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Abstract

A generalization of a formal system is considered, in which the axioms of the

formal system can be withdrawn or supplemented, as mechanical experimentation pro-

ceeds through ntimeff and the consequences of various combinations of assumptions

are realized. The "theorems" of these experimental logics are taken to be those

assertions possessing a proof which remains valid for all "sufficiently large time."

Under very broad hypotheses on experimental logics, we obtain the following
0

two results: (1) There is a (n infinitude of) true but unprovable II - sentence (s) ;

(2) There is no mechanical procedure for uniformly finding any (of the infinitude of)

true but unprovable II -sentence(s) .

Our first result is analogous to Godel's First Incompleteness Theorem for formal

systems (which it implies). Our second result differs sharply with that for formal

systems, where a true but unprovable II--sentence is mechanically obtained in the

course of Godel's proof.
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1
by R. G. Jeroslow

If one experiments through time with mechanical processes, and, on the basis

of the outcome of these "computer experiments," one revises the axioms of a mathe-

matical system, then the resulting time-dependent deductive system is called an

experimental logic.

This paper initiates the study of experimental logics and gives two results

concerning themo The first result states that, under rather broad hypotheses,

there will be a true IL sentence not provable in the experimental logic. This

result is analogous to Godel's fundamental result [3], where the true II sentence

not provable in a given (consistent) formal system happens also to be the system1 s

own Consistency statement, a statement that can be constructed uniformly from a

mechanical description of the formal system*

Our second result states that, even for a very "well-behaved" class of experi-

mental logics, there does not exist any uniform mechanical procedure for finding

any one of the infinitude of non-provable but true II sentences,, A fortiori, no

uniform procedure exists for any extension of this "well-behaved" class of experi-

mental logics*

Section 1 develops the basic concepts for experimental logics and gives ex-

amples of them. Section 2 presents the results of the paper.

Section 1: Definitions

An experimental logic can be identified with a computable predicate H(t,x,y)

from some decidable class of computable predicates, with the intended intuitive

interpretation:

This research has been partially supported by NSF grant GP21067. The results

of this paper were first reported in a working paper, "On Godel's Consistency

Theorem," July, 1971.
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(1) H(t,x,y) = at time t, the finite configuration with godel number y

is sufficient grounds for asserting the formula with godel number x.

To make our discussion precise, let us limit the class of predicates H to the

primitive recursive predicates.

The experimental logic at time t, designated H , has as its "theorems"

{ x | (3 y)H(t,x,y)}. It is not required that H be closed under deductions in

the predicate calculus; it may be finite. The formulae which recur infinitely

often in H are called the recurring formulae, and they are defined by the condition:

(2) RecH(x) = (Vt) (3 s >t) <^y) H(s,x,y).

Of special interest in the study of experimental logics are the stable formulae,

by which we mean the formulae cp which, at some point of time,become provable via

some proof II for all remaining time. I.e., not only is cp a theorem of H for all

sufficiently large t, but there is a proof of cp which is never "subject to question"

for all sufficiently large t. Stable formulae are defined by the condition:

(3) . Stbl(x) = (3t) (3y) (V$ £t) H(s,x,y).

By |^ cp (or, when H is clear from the discussion, by |»cp) we shall simply mean that

cp is stable in the experimental logic defined by the predicate H(t,x,y): we shall

also use the terminology that cp is a theorem of H, or is provable in H.

For furthur reference, we note that Rec ( x) is a II formula and Stbl(x) is a L

formula (see Chapter 13 of [7] for terminology). We shall use cp to denote the

godel number of the formula cp.

It is characteristic of an experimental logic that one cannot detect its theorems

in a mechanical manner, or else the experimental logic usually is equivalent to an

ordinary formal logic, with axioms and rules of reasoning specified in advance.

In experimental logics, the implicit trust of the user of the logic lies not

in the specific theorems which happen to be in H at some specific point t, but

in the method for accepting and disgarding theorems which is described by H(t,x,y).
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If this trust is to entail a belief that this method "converges11 on some stable

conceptual framework, be it true or false, then certainly this

trust requires that the stable and recurring formulae are identical. When this

latter condition is met, we say that the experimental logic converges.

