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Abstract

Under consideration is the follow ng question. If T is

a linear operator froma normed function space 3 into a Banach
space X, then may an appropriate topology 3 be defined so that
conditions on T may be interpreted in terns of the topology 37
For the present we consider 3 to be the class of Banach function
spaces. W define appropriate "sem -norm topol ogi es" on the unit
bal | xh of the dual of X Condi tions on the topol ogies give

i nformati on concerning both the underlying neasure and the associ -
ated operator. On the other hand, for exanple, conpactness of T
is related to the conpactness of 3. Indications are given for

the study of nore general structures in the topol ogical setting.
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Richard A. Alo and Andre de Korvin

1. Introduction

Of generzl interest is the following situation. If T 1is a
linear operator from a normed function space ¥ into a Banach space
X, then may a topology 3 be naturally associated with T so
that conditions on T might be related to topological considera-
tions of J7 For example, may one relate the compactness of the
operator T with the topological compactness of J. The general
theory is developed via some (integral) representation of T in
terms of some measure 1. Thus extending the situation further,
the topologist may inquire as to what kind of topology J will
the measures associated with a particular class of operators
produce. On the other hand topological properties of J may
give rise to important classes of associated operators. What
is the significaence of these classes?

Numerous papers have appeared dealing with this idea. One
of the most recent (see [5]) considered the function space ¥ to
be the collection CO(Q,E) of continuous F-valued functions de-
fined on a locally compact space { and vanishing at infinity
where E 1is a Banach space. Another candidate for & was the

collection ME(Z) of E-valued functions totally measurable relative



to the ring %. The main result there was that if E 1is re-
flexive then T is weakly compact if and only if 7T 1is strongly
bounded. Since the operators under consideration have some repre-
sentation via a measure T, we wish to enquire further if this
measure may be used to define semi-norms, which in turn define
topologies, so that the previous mentioned result may be further
illuminated through topology.

An immediate generalization of the above classes of spaces
are the Lebesgue spaces £p(g) for 1 < p< oo. In [3], it is
shown that a continuous linear operator T from £p(p) into a
Banach space X with T absolutely continuous with respect
to u, is compact if and only if an appropriate topology on the

unit ball X, of the dual space X' is compact. Moreover com-

1
pactness of T was shown to make T countably additive. How-
ever a more general setting for these results and questions is
appropriate.

Shortly, we will formulate these questions in a more precise
and succinct way. However for the time being we direct our at-
tention to the particular abstract function spaces that we wish
to presently consider. We will then consider the interpretation
of our results to some particular important subclasses and at the
end we will consider what may be studied in a more general setting.

About twenty years ago the first papers on Banach function
spaces or normed Kothe spaces (or even sometimes called spaces

with a length function) were first published. 1In general these

are Banach spaces of either scalar or vector-valued functions



defined on a point set () and measurable with respect to a
given measure pu on Q (see [10] and [16]). As an abstract
class of spaces they include (and are natural generalizations

of) the Lebesgue spaces £p, 1 {p - oo, and the well-known

(but possibly less familiar) Orlicz spaces, which themselves

are generalizations of the Lp—spaces. On the other side every
normed function space is a normed Riesz space (that is, a normed
vector lattice). Consequently as one might expect the more
abstract theories of either Riesz spaces, ordered topological
linear spaces, or normed linear spaces will serve as corner-
stones for the present developments.l Of course this is not
meant to exclude the influence that the theory of measure and
integration has on these function spaces or will have on the
topologies to be considered. Our interest in this work will be
essentially the topological aspects of the theory and the influ-
ence that the other theories will have on these topologies. For
example, the interaction of measure theory and topology. By
this we hope to engage the interested in many of the significant
questions that arise and to begin the study of the more abstract
setting, again from the topological point of view with the assist-
ance of the more analytical details and concrete realizations
that have been established. For the present, we must develop
the necessary structural and analytical aspects of Banach func-

tion spaces.



2« Basic Definitions and Results

Let \x be a non-negative countably additive nmeasure defined
on a a-field £ of subsets of the non-enpty point set £ It
Is assuned that the Caratheodory extension procedure has already
been applied to u, so that £ cannot be enlarged by another
application of this procedure. It is also assuned that J is
a- finite, that is, the set Q is the union of at npst a count-

abl e nunber of sets with finite /i-neasure. Thus (f2 "Cju is said
2

to be a o-finite neasure space as is nornally understood. For
conveni ence, we w |l always deal with the equival ence cl asses of
functions on Q nodulo functions of ju~neasure zero rather than
the individual functions. 1In a simlar vein, subsets E of d

L

whose characteristic function vy differ only on a set of

U-nmeasure zero will also be identified.

Let M be the collection of all non-negative neasurabl e
functions on £2 (equipped with pointw se order) . As usual a
function f(::M may assunme +Qo at some (or even at all) points

of fi. Ampping p from M into the extended real nunber

systemis called a function sem-normif p satisfies the fol-
| owi ng properties:.
(1) if_f€M‘ then 0 £ p(f) <7\_oo and p(f) =0 if
f ~ 0 (alnost everywhere);
(ii) p(af) =ap(f) for a]l non-negative finite constants
a and for all fc':M;
(iii) p(f+g) <Lo(f) + p(g) for all f,geM*;
(iv) if f,geM*, f £g9 then p(f) £. p(9) .



If p satisfies also
(v) p(f) = 0 only if f = 0 (almost everywhere)

. 3 . .
then P 1is called a function norm. The domain of the function

semi-norm P may be extended to the collection M of all
u-measurable extended complex valued functions4 on by de-
fining p(f) = p({f|) for any fcM. We will assume that there
is an fcM such that P(f) < oo.

The function space L, - Lp(Q,E,u) = [feM : P(f) < oo 1is
a normed linear space of (equivalence classes of) measurable
scalar-valued functions on the o-finite measure space (Q,T,u)
with function norm p defined on M (and therefore M) and

norm ![fll = p(]| f|) for all feM.®  such spaces are called

normed Kothe spaces.

In general the function space Lp is not complete. However,
conditions on o to insure the completeness of Lp are well-
known.7 The elimination of completeness does not bring that much
additional insight. So we will assume throughout that Lp is

complete and in such case the spaces Lo have been referred to

as Banach function spaces or complete normed Kothe spaces.

We will also need to make use of another function norm p!

defined for all measurable f by
 f
pr(f) = suplj{fg}du : 0(9) < 1}.

{\
Throughout our work }du will denote integration (with respect

to u) over the whole set £, otherwise over a subset Acy,

J du will be used. It follows that o' is a function norm’



with the (sequential) Fatou property (even if p doesn't have

it). Conseguently it is called the associate norm of p and

the corresponding Banach function spacelo Lp' = [feM : p'(f) < @}

is called the associate space of Lo'

The following terminology and notation is necessary for
developing theanalytical details. Some results from the theory
of vector measures is needed to obtain the desired topological
theory. The reader is referred to the text [7] by N. Dinculeanu
which carefully and systematically develops this theory. The
book [27] by A. C. 7aanen has a comprehensive account of Banach
function spaces. FEither of these texts may be referenced for
terminology not herein defined.

We will assume that § is now a topological space. Let
20 and 2;, respectively, be all sets AcY for which p(xA) < oo
and p‘(XA) < oo, respectively. Clearly 23 and Zé are rings
(clans, in the sense of [7]) and algebras of sets if Q Dbelongs

0

to them. Let M’ Dbe the closed subspace of Lp which is the

closure of the span of those bounded functions in Lp whose support

(that is, the smallest closed subset, supp f, contained in {Q

such that x ¢ supp f implies that f(x) = 0) lies in Zb. It is
clear that M° = ¥f€Lp : £ is a Zb—step function}. To appro-

priately talk about step functions we need the concept of a par-
tition in 26. A partition in Z, is a finite pairwise disjoint
sub-collection of 26 of non u-null members which are of finite
measure.

The letters X,Y,... will designate Banach spaces. For a

Ranach space X, we designate its unit ball by X The dual of X

B

(that is, all bounded linear functionals on X) will be designated



w

by x\
Throughout y w1l designate a (finitely) additive set
function from £ into X Let the norm Ny be given by

Ny (V) = supfp'(x*Y) : x*e:X}.

To elimnate unnecessary confusion, we will wite x*Y when
conposition of two functions is required. By tod (/i) we nean
all (finitely) additive set functions Y mapping £0 into X
such that nj (Y) < oo and which vanish on sets of u-nmeasure
zero. By P_, (ji) we nean all additive set functions Y from
Jj into X that vanish on u-null sets, whose support is con-

tained in that of an element of L \ N° and such that for each
P

x*eX*, x*y is purely finitely additive. Recal | that a positive

finitely additive set function W defined on a ring ft for which

fa(R < oo for RbR Is said to be purely finitely additive on

ft whenever any countably additive set function u on ft _satis-
fying 0 < (R <Aft(R f°" all RGft is identically zero.°If
| xAYl 'S e variation of x“Hs then x*y opurely finitely addi-

tive neans that if 0 <* u< |x*y| where u is countably additive

then u ~ 0. For yePp(u),

Hvll (53 - SUpj.'IX* v (@D Y(-‘.Xi}’

that iss y is of finite weak sem -variation in the sense of [7].

