LINEAR DIFFERENTIAL EQUATIONS
WITH DELAYS. EXISTENCE, UNIQUENESS,
GROWTH, AND CQMPACTNESS UNDER
NATURAL CARATHEODORY CONDITIONS
by
Charles V. Coffman and

Juan Jorge Schiffer*

Research Report 73-8

April, 1973

*The work of this author was partially supported by NSF Grant

GP-33364X.

‘73

MAY 3

T LIRRARY
CARNERIE-MELLEN BRIVERSITY



LI NEAR DI FFERENTI AL EQUATI ONS W TH DELAYS. EXI STENCE, UNI QUENESS,

GROWH, AND COVPACTNESS UNDER NATURAL CARATHECDORY CONDI Tl ONS

by Charles V. Coffman and Juan Jorge Schéffer

1. | ntroduction.

A typical description of an initial-value problem for Iinear
retarded differential equations "under Carathéodory conditions" m ght
run roughly as follows: for given h >0 and positive integer n,

£([-h,Qq, Rn) is the usual space of continuous functions;

<
F: BI- x C- »Rn is nmeasurable in the first variable and |inear and

continuous in the second, and satisfies an inequality of the form

(1.1) HIHt, V)| £ cp(t)sup||v(s)]]
SSEVJ

where (p is a fixed locally integrable function. For each contin-

uous function u pdefined on an interval containing [t-h,t] and

with values in R, ut e C denotes the "slice" of u between

t-h and t “"transplanted" to [-h,0]. Then the initial-value

problemwith the initial datum v € T and gi ven "non- honogeneous

term r (a locally integrable function with values in R ) reads
s 2

(1.2) ii(t) = F(t,u) +r(t), t £t u =v
t 0 to

(see for instance [2; p.30], adapted to the linear case). Under
these conditions, existence and uni queness theorens, and proposi-
tions concerning the growh of solutions (depending on cp and r)
can be proved in the usual way.

It seens to us that these conditions are somewhat artificial;
nost especially (1.1), which inposes on F a "narrowness" in its
dependence on v that appears little justified. A bit less artifi-
cial is the requirement that the right-hand side of (1.2) depend

precisely on u , rather than merely being independent of u away



from [t-h,t], a distinction that nmight - under measurability con-
ditions that preclude pointw se verification of (1.2) - be signifi-
cant a priori. We therefore believe it useful to investigate how
much of the theory will remain if "natural Carathéodory conditions'
are inposed.

By "natural Carathéodory conditions" we mean, beyond the Iine-
arity and the non-dependence on the future, merely the requirenent
that the derivative be equated to a locally integrable function, plus
the weakest possible |ocal boundedness condition on the dependence of
this locally integrable function on the presunptive sol ution. For
greater generality, we consider functions defined for all tinme, past
and future, and delays that nay be unbounded; in Section 5 we denon-
strate the reduction of a nore conventional situation to a specia
case of this one.

We thus assune given a "nenory" M a linear mapping transform ng
continuous functions into locally integrable ones in such a way that
Mi and M agree on ]-°°1] if u and v agree there (non-depend-
ence on the future), and consider the equation
(1.3) d+ M1 =1 t >t
where u is specified on ]-°°t d and r is locally integrable. The
| ocal boundedness condition we inpose states, in effect, that there
are everywhere intervals [a,b], sufficiently small, such that M maps

a bounded set of continuous functions vanishing outside [a,b] into a

set of functions whose Ll-norn1mhen restricted "o [a,b] is bounded

P

(and not necessarily small, a priori, for small intervals). Nothing is
assuned about the behavior of the transforns outside [a,b], nor about

the action of M on other continuous functions (see Section 3).



Under these weak conditions the initial-value problem (1.3)
always has a strongly unique solution (Theorem 4.4). As a bonus,
R" may be replaced by any Banach space E without modifying the
proofs; these rely on nothing more exotic than the Banach Contractive
Mapping Principle.

If one imposes somewhat stronger and uniform boundedness con-
ditions on M, one obtains the usual exponential bounds on the
growth of the solutions (Theorem 4.6).

In Section 5 we specialize to the situation in which Mu and
Mv agree on an interval [a,b] if u and v agree on [a-1,b];
i.e., the memory recalls nothing beyond a delay of 1, In this case
we have the usual "transition operators" U(t,t ) that map the
slice on [t

-1,t of a solution of the homogeneous equation into

0 0]

the slice on [t-1,t] of the same solution.

In Section 6 we show that, under the conditions guaranteeing

bounds on the growth of solutions, the transition operators U(t,to)
for t 2 td+1 are compact if E 1is finite-dimensional, This section

appears to require results in functional analysis slightly less ele-

mentary than those used in the rest of the paper,

2, Notation and terminology.

Throughout this paper, E shall denote a real or complex Banach

space; the norm in E 1is denoted by ||

The domain of most functions we shall deal with in Sections 3
and 4 is R, the real line, which we suppose provided with its usual
metric topology and Lebesgue measure, An interval is a connected sub-
set of R with more than one point. The notations [a,b], ]a,b],

[a,»[, etc., are used to denote specific intervals,
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the linear space of all continuous functions

the Banach space of all bounded continuous

:hthe norm ] f| =sup||f(t)]]. W al ways de-
+eR

i.(E) by £.

the linear space of all (equival ence classes

asurable functions f: R->E that are Bochner-.

