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Geometry of Lebesgue-Bochner Function Spaces - Smoothness
I. E. Leonard and K. Sundaresan

ABSTRACT

This paper contains a complete solution to the problem of
the higher order differentiability of the norm function in the
Lebesgue-Bochner function spaces Lp(E,p), 1{p<K o, where E
is a real Banach and p 1is an extended real-valued measure
defined on the measurable space (T,&). The order of smoothness
of Lp(E,u) can be summarized as follows: if 1 < p < oo, then
(i) the norm in Lp(E,u) is differentiable away from zero if
and only if the norm in E 1is differentiable away from zero.
(ii) If p = 2, the norm in Lp(E,u) is twice cdntinuously
differentiable away from zero if and only if E 1is a Hilbert
space. (iii) If p 1is an even integer, p # 2, the norm in
Lp(E,u) is p-times continuously differentiable away from zero if
and only if the pth-power of the norm in E 1is a continuous
homogeneous polynomial of degree p. (iv) If p 1is an odd
integer, the norm in Lp(E,u) is (p-1)-times continuously
differentiable away from zero if and only if the norm in E
is (p-1)-times continuously differentiable away from zero and
the (p-1)-st derivative of the norm in E is uniformly bounded
on the unit sphere in E. (v) If p 1is not an integer, and
I(p) is the integral part of p, the norm in Lp(E,u) is I(p)-
times continuously differentiable away from zero if and only if
the norm in E 1is I(p)-times differentiable away from zero and
the I(p)-th derivative of the norm in E 1is uniformly bounded

on the unit sphere in E.



Geometry of Lebesgjue-Bochner Function Spaces - Smoothness

I. E. Leonard* and K. Sundaresan

Introduction

The class of Lebesgue-Bochner function spaces, introduced
by Bochner and Taylor [4] in 1933, have been found to be of
considerable importance in various branches of mathematics,
and are discussed at length in Dinculeanu [l1], Dunford and
Schwartz [l12], and Edwards [13]. The study of the geometric
properties of the Lebesgue-Bochner function spaces dates back
about three decades: Day [8] and McShane [17], respectively,
characterized uniform convexity and smoothness of these spaces.
In fact, the only known result concerning the smoothness of the
Lebesgue-Bochner function spaces is due to McShane, and his
result concerns only the directional derivative (G%teaux
derivative) of the norm in this class of Banach spaces. Even
the Fréchet differentiability of the norm has not been considered
anywhere. It might be mentioned in this connection that the
first systematic study of higher-order differentiability of the
norm in the classical Banach spaces was made by Bonic and
Frampton [5] and Sundaresan [18]. In [5] and [18], the
order of differentiability of the norm in the classical Lp
spaces, 1 < p < @, is obtained; while in Sundaresan [20],

the smoothness of the norm in C(X,E) is discussed.

*

The material in this paper 1is a portion of a doctoral diss-
eration submitted to Carnegie-Mellon University. An abstract
of this paper will appear in the Bulletin of the American
Mathematical Society, May, 1973.




For an elegant up-to-date account of smooth Banach spaces,
and related concepts one might refer to the Lecture Notes by
S. Yamamuro [23].

This paper contains the first systematic investigation
of the higher-order differentiability of the norm function
in the Lebesgue-Bochner function spaces Lp(E,T,E,u),
1< p<L o, where E 1is a real Banach space and u 1is a
non-negative extended real-valued measure defined on the measurable
space (T,Z). The paper is divided into four sections. Section
1 contains the basic definitions of the various geometric and
analytic properties of Banach spaces to be studied as well as
the definition of the Lebesgue-Bochner function spaces Lp(E,u).
Section 2 contains the results on Fréchet differentiability of
the norm in Lp(E,u). In Section 3, the results concerning the
higher-order differentiability of the norm in Lp(E,u) are dis-
cussed. Section 4 contains a counterexample which shows that
even if the norm in E 1is of class COO, the norm in Lp(E,u),
for any p, 1< p £ o, need not be even twice differentiable;
thus pointing out the importance of the characterizations in

Sections 2 and 3.




l. Definitions and Notation

The definitions and notation used throughout the paper
are collected in this section for easy reference. In the
*
following definitions, E denotes a real Banach space and E

is the dual of E.

1.1. Definition. The unit ball of E is U = (xeE|[x]| < 1)
and its boundary S = {er|HxH = 1} is the unit sphere of E.
In the dual space E*, U = {feE*inH < 1} is the unit ball
* * * ) *
of E and S = (feE |[[f]l = 1) is the unit sphere of E .
The conjugate norm will be denoted by ||-|| since there will be

¥* ¥
no occasion for confusion. The unit ball and unit sphere of E

*x* * %
are defined analogously and are denoted by U and S

respectively.

1.2. Definition. A Banach space E 1is said to be smooth at

xeS if and only if there exists a unique hyperplane of support

at x, that is, there exists only one continuous linear functional
*

LXeE with HLXH = 1 such that Lx(x) = 1. Such a linear

*
functional Ler is called the support functional of U at x,

and L;l({l}) is called the hyperplane of support of U at x.

A Banach space E 1is said to be a smooth Banach space if it is

smooth at every xeS.

1.3. Definition. The norm “-H : E— R’ is said to be Giteaux

differentiable at xeE if and only if there exists a functional

*
Ger such that



lim le+t2H-HxH _ Gx(h)| -0
t—0

for every heE. G, is called the Gateaux derivative of the

norm at xeE. A Banach space E 1is said to be uniformly
smooth if and only if
x+th|l-[lx[l-te_(h)

lim = 0
t— 0 t

uniformly for (x,h)eS X S. The norm H-H : E—» R’ is said to

be differentiable (Fréchet differentiable) at xeE if and only

*
if there exists a functional GXeE such that

| lle+h]l - llx[l -G, (h) |

lim =
il =0 il
The norm H'H : E—R' is said to be uniformly Fréchet

differentiable if and only if

Jscenl|- 1x -G (n)

lim = 0
Inl—o bl
uniformly for xe€S. The norm H'H : E———»IR+ is of class Cl

or continuously differentiable if and only if the mapping

*
G : E~ [(OJ—E ~ {0} given by G(x) = G, is continuous.

1l.4. Remark. Before turning to the definitions of higher-

order differentiability, note that the norm in E 1is:

(1) Gateaux differentiable at xeE if and only if

lim “X"thLHIXH = G_(h)
t— O X



exists for all heE.
(ii) Smooth at xecE if and only if it is Gateaux

differentiable at xcE.

(iii) Fréchet differentiable if and only if it is of class
Cl away from zero.

(iv) Uniformly smooth if and only if it is uniformly Fréchet
differentiable.
Note that (i) is Mazur's theorem and can be found in Mazur [16],

while (ii), (iii), and (iv) can be found in Day [9].