Let us set

\/(/\} —V (W @ e, ().



That is, if yenpf (9 then vy is uniquely deconposed as

Y|+ Y95 Y eV(M . V:Pp» (i) and
Hely o = supfp! (X'Gy) + x4 [(@ « xe} 1.

The following theorem found in [23], gives the significance

of the sum U_, (j¥ ¢ For Banach spaces X and Y we let L(XY)

P
be the set of all bounded linear operators from X into Y.

THEOREM 2.1, If Telb(L , X) then there is a unique TFU , (L)

such that

T(f) =J fdT

il = el

where the integral is simlar to that in [9] (seelV. 10 of [9] ) .

Thus this theorem states that L(LéX) is isonorphic -- iso-
nmetric to uh(/i) . Furthernore, let us assune that Te\x , (&) is
t he uni que correspondent for TGL( L2 X) . If T is deconposed

into 'I'-.l +TZ and p is continuous at zero then r= - 0 and 'Fi“L
is both (i-continuous and countably additive on £ (see [23] , 3. 2).]“1

The function norm p is said to be continuous at zero if for every

r >0 thereis a h >0 such that ,uf < 6 inplies o(X) < €

In the following all integrals pertaining to (finitely) ad-
ditive neasures will be understood to be in the sense of [9] (nanely,
| V.10). Consequently we will make no further nention of this.

W may now define a collection of sem-norns to generate the

required topologies. If AeV., and if ye]xd (fi) , we may define a



semi-norm p. on X* Dby
{sA

P
o e ¥ - d o
pY.A(x*) sup{'jAfd(x yl)& : fcM]}
For Ac26 let us denote by Ya the restriction of vy to
Z | A= 1I{BNA : BeXl. It is clear that
| _ L oexew*y 12
Ivallge = suplp, A () = xrexyl.

The set function vy above is called p' countably additive

if for every sequence {An}neN in Z%, decreasing monotonically
leo)
to @ (that is, anAn = @), one has the sequence {HYAnHo']nGN

converging to =zero.

The boundary of up,(p) is the set

{y<uo'(u) : for each ACZ% there 1is x*rxi with

HYAHO, = p, Alx) 1

If 8 1is a collection of semi-norms on X* then by the

topology generated by ® we mean the coarsest topology on X¥

which makes all semi-norms @@ continuous (as such it is always
locally convex). 1In particular if Yeup,(u) and if AeZb by P(vy,3)
we mean the topology on X* generated by the single semi-norm

p

VB If w 1is any subcollection of up,(u) then by f(u') we
3

mean the topology generated by u'. Of particular interest will
be the subcollection u' = (Y] whose generated topology we will
designate by £ (y) and the subcollection ' = u = up,(p) whose
generated topology we will simply designate by (u) or simply ®.

Of course it is clear that £(v,A) c P(y) < P(u). Of especial
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interest for our work is the restriction of these topologies to

the linear subspace X; of X'. Consequently for the rest of

this discussion, the above designations will refer to the re-
spective topologies restricted to Xi unless specific mention

is made otherwise.

3. Main Results

Some statement about the relationships of these topologies
to the generating set functions vy (and therefore semi-norms) is

appropriate here. 1If ycuo,(u) and if the topology ©(y,Aa),

Acy,, on Xi is compact, then the o'-norm of v, is precisely
given by the evaluation of the semi-norm 0y, at some x*exi,
3

that is vy lies in the boundary of uo,(u). Moreover if Xﬁ
is compact in the topology #(u) then the above is true for
each Veup,(p). This we state formally in the following easily

shown lemma,

LEMMA 3.1. Let vYeu_,(u). If for each Ae@o, X¥ is com-

pact in the topology ©(v,A) then vy is in the boundary of

A
p' 1
then up,(u) coincides with its boundary.

U, (u. In particular, if X, 1is compact in the topology #(u)

be a sequence in X. for which

Proof. Let [x } 1

n° neN

= lim p (x¥) .
s

I !
E‘YAllp' Y A n

. *
Since X1

. 'X' X
* <
generality, we may assume for x ch that {Xn]nGN

is compact in the topology (vy,a), without loss of

converges to

X*,
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Then HYAQO' = pY’A(x*) and the rest of the lemma follows.

This lemma leads us to the countable additivity of the dual
norm14 p'. But first we need to define the concept of a set func-
tion enjoying the Fatou property.

If 4 and N are scalar valued set functions defined on a

ring € where n 1is subadditive, then u haes the Fatou property

(or u has property (Fl)) if for every sequence of sets {En}neNae’

En C Ec8, for which the sequence {h(E—En)} converges to zero,

ne N
one also has

lim inf p(E)) - u(E).

The set function u 1is said to be strongly bounded if the sequence

{“(En)}nrN converges to zero for every sequence {En} of pair-

ncN
wise disjoint sets.

The following theorem shows how these concepts are used to
yield the p'-countable additivity of yrup,(u). The proof is ob-

tained by applying Theorem 7 in Orlicz's paper [21] to our specific

situation.

THEOREM 3.2. If u is finite on Zé and if there is a

scalar valued set function » defined on Zo such that

(1) r is strongly bounded;

(2) for each x*cXi, pY’A(xX) satisfies (Fl);
N X e Xt D)
(3) pY,A(xX) < A(A) for all Xxth and AQZB

then vy 1is p'-countably additive.

Oon the other hand, under an appropriate topology on Xi: Y

being p'-countably additive is equivalent to a sequence {pY A(xx)}Acu
, :
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* .
converging to zero for all x*eXl where 1, 1s a sequence of sets

in 23. This will follow from the next theorem.

If G 1is a subcollection of 2%. we will say that the semi-

norms pY A for A<G are o'-norm attainable if for each AcQ
s

. ¥ o ¥
there is an x aXl such that py,A

x*exi is called the p'-attained point for A. It is clear that

(x*¥) = HYAEP,. The point

if vy is in the boundary of uo,(p) then for each AcZ% the

semi-norm pY is p'-norm attainable.

’A

THEOREM 3.3. Let G = {An}nCN be a sequence in z decreas-

ing monotonically to @ and assume that the topological space

(Xi,P(y,Al)) is compact. Then there is a sequence [x;}neNexi such

that x; is the n'-attained point for A - Furthermore if xx

is a limit point of {x’) o con-

n'-neN

then the sequence {HYA “p
n

verges to zero whenever {py A (x*) } does.
3
n

Proof. By Lemma 3.1 for each A cZL  there is an x;exi such

X

that X is the o'-attained point for An. If y 1is not

o'-countably additive then for some ¢ > O, HYA Hp' > €. Since
n

for n sufficiently large p (x*—x;) < ¢/4, we have

1
(x*-x¥) < ¢/4. Consequently,

YA

* ™ g 1 -
pY’An PY,An(X ) > ¢/2 which contra

(xx) ]

n

dicts the convergence to zero of the sequence {p

Y,A neN’

COROLLARY 3.4. Let fAn} be a sequence in 26 decreasing

neN

monotonically to @ for which the sequence {suplj fd(X*Y)'}nFN
A ,

n
X .
converges to zero (where x*ch and where the supremum is taken

over all feMP). f (X;,P(y)) is compact then vy 1is p'-countably

additive.
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For fCLO, one defines the "averaged" step function of f

to be

|
£ — Z(JP_L_fJ_g.H

= X
& Ec& "E H(E) "E

where & is a partition in 26. The function norm o 1is weakly
leveling if, for each partition & 1in Z%, p(fa) < p(f).

211 well known Banach function spaces15 such as the Orlicz
spaces (and in particular the Lebesgue spaces) have weakly level-

ing function norms. In [l1l] this concept was referred to as p

having property (J). We prefer the present terminology since the

condition is weaker than the concept of leveling as discussed in
[10].

COROLLARY 3.5. f (Xi,P(y)) is compact, then the following

statements are equivalent.

(1) The set function vy 1is p'-countably additive;

(2) For every sequence [An]ncNGEB decreasing monotonically

to @ and for every x*(xi, the sequence {pY A (x*) }
3
n

converges to zero;

(3) For every sequence (An]nchzb decreasing monotonically

to @, the sequence {j fdy}nrN converges to zero in

A
n

the norm topology (uniformly for fcMg).

Proof. In 3.4 we have shown that (2) implies (1), and the
convers& is obvious. The other equivalence follows from the fact

that

= sup{]r £A(x*Y) | : feMg, x*exz}o

T LiBRARY
CARNEGIE-WELLEN BNIVERSITY
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An interesting interpretation of p'-countable additive is

the follow ng. Suppose we define the set function m , on E
1) X o)
for feMP and x*eX{ by

n
mf,x* (A = j_,Afd(X*y) :

Assum ng (X’i, P(y)) to be conpact, the nentioned interpretation is

given as a "uniforn‘?4 countable additivity" on E0 of the

famly im _: feM!.

x
L, X

Let us now consider the topology P on X% which is generated
by all the semi-norns pY:A for all vyeUf (i) and all AeS° W
will see later that this topology is not Hausdorff. But first we
I nvestigate conditions equivalent to Hausdorff.

