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AVERAGING OPERATORS ON NORMED FUNCTION SPACES

by

Richard A. Alo and Andre de Korvin

1. Introduction.

A general problem raised by S. Banach may be formulated as

follows. For 1 < p < CD and p ^ 2, let tR be a closed sub-

space of the Lebesgue space Sp = £P(S,E,/i). Does there exist

a bounded projection from Sp onto to? It is known that for

p fi 2 there always exists a subspace to of Z^ for which

the answer is negative. In fact, the same is also true for £

and X00 . However by changing the norm, the above problem may

be restated as a query asking when to is the range of a contrac-

tive projection. This problem has many important applications.

As pointed out in [17], in non-linear prediction (and approxima-

tion) theory the (not necessarily linear) prediction operator P

(12)relative to a Tshebyshev subspacev ' to of a Banach function

space L (S,L, |Lt) is linear if and only if the operator I - P = Q

is a contractive projection. This is one of the motivations for

studying the projection problem.

Very closely related to the existence of projections (as

pointed out below) is the existence of averaging operators.

Let cp be a measurable map from the measure space (S,E, p) into

the arbitrary Hausdorff topological space T.* ' Let us assume

that cp induces a continuous map from the space ^(T) °f bounded

real valued continuous functions on T into the (as defined below)

Banach function space Lp *= L (S,E,jLt) defined by cpe(f) = f o cp

for all f€Cb(T). If U is a bounded linear operator from L



into ck(T) then U is called an averaging operator for the

measurable map cp or it is said that cp admits the averaging

operator U if

U ocpe(f) = f

for all f€Cb(T) .

It is clear that if U is an averaging operator for cp

(then U is surjective) and if P is the map from L into

L defined by

P = cpeo U

then P2(f) = P(P(f)) = P(f). That is, P is the linear projec-

tion of L onto the range R(cpe) in L of cpe. Conversely
p —_«*_ p

2(f) = P(P(f)) = P(f).

pe)

if cpe is injective (that is, p(cpe(f)) = 0 implies f s 0 for

all fGGjfT)) and if P is a projection onto R(cp ), then

(cpe)"1P(cpe(f)) = f.

e -1Consequently (cp ) P is an averaging map for cp. That is, when

cp is injective there is a one-to-one correspondence between

projections from L onto the range R(cpe) in L of cpe and

averaging operators from L into C,(T). Or more briefly, cp
P D

admits an averaging operator if and only if cp has a left inverse.

In Theorem 5 we show that the existence of an averaging operator

for the measurable map cp from S into T, with cpe injective, is

determined by the existence of an averaging operator for <p, which

is the restriction of cp to a certain measurable subset B, of S.

This extends the literature^ ' to a larger class of spaces.



As a first result leading to Theorem 3, we show how any

bounded linear operator U from L into Cb(T) may define a

function taking each t in T to the linear functional U.

in the Banach dual space (L ) * = G t (jit) . This is called the

integral representation of U and is defined by

Ufc(f) = <f,U*(6t)>

for all feL . The operator U* represents the adjoint of U

which takes the dual space M(T) *18* of Cb(T) into the dual

space (L )*. For example, if T were also locally compact

then M(T) would consist of all regular Borel measures on the

Stone-Cech compactification of X. For each point teT, the

unit point mass 6, e M(T) is defined by 6t(f)
 = f (fc) f°r

f€Cb(T) .

It should be noted that in the ensuing discussion G. (T)

could be replaced by any appropriate Banach space of functions

defined on T where the point evaluation map is continuous

For example, it could be taken as the space C
C(

T) of all con-

tinuous functions on T with compact support or it could be

taken as the space C
O(

T) o f a 1 1 continuous functions on T

which vanish at infinity. The salient feature in all of this

is that the point evaluation mapv ' must be continuous. It

is due to the lack of this that C^Cr) m aY n o t *>e replaced by

By using a representation of L (S,£j,{i) (actually Mp) as

a Banach function space over a compact extremally disconnected



Hausdorff space § (see Theorem 6), we are able to give, for

the present context, an appropriate definition for the concepts

of plural points and of an irreducible map (see Definition 7).

Ihis representation theorem also tells us that, in essence, the

finitely additive set functions (y t} t € T e G . (jx) used in the

integral representation of the operator U may be replaced

(via an isomorphism) by regular Borel measures (£4-)+. T o v e r ^.

These ideas lead then to an upper bound for the y. , namely

|ytl(S) < p(xs)||u|| - 1 (see Theorem 8). With these we obtain,

as a corollary, a relation between the averaging operator U

and its associated U,, namely

K(f) | | 1 ||f|!aD[p(xs)l|u|| - i]

We are finally led to the consideration of conditions on cp

under which no bounded projection from L onto the range of cp

may exist, Our conditions include that L be reflexive, that

(Lp)* = La
T , that the range R(cpe) of cpe be closed, that pT

has the weak leveling property, and that there be an appropriate

fE G C^CT) representing the operator UE« Then either cpe is

surjective or no bounded projection P from L a onto R(cpe)

exists such that P* commutes with A .

2. Preliminary Results and Definitions.

Let (S,L, JLI) be a measure space and let M be the collec-

tion of non-negative scalar valued p-measurable functions on S.



As is usual functions differing on fz-null sets will be identified.

As is done in [14], a mapping p from M into the extended real

numbers IR+ is called a function norm if for all f and geM

(i) 0 <; p(f) <; ao ; p(f) = 0 if and only if f a o

(ji almost everywhere) where 0 is the constant

function on S taking all seS to 0.

(ii) p(af) = |a|p(f) for all finite scalars a.

