U) ,L (E, Ji) *) as
n P P

n—»- oo .

Therefore, the norm || • || : L (E,(Ll)—+ 1R i s twice
P

continuously differentiable away from zero. q.e.d.

The converse of this theorem is also true:

3.2, Theorem. Let E be a Banach space, (T,2,|Lt) a measure

space and p > 2. If the norm || • || : L (E,ji) —»*IR is twice

continuously differentiable away from zero, then the norm

||" || : E—v 1R is twice continuously dif ferentiable away from

zero and the second derivative of the norm in E is uniformly

bounded on the unit sphere in E.

Proof: Suppose the norm in L (E,(i) is twice continuously

differentiable away from zero; since E is isometrically iso-

morphic to a closed subspace of L (E,(Ll), it follows immediately

that the norm in E is twice continuously differentiable away

from zero. The main difficulty here is showing that the second

derivative of the norm in E is uniformly bounded on the unit

sphere in E. In this case, since £ (E) is isometrically

isomorphic to a closed subspace of L (E,)H), it is sufficient

to work with the sequence spaces -t (E) . Define g : E — * IR

and g : I ( E ) — ^ JR in the usual manner:
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g(x) = ^||x||p for xeE

and §(a) = | | | a p = | E UaJP for a = f a ^ ^ e t (E) .
n—1 ~"

Since p > 2, then g and g are twice differentiable at

x = 0 and a = 0, respectively, with g'(0) = g"(0) = 0 and

g«(0) = g"(0) = 0. Note also that

A °° A °°
g(a) = 2 g(a ) and g' (a) -h = E g ' (a ) *h

n=l n n=l n n

f o r a l l a ,he - t (E) ( s e e Theorem 2 . 5 w i t h T = 3N and jLl t h e
P

counting measure).

Now if â be-t- (E) , from Taylor's formula,

g(a + b) = g(a) + g< (a) -b + \ g"(a) • (b,b) + &a (b)

where 5— —•• O as ||b||—»O, and hence

g M ( a ) - ( b , b ) = 2 ( g ( a + b ) - g ( a ) ) - 2 g ' ( a ) -b - 2 $ , (b) . (3 .15)

Again, from Taylor's formula, for a l l k >_ 1,

g(ak+bk) = g(ak) + g ' ^ ) ^ + ig" (a]c) • O v ^ ) + & (bfc) (3.16)

& (y)
where x

 o +0 as ||yl|—*0.
II l|2l l l i

I f n > 1 , l e t b n = ( b ^ b j , . . . , b , 0 , 0 , . . . ) , then from

(3.15)
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g"(a) -(bn,bn) = |
n

K.—J-

n

- 2 (bn),

while from (3 .16) ,

g"(a).(bn,bn) =
k=l

b ) + 2 S & (b )
K K k=l ^ K

(bn) .

(3.17)

If A ^ O, then

n A b n )g"(a) -(Abn
3Ab

n) = 2 g" (Abn) ,

and therefore^

n
g" (a) • (bn,bn) = S g»(a.) -(b. ,b.) + 2 £

k=l K K K k=l A A'

Letting A—*Oj then

n b ng" (a) • (bn,bn) = S g- (ak) • (bk,bk)

for all bet (E) and for all n >_ 1 • Since g"(a) is symmetric,

it is determined by its values bn the diagonal, hence

A n
g"(a) .(bn,cn) = 2 g"(a ) • (b. ,c. )

k=l
(3.18)

for all b̂ ce-t (E) and for all n >_ 1.

Now ||bn-b|| = ( ? K | | P ) 1 / P , ||cn-c|| = ( " He. IP)
k=n+l K k=n+l K

and b —* b, c —r- c in t (E) as n —~ GD ; since g" (a) is

a continuous bilinear form, then



32

l i r a g " ( a ) - ( b n , c n ) = g ( a ) - ( b , c ) < oo .
n —*• oo

n A
T h e r e f o r e , l i ra 2 g" ( a , ) • (b, , c , ) = g" (a) • ( b , c ) < oo , t h a t i s ,

n —* oo k = l

ao
g " ( a ) - ( b , c ) = 2 g " ( a k ) • oo (3 .19)

for all b^cet (E) . This implies that there exists an M > 0

such that ||g" (x) || <. M for all xeS . If the assertion is false,

then there exists a sequence [x j >1 in E with ||x || = 1 for

all n >̂  1, such that

.n for a l l n > 1. (3.20)