>act interval; and by ME) the Banach space

-rt—’rl . )
ch | EL = sup [f (s)||ds <», with this su-

’

~—

e L(E) agree on a neasurable subset S of R
if the restrictions to S are equal (nodulo

E), its support , supp f, is the conplement

jubset of R on which f agrees with 0; in

(B then supp f is the closure of {t e R

3. Memories.

;pace E be fixed. A memory is a linear mapping

that: _if t e R and _if wuv e K(E) agree cm

——

]-°°,t]; equivalently: _if u e K(E)

agree on
, then supp(Mi) c [t,»].

' M and each compact interval [a,b] we define

native number
>pb
!

N

;a,b) =supd || (M) (s)||ds: u e £ suppuc [a,b]f;
likely®» we omit mention of the memory M and
definition obviously implies

)
% ko(a,b) if [c,d] c [a,b].



3.1, Lemma. Let the memory M and the interval [a,b] be given.

Then
(3.3) ko(a,b) = sup{f:H(Mu)(s)Hds: uex supp u C:[a,w[},
and &ﬁﬂ;ko(a,t) = ko(a,b).

Proof. Denote the right-hand side of (3.3) by kl(a,b). Since ob-
viously ko(a,b) s k,(a,b), and since t+ ko(a,t) is isotone by
(3.2), it will be enough to prove this: for every number k < kl(a,b)
there exists t, a < t < b, such that ko(a,t) 2 k.

Let such a number k be given; we may choose a fixed u e ¥
such that supp u c [a,»][ and IbH(Mu)(s)Hds > k. Since Mu e L(E),
there exists ¢, a < c¢ < b, such ihat
(3.4) f:ll(Mu)(s)uds 2 k.

Choose c¢ in this manner, and choose t, a <c < t < b. We may select

v € & such that v agrees with u on J]-»,c] and with 0 on

[t,o[. Then supp v c [a,t] and, since M 1is a memory, Mv agrees

with Mu on ]-o,c], Using (3.4) and the definition of ko(a,t), we find
ky(a,t) 2 I:H(Mv)(s)nds 2 JF:H(MV)(S)”ds = J:”(Mu)(s)”ds 2 k,

as was to be proved.

3.2. Lemma. Let the memory M and the interval [a,b] be given,

If ko(a,b) < o, then -&iﬂoko(t’b) = ko(a,b).

Proof., Assume ko(a,b) < o, Since tw ko(t,b) is antitone by
(3.2), it will be enough to prove the following: for every number
k < ko(a,b) there exists t, a < t < b, such that ko(t,b) 2k,

Let such a number k be given; we may then choose a fixed u € ¥
such that supp u < [a,b] and fbH(Mu)(s)Hds > k, Since u 1is contin-
uous and u(a) = O, we may choosea ¢, a < c <b, such that

b
ky(a,b) - u(t")|| € j;H(Mu)(s)Hds - k for all t' ¢ [a,c]. We further




choose t, a <t <c <b, We may then select a continuous function
®: R = R such that 0 S ¢ £ 1 and such that ¢ agrees with 0 on
]-=,t] and with 1 on [c¢,»[. Then supp(u - gu) C [a,c] < [a,b];
therefore
(3.5) f | ((u-gu)) (s |lds S K (a, b)-|u-qpu| ko(@,5) ssupllu uce)) €
1 | 1w) (s)[|ds - k.
Now ¢u € ¥ and supp(gu) C [t,b]. Since M 1is a memory,
supp(M(gu)) < [t,»[; from (3.5) and the definitions we then conclude
b
k S ja||(M(¢u))(s)||ds = KH(M(gpu))(s)“ds S ko (t,b),
as was to be proved,

3.3. Lemma. Let n be a positive integer and let (ai),

i=0,...,n, be a strictly increasing sequence in R. Let the memory

M be given, Then
n

\' <
(3.6) Zko(ai_l,ai) S 2k (ag,2,) .
2]
Proof. On account of (3.2) there is no loss in assuming, as we

do, that kO(aO’an) < »; hence ko(ai-l’ai) <o, i=1,...,n, Let
€ > 0 be given, By the definitions, there exists a sequence (ui)
in ¥, i =1,...,n, such that