(iii) p(£ + g) 1 p(f) + p(g)

(iv) f <̂  g (JLI almost everywhere) on M implies that

P(f) 1 P(g) .

"The function norm p may now be extended to the collection M

of all ji-measurable functions by setting p(f) = p(|f|) for

all feM. We will denote by L = L (S,£, jLt) the normed linear

space of all functions feM with p(f) < ao . TTie norm on L

is given by |!f|| = p(|f|) and is called the p-norm of L .

(2)•Hie spaces L are called normed Kothe spaces.v

In general the spaces L are not complete. However under

rather weak conditions, such as the weak Fatou property they may

be made complete. We will say that L has the weak Fatou property
p

if whenever a monotonically increasing sequence (f } of

functions in L is pointwise convergent to f and for which

the sup{p(fn): neN} < <x> then p(f) < GD , that is feL . We

will assume that L has this property, that is, the spaces L

are complete in the p-norm. Such complete normed Koethe spaces

are called Banach function spaces (see [14], [10], and [2])
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spaces include as examples the well-known

= £P(S,S, jLt) for 1 <, p <̂  OD and the less

important Orlicz spaces (see [15J, [14]).

aneralizations in that they permit many

D be naturally couched in their setting,

general than the spaces L are the

or the ordered topological linear spaces,

long with the theory of vector measures

influence on the theory of Banach func-

[3], [8], and [14]).

the Lebesgue spaces £p, it is natural

associate norm pf as

1}supfj |fg|d|Li: geL , p (g)

as in [9]. It follows readily that p1

and it has the weak Fatou property

is the stronger Fatou property). Conse-

iing normed linear space L ,, called

| L , defined by

(f) OD

nction space .

Introduction we let cp denote a measurable

locally compact Hausdorff space T. Unless

measurable subsets of T will be its collec-

>sets. Let C. (T) be the collection of



bounded continuous real valued functions on T with the *up norm

e
topology. We assume that cp induces a continuous map cp

from C,(T) into L (Ŝ Ê jLt) by

cpe(f) = f * cp

for all f € C-fT). Thus p(f*cp) < ao and hence cp is a

bounded linear operator from c>s(T) t o L •

Such a situation is rather easy to construct. For example

if cp is a measurable map then the map cpe defined above from

G. (T) into the Lebesgue space ZCD (S,£,JLI) is a bounded linear

operator. If /icp~ is of finite variation (with respect to

Borel partitions of T) then the map cpe defined from CL (T)

into the Lebesgue space S?(S,Ti,\l), 1 £ p < CD , is again a

bounded linear operator.

To be able to deal with the function spaces L we need

some terminology from the papers ([2], [11], and [17]). Let

XL = {A€E: p (xA) < CD } where XA ^S ^[ie characteristic func-

tion for the measurable set A. By a partition 6 of IL we

mean a finite pairwise disjoint subcollection of ZL consisting

of non jj-null sets of finite measure such that p1 (xA) < OD

for Ae&. For a partition 6 of L and for feL we may

define the averaged step function fp to be
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The function norm p is said to be weakly leveling if for

each partition £ in £0> p(f£) £ p(f). All well known Banach

function spaces such as the Orlicz spaces (and in particular the

Lebesgue spaces) have weakly leveling function norms. In [11]

this concept was referred to as p having property (J) . The

present terminology appears more appropriate in comparison to

the concept of leveling as discussed in [10J.

An important closed linear subspace of L is the space M^

which is the closure of the linear span of bounded functions in

L with support in L . Another way of viewing this, is to

make the appropriate definition of a ZL-simple function in L ,

that is, f = SOC.XA where (A.) . is a finite partition in £
1 A •, 1 1£1

and (a.). is a finite set of scalars. Then

M^ =» cl span {feL : f is a £ -simple function}.

For scalar valued finitely additive set functions y on E ,

an analogous function norm p! may be defined as was done in [17]

This is done by setting

sup{|Jfdy|:

(For any linear space X we designate by X, its unit ball).

Throughout this paper, the integrals given relative to finitely

additive set functions are in the sense of Chapter III in [91•

With regard to our previous definition for geL , we do have

compatibility in the sense that if dy = gdjj, then p! (y) = pf (g) .

The present definition of p1 has the following significance.



Let A , (JLI) - A t (S,ZL,jx) denote all finitely additive

scalar valued set functions y defined on ZL which vanish

on ji-null sets and for which p1 (y) < oo . Then with this p! ,

A . (a) is a normed linear space.
P r

A positive finitely additive scalar valued set function ft

is said to be purely finitely additive if 0 <, v <^ U with u

countably additive then v s o. If U is not positive then ft

is said to be purely finitely additive if its variation is.

Let B f (fi) = B , (S,£, JLO be the set of all purely finitely addi-

tive scalar valued set functions defined on £ which vanish

on jLt-null sets and which have their supports contained in the

support of some feL \M^.

iTien as in [17 ] 3 by letting

V w = V w ® V
the Banach dual (L ) * is isometrically-isomorphic to G t

More precisely if yeG f (JLI) then y may be decomposed uniquely

as y, + y2 for y-e A , (jx) and y2 € B , {p) . An appropriate

norm is given for y by

llrllp, = P 1 ^ ) + |y2|(s).

For f^L
Di there i s defined

Jfdy = Jfdyi + Jp(f)dy,
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where F is the canonical map of L onto L /M^ as given

in [11]. The first integral is a Bochner type in the sense

of [9] whereas the second is as defined in [11] .