1.5. Definition. Let E and F be Banach spaces, then £(E,F)

denotes the Banach space of continuous linear mappings from E

into F with the usual operator norm. Bk(E,F) denotes the

Banach space of continuous k-multilinear mappings

v : E X... X E—F with the norm

vl = v x e, X .
[l e —lekH 1H ( Ol

The spaces ﬁk(E,F) may be identified with the spaces defined

inductively as follows:

°E®,Fp =r, e, =<EFTEn) = (E,£(E,F)) .

A mapping ¢ : E—~F 1is said to be a homogeneous polynomial of
degree k 1if tanere exists a k-multilinear mapping

f : EX,..* E—F such that
o(x) = £(x,...,X)

for all =xecE.



1.6. Definition. Let E and F Dbe Banach spaces and let A

be an open set in E. A mapping f : A-—+F 1is said to be

differentiable at xeA if there exists a mapping f'(x) € £(E,F)

such that

leGeh) -£Gg -£1 () -l _ o
lihl '

lim
h—0

In this case f 1is continuous at xeA and f'(x), which is

unique, is called the derivative of f at x. The higher-order
£ (k)

derivatives : A—~>ﬁk(E,F) are defined in the usual manner

(see Dieudonné [10]). The mapping f : A—»F is said to be

of class Ck or k-times continuously differentiable if it is

k-times differentiable and the kth derivative f(k) : A——’ﬁk(E,F)
is continuous. The mapping f : A-—F 1is said to be of class

c®  if it is indefinitely continuously differentiable.

1l.7. Remark.

(i) Let E and F Dbe Banach spaces and let A be an
open subset of E. If the mapping f : A-—»F is k-times
differentiable on A, then the multilinear mapping
f(k)(x) € u3k(E,F) is symmetric for each xeA.

(ii) Any continuous k-multilinear mapping is indefinitely
differentiable, and all its derivatives of order > k + 1 are
zZero.

A proof can be found in either Cartan [6] or Dieudonné [10].

Next the Lebesgue-Bochner function spaces are defined.

In the following (T,X,d) is an arbitrary measure space, that is,



T is a non-empty set, & is a o-algebra of subsets of T
and M : Y —TR" is a countably additive measure. (Here W
is assumed to be non-trivial, that is, WM 1is not supported by
finitely many atoms and the range of W4 contains at least one

non-zero real number.)

1.8. Definition. Let E Dbe a normed linear space. If

f : T—-E, then f 1is M-measurable if and only if:

(i) f—l(G)EZ for every open set G © E, and
(1i) there exists a set NeZ, with u(N) = O, and a

countable set H < E, such that f£(T ~ N) < H.

1.9. Definition. If 1 < p < @, the Lebesque-Bochner function

spaces Lp(E,u) are defined as follows:
Lp(E,u) = {(f|f : T—E is measurable, and f Hf(t)“pdu(t) < o0}
T
for 1 < p < o, and

LGD(E,p) = {(f|f : T—E 1is measurable, and ess sup”f(t)“ < o}
teT

(as usual, identifying functions which agree u-a.e.). When T
is the set of positive integers and H is the counting measure,

Lp(E,u) is usually denoted by LP(E).



2. Fréchet Differentiability of the Norm in Lp(E,u), 1<p< oo

In this section a complete characterization of the Fréchet
differentiability of the norm in the Lebesgue-Bochner function
spaces LP(E:#) is given. It is shown that the norm in Lp(E,u),
1l < p< oo, is differentiable away from zero if and only if the
norm in E 1is differentiable away from zero. Before proceeding
to the theorem a few useful lemmas are stated. The first can

be found in Vainberg [21, p. 43].

2.1. Definition. Let E,F be Banach spaces and A an open

subset of E.

(i) A mapping f : A—»F 1is said to be locally bounded

on A if and only if for each x.e¢A there exists a Po = po(xo) > 0

(0]
such that B(xo,po) = {er|Hx—xOH < po] CA and f is bounded

on B(xo,po).

(ii) A mapping f : A—F 1is said to have a locally uniform

derivative f' on A if and only if given any € > O and

€A, there exist n = n(xo,e) >0 and 06 = 0(x ) > 0 such

XO O,E

that
f(x + h) - f(x) = f'(x) *h + @x(h)

where H@X(h)H < €|lnl|| for all =xea with Hx-on < n(xo,e),

whenever HhH < 6(xo,e).

2.2, Lemma [Vainberg]. Let E,F be Banach spaces and

f : E—F be differentiable. Then f' : E— & (E,F) is continuous

in the ball B_ = (xeE|||x|| < r) if and only if



(i) £ has a locally uniform derivative in Br’ and

(ii) £' : E—~ L£(E,F) is locally bounded in B_.
Note that the above lemma is valid if the ball B, is replaced

by any bounded set in E.

2.3. Lemma. Let E and F be Banach spaces and g : E—F

be continuously differentiable. If C © E 1is compact, then g

is uniformly differentiable on C.

The proof is a direct consequence of Lemma 2.2, and

standard compactness arguments.

The next lemma is known, and is stated here for

completeness.
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2.4. Lemma. Let E be a Banach space and (T,Z,u) a measure

space. If f : T—E 1is a measurable function, then f 1is
locally almost compact-valued; that is, if Pex, O < u(P) < wm,
and € > O, then there exists Qe¢¥, Q € P, with 0 < pu(Q) < e,
such that f(P ~ Q) is precompact.

Proof: Let £, : T—E, n2 1, be a sequence of measurable
simple functions such that f-—f p-a.e., and let Pel,
0 < u(P) < oo. From Egoroff's theorem, there exists Qek,
Q © P, with O < p(Q) < €, such that fn——yf uniformly on P ~ Q.

If 6 > O, choose n sufficiently large that
lee) -£ () || < 8

for all teP ~ Q. Let the range of f, : T—E be {bl,b2,...,bk],
i

and let U(bi,é) = (erIHbi—xH < &}, =1,2,...,k. Then

k

f(P~Q) ©€ UU(M,,d,
. i
i=1

hence f(P ~ Q) is precompact, that is, f 1is locally almost

compact-valued. g.e.d.

2.5. Theorem. Let E be a Banach space, (T,%,d) a measure

space and 1 < p < co. The norm H-H : Lp(E,p,)——-»IR+ is
differentiable away from zero if and only if the norm
H'H : E——*JR+ is differentiable away from zero.

Proof: 1. Suppose that the norm in E is differentiable
away from zero. Define g : E—TR' and S : Lp(E,u)——-»]R+

by
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g(x) = %“xnp for xcE
and
A _lyegp - L p
§(6) = el = L ITHf<t)H aple)  for fer (m.p).

