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Abstract

Let A be a real continuous nxn matrix on an interval T3

and let the n-vector x be a solution of the differential

equation xf = Ax on r. If [oc,g]er, g is called a conjugate

point of a if the equation has a nontrivial solution vector

x = (x1,...,xn) such that x1(a) = ... = xk(a) =
 x

k+1(P) = ...

= x (0) = 0 for some ke[l,n-l].

It is shown that the absence on (t..,t ) of a point con-

jugate to t, with respect to the equation xf = Ax is equiva-

lent to the existence on (t.,t ) of a continuous matrix solution

L of the nonlinear differential equation

L1 = [LÂ -L""1] L
ro

with the initial condition L(t ) = I, where [B] denotes

the matrix obtained from the nxn matrix B by replacing the

elements on and above the main diagonal by zeroso This nonlinear

equation -- which may be regarded as a generalization of the

Riccati equation, to which it reduces for n = 2 -- can be used

to derive criteria for the presence or absence of conjugate

points on a given interval.
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Let A = A(t) be a continuous real-valued nxn matrix on

a real interval r. We consider the differential equation

(1) x» = Ax,

whose solutions are n-dimensional vector functions x(t) , and

the associated equation

(2) X! = AX,

whose solutions are nxn matrices X(t) o In both cases we shall

consider only real solutions. If t ,t er, the point t 2 will

be said to be a (right) conjugate point of t., with respect to

equation (1) or (2) if (1) has a nontrivial solution vector

x = (x-,...,x ) such that, for some k€[l,n-l], x-(t-) = o.o

= x, (t..) = x, - (t^) = ... = x (t~) = 0 . A similar definition

can be given for a left conjugate point, but it will not be

necessary for our purposes, and we shall therefore use the term

"conjugate point" to refer to the right conjugate point just

defined.

We quote here some well-known elementary facts concerning

equations (1) and (2). A solution matrix X of (2) which is
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nonsingular at one point of r is nonsingular for all t€T;

such a solution is called a fundamental solution of (2) . If

X is fundamental, all other solutions of (2) are of the form

XC, where C is a constant matrix. The general solution of

the vector-matrix equation (1) is of the form x = Xa, where

X is a fundamental solution of (2) and a is a constant vec-

tor of dimension n.

Our principal concern is the derivation of criteria for

the presence or absence of conjugate points associated with

equations of the form (1) or (2). We shall find that in the

consideration of these questions a basic role is played by

the class of nonsingular lower triangular matrices, i.e.,

^trices ( s M ) k ) t = l j f i # j n such that s k k j£ 0 and 3^ = 0

if k < I. The class of these matrices will be denoted by r.

To indicate that a matrix L is nonsingular and upper tri-

angular, we write either L*eT (where L* is the transpose

of L) or LeT*. The symbol r will be used for the class

of lower triangular matrices whose main diagonal terms are all

zero. The "lower triangular part" of a general matrix S (i.e.,

the matrix obtained from S if the terms s, . (k>£) are replaced

by zeros) will be denoted by [S] . If, in addition, the ele-

ments s,v are replaced by zeros, we obtain the matrix [S]

We shall use the symbol N, (l<̂ k<̂ n-l) for the class of

vectors a = (cu*...,a ) for which a-, = a2 = . . . = ou = 0,

and the symbol N' for the class of vectors a with a -,_,! =
KI n— K.~T 1

an-k+2 = "•• = an = 0# Clearly, SaeN^ if aeN^ and Ser;



similarly, S*aeN? is a consequence of CL€N/ and Ser. We

also note that if, for any k e [ l , n - l ] , CLGN, and cc€N! . ,
K. Ti— K.

a is necessarily the zero vector.

We now state our basic lemmas.

LEMMA JE* The point t 2 (t -t ) is^ not a. conjugate point of t-

with respect to equation (1) ijf and only if there exists a.

solution X oj: (2) such that X(t.j)eT and X(t2)er*.

LEMMA II. iTie interval (t , t ) does not contain a. conjugate

point of t 1 with respect to equation (1) î f and only if (2)

has ci solution matrix of the form

(3) X = L*S, L,S€r,

where the matrices L, S are differentiable on (t-,t~), and

L*(t-) = 1 (the unit matrix) .

x — __. -_•__»___

We first prove the MifT? part of these statements. Suppose

t2 is conjugate to t_, i.e., suppose there exists a nontrivial

solution x of (1) such that, for some ke[l,n-l], x(t-)€N.

and x(to)eN
! , . Since x = Xa^ where X is a fundamental

-i n~ K

solution of (2) and a is a constant vector, we have

X (t1)x(t1) = x" (t 2)x(t 2). We apply this to the solution X

described in Lemma I (which is fundamental because of X(t-.)er)

and note that, under the assumptions of Lemma I, x" (t.Jer,

x" 1(t 2)€T^. Since X~ ̂ (tj) x (t^ eN^ and X" -1 (t2) x (t2) e N ^ ,

it follows that X" (t-)x(t-) must be the zero vector. But



this implies x(t1) = O, i.e., x is the trivial solution

x = 0, contrary to our assumption. The conditions on X in

Lemma I are thus sufficient to prevent t2 from being a con-

jugate point of t...

