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LINEAR DIFFERENTIAL EQUATIONS WITH DELAYS. EXISTENCE, UNIQUENESS,

GROWTH, AND COMPACTNESS UNDER NATURAL CARATHEODORY CONDITIONS

by Charles V. Coffman and Juan Jorge Schaffer

1• Introduction.

A typical description of an initial-value problem for linear

retarded differential equations "under Caratheodory conditions" might

run roughly as follows: for given h > 0 and positive integer n,

C = £([-h,O],R ) is the usual space of continuous functions;

F: R x C - » R is measurable in the first variable and linear and

continuous in the second, and satisfies an inequality of the form

(1.1) l|F(t,v)|| £ cp(t)sup||v(s)||

ssEVJ

where (p is a fixed locally integrable function. For each contin-

uous function u defined on an interval containing [t-h,t] and

with values in R , u e C denotes the "slice" of u between

t-h and t "transplanted" to [-h,0]. Then the initial-value

problem with the initial datum v € C and given "non-homogeneous

term" r (a locally integrable function with values in R ) reads

(1.2) ii(t) = F(t,u ) + r(t), t £ t u = v

t 0 tQ

(see for instance [2; p.30], adapted to the linear case). Under

these conditions, existence and uniqueness theorems, and proposi-

tions concerning the growth of solutions (depending on cp and r)

can be proved in the usual way.

It seems to us that these conditions are somewhat artificial;

most especially (1.1), which imposes on F a "narrowness" in its

dependence on v that appears little justified. A bit less artifi-

cial is the requirement that the right-hand side of (1.2) depend

precisely on u , rather than merely being independent of u away



from [t-h,t], a distinction that might - under measurability con-

ditions that preclude pointwise verification of (1.2) - be signifi-

cant a priori. We therefore believe it useful to investigate how

much of the theory will remain if "natural Caratheodory conditions11

are imposed.

By "natural Caratheodory conditions" we mean, beyond the line-

arity and the non-dependence on the future, merely the requirement

that the derivative be equated to a locally integrable function, plus

the weakest possible local boundedness condition on the dependence of

this locally integrable function on the presumptive solution. For

greater generality, we consider functions defined for all time, past

and future, and delays that may be unbounded; in Section 5 we demon-

strate the reduction of a more conventional situation to a special

case of this one.

We thus assume given a "memory" M, a linear mapping transforming

continuous functions into locally integrable ones in such a way that

Mu and Mv agree on ]-°°,t] if u and v agree there (non-depend-

ence on the future), and consider the equation

(1.3) u + Mu = r t > t ,

where u is specified on ]-°°,t ] and r is locally integrable. The

local boundedness condition we impose states, in effect, that there

are everywhere intervals [a,b], sufficiently small, such that M maps

a bounded set of continuous functions vanishing outside [a,b] into a

set of functions whose L -norm when restricted ^o [a,b] is bounded

(and not necessarily small, a priori, for small intervals). Nothing is

assumed about the behavior of the transforms outside [a,b], nor about

the action of M on other continuous functions (see Section 3 ) .



Under these weak conditions the initial-value problem (1.3)

always has a strongly unique solution (Theorem 4.4). As a bonus,

Rn may be replaced by any Banach space E without modifying the

proofs; these rely on nothing more exotic than the Banach Contractive

Mapping Principle.

If one imposes somewhat stronger and uniform boundedness con-

ditions on M, one obtains the usual exponential bounds on the

growth of the solutions (Theorem 4.6).

In Section 5 we specialize to the situation in which Mu and

Mv agree on an interval [a,b] if u and v agree on [a-l,b];

i.e., the memory recalls nothing beyond a delay of 1. In this case

we have the usual "transition operators11 U(t,t ) that map the

slice on [t -l,t ] of a solution of the homogeneous equation into

the slice on [t-l,t] of the same solution.

In Section 6 we show that, under the conditions guaranteeing

bounds on the growth of solutions, the transition operators U(t,t )

for t ^ t o
+ 1 a r e c o m P a c t i f E i s finite-dimensional. This section

appears to require results in functional analysis slightly less ele-

mentary than those used in the rest of the paper.

2. Notation and terminology.

Throughout this paper, E shall denote a real or complex Banach

space; the norm in E is denoted by || ||.

The domain of most functions we shall deal with in Sections 3

and 4 is R, the real line, which we suppose provided with its usual

metric topology and Lebesgue measure. An interval is a connected sub-

set of R with more than one point. The notations [a,b], ]a,b],

[a,oo[^ etc., are used to denote specific intervals.
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the linear space of all continuous functions

the Banach space of all bounded continuous

:h the norm ] f | = sup||f(t)||. We always de-

:(E) by £.

the linear space of all (equivalence classes

asurable functions f: R -> E that are Bochner-

>act interval; and by M(E) the Banach space

:h |£L = sup llf (s)||ds < » with this su-

• L(E) agree on a measurable subset S of R

if the restrictions to S are equal (modulo

E ) , its support , supp f, is the complement

jubset of R on which f agrees with 0; in

(E) then supp f is the closure of {t e R:

3 . Memories .