Since the norm in E 1is continuously differentiable away from
zero (Cudia [7, Corollary 4.11]), and since p > 1, then g is

continuously differentiable at all x¢E and

uxnp-lcx for x £ O

g'(x)
g'(o) =0

*
where GXeE is the derivative of the norm in T at x. Now,

e () |l

g(x +vy) = g(x) + g'(x) 'y + Gx(y) where T —> 0 as

lyl| — 0. Let feLp(E,p) with [|f]| = 1, and let heLp(E,u); then
g(£(e)+h(t)) = g(£(t)) + g' (£(t))-h(t) + 6¢ .\ (h(t)) (2.1)

for all teT. The mapping Y : T—> E*, given by vy(t) = g' (£f(t))

for teT, being the composition of a measurable function and
a continuous function, is measurable; and from the definition
of g', it follows that YeLq(E*,p). The measurability of v,

together with (2.1), imply that the mapping tw~— Gf(t)(h(t)) is

measurable. Thus,

Jste@menape = | gEwnane + [ ot ) neap
T T

+ IT@f(t) (h(t))du(t) . (2.2)



12

Defining 8'(f)'h = J g'(f(t))-h(t)du(t) for ail heLp(E,u), then
T

A .
8'(f) € Lp(E,u)*, and in order to show that g'(f) is the

derivative of 8 at feLp(E,u), from (2.2) it suffices to verify

that
6 (h(t))du(t)
Lo v
(J_IIn (o) [Pawcey) 7@
T
as ||| = (f I (e) Pape)) 1P 6. prom (2.1) and the mean-
T
value theorem (Cartan [6]), noting that Hg'(f(t))” = Hf(t)”p"l,

it follows that

[Se(e) (0] < 20h(e) | sup [|£(t) +gh(t) P~ 1 (2.3)
<< 1

for ail ter. The rest of the discussion ig divided into

two cases.

Case 1: u(T) < o (assume pu(7) = 1). The mapping

A& —R" defined by
A(G) =f IE(t) [Papt) for GeZ
G

is a finite, positive measure, which ig absolutely continuous
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with respect to u. Therefore, given ¢ > 0O, there exists a

61 = 6l(f,e) > O such that
[ e Paace) < 354 (2.4)
G

whenever Gex and ud(G) < o (Here = + = = 1.)

r P q
Let 0 < ¢ £ 1, from the mean-value theorem,

£t +oh(t) [P-ll£0e) IP] < 2plloh(t) || sup [|£(€) +bon(t) [P~ L,
e

and it follows immediately that

| sup |l£(t)+oh(t) [P-[l£(t) IP] < 2pllh(e) | ll£(e) [|+]nce) 1P L.
o<e<1

From Holder's inequality,

[ 1 sup g0 +on(o) [P - |l£(0) [P an(t)
T 0<e<l

< 2p(] Hh(t)deu<t)>l/P<fT[Hf(t>H+Hh(t>H]Pdu(t>>1/q,
T
and thus,

[ 1 sup fle(0r+on () P - fle(e) Plapce) — o as [in] — o.
T o<1

Since for arbitrary Gel,

1] U sup llgce) von(e) [P- e ) [Prauce)
G 0<p<1

< J 1 sup llg(e) +en(e) P-ll£(t) [P au(e) ,
T 0Ll

given any € > O, there exists a 62 = éz(f,e) > O such that

BUNT LIBRARY
CARNEG!E-MELLEX UNIVERSITY
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| 1 sup llE(e) +en(o) P- (o) P1ance) | < 559 (2.5)
G 0<e<1

for all GeZ, whenever |h[ < o,.
Also, from Lemma 2.4, there exists TleZ, with 0 < u(Tl) < él,
such that £(T ~ Tl) is precompact; hence given any € > O,

there exists by Lemma 2.3, 63 = 63(f,€) > 0 such that

Lo (v ] < Slyll (2.6)
for all x e £(T ~ Tl)’ whenever |ly|| < 63. Let

S = min(c 1/p.
OO = mln(02,53,él 53)

and let heLp(E,u) with ||h| < oo

Since u(Tl) < 61, (2.4) implies that

JT I£(e) [Pap(e) < 269,
1

and thus from (2.5) it is inferred that

[ sup llg(t) +on(e) Papce) < (©
T, O<e<1

From (2.3) and Holder's inequality, it is verified that

ST | 6¢ gy (B(E)) [an(t) < %l (2.7)
1

Now let T, =T ~ T

2 and define

1
Ty(h) = (teT,| [|h(t) || > 8},

then
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B, ) < | I (e) Papce) < J In(e) [Pap(e) < 65 < 8,65,

that is, p(T3(h)) < 61. The preceding inequalities together with
(2.4) imply that

1
e (o) Papce) < 5@

T, (h)

and since |h|l < 6, < o (2.5) implies that

o - 2°
| sup |l£(t)+o ()b (0) [Pap(e) < (HI.
T (h) o<l

From (2.3) and Holder's inequality,

6 (h(t)) |au(t) < £|nl. (2.8)
Ly g 120 00| 3

Now let T4(h) =T, ~ T3(h), then T4(h) T~ T and

2 1’
since f(T ~ T;) is precompact, and “h(t)H < 63 for all teT,(h),

(2.6) implies that

© (h(t)) |ap(t) < £ In(t) ||dp(t)
j h)l £ (t) | 3 ST (h)‘ ” o

Tyl 4
< £ I In (o) [lap
<3 Bt .
From HOlder's inequality, since u(T) = 1,
|64 ¢y (h(E)) [ap(t) < £[n]. (2.9)
jT4(h) £(t) 3

Combining (2.7), (2.8), and (2.9), since T = T. U T3(h) U T4(h),

1

(disjoint union), then
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6 (h(t)) |ap(t) < elnll.
[ 1%

What has been shown is that given any € > O, there

exists a 60 = 6O(f,e) > 0, such that

© (h(t)) |ap(t) < elnl| (2.10)
18 0y 00 |

whenever heLp(E,p) and ||h]| < 60.
Case 2: H(T) = oo. In this case, since the support of £
is o-finite, it can be assumed without loss of generality
that the measure space (T,%L,u) is o-finite. Let {An}n>l be
a pairwise disjoint sequence of sets from & such that—

ao
u(An) < w for all n>1 and T = UA
n=1
Let feLp(E,p) with ||£]| = (j “f(t)dep(t))l/p = 1, then
T
S
[le@IPauer = [ le@Pape) = = [ Je@ Pape) = 1.
T (e'e} n=1 A
UA n
n=1

Given € > O, there exists a positive integer NO such that

(0 @)
[ e Pape) < $9,
n=NO+l An

that is,

J £ (o) [Pap(e) < (P9,
a0

U A

n
n=N0+l
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Since the mapping B : Lp(E,M)———»]R"~ given by

B(h) = f sup ||E(t)+oh(t)[[Pdu(t)
® 0yl
U »a
n=NO+ln

is continuous, there exists a 61 = 6l(f,e) > 0 such that

J sup ||£(t)+eh(t) [Fap(e) < 1
I
A

whenever |h| < 6 Praceeding exactly as in the previous case,

1
it is obtained that

€
J . [6¢ (¢y (B(E)) [ap(t) < Slnll (2.11)
U A
n=NO+l n
whenever |h| < 6y
No No
Now, p( UA ) = Z u(A ) < @, and from the result of
n n
n=1 n=1
Case 1, there exists a 62 = 62(f,e) > O such that
€
| 18y e [anee) < Sl (2.12)
o]
U a
n=1 "
whenever HhH < 62.