Ihe corresponding assertion in Lemma II is an immediate

consequence of this. If t2 is a point in ( t ^ t ^ , we replace

X by the fundamental solution Y = XS~ (t ) and note that, by

(3) and the assumption L* (t^ = I, Y(t]L)eT and Y(t2)€T*.

Thus, by Lemma I, t cannot be conjugate to t^.

To prove the "only if" part in Lemma I, suppose that t2

is not conjugate to t-, and let x be a nontrivial solution

of (1) for which x(t1)eN. , where k may be any integer in

[l,n-l]. If X is a fundamental solution of (2) for which

x(t1)GT, we then have X~ (t )x(tJeK and therefore, because

of X~ (t)x(t) = a = const., x(to) = X(to)a, where aeNv and

the components ou , ,ou 2, . . . ,a of a may be given arbitrary

values by imposing suitable initial conditions on the components

x, -I ,x, . ,. . . ,x of x. We assert that the (n-k)x(n-k) sub-

matrix of X(t2)
 i n ^he lower right-hand corner must be non-

singular. If this were not true, there would exist a nontrivial

set a,+ -.,...,a such that the last n-k components of x(t2) =

X(t2)a are all zero, i.e., t would be conjugate to t1,

contrary to our assumption. Since k may be any integer in

[l,n-l], this argument shows that if t is not conjugate to

t̂. all the square submatrices of x(t2^
 which contain the ele-

ment in the lower right-hand corner of x( f c
2^

 m u s t b e nonsingular.



By a well-known result (e.g. [l],p.35), this implies that

X(t~) may be written in the form L*S, where L,SGT.

Since Y(t) = X(t) S~ is a solution of (2) for which

Y(t1)eT and Y(t ) er*, this completes the proof of Lemma I.

To show that the decomposition X(t) = L*(t)S(t) (where t

may now be identified with any point in (t_,t )) also leads

to the proof of Lemma II, we note that this decomposition can

be made unique by the requirement that all the elements in

the main diagonal of L(t) be equal to 1. If this is done,

the elements of L(t) and S(t) can be expressed rationally

in terms of the elements of X(t) ([l],p.38). Since the de-

nominators appearing in these expressions are the determinants

|x. I.. , ,, _ (k = 1, . . . , n-1) , which were just shown not
Vp, V, Lt—Jv"r 1 , . • • , n

to vanish on (t ,t~), the differentiability of the elements

of L and S follows from that of the elements of X. This

concludes the proof of Lemma II.

2. Our next result shows that the absence, on an interval

(t ,t ) , of a point conjugate to t_ with respect to equation

(1) is equivalent to the fact that a. certain nonlinear differ-

ential equation has a continuous solution on [t1,t9). The

statement of the theorem uses the symbol [•] which^ as
To

indicated above, is defined as follows: If B is a matrix

(bv ), - , then C = [B] is the matrix (a. ) for whichKm Jc,m-1,. .. ,n T Q km

= b k m for m < k and c^m = 0 for m ^ k.



THEOREM j[. JEn order that the interval (t_ *t2) contain no

point conjugate to t1 with respect to equation (1) , jLt is

necessary and sufficient that the solution of the nonlinear

differential equation

(4) L! = [LA*L ]r L

with the initial condition L(t ) = I be_ continuous on (t ,t ) .

We note that, if it exists, a continuous solution of (4)

is necessarily of the form L = I + L , where L er . Indeed,
o o o

since L is a solution of the linear equation Lf = RL where

the matrix R = [LA*L~ ] is in r , we have L = lim L ,
T o ° m oo m

where

L ., = I + RL d s , Ln = I .
m-f 1 J n 1

1

Since RL er if Rer and L ET, this shows that L ,n - Ierm o o m m-fl o

for all m, and the assertion follows.

Accordingly, the matrix L has only — n(n-l) nontrivial

elements, and equation (1) may therefore be tested for the ab-

sence of a conjugate point to t in an interval (t ,t ) by

solving a system of — n(n-l) nonlinear differential equations.

For n = 2, only one equation has to be solved. As we shall see,

this is precisely the classical Riccati equation associated with

the 2x2 system of linear equations. The system (4) may thus

be regarded as a generalization of the Riccati equation to the



case of an nxn matrix. The nature of the nonlinearities

appearing in (4) is described in the following statement.

If L.n (i>k) are the nontrivial elements of the solutionlK — — —

matrix L iri (4) , equation (4) is^ equivalent to a. system

where the F... are polynomials of degree not higher than n

in the variables L (r>s) •
_ « _ • ' r s

To prove Theorem I we note that by Lemma II the absence

of a conjugate point to tn in (t_,t9) is equivalent to the

existence on [t ,t ) of a solution X of (2) which admits

of a decomposition X = L*S, where L,S€T, L(t ) = I, and L, S

are differentiable on [t,,t^). As pointed out above, we may

also assume that, throughout [t-,t~), all the elements in the

main diagonal of L are equal to 1. Substituting this repre-

sentation of X in (2) , we have L*!s+ L*ST = AL*S, and thus

L* L*T + S!S = L* AL* or, equivalently,

(6) L'L""1 + S*"3^*1 = LA^L"1.

Since S G T , we have S^" S*}£T* and therefore [S*~ Ŝ "! ] = 0 .