Given € > 0, there exist sequences [b } >^, >i
i n E

with ||b || = ||c || = 1 for a l l n >_ 1, such that

g"(xn) -(bn ,cn) > |lg"(xn)|| - e for a l l n > 1. (3.21)

Therefore3

n S7F ^" < xn» (3.22)

and since g" (xn) = (2
n//p)P~2g" (-̂ 7-) , then (3.22) implies that

X

)
n/P

S
n

(3.23)

for all n > 1.
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x b c
Let a = {-—7-}^,, b = {--7-} ̂  , a n d c = f-^7^r,>T t h e n

a,b,c e ^(E) and ||a|| = ||b|| = ||c|| = 1; but

00 llg (x ) ||
2 Z - €

oo on> E 1 = ^

n=l 2 n

a contradiction^ since by hypothesis gl!(a) • (b5c) < oo . g.e.d,

Theorem 3.1 and Theorem 3.2 together yield the following

theorem:

3.3. Theorem. If E is a Banach space, (T ,£, li) a measure

space and p > 2, then the norm || • || : L (Ê fi) —•IR is twice

continuously differentiable away from zero if and only if:

(i) the norm || • || : E —». ]R is twice continuously

differentiable away from zero, and

(ii) the second derivative of the norm in E is uniformly

bounded on the unit sphere in E.

Suppose now that k is a positive integer, p > k, and

E is a Banach space whose norm is k-times continuously

dif ferentiable away from zero. The mappings g : E—*-IR

and g : L (E,jx) —+ JR are defined as usual:
P
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g(x) = ^l|x||p for xeE

g(f) = ^llflP = | J ||f (t) ||PdM(t) for feL (E,M) •
P -T

3.4. Lemma. (i) If gv ' : E — • & (E, 3R) is uniformly bounded

on S^ then g : E—* iS (Ê  3R) is uniformly bounded on S

for 1 < I £ k-1.

(ii) If xcE, x ̂  0, and A ̂  0, then for 1 < I < k^

g(t)(Ax) = (sgn A ) l \ A \p"lg{l\x).

(iii) If p > k, and ||g ̂ (x) || < M for all xeS, then g

is k-times continuously differentiable at x = 0, and

g{l) (0) - 0

for 1 < I _ k.

Statements (i) and (ii) follow from the definition of g,

and (iii) is a consequence of (i) and (ii) .

Assume now that the norm || • || : L (E^ji)—v 3R is (k-1) -times

continuously differentiable away from zero, and that for

(f) = J g(k-1} (f(t)) .(h2(t),h3(t) ,...,hk(t))dH(t)
T

for all h2,,h3, . . . ,hk f L (E , jLi) . Writing
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g 0^ 1* (x+y) = g(k"1) (x) + g ( k ) (x) -y + &x(y) ,

l!& (y) II
X t i l l

where —ri—n —*0 as ||y||—** 0, a straightforward induction

argument then shows that the norm || • || : L (E,fi)—• 3R is k-

times continuously differentiable away from zero and that for
f€Lp(E,fX) ,

g ( k ) (f) • (h\h2,...,hk) = f g(k) (f(t)) •(h1(t),h2(t),...,hk(t))dfX(t)
T

for all h1,!!2, . . .,hk e L (E,fi) .

Hence the following theorem holds:

3,5. Theorem, Let E be a Banach space, (T,2,ji) a measure

space, and k a positive integer with p > k. If the norm

|| • || : E —* IR is k-times continuously dif ferentiable away

from zero and the kth-derivative of the norm in E is uniformly

bounded on the unit sphere in E, then the norm || • || : L (E,fi)—*• TR

is k-times continuously differentiable away from zero.

In order to prove the converse of this theorem, suppose that

p > k and the norm || * || : L (E,ji) —> IR is k-times continuously
P

differentiable away from zero. Since E is isometrically

isomorphic to a closed subspace of L (E^fi), it is clear that

the norm || • || : E — • IR is k-times continuously dif ferentiable

away from zero. Again, as in the case of the second derivative,

the main difficulty is showing that the kth-derivative of the

norm in E is uniformly bounded on the unit sphere in E.

