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Abstract

Let A Dbe a real continuous nxn matrix on an interval T,
and let the n-vector x be a solution of the differential
equation x' = Ax on T. If [a,B]lel, B is called a conjugate
point of o if the equation has a nontrivial solution vector
X = (xl,...,xn) such that xl(a) = ,.. = Xk(a) = xk+l(8) = ...
= xn(a) = O for some ke [l,n-1].

It is shown that the absence on (tl’t2) of a point con-
jugate to tl with respect to the equation x' = Ax 1is equiva-
lent to the existence on (tl’tz) of a continuous matrix solution

I of the nonlinear differential equation

L' = [LA*L_l]T L

(o)

with the initial condition L(tl) = I, where [B]TO denotes

the matrix obtained from the nxn matrix B by replacing the
elements on and above the main diagonal by zeros. This nonlinear
equation -- which may be regarded as a generalization of the
Riccati equation, to which it reduces for n = 2 -- can be used

to derive criteria for the presence or absence of conjugate

points on a given interval.
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et A = A(t) be a continuous real-valued nxn matrix on

a real interval T. We consider the differential equation
(1) x! = AX,

whose solutions are n-dimensional vector functions x(t), and

the associated equation
(2) X' = AX,

whose solutions are nxn matrices X(t). In both cases we shall
consider only real solutions, If tl,tzer, the point t2 will
be said to be a (right) conjugate point of tl with respect to
equation (1) or (2) if (1) has a nontrivial solution vector

X = (xl,...,xn) such that, for some ke [l,n-1], xl(tl) = L.
= xk(tl) = Xk+1(t2) = ... = xn(t2) = 0, A similar definition
can be given for a left conjugate point, but it will not be
necessary for our purposes, and we shall therefore use the term
"conjugate point" to refer to the right conjugate point just
defined.

We quote here some well-known elementary facts concerning

equations (1) and (2). A solution matrix X of (2) which is

*Research supported by the National Science Foundation under
Grant GP23113,



nonsi ngul ar at one point of r is nonsingular for all tE£€T;
such a solution is called a fundanental solution of (2) . |If
X is fundanmental, all other solutions of (2) are of the form
XC, where C is a constant matrix. The general sol ution of
the vector-matrix equation (1) is of the form x = Xa, where
X is a fundanental solution of (2) and a is a constant vec-
tor of dinmension n.

Qur principal concern is the derivation of criteria for
the presence or absence of conjugate points associated with
equations of the form (1) or (2). W shall find that in the

consi deration of these questions a basic role is played by

the class of nonsingular lower triangular matrices, i.e.,
Atrices (Swm)kyt=1jfi#jn Such that sy jJ£ 0 and 3" =0
if k< 1. The class of these matrices will be denoted by r.

To indicate that a matrix L is nonsingular and upper tri-
angular, we wite either L*eT (where L* 1is the transpose

of L) or LeT*. The synbol Mo wi Il be used for the class

of lower triangular matrices whose main diagonal terns are all
zero. The "lower triangular part" of a general matrix S (i.e.,

the matrix obtained from S if the terns s, ke (k>£) are replaced

by zeros) will be denoted by [Y r If, in addition, the ele-
ments s,, are replaced by zeros, we obtain the matrix [§ .

W shall use the synbol N,K(I_<’\k_<’\n-l) for the class of

vectors a:(cu*...,al)1 for which &, =a, =... =ou =0,
iR €L

u
K
and the synbol N. for the class of vectors a with a - ,! =
KI n— -~T1l
N-Kk+2 = "ee T3 =% (Jearly, SaeN* if aeN* and Ser;



similarly, S*aeNﬁ is a consequence of aeNL and Set. We

also note that if, for any ke[l,n-1], aeN and aeN;_

k k’

o 1s necessarily the zero vector.

We now state our basic lemmas.

:

E I. The point t2 (tl—t2) is not a conjugate point of t

1
with respect to equation (1) if and only if there exists a

solution X of (2) such that X(tl)er and X(tz)er*.

LEMMA II. The interval (tl,t does not contain a conjugate

3)
point of ty with respect to equation (1) if and only if (2)

has a solution matrix of the form

(3) X = L*S, L,SeT,

where the matrices I, S are differentiable on (tl,t3), and

I* (t = I (the unit matrix).

1)
We first prove the "if" part of these statements. Suppose
t, is conjugate to tl, i.e., suppose there exists a nontrivial
solution x of (1) such that, for some ke[l,n-1], X(tl)€Nk

and x(tz)eN;_k. Since x = Xa, where X is a fundamental
solution of (2) and @ is a constant vector, we have
X—l(tl)x(tl) = X_l(tz)x(tz). We apply this to the solution X
described in Lemma I (which is fundamental because of X(tl)ef)
and note that, under the assumptions of Lemma I, X—l(tl)er,

x (e err. since X (e x(t)eN, and X () x(t,)eN

n-k’
it follows that X—l(tl)x(tl) must be the zero vector. But



this implies x(tl) =0, i.e., x 1is the trivial solution

X = 0, contrary to our assumption. The conditions on X in
Lemma I are thus sufficient to prevent t2 from being a con-
jugate point of tl'

The corresponding assertion in Lemma II is an immediate
consequence of this. If t2 is a point in (tl’t3)’ we replace
X by the fundamental solution Y = Xs_l(tz) and note that, by
(3) and the assumption L*(tl) = I, Y(tl)GT and Y(tz)eT*.
Thus, by Lemma I, t2 cannot be conjugate to tl.