-1 T°From L - IGT it follows that L!L er and thereforeo o

[LTL~ ] = LTL . Accordingly, an application of the operation
To

[.] to (6) leads to
o

L'L"1 = [LA^L""1] ,
To
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and this is equivalent to (4) .

To prove that the functions F., in (5) are polynomials

of degree not exceeding n, we observe that L n = 0 if L er .

Thus, since L Q = I - L6T Q, L~ = (I-L Q)" = I + L Q + ..• + L £ ~

and we have

(7) LA*!,"1 = (I-LO)A*(I + L Q + ... + L ^ " 1 ) .

This shows that the elements of LA*lT - - and therefore also

the elements of [LA*L~ ] - - are polynomials of degree <̂  n
To

in the elements of L . By (4) , the functions F., in (5) are
O IX.

thus polynomials of degree <L n + 1 in the elements of L .

The fact that the degree n + 1 is excluded is a consequence

of the identity

[ o o \ L = V K 'o

which may be established in the following manner. Since L GT ,

all elements of the matrix L " , except the one in the lower

left corner, are zero. As a result, the only non-zero elements

of A*L appear in the first column, and we thus have

A * L £ ~ 1 € T . This implies that LoA*L^"
1eTQ, i.e., [LoA*L^"

1]T =

°
V J T ^ t o S ^ r L = V ^ ^ ^ o o ^

o

as asserted.

We i l l u s t r a t e the use of Theorem I by two examples. The

f i r s t is the case n = 2, in which the matrix L = (L., ) . v__n
1.K 1 , K — 1 , ^

has the elements L,, = L22 = 1, L12 = °̂  L21 = p^ w l i e r e P ^

a differentiable function of t . If a.. are the elements of
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fact that, by (10), T? = 1 (or p1 = 1) at such a point.

In the case of a and <p we have a1 (t ) = <pT (t..) = 0,

and (10) shows that (t-1 )" \ (t) and (t-1 )" \ (t) tend to 1

if t —> t from the right, so that a and cp are again

positive in a right neighborhood of t- . At a first zero of

these functions in (t ,t ) we have, by (10), a} = r and cp1 = p,

respectively. Since p > 0 and r > 0 in (t..,t ), we obtain

the same contradiction as before.

In the case in which the coefficient function p is of

constant sign, the positivity of the functions r, a, p^ cp

leads to a considerable simplification. If p ^ 0, it follows

from the equations (10b) that cp1 <^ p, p1 <^ 13 and thus

1 2
0 <L P <L t, 0 <£, cp <[_ "p* t , as long as p and cp are defined.

We may therefore conclude from the existence theorem that the

differential equations (10b) (with the initial conditions

p(t-) = <p(t,) =0) have a unique and continuous pair of solutions

p, <p as long as p remains continuous. Hence, these equations

may be disregarded, and our necessary and sufficient condition

for the absence in (t-.,t2) of a point conjugate to t.. reduces

to the existence in [tn^t^^ of a cont:i-nuous solution of the

system (10a) with the initial conditions o (t-.) = T(t1) = 0.

In the case p <^ 0 we have a similar result, with (10a) re-

placed by (10b).

We note that the two equations (10a) are equivalent to

equation (8). Indeed if we set exp[- pods] = R, the equations
Jo

(10a) take the form (Ra) ! = RT, (Rf) ! = R. With u = Ra, we
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have therefore uf = Rr, u" = R. Since Rf = -paR = -pu, we

thus find that u satisfies equation (8). Similarly, the

equations (10b) are equivalent to the equation vm- pv = 0.

The classical Riccati equation is a convenient point of

departure for the derivation of oscillation criteria for the

associated second-order linear equation. The "Riccati system"

(10a) can be made to play a similar role in the oscillation

theory of equation (8). To illustrate the possibilities, we

consider the case p ^ 0 and the interval [0,co). It is known

[2] that in this case a conjugate point t of 0 (in the

sense defined above) is necessarily associated with a solution

of (8) for which u(0) = u! (0) = uM (t ) = 0; moreover, the

absence on [0,oo) of a point conjugate to 0 is equivalent to

the disconjugacy of the equation in the sense of Wintner [2] ,

i.e., to the fact that no nontrivial solution of (8) can have

more than two zeros on [0,oo).

If we set T = —, it follows from (10a) that T! = 1 - TT~ .
T

Since, by the second equation (10a) , r ^. t we have TT ^ 1 - Tt" .

i.e., (tT) ! ^ t, and thus T ;> -| t. On the other hand, T! £ 1,

and therefore (because of T(0) = 0) , T £ t. Applying these

inequalities to the second equation (10a), we obtain
1 2 2 -1

1 + 2" ptT <^ T1 <L 1 + ptr . If we set r = w(w!) , where

w(0) = 0, w!(0) > 0, these inequalities take the form

w" + -~ P t w <L 0 <L w" + Ptw^ an(^ the continuity of r (and, because

of 0 <^ a <i r, also the continuity of a) is equivalent to w ^ 0.