;pace E be fixed. A memory is a linear mapping

that: _if t e R and _if u,v e K(E) agree cm

agree on ]-°°,t]; equivalently: _if u e K(E)

, then supp(Mu) c [t,»[.

' M and each compact interval [a,b] we define

native number

> pb ^

;a,b) = supJ || (Mu) (s)||ds: u e £, supp u c [a,b]f;

l ikely^ we omit mention of the memory M and

: def in i t ion obviously implies

% kQ(a,b) if [c ,d] c [ a , b ] .



3*1- Lemma. Let the memory M and the interval [a,b] be_ given.

Then

(3.3) kQ(a,b) = supjj || (Mu) (s) ||ds: u e £, supp u c [a,oo[J,

and lim k (a,t) = k (a,b).

Proof. Denote the right-hand side of (3.3) by k-(a,b) . Since ob-

viously k (a,b) ̂  k-(a,b), and since t H» k (a,t) is isotone by

(3,2), it will be enough to prove this: for every number k < k-(a,b)

there exists t, a < t < b, such that k (a,t) ̂  k.

Let such a number k be given; we may choose a fixed u e £

such that supp u a [a,oo[ and ||(Mu) (s)||ds > k. Since Mu e L(E),

a ^

there exists c, a < c < b, such that

(3.4) JC||(Mu)(s)||ds > k.

Choose c in this manner, and choose t, a < c < t < b . W e may select

v e £ such that v agrees with u on ]-°°,c] and with 0 on

[t,oo[. Then supp v c [a,t] and, since M is a memory, Mv agrees

with Mu on ]-»,c] . Using (3.4) and the definition of k (a,t), we find

kQ(a,t) > J ||(Mv)(s)||ds ̂  JC||(Mv)(s)||ds = J^l (Mu) (s)||ds ̂  k,

as was to be proved.

3.2. Lemma. Let the memory M and the interval [a,b] be_ given.

If k (a,b) < oo, then lim k (t,b) = k (a,b) .

Proof. Assume k (a,b) < c». Since t *+ k (t,b) is antitone by

(3.2), it will be enough to prove the following: for every number

k < k (a,b) there exists t, a < t < b, such that k (t,b) ̂  k.

Let such a number k be given; we may then choose a fixed u e T

such that supp u c [a,b] and || (Mu) (s)||ds > k. Since u is contin-

uous and u(a) = 0, we may choose c, a < c < b, such that

kQ(a,b) .||u(t
T)|| ̂  J || (Mu) (s)||ds - k for all tf e [a,c] . We further



choose t, a < t < c < b . W e may then select a continuous function

cp: R -• R such that 0 ^ cp ̂  1 anc* such that cp agrees with 0 on

]-»,t] and with 1 on [c,»[ . Then supp(u - cpu) c [a,c] c [a,b] ;

therefore

(3.5) f ||(M(u-cpu))(s)||ds % k (a,b>|u-cpu| ̂  k (a,b) .supl|u(t')|| ^

^ f ||(Mu)(s)||ds - k.
J-a

Now cpu e £ and supp(cpu) c [t,b]. Since M is a memory,

supp(M(cpu)) c [t,»[; from (3.5) and the definitions we then conclude

k < [ ||(M(cpu))(s)||ds = |||(M(cpu))(s)||ds ^ k (t,b),
Ja Jt u

as was to be proved.

3 *3 • Lemma. Let n b£ £ positive integer and let (a.) ,

i = 0,...,n, b£ £ strictly increasing sequence in R. Let the memory

M be given. Then

(3.6) ZV^-l'V =2k0<W-
Tl

Proof, On account of (3.2) there is no loss in assuming, as we

do, that k
Q(a0,an) < »; hence

 k
0(

a
i - 1^

a
1) < °°, i = l,...,n. Let

S > 0 be given. By the definitions, there exists a sequence (u.)

in 2D, i = l,...,n, such that

(3.7) supp u^ c [ai i>
a})> i = 1^**^n^

(3.8) p 1 ||(Mu )(s)||ds > k (a . ,a ) - £ , i = l,...,n.

We construct, by induction, a sequence (v.) of functions,

i = l,.#.,n, such that, for each i,

(3.9) v. € £ and supp v. c [a ,a.],

(3.10) fj ||(Mv )(s)||ds >^k (a a ) - £, 1 ̂  j ̂  i.
JaJ-l X 2 0 j-1 j

Set v = 0. Let k, 1 ̂  k % n, be given and assume the v. con-

structed so as to satisfy (3.9), (3.10) for all i, 1 < i < k. If
k 1

|| (Mv, -)(s)||ds = "okn(a- i^ai,)^ w e set v, = v, 1, and (3.9),ak-l 2 O k-1 k k k-1r
»>a



(3.10) indeed hold for i = k too. If, on the other hand, this in-

equality does not hold, we set vfc = v^ ̂  + ufc. By (3.7), (3.9),

supp vk_x c [
a
0^k-1] (or = 0 if k = 1) and supp u k c l\^v\]l

it follows that v e £ and (3.9) is satisfied for i = k too.

