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Abstract

Under consideration is the following question. If T is

a linear operator from a normed function space 3 into a Banach

space X, then may an appropriate topology 3 be defined so that

conditions on T may be interpreted in terms of the topology 3?

For the present we consider 3 to be the class of Banach function

spaces. We define appropriate "semi-norm topologies" on the unit

ball x! of the dual of X. Conditions on the topologies give

information concerning both the underlying measure and the associ-

ated operator. On the other hand, for example, compactness of T

is related to the compactness of 3. Indications are given for

the study of more general structures in the topological setting.
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1. Introduction

Of general interest is the following situation. If T is a

linear operator front a normed function space 3 into a Banach space

X, then may a topology 3 be naturally associated with T so

that conditions on T might be related to topological considera-

tions of 3? For example, may one relate the compactness of the

operator T with the topological compactness of 3>. The general

theory is developed via some (integral) representation of T in

terms of some measure r. Thus extending the situation further,

the topologist may inquire as to what kind of topology 3 will

the meapures associated with a particular class of operators

produce. On the other hand topological properties of 3 may

give rise to important classes of associated operators. What

is the significance of these classes?

Numerous papers have appeared dealing with this idea. One

of the most recent (see [5]) considered the function space 3 to

be the collection C (Q, E) of continuous F-valued functions de-

fined on a locally compact space Q and vanishing at infinity

where E is a Banach space. Another candidate for 3f was the

collection M (Z) of E-valued functions totally measurable relative



to the ring £. The main result there was that if E is re-

flexive then T is weakly compact if and only if T is strongly

bounded. Since the operators under consideration have some repre-

sentation via a measure T, we wish to enquire further if this

measure may be used to define semi-norms, which in turn define

topologies, so that the previous mentioned result may be further

illuminated through topology.

An immediate generalization of the above classes of spaces

are the Lebesgue spaces £^(u) for 1 <L P <L oo. In [3], it is

shown that a continuous linear operator T from <£MJH) into a

Banach space X with T absolutely continuous with respect

to \i, is compact if and only if an appropriate topology on the

unit ball X* of the dual space X* is compact. Moreover com-

pactness of T was shown to make T countably additive. How-

ever a more general setting for these results and questions is

appropriate.

Shortly, we will formulate these questions in a more precise

and succinct way. However for the time being we direct our at-

tention to the particular abstract function spaces that we wish

to presently consider. We will then consider the interpretation

of our results to some particular important subclasses and at the

end we will consider what may be studied in a more general setting.

About twenty years ago the first papers on Banach function

spaces or normed Kothe spaces (or even sometimes called spaces

with a length function) were first published. In general these

are Banach spaces of either scalar or vector-valued functions



defined on a point set Cl and measurable with respect to a

given measure \x on Q (see [10] and [16]). As an abstract

class of spaces they include (and are natural generalizations

of) the Lebesgue spaces £P, 1 ̂  p ^ oo, and the well-known

(but possibly less familiar) Orlicz spaces, which themselves

are generalizations of the L -spaces. On the other side every

normed function space is a normed Riesz space (that is, a normed

vector lattice). Consequently as one might expect the more

abstract theories of either Riesz spaces, ordered topological

linear spaces, or normed linear spaces will serve as corner-

stones for the present developments. Of course this is not

meant to exclude the influence that the theory of measure and

integration has on these function spaces or will have on the

topologies to be considered. Our interest in this work will be

essentially the topological aspects of the theory and the influ-

ence that the other theories will have on these topologies. For

example, the interaction of measure theory and topology. By

this we hope to engage the interested in many of the significant

questions that arise and to begin the study of the more abstract

setting, again from the topological point of view with the assist-

ance of the more analytical details and concrete realizations

that have been established. For the present, we must develop

the necessary structural and analytical aspects of Banach func-

tion spaces.



2« Basic Definitions and Results

Let \x be a non-negative countably additive measure defined

on a a-field £ of subsets of the non-empty point set £2. It

is assumed that the Caratheodory extension procedure has already

been applied to u, so that £ cannot be enlarged by another

application of this procedure. It is also assumed that JJ, is

a- finite, that is, the set Q, is the union of at most a count-

able number of sets with finite /i-measure. Thus (f2, "C* ju) is said

2

to be a o-finite measure space as is normally understood. For

convenience, we will always deal with the equivalence classes of

functions on Q, modulo functions of ju~measure zero rather than

the individual functions. In a similar vein, subsets E of Cl

whose characteristic function y differ only on a set of

U-measure zero will also be identified.

Let M be the collection of all non-negative measurable

functions on £2 (equipped with pointwise order) . As usual a

function f(:M may assume +oo at some (or even at all) points

of fi. A mapping p from M into the extended real number

system is called a function semi-norm if p satisfies the fol-

lowing properties:

(i) if f€M4 then 0 £ p (f) <^_ oo and p (f) = 0 if

f ^ 0 (almost everywhere);

(ii) p (af) = ap(f) for all non-negative finite constants

a and for all fc:M ;

( i i i ) p ( f + g ) < L o ( f ) + p ( g ) f o r a l l f , g e M + ;

( i v ) i f f , g e M + , f £ g t h e n p ( f ) £ . p (g) .