Subcol l ections U of UR (fi) of set functions mapping S©
into X give rise to interesting |inear subspaces of X W de-
fine the U-hmott~™n X to be the set X, ! of all finite suns of
the form Say (A as A ranges over £9, a ranges over the scalar
rield, and y ranges over u'. Again of particular interest wll
be the case when u' = fyi 2" AT = U=U ,p(lt) . Tliese we will
sinply refer to as the y-hull in X and the UWhull in X respec-
tively.

The inmportance of the U-hull in X stems fromits influence

on the relationship between the P(U) and weak* topologies on Xxte

In particular, as the followi ng | enmma denonstrates, if the closure

b

of the UT.-huII in X is X then the weak* topology on Xt is
coarser than the P(U") topol ogy. Consequently the P(U) topol ogy
nust be Hausdorff.
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LEMMA 3.6. Let u' be some subcollection of uo,(u)". if

X-

1 is coarser than its

cl X = X then the weak*-topology on X

P(u') topology.

Proof. Let us suppose that {X&}aﬂl is a net in Xi con-

vergent in the f(u') topology to the point x*cXi. We wish to
show that it is also convergent in the weak*-topology to x*, If
y 1is any point in X then there is a finite set of scalars a;,
set functions yiﬁu' and sets Aieib, i=1,...,n, such that

HY-ch.Yi(Ai)H < ¢/2. Since the net converges in the (u') topol-

ogy, we have for o > a _,

o
. X_xx) « &
Tlaglp(xy IPy a4 (x=%x¥) < 3
i 1774
Thus
oo (A ) XX—XX \»l e Z’/{. asX dY X‘_xx—'\ <
e TS T ) LR A itALT T e T >
A, 1
i
. . )(_. N ﬁ_
< TlaglpOg Vet [ vy (Ay)1 < 35
Consequently

*-
< X -X*¥% | <
<y, xl-xe|

=

y-Toyg vy (B ,xi-x¢| 4 [<Toy Yi(Ai),X;—XX>| < 2e.

This completes the proof of the Lemma.
We may now formulate Hausdorffness of (X;,P) in terms of the

weak*-topology on Xi.

PROPOSITION 3.7. The following conditions are equivalent.

(1) The topological space (Xi,P) is Hausdorff;
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(2) The closure of the U-hul I X s X

(3) The weak topology P jLJ finer than the weak*- topology.

In particular if (Xt,P) is Hausdorff then (Xt P) 1is conpact

if and only if P coincides with the weak*- topology.

Proof. Since the locally convex weak*-topology is always
Hausdorff, the implication (3) implies (1) is obvious. If (2) 1is
assumed to be false then there must be some xX-eX*l, x* A~ 0 such
that <y(A) , X*> = 0 for all AeSO, yeUd (u) . But this means
p a(x*) =0 which contradicts (1). Now statement (2) implies (3)
from Lemma 3.6 and the final implication follows directly from (3).
This conmpletes our proof.

For the topology P(Y), we can also formulate conditions for

when (X3, P(Y)) i's Hausdorff.

PROPOSI TI ON 2*8

JIf the topological space (X4,,P) is_ Hausdorff

then the following statements are equival ent.

(1) The topological space (X*l, P(y) ) is Hausdorff.
al

(2) | f Jf fd(x*Y) =0 _for all fc:M _anid AeS then
A o]

~

r
jAfd(x*j) =0 or. al feJV, KA. S and ueUb,(.u);

(™ The topology P(y) is finer than the weak* - topol ogy.

Proof. The inplications (1) inplies (20 and (3) inplies (1)
are both clear. In showing (2) inplies (1), let us assune that
(1) does not hold, that is, there is some x*ex!i, x* N0, yet
Pv A(X®) = o [Tforall A€a o Byt (2) says that p {x*) =0

for all UGUDt (p) and AeZo which contradicts P being Hausdorff.
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A few comments are now in order. If (Qd,%,u) is a finite
measure space, and if we let
1
" B
o(f) = (J[£|PamP®
then p!' (x*y) is the g-semi-variation of x*y for yﬁup,(“). If

pu =0 then vy =0 and (2) of Proposition 3.7 shows that (Xi,P) is

not Hausdorff. On the other hand if py is purely atomic22 we may

split Q into atoms Aj such that p(AO) > 0. If t is a fixed

point of 7, we may define on ¥ tobe 0O if tfA and

Y

v, (A) = x if teA where X is some element of X. Then
Yt o [e)

ytcuo,(p) and Proposition 3.7 shows that (Xi,P) is Hausdorff,

For ACZB, let us denote by LO(A) those functions in Lp which
vanish on the complement of A. For TcL(LD,X) we will denote by
T the restrictionaof T to LO(A) and by Tt the correspondent of

A
T given by (2.1).

THEOREM 3.9. For TcL(LD,X) and for T the correspondent

element in up,(p), the following statements hold.

(1) 1f T 1is a compact operator, then (XE,P(T)) is a com-

pact topological space;

(2) If the topological space (XE’P(T)) is compact then the

operators TA’ AGZB, are compact.
<

In particular if p(x{? oo then T 1is compact if and only if

the topology ®(7T) is compact on Xi.

Proof. Assuming that T is a compact operator, let {Xé}ael

be a net in Xi converging in the weak*-topology to x*cxi. We

show that convergence is retained with the (1) topology. 1In the
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norm topology on X+, one has the net ETX‘(X(’;)}QCI converging
to Tx(x*). But
P (x -x*) = supH<r far ,x’-x7> | feM®)
T,A ' JA ’ 1
= sup{l{T(fo),X&—X”il : feMg?
- f ~ ! ’ . 0 *- *_ 3
2 supl o (1) [T (l-x) I £,m7 0 e (g -x) ]

Thus we have convergence in the (1) topology.

¥

1
verging to x* 1in the ®(r) topology on Xi and let feLp with

To show statement (2) let fx;} again be a net in X con-
o(f) < 1. 1If AcZ% then fXA, having support in 76, is in MP
and

[y T (x -x) | = |<JAfdr,x&—xx>

X
< X -XX).

Consequently the net 1T£(x&)} converges in the norm of X* to

ac I

TA(X*) which is the compactness of T (see [9]). The rest of

A

the theorem follows immediately.
In [13], some characterizations of the compactness of T in

terms of T Thave been given. It would be interesting to charac-

terize the weakly compact operators on Lp since L;” has a known

representation. To this end one may apply the Kakutani representa-
tion for abstract M spaces (see Theorem 2.7 in [23]).

The semi-norms have been defined and have been shown to

pY,A

be worthwhile. Let us now consider the semi-norm pY Q defined
3

for x*cxi by

pY’Q(x*) = sup{lj fd(x*yl) : feMg].
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. , . . boda o .
Since o'(x*yl) is finite, it is clear that py,a(x ) is also
Let P(v.Q) be the topology generated by this semi-norm pY a
b
*

If x*¥ 1s an element in Xl’ we may define the operator

LT,x*> on mP by

JT,xx>(f) = <T(f) ,x*>.

As above, it is the restriction of this operator to LO(A) which
will be of interest. This we will designate by <T,XX>A. It is

clear that for any x*eXz, one has

P a(x) = ll<Tyx> 1l

Utilizing this terminology we may now formulate a condition

for T to be p'-countably additive.

COROLLARY 3.10. Assume that TCL(LD,X) is compact and that

for every sequence :An]ncN in 2% monotonically decreasing to @,

the sequence | converges to zero. Then (X{,P(T,(D)

leT, e )
An ne N

is a compact space and T is po'-countably additive.

Proof. Since both topologies P(T,Al) and (1,8 are sub-
collections of (1) if the operator T is compact then it is
clear from the theorem that these topologies are also compact., To
show T 1is o'-countably additive we must demonstrate that for se-

quences {An}ncN in Zb monotonically decreasing to @, also the

sequence {||7 converges to zero, where

) T

a ot nex I llps

SUP{PT’A (x*) : x*cXi}. To this end we will apply Theorem 3.3, That
n

is, we will assume that x* 1is a P(T,Al) limit point of a sequence
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in Xii for which

n' neN
P (x7) = fl73 il rs
T,An n An o]
and we will show that fp . (x¥) ) .. converges to zero. For
T3Mm nt. N

c > 0, there is N > 0O such that Pr.a (x;—x*) < e/4 for all
*
1

n >N and such that for r > N

| e, x>l
for all n,m> N Thus for all n,m> N we have

[or p (0 Pr g ON) TPTA G

tP £X) Py p ()| 4Py (X%

- o * ll
S 2Pp Al(xx xp) = LT A

n

- e, I < e
m

This conpl etes the proof.