Letting 6. = min(él,é then

O 2)J
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6 (h(t)) [au(t) < e€fh
I au(e) < eln]

[N

whenever |h| < b

Thus, in either case,

© (h(t)) |dp(t)
J o2 ) e |

lim =0,
Lim T

A
and g : Lp(E,p)——»JR+ is differentiable at feLp(E,p), with
A
g'(f) *h = j g' (£(t)) -h(t)dp(t)
T

-

for all heLp(E,u). Therefore, the norm | : Lp(E,P)——+]R+ is

differentiable away from zero.

L

differentiable away from zero; since E 1is isometrically iso-

2. Conversely, suppose the norm Lp(E,u)——»IR+ is

morphic to a closed subspace of Lp(E,u), the norm

H‘H : E-—*JR+ is differentiable away from zero. g.e.d.
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3. Higher-Order Differentiability of the Norm in Lp(E,u)

In this section a complete characterization of the higher-
order differentiability of the norm in the Lebesgue-Bochner
function spaces Lp(E,u) is given. The first result shows
that if p > k, then the norm in Lp(E,u) is k-times con-
tinuously differentiable away from zero if and only if the
norm in E 1is k-times continuously differentiable away from
zero and the kth derivative of the norm in E 1is uniformly
bounded on the unit sphere in E. This is proved first for the
case k = 2, and then a straightforward induction argument
completes the proof for k > 2. (Note that the induction
cannot start with %k = 1, since the first derivative of the

norm in E 1is automatically bounded on the unit sphere.)

3.1. Theorem. Let E be a Banach space, (T,L,u) a measure

space and p > 2. If the norm H-H : E——-»IR+ is twice continuously
differentiable away from zero and the second derivative of the
norm in E 1is uniformly bounded on the unit sphere in E, then
the norm H'H : Lp(E,u)——»IR+ is twice continuously differentiable
away from zero.

Proof: Suppose the norm in E 1is twice continuously
differentiable away from zero and the second derivative of the
norm in E 1is uniformly bounded on S. Define g : E—>R'

A
and G : Lp(E_,p.)—--IR+ by

g(x) = %HXHP for xecE
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and

2oy = LgP = L p
g(6) = Slell® = 2 fTHf(t)H du(t)  for feL (E,p) .

Since the norm in E 1is twice differentiable away from zero
and p > 2, then g 1is twice differentiable at all xeE and
g"(0) = o.

If lg"(x) || £ M for all xecE, |x|| = 1, then

g" (Ax) I%]p"zg“(x) for N #O

implies that |g"(x)| < MHpr—2 for all =xcE, x # O. Hence g

is twice continuously differentiable at all xe€E. Now,

g'(x +y) =g'(x) +g"(x -y + 6 (y)

e, () |l |
where --m— — 0 as y\\—v- O.
et fer (5,4 with l£] = ( lect) [Pape) P = 1, ana
T

let heLp(E,p); then

g'(f(t) + h(t)) = g' (£(t)) + g"(£(t)) -h(t) + 6 )(h(t))

(3.1)

f(t

for all teT. The mapping Y : T——»S(E,E*) given by

Y(t) = g"(£(t)) for teT, being the composition of a measurable
function and a continuous function, is measurable; and from
(3.1) this implies that the mapping t-—>@f(t)(h(t)) is
measurable. -

Define the mapping @f(h) : T-—»E* by
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éf(h)(t) = 6y (B(E)) for teT.

From (3.1) and the mean-value theorem (Cartan ([6]), since

llg" () || < Ml|x|P~2 for all x¢E, it follows that

o, .\ (h(t)) || < 2mlln(t) || sup [[£¢t) + oh(t) [|P~2
£ (t) 0<p<1l

for all teT. Therefore, from Holder's inequality, it follows

that

J og oy meen Fane) < @9 | sup llg(e) +on (o) [||Pap(e) 3 -2 /P
T T 0<e<l

(3.2)
A Ine [Papce) ¥P
T

and hence, @f(h) € Lq(E*,p) with
8 - q 1/q
18, || = (ITHGf(t)(h(t))n ap(e)) /9.
Now let S"(f) . Lp(E,u) X Lp(E,u)——’:R be defined by
A " "
§"(£) - (h b)) = jTg (£()) - (hy (£) ,h, (£)) AR (E)

for all hl,h2 € Lp(E,u). Then from Holder's inequality it
Ay, e - A

follows that ||g"(£) || < M||£|P"2. Hence 4§"(f) : L (E, W) X

Lp(E,u)——»IR is a bounded, symmetric bilinear form.

From (3.1) it follows that
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[ g E@an ©) ny©ap®) - [ g (£(6) ‘hy(e)aue)
T T

ey @y ) ape) = sty (8) hy (B an(e),
T T

that is,
A A A
§' (£+n)) h, - §' () *h, - G"(£) - (h,hy) = 8 (n)) n,.
Taking the supremum over those hzeLp(E,u) for which thn =1,
then
A A A
lg' (e+n)) - &1 () - §"(®) nyll = I8, . (3.3)

2
In order to show that g"(f) € ﬁ(Lp(E,p),]R) is the second

derivative of S at feLp(E,u), from (3.3) it suffices to

show that
18 my | (ITHGf(t)(h(t))“qd#(t))l/q ]
= -
(IT“h (t) [Pap(e)) /P
as |l = (fTHh(t)deu<t))l/P —o0.

Proceeding exactly as in Theorem 2.5, two cases are
considered:
Case 1: u(T) < o (assume u(T) = 1). From (3.2), for

any GeX,

J log (o men [Ban®) < @m (] flee ro@n o [Papen 3 C2Pln]

(3.3)
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(where 0O < ¢(t) £ 1 1is chosen so that sup Hf(t)+¢h(t)H =

O=psl
l£(t)+o(t)h(t)|) . Given € > 0O, choose 6, = 8, (f,€) >0
such that
IGHf<t)deu(t) < %«;;T§I759P/P“2 (3.4)
whenever W (G) < 51.
Choose 62 = 62(f,e) > O such that
lfGHf(t>+w(t>h(t)Hp - e Pyape) | < %‘;;T§I7a’p/p_2 (3.5)

for all GeX whenever |l < o,

Choose Tlez with 0 < p(Tl) < 61 such that f£(T ~ Tl)
is precompact, and choose 63 = 63(f,e) > 0 such that
-~ e
o () Il < 1174 llyll (3.6)

for all xef(T ~ Tl) whenever |y| < 63.
= mi 1/p, .
Now let 60 = m1n(62,63,61 53) and let heLp(E,u) with
Inll < 60. Proceeding as in the proof of Theorem 2.5, it is

seen that
(J 1oz () @0 [Fau(0) M9 < el

whenever |l < 6o -

Case 2: W(T) = oco. Again, since the support of f is
o-finite, it can be assumed that (T,Z,d) is o-finite. Let
{An}n>l be a sequence of pairwise disjoint sets from ¥ such

~- @

that W(A ) <o forall n>1 and T = U A . Since
n=1
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@
Hpr = X I Hf(t)deu(t) = 1, choose N such that

n=1l A 0]
n L d
£ () Pap(t) < %(——&——yP/P-2
‘[ @© 2 2M'21/q
U An
n=No+l

By the same procedure as above, there exists a 61 = él(f,e) > 0

such that
q
| ey o Fauce) < £ Il
U A
n=No+l n
No
whenever heLp(E,u) and ||h|| < 61. Since Mu( U An) < oo, from
n=1
Case 1, there exists a 52 = 62(f,€) > 0 such that
q
| ey meen [Tane) < &= Inl
0
Ua
n=1 "

whenever heLp(E,u) and ||n| < 62.