Also, as in the case of the second derivative, it suffices to
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consider the sequence spaces l> (E) . Proceeding by induction,

it is assumed first that whenever aei (E) and 1 < I < k-1,
p — —

the following are true:

for all b1 ,h2, . . . ,hl el (E) , and
P

n=l

there exists an > 0 such that

llg{l) (x) || < M

for all xeS .

It is then a simple matter to show that (i) . and

imply that whenever ae^ (E)9 the following are true:

(D

for all b 1 ^ 2 , . . . , ^ e I (E) , and

CO

n=l"

(ii), there exists an M, > 0 such that

for all X G S .

Hence the following theorem is true:

3.6. Theorem. Let E be a Banach space, a measure

space, and k a positive integer with p > k. If the norm

||*|| : L (EjjLi)—*• IR is k-times continuously dif ferentiable
P

away from zero, then the norm || • || : E —•IR is k-times

continuously differentiable away from zero and the kth-
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derivative of the norm in E is uniformly bounded on the

unit sphere in E.

Combining Theorem 3.5 and Theorem 3.6:

3.7. Theorem. Let E be a Banach space, (T,£,jLl) a measure

space, and k a positive integer with p > k. The norm

|| • || : L (E,fi)—*»IR is k-times continuously dif ferentiable
ir

away from zero if and only if:

(i) the norm || * || : E — ^ 3R is k-times continuously

differentiable away from zero, and

(ii) the k-th derivative of the norm in E is uniformly

bounded on the unit sphere in E.

As a corollary of this theorem:

3.8. Corollary. Let E be a Banach space, (T,2,|l) a measure

space, and 1 < p < oo .

(i) If p is not an integer and I (p) is the integral

part of p, then the norm || • || : L (E, (i) —*-lR is I (p)-times

continuously differentiable away from zero if and only if the

norm || • || : E—*-3R is I (p)-times continuously dif ferentiable

away from zero and the I(p)-th derivative of the norm in E

is uniformly bounded on the unit sphere in E.

(ii) If p is an odd integer, then the norm || • || : L (E,fi)—

is (p-1) -times continuously differentiable away from zero if

and only if the norm || • || : E—*~ 3R is (p-1) -times continuously

differentiable away from zero and the (p-1)-st derivative of the

norm in E is uniformly bounded on the unit sphere in E.
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Proof; The proof of (i) is immediate from Theorem 3.7,

by taking k = I (p) < p. The proof of (ii) also follows from

Theorem 3,7, by taking k = p-1 < p. The fact that L (]R,jl)
IT

is isometrically isomorphic to a closed subspace of L (E,jLt),

and the fact that p is an odd integer, imply that L (E,fi)

is not p-times continuously differentiable away from zero

(see Sundaresan [181). q.e.d.

The only remaining case is when p is an even integer.

The case when p = 2 is not as difficult as the previous case,

even though the results are very surprising:

3.9. Theorem. If E is a Banach space, and (T,2,jU) is a

measure space, then the norm || • || : L2(E,jLi) —*3R is twice

continuously differentiable away from zero if and only if E

is a Hilbert space.

Proof: If E is a Hilbert space, then Lp(E,/Lt) is a

Hilbert space and the result follows. Conversely, suppose the

norm in L̂ (E,jLt) is twice continuously differentiable away from

zero. As in the previous theorem, it is sufficient to work with

the sequence space t (E) . Note that with g (x) = y||x||

for xeE,

2 1IUII2

a s !|y||—*"0; therefore g : E—»-IR is differentiable at x = 0

and g1 (0) = 0 .
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From Taylor's formula, if x,yeE, x ̂  0; then

U*+y||2 = llxll2 + 2g< (x) -y + g" (x) • (y,y) + \(y) (3.24)

& (y)
where - ^ p r ^ ^ O as ||y||—*0.

.A.

Let XQGE,, XQ ^ 0, be a rb i t ra ry . Let a = (xQ ,0,0, . . .) ,

then ae<-2(E) and ||a|| = ||xol| . If h = ( h n ) n > 1 e - ^ (E) , from

Taylor 's formula,

||a+hl|2 = ||al|2 + 2g« (a) -h + g" (a) • (h,h) + ^ a (h) (3.25)

| ^ (h) |
where—=—*— - • 0 as ||h||—*-0 .