To prove the "only if" part in Lemma I, suppose that t,
is not conjugate to tl’ and let x Dbe a nontrivial solution
of (1) for which x(tl)eNk, where k may be any integer in
[1,n-1]. If X is a fundamental solution of (2) for which

k
of Xfl(t)x(t) = q = const., x(t2) = X(tz)a, where aeNk and

x(tl)ef, we then have X_l(tl)x(t2)€N and therefore, because

the components Q12 %gppr e s e sGy of o may be given arbitrary

values by imposing suitable initial conditions on the components
Xet1 Fpe1 0 0¥ of x. We assert that the (n-k)x(n-k) sub-
matrix of X(tz) in the lower right-hand corner must be non-
singular. If this were not true, there would exist a nontrivial
set Opet1se =20y such that the last n-k components of x(t2) =

X(tz)a are all zero, i.e., t2 would be conjugate to tl’

contrary to our assumption. Since k may be any integer in

[1,n-1], this argument shows that if t is not conjugate to

2

tl all the square submatrices of X(t2) which contain the ele-

ment in the lower right-hand corner of X(t2) must be nonsingular.



By a well-known result (e.g. [1],p.35), this implies that
X(t2) may be written in the form L*S, where L,SerT.

Since Y(t) = x(t)s T

is a solution of (2) for which
Y(tl)€T and Y(tz)eT*, this completes the proof of Lemma I.
To show that the decomposition X(t) = L*(t)S(t) (where t
may now be identified with any point in (tl’t3)) also leads

to the proof of Lemma II, we note that this decomposition can
be made unique by the requirement that all the elements in

the main diagonal of L(t) be equal to 1. 1If this is done,
the elements of L(t) and S(t) can be expressed rationally

in terms of the elements of X(t) ([1l],p.38). Since the de-
nominators appearing in these expressions are the determinants

| x (k = 1,...,n-1), which were just shown not

vplv,p=k+l,...,n
to vanish on (tl,t3), the differentiability of the elements

of L and S follows from that of the elements of X, This

concludes the proof of Lemma II.

2. Our next result shows that the absence, on an interval

(tl,t2), of a point conjugate to tl with respect to equation

(1) is equivalént to the fact that a certain nonlinear differ-
2). The

statement of the theorem uses the symbol [-]T which, as
o
indicated above, is defined as follows: If B is a matrix

ential equation has a continuous solution on [tl,t

(bkm)k,m=l, ..,n’ then C = [B],’_o is the matrix (c for which

“ym = bkm for m < k and ym = © for m > k.

k)



THEOREM j[. JEn order that the interval (t__t*tz) contain no

point conjugate to t; with respect to equation (1) , jLt is

necessary and sufficient that the solution of the nonlinear

differential equation

(4) L' = [LA*L_l], L
. o
with the initial _condition L(t 1 = | be_ continuous o_g_(trtﬁ.
We note that, if it exists, a continuous solution of (4)
is necessarily of the form L =1 + L , where L er . I ndeed,
o O o
since L is a solution of the linear equation L' = RL where
the matrix R:[LA*L~1]T isin r , w have L =1im L _,
o ° m oo ™
where
L =1+ RL ds, L, =1
mf 1 Je n 1
1

Since Rl er if Rerj and L _ET, this shows that L .4 - lerg

for all m and the assertion foll ows.

Accordingly, the matrix L has only é—n(n-l) nontrivi al
el ements, and equation (1) may therefore be tested for the ab-
sence of a conjugate point to ty in an interval (t pt 2) by
solving a system of %n(n-l) nonl i near differential equations.
For n = 2, only one equation has to be solved. As we shall see,
this is precisely the classical Riccati equation associated with
the 2x2 systemof linear equations. The system (4 may thus

be regarded as a generalization of the Riccati equation to the



case of an nxn matrix. The nature of the nonlinearities

appearing in (4) is described in the following statement.

If L (i>k) are the nontrivial elements of the solution

ik
matrix L in (4), equation (4) is equivalent to a system

(5) Lix' = Fix(Trg) s

where the F are polynomials of degree not higher than n

ik

in the variables Los (r>s) .