Let éo ='m1n(5l,62), then

1oz (e 0 [Fanen 9 < el

whenever HhH < 50.

A
Thus, g : Lp(E,p.)——»]JR+ is twice differentiable at

feLp(E,u) with



25

§"(£) - (b, ,h,) = ITg"(f(t))-(hl(t),hz(t))du(t)

for all hl,h2 € Lp(E,u). It remains only to show that the
A *
mapping g" : Lp(E,u)——>£(Lp(E,u),Lp(E,u) ) is continuous.

Again, two cases are considered.

case 1: u(T) < c© (assume M(T) = 1). Let f,fn € Lp(E,p)

for n > 1, and suppose fﬂ—+ f in Lp(E,u). It must

A
be shown that g"(fn)_.é}'wf) in £(Lp(E,u),Lp(E,u)*). Since

fﬁ_; f in Lp(E,p), there exists a subsequence {fni}iii such
*
that £ (t)—f(t) in E p-a.e., and since g" : E—L(E,E )
i
is continuous, g"(fn‘(t))__» g"(£(t)) in S(E,E*) p-a.e.

1

For hl’h2 € Lp(E,u),

§7(5) - (h,ny) = [ ")) (hy (0 my (e ) AM(E)
and therefore,

An . An .
[G" (£, ) (hyshy) g™ (£) (hy,hy) |

< J Jom e, 1) stz ling © llin, 0 lawco) (3.7)
1

From the Vitali convergence theorem (Dunford and Schwartz [12]),

since fnT—’ f in Lp(E,p), given any € > O, there exists a
1

6 = 6(e) > O such that
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|V
-

[ e, @ lPape) < EpPP 2 for a1l i
¢ ™
and (3.8)

jGHf(t)deu<t) < (&HP/P2,

whenever p(G) < 6(e). (Here Hg"(x)H < M for all xeS.) From
Egoroff's theorem, there exists an FeZ with O < u(F) < &(e)
such that
ig" (£, (£)) - g"(£(e)) |l—~0, as n, -
i
uniformly on T ~ F; that is, given any € > O, there exists

an N(e) such that

" " €
g (£, () -9 (£l <5 (3.9)
for all teT ~ F, whenever n, > N(e) .
Therefore, from (3.7) and Holder's inequality,
JT~FHg"(fni<t)>-g"(f<t))thl(t>thz(t)ndu(t> < slh il (3.10)

1°°7°2
Now, since |lg"(x)| < MHXHP_Z:

for all h,,h, € Lp(E,u), whenever ng > N(€) .

IFHg"(fn_(t))—g"(f(t))Hth(t)Hth(t)Hdu(t)
1

<M IF(ani<t>HP‘2 + I P23 iy 0 lllin, (8 lap (e,

and from Holder's inequality,
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J o™ g, (015" £ [y (0 [n, (0 lan (o)

<up(f flg, (e) [Pap(e)P 2P + (JFHf(t)deu<t))P“2/P1Hh1HHh2H.
F 1
(3.11)

From (3.8), since M(F) < d(€),

fFHg"(fni(t))—g"(f(t))Hth(t)Hth(t)Hdu(t) < Slny im0 (3.12)

for all n,, and for all hl’h2 € Lp(E,N)-

Combining (3.10) and (3.12) if n, > N(€), then

jTug"<fni<t>>-g"<f<t>>nnh1<t>nnh2(t>uau<t> < ellnylllin, |l

for all hl’hZ € Lp(E,u); that is,

A A
18" (£, ) " (hy,hp) -G" (£) - (hy,hg) | < ellng lllin, I

for all hl,h2 € Lp(E,p), whenever n, > N(e).
Taking the supremum over all hl,h2 € Lp(E,p) with
N
ingll = lInyll = 1, then, llg" (£, ) - §"(5) ]| < € whenever

J
n. > N(e). Thus, G"(f_ )—»g"(f) in £(L_(E,W),L_(E,H) )
l 3 n. p s s p 5

1
as ni—>oo .

What has actually been shown is that every subsequence
A
of the sequence {g“(fn)}n>l contains a convergent subsequence,
- A
and they all converge to the same limit, namely, g"(f).

A A
Therefore the entire sequence [g"(fn)]n> converges to g"(f),

1
that is, §"(£) — §"(£) in £( (B, L (E.W ).
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Case 2: Md(T) = co. Let fn,f € Lp(E,u), n > 1, with

fﬁ__>f in Lp(E,u). Again, there exists a subsequence {fni}iZ}

such that fn (t)—£f(t) in E p-a.e.; and by continuity of
i
g", g"(£, (£))—g"(£(t)) in E(E,E) p-a.e.
i

By the Vitali convergence theorem (Dunford and Schwartz
[12]), given € > O, there exists a set Ecez with 0 < W(E) < oo

such that

p £_\pP/p-2
S 150 0 Pt < for all n,
€

and (3.13)

I £ (t) deu(t) < (%ﬁ)P/p—z.

T~E
€

By the previous case, since u(Ee) < oo, given any € > O,

there exists an N(e€) such that

J_ Tz, o0 =gt lling @ i, 0 lauce) < Sy lln, |

E
€

for all h h2 € Lp(E,u) whenever n, > N(e).

l}

From (3.13), reasoning as above,

jT~E Hg“(fni(t))—g"(f(t))Hth(t)Hth(t)Hdu(t) < Slh lllin, |l (3.14)

for all hl,h2 € LP(E,u), and for all n. .

Thus,

IS"(fni)-(hl,h2>-3"(f)-(hl,h2)I < ellny lln, |
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for all hl,h2 € Lp(E,u) whenever n, > N(e). Therefore,
HS"(fn‘) - S"(f)n < € whenever n, > N(e); that is,
S“(fn.;-—.g"(f) in S(Lp(E,u),Lp(E,p)*). Reasoning as before,
this implies that S"(fn)—a-g"(f) in £(Lp(E,p),Lp(E,p)*) as
n— o .

Therefore, the norm ||| : Lp(E,u)——+&R+ is twice
continuously differentiable away from zero. g.e.d.