Theorem 1. (see [17]). jEf: U e (L ) * then there is a

unique y € G t (ji) such that

U(f) = Jdy

for a l l f€L . Moreover ||u|| = ||y|| t . Thus (L )* is iso-

metric and (lattice) isomorphic to Q ,(a) (see [11] for a
_____ _ _ _ _ _ _ p

slightly different version).

Another useful result from [17] is a spectral type theorem

as we now begin to describe. Let £ be the cr field generated
A

by the compact subsets of the locally compact Hausdorff space S.
A A

Let fj, be a measure on £ which is finite on compact sets. An

adequate function norm p is defined (see below) so that one may
A A A

consider the appropriate function space LA(S,£, JLI). Every element

in LA has a-compact support. Further let B be the algebra

of essentially bounded functions in L (S,£, JLI) and let cl B

be its closure in L (S,E, u) (where L = L for p - p
0 D ~ OD p GD

as discussed in footnote). In [17], it is shown that

Proposition 2. If (S,L, JLI) is a measure space then

(1) there is a measure space (!§,£), £) (as defined above)

such that L (S,£, JLI) is isometric and (lattice) isomorphic
A A A
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Moreover if there is an f̂  € L (S,E, u) such that fn > 0,
— — — — — — — — — — — • • • u p - • ———i vj **

jLt almost everywhere,, then

(2) statement (1) holds where now S is a compact extre-

mallv disconnected Hausdorff space and where JLI is a regular

Borel measure (j}(S) < <x> ) ôn the g- field generated by the

clopen subsets of S.

(3) there is an isomorphism $ from c l _ B- onto C,(S).

Also f e 0, a almost everywhere if and only if $ (f) s O, u

almost everywhere and

In addition $ takes characteristic functions in C^CE)
B
C) into

characteristic functions in C, (S)

Let us note that the condition on fo e Lo 9^ven ^n

proposition to demonstrate statements (2) and (3), does hold

rather generally, for example, in any g-finite measure space.

Also in the above proposition, the norms are taken as was pre-

viously defined for || || where now p = p . We have utilized

the appropriate measure in indexing to further emphasize the

underlying structure. The proof follows from that given in

Theorem 2.1 of [17] once one realizes that B is a vector

lattice, cl B in L is an abstract M space (in the sense

of Kakutani, see [13]), f = min{f,n) € B for all f and

f > 0, \x almost everywhere. The topology on ^ ( S ) i-s

that of the supremum norm. The function norm p is defined
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for feB as
P

p(f) .

If 0 < feL (S,X,n), let f = f A neB , then p(*(£ )) = p(f )

and p($(f)) = p(f) since £$(f
n)}neN

 i s m o n o t o n : i L C a l lY increa-

sing and pointwise convergent to §(f) = f, £ almost everywhere

(further details may also be seen in Theorem 1.1 of [17J).

The case where fQeL (S,S, ju) exists as in Proposition 2

is of the most interest. Consequently we will assume through-

out that such is the case.

A linear subspace A of L is called an order ideal in L,
* p f

if whenever feA and g is a measurable function on S such

that |g| <̂  |f| then geA. An important order ideal in L

will now be defined as it will be utilized in the development

later.
A function f€L is said to be of absolutely continuous

(9) P

norm if the sequence {p(f )} is monotonically decreasing

and convergent to zero whenever the sequence {f } N e L is

monotonically decreasing and pointwise convergent \i almost
f | .everywhere to zero with f,

Let L represent all feL which are of absolutely con-

tinuous norm. It can be shown that L a is a norm closed order

ideal in L . For our purposes, its significance will be in its

determination of the reflexivity of L .

The function norm p is said to be absolutely continuous

if L = L . The space L is reflexive if and only if both p
P P P

and p1 are absolutely continuous and p has the weak Fatou
^ (11)property .
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3. Averaging Operators.

Tlie main problem as we have stated in the Introduction is

to find conditions under which there exists (or fails to exist)

a bounded projection from L onto the range of cp . Let us

first give some general results about bounded linear operators

and their integral representations.

Let U be a bounded linear operator from L into ^

Then for each teT, the operator U gives rise to the point

linear functionals Ufc e (L ) * defined by

ut(f) = (u(f)) (t)

for all feL . Then as in Theorem 1 there must be a unique

yt€G . (SJLJJLO such that

Ut(£) -

for all feL . If 6t represents the point mass at teT then

in [17], it is shown that for all feL

U. (f) = (U(f))(t) = <U(f) , 6. >= < f, U*(6. ) > .

Thus

<£, U*(6t) > = <f, y t>

for all feL , that is, U*(6.) = y. . It is easy to see that

the map now defined taking teT to yt^G , (fx) is continuous

when the weak* topology is placed on the dual space G t

M l
CARNEIIE-MELLiN IKSVEftSITY
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If U is now an averaging operator for the measurable

function cp from S into T then for

Q/.e\ TT-*. / fc \ ^ _ ^ £ T-/^= <cpe(f), U*(6fc) > = <f, [cp
ej*(yt)

Consequently [cpe]*(yt) = 6fc for all teT. Thus U is an

averaging operator for cp if and only if [cpe]*(yt) = 6fc
 f ° r

all teT.

For such y. let us designate its decomposition as yielded

from Theorem 1 by y. n + y. 0 where y. n e A , (a) and

y o e B , (u) . We then have almost shown completely the follow-

ing theorem.

Theorem 3, If U JLS a. bounded linear operator from L

into Cv>(T) > then for each t€T there is JL unique yt e G ,

such that y. = Û fŜ .) . The operator U and the integral repre-

sentation from t jto y. are related by

(U(f))(t) = y.(f) for teL and teT

with

||U|| = sup{||ut||: t€T).