To prove Theorem I we note that by Lemma II the absence
of a conjugate point to tl in (tl’t2) is equivalent to the
existence on [tl’tz) of a solution X of (2) which admits
of a decomposition X = L*S, where L,SerT, L(tl) = I, and L, S
are differentiable on [tl,t2). As pointed out above, we may

also assume that, throughout [tl’t2)’ all the elements in the

main diagonal of L are equal to 1. Substituting this repre-

sentation of X in (2), we have 1Ix's+ IL*S' = AL*S, and thus
"t 4 s1s7t = pxT lap or, equivalently,
(6) Lt 4 s lexr = LA*L‘l.
Since SeTt, we have S*_ls*'ef* and therefore [S*—ls*']T = 0.
From L - Ier_ it follows that L’L_leTo and therefore ©
[L'L_l]T = L'Lnl. Accordingly, an application of the operation
[']T tg (6) leads to

o

Lt - [LA*LTl]T s

()



and this is equivalent to (4).
To prove that the functions Fik in (5) are polynomials

of degree not exceeding n, we observe that Lg =0 if LeT_.

o 'o

. _ -1 -1 n-1
Thus, since LO =1 - Lero, L = (I—Lo) =1 + LO + ... + LO s
and we have

-1 n-1
X = - *

(7) LA*L (I LO)A (T + Lo + s + Lo ) .
This shows that the elements of LA*L"l -- and therefore also
the elements of [LA*L—l]T -- are polynomials of degree < n

(@)

in the elements of Lo' By (4), the functions F in (5) are

ik
thus polynomials of degree < n + 1 in the elements of Lo'
The fact that the degree n + 1 is excluded is a consequence

of the identity

n-1 n-1
* = *
[LOA Lo ]TOL LOA LO s

which may be established in the following manner. Since LoeTo,
all elements of the matrix Lg-l, except the one in the lower

left corner, are zero. As a result, the only non-zero elements

of A*Lg-l appear in the first column, and we thus have
n-1 . s . n-1 . n-1
A*Lo €t. This implies that LOA*LO €Tys 1.e., [LOA*Lo ]To =
n-1 n-1 _ n-1 _ n-1
LOA*LO . Hence, [LOA*Lo ]TOL = LOA*Lo (I—Lo) = LOA*Lo s

as asserted.

We illustrate the use of Theorem I by two examples. The

first is the case n = 2, in which the matrix L = (Lik)i,k=1,2
has the elements Lll = L22 =1, le = 0, L21 = p, where p is
a differentiable function of t, If a. are the elements of

ik
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fact that, by (10), T° =1 (or p' = 1) at such a point.

In the case of a and <p we have a' (t ) = (t =0,

)
and (10) shows that (t-lo)"\ (t) and (t-lo)"\ (t) tend to 1

i f t—>to fromthe right, so that a and cp are again
positive in a right neighborhood of t-l. At a first zero of
these functions in (tl,t2) we have, by (10), a =r and cpt = p,

respectively. Since p>0 and r >0 1in (t'i’t we obtain

)
the sanme contradiction as before.

In the case in which the coefficient function p is of
constant sign, the positivity of the functions r, a, p* cp
|eads to a considerable sinplification. If p ™0, it follows
fromthe equations (10b) that cpt <* p, p* < 13 and thus
O<L P<Lt, 0<% cg{i"p‘zt , a long as p and cp are defined.
W may therefore conclude fromthe existence theorem that the
differential equations (10b) (with the initial conditions
p(t-l) = <p(ti) =0) have a unique and continuous pair of solutions
p, <p as long as p renains continuous. Hence, these equations
may be disregarded, and our necessary and sufficient condition
for the absence in (t-l.,tg) of a point conjugate to t'l reduces
to the existence in [tnt™ of a cont:i_mnuous go|ytjon of the
system (10a) with the initial conditions o(t-l) = T(ti) = 0.
In the case p < 0 we have a simlar result, with (10a) re-
pl aced by (10b).

W note that the two equations (10a) are equivalent to

equation (8). Indeed if we set exp[-' pods] = R the equations
J

0
(10a) take the form (Ra)' = RT, (R)' = R Wth u = Ra, we
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have therefore u" = R, u" = R Since R = -paR = -pu, we
thus find that u satisfies equation (8). Simlarly, the
equations (10b) are equivalent to the equation v™ pv = 0.

The classical R ccati equation is a convenient point of
departure for the derivation of oscillation criteria for the
associ ated second-order |inear equation. The "R ccati systen
(10a) can be nade to play a simlar role in the oscillation
theory of equation (8). To illustrate the possibilities, we
consider the case p 0 and the interval [0,co). It is known
[2] that in this case a conjugate point to of O (in the
sense defined above) is necessarily associated with a solution
of (8) for which u(0) = u' (0) :uM(tc) = 0; noreover, the
absence on [0,00) of a point conjugate to O is equivalent to
the di sconjugacy of the equation in the sense of Wntner [2] ,
i.e., to the fact that no nontrivial solution of (8 can have
nore than two zeros on [0, 00).

1

If we set T:% it follows from (10a) that T =1 - TT~

Since, by the second equation (10a) , r ~. t we have T' ~1 - Tt"
i.e., (tH' ~t, andthus T:;=2-| t. On the other hand, T £ 1,
and therefore (because of T(0) =0), TE£t. Applying these

inequalities to the second equation (10a), we obtain
1l 2 2 -1

1+ 2" ptT <~ T <L 1+ptr . If weset r=ww) , where
Ww(0) £ 0, w(0) >0, these inequalities take the form
é - -
W+ -~ P'W<L 0<L™ * PWA aA the continuity of r (and, because

of O<Max<ir, also the continuity of a) is equivalent to w~” 0.