The converse of this theorem is also true:

3.2. Theorem. Let E be a Banach space, (T,Z,u) a measure

space and p > 2. If the norm H-H : Lp(E,u)——-»]R+ is twice
continuously differentiable away from zero, then the norm
H'H : E — R’ is twice continuously differentiable away from
zero and the second derivative of the norm in E is uniformly
bounded on the unit sphere in E.

Proof: Suppose the norm in Lp(E,p) is twice continuously
differentiable away from zero; since E 1is isometrically iso-
morphic to a closed subspace of Lp(E,u), it follows immediately
that the norm in E is twice continuously differentiable away
from zero. The main difficulty here is showing that the second
derivative of the norm in E 1is uniformly bounded on the unit
sphere in E. In this case, since &p(E) is isometrically -
isomorphic to a closed subspace of Lp(E,u), it is sufficient
to work with the sequence spaces &p(E). Define g : E—» IR

A
and g : LP(E)——V]R+ in the usual manner:
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g(x) = %ﬂx“p for xcE

L

@
o E Hannp for a = {an}QZl € LP(E)-

and g(a) = =lal® -
n=1

Since p > 2, then g and S are twice differentiable at

x =0 and a = O, respectively, with g'(0) = g"(0) = 0 and
S‘(O) = 8"(0) = 0. Note also that

A Qo
g(a)) and g'(a) *h = nflg'(an)'hn

8

S(a) = I

n=1

for all a,hebp(E) (see Theorem 2.5 with T = IN and ud the
counting measure) .

Now if a,beLp(E), from Taylor's formula,

§a + D) = §a) + §'(a)b + 2 §"(a) (b,b) + 6_(b)

2
8_ (o)
where H 12 — 0 as Hb”—a-o, and hence
b
§"(a) - (b,b) = 2(g(a+b) -g(a)) - 2§'(a) b - 26, (). (3.15)

Again, from Taylor's formula, for all k > 1,

|

g(a,+by) = g(a) + g'(ak)-bk + §q“(ak)-(bk,bk) + @ak(bk) (3.16)

@X(y)
Iyl

If n> 1, let b" = (by,b,,...,b ,0,0,...), then from

— 0 as Hy“-—’o.

where

(3.15)
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A 2 B n
g"(a) - (",% = 2 I (gla#b)-gla)) - 2 % g'(ay) by - 26, Y,
k=1 k=1
while from (3.16),
§"(a) - ®°,p% = ¥ g"(a,) (b, ,b,) + 2 o (b - 28 m"
E] - ) - .
k=1 k*k k=1 % K a
(3.17)
If N # O, then
S" (a) - (A", 2p") = g g" (@) * (Aby ,Aby ) + 2 ;31 6, (A\b,) - 26a(7\bn),
k=1 k=1 %k
and therefore,
©
g" n 0 E g"(a) - ) 5 a P28, ow
g'(@) (b ,b") = g"(a,) (b, ,b + 2 -
’ k=1 K kKK k=1  A° A2
Letting AN— 0O, then
§(a) - (B",6%) = I g"(a) (b, b )
g bl k=lg k k.’ k

A
for all be&p(E) and for all n > 1. Since g"(a) is symmetric,

it is determined by its values on the diagonal, hence

n
3" (a) - (0", = I gt oy, (3.18)
for all b,ceLP(E) and for all n > 1.
(a0} (e 0]
Now [b%bll = (T b DP, "<l = (T e [B)/P
k=n+1 k=n+1

A
and b — b, c®—~ c in LP(E) as n-—a ; since g"(a) is

a continuous bilinear form, then
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A A
lim g"(a) - (d",c™) = g(a) - (b,c) < .
n — Qo

n
- A
Therefore, lim & g"(ak)-(bk,ck) = g"(a) *(b,c) < oo, that is,
n — oo k=1

A D0
g"(a) - (b,0) = 2 g"(a) (b ,c) < @ (3.19)

k=1
for all b,ceLp(E). This implies that there exists an M > O

such that ||g" (%) || < M for all xeS. If the assertion is false,

then there exists a sequence {xn}nz; in E with Hxnn =1 for
all n > 1, such that
“g"(xn)H > 2" for all n > 1. (3.20)
Given € > 0, there exist sequences {bn}nz;’ {cn}qzl in E
with an\\ = chH =1 for all n > 1, such that
" . " B
g"(x,) " (b ,c ) > llg (x,) | - € for all n > 1. (3.21)
Therefore,
bn “n 1 €
" . " -
9" xg) 75 > Tw7R) 7 a7 lg" (x) | /5 (3.22)

X
and since g“(xn) = (2n/p)p—29"( L ), then (3.22) implies that

2WV/P
S T R
g (2n/p) : (2n/p s 2n/p) on - ';E (3.23)

for all n > 1.



33

X b c

_ (..n _ (__n_ _ (_.n
Let a = {2ﬁ7§}n2}’ b {Zn/p}nz}, and c [257§}n2l’ then
a,b,c ¢ ¢ (B) and llall = [loll = llcfl = 1; but
"
A @ X b c, o llg"x) |l
g"(@a) - (b,c) = % g"(—72)  (—=7= , —-7—) > L - €
ne1 /P 0/P 7 on/pt T 2"
© ,n
> z —Z—H - € = 00,
n=1 2
a contradiction, since by hypothesis S"(a)-(b,c) < o. g.e.d.

Theorem 3.1 and Theorem 3.2 together yield the following

theorem:

3.3. Theorem. If E is a Banach space, (T,X,H) a measure

space and p > 2, then the norm H~H : Lp(E,u)——»Hg' is twice
continuously differentiable away from zero if and only if:

(i) the norm H'H : E — RY is twice continuously
differentiable away from zero, and

(ii) the second derivative of the norm in E is uniformly

bounded on the unit sphere in E.

Suppose now that k is a positive integer, p > k, and
E 1is a Banach space whose norm is k-times continuously
differentiable away from zero. The mappings g : E-—»IR+

A
and g : Lp(E,u)—-—»]R+ are defined as usual:
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g(x) = %HXHP for xeE

A ~Ligp 2 L P
G0 = glelP = 5 le@Pape)  for rer @m.

(k)

3.4. Lemma. (i) If g : E~—»-ﬁk(E,]R) is uniformly bounded

on S, then g(L) : E—a-ﬁL(E,:R) is uniformly bounded on S
for 1 < 4 < k-1,

(ii) If =xcE, x # 0, and N\ # O, then for 1 <1 <Xk,
L L -4 (L
g( )(%x) = (sgn A) |A|P g( }xL

(iii) If p > k., and Hg(k)(x)n < M for all =xeS, then g

is k-times continuously differentiable at x = O, and
L
s ) =0

for 1 <14 - k.

Statements (i) and (ii) follow from the definition of g,

and (iii) is a consequence of (i) and (ii).