3.7) supp u, c [a, ], i=1,...,n,

i-1°2
i .
6.8 [} lew)elds Zrag e e, =L,
l_
We construct, by induction, a sequence (Vi) of functions,

i=1,...,n, such that, for each i,

(3.9) v, € ¥ and supp vi c [a ,ai],

(3.10) jaJ law)(o)llds 2 5kp@a; 1,20 -¢,  1S3Si
aj_l 1

Set v, = 0. Let k, 1 S k S n, be given and assume the v, con-

structed so as to satisfy (3.9), (3.10) for all i, 1 £ i<k, If

k 1
j:k lH(M.vk_l)(s)“ds 2 ko8 _1,3), we set v, = Vi1 and (3.9),



(3.10) indeed hold for i = k too., If, on the other hand, this in-

equality does not hold, we set Ve = Ve +u . By (3.7), (3.9),

supp v, ; c:[ao,ak_l] (or =¢ if k = 1) and supp u c:[ak 18 ];

it follows that v € ¥ and (3.9) is satisfied for i = k too,

Since v, and v,_1 asgree on ]—w,ak_l], so do My, and MV, 13

thus (3.10) holds for 1 § j < i = k, Finally, (3.8) and the assump-

tion on v, , imply

X llowp o)lias
ak-1

n

jak ”(Muk)(S)HdS - I:E 1H(ka_l)(s)nds z

2k (a

1
k-122K) - %0 (@103 = 7K@ 153y - €,

so that (3.10) also holds for j =1

k, and the induction is complete,

From (3.9), (3.10) with i = n we obtain

%z ko(aj_l,aj) - ng S 3\_" j “(MVn) (S)“ds = J:ZH(MVn)(S)”dS <
" s ko(ao,a ).

Since € > 0 was arbitrary, the conclusion follows.

3.4, Theorem. Let the memory M, the interval [a,b], and the

positive integer n be given, There exists a sequence (ai),

i=0,...,n, such that
(3.11) a=a, < a; < vee < a = b,
-1 .
(3.12) ko(a; 1,a;) S2n ky(a,b), i=1,...,n.

Proof. If ko(a,b) =0 or ko(a,b) = o, every sequence (ai),
i=20,...,n, satisfying (3.11) will also satisfy (3.12) (use (3.2)
in the former case), We therefore assume that 0 < ko(a,b) < o and
set p = 2n-1ko(a,b), so that 0 < p < =,

For each t € [a,b] we set T(t) = sup{s € [t,b]: s > t,
ky(t,s) € p}, so that t S 7(t) Sb. By (3.2), 7: [a,b[ = [a,b] is

isotone, By Lemma 3.2, the function ¢t » ko(t,s): [a,s[ = R is

right-continuous for each fixed s. It follows at once that the



isotone function T is right-continuous, From Lemma 3.1 we obtain,
on the other hand,
(3.13) ko (£,7(8)) Sp if T(t) >t.

We construct the sequence (ai) - perhaps terminating, perhaps
not - by setting a, = Ti(a), i=20,.,... (exponents indicate itera-
tion) and continuing so long as Ti(a) < b, From the definition we
have a = a, pS a; S .... The sequence ends at i = k if and only if
T(ak) = b; this may happen even for k = 0. On the other hand, if
a1 T for some k, the sequence is constant from i = k on,
and does not end at all,

We intend to show that the sequence does indeed end, Let k 2 0
be some index reached by the sequence, so that Tk(a) < b. Since T
is isotone and right-continuous, there exists a sequence (bi)’
i=0,...,k, such that

bo = a; bi >rby D, =100k bk <b.

From the definition of 7 it follows that a = bO < b1 < e < bk <b

and kO(bi-l’bi) >p, i=1,...,k. Lemma 3.3, (3.2), and the definition
of p then &mply that either k = 0, or k >0 and

kp <:_Z:k0(bi_1,bi) S 2k (by,b,) S 2k (a,b) = np.
In either c;;;, we conclude that k < n. Since k was an arbitrary
index reached by the sequence, the sequence must end at some index
k', 0 S k' <n, But then a=a,<a, < ...<a , 6 <b and T(a,,) = b.

0 1 k!

Wz choose a_ arbitrarily so that a

akv+1"": n
Thus (3.11) holds. We have a, = T(ai-l) > a,

K < ak,+1 < oo < an =b,

i=1,...,k', and

-1’

b = 7(a,) >a,; therefore, by (3.13) and (3.2), k,(a; ;,a;) s p,

i=1,...,k', and k. (a, ;,a;) s k,(a, ,,b) Sp, i=k'+l,...,n; this

proves (3.12).



The preceding analysis suggests the formulation of the following
condition that a menory M may have:

(M): For every t e R there are tht" e R t
that ko(t',t), ko(t,t") <«

3.5. Corollary. Anenmory M satisfies (M) 1f and only j™ there

exists, for each nunber p >0 and each compact interval [a,b], a.

finite sequence (a.]), i =0, ...,n, such that a=ag< s <a,=b

and “o(%.1,%) *p, *- =1,...,n

Proof. The "if" part is a trivial consequence of (3.2). If M
satisfies (l\/h) and [a,b] is given, an obvious compactness argunent
inmplies, with the help of (3.2), that there exists a finite sequence
(cy), j =1,...,m say, such that a=§ <c°<g =b and

"g’\cj_*i >CJ‘) A 37 1,...," The conclusion follows by Theorem 3. 4.

4. Sol utions.
When attenpting to define and work with solutions of equations
such as (1.3) under "Carathéodory conditions" it is nost convenient
to refer to the corresponding integral equation, as we now do.