This map from t jto y. J^ weak^ continuous.

n cpe is continuous then U is ail averaging operator for

the measurable function cp from S into T jLf and only if

[cpe] *(y. ) = 6.- if the range R(cpe) of cpe is contained in Mp
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then U jj3 an averaging operator for cp _if and only if

y - o cp"" = 6. (a£ elements of the dual space of C^(T)) .

Proof. The last part is all that is left to check.

If R(cpe) c Mp then

jF(cpe(f))dyt^2 = 0

(see Theorem 1) . Thus for feL

= <cpe(f),yt> =

Thus as elements of the dual of C (T) , 6 = y - e cp" . This

completes our proof.

We should remark, that the above result is somewhat similar

to that of Pelczynski in [16]. Also the above proof will be

established for even more general situations. In particular

C(T) may be replaced by even more general spaces, for example,

by a Banach space F (T) of functions on T where the map from

f to f(t) is continuous. Such is the case for the space of

bounded functions on T under the supremum norm.

For the case where cpe maps just C(T) into C(S) as in

[181 where cp is a continuous map of S onto T, the points

t€T for which the fiber cp"" (t) is a subset in S of more than

one point play an important role in studying averaging operators.
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Such points t have been called plural points in T. In our

study where cp is defined on L and cp is a measurable map,

the concept as defined, is not satisfactory. Shortly we will

redefine this taking into account the measure \x. For the time

being let P be that subset of T such that
cp

P = {teT: card(cp~1(t)) > 1}.

Let B be a Borel subset of T containing P and let
cp

B_ = cp" (B) . We assume that cp is measurable with respect

to E Q , that is J f dy t 1 exists (as defined in [9]) . We
e e

now may give some formulas to compute < cp (f), y. > when cp
has values in M^.

Proposition 4. Assume that R(cpe) c M p and that cp admits

an averaging operator. Then the following hold.

(1) jcf t€B then <cpe(f),y > = J cpe(f)dy. ..
B l

(2) _If cp _is surjective and if t / B then

= J cpe(f)dyt ± + f(t).
Bl

Proof. I f teB, then 6t(CB) = o!14?Thus y 1(cp"1(CB)) = 0.

Moreover i f H i s measurable and B n H = 0 then y . (cp~ (H)) = 0 .

Consequently for teB,

cpe(f), yt> = J cpe(f)d7t ! + J cpe(f)dy - J cpe(f)dy .
* B Z}1 JCB t j l JB t ^ i
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This shows statement (1). For statement (2), if t £ B, then

cp~ (t) is a singleton in S. Partition T into the Borel sets

B, {t}, and the set A. Then S is partitioned into sets

*1,'B2 = [cp"
1 ({t})}, and cp"1(A). On A, y ^ o c p ^ s o , so

cp e(f),y t> = J cpe(f)dyt ± + J cp
B B

t ± J
Bl B2

The last integral is just f(t) for y , ° cp~ s i on {t}.

This completes the proof.

The assumption in our proposition (and in other results)

that R(cpe) be contained in M^ is reasonable. For example

in the class L = L^ of Orlicz spaces where 0 satisfies the

so called Ao condition, one has that w = L (see [15]).z p

The result in Proposition 4 for cpe(f) may be given

more generally for any heL . If t€B, then

h, y > = J hdy + hcp"1(t) .
Bl

Let us now consider the question of the existence of an

averaging operator for cp in terms of the existence of an

averaging operator for the restriction cp, of cp to B, .

In particular let B be a Borel subset of T (it need

not contain P at all I) and let B, = cp" (B) . Since cp is

measurable, B, e £. A new Banach function space L (B,, £•.
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may be defined as follows. Let ^ = (A (1 B ^ A G E } and let

jLi, be the restriction of \i to S... For f a function de-

fined on B 1 and measurable with respect to /LU , we may define

"f on S by "f s f on B, and "f = 0 on CB^ Now p.̂  may

be defined for such f by

Pl(f) = p("f) .

Clearly L is a Banach function space. Let cp, mapping B,
p ^ i i

into B be the restriction of cp to B, .

For U a bounded linear operator from L into C. (T)5

we will need the following two conditions for the next theorem.

We will say that the operator U is B extendable if for

every geCfB), the map U(cp?(g)) in Ĉ C111) is a n extension

of g. In particular if U has B-tight range then cp̂ (g) e L .

Motivated by this we will say that cp is determined by B,

if for every feL such that f |B, = cp, (g) for some geCL (B)

there is gt€Cb(T) such that f = cpe(g!). Note that in this

case g! need not be an extension of g.

What may be said if B does definitely contain the subset

P of T? In this case,, as we will see in the next theorem,

the fact that cp is determined by B,, may be replaced by

the following somewhat weaker statement. We will say that cp

is weakly determined by B, if for all feL (S,Ejfi) there

is g€Ck(B) such that f|B1 = cp̂  (g) and if g1 is defined on

T to be g1 (t) = g(t) for teB and g! (t) = f cp"1(t) for
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teCB then gteC.(T). Let us note that if S and T were

both compact spaces and if B is a closed Borel subset of T

containing P then cp is always weakly determined by B ".

Theorem 5. Assume that R(cpe) c M P . _If cp admits an

averaging operator U that is B-extendable, then cp., admits

an averaging operator U, from L (B, 3 T,^, \x^) into C(B^).