Elementary comparison arguments (cf., e.g., [15]) show that the
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existence of such a function w implies the existence of a

solution U of UTf + ~ ptU = 0 with U(0) = 0, Uf £ 0, and

is implied by the existence of a solution V of V" + ptV = 0

with V(0) = 0, VT ^ 0 (both on the interval [0,oo) . Since

the existence of these solutions is equivalent to the disconju-

gacy of these equations on [0,co) [15], this leads to the fol-

lowing result.

In order that equation (8) (with p _̂ 0) be disconjuqate

on [O,oo) , j-t: iŝ  necessary that U" + T> ptU = 0 b«e disconjugate

on [0,oo) and sufficient that u" + ptU = O be disconjugate

on this interval.

3. Let T(t) be a dif ferentiable matrix function on [t-.,t~]

such that T(t )€T and T(t2)€T*, and let Y! = A ^ be the

differential equation solved by Y = TX, where X is the solu-

tion of (2) described in Lemma I. It is evident from Lemma I

that t^ will not be a conjugate point of t. with respect

to the transformed equation of the same is true of equation (2),

and vice-versa. Since A, = (TT + TA) T , Lemma I has the

following consequence.

LEMMA III. In order that t~ be not <a conjugate point of t.

with respect to equation (2) , jLt i^ necessary and sufficient

that the same be true for the equation

Y ! = AXY, Ax = (T ! + 1

mm
CAMIEIIE-IELLn 0NIVERSITY
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where T JL£ any n o n s i n q u l a r m a t r i x which is d i f f e r e n t i a b l e

o n [ t n , t o ] and s a t i s f i e s t he c o n d i t i o n s T ( t ) G T , T ( t o ) e T * .

A similar conclusion may be drawn from Lemma II. If X

is the solution described in Lemma II and R is a matrix which

is dif ferentiable and er on [t..,t2] and reduces to the unit

matrix at t-, the matrix Y = R*X = R*L*S satisfies all the

conditions imposed on X in Lemma II, and we have the following

result.

LEMMA IVo In order that the interval (t1,t2] should not contain

a conjugate point of t1 with respect to equation (2) 9 it is

necessary and sufficient that the same be true for the equation

* f(11) Y! = A2Y, A2 = (R

where R is any matrix of r which is dif ferentiable on [t..,to]
— — — — — — — • — — — — — — — _ — — _ _ _ _ i • i • ""^~" X £

and such that R(t..) = 1.

These lemmas show that any condition on the coefficient

matrix A which guarantees the existence or nonexistence of

conjugate points can be replaced by the same condition on the

matrices A^ or A2, as the case may be. Since the latter

matrices depend on arbitrary triangular matrices, this leads to

conditions of considerable generality. We shall illustrate

this remark in the case of the condition

(12) J ||A||dt < \,
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which guarantees that the interval (t , t ] does not contain a

point conjugate to t.. with respect to equation (2) [6,10].

Here, \*\ denotes the matrix norm induced by the euclidean

vector norm. (Conditions employing other norms can be found

in [11,13]). We also note that the constant j in (12) is

the smallest possible; in fact, the stated consequence does

not follow if the sign of equality is admitted in (12) [10] •

To make this paper self-contained, we give here a very

simple derivation of condition (12). introducing the variable

rt
s = s(t) = | HAljdt and writing x for dx/ds, we obtain from

and t h u s \\x\\ <^ | |x| |# With x = ( x _ , . . . , x ) i t f o l l o w s t h a t

a a

S [J x^ds - J x£ds] £ O, a = s ( t 3 ) , t 3 e ( t 1 , t 2 ] ,
n
S

k = l

and we may therefore conclude that there exists a component x.

for which

a a

r • 2 r 2
(13) I x^s £ Xi^s.

o o

If t3 is conjugate to t , there exists a solution x such

that each of its components vanishes at either t1 or t , and

we may therefore assume that the function x, = x^(s) is such

that either ^(O) = ° or x, (a) = 0, On the other hand, it

is well known (cf., e.g., [3]) that a function with these
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properties is subject to the inequality

a a

r 2 ,
J o ^ o

r • 2
J *k d s'

TTprovided a < 3". Since this contradicts (13) , it follows that

t^ cannot be conjugate to t_̂  if ~ > a = sf^) = I ||A||dt.

Hence, (12) guarantees that no point in (t-^t^] is conjugate

to t±.

Combining condition (12) with Lemmas III and IV, we obtain

the following two results.

THEOREM II. If there exists a. dif ferentiable nonsingular matrix

T on [t-,t ] such that T(t-)er, T(to)eT* and

J |1 (T' + TA)T XHdt < ̂,

then to cannot be a conjugate point of tn with respect to
_ _ ^ _ _ _ _ _ _ _ — ___--__-__-__-___»___-_. _ . - - - - - _ - _ _ - _ - _ ^ _«_—-—•-—

equation (2) .

THEOREM III. If there exists â  dif ferentiable matrix ReT _3n

[t-,to] such that R(t.) = I and

,fc2 .
(14) j 1|R-1(R« + A*R)Hdt < f,

fcl

then the interval (t ,t2] does not contain a. point conjugate to

t, with respect to equation (2) .
X _-_—---_-— ~~""* '
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Every choice of a matrix T or R with the requisite

properties thus leads to an explicit criterion. In the case

n = 2, the situation is particularly favorable. As the fol-

lowing statement shows, in this case all possible disconjugacy

criteria can be obtained in this way. We confine ourselves

here to the situation covered by Theorem II; the corresponding

assertion related to Theorem I follows as a corollary.