Since v, and v - agree on l-00;51^ 11 > s o d o ^v, and Mv •

thus (3.10) holds for 1 ̂  j < i = k. Finally, (3.8) and the assump-

tion on v, , imply

p k ||(Mv ) ( s ) | [ds ^ p k ||(Mu ) ( s ) | | d s - p k ||(Mv ) < s ) | | d s >
J ak-1 J a k-1 ^ J a k-1 1

so that (3.10) also holds for j = i = k, and the induction is complete,

From (3.9), (3.10) with i = n we obtain

W V " ̂  = ^ J t l l ( M i r H S ) | | d 8 = Jt l | (MV><S>Hds =
Since 6 > 0 was arbitrary, the conclusion follows.

3.4. Theorem. Let the memory M, the interval [a,b], and the

positive integer n t>e given. There exists £ sequence (a.) ,

i = 0,...,n, such that

(3.11) a = a Q < ax < ... < a n = b,

(3.12) W l ' V = ZiT̂ Ca,!)), i = l,...,n.

Proof. If k (a,b) = 0 or k (a,b) = oô  every sequence (a.),

i = 0,...,n, satisfying (3.11) will also satisfy (3.12) (use (3.2)

in the former case). We therefore assume that 0 < k (a,b) < oo and

set p = 2n~ k (a,b), so that 0 < p < «.

For each t e [a,b[ we set T(t) = supj>s e [t,b]: s > t,

kQ(t,s) ̂  p}, so that t ̂  T(t) ̂  b. By (3.2), r: [a,b[ - [a,b] is

isotone. By Lemma 3.2, the function t ** k (t,s): [a,s[ -• R is

right-continuous for each fixed s. It follows at once that the



isotone function T is right-continuous. From Lemma 3.1 we obtain,

on the other hand,

(3.13) kQ(t,T(t)) < p if T(t) > t.

We construct the sequence (a.) - perhaps terminating, perhaps

not - by setting a. = T (a), i = 0,.,... (exponents indicate itera-

tion) and continuing so long as r (a) < b. From the definition we

have a = a *S a- "̂  • • •. The sequence ends at i = k if and only if

T(av) = b; this may happen even for k = 0. On the other hand, if

a, ^ = a, for some k, the sequence is constant from i = k on,

k+1 k y n '
and does not end at all.

We intend to show that the sequence does indeed end. Let k ^ 0

be some index reached by the sequence, so that r (a) < b. Since r

is isotone and right-continuous, there exists a sequence (b.)>

i = 0,...,k, such that

b Q = a; b. > T C b . p , i = l,...,k; b k < b .

From the definition of T it follows that a = b < b < • •. < b, < b

and k (b. 1,b.) > p, i = l,...,k. Lemma 3.3, (3.2), and the definition

of p then imply that either k = 0, or k > 0 and

In either case, we conclude that k < n. Since k was an arbitrary

index reached by the sequence, the sequence must end at some index

k!, 0 ^ kT < n. But then a = an < a- < ••• < a < b and r(a ) = b.

We choose a , ...,a arbitrarily so that a < a < ••• < a = b,

Thus (3.11) holds. We have a± = r(at ^ > a± v i = 1, . .. ,k!, and

b = T(ak?) > ak!; therefore, by (3.13) and (3.2), ^ ( a ^ ^ ) < p,

i = l,...,k», and ^0(ai_1,ai) ^
 k

Q(
a
kt>

b) = P, ^ = k'+l,...,n; this

proves (3.12).



The preceding analysis suggests the formulation of the following

condition that a memory M may have:

(M ): For every t e R there are t1,t" e R, t! < t < t", such

that kQ(t',t), kQ(t,t") < «.

3.5. Corollary. A memory M satisfies (M) If and only j^ there

exists, for each number p > 0 and each compact interval [a,b], a.

finite sequence (a.) , i = 0, ... ,n, such that a = a < • • • < an = b

and k
0(

a
i. 1,

a
i) ^ p, *- = l,...,n.

Proof. The "if" part is a trivial consequence of (3.2). If M

satisfies (Mn) and [a,b] is given, an obvious compactness argument

implies, with the help of (3.2), that there exists a finite sequence

(c.), j = l,...,m, say, such that a = c < ••• < c =b and

^n^c • i>C') ^ °°J J = l,...,m« The conclusion follows by Theorem 3.4.

4. Solutions.

When attempting to define and work with solutions of equations

such as (1.3) under "Caratheodory conditions" it is most convenient

to refer to the corresponding integral equation, as we now do.

Let the Banach space E and the memory M be given and fixed

in the sequel. If r e L(E) and a e R are given, a solution of

(4.1) [ a ] u + Mu = r, t £ a

is defined to be a function u e K(E) that satisfies

(4.2)f , u(t) = u(a) - f (Mu-r)(s)ds, t > a.

It is clear that if u is a solution of (4.1) r , and aT ^ a, then

LaJ
u is also a solution of (4.1)r n.

l a J

Our principal aim in this section is to prove a strong existence

and uniqueness theorem for the "initial-value problem" for the equa-

tions (4.1)r , under the very mild condition (M ) on the memory M.