El ementary conparison argunents (cf., e.g., [15]) show that the
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existence of such a function w implies the existence of a
solution U of U" + % ptU = 0 with U(0) = 0, U' # O, and

is implied by the existence of a solution V of V" + ptv =0
with V(0) = 0, V' # O (both on the interval [0,00). Since
the existence of these solutions is equivalent to the disconju-
gacy of these equations on [0O,o00) [15], this leads to the fol-

lowing result.

In order that equation (8) (with p > O) be disconjugate

N

on [0,0), it is necessary that U" + ptU = 0 be disconjugate

O
o

[0,00) and sufficient that U" + ptU = O be disconjugate

this interval.

5

3. Let T(t) be a differentiable matrix function on [tl’t2]

such that T(tl)eT and T(tz)ET*, and let Y' = AlY be the
differential equation solved by Y = TX, where X 1is the solu-
tion of (2) described in Lemma I. It is evident from Lemma I

that t will not be a conjugate point of t with respect

2 1
to the transformed equation of the same is true of equation (2),
and vice-versa. Since Al = (T' + TA)T—l, Lemma I has the

following consequence.

LEMMA III. n order that t, be not a conjugate point of t

1

with respect to equation (2), it is necessary and sufficient

that the same be true for the equation

Y' =AY, A, = (T + TA)T‘l,

BOAT LigRARY
CARNEGIE-ELLEN UKIVERSITY
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-

where T JLE£ any nonsinqular_matrix which_is_differentiable

on [t,,t,] and satisfies the conditions T(t JGT, T(ty,)eT*.

A simlar conclusion may be drawn fromLemma II1. If X
is the solution described in Lemma Il and R is a matrix which
is dif ferentiable and er on [tI,tﬂ and reduces to the unit
matri x at t, the matrix Y = R X = R*L*S satisfies all the
conditions inposed on X in Lemma Il, and we have the follow ng

result.

LEMVA Vo 1n order that the interval (ti, t,] should not contain

a conjugate point of t; wth respect to equation (2) ¢ it isS

necessary and sufficient that the sane be true for the equation

(11) Yo =AY, A, = (R*" + R¥h) R*‘l:

where R is any matrix of r which is differentiable on [t.., tg]

____________ £

and such that Rt.) = 1.

These | emmas show that any condition on the coefficient
matri x A which guarantees the existence or nonexistence of
conjugate points can be replaced by the sane condition on the
matrices A or A,, as the case may be. Since the |atter
matri ces depend on.arbitrary triangular matrices, this leads to
conditions of considerable generality. W shall illustrate

this remark in the case of the condition
£

(12) J [[Afd <\,
£y
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1
—

whi ch guarantees that the interval (t 7 t does not contain a

5]
poi nt conjugate to t..‘L with respect to equation (2) [6,10].
Here, \*\ denotes the matrix norm induced by the euclidean
vector norm (Conditions enploying other norns can be found
in [11,13]). W also note that the constant f in (12) is
the smallest possible; in fact, the stated consequence does
not followif the sign of equality is admtted in (12) [10] -

To make this paper self-contained, we give here a very

sinple derivation of condition (12). i ntroducing the variable
t
r

°|

-1

s = s(t) = HAjdt and witing X for dx/ds, we obtain from

(1)

lal) il = =l = faxl] < Al

and thus WA\ </ [Ix|ls  With x = (x_,...,x ) it follows that

a a
[J X"ds - J xEds] £ O, a = s(t3), tse(ty,tz],
Q o]

k=1

and we may therefore conclude that there exists a conmponent X

for which

a a
r2 2

(13) | x~s £ Xi”s.
0 0

If ts 1is conjugate to t,, there exists a solution x such

that each of its conponents vanishes at either t; or t s

we may therefore assume that the function x,, = x*(s) is such

and

that either ~(0) = ° ° x, (& =0, On the other hand, it

is well known (cf., e.g., [3]) that a function with these
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properties is subject to the inequality

08 (08

r.2 02
J mas < [ as,
o (o]

provided aq < %, Since this contradicts (13), it follows that
t2
. . T
t; cannot be conjugate to t; if > a = s(t;) = jt \\al|at.
1
Hence, (12) guarantees that no point in (tl’tz] is conjugate

to tl'
Combining condition (12) with Lemmas III and IV, we obtain

the following two results.

THEOREM II. If there exists a differentiable nonsinqular matrix

T on [tl’tZ] such that T(tl)er, T(tz)er* and
t, B
j | (rr + Ta)T “flat < T,

£

then t, cannot be a conjugate point of £y with respect to

equation (2).

THEOREM III. If there exists a differentiable matrix RerT on

[tl’tz] such that R(tl) = I and

(14) JIRH@R + xR flat < Z,

£

then the interval (tl’tz] does not contain a point conjugate to

tl with respect to equation (2).
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Every choice of a matrix T or R with the requisite
properties thus leads to an explicit criterion. 1In the case
n = 2, the situation is particularly favorable. As the fol-
lowing statement shows, in this case all possible disconjugacy
criteria can be obtained in this way. We confine ourselves

here to the situation covered by Theorem II; the corresponding

assertion related to Theorem I follows as a corollary.