Conversely if cp-, admits an averaging operator Un and

if cp îs injective with cp determined by B., then cp admits

jan averaging operator. However jLf P c B then cp need not

be, determined by B 1 but need only be weakly determined by B ^

Proof, Let U be an averaging operator for cp that is

B-extendable and let {y t) t T
 b e t h^ family of associated set

functions as described for Theorem 3. The operator U from

L p(S,£, ju) into Cb(T) induces an operator U^ from L (B,,̂ -.

into C.(B) defined by

(U^f)) (t) = J "fdy
BBl

for all feL and teB. Since p, (f) ̂  1 implies p(f) <^ 1,
p l •"•

it follows that Hu^H <; ||u||, that is u 1 is a bounded linear

operator. It is clear that (U^fJMt) = (U(f))(t) for all

teB. Thus we have
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where the right side represents restriction to B. Since Ĵ

is B-extendable, it follows that U.j[cp?(g)I = g for all

g€C(B). Thus U, is an averaging operator for cp,.

If it is assumed now that cp is injective then to show

that cp has an averaging operator U, it is sufficient to show

the existence of a projection P from L (Ŝ Ê jLt) onto the

range of cpe. If U 1 is an averaging operator for cp,, define

P1 to be cp, oU,, Clearly P, is a bounded projection operator

from L (B,, En, JLU ) onto R(cp?) . Define a bounded linear opera-
P^ ± ± ± i-

tor T from L (S,£, a) into L (B,, 21 3 JLI-, ) by
P P^ i J. i

T(f) = f|B1

for all feL . We now may define the required projection P.

For f€L (S,£, \i) , define

P(f) = f - PxT(f) - T(f) .

Now P"(f) = P(f) ~ P1T(P(f)) - T(P(f)) . For all heL (3

if SGCBJ, then h(s) = 0 . Consequently (P2(f))(s) = (P(f))(s)

f o r a l l s e C B , . Moi?eover f o r s e B , , h ( s ) = h ( s ) . Thus

(P1TP(f)) (s) = (cpJ^TPff)) (s) = (TP(f)) (s) . Consequently

(P (f))(s) = (P(f))(s) for all seS, that is, P is a projection.

The range of P and the range of cpe coincide. For if

P(f) = f then PxT(f) - T(f) = 0. Consequently T(f) € R(cpJ) .
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If now cp is determined by B, then feR(cpe) . Conversely if

f = cpc(h) for some h€C(T), then P(f) = f - PjTff) - T(f) .

In this case P-j^f) = T(f) and thus P(f) = f. Therefore

R(cpe) = R(P).

If we now assume that the subset P of T is contained
cp

in B, then the above arguments show there is a g€C(B) such

that T(f) = cp?(g) . If cp is now weakly determined by B p

let g! be the function in Cu(T) as defined in the defini-

tion. Hence f = cp, (g!) and cp is now determined by B,.

This completes our proof.

Thus the existence of an averaging operator has somewhat

been characterized in terms of a smaller, so to speak, averaging

operator defined on an appropriate function space. Let us now

consider more of a reduction type theorem where the set functions

[y ) may be replaced, in some cases, by regular Borel measures

(£.}. defined over a compact space.
(15)

We need to assume that L = M and that p (xs) < CD • Ihe

last condition is needed to insure that there is an fn e L (S,E, jLt)

such that f > 0 jU almost everywhere. With this we may invoke

Proposition 2. Utilizing notation from that proposition we continue

with the following definitions-

* A

Let E c denote those clopen subsets in E contained in

the compact extremally disconnected space S, which are in one-

to-one correspondence with the sets AeE. For every teT we

may define the finitely additive scalar valued set functions 3.
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by

for AeE , A €^n - £• Since we are assuming that M = L , it is

clear that y, = y, ,. Note also that p1 (3t) = p
! (yfc) where

C p A A A A *\

P1 O t) = sup| I I fd/3 | : f is a £ simple function; p(f) <£ lj.

Now for AeE ^ /i(A) = 0 if and only if ji(A) = 0. Consequently

ft (A) = 0 implies 3t(A) = 0.

Let 13. | represent the variation of 3., that is,

|3t|(S) = sup{|L y t(A ±)|: (Ai)i€l finite partition in

Now this variation is finite. In fact if (a.). are a finite

set of scalars such that |a. | = 1 and such that a.j3. (A.) = |/3, (A.)

then

P(xs)p'(yt)

A

It is also clear that jB. is regular on £ . Let us see

now how 0. may be extended to a regular Borel measure on E.

Since p(xs) < ^
 t h e ^ing £Q is dense in the power set of S,

that is, if K and G are respectively compact and open subsets
A A A A

of S, then there is Ae£ such that K cz A c G. In [8], it

shows that such a situation yields 3 as countably additive
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on t and that a unique extension to t of /3fc exists as a

regular Borel measure. Furthermore the variation of the exten-

sion (considered as a Borel measure) is finite and coincides
A

on £ with the variation of j3.. For simplicity let us retain

/3. as notation for this extension.

Let $ be the correspondence that takes E simple functions
A

into £ simple functions as now

Since M^ = L , 0 may be extended to all feL as f is then

in the closure of E-simple functions. Since p1 (y.) = pf (/3.) < OD ,

a final limit argument will show that

Jfdyt =

where f =

Note that what we have just proceeded to do, could be applied

to more general situations. What is crucial here is that in

addition to Mp = L , we need the variation |j3.| finite, the

field £ dense in the power set of S and the existence of

an f
0
€ L

D
 s u c h that f > 0 p almost everywhere. If Mp / L ,

then the above arguments may be applied to j3. .. . More formally

we have shown

Theorem 6, If L = Mp _and _if p (Xg) < OD then there _is

iiS extremallv disconnected compact Hausdorfi; sp^ce S with £,

it;s ^ e l ^ jaf c^opeq sulp^Qts, and (x3 a regular Borel measure on
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T, such that L (S,£,/i) is isometric and lattice isomorphic

with L (Ŝ Ê jLt). rf il> is this isomorphism and if U is an

averaging operator for cp then for every t€T there exists a

regular Borel measure j3. on. £ such that

Jfdyt =

where f = $(f) for f€L and y. J.S the additive set func-

tion associated with U _as determined for Theorem 3.