La J 0
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4.1. Lemma. Let f € L(E) and the interval [a,b] be given,

and assume that k (a,b) < 1. There exists a unique function y € £(E)

such that y agrees with 0 on ]-°°,a] and with â  constant on

[b,«>[, and such that

(4.3) y(t) = f (f-My)(s)ds, a % t % b.

This function satisfies

(4.4) |y| £ (1 - ko(a,b))"
1Jb||f(s)|jds.

a
Proof. Let A be the subspace of C(E) consisting of those
———— ^̂  />J

functions that agree with 0 on ]-°°,a] and with a constant on

[b « [ , A function y € A satisfies (4.3) if and only if it is a

fixed point of the affine mapping F: A -• A defined by
(4.5) (Fz)(t) = (f-Mz)(s)ds, t e R, z e A.

Jmin{a,t} ~

But such a fixed point exists indeed, and is unique, for F is

contractive: by Lemma 3.1,

(4.6) |Fz' - Fz| < f ||(M(z'-z))(s)||ds ̂  k (a,b).|z' - z|, z,z' e A,

and k (a,b) < 1 by assumption. By (4.5), (4.6), the unique fixed
point y satisfies

- F0| + |F0| % kQ- |Fy| < |Fy - F0| + |F0| % kQ(a,b).|y| + Jj|f(s)||ds,

and th i s implies ( 4 . 4 ) .

4 . 2 . Lemma. Let f € L(E) and the interval [a ,b] b<e given,

and assume that there e x i s t s ji sequence ( a . ) , i = 0 , . . . , n , such that

a « a < • • • < a = b and ^ n (^ . - , ,a.) < 1, i = l , . . . , n . Then there

e x i s t s a unique function w e C(E) such that w agrees with 0 on

] -« ,a ] and with £ constant on [b,oo[ y and such that .a function w e K(E)

agrees with 0 on ]-°°,a] and s a t i s f i e s

(4 .7) w(t) - (f-Mwr)(s)ds, a ^ t ^ b
^a

if and only if w agrees with w on ]-°°,b] .—— _ —— _ _ ^ _
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Proof .We define the sequence (y.), i = l,...,n, in C(E) by

induction, as follows: by Lemma 4.1 there exists, for each i = l,...,n,

a unique y. e C(E) that agrees with 0 on ]-°°,a. -] and with a

constant on [a.,»[, and satisfies
L

(4.8) y.(t) = F (f - M( 7 y ))(s)ds, a < t < a

We set w = / y. and claim that this function satisfies the con-
0 JL-I i

elusion. Indeed, w e C(E) agrees with 0 on ]-°°,a] and with a

constant on [b,»[, since all y. have these properties. We observe

X L ^

that w and \ y. agree on ]-°°,a.], hence Mw and M( \ y.)

agree on the same interval for i = l,...,n; thus (4.8) implies

(4.9) y (t) = f (f-Mw )(s)ds, a < t < a i = 1,...:

Let w € K(E) be given. Suppose that w and w agree on

]-oô b] (hence w agrees with 0 on ]-»,a]); then Mw and Mw

also agree on ]-°°,b] . Let t € [a,b] be given; then t e [a -,a ]

for some index k, 1 ^ k ̂  n; from (4.9) and the assumptions on the
y. we f ind

1 k-1 * k-t

w(t) = wo(t) = 2, y^w
 + y^v +

= N J 1 (f-MwQ)(s)ds + J (f-MwQ)(s)ds = J (f-Mw )(s)ds =

= f (f-Mw)(s)ds,
Ja

so that indeed w satisfies (4.7); in particular, so does w itself.

Assume conversely that w agrees with 0 on ]-°°,a] and satis-

fies (4.7); since w has the same properties, we may set z = w - w

and find that

(4.10) z(t) = - J (Mz)(s)ds, a ^ t ̂  b.

We claim that z agrees with 0 on ]-oo^a.], i = 0,...,n. The claim

is true for i = 0; suppose it is true for i = k-1 for a given k,
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1 £ k ^ n. Define z e C(E) to agree with z on ]-°°,a, ] (hence

with 0 on ]-oo^a, - ]) and with a constant on [a, ,»[ . Since Mz,

and Mz agree on ]-oo^a,], (4.10) implies

Zk ( t ) = ' J (Mzk)(s)ds, afc-1 < t < ak;
K.— JL

by the uniqueness conclusion of Lemma 4.1, z, = 0, and the claim is

proved for i = k. Hence it holds for all i, and in particular

z = w - w agrees with z = 0 on ]-°°,a ] = ]-°°,b]; thus w and

w agree on this interval, as was to be proved.

4.3. Scholium. The existence of the required sequence (a.) is

guaranteed by Theorem 3.4 if k (a,b) < ». In this case we can esti-

mate the size of w ; we shall try to do this as precisely as pos-

sible. Set k = k (a,b) < » and choose a positive integer n > 2k .