In the second part of Theorem 3.3 we considered conditions
whi ch woul d insure the o'-countably additivity. W note that a
simlar thing may be done here for ||<T’X*>—1Lj'

We now assune that Q is a locally conpact space and that 6
is a sem-tribe (5-ring) of Baire sets (see [7]). W wll say that
a set function yeUé (u is regular at Ac d if for every e >0
there is a conpact set K and an open set 0 both in @ such
that Kc AcO andif Scz0\K Se£, then ||[WYI t <®* Asin
[8] it is easy to see that y is regular on every conpact Gé-set
and the collection of subsets on which y i® regular is a ring of

sets. Thus y is regular on 6.
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PROPOSITION 3.11, f yeup,(u) and if p(XK) < oo for

every compact set Key, then the following statements are equiva-

lent.

(1) The set function v is p'-countably additive on 8;

[ T i -
(2) For every sequence ‘An]ncN of o monotonically de

creasing to @, there is a sequence [Bn}neNeB of open

Baire sets such that An c Bn and the sequence

gﬂjfndyH}neN converges uniformly to O for every

, 0 _ _
sequence {fn}neN of M, for which f =0 on the

complement of B,-

Proof. Since Y 1is regular on @, in showing that (1)
implies (2) let us obtain a sequence ﬁo of open sets in B8 such

that {HYBH] converges to zero. Let us note that since

Beﬁo

clL B is compact, BHGZ%. If {fn] is a sequence as defined in

neN

(2) and is related to @o, we have for x*cX.

l’

] a2 e \\YBan'-

Thus statement (2) follows.
If y 1is not p'-countably additive on # then we may assume
that for the sequence (G < # monotonically decreasing to g,

> € for some ¢ > O and for all AeG. Let @ be a

H YAH n! fo)

sequence in 8 as utilized in (2). Then for AcG, since

Ialpe = sepfll] v« send)
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one has ilnijXAd>':! |62 forall AQ where {' fa}laeq IS a
sequence in M. Since f'X vanishes on the conpl enent of
BeR where A c B, we have a contradiction to (2). Thus y 1is
p'-countably additive on (B

W have nmade the assunption that ft be locally conpact.
As it is, this is not nuch of a restriction. |If Lp: LéQ, £fi)
is a Banach function space, then one may find a neasure space
(0" JRIY) where ft! is a locally conpact space, IB is the o~field
generated by the conpact subsets, y is finite on the conpact sub-
sets and Lp is isonetric and (lattice) isonorphic to L (93,fo,Y)--
Moreover if (£i,Z/i) is o-finite or if there is sone fneLp such
that f_ > 0 alnost everywhere, then IB is the a-field generated
by all clopen subsets of the conpact space @ and y(SV) is fi-
nite. The reader is referred to [23] for nore in this direction.

Finally let us note that if p has the weak |eveling property

then |i(B < oo inplies p(XF_)_ %% (see [23]).

4. perators on Bounded Functions of Lp
In conjunction with our remarks ending the previous section,

we will assunme that there is sone f elL (where L is now a
op p
real Banach function space) such that f > 0 alnost everywhere.

Let B" be the al gebra of essentially bounded functions in L°

and ¢l BP will be its closure in Loo(ft,Z,/i). (These defini -
tions are given in the footnotes). For any topol ogical spéce Q
we will et C(Q represent all continuous real-valued functions

on ft.
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Since Bp is a vector lattice, the closed subspace cl Bp
in Lo is an abstract M-space (in the sense of Kakutani, see
[13]). Also since fn = min! £,n} belongs to Bp and since

fn >~ O almost everywhere, it follows from Theorem 2.1 of [24]
that there is a compact Stone space ﬂl such that cLOOBp is
isometrically isomorphic C(Ql) (the topology being that obtained
from the sup norm). The adjoint space C(Ql)* is an abstract
L-space (also in the sense of Kakutani, see [18]). It is iso-
metrically equivalent to £l(n ,B3,0) where v 1is a finite regular

measure on the Borel sets B8 of some § (see [23], Theorem II.1l.1).

2
From Theorem I.3.2 91 can be homeomorphically identified with a
closed subset of QQ.

In our particular case we are interested in bounded linear

operators TeL(Lp,X) for which T restricted to ci Bp is also

a bounded linear operator.

THEOREM 4.1. Let T be a continuous linear operator from

cl B into ¥X.
o p T

(1) For every seguence %An}ncN in Zo of pairwise disjoint

sets, for every seguence |{a }nrN of scalars with Ianl <1 and

for x*cxi, the series Z{x*,anT(An)> is convergent where T is

the measure corresponding to T (in the representation Theorem 2.1).

(2) If T 1is a compact (respectively, weakly compact) opera-
}
iBn}neF is a finite sequence in Zo then the subset XF of X

tor from cl/ooBp into X, if (an ney 2nd T are as in (1) and if

consisting of all elements of the form Z{unT(Bn) : neF] is con-

ditionally compact (respectively, weakly compact). In addition if
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{An}ncN in 26 is monotonically decreasing to @, then the

sequence :T(An)%an converges to zero in the norm of X.

Proof. Since cLOOBp may be identified with C(Ql), we may
consider T as a bounded linear operator from C(Ql) into X.
Then there is a finitely additive set function y from 8, the
o-field of Borel subsets of Ql’ into X such that T(f) = Ifay
for fect B where f is the function in C(Q,) corresponding
to f. Since T is bounded, the semi-variation of vy 1is finite.
In [4] it is shown that this is equivalent to the series
Z‘<x*,any(Bn)> being convergent for all sequences[Bn]neN in ®

of pairwise disjoint subsets. On the other hand for AGZE, its

correspondent A in B is clopen and
) = Jxgdy = v(B).

Thus 7 (4) = Y(X) which shows statement (1), It follows that if

T 1is a compact (respectively, weakly compact) operator on C(Gﬁ)

then the subset X of X as given in statement (2) is conditionally

F

compact (respectively, weakly compact). In this case it is known
that the vy wutilized in the proof of (1) above must be countably

additive in the norm of X. If Ac® denotes the corresponding

X-

clopen set of AeZb, then for x*er,

r
Yo (B) = J%q @Yy = <T(XR) s%*> = <7 (B) ,x*>.

XX

Now for x*eX. are uniformly countably additivefESConsequently

l’ YXX
the second part of statement (2) holds.
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For the locally conpact Hausdorff space Q let GCq =
CO(Q X) be the set of continuous functions on Q mapping into
the Banach space X and vanishing at infinity. The uniform
normis placed on CO. Let 'I:ll be a ring of subsets of C

and for the Banach space Y, let y "2 finitely additive
~16

1
measure from £. into L(XY) wth finite sem-variation vy

: 1
For vy*eY*, a set function yyx from £, and Y* rmay be

defined by
<Yy* (A x> = <y*, y(A) x>
for XfiX and Ac: £li I f _X/A denotes the total variation”
of yy’\ then for Ach the semi-norm gY L Y* ey be
defined as
9,2 = Y, (A
The topol ogy generated by the collection [g .: A-X} wll be
y, A |

designated by Qvy). It is shown in [11-] that every bounded

| i near operator TcQL(C°(£1L,,X)5Y) corresponds to a uni gque weakly

regular, finitely additive vector neasure r from the Borel

o-al gebra of subsets of @ into L(X, Y**). The weak regularity
of T nmeans that <r (e x,y*> is a regular Borel nmeasure for each
xeX and y**‘Y*. The operator T is conpact if and only if

(Y, Q(T)) is a conpact topological space. W can now devel op

this for operators T from cl B° into X

W will say that the unit ball x! is weak*- sequentially
— X L
conpact relative to. T_ if every sequence S a xt has a subsequence

fx® and a point X* e X+ for which 'the sequence

fsupf | <T(f) ,x*"-x*>| : feL ; \\f\\ A 111 converges to zero.
n p " "oo,H N
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PROPOSITION 4.2, The bounded linear operator T from c{bOB

into X is compact if and only if Xi is weak*-sequentially

compact relative to T.

Proof. Considering T again as a bounded linear operator
from C(Qf into X then T 1is a compact operator if and only if
(X;,Q(T)) is a compact space. But Ql is a compact space also.

Consequently T 1is cowpact if and only if for every sequence

q . ¥ . X .
S 1n Xl there is a subsequence {Xn}nCN c S and a point
18 [ — =
cext [ . -
x*cXy such that 'Tx*—x;(ﬂ)]naN converges to zero. If ch(Ql)

corresponds to the function fccl BO then for all f£

:|J.r

[T (£) yx]-x* far_, o

X
n

Now c4 Bp is a dense subset of C(Ql) using the egsential sup

00
norm relative to y. Consequently
- N —_ x N . =
x,_x;)(-“l) = sup( | T (£) .x -x">] : £ L, HfHOO,“ < 1),

This completes the proof.

5. Operators into Lp

Let us now consider operators T which map the Banach space
X 1into Lo' We will assume that the dual norm p' has the weak
leveling property.19 It is easy to see that if p has the weak

leveling property then also does np'.
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Now vy will be a finitely additive set function from
Zé = (Ecy : p'(xE) < oo} into X* where <y(-),x>, for xeX,
is countably additive and pu-continuous for each xcX. Let

UO be the linear space of all such finitely additive set func-

tions y. We may define a norm Vp on Un by taking

— [ T(E)x . it i !
Vp(v) = suplo(g i (E) Xg) : & partition in 26’ x| < 17.