We are now in a position to give a reasonable definition

of plurality as was indicated earlier. The above result also

leads to a definition, for the present context, of the concept

of an irreducible map (see [181 for the concepts in the more

restricted cases).

Again we need to assume that L = Mp and the existence
P

of an f~€L such that f^ > 0 a almost everywhere. Let U
Op O ^ r'

be an averaging operator for cp.

Definition 7. For teT, if cp" (t) e EQ, let <p (t) be

the associated clopen set in the Stone space §. The point teT

is called a plural point if

(a) whenever /3. is positive on subsets of <£~ (t) then

there is a set A e (£ ) n such that A c cp" (t) and

0 < £t(A) < 1.

(b) whenever j3 is not positive on cp~ (t) then for

the part N of cp" (t) on which /3. is negative there

is a subset A € (t )Q such that A c N and 0 < -0fc(A) <
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Let Pi be the set of plural points of T. The measurable
cp

map cp will be called irreducible^ } if for A c S, with ji(A) > C

there is a teT such that 0 ̂  cp"" (t) c A.

Let us recall that since cp has an averaging operator and

since M1"* = L , Theorem 3 says that £t(cp~ (t)) = 1. Also let

us note that as we have defined it, saying that t is a plural

point amounts to saying that <p~ (t) is not an atom for J3 .

An interesting relation between non atomicity and the Darboux

property may be found in [8].

We now make use of our ideas to establish an upper bound

for the variation of the set functions y. in terms of the

norm for U.

Theorem 8. Let cp have an averaging operator U and

assume that

(1) Mp = Lp

(2) p(xs) < OD

(3) t J_s p lura l

(4) cp JLS irreducible

then |y t | (S) < p(Xs>||u|| - 1.

Proof. To simplify the notation in this proof we will replace
A_ 1

the operator cp by £. As noted above j3. (£(t)) = 1. Plurality

of t finds a clopen set A c s such that

1 = /3t(A) + j3t(£(t) - A)
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where O / |3 t(A) 1 / 1 , O ^ /3 t [£( t ) - AI / 1. T?hus, in short ,
A A

there is a clopen set A (which may be either A or £(t) - A)

such that for € > 0, 3t(£) < € + 1/2. Actually there is a

compact set K c K such that 0 < 3t(K) < 1/2 + e and

|/3t(K) | = |3t|(K). If 3 t is positive on £(t), the regularity

of 3. assures the existence of a compact set K c K such that

|3 t(K) - 3 t ( * ) | < € + 1/2 -

Since 0 < 3t(^) < 1, . K may be chosen so that 3t(K) ^ 0.

In addition 3t(K) = 3t(S) + 3t(K) - 3t(X) < € + 1/2, Clearly

3t(K) = |3t(K)| = |3fc|(K) as 3 t is countably additive. If

3. is not positive on £(t), let N be the negative part as

in the definition. Again by the regularity of 3., a compact

set K c N may be obtained so that

|3 t(K) - 3 t ( N ) | < 1/2.

Again it may be assumed that 3t(K) ^ 0 Now

Since -3fc is positive on N, -3fc(K) = |3fc(K) | = ]3tl (K) .

Now the regularity of |3fc| permits us to pick a clopen

set C C S such that K c c and |3fc| (C\K) < €. Incidentally

X eC(S) and p (xJ < OD . A finite pairwise disjoint family of
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clopen sets C. c S\C, i d , may be chosen such that

n
P + . | ( S \ K ) - € < 2J ( P . ( C . ) | .

Of course p(Xc ) < ao .
i

Let a. be scalars such that |cx̂  j = 1 and

| /3 t (C i ) | . Now

(1) | 3 f c | (S\C) - € <

(2) J x c ^ t ^ 3t(K) + ||8t|(C\K) < 0t(K) + e (7 )

(8)
Since the map from t to y. is weak^ continuous (Theorem 3),

it follows that there is some neighborhood V of t such that

for all

(3) |/3t|(£\C) - e

(4) Jxc<Wy < 3t(K) + €

p"If De£ i s the correspondent of C, then /Lt[cp" (V) fl D] > 0.

In fact

cp"1^) n D 3 cp"1(t) 0 D.

The last set corresponds to § (t) n C which contains K. Now

£ > 0 or else £t(
K) = 0 which is a contradiction. Thus

A n CI > 0 and jLttcfT^V) n D] > 0 .
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The i r r e d u c i b i l i t y of cp assures qeT such that cp~ (q) ^ 0

and cp~ (q) c cp~ (V) 0 D. Hence q€V and

|/Bt|(S\C) - e < J E a i X c

€ .

S i n c e q f ^ q j c D , 4 (q) c . c and

Consequent ly £ (C) = 3 (C-^(q) )+ 1, and by (4)
H L

Recall that 0 < |/3t(K) | = |£t| (K) < 1/2 + €. If ^t(K) < O

for sufficiently small € > O, then

e - l| > |/3t(K)| - 3€

If 0 < £t(K) < e + 1/2 for sufficiently small e > 0, then

since

+ e - 1 < 1/2 + 2e
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Thus in al l cases for sufficiently small € > 0

l i S j [C\£(q)J > ||BJ (K) - 3e.