By Theorem 3.4 there exists (a.) such that a = a < ••• < a = b

and kn(
a- i>a •) ^ 2n~ k < 1. Then we construct (y.) and w as

in the proof of Lemma 4.2. By Lemma 4.1 and (4.8),

1 ||f(s)||ds+ V - p 1 ||(My )(s)||ds), i = l,..
ai- i ^ ̂ a,- i J

and hence

V ^ (l-2n'"1k )"1(rk | |f(s)||ds + )T P ||(My

k i i f ( S ) i ids+ y

= (l-2n-1k )"1(rak||f(s)||ds + V fk||(My )
0 Ja 0

 J a i
b

||f(s)||ds + k

It follows from this sequence of inequalities that w = ) y. satisfies

|wQ| < (^ kj-^l-Zn"
1^)" 1)/ ||f(s)||ds;

i a

'

we note that this inequality holds for every positive integer n > 2kn.

CARNEIIE-MEUfli IKlVERSfTY
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4.4. Theorem. Let M b£ a memory satisfying (MQ) . For every

a € R there are linear mappings P(a) : K(E) -• K(E) and

Q(a) : L(E) -• K(E) such that for every v e K(E) and r e L(E):

(1): u = P(a)v + Q(a)r ^ the unique solution £f (4.1)r , that

agrees with v £n I-00,a];

(2): j-f u e K(E) agrees with v on ]-»,a] and satisfies

(4.11) u(t) = u(a) - f (Mu-r)(s)ds, a £ t £ b,
Ja

for a. given b > a, then u agrees with P(a)v + Q(a)r on ]-»,b] .

Proof. Let a, v, r be given and let v n € K(E) be the function

that agrees with v on ]-°°,a] and with a constant on [a,»[ ; set

f = r - Mv € L(E) . For given b > a, a function u e K(E) agrees

with v (hence with v ) on ]-°°,a] and satisfies (4.11) if and

only if w = u - v agrees with 0 on ]-»,a] and satisfies

ft ft
w(t) = u(t) - v n(t) = u(t) - u(a) = (r-Mu)(s)ds = (f-Mw)(s)ds,

u * a J a

a < t ^ b,

that is, (4.7). By Corollary 3.5, the assumptions of Lemma 4.2 are

satisfied; the conclusion of the theorem then follows from that

lemma, from comparison of (4.11) and (4.2) ,, and from the line-
laj

arity of the problem.

^•5. Scholium. P and Q satisfy certain functional equations.

Indeed, let a,a1 e R, a1 ^ a, and v e K(E), r e L(E) be given, and

set u = P(a)v + Q(a)r. Since u is a solution of both (4.1)r and
La J

(4.1) r ,., and of course agrees with itself on ]-°°,a!], we have

P(a)v + Q(a)r = u = P(a!)u + Q(af)r = P(aT)P(a)v + (P(a f)Q(a)+Q(a !))r

Since v, r were arbitrary, P and Q satisfy the equations

(4.12) P(a) = P(a')P(a), Q(a) = P(al)Q(a) + Q(a'), a ^ a'.

An interesting case to which Theorem 4.4 is applicable is that
M l UUAIY

CARNEilE-iflUH •MIYERS1TY
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in which the memory M satisfies the following condition:

(M) : The restriction £f M ^o C(E) _is a bounded 1 inear mapping

M : C(E) - M(E) .

We note that if M satisfies (M), then

(4.13) kQ(a,b) % ||MC||, if 0 < b-a £ 1,

and therefore M also satisfies (M ) .

4.6. Theorem. Let M be £ memory satisfying (M). Then the con-

clusions of Theorem 4h#<4 hold and there exists -a number a > 0 such

that

ii ii << a f t - a + 1 1 it ii
| | (P(a)v)( t ) | | S e

u l Jsup| |v(s)| | , v e K(E)
(4.14) Q

s ^ t o r t . 8 l | 1 „ " t >a,
| (Q(a)r ) ( t ) % HM II (e - 1 ) | e L J r ( s ) ds , r e L(E)

where [ ] denotes the "greatest-integer1 ' function.

Proof. 1. We claim that the conclusion holds with
n

a =

where n is an a rb i t ra ry fixed integer greater than 2||M ||.

We use the following temporary notat ion: if y e K(E) and

t e R, we set Jy| = sup||y(s)|| % » .

2. Let a l , b ' G R; 0 < b t - a l ^ l ; and v e K(E), r e L(E) be given.

Then u = P(a !)v + Q(a !)r is the unique solution of (4.1) r f l that

agrees with v on ] -°° ,a ! ] . We l e t v e K(E) be defined to agree

with v on ]-°°^a!] and with a constant on [a!
;a>[^ and set f =

= r - Mv w = u - v Using (4.13) and I v
o l b i = IVI t > w e f i n d

£t||f(s)||ds < Jat(| |(%)(s)| | + ||r(s)||)ds ^ ||Mc|||v|al + £t||r(s)||ds.