This norm is often called the p-variation of y and with it
UO is complete (see [ll] for the details).

If ycup then v 1is finitely additive and not, in general,
countably additive. 1In addition it vanishes on pu-null sets. Let
us also note that if & 1is a partition then the simple function
f = E{axE : Ec€} taking its constant values on the members of &
is in both L and Lp" For the sake of simplicity we will
allow for Feé&, p(E) = O in which case % will be interpreted
as O. For a subset A c Q, 8A will denote a finite family of
disjoint sets Ec€ with E < A.

Motivated by the definition of the p-variation of vy, we may
define a family of semi-norms on X. If YGUO then define rY

on X to be

ry(x) = sup{EfilLELLgl X : Ee€l
€

and for A <  define rY by

r\( A(X) - Sup{zgﬂﬁ)_a_x.z . EegA}.
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As was done previously we nmay use these sem-norns to generate
topologies on X W designate them in an anal ogous fashion as
ft{y,A, &(Y)>?23"? ft« Wilizing these, we may then define for

any Ac Q the V-normof v relative to A or V [v]-relative

P P

e A as

VP[Yj (A - supfr

- (X . XGX3}.
Y9A( ) i}

W shall say that Y is Vo-countably additive if for every
sequence fAn] m_"£ t he sequence |VJy] (Ah) )neN converges to

zero. If for each AGE there is sone xeX, wth V [Y] (A =
1 o]

rY’A(x) then we shall say, as was done previously, that rY’A

is \P- attéi nable. Again as we have done previously we may define

t he boundary of i to be
3]

bdry V.= f yev : for each Ac£, r = is V -attainable},
p o] o] YOA 0]

Adj usting our proof to Lenma 3.1 we nmay now state

PROPOSITION 5. 1. If (X,ft) is a conpact space then the bound-

any of ]lp is U,
Wth appropriate adjustnents in the proof of Theorem 3.3 we

may use the above to obtain

THEOREM 5.2, For a_sequence g = f Ay} e C £ nonot oni cal Ly

decreasing to O |let us assune that (X, B(v,A,) ) IS a conpact
i i -

space. There is a._sequence S c x; such that for each A,

roA S Vo-attainable. Furthernore if x is a limt point of S
Y n -

then the seguence (Vo [y](An)}

converges to zero whenever

neN
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‘r (x) | i does. Thus if (Xl,R(y)) is a compact space and

converges to zero for all such sequences §

(x)

AcS
in % then vy is Vo-countably additive.

Assuming reflexivity on X, we may give equivalences for

(Xl,R) to be Hausdorff. The space being Hausdorff will readily
follow if the weak topology on Xl is coarser than R. But
more interesting appears this analogy to the u-hull in X, We

will define the averaged Uo—hull in Xx to be the set aVXS of

all finite sums of the form Earﬁ%g% where Ec€, & is some finite

partition of I, yeup, u = Up and a 1is a scalar.

PROPOSITION 5.3. f X 1is a reflexive space then the fol-

lowing conditions are eqgquivalent.

(1) The space (Xl,&) is Hausdorff;

(2) The closure of the averaged Up—hull in Xx* in the norm

topology is X*;
(3) The weak topology on Xy is coarser than the R-topology.

Proof. To show (1) implies (2) assuming X 1is reflexive,
let us also assume there is an xcX, x # O, such that <v(E),x> = 0

for all E 1in a partition & and yeuo. As in Proposition 3.7

this yields a contradiction to (1). 1In showing that (2) implies (3),
I ] i _
assume the net ‘Xa}acl in X, converges in the R-topology to xeX,y

and let X% X¥, Then there are finite sets of scalars ajs set
functions 'y and a partition & such that for Eieé

Y5 (E))

W s 1 1
lx*-Ta H(Ei)n < e/2.
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On the other hand for all o« dreater than some fixed uoeI,

we have

ez Y1 B x| < oplay |V By X

TR(E) u(E,)

/
N

The rest of the proof follows as in Proposition 3.1,

Now it is clear, that as we have proceeded in Section 3, one
could give conditions for which the space (Xl,R(T)) would be
Hausdorff. Then utilizing results by Orlicz in [21] conditions
for vy to be Vp—countably additive could be given.

In Theorem I1I1.6 of [l1l], there is exhibited an isomorphism
between L(X,Lp) and Up (under the assumption that o' satis-
fies the weak leveling property). To this end let Tt Dbe the
correspondent in Up of the operator TqL(X,LO). More precisely

this correspondence is given by

<T(E) , x> = JTxdp

and

d
™ = T() ,X>
< ()

where the integral is as defined in [11].

THEOREM 5.4. Suppose that pn has the weak leveling property.

(1)

[

X is reflexive and if T 1is a compact operator

from X into Lp is compact then (Xl,R(T)) is a compact space.

(2) f (Xl,R(T)) is a compact space then T must be a
<
compact operator.

~
d
#
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Proof. Whenever X 1is reflexive, every net in Xl has
a weakly convergent subnet. Thus in showing (1) we may assume
. . %
that {Xn]neN c X, is a net converging weakly to x., Now T
is compact and T¥* may be identified with T. Thus the net

(T(xa)l

qe1 converges in the norm of Lp to T(x). Utilizing

the representation for r, we now have

<T(E),xa-X>

rT(xa—x) = sup{o[Egg L (E) XE] : partition & < T}
< sup{pl Z'—}E— ) |T(x -x)|du : partition & c 1}
geeH(B) g « '

< sup O[T(Xa_x)ﬁl

where T(qux)8is the averaged step function of T(ngx)’ Since

p has the weak leveling property it follows that

r, (xa—x) < plT (xa-x) 1.

Since the net {p[T(xa—x)]} converges to zero it follows that

ael
(Xl,R(T)) is compact.

In Lemma II.5 of [11l], it is shown that

(I) kp[T(x)] < supiol ZZL<TE?Q;X\J XE] : & partition in Y}
Ee

where k 1is some constant, O < k < 1. Thus to show (2) since

) . ) g 3 —
(Xl,R(T), 1s compact we may assume the net {Xa}ael in Xl con
verges in the R(1) topology to x. Applying inequality (I) to

X - %, then the right side will converge to zero. Thus {Txa]ael

converges to Tx in the Lo—norm and T 1is compact.
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6. Qperators with Range in L(XY)

Qur attention is now directed to the vector val ued case for
spaces of the type Lp. W will consider the same questions as
previously posed in Section 3. In particular for the Banach
space X let Lp*X be the Banach function space of strongly
measur abl € X-val ued functions f defined on Q, with p(f) =
p(|f|) where |f| is the X-normof f. Corresponding to I\'{I) we

have the linear subspace M *X of L *X defined as
P P

Mp-X: spff*x : felL°®, XEX}.

Qur questions then are fornulated in terns of obtaining neaning-

ful topologies related to bounded linear operators T from MO*X

into the Banach space Y. The restriction of T to elements of

MD«X whi ch vani sh on the conpl enent of Ae£o wi || be designated by TA-

In [23], a characterization of the subspace L(M*X)Y) of
P
L(LO-X,Y) is obtained. For this we define the noom ||T||# of T

to be n n
WA\~ = supf_ L |<Y*, T(f..x.)>] : y*€Y*,p(_ £ f-x.) £ 1}.

As before if Z is also a normed linear space, let us define
Gp,. (L(Z,Y),ju) to be the family of all additive set functions vy
mapping £O into L(Z,)Y) which vanish on /i-null sets and for which

pr y) < OO where

I\b, (y) = supfn p(YZ) : Z2GZN.

Let Bp,(L(Z,Y) , ) be the famly of all additive set functions vy
mapping £ into L(Z Y) which vanish on /i-null sets and such that
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for each y*€Y*, zcZ, <y),y"*> i° purely finitely additive with
its support contained in the support of a function of Lo I\/(I, and

for which 11Y](Q < °° where
\\Y\\ (£l) =supf||Y-21|(Q : zc-Z

(11¥Z] is just the variationof Y**)- Finallywelet
U +(L(Z,Y),a) =G ¢ (L(Z,Y) ,()®» ; (L(Z,Y) ,fi) and AU . (L(Z,Y),fi),

Y =Y, +' Yy implies R 1 (Y) < oo where

r, / N r u n r. i 20
Ro: (y) = supf uvy*z||p, : zeZhnj.
Of particular interest for us will be the case when Z = X.

Thus for Y'U o L = Upt (L(X,Y) \i) we may define the semi-norm

s on Y* to be
YA

n . .
SY..A(y*) = supf | J"..;\d<X1y Y>| XGXl—,fpl\fi_P]f

where Ae SO- By g(y»A) we will nean the topology on Y* generated

by the one sem-norm s ~. Meanings simlar to that used for the
Y9A

topologies P(Y) 3 P will be attached to ~(Y) 2"~ *e

PROPOSITION 6.0 Let TGL(M;X,Y) with ||T|P < oo. There

is a unique TeUp, (L(X,Y) ,ji) and a _bounded linear operator

TfeL(LP,L(X,Y)) such that for feL and XGX
o —

T (f) -x = T(f-x) = f fd(r-x) .