THEOREM IV. Let A = (a.v) be a 2x2 continuous matrix such

that a 2 1 ^ 0 on [t..,t ] . Jlri order that the interval (t ,t ]

contain no point conjugate to t.. with respect to equation (2)

it is necessary and sufficient that there exist B_ dif ferentiable

2x2 matrix RGT which satisfies the inequality (14) and the

initial condition R(t^) = I.

All we have to show is that if a9i ^ ° a n d tlle interval

(t.,t ] contains no point conjugate to t , there exists a matrix

RGT such that R(t-) = I and (14) is true. To do so, we denote

by X the solution of (2) determined by the initial condition

X(t^) = I and apply the Schmidt decomposition (cf., e.g., [16],

p.96) to the matrix X*~~ . We obtain X*~ = RQ, where RGT

(since X* is nonsingular) and Q is an orthogonal matrix.

If the diagonal elements of R are taken positive, both R

and Q are uniquely determined (and are differentiable since X

is dif ferentiable) . From the fact that RQ = I at t.. it

follows that R = I at t... Indeed, we have I = (RQ) (RQ)* = RR*,

i.e., R = R* . Since RGT, R* er*, this implies that R is

a diagonal matrix. But I = RR* = R2
3 and the diagonal elements
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of R are positive. Hence, X* = RQ, with R(t..) = I.

Solving for Q (and using the fact that Q* = Q~ ) , we have

Q = R*X and therefore

QIQ-"1 = (R*I + R*A)R*~1

where A~ is the matrix (11) . Hence, by Lemma IV, the absence

in (t-,t2] of a point conjugate to t., with respect to equa-

tion (2) is equivalent to the same property with respect to

the equation

(15) Q' = A2Q.

Since Q is orthogonal, we have

A 2 4- A* = Q
!Q + (Q!Q~ ) = QTQ* + QQ*1 = (QQ*) f = 0.

Thus, the coefficient matrix A in (11) is skew-symmetric.

We remark that this property of A~ leads to a differential

equation for the triangular matrix R. Since A~ may be written

in the form S* - S, where Ser , we have, by (11),

R~ (R! + A*R) = S - S*. Applying successively the operations

[ ] and [ ] _* and noting that [R~~ RT ] = R~ R! , we obtain

R""1RT + [R~1A*R] = S and [R'^R] ^ = - S*. Eliminating S,
T To

we find that R is the solution of the differential equation

nc\ pt - pf rp"

determined by the initial condition R(t^) = I. It may be noted
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that although this equation is not linear, the solution R

is -- because of its definition by means of the Schmidt de-

composition -- necessarily continuous throughout the interval

of continuity of A.

If n = 2, the skew-symmetric matrix Ao = (b.v) has the
A IK

elements b.., - b^ = 0 , b, ~ = cp, b̂ -, = -cp, where co is a

continuous scalar function on [t-,tp]. The solution x = (x.

of the vector-matrix equation associated with (15) for which
x(tx) = (0,1) is

x = [sin j cpds, cos j cpds]

and this shows that the conjugate point of t is the point t3

p
fc3

( t 3 > t - ) f o r which J <pds = ?• • S i n c e \\&2\\
 = 1̂ 1 ^ t ^ i e

t l

absence on ( t . , t 2 ] of a p o i n t conjugate to t.. w i l l t h e r e f o r e

r
fc2

imply J |JA2Hds < -^ ( i . e . , because of (11) , the i n e q u a l i t y (14 ) ) ,
t

lm

provided cp is of constant sign. Accordingly, Theorem IV will

be proved if we can show that to £ 0 on [t..,t ] if the element

a 2 1 of A does not vanish on this interval. Using (11) and

the special form of A2 in our case, we have

R i i ° \ / a n a 2 i \ / R n ° \ / R n ° \ / ° - ^
R 2 1 R 2 2 / \ a l 2 a 2 2 / \ R 2 1 R 2 2 / \ R 2 1 R 2 2 l\^ ° / '
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Comparing the elements in the upper right corner, we obtain

a21R22 = "(^Rii* Since Rer, we have R-. ,R22 / 0, and o £ 0

is thus a. consequence of the assumption a?1 ^ 0. This com-

pletes the proof of Theorem IV.

To illustrate the nature of the formalism involved in

the nonlinear equation (16)> we compute R in the case of a

2x2 system corresponding to the second-order equation

y" + py = 0, p > 0. With the coefficient matrix (a..,), where

a..- = a 2 = 0 , a-2 = 1, a . = -p, and the abbreviations R-. = p,

R 2 1 = o, R22
 = T* (16) ^s f o u n d t o lead to the system of dif-

ferential equations

2
(17) pf = po, a' = EJ- - p, r' = -E2L #

The first and third equations lead to (pr)! = 0 and therefore,

because of R(t-) = I, to pr = 1. Using this, and eliminating

T and a, we find that p must be a solution of

Now it is easily confirmed that the general solution of this

2 2 1/2

equation is of the form p = (u +v ) / , where u and v are

two linearly independent solutions of the linear differential

equation

(18) (̂ -) ! + w = 0
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which are normalized by the condition vu! - uv1 = p (the

fact that vu1 - uv1 = ap, a constant, follows from Abel's

2 2 1/2

identity) . It may be noted that, because p = (u +v ) > 0,

the solutions p, a, T of (17) are continuous if p is con-

tinuous, as expected. (16) also shows that <p = pp . Since

vu1 - uv1 = p, we therefore have

()
= R- =- = __E 3_

2 2 2 ~ . ,u, 2p u +v l+(-)

and thus

(19) j <pds = [arctan -]