THEOREM IV. Let A = (aik) be a 2x2 continuous matrix such

=

that a,, # 0 on [tl’t2]' n order that the interval (tl’t2]

contain no point conjugate to tl with respect to equation (2)

it is necessary and sufficient that there exist a2 differentiable

2x2 matrix ReT which satisfies the inequality (14) and the

initial condition R(t = TI.

1)

All we have to show is that if a,, # O and the interval

(tl’t contains no point conjugate to tl’ there exists a matrix

2]

Rer such that R(t = I and (14) is true. To do so, we denote

1)
by X the solution of (2) determined by the initial condition

X(tl) = I and apply the Schmidt decomposition (cf., e.g., [16],

p.96) to the matrix X*_l. We obtain X*_l = RQ, where RerT

x-1

(since X is nonsingular) and Q 1is an orthogonal matrix.

If the diagonal elements of R are taken positive, both R
and Q are uniquely determined (and are differentiable since X

is differentiable). From the fact that RQ = I at t1 it

follows that R =1I at t,. 1Indeed, we have I = (RQ) (RQ)* = RR¥,

1
x=-1

i.e., R =R . Since RerT, R*'le

7%, this implies that R is

a diagonal matrix. But I = RR¥ = R2, and the diagonal elements



18

of R are positive. Hence, X*_l = RQ, with R(t = I.

1)
Solving for Q (and using the fact that Qx = Q_l), we have

Q = R¥X and therefore

007t = (rRer + RER)RFTT = By»

where A2 is the matrix (11). Hence, by Lemma IV, the absence

in (tl’tz] of a point conjugate to tl with respect to equa-
tion (2) is equivalent to the same property with respect to

the equation
(15) Q' = a50.

Since Q 1is orthogonal, we have

A, + A5 =007t + @' H" =0ror + *' = (1) = o,

Thus, the coefficient matrix A2 in (11) is skew-symmetric.

We remark that this property of A2 leads to a differential

equation for the triangular matrix R. Since A may be written

2
in the form S* - S, where SETO, we have, by (11),
R—l(R' + A¥R) = S - S*. Applying successively the operations
[ ]T and | ]T* and noting that [R‘lR']T = R_lR', we obtain
R IR 4+ [RTlA*R]: = S and [R_lA*R]T* = -S*, Eliminating S,

o
we find that R 1is the solution of the differential equation

1 1

(16) R' = -R{ [R A*R]T + ([R™ A*R]T*)*}

(o}

determined by the initial condition R(tl) = I. It may be noted
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that although this equation is not linear, the solution R
Is -- because of its definition by nmeans of the Schm dt de-
conposition -- necessarily continuous throughout the interval
of continuity of A

If n =2, the skewsymetric matrix A, = (b.,) has the
A I K

elements b.it - bA—=0, b, t4=cp, b=t = -cp, where co is a
continuous scalar function on [td,tp]. The solution x = (x:

of the vector-matrix equation associated with (15) for which
x(ty) =(0,1) is

X = [sinj c¢pds cos | g,
_tl £

and this shows that the conjugate point of tl is the point t3
_ p°3 _ i |
(ts > t-) for which J <pds = 25 ¢« Since W&\ = 11~ 'A'°
t
I
absence on (tl,tz] of a point conjugate to ty will therefore
rf(.‘,2
imply J [JAHds <

t

A (i.e., because of (11), the inequality (14)),

provided cp 1is of constant sign. Accordingly, Theorem IV w |
be proved if we can show that to £ 0 on [t'l’tzJ I f the el ement
a;; of A does not vanish on this interval. Using (11) and

the special formof A, in our case, we have

f LY e A\ / v \
I WA I NV R N A IR A
, ' { I | I
f21 R22l Vi f220\f21 220 \R21 Rag e i



20

Comparing the elements in the upper right corner, we obtain
ay1Ry, = -ORy;. Since ReT, we have RyqsRy, #0, and o # O
is thus a consequence of the assumption asq # 0. This com-
pletes the proof of Theorem 1IV.

To illustrate the nature of the formalism involved in
the nonlinear equation (16), we compute R in the case of a
2x2 system corresponding to the second-order equation
v' + py = 0, p > O. With the coefficient matrix (aik), where
a5 51 = P and the abbreviations Rll = p,
=T, (16) is found to lead to the system of dif-

a = a

11 =0,

22 =1, a

:O’,

Ri1 Ry2

ferential equations

2
(17) p' = po, o' = E%— - py T' = —E%L .
The first and third equations lead to (pr)' = O and therefore,
because of R(tl) = I, to pr = 1. Using this, and eliminating

T and o0, we find that p must be a solution of

o = By .