If T is_a. _conpact operator then Y*1 wi Il be a. conpact space

with the topology g(r). Conversely if (Y%, g(r)) is a conpact

space then all Ta, for Ael”, will be conpact operators.
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Proof. The first statenment is denonstrated in [23]. As in
Section 3, let us assune that the net fy;}aeTeﬁi converges in

the weak*-topology to y*. Si nce

|<f[ FA(T. X, YE-y*> ] = [<T(fexy (3)),y5-v*> ],
A

for xeX, it follows that

* ¥k
STOALVIED T (43T -
This shows that (Yt¢8(T)) is conpact whenever T 1is a conpact
oper at or . For the converse utilize the inequality

| <f-Xa(X) , T*(yJ-y*) | Lsa(y*5y*) -

Consequently if (y*} .1t in Yt converges in the S(T) topology

to y* then T_ nust be conpact for each Ae£o. Thi s conpl etes

A
t he proof.
In [23], it is shown that Tf) = j fdr and that
19
frell =, () <Nl < N
We should also note that the sem-norns s | wll yield
information for both T and T  in nuch the sanme way as we have

al ready done in Section 3. The statenents and their proofs would
be simlar to the corresponding ones in Section 3. Consequently
they are omtted here.

Sone of the basic results dealing wwth the scalar case of

functi on spaces Lp may be transferred to the vector val ued
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spaces LO'X. This not only pertains to our results here but
also to mény results as found in [23]. Thus the importance of
tensor products in function spaces Lo is largely due to this.
To this end, we need to consider results pertinent to greatest
and least cross-norms for Lo and X (see [23]).

For the Banach spaces X and Y we will consider the bi-
linear forms x®y defined on X'XY' (X' and Y' are the alge-

braic duals of X and Y respectively) by
xQy (x',y') = x'(x)y' (V).

If t with representation

o}

t = T X% ;cX’Y
i=1

is a formal tensor product, then the greatest cross norm g is

defined by

n
inf{.ZEHxiH-HyiH : all representations of t}.
1=

g(t)

By X® Y 1is meant the completion, in this norm, of the tensor

product X®Y. 1In a similar manner one defines the least cross

norm {4 Dby

n
*
L(t) = sup{|i§1X* (%) ~y*(y) | = x*eXy,y*eY])

and X®1Y to be the completion, in this norm, of X®Y.

Our interest will be in the completion I ®,X where we will

p 1
assume that Mp = Lp' This last assumption can occur under some
very general conditions. For example in the case of Orlicz spaces,

one may consider the so-called Az—condition (see [22]).
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For a function f mapping  into the Banach space X

we may define the norm w'O as

wp(f) = sup{p(x¥e f) : x*€X§]~21

Such a function f is said to be weakly measurable if the scalar

function x*¥of 1is measurable for each x*ecX*. By Wp % is
s

meant the closed linear subspace

Wp x = ct sp{f : Q> X : f 1is weakly measurable, wp(f) < oo},

From the definition it is clear, for example, that if fieL
n
and x.€¢X, then for the case of I X =M X one has w_( T f.+'x.)
1 0 o} pryp 17

well-defined. Also for AcL we may define wL to be
wg(A) = sup{wo(Z)(E-x : Eeé€ C 2A, € a partition,
EeZ, 0 T p(Txg x) L 1),

where EF = {(AeZ : pu(ad) < o],

The function norm p is said to be countably additive if

wo(gn < oo and if for every sequence {An} c L, monotonically

neN

decreasing to @, the sequence {w;(An)} converges to zero.

neN

We are interested in defining a topology on X, such that

1
if X{ is compact in this topology then p countable additivity
will be equivalent to the statement that some elements of L0®Lx

converge uniformly in the f1-norm to zero. This, in turn, will be
equivalent to a family of compact operators of L(L:,X) converging

uniformly to zero.
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In particular let 6A denote a finite family of sets

Eeié n EF’ E ¢ A, which are pairwise disjoint. ©ILet t in the

formal tensor product Lp@X be defined as

t = E{XA®X : Acl_, xeX].

Q’

In particular, if this finite sum is taken over sets Ae&B then

we will designate t as t We will also consider

Bu

t(ty) = sup(L(ty) : Acly, 0(Zx, %) < 1).

If Xt = Z}XAX for t as above then Xt is strongly26(and

therefore weakly) measurable and

t
W (x5 < To (xy) lIxl| < 0.

For each such t, the linear operator Tt of L: into X may
be defined as follows. ILet us recall (as mentioned in Theorem 2.1)

that for each meLZ there is a unique y¢€up,(p) such that
f) = j fd fel .
o (f) a Yo’ n
Thus for @eL: we define Tt from LZ into X to be

r
<Tt(Y ) $X¥> = J <xt,x*>dy s X¥eX¥*,
© Q %)

Thus it is easy to see that

(a) L(t) = \\Tt\\ sup[|<Tt(ym),x*>] : p'(Yco) <1, x%ex*i}

SUP{p(X*(xt)) : x*eX)) = wp(xt).
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We may now define the semi-norm O for AGZ% on X; by
0, (x*¥) = sup{o(Txp=x*(x)) : Bely, p(Txpx < 1}.

By 6(A) and © we mean the topologies generated (respectively)

by oA for fixed AeZb and by °a

It is clear from the definitions that

for all Ac ):o

(B) sup{oA(x*) : x*exi} = supfwo($>4B°x) : Be&A} = GL(A).

THEOREM 6.1. If (X;,G(KD) is compact then the following

statements are equivalent,

1. The function norm p 1is countably additive:;

2. For every sequence $ c ¥ monotonically decreasing to 4,

the seqguence {Z(tA) : Ac3} converges to zero;

3. For every sequence 8 c T monotonically decreasing to @,

t
)

the sequence (sup 7 (T Ac 8] converges to zero;

4., For every sequence § < L monotonically decreasing to @,

the sequence {OA(X*) : Ac8) converges to zero for each

* X
X eXl.

Proof. Using an argument similar to that of Theorem 3.3 and
the observation (B) above we may show that (1) and (4) are equiva-
lent. We also bring forth the fact that L(tA) = HTtAH and that
Wo(Xt) = L(tA) (from (A)) to prove the rest of the theorem. That
is, the countable additivity of p is translated into the sequence
{wp(A) = L(t,) : Ac8) converging to zero for 9 < ¥ as described

in (2), (3) or (4). This completes the proof.



39

The above theorem has an interesting interpretation. If

X
X1

ity of p is equivalent to a family of compact operators in

is compact in the topology 6() then the countable additiv-

L(L;,X) converging to zero. Surely the operators Tt defined

above are compact. Again we omit the results that may be ob-
tained analogous to those in Section 3 by considering the topolo-
gies 6 and 6(a).

For the purposes of our discussion below let h designate
the norm topology and Ww* the weak*-topology. We also designate
by Gp,(K) that subset of Go, = GD' (L(X,Y) ,u) consisting of
all Ter, whose corresponding operator T from Lo into
L(X,Y) is compact. For the sake of simplicity we will assume
that u is positive and finite on Q and that p still has
the weak leveling property (and Lo = Mp).

For yer,(K) and for pu(a) > O, AeZ% we define the semi-

*
norm ky,A on Yl by

- . 0
kY’A(y*) = sup{lfAfd<y*,y-x>| : xexl, feMl)}.

By X(A,X) we mean the topology on Yy
1 Y,A

where A 1is fixed in 26 and vy varies through Go,(K). The

generated by such k

space Y 1is called an {space if for some fixed Aeib with

p(A) > 0 and for all X, (Yi,M(A,X)) is a compact space.

THEOREM 6.2. If (Y],¥(A,X)) is a Hausdorff space then the

h-topology on Y? is finer than the ¥(A,X)-topology which in

turn is finer than the Ww*-topology. Moreover there are Banach

spaces Xl and X2 such that w*x = K(A,Xf and h = M(A,Xz).
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n 0-_space, _then Y nust be finite

S an

In particular if Y i

di nensi onal .