Since u, v are solutions of (18), the functions U = uTp" ,

V = vfp~ are solutions of the original equation y" + py = 0,

which are normalized by the condition VU1 - UV1 = 1, and (19)

may be replaced by

f l u1

(20) j cpds = [arctan ^-]
t t

If we define U, V by the initial conditions U(t1) = 0,

U1 (tx) = 1, V(t1) = 1, V
! (t1) = 0, we have V! < 0 in a right

neighborhood of t. , and therefore U! (V1 )—> -co if t —> t..

from the right. Since the conjugate point t2 of t, is the

first zero of U! , the integral (20) has the value ~ because of

<p > 0, its value is < ?• if its upper limit is a point in (t_,t9)
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4. in the case in which A is the companion matrix associated

with an n-th order differential equation

(2i) y(n) + P ^ Y ^ + ... + P Y - o,

a conjugate point t_ of t with respect to the equation

x1 = Ax is characterized by the existence of a nontrivial

solution y of (21) for which yft^) = y1 (t^) = ... = y*lc~1)(t1)

y(k) (to) = ... = y
(n~1) (t9) = 0, where ke[l,n-l]. In the

terminology used in the theory of equation (21) 3 such a point

is called a focal point, and the term "conjugate point" is

reserved for a point t~ such that (21) has a nontrivial solu-

tion y with y(tx) = yt (t^ = ... - y
(k~1) (t^ = y(t2) =

yt (t ) = ... = y(
n-k-1) (t2) = o [4,5,7,8,9,14]. in the corres-

ponding vector-matrix equation x! = Ax, the latter type of

point is characterized by the existence of a nontrivial solution

x = (Xj,...,x ) such that x..(t,) = x
2(

ti) = ••• = ̂ ^ i ) = °>

Xl^fc2^ = K2^t?>> = • • • = x
n-k^

t2^ = °' k e [ 1 ^ n ~ 1 ] * T o avoid con-

fusion we shalll call a point of this type a "conjugate point

of the second kind" with respect to equation (1) . T/friile this

concept is of particular interest in the case in which the

coefficient matrix A is the companion matrix of an equation (21)

it can be applied to the general equation (1).

The following result shows that the absence of a conjugate

point of the second kind is equivalent to the possibility of

decomposing a certain fundamental solution matrix X of (2) into
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a product of two triangular matrices. The situation is similar

to that described in Lemma II, but there are two significant

differences: The order of the two triangular matrices is

reversed, and the solution X now has a different initial

value.

LEMMA V. Let E = (E..) be the nxn matrix whose only non-

vanishing elements are En „- , = 1 , k=l,.. o,n. In. order

that the interval (t-,t3) be free of conjugate points of the

second kind t^(t-) with respect to equation (1) , ijt iŝ  neces-

sary and sufficient that the solution X oj£ (2) with the

initial value X(t..) = E have a_ representation

(22) X = LS*, L,S€T,

where the matrices L, S are differentiable on (t.,t ).

The representation (22) can be made unique by requiring,

for example, that the elements in the main diagonal of L be

all equal to 1.

The exclusion of the point t- from the interval of dif-

ferentiability -- and, indeed, continuity -- of L and S is

unavoidablec If these matrices were continuous on [t-,t ), it

would follow from L(t1)S^(t2) = E that both L(t-) and S(t-)

are nonsingular (and thus er) , and therefore L(t..) = ES* (t-).

Since the elements of ES* above the secondary diagonal are

all zero, this would imply that the elements of L(t.) along
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the upper half of the main diagonal are all zero, and this is

incompatible with L(t.)er. The matrix functions L(t) and

S(t) may thus be expected to exhibit singular behavior (sing-

ular in the analytic, not the algebraic, sense) as t —> t..

from the right. The nature of this singular behavior will be

discussed later.

We now turn to the proof of Lemma V. Suppose the point

tp = t (t,) is- a conjugate point of the second kind, i.eo - -

in the terminology used in the proof of Lemma II -- suppose

there exists a nontrivial solution x of (1) such that, for

some ke[l,n-l], x(tJeN, and x(t2)eN _,. Let X be the

solution of (2) for which X(t-.) = E, and suppose that X has

the representation (22). Since X is a fundamental solution,

we have x = Xa* where a is a constant vector, and therefore

E"1x(t1) = X"
1(t1)x(t1) = X"

1(t2)x(t2) = S^"
1(t2)L"

1(t2)x(t2),

or (because of E~ = E)

(23) S*(t2)Ex(t1) = L"
1(t2)x(t2).