By the argument of the proof of Theorem 4 .4 and by Lemma 4.2 and

Scholium 4 . 3 , w agrees on ]-co^b!] wi th a funct ion w e C(E) t ha t
pb f

satisfies |w | % c ||f(s)||ds, where we may choose c = ||M ||" (eQ-l)
O Jat £

on account of (4.13), (4.15). Therefore
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|P(a')v + Q(a')r| = |u|b, < |volb, + |wo| ^

< |v|a, + ||McH
J-(ea-l)(||Mc|||v|al + jaj|r(s)||ds) =

- e a | v | . + i[Mr||-
1(eCT-l)rBrj|r(s)||ds.

Since v, r were arbitrary and P(af), Q(af) are linear,

(4.16) lP(a')v|, t % e
Qlvl , , |Q(a')r| ^ ||M ||"1(eO-l) j ||r(s) ||ds,

0 < b!-a! ^ 1, v £ K(E), r € L(E) .

3. Let a,t e R, t > a, and v e K(E), r € L(E) be given. We

apply (4.12) and (4.16) successively to a! = t-1,...,t-[t-a],a

and b1 = t,...,t-[t-a]+l,t-[t-a], and find

v l ^ e M ,

|Q(a)rl. ^ ||Mc|r
1(ea-l)( J e

CT< ̂ X > f" ̂ H r (s) ||ds + e^ ̂  f" 1 ^ ||r(s)||ds)

and (4.14) is an immediate consequence.

5• Short memories.

In this section we sketch a typical situation that can be reduced

to a special case of the existence and uniqueness theorems presented

earlier.

We again assume that the Banach space E is given. For every

a e R and every function f defined on a subset of R containing

[a,»[, fr , denotes the restriction of f to [a,»[. For each a e R,

Kr -i(E), Cr -.(E), Lr -.(E), Mr -, (E) denote the spaces consisting of the

restrictions to [a,»[ of the elements of K(E), C(E)^ L(E), M(E),

respectively. The second and the fourth are Banach spaces with the

obvious norms.

E shall denote the Banach space C([-1,O],E) of all continuous

functions v!: [-1,0] •* E, with the norm 0v!i = sup ||vT(s)||. Let

a € R be given. For each t ^ a we define the slicing operator

n(t): K. n ( E ) -+ E by
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(Il(t)O(s) = u'(t+s), -1 £ s £ 0, u' e K [ a - 1 ](E),

so that II(t)u! is the "slice" of u! between t-1 and t,

transplanted to [-1,0].

A short memory is a linear mapping M1 : Kr -.-.(E) -» Lrrfcl(E)*- H.--U H.OJ

such that: for each interval [a,b] c [0,»[, if u ' v 1 € Kr in(E)

agree on [a-l,b], then M Tu !, MfvT agree on [a,b] . This condition

allows us to define, for each a ̂  0, a "cut-down11 memory

M[a] : E[a-1](E) " ^ [ a ] ( E ) aS follw8S if u' G£[a-1] ( E )' then

u! = u" for some u" € Kr . -, (E), and we set Mr
T nU! = (M fu") r a l;

L̂"-LJ LaJ LaJ

it follows at once from the definition of a short memory that this

construction does not depend on the choice of u", and satisfies

^ V A ' a ' - l ] = (Mla]ul>[a']' a' " & * °> U' £ £[a-l](E>'
For each short memory M! and each interval [a,b] c [0,»[

we may define

p | j | | < M ' u ' ) ( s ) | | d s : u ' e C [ - ; l ] ( E ) , \ n \ % 1 , s u p p usup|j

and state conditions on M1 analogous to ( M ) and (M):

(M»): For each t > 0 there exists t!, 0 ̂  t! < t, such that

k'(tf ,t) < oô  and for each t ̂  0 there exists t" > t such that

(M T): The restriction of Mf to Cr ,.(E) is a bounded linear
M.-1J

mapping MI: Cf (E) - M r n l ( E ) .
£ M 1 J M O ]

We assume the short memory M1 and the function rT e L r n l(E)

given, and consider the equation

<5-2>[a] *W + Mta]ul " rU]
for each a ̂  0: a solution of (5.2)r , is defined to be a function

uf € Kr -IT (E) such that
~La-lJ

( 5 . 3 ) [ a ] u«(t) - u'(a) - J ((M'a]u')(s) - r'(8))ds, t > a .
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We now come to the existence and uniqueness theorems for the

initial-value problem for equation (5.2)r ,.
La J

5.1. Theorem. Let M! be a short memory satisfying (M*) . For

every a *? 0 there are linear mappings Pf (a) : E -* K, .., (E) and

Q! (a) : Lf (E) -• Kf (E) such that for every vf G E and rf G L - (E)

(1): u! = Pt(a)vl + Q!(a)r! JLS the unique solution of (5.2),.,

that satisfies II(a)uT = v f ;

(2): _Lf uf G K- ii (E) satisfies Il(a)uT = vf and

(5.4) u'(t) = u'(a) - J ((Mja]u')(s) - r'(s))ds, a < t £ b

for a given b > a, then u1 agrees with Pf(a)vf + Qf(a)r! £n

Proof. Let a _? 0 be fixed. Define M: K(E) -* L(E) as fol-

lows: for each u e K(E), Mu agrees with 0 on ]-°°,a] and

with Mr
! nU,1 in on [a,oof it is immediate from the definitions
[a] [a-1]

that M is a memory and that it satisfies (M ) .