(%L)' +
p

Now it is easily confirmed that the general solution of this

equation is of the form p = (u2+v2)l/2

, where u and v are
two linearly independent solutions of the linear differential

equation

(18) (—™ +w=0
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whi ch are normalized by the condition vu' - uvl! =p (the

fact that vu' - uv® = ap, a constant, follows from Abel's
2 2 12

identity) . It may be noted that, because p = (u +v ) > 0,

the solutions p, a, T of (17) are continuous if p2is con-
ti nuous, as expected. (16) also shows that <p =pp . Since

vu' - uv! = p, we therefore have

@:R'= E (§_—
p2 ?m)Z

and thus

£ t2
(19) j <pds = [arctan E] .
ty &

Since u, v are solutions of (18), the functions U= u'p" 1,

V = v“p~:L are solutions of the original equation y" + py = 0,

whi ch are nornalized by the condition VU - W' = 1, and (19)

may be replaced by

f | Ul -
20 ] cpds = [arctan ~-
(20) ] 1pd [ ]_1

t t

If we define U V Dby the initial conditions U(tl_) =0,

U (ty) =1, V(t) =1, V (t) =0, we have V' <0 in a right
nei ghbor hood of t. ., and therefore U (W1l)y— -co if t— t,
fromthe right. Since the conjugate point t, of tl is the
first zero of U, the integral (20) has the val ue g;— because of

<p >0, its value is < 2 if its upper Iimt is a point in (tr,tg).
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4, 1In the case in which A 1is the companion matrix associated

with an n-th order differential equation

(21) y(n) + pn_ly(n_l) + .. + Py =0,

a conjugate point t of t with respect to the equation

2 1
x' = Ax 1is characterized by the existence of a nontrivial
solution y of (21) for which y(tl) = y'(tl) = 4. = y(k_l)(tl)
y(k)(tz) = ... = y(n*l)(tz) = 0, where ke [l,n-1]. 1In the

terminology used in the theory of equation (21), such a point
is called a focal point, and the term "conjugate point" is
reserved for a point t2 such that (21) has a nontrivial solu-
tion y with y(tl) = y'(tl) = tee = y(k-l)(tl) = y(t2) =

y! (t2) = i.. = y(n‘k‘l) (t,) =0 [4,5,7,8,9,14]. 1In the corres-
ponding vector-matrix equation x' = Ax, the latter type of
point is characterized by the existence of a nontrivial solution
X = (xl,...,xn) such that xl(tl) = Xz(tl) = L. = xk(tl) = 0,
xl(tz) = x2(t2) = ... = xn—k(tZ) = 0, ke[l,n-1]. To avoid con-
fusion we shalll call a point of this type a "conjugate point
of the second kind" with respect to equation (1). While this

concept is of particular interest in the case in which the

coefficient matrix A 1is the companion matrix of an equation (21),

it can be applied to the general equation (1).
The following result shows that the absence of a conjugate
point of the second kind is equivalent to the possibility of

decomposing a certain fundamental solution matrix X of (2) into
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a product of two triangular matrices. The situation is simlar
to that described in Lemma 11, but there are two significant
differences: The order of the two triangular matrices is
reversed, and the solution X now has a different initial

val ue.

LEMVA V. Llet E = (Eik).gg the nxn matrix whose only non-
vani shing el enents are E, ,-., =1, k=l,..,,n. |n_ order
that the interval (ti,tQ be free of conjugate points of the

second ki nd tA(t-l wth respect to equation (1) , ijt_is" neces-

sary and sufficient that the solution X d£f (2) wth the

initial val ue Aﬂt.g = E have a_ representation

(22) X = LS*, L, SET,

where the matrices L, S are differentiable on (tl'tz)'

The representation (22) can be nade uni que by requiring,
for exanple, that the elements in the main diagonal of L be

all equal to 1.

The exclusion of the point t- fromthe interval of dif-
ferentiability -- and, indeed, continuity -- of L and S is
unavoi dable. |f these matrices were continuous on [tlj 2, it

woul d follow from L(t;)S"(t,) = E that both L(t]) and S(tl)
are nonsingular (and thus er) , and therefore L(L.z = ES*“l(tl)”
Since the elenments of ES* * above the secondary diagonal are

all zero, this would inply that the el enments of L(L) al ong
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the upper half of the main diagonal are all zero, and this is
incompatible with L(tl)eT. The matrix functions L(t) and
S(t) may thus be expected to exhibit singular behavior (sing-
ular in the analytic, not the algebraic, sense) as t —> tl
from the right. The nature of this singular behavior will be
discussed later.

We now turn to the proof of Lemma V. Suppose the point
t2 = t2(tl) is a conjugate point of the second kind, i.e, --
in the terminology used in the proof of Lemma II -- suppose
there exists a nontrivial solution x of (1) such that, for
some ke [l,n-1], x(tl)eNk and X(t2)€Nn—k‘ Let X Dbe the

solution of (2) for which X(t = E, and suppose that X has

1)
the representation (22). Since X 1is a fundamental solution,

we have x = Xa, where a 1is a constant vector, and therefore

E‘lx(tl) - X_l(tl)x(tl) = x He)x(ty) = S*—l(tz)L_l(tz)x(tz),
or (because of E_1 = E)
(23) S* (t,) Ex(t) = L"l(tz)x(tz).

since x(t,)eN_ _, and L T(t,)er, the right-hand side of (23)

is also a vector of class On the other hand, multiplication

Nn_k.
of a vector by the matrix E reverses the order of its compo-

nents, and it follows from x(tl)eNk that Ex(tl)eNL. Because

of S*(tz)eT*, the left-hand side of (23) is thus found to be a

vector of the class Ni. As remarked earlier, the only vector 8

for which both BeNﬁ and BeNn_k is the zero vector. Thus,

both sides of (23) are zero. Since both S*(t2) and E are
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nonsingular, it follows that x(tl) =0, i.e., x 1is the
trivial solution of (1), contrary to our assumption. This
shows that conjugate points of the second kind cannot occur
if the solution X has the representation (22).