A °°
Since g' (a) -h = S g« (a )̂ ' \ - 9* (*0) ' \ (5' (0) = 0) ,

JC"—JL

from (3.25) i t follows that

HxQ+h^l2 + ? ||hn | |2 = ||xo | |2 + 2g' (xQ) -hx + §"(a) • (h,h) + ^a(h) .
n=2

(3.26)

From (3.24), with x = xQ and y = h , , i t follows tha t

UxQ+hJ2 = ||xo | |2 + 2g- (xQ) -hL + g"(x0) • t ^ , ^ ) + ^ (h±) .

(3.27)

Combining (3.26) and (3.27),

g"(a)-(h,h) - ||hi|2 = g" {xQ) ^ ^ x x a

(3.28)

Let t ^ 0, then
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g"(a)-(th,th) - ||th||2 = gM(xQ) -(th^

& (th ) - & (th),
xo

that is,

g«(a)-(h,h)-||h|r = g«(x0)

Letting t —*-0, it follows that

g"(a)«(h,h) - ||h||2 = g"(xQ) •(h1,h1) - UhJ
2 (3.29)

for a = (xo,O,O,.. .) , h = (h^hj, . . . ,hn, . . .) e ^ 2 (E) .

Now let leE be arbitrary and let h = (O,1,0,0,...)•

From (3.29), it follows that

gn(a)'(h,h) - ||h||2 = gH(xQ) •(h1,h1) - H^H
2 = 0,

since now h1 = 0. But ||h|| = ||§|| 9 and therefore

llsll2 = g"(a) -((0,5,0,0,...) ,(0,5,0,0, ...)) .

Since §eE is arbitrary and gfl(a) : l2 (E) X l^ (E)—=• IR is

a positive^ symmetric, bounded bilinear form, then E is a

Hilbert space. q.e.d.

If p is an even integer, p / 2, using an argument almost

identical to that in the proof of the preceding theorem, the

following theorem is obtained:

3 .10. Theorem. Let E be a Banach space, (T,2̂ /i) a measure

space, and p an even integer, p ^ 2. The norm || • || : L (E,fi)—+ IR
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is p-times continuously differentiable away from zero if and

only if the pth-power of the norm in E is a continuous homo-

geneous polynomial of degree p. (In which case the norm in E

is of class C , and from Theorem 3.7 this implies that the

norm in L (E,fi) is of class C .)

Combining Theorem 2.5, Corollary 3.8, and Theorem 3.10,

the order of smoothness of the Lebesgue-Bochner function spaces

can be summarized in the following theorem:

3.11. Theorem. Let E be a Banach space, (T,£,fZ) a measure

space, and 1 < p < oo , then:

(i) The norm in L (E,/i) is dif ferentiable away from zero

if and only if the norm in E is dif ferentiable away from zero.

(ii) If p = 2, the norm in L (E,fi) is twice continuously

differentiable away from zero if and only if E is a Hilbert

space.

(iii) If p is an even integer, p ^ 2, the norm in

L (E,ji) is p-times continuously dif ferentiable away from zero

if and only if the pth-power of the norm in E is a continuous

homogeneous polynomial of degree p.

(iv) If p is an odd integer, the norm in L (E,(Lt) is

(p-1)-times continuously differentiable away from zero if and

only if the norm in E is (p-1)-times continuously differentiable

away from zero and the (p-1)-st derivative of the norm in E is

uniformly bounded on the unit sphere in E.

(v) If p is not an integer, and I(p) is the integral

part of p, the norm in L (E,)Lt) is I (p)-times continuously
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differentiable away from zero if and only if the norm in E

is I(p)-times continuously differentiable away from zero and

the I(p)-th derivative of the norm in E is uniformly bounded

on the unit sphere in E.