Let the Banach space E and the menory M be given and fixed

inthe sequel. If r e L(E) and a e R are given, a solution of

(4.1)a u+ M =r, t £a

is defined to be a function u e K(E) that satisfies

(4.2);_, u(t) = u(a) - f (M-r)(s)ds, tza

It is clear that if u is a solution of (4.1), , and a' ~ a, then
L%

u is also a solution of (4.1), .
| 2J
Qur principal aimin this section is to prove a strong existence
and uni queness theorem for the "initial-value problent for the equa-
tions (4.1), , under the very nild condition (M) on the menory M
LaJ 0
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4,1, Leima, Let f € L(E) and the interval [a,b] be given,

and assume that ko(a,b) < 1. There exists a unique function y € E(E)

such that y agrees with O on ]-»,a] and with a constant on

[b,o[, and such that

t
(4.3) y(t) = I (£-My) (s)ds, a<tSh.
a
This function satisfies
-1rb
(4.4) Iyl € (1 - ky(@,0) 7| [[£¢s)]lds.

Proof. Let ﬁ be the subspace of aE(E) consisting of those
functions that agree with O on ]-»,a] and with a constant on
[b,o[. A function y € é satisfies (4.3) if and only if it is a
fixed point of the affine mapping F: A = A defined by

rnln {b,t}

(£-Mz) (s)ds, t eR, z €A,
mln{a t} ~

(4.5) (Fz)(t) =
But such a fixed point exists indeed, and is unique, for F is
contractive: by Lemma 3.1,
(4.6) |Fz' - Fz] < fbH(M(z’—z))(s)Hds s ko(a,b)-lz' -z}, z,z' € é,
and ko(a,b) <1 by a:sumption. By (4.5), (4.6), the unique fixed
point y satisfies

Iyl = IFyl < IFy - FOl + IFOl < k (a,b) -1yl + jin(s)Hds,
and this implies (4.4).

4,2, Lenma. Let f ¢ L(E) and the interval [a,b] be given,

n, such that

0,...,

and assume that there exists a sequence (ai), i-=

a=ag < e <a = b and ko(ai_l,ai) <1, i=1,...,n, Then there

exists a unique function w_ € C(E) such that w_ agrees with O on

0

0

]-»,a] and with a constant on [b,»[, and such that a function w e K(E)

agrees with O on J]-»,a] and satisfies

1IN

t
%.7) w(t) = j (£-Mw) (s)ds, a<tsh
a

if and only if w agrees with w, on ]-=,b].
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Proof .\ define the sequence (y.l), i =1,...,n, in C(E) by
i nduction, as follows: by Lemma 4.1 there exists, for each i =1,...,n,

a uni que y.l e C(E) that agrees with 0 on ]-°°,a.l_-1] and with a

constant on [a.l, »[, and satisfies

L
(4.8 y ) =F (f-MJ7y))(s)ds, & .stsga..
W set Wo = M y. and claimthat this function satisfies the con-
JL-1 |
ved :
el usi on. | ndeed, W0 e C(E) agrees with 0 on ]-°°,a and with a
constant on [b,»], since all y. have these properties. W observe
X : A
0 PR | 1 0 L" 1
that w and \W*'y. agree on ]-°°,a], hence Mv and M %'y.)
agree on the sane interval f&r i =1,...,n; thus (4.8) inplies
i ~ . v = = )
(4.9) y (t) = f (f-Mv )(s)ds, a <t <a io=1,....
~ 0
Let w € K(E) be given. Suppose that w and w agree on
0
]-00"b] (hence w agrees with 0 on ]-»,a]); then Mv and Mw
k-1 k
also agree on ]-°°,b] . Let t € [a,b] be given; then t e [a -,a ]

for some index k, 1~ k"™ n; from (4.9) and the assunptions on the
y. we find

1 |r_..|1 -
Wt) =w(t) = ? yAWw" yAv T Zyi(t) = E‘yi(ai) () +0-

= N (1-Mg(s)ds +3° ‘foM@(s)d;:Jt(f-Mvc)(s)ds =
l?‘ai—l - ak-1 -a
= §(1-M)(s)ds,

o] thét indeed w satisfies (4.7); in particular, so does W oitself.
Assume conversely that w agrees with 0 on ]-°°,a and satis-
fies (4.7); since W has the same properties, we my set z =w - wo

and find that

t
(4.10) z(t) = - Jda(M)(s)ds, a™t"bh.
W claimthat z agrees with 0 on ]-00"Y, i =0,...,n. The claim

is true for i = 0; suppose it is true for i = k-1 for a given Kk,
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1 £k”™n Define z, e C(E) to agree with z on ]-°°,a, ] (hence
with 0 on ]—oo’\ak_i]) and with a constant on [a,K,»[ . Since Mzk
and Mz agree on ]—oo’\g,], (4.10) implies

_ t
Zk(t) =]
a

-

(MzZ)(9)ds, a1 =t = &
JL

by the uni queness conclusion of Lemma 4.1, z,* =0, and the claimis

proved for i = k. Hence it holds for all i, and in particular
Z =W - Wy agrees with zn=0 on ]-°°,aJ = ]1-°°,b]; thus w and

W, agree on this interval, as was to be proved.