To prove the converse, suppose that t is not a conjugate

2
point of the second kind (of tl), and let x Dbe a nontrivial
solution of (1) for which x(tl)eNk, where k may be any integer
in [1l,n-1]. If X is the solution of (1) for which X(tl) = E,
we then have X—l(tl)x(tl) = Ex(tl)eNi. Since X_l(t)x(t) =

a = const., it follows that x(t,) = X(t,)a, where aeNﬁ and

the components of o may be given arbitrary

OysQpsevesly 3 7
values by imposing suitable initial conditions on the components
X1 Xppnr e 90Xy of Xx. By assumption, x(tz);(Nn_k for all

nontrivial choices of QpseessC and this implies that the

n-k-1’
(n-k) x(n-k) submatrix of X(t2) in the upper left corner is
nonsingular. Since k may be any integer in [1l,n-1], all square
submatrices of X(t2) which contain the element in the upper
left corner of X(t2) are thus found to be nonsingular, and it
follows by the result quoted above that X(t2) = LS*, where
L,Ser. If this decomposition is made unique by setting the ele-
ments in the main diagonal of I equal to 1, the differenti-
ability of L and S becomes a consequence of the differenti-
ability of X (cf. the proof of Lemma II). This completes the
proof of Lemma V.

We now apply to (22) a procedure similar to that which led

from the decomposition (3) to the differential equation (4).
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Since, by (22) and (2), L'S* + LS*" = ALS*, we have

(24) I TH*t + snrsnnd = ["IAL,

0 To

[L~"AL]T . If L is normalized so that all the elenents in
0
its main diagonal are 1, we clearly have Jjlero and therefore

-1

Applying to this the operation | ]T , We obtain [L~1L1] =
1

L™"L'€T « Thus, [LrlLl] = L~-'L', and the differential equation
r

° 0
for L sinplifies to

(25) L' = L[L"*AL] ]
(0]

A conmparison with (4) shows that, though of simlar build, this
equation is essentially different from (4). The equations also
differ in the initial conditions to be satisfied by the solution L.
In the case of equation (4), all nontrivial elements of L had
the initial value 0. In the case of (25), the situation is
nore conplicated since, as pointed out above, sonme of the ele-
ments of L nust becone singular as —-> t- from the right.

By way of illustration, we consider the case of a 2x2 matrix
A= (aiw). Clearly, the only nontrivial element of L is now
L,;> and a short conputation shows that (25) is in this case

equivalent to the Riccati equation

(26) R = aj; + (a@,2~2l1)R" 3qr2

for R = Ly;. (It may be noted that (26) transforms into (7)

under the substitution R T = p.) To find the initial conditions

to be satisfied by R we note that, for small values of e =1t - tl,
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rt 2
L(t)s*¥(t) = X(t) = E + | A(s)Eds + 0(e7).

£y

Denoting the elements of S by Sik’ we obtain
rt 2 et 2
S11 = | alzds + 0(e™), RSy, = 1+ ] a22ds + L{¢”) by equating
t t
1 1
the elements in the first column. Hence, lim (t—tl)R(t) =
t->t
1

~1 (the fact that al2(tl) # O 1is a consequence of

[a,(t)) ]
Ser). Our final result is therefore that the interval (tl,t2)
is free of conjugate points of the second kind if and only if
the Riccati equation (26) has a solution which is continuous

in (t,,t,) and is such that 1lim (t-t.)R(t) exists and is # O.
1772 t=>t 1

1
That this limit must have the wvalue [alz(tl)]—l can be seen by
setting R = p and using equation (7).

In the further discussion of equation (25) we confine our-
selves to the case in which A is the companion matrix of the

n-th order differential equation

(27) y™ op oy i ™I by -py=o.
In this case (which is the one of major interest), the particular
form of A 1leads to a considerable simplification of the pro-
cedure for obtaining the correct initial conditions for the
solution matrix L of (25). Also, for matrices A of this

type equation (25) can be brought into a very much simpler form.

The companion matrix of equation (27) is A = Ao + E., where

1
the elements in the bottom row of A, are PgsPyse«-sPy 550,
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and all other elements of Ao are zero; E is the matrix

1

(bik) whose only nonzero elements are b =1, i =1,2,...,n-1.

i,i+l

We shall show that for such a matrix A equation (25) reduces

to
- - -

(28) L AL LEl + L(LOE1 ElLO)
where Lo = (cik) is the matrix whose only nonzero elements are
Ci,i+1 = Li,i+l’ i=1,...,n-1 (and Lik are the elements of
I). Written in terms of the Lik’ (28) is equivalent to the
system

!

L. =L

ik i+1,k T Tiker oDk (B ko1 Tken, k)
i’k = 1’..o,n—l, (Lio=0)

(29)

Lnk = Pk_l + ka-*}{_'_l’k + ... F pn_2Ln_l’k + Lnk(lk,k—l—Lk"‘l,k) ?