Now

|lu|| > supf|Jfdy I: feu[) = supf 123 (A^c^ | : f = I

A A

a £ -step function, p(f) < GD) .

Picking scalars jS^ \fr±\ = 1 and 3±yq(&^) = \yq(
A±) I w e h a v e

P(S XA • ^±) 1 P(Xe) = P<XS) •
A± 1 b i,

Since S is dense in the power set of S, we have

1 J

Thus

S x c a i ) d 0
q
 + x " 4 e l > TIT)

1 S

It finally follows that |yt|(S) <, p (xs) ||u|| - 1 and our proof

is now complete.

We now have the answer to a rather natural question. What

is the relation between the norm of the averaging operator U

and the norm of U1 as defined above? We quickly obtain it

below.

Corollary 9, Assuming the hypotheses of Theorem 8 and

assuming that cp and cp, admit the averaging operators U
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and U, respectively, then
—•••••"•• 1 — — —

K<£)ll 1 Pll̂ CptXsJllull - U

where B = cl Pi as needed for U,.
— — — cp — — — — — — — — j.

Proof. Following through the proof of Theorem 5 we see

that

(U,(f)) (t) = I fdy .

1

Then pick feC(S), 0 <_ f < 1 with
A A

- €

where e > 0 i s given3 t i s a f ixed point in B^, and

| |0 t | | = |3 f c | (S) . Now i f G i s an open s e t containing t and

i f reG 0 Pi , then the theorem y i e l d s

P(XS)||U|| - 1 > |/3 r | (S)

The weak* continuity of the map that takes r to y (restricting

to G if necessary) yields

p(Xs)||u|| - i >

for all reG. Now for every t e cl Pi it follows that



P(XS)!|U|| - i .

Since

(U^f)) (t) « J fdyt = J fd(3fc
B l B l

i t follows that

py £ Hfll^rpt^Wl - u

This completes the proof.

We are now finally led to the consideration of obtaining

conditions on cp with which we will know that no bounded pro-

jection will exist onto the range of cpe. For this remaining

section we will need to assume that L is reflexive. For
P

this case, as we have already mentioned, L = L and L , = L .
P P P P

We need also to assume that the dual space of L may be iden-

tified with L ,. We have already stated conditions under which

this will hold. Thus from now on R(cpe) may be considered as

a subset of L[L 9 <C] the set of bounded linear operators from
L into the complex scalars <E, or as a subset of L . The
P P

following operators will be needed.

Let U be an arbitrary element of L[L , C]. For E in a

partition t and for feLa., define the operator tL € L[La, Cj
P ti pby

UE(f) = U[(J



32

a n d d e f i n e t h e l i n e a r o p e r a t o r A - e L [ L t, L . I b y
o p p

Ac(f) =

We may also define

If R(cpe) is closed, we will let P be a bounded projection

of L[La
f, €] onto R(cpe) . Thus if P* is the adjoint of V,

then P* is a bounded linear map from La into L .

Asking that R(cpe) be closed is not much of an assump-

tion. Specifically this occurs when cp admits an averaging

operator.

Any linear operator K from La into La may be written

(see [19]) as

K(f) = Jgfdy

for some geL w = L . The important assumption here is that

for a certain class of operators K, g may be chosen in R(cpe)

Theorem 10, Assume the following conditions

(1) L is reflexive with (L a)* = L a

p p p1

(2) R(cpe) JLs closed



(3) p! has the weak leveling property

(4) For every E€£ there is f e G. (T) such that
1 ht J D •

UE(f) = <cp
e(fE), f > (=Jcpe(fE)fdM).

Ihen either cp jLŝ  surjective or no bounded projection P

exists from L (S,E,ji) onto R(cpe) such that

I = P(U)A£ .

In̂  particular either <pe iŝ  surjective or no bounded projec-

a. Q

tion P from L onto R(cp ) exists such that P* commutes

with A

Proof. If cp is not surjective, let P be a bounded

projection of L[L^. , C] onto R(cpe) with P[UAO] = P(U)Afl.

Now

Ihus if h = S -7r->fD then UAp(f) = <cp
e(h),f>. Conse-

£ PlEi> Ei &

quently UA,, e R(cpe) and P[UA&I = UA£. Since p1 has the

weak leveling property, we obtain from [11], that A_(f)

converges to f in the p norm as t gets finer. T?hus

lim P[UAP] (f) = U(f)
£ &



and so

lim P[UAp] (f) = lim P(U)A (f) = P(U)(f) .
£ C & fc

Hence P(U) = U which contradicts the assumption of cpe being

not surjective.

To complete the proof we need show that if P* commutes

with A_ then P[UAP] = P(U)Ap. Now

, f > = <UAe, P*(f*)

7 T E .

£ - ^ 7 F - ) A E ( f ) ]
t ^ ( E i J E i

Thus P[UAe] = P(U)A£.
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Footnotes

(1) This definition could readily be made by replacing C(T)
or L by other spaces of functions defined on T or S

respectively. For example as in [18], the case is studied
for L replaced by C(S) where S and T are compact

Hausdorff spaces.

(2) A few remarks are pertinent here regarding the definition.
It follows immediately that if f is u-measurable and if
geL , with |f | < |g| on (I then p(f) <, p (g) < ao and

feL . If feL and if E = {x: |f (x) | = OD} then the

characteristic function x E satisfies p(nxE) < p(f) < CD

for all neN. Consequently p (xE) = ° which by (i) of

the axioms for p implies X E s ° almost everywhere, that
is, jLt(E) = 0 or more succintly f is finite almost every-
where on 0. In another vein, the axioms do not exclude
the existence of a positive measure set AeE such that
not only P(x?\) == ^ kut a l s o P(XB)

 = 0° f° r a ^ B c A

and B of positive measure. Such sets A are called, in
the literature, unfriendly sets. Using the above argument,
it follows that if A is an unfriendly set then any feL

is identically zero on A. Consequently to investigate
L -spaces, it is worthwhile to remove the unfriendly sets A.