4.3. Scholium The existence of the required sequence (a.l) is
guaranteed by Theorem3.4 if ko(a, b) <» In this case we can esti-

mate the size of Woi W shall try to do this as precisely as pos-

sible. Set = ko(a, b) <» and choose a positive integer n > 2k0.

kO
By Theorem 3.4 there exists (a.l) such that a = 24 < e <a = b
a U ~1
and k”.,( o0 l) A 2n k0 < 1. Then we construct (yi) and w. as
in the proof of Lemma 4.2. By Lemma 4.1 and (4.8),
i-
- -1 :
Iyl S 2ok (J".l {1f(s)]1ds+ V= p* [[(M )(s)[]ds), | =1,...,n,
ai-i N Na, - J

and hence

Vivt A (20 )" T llds + )T P [y o flas)

i

(-2a”ti)™t i (s)iids+ yjlj:; LEAIOTES
IEL I

(-2 ) f(S)lds + Y FIMy,) oyldey S
Ao 1

JLJa
=l :

-
-

b el
-1 -1
S (-2 kT IfOlds + kg )1y D, k=1,...

y. satisfies

I~ =

It follows from this sequence of inequalities that W, =

(vl & (M kj-A-Znm ) 1 E(s)] | ds:
Y] a.
we note that this inequality holds for every positive integer n > 2k,.

-

BdAT LIGRARY
CARNEIIE-MEUtli  IKIVERSITY
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4.4, Theorem, Let M be a memory satisfying (Mo). For every

a € R there are linear mappings P(a): K(E) = K(E) and

Q(a): L(E) = K(E) such that for every v € K(E) and r € L(E):

(1): u ="P(a)v+ Q(a)r is the unique solution of (4.1)[a] that
agrees with v on J]-w»,a];

(2): if u e E(E) agrees with v on ]-»,a] and satisfies

t
(4.11) u(t) = u(a) - jv(Mu-r)(s)ds, astsh,
a
for a given b > a, then u agrees with P(a)v + Q(a)r on ]-=,b].

Proof. Let a, v, r be given, and let v_ € K(E) be the function

0

that agrees with v on ]-«,a] and with a constant on [a,»[; set

f=r - Mv0 € E(E). For given b > a, a function u € E(E) agrees

with v (hence with vo) on ]-»,a] and satisfies (4.11) if and

only if w =u - v, agrees with O on ]-»,a] and satisfies

t t
w(t) = u(t) - v () = u(t) - u(a) = f (£-Mu) (s)ds = I (£-Mw) (s)ds,
a a

tShb

[L7AN

a b

that is, (4.7). By Corollary 3.5, the assumptions of Lemma 4.2 are
satisfied; the conclusion of the theorem then follows from that
lemma, from comparison of (4.11) and (4.2)[a], and from the line-
arity of the problem.

4.5, Scholium, P and Q satisfy certain functional equations.
Indeed, let a,a' ¢ R, a' 2 a, and Vv ¢ E(E), r e E(E) be given, and
set u = P(a)v + Q(a)r, Since u 1is a solution of both (4.1)[a] and
(4.1)[a,], and of course agrees with itself on J]-»,a'], we have

P(a)v+ Q(a)r = u = P(a'")u+ Q(a')r = P(a')P(a)v + (P(a')Q(a)+Q(a'))r.
‘Since v, r were arbitrary, P and Q satisfy the equations
(4.12) P(a) = P(a")P(a), Q(a) = P(a")Q(a) + Q(a'), aSa',

An interesting case to which Theorem 4.4 is applicable is that

BNNT LaRARY
CARNEGIE-WELLEN WNIVERSITY
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in which the memory M satisfies the following condition:

(M): The restriction of M to C(E) is a bounded linear mapping

M.: C(E) = M(E).
c L ~

We note that if M satisfies (M), then
(4.13)  ky(a,b) = Ml if 0 < b-a €1,

and therefore M also satisfies (MO).

4,6, Theorem, Let M be a memory satisfying (M). Then the con-

clusions of Theorem 4.4 hold and there exists a number ¢ > 0 such

that

[VAN

l|(ayv) (ty|| S eOlE-a+1]

gggnv(s)“; VvV € E(E)
t
l@Qyr) )| s ||MCH'1(e0-1)fae°[t‘s]||r(s)||ds, r e L(E)

ot
n
®

(4.14)

where [ ] denotes the "greatest-integer" function,

Proof, 1. We claim that the conclusion holds with

(4.15) g = 1og(z ||MQH1(1 N zn'1||MC||)‘i),
i=0 ~

where n 1is an arbitrary fixed integer greater than ZHMC

~

We use the following temporary notation: if y € K(E) and
t e R, ve set Iyl = swlly(e)] € .