Assume now that the norm |-| : Lp(E,u)-—»]R+ is (k-1) -times

continuously differentiable away from zero, and that for

feLp(E,p),
A —- -
D gy 20, 05 = [ g® D () - o), 0} ), ) apce)
T
for all h2,n’,.... 05 ¢ L (E.4). Writing

P
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g* D ry) = gE D) + g™ )y + O (¥)

e () |l
where ——ﬁ;w-— -—-» 0 as HyH—»-O, a straightforward induction
argument then shows that the norm H-H : Lp(E,u)—-—v]R+ is k-

times continuously differentiable away from zero and that for

E
feLp( S M),

2

5% (5 - L0, .05 = [ g% (g(e)) -l ©) 020, ... 08 ) ap)
T

for all hl,hz,...,hk € Lp(E,p).

Hence the following theorem holds:

3.5. Theorem. Let E be a Banach space, (T,%,u4) a measure

space, and k a positive integer with p > k. If the norm

H’H : E — IR’ is k-times continuously differentiable away

from zero and the kth-derivative of the norm in E is uniformly
bounded on the unit sphere in E, then the norm |- : Lp(E,H)—-—'>IR+

is k-times continuously differentiable away from zero.

In order to prove the converse of this theorem, suppose that
p > k and the norm H'H : Lp(E,p)-——-r]R+ is k-times continuously
differentiable away from zero. Since E 1is isometrically
isomorphic to a closed subspace of Lp(E,u), it is clear that
the norm H-H : E-—’IR+ is k-times continuously differentiable
away from zero. Again, as in the case of the second derivative,
the main difficulty is showing that the kth-derivative of the
norm in E is uniformly bounded on the unit sphere in E.

Also, as in the case of the second derivative, it suffices to
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consider the sequence spaces Lp(E). Proceeding by induction,
it is assumed first that whenever aeLp(E) and 1 <1 < k-1,

the following are true:

W, 9@ e ... ph = ¥g

L
for all bl,b%,...,b" ¢ (E), and

(ii)L there exists an M, > O such that
L
lg ) o ll < m,

for all xeS.
It is then a simple matter to show that (i)L and (ii)L

imply that whenever aeLP(E), the following are true:

QO
) = 2 g% Gy - mpnn )

(1), 3% (@ - e, .. 0

for all bY,b%,...,b° ¢ ¢ (E), and
(11)k there exists an Mk > 0 such that

lg ) Gy || < m

for all xeS.

Hence the following theorem is true:

3.6. Theorem. Let E be a Banach space, (T,%,u) a measure

space, and k a positive integer with p > k. If the norm
“'H : Lp(E,u)——»IR+ is k-times continuously differentiable
away from zero, then the norm “'H : E —R' is k-times

continuously differentiable away from zero and the kth-
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derivative of the norm in E is uniformly bounded on the

unit sphere in E.

Combining Theorem 3.5 and Theorem 3.6:

3.7. Theorem. Let E be a Banach space, (T,Z,u) a measure

space, and k a positive integer with p > k. The norm
H-“ : Lp(E,u)——»IR+ is k-times continuously differentiable
away from zero if and only if:

(i) the norm || : E— R' is k-times continuously
differentiable away from zero, and

(ii) the k-th derivative of the norm in E is uniformly

bounded on the unit sphere in E.
As a corollary of this theorem:

3.8. Corollary. Let E be a Banach space, (T,Z,Jd) a measure

space, and 1 < p < w.

(i) If p 1is not an integer and I(p) is the integral
part of p, then the norm - Lp(E,H)——~]R+ is I(p)-times
continuously differentiable away from zero if and only if the
norm H-H : E— Rt is I(p) -times continuously differentiable
away from zero and the 1I(p)-th derivative of the norm in E
is uniformly bounded on the unit sphere in E.

(ii) If p 1is an odd integer, then the norm H'H : Lp(E,p%—+IR+
is (p-1l) -times continuously differentiable away from zero if
and only if the norm ||| : E— R’ is (p-1) -times continuously
differentiable away from zero and the (p-1l)-st derivative of the

norm in E 1is uniformly bounded on the unit sphere in E.
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Proof: The proof of (i) is immediate from Theorem 3.7,
by taking %k = I(p) < p. The proof of (ii) also follows from
Theorem 3.7, by taking k = p-1 < p. The fact that Lp(]R,u)
is isometrically isomorphic to a closed subspace of Lp(E,p),
and the fact that p 4is an odd integer, imply that Lp(E,u)
is not p-times continuously differentiable away from zero

(see Sundaresan [18]) . g.e.d.

The only remaining case is when p 1is an even integer.
The case when p = 2 1is not as difficult as the previous case,

even though the results are very surprising:

3.9. Theorem. If E is a Banach space, and (T,%,Md) is a

measure space, then the norm H'H : L2(E,p)—--;IR+ is twice
continuously differentiable away from zero if and only if E
is a Hilbert space.

Proof: If E 1is a Hilbert space, then L2(E,u) is a
Hilbert space and the result follows. Conversely, suppose the
norm in L2(E,u) is twice continuously differentiable away from
zero. As in the previous theorem, it is sufficient to work with
the sequence space LZ(E). Note that with g(x) = %Hx“z

for xeE,

Zlo+yll® - o))

Ty = %HY“‘** o

as |ly||— 0; therefore g : E —IR" is differentiable at x = O

and g'(0) = O.



39

From Taylor's formula, if x,yeE, x # O; then

\\X+YH2 = HXH2 + 29" (x) 'y + g"(x) - (y,y) + 6 (y) (3.24)
6 (¥)
where W—»O as Hy\l—-O

Let x,€E, X, # O, be arbitrary. Let a = (xO,O,O,...),

(0]
then aeﬂz(E) and |la]| = HXOH. If h = [hn}nZ} € LZ(E), from
Taylor's formula,
la+nll? = Jlal? + 257 (a) *h + §"(a) * (h,h) + ©_ (h) (3.25)
18, (|
whexe >— —0 as IIn|l—o.
Inl
A loe)
Since g'(a)+h = kElg'(ak)'hk = g'(xy) *h;  (g'(0) = 0),

from (3.25) it follows that

leg#ny 12+ Z lIn_|I2

n_z oI + 297 (x) *hy + §"(a) - (h,h) + B (n).

Il

(3.26)

From (3.24), with x = X

0 it follows that

and y = hl’

on+th2 = HXOHZ + 2g'(xo)'hl + g"(xo)'(hl,hl) + Gk (hl).

(0]
(3.27)
Combining (3.26) and (3.27),
Ay . 2 _ . - 2 8
g"(a) - (h,h) - [f|¥ = g"(xy) * (hy,hy) - by [1€ + O, 1) - Sy
(3.28)

Let t # O, then
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§"(a) - (th,th) - llen]? = g"(xy) - (thy thy) - flen |2

+ @xo(thl) - @a(th),

that is,

6  (th,) A
H2 . X, 1 ) @a(th)
t2 t2

3" (a) + (h,n) -[Bl1* = ¢"(xg) - (b .h)) -]In;
Letting t -—+0, it follows that
§"@ - m,m - [l = 9"+ () - [iny |12 (3.29)

for a = (xO,O,O,...), h = (hl’hZ""’h

Now let &cE be arbitrary and let h = (0,§%,0,0,...).

n,...) € &Z(E).