If the experimental logic is to embody trust in the deductive method as a means

of obtaining new conclusions, then certainly any purely logical deduction from a

set of theorems valid in H for all sufficiently large t should eventually occur

in H for sufficiently large s. This implies that the set of stable formulae
s

shall be closed under deductive reasoning.

The discussion of the last two paragraphs is intended only to motivate our choice

of hypotheses in Theorem 1 below.

An interesting subclass of the experimental logics are the finite extension

experimental logics. Here some formal theory^/ts fixed, and as some primitive re-

cursive procedure computes through time, a finite upper bound B is found.

This bound insures that no more than B "additional axioms," i.e., axioms other

than those in^^, will ever be considered. As the computations proceed, these axioms

cp , ,cp , with p < B, are generated (perhaps p « 0) , and, as these axioms occur

they are ranked (as to "desirability") relative to those already occuring, this ranking

to be fixed for all future time.

As time proceeds, deductions from and the "currently active" additional axioms

become longer and longer. If a contradiction is reached depending only on the axioms

of £^7, nothing is doneo If a contradiction occurs in which some of the "currently

active" additional axioms are used, then the least-ranked of these "currently active"

addition axioms is "dropped" and becomes "inactive." This "dropped" axiom is called

the "current error." Depending upon how one wishes to arrange things, one may simply

consider continuing with the remaining "currently active" additional axioms, or one

may follow the following alternate route. One may examine all previous proofs which

led to contradictions and used the "current error," and then return to use,as "currently

active ''any lesser-ranked additional axiom (aside from the "current error") which was
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dropped when the earlier contradiction was found.

The finite extension experimental logics are clearly closed under predicate

reasoning. They are also convergent. In fact, eventually there occurs an additional

axiom which is highest-ranked among any additional axioms which ever occur. If this

highest-ranked axiom is ever dropped, it can never be returned. Hence, after some

finite point in time, this highest-ranked axiom is either always an axiom of H or

always not an axiom of H . Arguing from this point in time on, by a downward induc-

tion on the ranking of the additional axioms which occur, one easily shows the existence

of a point to in time such that, for t > t , the axioms of H are all identical.

Then the formulae that stabilize in H are those which can be deduced from the axioms

of H for any t > t and these are also the formulae that recur in H.

It should be pointed out that, although finite extension logics permit only the

addition of finitely many axioms, these can be from any of the formulae of the predi-

cate calculus, and need not be in the language of the "base theory" ̂ ^. For instance,

*7might be elementary number theory, while one of the additional axioms is Godel-

Bernays set theory. Therefore, while the bound B on the number of additional axioms

is a restriction, it is not as severe by any means as restricting H to an extension

of^7which is finitely-axiomatizable over in the language of^7*

Slightly more general than the finite extension logics are the ascending experi-

mental logics, in which, in addition to a finite bound B for a certain set of

"additional axioms,11 one also considers adding a set of additional axioms of strictly

increasing logical strength, where one mechanically knows the relative strengths.

This "hierarchy of axioms" can be of recursive order type . Here, complex rules

for adding in and taking out axioms in this hierarchy of axioms may be added, in

addition to the simple "inconsistency tests" of the finite extension experimental

logics. If one then knows convergence for the additional rules, then it is auto-

matic for the overall ascending logic, because, once a single axiom from this hier-

archy of axioms is dropped on account of an inconsistency, all more powerful axioms

of the hierarchy are to be automatically dropped with it. This allows one to use
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the kind of simple reasoning appropriate to finite extension logics, in order to

show that ascending logics will also converge.

It is a tedious technical exercise to write down the details of finite extension

logics and ascending logics in terms of suitable primitive recursive predicates

H(t,x,y), and those who have done any of this kind of exercise with primitive re-

cursive calculations see immediately that it can be done. Other readers may wish to

consult [1], or [6], or [7], to see the kind of techniques which are involved;

we omit details, since they add nothing to our discussion.