2. Let a',b' e R, 0<Db'-a’' S 1, and v € K(E), r € L(E) be given,
Then u = P(a')v + Q(a')r is the unique solution of (4.1)[a,] that

agrees with v on J]-w,a'], We let v_ € K(E) be defined to agree

0]

with v om ]-»,a'] and with a constant on [a',»[, and set f =
=r - ?VO’ w=u- Zq. Using (4.13) and |v0|b, = |v|a, , we find
jﬁ,llf(s)llds < [ dlavp @l + flr@lhds = ugliiv,, + ﬁ,llr(s)”ds.

al
By the argument of the proof of Theorem 4.4 and by Lemma 4,2 and
Scholium 4.3, w agrees on ]-»,b'] with a function Wy € C(E) that
' ~s
satisfies Iwol s cjb'Hf(s)Hds, where we may choose c¢ = HMC“—l(eo-l)
a ~

on account of (4.13), (4.15). Therefore



15

|P(a)v + Qa)r|y, = [ule < [Volo, + [w| 7
<IVla + [IME-(X 1) ([IMI]]V]a + ]r(s)]]ds) =
€] L+ e () ds.
Since v, r were arbiﬁtrary and P(a'), Qaf) are linear,
(4.16) I1P(a')v],  %edvl _, , |Qa)r| ‘-“IIIVLH"l(eO-I)J'pblflr(S)Ilds,
0<b'-a'" ~1, v EK(E), r €L(E) . ’
3. Let at eR t>a and v eK(E), r €L(E) be given. Ve

apply (4.12) and (4.16) successively to a = t-1,...,t-[t-a],a

and b* =1t,...,t-[t-a]+l,t-[t-a], and find

1p¢a)y | ’g["é“lﬂ, R
[Qayrl. A M) (3 <M A (s) [l + et METEA [|rg)][ds) s

and (4.14) is an inmedi ate consequence.

5¢ Short nenori es.

In this section we sketch a typical situation that can be reduced
to a special case of the existence and uni queness theorens presented
earlier.

W again assune that the Banach space E is given. For every
a e R and every function f defined on a subset of R containing
[a,»][, f, , denotes the restriction of f to [a,» . For each a e R
K -i(B, ¢ -.(B, L . -.(B, M -, (E) denote the spaces consisting of the
restrictions to [a,» of the elenents of K(~E)’ Cf(vE)" LLE), hﬁE),
respectively. The second and the fourth are Banach spaces with the

obvi ous nor ns.

E shall denote the Banach space C([-1,J,E) of all continuous

Lad

functions v': [-1,0] «* E, with the norm 0"i = sup ||v'(s)||. Let
s €(1,0]

a € R be given. For each t ~ a we define the slicing operator

n(t): K (E) -+E by
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(I(t)u')(s) = u'(t+s), -1$s50, u'e Krao11®s

so that T[I(t)u' is the "slice" of u' between t-1 and ¢,

transplanted to [-1,0].

A short memory is a linear mapping M': E[_l](E) - L[O](E)

such that: for each interval [a,b] c [0O,®[, if u',v' € K[_1](E)
agree on [a-1,b], then M'u', M'v' agree on [a,b]. This condition
allows us to define, for each a 2 0, a "cut-down" memory

Ml

[a]: E[a-l](E) - 1](E), then

L E as follows: if u' € K
~[a]( ) ~[a—

1

1t = " 1 t = t
u' = u[a_1] for some u (E), and we set M! .u (M

€ K1) (a] EISE

it follows at once from the definition of a short memory that this
construction does not depend on the choice of wu", and satisfies

(5.1) a'2ag20, u'e 5[3_1](E).

1 1 = 1 '
Mar1¥lar-1) T Ma)*Vary
For each short memory M' and each interval [a,b] c [0,x]
we may define
ké(M';a,b) = sup{fb”(M'u‘)(s)Hds: u' € C[ 1](E), Ju'l $1, supp u' [a,bi}
a ~L=

and state conditions on M' analogous to (Mo) and (M):

(M)): For each t >0 there exists t', O S t" < t, such that

ké(t',t) < o, and for each t 2 0 there exists t" >t such that

ky(t,t") < .

(M'): The restriction of M' ¢to C[_1](E) is a bounded linear

mapping M': C E) = M E).
mapping C ~[-1]( ) ~[O]( )
We assume the short memory M' and the function r' ¢ L[O](E)
given, and consider the equation
5.2 a' o+ M' Ju' =}
G2 (q) fa] * Mfa) [a]
for each a 2 0: a solution of (5.2)[a] is defined to be a function

u' ](E) such that

€ Kla-1

t
(5.3) [, (D) =u'@ - [ (A () - ri(s)ds, € Za.
a
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W now come to the existence and uniqueness theorens for the

initial-value problemfor equation (5.2), ,.
L?J

5.1. Theorem Tet M bBe a Short menory satisfying (MY . For

-

every a *? 0 There are |Tnear mappings P (a) : E=-* R1®14(p and

d(a): 10 (p -~e-1) (5 TsuchThat Tor every v GE and ' 6 rl(p

(1): u* =P(a)v' +Q(a)r' JS The Unique Solution of (5.2) 2}

That satisfies Il(au’ =v';
(2): T u GH®B 4§ (B, Tsatisfies ()" =V and
(5. 4) u'(t) =u(a) - Ja((Mgu')(s) - r'(s))ds, a<tEb

Tor @agiven b >a, Then u' Tagrees wth P'(a)vi + Q(a)r' £n
[a-1,b].