Proof. Using a proof simlar to that found in Proposition 3.7,
it is clear that if (Y* K(A X)) is Hausdorff then to* c K(A X) .
Clearly if Y is an O space then to* = X(A X) . To see that

K(A,X) is a subfamly of ft follows from

Kr,a ") SLSUP{IIJQfodcr-x) e lly* ]+ xex,, £emb)

< sup(T(fxy) - fly*ll = £ed)) < fImll-lly* 1),

where T is the conpact operator corresponding to red b(K) .
If Y is not an Q space, we nmay find an X._L such that

M A, X;) = WM Let X; be the scalar field. | f the net

{y*}- 1 c: Yﬁ converges in the to*-topology to Y* then for the

C OLGJ. 1
conpact operator T corresponding to rer,(K) we have

*
Ky a¥y-¥*) = sup{[<T(fx,)x, v -y*>| & xeX,, fenuf)
<Ny

Thus {y*j ... nmust converge to y* also in the X(A X )-topology.
€ Qfc1 1

W now exhibit an Xy for which MA Xg) = ft. In fact |et
X, =Y and define y from 2F into L(XY) by
Y(A) = |UA I

where | is the identity operator of L(XY) . It is clear that

y is finitely additive and attains the value zero on \x zero sets,
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Al so yeGdr(K). Qoviously the collection
{H!&E¥_: pl(B : Ee%; PHL(E < 1} is conditionally conpact since
\X is bounded on %3. This inplies that
E "- . L
{ﬁ'[ijgﬁ — Pz(e) . EEE , P (E)A A is conditionall % conpact . In

[23], it is shown that the latter is a sufficient condition to

denonstrate that WWBﬁ (¥)+ Thus

k (y*) = sup|WfX¢<Ky*,fl-X>|.
YA

Since o has the weak |eveling property, p(XA) > 0 and in fact

u(A) = p(xa) 0 (Xa). Let f =7~  Then stA(Y*) < HY*HP'(XA)-

T

Consequently K(A, X)) = h. Finally if Y is an £>space then
U* = H and Y nust be finite-dinmensional. This conpletes our

proof .

7. Concl udi ng Renar ks

We woul d propose that other classes of operators be considered
in this topological setting. For exanple, the weakly conpact
operators, nuclear operators or others as nmentioned in [9] nay be
interpreted appropriately. It would be interesting to see if al
operators can be so interpreted, even the non-linear ones. On the
ot her hand, one may want to consider appropriate conditions (for
exanpl e, paraconpactness) on the topol ogies herein defined and to
determ ne the significance of the operators obtained.

I n another direction, one nmay want to consider nore general

structures than the norned |inear space structure we have studi ed.
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For example, the generalization obtained by replacing the norm
with local convexity seems to be fruitful. Here one would need
to replace the "variations" used to define our topologies by an
appropriate concept. Pertinent to this appears to be the paper [12].

Since semi-norms define pseudometrics which in turn define
uniformities, it is clear that uniform space theory is appropriate
to inter-relate the theories of operators, topology, and measure,
as we have begun to show. How the latter two interact may be seen
in [31] and other recent papers by Frolik. Some other papers as-
sisting in this development would be [29] and [30].

As we have mentioned in the Introduction one would also want
to consider the above questions for the more general classes of
normed vector lattices or ordered topological linear spaces,

They both include the normed K&the spaces and Banach function
spaces.

In summary, we have been considering linear operators T in
(1) L(Lp,X), in (2) L(X,Lp), in (3) L(Mp-X,Y) and in
(4) L(CLOOBQ,X). Appropriate topologies, in each case, have been
defined to relate conditions on T to conditions on the topologies.

In the above cases, a statement about compactness of T can
readily be interpreted using the underlying representative measure T.
In particular for (1), if p(Yff < oo then T is compact if and
only if (X},P(T)) is a compact space (see 3.9). For (2), we assume
p has the weak leveling property. If X is reflexive and if T
is compact then (Xl,R(T)) must be a compact space. Conversely if

(Xl,ﬂ(r)) is a compact space then T must be a compact operator
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(see 5.4). For (3), we need to assume that norm |T||” of T

is finite. Then T compact implies that (Y*¥,S(7)) is a compact
space which in turn implies that the operators TA’ for AeZO,
are compact operators (see 6.1). For (l) a similar statement

was made in (3.9) when p(x{Q was not necessarily finite. 1In
[14] it is shown that if TeL(CO((ﬁ,X),Y) then T is a compact
operator if and only if (Y;,Q(T)) is a compact space where (ﬁ

is a compact Stone space. However, the interest here lies in
Te(cLOOBp,X). As such T is compact if and only if Xi is
weak*-sequentially compact relative to T (see 4.2). Moreover
we have related compactness (respectively, weak compactness) of

T to the conditional compactness (respectively, weak compactness)
of the appropriate subset XF of X. Also here it will turn out
that if T 1is compact then its corresponding set function 7T is
countably additive.

A concept that proved significant throughout the discussions
was for a set function Yeup,(p) to be p' countably additive.
The concept arises naturally as a conclusion to conditions which
are practical for scalar valued set functions as shown in the work
[21] of Orlicz. This continuity type of condition on vy has an
interesting interpretation under the assumption that (Xi,P(y)) is

compact. Precisely it is that the set functions me x*(A) = j fd (x*vy)
3
A

satisfy a uniform continuity condition. If Q is a locally com-
pact Hausdorff space, then the compactness of #(y) may be relaxed
to give an interesting characterization of p' countable additivity

more in terms of the topology (in particular its open Baire sets)
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on §: (see 3.11). The countable additivity of the function norm
p, as we have defined it in terms of the continuity of the norm
w; also has an interesting interpretation for operators. As in
6.1 if it is assumed that (X¥,6()) is compact then this may be
characterized as the family of operators TteL(LE,X) for teLp@X
being compact.

The assumption that § be locally compact is rather interest-
ing. In fact for any Banach function space Lp(Q,Z,p), one may
find a measure space (',8®,Y) such that Lp is isometric and
lattice isomorphic to Lp(ﬂ’,ﬁ,y) where 8 1is the o-field generated
by the compact subsets of the locally compact space (' and where
y 1is finite on compact sets. When (Q,Z,u) is o-finite then
may be taken to be a compact (extremally disconnected) Hausdorff
space and vy develops as a regular Borel measure on the o-field
3 generated by the clopen subsets of & (see [23]). Reminiscent
of the maximum modulus principle in complex analysis, the boundary
of the collection up,(p) of set functions was defined. Compactness
of (Xi,P(y,A)) for all AeZO puts vy in the boundary, and compact-
ness of (XR,P(u)) makes up,(u) coincident with its boundary. An
interesting interpretation is that if vy 1is in the boundary then

for each AGZO, the semi-norm pY is p'-norm attainable. Under

A

3

an appropriate compact topology on X¥, sequences {An}nGNeZO
monotonically decreasing to @ give rise to sequences {X;]neNexi

such that x; is the p'-attained point for An (see 3.3) with an

appropriate convergence statement holding,
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The weak topologies defined herein were in general not
Hausdorff. However if the w'-hull X for u' c up,(p), has
its norm closure as X itself, then (X¥,P) must be Hausdorff.
Consequently if (XE,P) is Hausdorff, that is if there are enough
semi-norms to distinguish points on Xi, then (Xf,P) will be com-
pact if and only if # coincides with the weak* topology on Xi
(see 3.7). However the compactness of TeL(Lp,X) is related to
the compactness of the smaller (1) weak topology. It is in-
teresting to note that if (X¥,P) is Hausdorff then (Xi,P(Y)) being
Hausdorff is equivalent to a type of absolute continuity for appro-
priate set functions (see 3.8). 1If (Q,Z,u) is a finite measure
space and if p is the £p(u) norm then (Xi,P) is not Hausdorff.
However if gy is purely atomic, (3.7) shows that it will be Haus-
dorff. For the other topologies, herein defined, analogous situ-

ations occured. These give additional information interrelating

the operators, the underlying measures and the topologies.
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Foot not es

1. For a very coherent conpendium of the theory of Banach function
spaces,, answering nost of the rel evant questions as known at
the tinme, the reader is referred to the series of papers by
W A J. Luxenburg and A C “"aanen in [17].

2. The a-finite case is sufficiently conplicated. Mre generally,
the study of this case is an essential prerequisite for the
non-a-finite case (see [17]). Many of the results will follow
under even weaker conditions (see [18]).

3. For any real nunber p, 1 <" p < o0 we may define a function

~ S |
norm o for feM+ by p (f) = (ifPdji)P. If p =1 we have
P P

sinply the integral of f over Q A function norm poo may
al so be defined as follows. For any a, 0 £ a < oe, set
A =fx€0: f(x) >a}. If fi(A) >0 for all a define

o)

&

p (f) =+o00; if, (i(%\) = 0 for sone value of a, define o
Ooo(f) = ag Where ag =_inffa _ A(%) = °}« Inie nynber P (f)
is called th Essenti al upper bound of f (for P (f) < oo
there is f-| M, alnost equal to f, such thaé[n f.. is bounded
on X with its |east upper bound equal to p (f)). The tri-
angle inequality for these norms p, 1 <"p <*oo, follows from

p .
the Hol der inequaljty discussed in the footnote below. Later 0g, *

in Section 4 we WTl have occasion to make use of fhe Banach
function space L whi ch desi gnates the space L for o - p
4. These are functions f = fl + if, where fi and f, are

functi ons whose values lie in the extended real nunber system
Besi des the usual rules for operating with +oo0 and -o00 it
is understood that (+po) + (Too) = (+po) - (+po) = 0 and

0(+po) =~ 0. Associativity of addition no |onger hol ds unless
we are in the non-negative extended real nunbers. However the
presence of finite valued functions will guarantee the associ-

ativity in our function space.