It is worth remarking that consistent experimental logics can often prove their

own consistency. In fact, the finite extension logic consisting of Peano £rplus

the additional statement flConlf asserting the consistency of Peano, proves its own

consistency. For clearly(Jr U {Con} is consistent, so the theorems of this experi-

mental logic H are the theorems of the formal system(j U {Con}. Now inCfU fCon}

one can reason that, if there is an inconsistency inuU {Con}, then H is "cut down"

to (j , which is consistent. Therefore, for

this H we have y Contr Note, however, that for experimental logics H, Con is a TT

and not a TT- sentence.

We particularly wish to acknowledge the influence of the proof of Theorem 5.9

of Professor Fefermanfs paper [2] in the development of the concept of an experi-

mental logic.

Section 2: Results

If one utilizes only the tools of recursion theory, which are known to be sufficient

to obtain Godel's First Incompleteness Theorem (see particularly [8]), the require-

ment that an experimental logic converge simply places its theorems in TT ̂  £ = A ,

and a priori these theorems might include all true TT -sentences. However, by

utilizing the reasoning formalized in deductive theories, one can show that this

latter eventuality cannot arise. This is the essential content of our first result.

Theorem 1; Let H be a consistent, convergent experimental logic whose theorems con-

tain those of first-order Peano arithmetic and whose theorems are closed under
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first-order classical predicate reasoningo

Then there is a true TT sentence which is not provable in H.

Proof: It is useful to remark that, if ( 3 x) ( Vy) R(x,y) is a true but unprovable

£ sentence, then, for some n , (V y)R(rnn5y) is a true but unprovable TT

sentence; so we need only find a true but unprovable T, sentence.

Via standard techniques, one easily obtains a formula which represents the asser-

tion, " I do not recur,11 i.e., for which we have

(4) f-Rec (cp) <-$Hcp.

(See, for instance, Lemma 5.1 of [2]). Note is (equivalent in classical predicate

reasoning to) a IL sentence.

The proof now divides into two cases, and in either case we find a true but

unprovable E sentence.

Case 1: ^ Rec(cp) — > cp.

Then since (4) gives J-Rec(cp) —>"1cp , we obtain |- -| Rec(cp), and hence by (4), we

also obtain U cp. Therefore Stbl (cp) is a true H sentence. It suffices to show

that Stbl (cp) is not provable. In fact, if U Stbl (cp) , sincej- Stbl (cp) —>Rec(cp),

we would then have^-Rec(cp) . In this case, H would be inconsistent, contradicting

our hypothesis.

Case 2; We do not have^Rec(cp) — > cp.

In the classical predicate calculus, Rec(cp) —^> cp is equivalent to a S sentence.

By the hypothesis of this case, it suffices to show that Rec(cp) — > cp is true.

However, if Rec(cp) is true, since H is convergent, Stbl (cp) is also true, so

j— cp. But then predicate reasoning gives^-Rec(cp) — > cp , contradicting the case.

Hence, Rec (cp) is false; but then Recu(cp) — > cp is automatically true. Q.E.D.

Remark 1: We mention in passing some alternate sets of hypotheses which lead to the

conclusion of Theorem 1, i.e., the existence of a true but unprovable TT - sentence.

The hypothesis that all provable E -sentences are true (in the standard model)

and that the experimental logic H is Convergent, are by these themselves sufficient.

Here one obtains a purely recursion-theoretic proof: (1) If all true 2 - sentences
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were provable, then by hypothesis the set of true S - sentences would be equivalent

to the set of provable ones; hence (2) The complete £ - set would be reducible to

the set of theorems of H; but (3) The theorems of a convergent logic are a A - set;

and hence (4) The assumption (1) is false, so that there is a true but unprovble

XI - sentence, and therefore a true but unprovable TT - sentence.

However, the main hypothesis in the proof given in the last paragraph, i.e.,

that all provable 2 -sentences are true, however reasonable it may be when a formal

system is given which is believed to embody "perfect knowledge,ft seems a particularly

strong assumption when one is experimenting to try to obtain true theorems. After

all, no finite set of mechanical trials is usually sufficient to detect the falsity

of a XL-assertion which is in fact false.