Proof. Let a =? 0 be fixed. Define M K(E) -* L(E) as fol-
lows: for each u eﬂIS(E), Mi agrees with 0 on ]-°°,a and
with M looon oof . it is imediate fromthe definitions

MrafYia-m [, oof
that M is a nenory and that it satisfies (Ma.

Let v\ €E and r' GL,

~[0'J(E) be given. Define v e K(E)

to agree with a constant on ]-c»a-l] and with a (possibly dif-

ferent) constant on [a 00" and to satisfy v(a+s) =v'(s), s G[-1,0];

and define rGL(E) to agree with 0 on ]-»0 and with r° on

[0,=[.

For each u GK -, (E), let u GK(E) be the -function that

agrees with a constant on ]-«*a-1] and with uf on [a-l,»[. It

is then a matter of direct verification that uf satisfies

n(a)u" =v' if and only if u agrees with v on ]-°°,a]; that

1

u- satisfies (5.4) for a given b if and only if u satisfies

(4.11) for the same b; and hence, by inspection of (5.3), 2 and

L™

(4'2)[_""3’ that u' is a solution of (5.2)LraJ if and only if u is
a solution of (4.1).

2l
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The conclusion now follows from Theorem 4.4, P'(a) and
: 1 = 1 [ -

Q'(a) are defined by P'(a)v' (P(a)v)[a—l]’ Q'(a)r (Q(a)r)[a-l]’
where v and r are defined as above and depend linearly on v',
r', respectively,

The linear-mapping-valued functions P' and Q' also satsfy
functional equations, derived from Theorem 5.1 as (4.12) follows
from Theorem 4,4, The key observation is that if a' 2a 2 0 and
u' 1is a solution of (5.2)[a], then u! is a solution of

[a'-1]

(5'2)[a']’ The functional equations are

N(t)P'(a) = N(t)P'(a')l(a')P(a)
(5.5) t2a'2azo,
ne)Q'(a) = M(e)(P'(a')ll(a')Q'(a) + Q'(a'))

We introduce the transition operators U(t,t.): E = E de-

~

fined for all t 2 20 by

o

(5.6) U(t,t5) = T(E)P'(t,).

O)

The significance of these operators and the justification of the

name we have chosen are explained by the following result,

5.2. Corollary. Let M' be a short memory satisfying (Mé).

Then the transition operators satisfy

= = } 2 > .
and if a 20 and u' is a solution of (5'2)[a] with r' = 0 (the

homogeneous equation), then

" (5.8) M(e)u' = U(t,c)(t Hu’, t2t. 2a.

Proof. U(to,t =1 follows from (5.6) and Theorem 5.1,(l). The

o’
rest of (5.7) follows from (5.6) and (5.5). If u' is a solution of
the homogeneous equation (5.2)[31, then u' = P'(a)ll(a)u', and (5.8)

follows from (5.6) and (5.7).
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W now exanmine the quantitative results that nay be obtained
when the short memory M satisfies (M).

5.3. Theorem Let M be a short nmenory satisfying (M) . Then

the conclusions £ _ Theorem”J, hold, and there exists a. nunber

al > 0 such that

(5.9) et (@vn ()<t -2V, ve GE
. ] 11 1 I
<’y O | 2] ()] VI oh) bl s, 1o e gm0
t 2a =2 0.

Proof. W use the constructions of the proof of Theorem5. 1.
Since M satisfies (M), the memory M satisfies (M, and
|JI\£L'|| %||g||. We choose the positive integer n > 2|NE|, and define
a® by (4.15) with [IM|| replaced by [[M|]|. If Q is given by
(4.15) with the same n, but without replacenent, we have a " @,
||M||~1(e°-1) NOINe |'|1 Fe' -1) (observe that a depends on a, but

al

does not). We nay therefore apply Theorem4.6 to obtain the con-
clusion, noting that sup||v(s)||] =flv~.

5.4. Corollary. Let M bf a. short nenory satisfying (M) .

Then the transition operators satisfy (5.7) and (5.8), and

(5.10)  ||Wt,to)|| %A[t'tAI]A * %t %O,

Proof. Corollary 5.2, (5.6), and (5.9).

6. Conpact transition operators.

Qur notations and termnology are those of Section 5. It is often
i nportant and useful to know whether certain transition operators are
conpact. W give a strong affirmative result in this direction for
finite-di mensi onal E.