Let v! € E and r! G L, ,(E) be given. Define v e K(E)

to agree with a constant on ]-c»^a-l] and with a (possibly dif-

ferent) constant on [a,oo[^ and to satisfy v(a+s) = v !(s), s G [-1,0];

and define r G L(E) to agree with 0 on ]-»,0] and with r! on

For each u! G Kf -, (E) , let u G K(E) be the function that

agrees with a constant on ]-«^a-l] and with uf on [a-l,»[. It

is then a matter of direct verification that uf satisfies

n(a)uf = v! if and only if u agrees with v on ]-°°,a]; that

u1 satisfies (5.4) for a given b if and only if u satisfies

(4.11) for the same b; and hence, by inspection of (5.3)r -, and

(4.2)r ,, that u1 is a solution of (5.2)r , if and only if u is
LaJ LaJ

a solution of (4.1) ..
L a J
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The conclusion now follows from Theorem 4.4. P!(a) and

Q'(a) are defined by P'(a)v' = (P(a)v)[a_1], Q
T(a)r' = (Q(a)r) .,

where v and r are defined as above and depend linearly on v1,

r1, respectively.

The linear-mapping-valued functions PT and QT also satsfy

functional equations, derived from Theorem 5.1 as (4.12) follows

from Theorem 4.4. The key observation is that if aT ^ a ^ 0 and

u1 is a solution of (5.2)r ,, then u! , is a solution of
LaJ La -lJ

(5.2)r fl. The functional equations are
la J

n(t)P'(a) = II(t)P'(a')n(a')P(a)
(5.5) t _? a! > a > 0.

')Q'(a) + Q'(a'))

We introduce the transition operators U(t,t ): E -» E de-

fined for all t __" 1: _? 0 by

(5.6) "(t'V = n(t)P'(tQ).

The significance of these operators and the justification of the

name we have chosen are explained by the following result.

5.2. Corollary. Let MT be a short memory satisfying (M*).
——— —— — _____—«. _____________ ______________________ Q

Then the transition operators satisfy

(5.7) U(to,tQ) = I, U(t2,tl)U(trt0) = U(t2,tQ), t2 > tx > tQ > 0;

and _if a > 0 and u1 ^s a. solution £f (5 .2)r , with r! = 0 (the

homogeneous equation)9 then

(5.8) n(t)u» = U(t,tQ)n(t0)u', t ̂  tQ ^ a.

Proof. U(t ,t ) = I follows from (5.6) and Theorem 5.1,(1). The

rest of (5.7) follows from (5.6) and (5.5). If u! is a solution of

the homogeneous equation (5.2)r ,, then uT = P!(a)]!(a)u!, and (5.8)

follows from (5.6) and (5.7).
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We now examine the quantitative results that may be obtained

when the short memory M! satisfies (Mf).

5.3. Theorem. Let M! be a short memory satisfying (Mf). Then

the conclus ions £f_ Theorem ̂  JL, hold, and there exists a. number

a1 > 0 such that

|| < a ! [ t - a + 1 ] V Q , v< G E

||<)')()|| ^ ||^|r1(al)jV[t-s]||»()||d r
t > a > 0.

Proof. We use the constructions of the proof of Theorem 5.1.

Since M1 satisfies (M1), the memory M satisfies (M), and

|JM || % ||M'||. We choose the positive integer n > 2||M'||, and define

a1 by (4.15) with |!M || replaced by ||M'||. If Q is given by

(4.15) with the same n, but without replacement, we have a ̂  Q1 ,

||M ||~ (e -1) ^ ||M.• || (e -1) (observe that a depends on a, but

a1 does not). We may therefore apply Theorem 4.6 to obtain the con-

clusion, noting that sup||v(s)|| = flv^.

5 .4. Corollary. Let M1 b£ a. short memory satisfying (MT) .

Then the transition operators satisfy (5.7) and (5.8), and

(5.10) ||U(t,to)|| %e^[t't^l]^ * * t o * O .

Proof. Corollary 5.2, (5.6), and (5.9).

6. Compact transition operators.

Our notations and terminology are those of Section 5. It is often

important and useful to know whether certain transition operators are

compact. We give a strong affirmative result in this direction for

finite-dimensional E.

We need some additional notation. We denote by E- the Banach
">1
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space L ([-1,0],E) of all (equivalence classes of) Bochner-integrable

functions g: [-1,0] -* E with the norm ||g(s)||ds. It is expedient
J-l

to use a separate notation for the slicing operator IL(t): Lr , (E) -> E-
1 r^l a J r^Jl.

defined for each a ̂  0 and t ̂  a+1 by

(^(Of'Xs) = f'(t+s), -1 < s < 0, f € L [ a ](E),

to distinguish it from TI(t), which acts on a space of continuous func-

tions. We further need the "Volterra operator" V: E- ̂ E and the

"evaluation operator" W: E -* E defined, respectively, by

(Vg)(s) = J* g(s')ds', -1 £ s £ 0, g e E1

(Wv!)(s) » v'(0), -1 ̂ s ̂  0, v1 € E.