It is also possible to obtain the conclusion of Theorem 1 under these hypotheses

on H: H is consistent, contains the theorems of Peano arithmetic, is closed under

predicate reasoning, and moreover

(5) f- Stbl(x) < — > Rec(x)

with x a free variable. To see this, one simply repeats the proof of Theorem 1, but

uses instead the sentence which represents the assertion \|r, "I do not stabilize.11 Then Case 1

is quite easy and Case 2 is that Stbl(Y) -> Y is not provable,although in this case it is

clearly true. It remains only to show that Stbl (ijr) — ^ i|r is equivalent to a XL

sentence, and that is done by using (5) to change TT - forms into XL-forms whenever

one needs to.

What is to be noted about both Theorem 1 and the result of the last paragraph

is the fact that they do not use conditions such as:

(6) if |— cp , then |- Stbl (cp) .

For one thing (6) does not seem to be useful in obtaining Theorem 1. The condition (6)

is, we feel, rather strong for experimental logics.

Of course, with Pr(cp) ( M cp is provable ") replacing Stbl (cp), the condition (6)

provides a primary technical result on which the usual proofs of Godel's First Incomplete-

ness Theorem, for formal systems, are based. Conditions like (6) can be circumvented

in the proof of Godel's result, by studying instead sentences of the form Pr (cp) — > cp,
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and our Theorem 1 is actually based upon exploiting this observation in experimental

logics (see particularly 3.232 of [5], where this observation is implicit).

Remark 2: Our metamathematics in the proof of Theorem 1 is not intuitionistically

acceptable* it utilizes a tertium non datur in the form of Case 1 and Case 2.

However, our proof is formalizable in (classical) Peano arithmetic. Hence, it is

not refutable even in the intuitionist theory of species, since this theory is a

subtheory of classical analysis, the latter being a consistent extension of Peano

arithmetic.

Remark 3: Our emphasis on true but unprovable rr -sentences, as apart from an emphasis

merely on any true but unprovable sentences, derives from Hilbertfs own emphasis on

this very special class of sentences (see particularly [4]). Hilbert found such sen-

tences ( V x)P(x), with P a testable predicate, to be of particular significance,

since they immediately give rise to the infinitude of "testable predictions,11

P( r 0 n) , P ( r 1 **), P( r 2 / 1),... etc. These sentences were, in this sense, "meaningful",

As to the "meaning" of the rest of mathematical sentences, Hilbert questioned this

notion as being relevant even to sentences as simple as (3 x)P(x), with the unbounded

numerical existential quantifier (see [4]).

We say that a logic is 1-consistent if, whenever (3 x)P(x) is provable, with P(x)

primitive recursive, we do not have"iP(p n~t) provable for each numeral f* n~| . For

systems extending (actually small subsystems of) Peano arithmetic, this is equivalent

to: whenever (f=Jx)P(x) is provable, then P(rn—f) is provable for some numeral n.

An experimental logic H is said to be deductive if H is closed under (classical)

predicate reasoning for each t.

Let K be the class of experimental logics possessing the following properties:

(i) H is 1-consistent.

(ii) H is deductive, and each H contains first-order Peano arithmetic.

(iii) (5) holds forf- being |-__.
n

(iv) H is a finite extension experimental logic.

(v) H proves its cwn consistency,

(vi) H is convergent.
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As mentioned in the introduction, the class K is not chosen for any par-

ticular reason, other than that of defining a "very well-behaved" class of ex-

perimental logics. In the proof of Theorem 2 below, only property (i) for H e K,

will play an essential technical role.

Theorem 2: There is no partial recursive function f having the following

property:

If H e K, and q is the godel number of the primitive recursive predicate

H(t,x,y), then f(q) converges and is the godel number of some rr -sentence not

provable in H.

Proof: Our discussion in Section 1 provided examples of H e K; i.e., K ^ 0.

Fix any H e K for the discussion to follow.

Suppose, for the sake of contradiction, that f exists. Then the following

partial recursive function g also exists. Given a number x, it is first deter-

mined whether or not x is the godel number x = T of a primitive recursive

predicate of four free variables T(a,t,x,y). Then one first computes the

godel number u of T( T, t,x,y), and one finally sets g(x) = f(u) .