(L o).

n+l,n

To derive (28), we observe that AoeTo and therefore

(because of LeT) LfleLeTo. Hence, [L_lAL]T -t

AL - [ laL) . =
o T

-1 -1 -1 -1 .
L "AL - [L (A0+E1)L]T* = L “AL - [L ElL]T and (25) is found

x
to be equivalent to

1

(30) L' = AL - L[L "E;L] ,.

We introduce here, for the mement, the notation for the

T1
class of matrices (m.,) for which .. =0 if k > i - 1.
Mik MNix
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Clearly, L - | - LOGI':, and, as a result, E.L (L—I—LO) ery and
L"*Ei(L-1-Lo)eT,. Hence, [IiTAL]™ = [L"E. (I+Lo) +L~"E1 (L-1-Lo) ]T*
- =\ 2 - 1_
= [L (g+L )1 ... FAFom L - leT . (L-1) €I, and L
I_1 (L-1) +- ... + (-D™*L-1)"* it fglows that
&) 4
L -1 + L exJ: and thus, as before, (L~ -1+Lo) E, (L-I-Lg) €To.

* *
This implies that [L"*E, (I+L )] ,, = [(-L )E, (I+L )] . Since,
1 o T @ 1 o T

as just shown, [i TAL] A" =[L~"Ei(1+Le)] ~, we findthat (29)

reduces to
L' = AL - L[(I-Lo)Ei(I+Lo) ]7.

Since L _E,L c()STo’

oF E.€T*, and both L0 l'=_- and EI”LO are diagonal

I
matrices, we have [(I-Lg)E(I+L o] # = B + BLo - LQE” and this
establishes (28) . We also note that (24) and the identity

[L~'AL] » = [L~'E,L] ». = E- + EEL - L E, lead to the differen-
T 1 T 1 10 O1
tial equation

for the matrix S
We now consi der the behavior of the elenents of L as
t—=>1t.. Since A is the conpanion matrix of the equation (27),

the matrix X described in Lemma V is the W onski an matri x"

(u['('k-l)l)’ CRep, e e ,V\/P]ere u., is the solution of (27) deter-

m ned by the initial conditions u. (k l‘(tn) =6... |If L’:k),

1 1 | xC
S"-fk), ;(‘k} denote, respectively, the kxk submatrices of

L, S, X containing the elenent in the upper left corner, it
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(k)

(k)S*(k) = X . The deter-

follows from ILeT, S*etr* that L

minant of X is the Wronskian Wk = W(ul,...,uk), and the

determinant of a triangular matrix is the product of its

diagonal terms. Since L.. = 1, we thus have W

ii x = S11522°--5

kk?
and therefore

Wy

o2 o =W

From equation (31) we find, on the other hand, that Sik =

(Lk+l,k_Lk,k-1)skk‘ Combining this with (32), we obtain

! 1
V_V_]S - Ik = W———-—k- 1 - ]'_,,k
Wk +1,k Wk—l sk-1

. . o -1 .

Since Wl ="uq and, by (22), L21 = ul(ul) , this shows that
W'
(33) - K k=1 n-1
b1,k T W sevesn-le
Near tl’ the solution uy of (27) is of the form
u = [(n—k)!]_l(t—tl)n“k + O[(t—tl)n], and it is easy to see
that this implies Wy = O[(t—tl)k(n-k)]. We may therefore con-
clude from (33) that
_ k(n-k)

(34) Ieir,x = Teoe, PO

near tl‘ The singular behavior of the other nontrivial elements
of L can be obtained from (34) if it is observed that, in

accordance with the equations (29), the elements k<i-1,

Lixe
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can be computed from the elements Lk+l X by means of dif-
3

ferentiations, multiplications and additions, and it is easily

seen that lim _ (t-t -k
t—»t1

the knowledge of the singular behavior of the elements L

1) ik exists for all %k < i. However,

ik’

k < i - 1, is not necessary in order to characterize the solu-
tion I of (28) in which we are interested. Because of the
observation just made, L. can be obtained from the elements
Lk+1,k by means of elementary processes, and it is clear that
I. is completely determined by the initial conditions

lim I"(t_tl) Ll](-i-l,k = k(n‘k) k) k = l,coo ’n—lu

t—-)t1

The following statement sums up our results.

i=1,...,n, k =1,...,n-1 be the (unigque)

THEOREM V. Let L.,
SEEUREE L. 2L by

solution of the Riccati system (29) determined by the conditions

lim +(t—tl)Lk+l,k = k(n-k), k = 1,...,n-1, In order that the
t—a»t1

linear n-th order equation (27) be disconjugate on the interval

[tl’tz) it is necessary and sufficient that the L be con- *

ik
tinuous on (tl’tz)'

In fact, our argument shows that it is sufficient to re-
quire the continuity of the Lk+l,k’ k=1,...,n-1. Since,
according to (33), the continuity of these functions is equiva-
lent to the conditions Wy #Z0O0, k = 1,...,n-1, this provides

/
a new proof of Polya's well-known necessary and sufficient con-

dition for disconjugacy [12].
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