Since x(t2)eNn_k and L~ (t2)€T, the right-hand side of (23)

is also a vector of class N , . On the other hand, multiplication
n— K

of a vector by the matrix E reverses the order of its compo-

nents, and it follows from x(t )eNv that Ex(tn)eN'. Because
IK 1 JC

of S*(t2)er*, t l i e left-hand side of (23) is thus found to be a

vector of the class N ' . As remarked earlier, the only vector p
for which both peN̂  and peN v is the zero vector. Thus,

K. n— K.
both sides of (23) are zero. Since both S*(t2) and E are
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nonsingular, it follows that x(t1) = 0 , i.e., x is the

trivial solution of (1), contrary to our assumption, This

shows that conjugate points of the second kind cannot occur

if the solution X has the representation (22) .

To prove the converse, suppose that t~ is not a conjugate

point of the second kind (of t,), and let x be a nontrivial

solution of (1) for which xltJeN, , where k may be any integer

in [l,n-l]. If X is the solution of (1) for which X(t][) = E,

we then have X""1 (t1)x(t1) = Exft^eN^. Since x""1(t)x(t) =

a = const., it follows that x(t2)
 = X(t2)a, where aeN/ and

the components a^a,,...^ -, n of a may be given arbitrary
l 2. n~- .K— l

values by imposing suitable initial conditions on the components

Xk+l'Xk+2'# * - ' Xn O f X# B y a s s U T nP t i o n* x^t2)^Nn-k f o r a 1 1

nontrivial choices of a-, , • • . ,a v 1 9 and this implies that the
_L n— KL— l

(n-k)x(n-k) submatrix of X(t2) in the upper left corner is

nonsingular. Since k may be any integer in [l,n-l], all square

submatrices of X(t ) which contain the element in the upper

left corner of X(t?) are thus found to be nonsingular, and it

follows by the result quoted above that x(t2)
 = LS*> where

L,Ser. If this decomposition is made unique by setting the ele-

ments in the main diagonal of L equal to 1, the differenti-

ability of L and S becomes a consequence of the differenti-

ability of X (cf. the proof of Lemma II). This completes the

proof of Lemma V.

We now apply to (22) a procedure similar to that which led

from the decomposition (3) to the differential equation (4).
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Since, by (22) and (2), LTS* + LS*f = ALS*, we have

(24) IT1!*1 + S^'S^"1 = L"1AL.

Applying to this the operation [ ] , we obtain [L~ L1 ] =
1 o o

[L~ AL] . If L is normalized so that all the elements in
To

its main diagonal are 1, we clearly have Jj}erQ and therefore

L L!€T • Thus, [L~ L1] = L~ L!, and the differential equation

° ro
for L simplifies to

(25) L! = L[L"XAL] .
To

A comparison with (4) shows that, though of similar build, this

equation is essentially different from (4). The equations also

differ in the initial conditions to be satisfied by the solution L.

In the case of equation (4), all nontrivial elements of L had

the initial value 0. In the case of (25), the situation is

more complicated since, as pointed out above, some of the ele-

ments of L must become singular as t —*> t- from the right.

By way of illustration, we consider the case of a 2x2 matrix

A = (a..,). Clearly, the only nontrivial element of L is now

L21> and a short computation shows that (25) is in this case

equivalent to the Riccati equation

(26) Rt = a 2 1 + (a22~
all)R " 3 1 2 R 2

for R = L21. (It may be noted that (26) transforms into (7)

under the substitution R = p.) To find the initial conditions

to be satisfied by R we note that, for small values of e = t - t ,
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rfc 2
L(t)S*(t) = X(t) = E + | A(s)Eds + 0(e )

Denoting the elements of S by S..,, we obtain

t

S,,
ft 2 rfc 2

= j a i 2 d s + °(G ) * RS11 = •*" + j a 2 2 d s + L^G ) ky equating

the elements in the first column. Hence, lim (t-t-)R(t) =

[a12(t.)]"" (the fact that a-j2^tl^ ^ ° ^s a consequence of

Ser). Our final result is therefore that the interval (t,,t~)

is free of conjugate points of the second kind if and only if

the Riccati equation (26) has a solution which is continuous

in (t-,t9) and is such that lim (t-t )R(t) exists and is ^ 0,
1 Z t^t x

 X

That this limit must have the value [a12(t-.)]~ can be seen by

setting R = p and using equation (7) .

In the further discussion of equation (25) we confine our-

selves to the case in which A is the companion matrix of the

n-th order differential equation

(27) y<n> - Pn.2y
<n-2) - Pn_3Y

(n-3) - ... - P l r - P y - o.

In this case (which is the one of major interest), the particular

form of A leads to a considerable simplification of the pro-

cedure for obtaining the correct initial conditions for the

solution matrix L of (25)o Also, for matrices A of this

type equation (25) can be brought into a very much simpler form.