Both are bounded linear mappings, with ||v|| = ||w|| = 1. We recall a

useful property of V.

6.1. Lemma. LE E j ^ finite-dimensional, V maps each relatively

weakly compact set in E.. into a. relatively compact set j_n E.

Proof. Let Q be a relatively weakly compact set in E . It is
— — • — />̂  />^L

relatively weakly sequentially compact (Eberlein's Theorem). We apply

[1; IV.8.10 and IV.8.11] - with the obvious adaptation to a space of

functions with values in an arbitrary finite-dimensional Banach space

E - and conclude: for each number fc > 0 there exists a number

6 > 0 such that ||g||dm < E for all g e Q and all measurable
JB

sets B c [-1,0] with m(B) < 6 (here m denotes Lebesgue measure).

It follows that V(Q) is equicontinuous - indeed equi-absolutely

continuous. Since Q is bounded in E-, V(Q) is bounded in E; hence

V(Q) is relatively compact in E (Arzela-Ascoli Theorem) .

6.2. Theorem. Assume that E _i£ finite-dimensional, and let MT

be £ short memory satisfying (M!) . Then the transition operator

U(t-,t_) is compact for all t ^ 0, tn ̂  t_ + 1.1 O — - — Q 1 0
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Proof. 1. We show first that U(a+l,a) is compact for each

a ^ 0. Let a ^ 0 be fixed throughout this part of the proof.

Let v1 G E be given, and define w! € Cf -,-i(E) to agree

with a constant on [-l,a-l] with P!(a)v! on [a-l,a+l], and

with a constant on [a+l,»[ . Then |wT| = max ||(PT (a)vf) (t) || ̂

^max|Dv!0,e Qv!B} = e flv!0, by Theorem 5.3. Therefore

f° ||(IL(a+l)M' P'(a)v')(s)||ds = P + ||(M» P'(a)v') (t)||dt =
J -1 L LaJ oa idJ

pa+1 aT

We conclude that T = ^ ( a + ^ M ' P ' (a) : E -• El is a bounded

linear mapping. Since E is finite-dimensional, E1 is weakly

complete and T is weakly compact [1; IV.8.6 and VI.7.6].

Let vT € E again be given. By Theorem 5.3, uT = PT(a)v!

is the solution of (5.2)r 1, hence of (5.3)r ,, with rT = 0

and n(a)uf = v !. Using Corollary 5.2, we find

(U(a+l,a)v')(s) = (U(a+l,a)n(a)u»)(s) = (n(a+l)u!)(s) = u'(a+l+s) =

rl+s |»s

(MJ T u ' X s ^ d s 1 = v f ( 0 ) - (n, (a+l)Mr
! ,Pt(a)vt)(s1

[a] J_x 1 [a]

= (WvT)(s) - (VTv!)(s), -1 < s ̂  0.

Since v1 e E was arbitrary, we conclude that U(a+l,a) = W - VT.

Now E is finite-dimensional, and T is weakly compact; therefore

W has finite rank, and VT is compact by Lemma 6.1. We conclude

that U(a+l,a) is compact.

2. Let now t ^ 0 and t ^ t +1 be given. We have U(t-,t ) =

= U(t-,t--l)U(t--l,t ), and these operators are bounded (Corollaries

5.2 and 5.4); by Part 1 of this proof, U(t;.,t -1) is compact; hence
U(t-,,t_) is compact.

1 U

Remark L̂. A careful perusal of the proofs of Lemma 6.1 and Theo-

rem 6.2 shows that, under the assumptions of the latter, U(t_,t ) is
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more than compact: the image under U ^ I ^ Q ) °^ a bounded set in

E is not merely equicontinuous, but equi-absolutely continuous.

Remark 2. It is almost obvious that ^(ti>t0) cannot be com-

pact for any non-trivial E, any short memory, and any t , t if

t t* t- < t + 1; and that it cannot be compact for any infinite-

dimensional E, any short memory, and any t , t- = t + 1. Further,

if E in infinite-dimensional, M1 = 0, and t- ^ t +. 1, then

U(t-,t ) is always equal to the non-compact operator W. Thus

Theorem 6.2 is best possible for short memories satisfying (M 1).

Remark J3. In Theorem 6.2 the condition (MT) may be replaced,

with obvious amendments in the proof, by the weaker assumption

that supjp ||(M!uT)(s)|jds: u! € C, n (E>; lu!l = l}<°° for

each a > 0, or, equivalently, that Mf : Kr ^(E) -*Lrr_1(E) is

continuous for the obvious Frechet-space topologies of domain and

codomain. However, this case may also be reduced to the case in

which (M!) does hold: once t , t are given, it is enough to apply

Theorem 6.2 to the short memory MM defined by requiring that M Mu !

agree with M !u ! on [0,t1] and with 0 on [t-,»[, since this

M" satisfies (M1) .
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