Actual ly one should consider the collection M =

(feM: p(f) < 00} and its deconposition into equival ence
classes [f] nodulo the collection of /i-null functions. Then
each class [f] contains a finite-valued function on Q
nanely, fe\, __ where E =[x : |f(x)|] =00}, guaranteeing

associativity of addition (see previous footnote). If f =g
then p(f) = P(g) and one may define p([f]) = p(f). Using f
for [f] one may now return to the above definition of Lo'

Actually L is a linear subspace of the linear space of all
0

(i-alnost everywhere finite functions in M which in itself is

not a. linear space (recall that addition is not associative

in M.

A few remarks are pertinent here regarding the definition.

It follows imrediately that if f is ji-measurable and if

geLp, with |[f] £ ]g on Q then p(f) <L p(g) <00 and

feL . If feL andif E=1fx : |f(x) | =00} then the

P P
characteristic function x =~ satisfies p(n\ » < p(f) < 00
for all neN  Consequently p(y.) =0 which by (v) of the

axionms for p inplies f = 0 alnost everywhere, that is,
JXB =0 or nore succintly f is finite alnobst everywhere
on C. In another vein, the axions do not exclude the exis-
tence of a positive nmeasure set Aef£ such that not only

p(Xy) = °° PU'?qso o(xg =°° °"2H Bec: A and B of
positive neasure. Such sets A are called, in the literature,

unfriendly sets. Using the above argunent, it follows that if
A is an unfriendly set then any feLp is identically zero

on A Consequently to investigate Lp-spaces, it is worthwhile

to renove the unfriendly sets A Throughout we will assune

that this has been done. It is shown in [17] that there is a

| argest unfriendly set A and once renoved the renaining set
max

again designated by fi contains no unfriendly sets and ju(O is

still positive. (See [19] for additional remarks). It seens nore

appropriate to call such unfriendly sets A above purety tnfintte

A sufficient condition to insure conpleteness is that the
function norm p satisfy the weak Fatou property, that is,

whenever the sequence (fn}neN and felvr, [fn)n€N nonot oni cal | y
i ncreasi ng and poi ntwi se convergent to f, sup p(f r} <00 Im
plies that p(f) < 00. This is weaker than the nore recogni zabl e

(sequential) Fatou property (all £”-spaces, 0 <" p < 00, satisfy
it and it may be used to prove conpl eteness of these spaces);

(continued on next page)
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that is, where the pointwise convergence of the above sequence

implies that the sequence {p(fn)}neN is monotonically increasing

and convergent to p(f). Completeness of Lp is equivalent to

the norm p having the Riesz-Fischer property, that is, for any
+ . \

neNELp nMm, Zb(fn) < oo implies Efrflb (or

p(Eifn) < ). Some examples from [27] are appropriate. Let

sequence {fn}

4 be discrete measure on Q = N and for any feM+, let

o(p) = sup f(n) + o lim sup f(n), for o a positive constant.

Then the function norm p has the weak Fatou property but not

the Fatou property. If p 1is adjusted in this example so that

for any feM+, o(f) = sup f(n) if [(f(n) ]} converges to O, and
p(f) = +oo otherwise, then p is a function norm having the
Riesz-Fischer property but not the weak Fatou property.

We have already mentioned the early works for the development
of the general theory in [10] and [16]. However definite con-
nections exist with the theory of Kothe spaces as evidenced in
the work of Dieudonne in [6]. Besides the later work of Luxem-
burg and Zaanen already cited, also the work of J. J. Schaffer
in [25] and [26] should be noted. The book [20] by Massera and
Schaffer has a summary of these results in a more general set-
ting.

That p' is actually a norm and not a semi-norm follows from
the fact that unfriendly sets have been removed (see previous
footnote on unfriendly sets).
Using our above stated conventions for infinite arithmetic it
follows that I’fg|du < o(f)p'(g) for any £ and geM. 1In
, then a Holder inequality (as
. : 1 1
in the case 1 = 2P, 1 ©, and L =59, =+ ==1

p ’ gpé ’ p' ’p q )
holds as

particular if féLo and gelL

| [feaul < [1£9lan < p(D)0' (@) < co.

Moreover if o'(g) < co then p'(g) = sup{ljfgdpl : p(f) < 1},
From this it follows that if G is defined for all feLp -by

() = [fgap

then G 1is a bounded linear functional on L, and ||| = p'(9).

(continued on next page)
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Consequently Lp' is isometrically and algebraically embedded
in the first Banach dual space LY of 1 , that is, L , 1is

a closed linear subspace of 1.. Thus the elements G?Lg

are characterized by the existence of a

belonging to Lo'

function grLD' which is identified with G and such that

G(f) = Jfgdp for all chp. In [18], a characterization of
these G 1is given without requiring knowledge in advance that
G 1is represented by a function g. 1In particular GeL , if
and only if for every sequence (fnlnchLp converging pgintwise
to zero it follows that {G(fn)]neN converges to zero.

In the recent work [23], a representation of (Lp)* is
given., For this purpose a modification of the norm o' for

set functions is made. In brief let AO,(p) = AD,(Q,Zé,p) be

the class of all finitely additive scalar-valued functions
Yy on Zb which vanish on p-null sets and for which p!'(y) < oco

where now

o' (y) = sup{lj fdy| : p(f) £ 1, fGMP].
8l

The integrals given relative to finitely additive set functions
are in the sense of [9] (see Chapter III). This definition of
p' does give a norm for which Ap'(u) is a normed linear space.

If, however, dy = gdy then p'(y) = n'(g) (see [18]) then the
two definitions agree. ILet Bo,(p) represent the set of purely

finitely additive scalar-valued set functions vy, vanishing on
p-null sets and having their support in the support of some

feLﬁ\Mp such that vy has finite variation. Then as in [23]
let Gp,(u) = Ao,(p)QBp,(p) and (Lp)* is isometrically-isomorphic
to Gp,(u).

The theorem in [23] gives a decomposition of T into components

Tl and T_. The T1 component is the restriction of T to the

space M° and p' (1)) = HT;H. The component T

T - T, and H72H(§» = HT;”'

5 is simply
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It is worthwhile to remark here that if n is a finitely ad-
ditive set function in up,[p] and if Acy, then we may

write

Pp,a(¥*) = ol (xfyy,) + [x v, (A).

This follows from the definition of ' and from the fact
that Xy, is purely finitely additive with support contained

in the support of a function in Lb\MD. Thus for Aeib, we

have |[x7y,| = O.

The fact that p' 1is countably additive should yield some

information on the Tl component (as discussed above) of T.

In fact in [11], it is pointed out that if vy 1is positive
and purely finitely additive measure then there is a sequence

{B_ ] of sets in T such that for all countably additive
n neN (0]

measures h the sequence {h(Bn)}
Y(B,) = v () .

verges to zero and
neN converges

This in turn leads to information about the component Tl’

For our purposes let us remark that in [11], it was shown that
if o 1is weakly leveling then u(E) < oo implies p(XE) < ©o.
Since XYy, is purely finitely additive, if u() < oo and if

is weakly leveling then vy being p'-countably additive im-
plies that Yy = 0.

The semi-variation YV of a vector-valued set function vy from
Zﬁ into L(X,Y) is defined as follows. It is assumed that

v(#) = O, For every set A < Q let

Y(a) = sup{lZN(Ai)x.[ : finite partitions (A} and

1

finite collections {xi}exl}.

Note that the semi-variation Y of vy depends essentially on

the spaces X and Y and as such should be emphasized as VX v
E
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If v is a set function from ¥ into X, the (total) vari-

ation v of v 1is defined (it is assumed that vy (@) = 0)
for A < Q as

v(a) = sup?zly(Ai)I : finite partitions {Ai} of A}.

It is shown in [7], page 54, that the spaces X and Y may
be so chosen so that the semi-variation §¥ of vy (relative

to X and Y) is the variation 7 of v.

Since T - x* is scalar-valued, its variation coincides with
n

its semi-variation (see [7]).
Thus partitions in Z% and in ZB are identical (see [11]).

It is pointed out in [23] that this definition is necessary to
restate a version of the representation theorem for Tc¢L(L ,X),

that is L(L ,X) = u , (), when X = L(Z,Y). This is useful in

characterlzlng some tenqor product spaces L % X as discussed
later in the reference, Y

This norm is defined by Pettis in the paper, "On integration
in vector spaces", Trans, Amer. Math. Soc. 44(1938), 277-304,
for the Lp—case.

A set AcZ 1is an atom (with respect to u) if u(A) > O and
if for every set BezZ, B C A, either u(B) = O or u(B) = u(a).
Then pu 1is atomic if there is at least one atom in I; p is
purely atomic if  is a finite union of atoms.

In the case that mn 1is not positive then 7 1is defined to be
purely finitely additive if its variation is.

That is, if {An}neNez is monotonically decreasing to @ then
for all ¢ > O there is an N > O such that for all n > Ne’

(a) ] < e for all x*exiw and feMP®,

Im 1

£, xx
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26.

This is in the sense of footnote 24 except that the uniform

aspect is only over x*eXi.

The function f from  into X 1is strongly measurable if
it is the limit in y-measure of a sequence of py-simple func-

tions. It is weakly measurable if x*¥ef 1is measurable in

the usual scalar sense for x*eXx.