Throughout we will assume that this has been done. It is
shown in [14] that there is a largest unfriendly set A

max
and once removed the remaining set again designated by fi
contains no unfriendly sets and /i(G) is still positive.
(See [17] for additional remarks). It seems more appro-
priate to call such unfriendly sets A above purely
infinite,

(3) That p1 is actually a norm and not a semi-norm follows
from the fact that unfriendly sets have been removed (see
previous footnote on unfriendly sets).
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(4) For any real number p, 1 <£ p < <x> we may define a function

1

norm p for feM+ by Pp(f) = (Jf
Pdy)P. If p = 1 we have

simply the integral of f over Q. A function norm p ^ may

also be defined as follows. For any a, 0 <C a < ao , set

A = {xeft: f(x) > a}. If /bi(A ) > 0 for all a define

p (f) = +ao ; if, M A
a )

 = ° f o r s o m e value of a, define

p (f) = a where a = inf{a: a(A) = 0}. The number
OD { O O ^ OC

p (f) is called the essential upper bound of f (for

p (f) < CD there is f, |M+, almost equal to f, such that

f, is bounded on X with its least upper bound equal to

p (f)). Ilie triangle inequality for these norms p ,

1 ^ p <£ GD , follows from the Holder inequality {see below) .

By L we will mean L for p = p ^ .

(5) In particular if feL and geL f then a Holder inequality

(as in the case L = $?, 1 ^ p ^ ao , and L , = S,^,
- + ~ = 1) holds as
P q

|JfgdM| 1 J|fg|dM£ p(f)p» (g) OD .

Moreover if pf (g) < OD then p1 (g) = sup{ | j fgdjLi| : p (f) <£ 1},

From this it follows that if G is defined for all f€L by

G(f) = JfgdM

then G is a bounded linear functional on L and ||G|1 = p! (g)

Consequently L , is isometrically and algebraically embedded

in the first Banach dual sp

a closed linear subspace of

in the first Banach dual space L* of L 9 that is, L t is

#
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(6) TTie unsubscripted J will always designate integration

over the whole space.

(7) It should be emphasized that |£.| while referring to the

variation of 0. as a Borel measure coincides on £ with
*- c

the variation of 3fc viewed as a set function defined by

3t(A) = yt(A) .

(8) Also recall that the simple function £ a-xn and charac-
I u ±

teristic function x m a Y ^ e identified with corresponding

elements in L (S,L, jx).
(9) It is clear that its name comes from the fact that if f

is of absolutely continuous norm then for every e > 0
there is a 6 > 0 such that /i(E) < 6 implies P(fXE) <

 €*

If L = £ p for any p, 1 < p < OD then every f^L
D
 i s

of absolutely continuous norm. However for L = i 0 0 for

Lebesgue measure \i on TR , the only function of absolutely

continuous norm is the null function. On the other hand

if L = 1^° for discrete measure ji on N, then these

functions are just the sequences converging to zero, that

is the elements of the subspace c .

(10) The significance of L lies in the fact that it is

exactly the inverse annihilator of the closed linear sub-
space L* (of L^) of all singular bounded linear

p, s p

functionals on L . In turn L£ is also the complemen-

tary closed linear subspace obtained when L , is considered

as a closed linear subspace of L* as discussed in the

previous footnote (see [19], Chapter 15).
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(11) If p is absolutely continuous and if p has the weak
Fatou property then p has the stronger (sequential) Patou

property. All of the above results for L a may be found
in Chapter 15 of [19]. p

(12) This is defined as a subspace of L such that for each

xeL there is a unique xQeM such that p(x-xQ) = rain{p(x-y):

yeM).

(13) For example in [18],(where the author studies the existence

of some projections from C,(S) onto the range of cpe) , it

was assumed that cp be continuous and that S and T both

be compact. In such a situation cpe is always an isometric

embedding induced by cp. It was shown that an averaging

operator for cp exists if there exists an averaging operator

for cpn where cp̂  is the restriction of cp to a certain

closed subset F of S and if there exists an extension

operator 0 from a certain subspace § of C(F) into C(S) •

See also [4], [5], [6], [12], and [18]. The analogy of course

with our work, is that we have under investigation, the exis-

tence of projections from L (S,£,jx) onto R(cpe) . Results

for the historically interesting L (S,E, jbO case are herein

obtained.

(14) By CB we mean T\B.

(15) As pointed out previously this is a reasonable assumption.

The Orlicz spaces L = L^ with A2 condition have this

property (see [15]).

(16) Our measure theoretical concept has its topological analogue

as the following: The continuous map cp from the topologi-

cal space S onto the topological space T is irreducible

if for every non empty open set G in S there is a point

t€T such that 0 fi cp" (t) c G.

(17) However as we will see later (in Theorem 6 and Proposition 2)

S is not "as arbitrary as11 T. Of especial interest are

those S which are extremally disconnected compact Hausdorff

spaces. They help in considerably reducing the study of

more general S.
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(18) Any appropriate M(T) will do (dependent on the topological

structure of T, naturally) just as long as the point mass

6. e M(T) . Of course 6. e M(T) if and only if the point

evaluation map §. from C (T) into the scalars, defined

by £t(
f) = f(t)j is continuous.
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