The companion matrix of equation (27) is A = A + E-, where

the elements in the bottom row of A are p *P-,j...,p 9j0,
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and all other elements of A are zero; E-, is the matrix

(b.n) whose only nonzero elements are b. . , = 1, i = l,2,...,n-l

We shall show that for such a matrix A equation (25) reduces

to

(28) L! = AL - LEj^ + L(LQE1 - E1LQ)

where L = (c.v) is the matrix whose only nonzero elements are
O 1JK.

c. . . = L . . -, i=l,...,n-l (and L.- are the elements of

L) . Written in terms of the L.,, (28) is equivalent to the
IK.

system

!
Lik =

= l , . . . , n - l , (Lio=0)

(29)

Lnk = p k - l + p A + l k + • • ' + p n - 2 L n - l k + Lnk = p k - l + p A + l , k + • • ' + p n - 2 L n - l , k + Lnk ^ k -

( L n + l , n = 0 ) '

To derive (28) > we observe that A er and therefore

(because of Ler) lT1A L€T . Hence, [L'^L] = L"1AL - [L""XAL]
O O T

^ - [L"1(A +En)L] „ = L^AL - [L""1EnL] . , and (25) i s found
O X T X T

to be equivalent to

(30) L1 = AL - L[L-1E1L] . .
X T *

We introduce here, for the mement, the notation r-. for the

class of matrices (*).-,) for which r)--. = 0 if k > i - 1.
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Clearly, L - I - L 6T-, and, as a resul t , E. (L-I-L ) er and

L"1E1(L-I-Lo)eTo. Hence, [ i T ^ L ] ^ = [L" 1E;L (I+LQ) +L~1E1 (L- I -L O )

~\ 2 - 1

= [L (I+L )1 . . . From L - IeT . (L-I) €T-, and L

I - (L-I) +- . . . + ( - l ) n " 1 (L- I ) n " 1 it follows that

L - I + L ex, and thus, as before, (L~ - I+LQ ) E, (L-I-LQ) €TQ.

This implies that [L"1E1 (I+L ) ] „ = [(I-L )En (I+L ) ] . Since,
1 O T O 1 O T

as just shown, [ i T ^ L ] ^ = [L~ 1 E 1 (I+LQ) ] ̂ , we find that (29)

reduces to
L' = AL - L[(I-LO)E1(I+LO) ]^.

Since L E,L GT , E,€T*, and both L E-, and EnL are diagonalo l o o l o l l o

matr ices , we have [(I-L )E,(I+L )] ^ = E-ĵ  + EL - L Q E ^ and t h i s

es tab l i shes (28) . We also note tha t (24) and the iden t i ty

[L~1AL] „ = [L~1E,L] . = E- + E-L - L En lead to the differen-
T 1 T 1 1 O O 1

tial equation

for the matrix S.

We now consider the behavior of the elements of L as

t —> t. . Since A is the companion matrix of the equation (27),

the matrix X described in Lemma V is the MWronskian matrix"

(k- 1)
(u: ') . v_n , where u. is the solution of (27) deter-
I I , .K—i, • • • , n I

mined by the initial conditions u. " ' (tn) = 6 ... If L^ ,
1 1 lxC

fk) fk}Ŝ -v , Xv ' denote, respectively, the kxk submatrices of

L, S*, X containing the element in the upper left corner, it
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follows from Ler, S*eT* that L^k) S* ̂  = X^k) . The deter-

minant of X is the Wronskian W, = W(u_,. . • ,u.,) , and the

determinant of a triangular matrix is the product of its

diagonal terms. Since L.. = 1, we thus have W-, =

and therefore

sk

Wk

From equation (31) we find, on the other hand, that s'

(L. v"1^ k-l^Skk* Combining this with (32), we obtain

wk , wk-:

Since W- = u- and, by (22), L 2 1 = u'(u..) , this shows that

J k

Near t,, the solution u, of (27) is of the form

= [(n-k) !]" 1(t-t 1)
n~ k + O[(t-t1)

n], and it is easy to see

k (n-k)

that this implies W, = O[(t-t..) ' ] . We may therefore con-

clude from (33) that

(34) k x i V = I 4- + (

near t,. iTie singular behavior of the other nontrivial elements

of L can be obtained from (34) if it is observed that, in

accordance with the equations (29) , the elements L.v, k < i - 1,
ijc
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can be computed from the elements I*u.i -̂  ky means of dif-

ferentiations, multiplications and additions, and it is easily

i-kseen that lim (t-t,) L.. exists for all k < i. However,

'1

the knowledge of the singular behavior of the elements L-T*

k < i - 1, is not necessary in order to characterize the solu-

tion L of (28) in which we are interested. Because of the

observation just made, L can be obtained from the elements

L, _ , by means of elementary processes, and it is clear that

L is completely determined by the initial conditions

lim , (t-1 ) L, , - - = k(n-k) , k = 1,.. . ,n-l.
, ,-r I K+ X, K

The following statement sums up our results.

THEOREM V. Let Lik, i = 1, . . • ,n, k = 1,... ,n-l be_ the (unique)

solution of the Riccati system (29) determined by the conditions

lim ,(t-t-)L, v = k(n-k), k = l,...,n-l. In order that the

linear n-th order equation (27) he_ disconjugate on the interval

[t-,t ) it: i_s necessary and sufficient that the L., b£ con- f

tinuous on (t.,tj .

In fact, our argument shows that it is sufficient to re-

quire the continuity of the Ih.,-1 v> ^
 = l*«*«jn-l* Since,

K+X , K
according to (33), the continuity of these functions is equiva-

lent to the conditions w, ^ 0, k = l,#..,n-l, this provides

l

dition for disconjugacy [12].

a new proof of Polya's well-known necessary and sufficient con-
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