3.12. Remark, The results on the order of differentiability

of the norm in L (E_, /Lt) are exactly the same as the preceding
P

results on the continuous differentiability of the norm (except

that "continuous differentiability" is to be replaced by

"differentiability") and will not be discussed here.
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4, Example

The purpose of this section is to discuss an example which

brings forth the importance of the theorems characterizing the

order of differentiability of the norm function in the Lebesgue-

Bochner function spaces L (E, /-t) . Also, it is this example

that led to a deeper study of the order of smoothness of the

norm in L (E,jLl) , 1 < p < oo • Certain results in Bonic and

Frampton [5] were found to be of considerable importance,

especially the result by N. H. Kuiper (added in proof in [5],

p. 896). Before starting this example, a few lemmas are

necessary.

4.1. Lemma. Let E be a Banach space whose norm

j| • j| : E—*IR is twice dif ferentiable away from zero, and
, TO

define g : E—* 3R by g (x) = yllxll f o r xeE. If there

exis ts an M > 0 such tha t

g"(x) -(y,y) < M||y||2

for all xeS and for all yeE, then E is uniformly smooth.

Proof: Recall that E is uniformly smooth if and only if

given any € > 0, there exists a 6 = 6(e) > 0 such that

Hx+ty||-||x||-tG (y)
I 1 — I < e

for a l l (x,y)eS X S, whenever | t | < 6.

Let x,heE, ||x|| = ||h|| = 1, and l e t B be the open annulus

B = {yeE||< ||y|| < f} .
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Note that if |a| < —, then the line segment joining x and

x + ah lies in B, that is

[x,x+ah] = {yeE|y = x + A-ah, 0 < A < 1} c B.

Hence, [x,x+ah] c B for all |a| < ~ and for all (x,h)eS X S

(7\ *

If Tv ' (x) : E—*E is the second derivative of the

norm at x / 0, then

gM(x)-(Y,y) = G y(y)
2 + ||X||T

 (2) (x) • (y,y) (4.1)

for a l l x^yeE, x / 0. Therefore,

T ( 2 )(x)-(y,y) < § | lly||2 (4.2)

for a l l x.yeE, x ^ 0; hence

T ( 2 ) (x) -(y,y) < 2(M

for a l l yeE and for a l l xeB.

Since B i s open, from Taylor*s formula (Cartan [6, p . 703

Theorem 5 . 6 , 2 ] ) ,

|l|x+ah|| - ||x|| - aG^(h) | < (M + 1) | a | 2 (4.3)

for a l l (x,h)eS x s and for a l l a, | a | < —. Therefore,

||x+ah||-||x|!~aG (h)
| % 1 < (M + 1) |a | (4.4)

for a l l (x,h)eS x s and for a l l a, 0 < |a | < -^. Let

5 = 8(c) = min(~p-!-), then

x+ah|- x -
~ 2 L _ | < € (4.5)
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for all (x,h)eS X S, whenever 0 < |a| < 6. Thus, E is

uniformly smooth. q.e.d.

4.2. Lemma. [Kuiper] The Banach space cQ is isomorphic to

a Banach space whose norm is of class C away from zero.

The proof of this lemma can be found on p. 896 of Bonic

and Frampton [5].

4.3. Example. Let E be the Banach space whose norm is of

class C away from zero and which is isomorphic to cQ.

Let (T,2,|U) be a measure space such that the measure \i is

not supported by finitely many atoms, and such that the range

of \i contains at least one non-zero real number. If p is

an arbitrary positive real number, 1 < p < oo, then the norm

|| • || : L (E,jz) —>1R is not even twice differentiable away
P

from zero.

The cases p = 1 and p = oo are trivial, since in

these cases the norm in L (E,fi) is not even once differentiable

away from zero. In the case 1 < p < 2, from the previous

theorems, the norm in L (E,(Lt) is not twice differentiable away

from zero. If p = 2, and the norm in L (E,ji) is twice
P

differentiable away from zero, from Theorem 3.9, E is a Hilbert

space and hence reflexive; a contradiction, since this implies

cQ is reflexive. The remaining case, 2 < p < oo , is handled

as follows: Suppose 2 < p < oo and the norm in L (E,jLl)

is twice differentiable away from zero, this implies by Theorem

3.1 that the second derivative of the norm in E is uniformly
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bounded on the unit sphere in E. Howevery this implies (by

Lemma 4.1) that E is uniformly smooth and hence reflexive,

hence cQ is reflexive., a contradiction.
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