We need sone additional notation. W denote by E- the Banach
‘ll">—1
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space E}([—I,O],E) of all (equivalence classes of) Bochner-integrable
functions g: [-1,0] = E with the norm j?lng(s)nds. It is expedient

to use a separate notation for the slicing operator Hl(t): E[a](E) - El
defined for each a 2 0 and t 2 a+l by

(Hl(t)f')(s) = f'(t+s), -lsss0, f'e L a](E),

{

to distinguish it from [I(t), which acts on a space of continuous func-

tions. We further need the '"Volterra operator" V: E, = E and the

~

"evaluation operator”" W: E = E defined, respectively, by

S
(ve)(s) = |~ s(sNds', 1S5S0, gck
(Wv')(s) = v'(0), 1$sS0, v' eE.
Both are bounded linear mappings, with ”V“ = “W“ = 1, We recall a

useful property of V.,

6.1, Lemma, If E is finite-dimensional, V maps each relatively

weakly compact set in E into a relatively compact set in E,

ggggﬁ. Let g be a relatively weakly compact set in E . It is
relatively weakly sequentially compact (Eberlein's Theorem)., We apply
[1; Iv.8.10 and IV,8,11] - with the obvious adaptation to a space of
functions with values in an arbitrary finite-dimensional Banach space
E - and conclude: for each number € > 0 there exists a number

6 > 0 such that I ||g]ldm < € for all g e Q and all measurable
sets B c [-1,0] w?th m(B) < § (here m denotes Lebesgue measure),
It follows that V(g) is equicontinuous - indeed equi-absolutely
continuous, Since 9, is bounded in El’ V(g) is bounded in E; hence

V(Q) is relatively compact in E (Arzela-Ascoli Theorem).

6.2. Theorem, Assume that E 1is finite-dimensional, and let M'

be a short memory satisfying (M'). Then the transition operator

; 2 =
U(tl’to) is compact for all tO 2 0, t1 2 tO + 1,
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Proof. 1. We show first that U(atl,a) is compact for each
a20. Let a =20 be fixed throughout this part of the proof.

Let vVv' € E be given, and define w' € E[-l](E) to agree
with a constant on [-1,a-1] with P'(a)v' on [a-1l,a+l], and
with a constant on [a+l,»[. Then Jw'] =‘€%€éwﬂ(P'(a)v’)(t)H s

1 1
< max{l]v'[],e0 v} = S iv'l, by Theorem 5.3. Therefore

+1
f1||(ﬂl(a+1)Mfa]P'(a)V')(s)llds = j: H(M['a]P'(a)v')(t)”dt =

+1 '
- [Tlerwn o llae $ pewn S gl S e g,
a 5 = =
We conclude that T = Hl(a+1)Mfa]P'(a): E = El is a bounded

linear mapping. Since E is finite-dimensional, E is weakly
complete and T 1is weakly compact [1; IV.8.6 and VI.7.6].

Let V' € E again be given, By Theorem 5.3, u' = P'(a)v'
is the solution of (5.2)[31, hence of (5'3)[a]’ with r' =0

and T[l(a)u' = v', Using Corollary 5.2, we find

(U(atl,a)v')(s) = (U(at+l,a)ll(a)u')(s) = ([I(a+l)u')(s) = u'(atl+s) =

1 +1+S 1 1 1 1 1 S 1 1 1 1 1
=u'(a) - Ja (M[a]u Y(s')ds' = v'(0) - j-l(ﬂl(&+1)M P'(a)v')(s')ds

[a]

a
Wv')(s) - (VIV')(s), -1 £s s 0,

Since v' € E was arbitrary, we conclude that U(at+l,a) =W - VT,
Now E 1is finite-dimensional, and T ‘is weakly compact; therefore
W has finite rank, and VT is compact by Lemma 6.1. We conclude
that U(a+l,a) is compact,

2. Let now t. 20 and t, = td+1 be given, We have U(tl,t

0 1 O)

= U(tl,tl-l)U(tl—l,to), and these operators are bounded (Corollaries

5.2 and 5.4); by Part 1 of this proof, U(t -1) 1is compact; hence

15
U(tl,to) is compact.
Remark 1. A careful perusal of the proofs of Lemma 6.1 and Theo-

rem 6.2 shows that, under the assumptions of the latter, U(tl’to) is



22

more than compact: the image under U(tl,t of a bounded set in

o

E is not merely equicontinuous, but equi-absolutely continuous.

~

Remark 2. It is almost obvious that U(tl,t ) cannot be com-

0

pact for any non-trivial E, any short memory, and any tO’ t1 if

to S t1 < to + 1; and that it cannot be compact for any infinite-
dimensional E, any short memory, and any tyy £ =t t 1. Further,

12+ L

U(tl,to) is always equal to the non-compact operator W. Thus

nw =

if E in infinite-dimensional, M' = O, and ¢t then
Theorem 6.2 is best possible for short memories satisfying (M').

Remark 3. In Theorem 6.2 the condition (M') may be replaced,
with obvious amendments in the proof, by the weaker assumption

ﬁ&+1

that sup{Ja H(M'u’)(s)”ds: u' ¢ E[-l](E)’ ju'f S 1} <o for
each a 2 0, or, equivalently, that M': E[-l](E) - E[O](E) is
continuous for the obvious Fréchet-space topologies of domain and
codomain, However, this case may also be reduced to the case in
which (M') does hold: once tO’ t1 are given, it is enough to apply
Theorem 6,2 to the short memory M" defined by requiring that M"u'
agree with M'u' oni [0,t.] and with O on [tl,w[, since this

M" satisfies (M').
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