Since g is partial recursive, its graph is recursively enumerable, and

hence there exists a primitive recursive predicate G(a,r,w) of three free

variables such that g(a) = r if and only if (5 w)G(a,r,w).

Let T(a,t,x,y) be the following primitive recursive predicate:

"Case 1: (3 w < t) (g r < t) G(a,r,w)#

Subcase 1.1: There is a proof of godel number < t, in H plus the

axiom with godel number r, of an inconsistency.

In this subcase 1.1, T(a,t,x,y) is H(t,x,y).

Subcase 1.2: Case 1 holds; but subcase 1.1 fails. In this

subcase, T(a,t,x,y) is the condition that y is a proof of x in H

except for possibly some (finite number of) occurences of the

formula with godel number r, used as an axiom.
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Case 2; Case 1 fails

Then T(a,t,x,y) is H(t,x,y)."

We first make the following claim:

(8) If Hf(t,x,y) = T(T, t,x,y), then Hf e K.

Note that (ii) and (iv) are immediate for Hf.

As to (vi), we reason as follows. Suppose that subcase 1.1, as de-

scribed in the definition of T(a,t,x,y), arises for infinitely many t. Then

by hypothesis (ii) on H, for infinitely many t,-j (Vx)P(x) is provable in H ,

where (V x)P(x) is the n -sentence with godel number r, cited in Case 1. Then

hypothesis (vi) on H insures that «f(Vx)P(x) stabilizes in H, and hence, that

subcase 1.1 occurs for all sufficiently large t. Then, for sufficiently large

t,H and H ' are identical, and the hypothesis (vi) for H gives (vi) for H1.

Otherwise, subcase 1.1 does not arise infinitely often, so that there is a last

point in time beyond which it ariseso If Case 1 is then ever to arise for any t

there is a point in time such that, at all later points in time, subcase 1.2

holds, and then H1 is identical with what can be proven from H with the addi-

tional TT - sentence (Vx)P(x) whose godel number is r, so Hf satisfies (vi) .

If Case 1 never arises, then H and H ' are identical for all t, so the hypothesis

(vi) for H gives (vi) for Hf. This proves (vi).

Note that the proof of the last paragraph, i.e., the proof that (vi) holds

for H1, can be proven in Peano arithmetic plus (5); hence (iii) holds for Hf,

by virtue of the hypotheses (ii) and (iii) for H.

The verification of (v) for H! is trivial, using the fact that (v) holds

for H, and the kind of reasoning exemplified in Section 1 for the experimental

logic(?u{Con}.

Only the proof of (i) remains, but this is trivial, if one utilizes the

same kind of analysis that we used to prove (vi) for Hf. For if subcase 1.2

arises from some point of time on, then by hypothesis (ii) on H, the TT -sentence
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with godel number r must be true1 and it is a well-known result (an an easy

exercise) that the addition of a true TT - sentence to a 1-consistent logic

extending Peano gives a 1-consistent logic. Otherwise, subcase 1.2 does not

arise after some point in time, in which case, for sufficiently large t, H

and H ' are identical; and then the hypothesis (i) for H gives (i) for Hf.

The claim (8) is established. Therefore, by the definition of the function

g> g(T) is the godel number of a true TT -sentence (Vx)P(x) not provable in H1.

This implies that, for sufficiently large t, (Vx)P(x) is inconsistent in the

logic H , and hence that for sufficiently large t, (3 x) n p( x) i s a theorem

of H . Therefore, tr (3 x) ~7 P(x), and so, by hypothesis (i) on H, h ~» P( n l )
t H H

for some n. Then by hypotheses (i) and (ii) on H, h**P(f~ n "|) is true. New we

have the desired contradiction, since (Vx)P(x) is also true.

Therefore, f does not exist. Q. E.D.

Remark 4: Since known formalizations of constructive mathematics prove the

existence of a function or partial function possessing a property only if a

recursive or partial recursive function exists with that property, Theorem 2

makes it seem unlikely that Theorem 1 can be proven constructively. Therefore,

in view of Remark 2, the results of this paper will probably remain inde-

pendent over any formalism for constructive mathematics.

The Department of Mathematics
Carnegie-Mellon University
January 20, 1973
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