From (3.29), it follows that
§"(a) " (h,n) - |0l = g"(xy) - (h,h) - |ng|% = o,
since now h; = 0. But HhH2 = H%Hz, and therefore
lgll® = S"(a)-((o,g,o,o,...),(o,§,o,o,...)).

A .
Since E&c¢E 1is arbitrary and g"(a) : LZ(E) X L2(E)——»:R is
a positive, symmetric, bounded bilinear form, then E is a

Hilbert space. g.e.d.

If p is an even integer, p # 2, using an argument almost
identical to that in the proof of the preceding theorem, the

following theorem is obtained:

3.10. Theorem. Let E be a Banach space, (T,%L,d) a measure

space, and p an even integer, p # 2. The norm H'H : Lp(E,u.)——»]R+
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is p-times continuously differentiable away from zero if and
only if the pth-power of the norm in E is a continuous homo-
geneous polynomial of degree p. (In which case the norm in E
is of class COO, and from Theorem 3.7 this implies that the

norm in Lp(E,p) is of class COO.)

Combining Theorem 2.5, Corollary 3.8, and Theorem 3.10,
the order of smoothness of the Lebesgue-Bochner function spaces

can be summarized in the following theorem:

3.11. Theorem. Let E be a Banach space, (T,%,u) a measure

space, and 1 < p < oo, then:
(1) The norm in Lp(E,u) is differentiable away from zero
if and only if the norm in E 1is differentiable away from zero.

(ii) If p = 2, the norm in Lp(E,u) is twice continuously
differentiable away from zero if and only if E 1is a Hilbert
space.

(iii) If p is an even integer, p # 2, the norm in
Lp(E,p) is p-times continuously differentiable away from zero
if and only if the pth-power of the norm in E is a continuous
homogeneous polynomial of degree p.

(iv) If p is an odd integer, the norm in Lp(E,u) is
(p-1) -times continuously differentiable away from zero if and
only if the norm in E is (p-1l)-times continuously differentiable
away from zero and the (p-1l)-st derivative of the norm in E is
uniformly bounded on the unit sphere in E.

(v) If p is not an integer, and I(p) is the integral

part of p, the norm in Lp(E,H) is I(p)-times continuously
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differentiable away from zero if and only if the norm in E
is I(p)-times continuously differentiable away from zero and
the I(p)-th derivative of the norm in E is uniformly bounded

on the unit sphere in E.

3.12. Remark. The results on the order of differentiability

of the norm in Lp(E,N) are exactly the same as the preceding
results on the continuous differentiability of the norm (except
that "continuous differentiability" is to be replaced by

"differentiability") and will not be discussed here.
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4. Example

The purpose of this section is to discuss an example which
brings forth the importance of the theorems characterizing the
order of differentiability of the norm function in the Lebesgue-
Bochner function spaces Lp(E,u). Also, it is this example
that led to a deeper study of the order of smoothness of the
norm in Lp(E,p), 1 < p < . Certain results in Bonic and
Frampton [5] were found to be of considerable importance,
especially the result by N. H. Kuiper (added in proof in [5],

p. 896) . Before starting this example, a few lemmas are

necessary.

4.1. Lemma. Let E Dbé a Banach space whose norm

H'H : E----»IR+ is twice differentiable away from zero, and
define g : E-—+]R+ by g(x) = %Hx“z for xeE. If there

exists an M > O such that

g" (x) * (v,y) < Mllyl||?

for all xeS and for all yeE, then E is unifofmly smooth.
Proof: Recall that E is uniformly smooth if and only if
given any € > O, there exists a & = 6(e) > O such that

Hx+tyH—HxH—th(y)‘
t

for all (x,y)eS X S, whenever |t| < §.

Let x,heE, ||x|| = ||h]l = 1, and let B be the open annulus

B = (yeEl5 < lyll < 3.
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Note that if |a| < %, then the line segment joining x and

x + ah 1lies in B, that is
[x,x+ah] = {yeE|y = x + A-ah, O < A < 1} C B.

Hence, [x,x+oh] © B for all |a| < % and for all (x,h)eS x S.
If T(z)(x) : E-—»E* is the second derivative of the

norm at x # O, then
g" () (v,y) = 6, (n? + lxlr® 0 v,y (4.1)

for all x,yeE, x # O. Therefore,

(2 () - (y,y) < %ﬁﬁ Mk (4.2)
for all x,yeE, x # O; hence
(2 (x) - (v,y) <21+ D lyl?

for all yeE and for all xe¢B.
Since B is open, from Taylor's formula (Cartan [6, p. 70,

Theorem 5.6.21),

|llxtanll - [x|l - ac m) | < ™+ 1) |a]? (4.3)

-~

for all (x,h)eS X S8 and for all a, |a| < %u Therefore,

lscran |- x-as,, (n)

| < M+ 1) |al (4.4)

for all (x,h)eS x S and for all a, O < |a| < %. Let

6 = 4 (e) =min(—§--—-l

W12 s then

le+oni-[lx[[-ac  (h)

< € (4.5)
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for all (x,h)eS x S, whenever O < |a| < 8. Thus, E is
uniformly smooth. qg.e.d.

4.2. Lemma. [Kuiper] The Banach space c is isomorphic to

(0]

a Banach space whose norm is of class c® away from zero.
The proof of this lemma can be found on p. 896 of Bonic

and Frampton ([5].

4.3. Example. Let E Dbe the Banach space whose norm is of

class ¢ away from zero and which is isomorphic to Co*
Let (T,%,u) be a measure space such that the measure u 1is
not supported by finitely many atoms, and such that the range
of H contains at least one non-zero real number. If p 1is
an arbitrary positive real number, 1 < p < o, then the norm
H'H : Lp(E,u)——-—»]R+ is not even twice differentiable away
from zero.

The cases p =1 and p = o0 are trivial, since in
these cases the norm in Lp(E,u) is not even once differentiable
away from zero. In the case 1 < p < 2, from the previous
theorems, the norm in Lp(E,u) is not twice differentiable away
from zero. If p = 2, and the norm in Lp(E,p) is twice
differentiable away from zero, from Theorem 3.9, E 1is a Hilbert
space and hence reflexive; a contradiction, since this implies
o is reflexive. The remaining case, 2 < p < oo, is handled
as follows: Suppose 2 < p < oo and the norm in Lp(E,p)

is twice differentiable away from zero, this implies by Theorem

3.1 that the second derivative of the norm in E is uniformly



bounded on the unit sphere in E. However, this implies (by

Lemma 4.1) that E 1is uniformly smooth and hence reflexive,

hence c0

is reflexive, a contradiction.
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