If o satisfies also

(v) P(f) = 0 only if f = 0 (almost everywhere)

then P is called a function norm. The domain of the function

semi-norm p may be extended to the collection M of all
4

u-raeasurable extended complex valued functions on Q by de-

fining p(f) = p(|f|) for any frM# We will assume that there

is an fcM such that P(f) < oo .

The function space Lp - L (O, E, (i) = f feM : P (f) < co ] is

a normed linear space of (equivalence classes of) measurable

scalar-valued functions on the a-finite measure space (Q, S, (x)

with function norm p defined on M (and therefore M) and

norm l|f|| = p(|f|) for all feM. Such spaces are called

normed Kothe spaces.

In general the function space L is not complete. However,

conditions on o to insure the completeness of L are well-

known. The elimination of completeness does not bring that much

additional insight. So we will assume throughout that L is

complete and in such case the spaces L have been referred to
Q

a s Banach function spaces or complete normed Kothe spaces.

We will also need to make use of another function norm p1

defined for all measurable f by
P! (f) = supfj | fg|dji : o(g) i D .

Throughout our work i d/i will denote integration (with respect

to a) over the whole set Q,, otherwise over a subset Ae S,

r 9
I d(Li will be used. It follows that p! is a function norm



with the (sequential) Fatou property (even if p doesn1t have

it) . Consequently it is called the associate norm of p and

the corresponding Banach function space L . = ffeM : p!(f) < o° )

is called the associate space of L .

The following terminology and notation is necessary for

developing the analytical details. Some results from the theory

of vector measures is needed to obtain the desired topological

theory. The reader is referred to the text [7] by N. Dinculeanu

which carefully and systematically develops this theory. The

book [27] by A. C. 7,aanen has a comprehensive account of Banach

function spaces. Either of these texts may be referenced for

terminology not herein defined.

We will assume that Q is now a topological space. Let

£ and £ , respectively, be all sets Ac. £ for which p(Xn) < °°o o i\

and p! (v ) < oo , respectively. Clearly £ and £! are rings
r\ O O

(clans, in the sense of [7]) and algebras of sets if O belongs

to them. Let M° be the closed subspace of L which is the

closure of the span of those bounded functions in L^ whose support

P

(that is, the smallest closed subset, supp f9 contained in Q

such that x ^ supp f implies that f(x) = 0) lies in T . It is

clear that JvP = f feL : f is a D-step function}. To appro-

priately talk about step functions we need the concept of a par-

tition in £ . A partition in L is a finite pairwise disjoint

sub-collection of £ of non a-null members which are of finite

measure.

The letters X,Y,... will designate Banach spaces. For a

Banach space X, we designate its unit ball by X,. The dual of X

(that is, all bounded linear functionals on X) will be designated



by x \

Throughout y will designate a (finitely) additive set

function from £ into X. Let the norm n t be given by

n (Y) = supfp!(x*Y) : x*e:X*}.

To eliminate unnecessary confusion, we will write x*Y when

composition of two functions is required. By to f (/i) we mean

all (finitely) additive set functions Y mapping £ into X

such that n f (Y) < oo and which vanish on sets of u-measure

zero. By P , (ji) we mean all additive set functions Y from

Jj into X that vanish on u-null sets, whose support is con-

tained in that of an element of L \ JVr and such that for each
P

x*eX*, x* y is purely finitely additive. Recall that a positive

finitely additive set function V\ defined on a ring ft for which

fa(R) < oo for RpR is said to be purely finitely additive on

ft whenever any countably additive set function u on ft satis-
23

fying 0 <^ ](R) <^ ft(R) f° r all RG ft is identically zero. If

^YI is tlie variation of x^Hs then x*y purely finitely addi-

tive means that if 0 <^ u <_ |x^y| where u is countably additive

then u ^ 0. For yeP

},- supj.

that is5 y is of finite weak semi-variation in the sense of [7]

Let us set

V (^} = V
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That is, if yen f (<z) then y is uniquely decomposed as

Yl + Y2 5 Yi e V (M) ' V : Pp» (fi)

HY'I t = supfp
1 (xvG1) + 2 j

The following theorem, found in [23], gives the significance

of the sum U , (jx) • For Banach spaces X and Y we let L(X,Y)
P

be the set of a l l bounded linear operators from X into Y.

THEOREM 2.1 . If TeL(L , X) then there is a unique TFU , ()Lt)

such that

T(f) = J fdT

and

where the integral is similar to that in [9 ] (see IV. 10 of [9] ) .

Thus this theorem states that L(L , X) is isomorphic -- iso-

metric to u t (/i) . Furthermore, let us assume that Te\x , (pt) is

the unique correspondent for T G L ( L ,X) . If T is decomposed

into T-. + T~ and p is continuous at zero then r~ - 0 and T-i

is both (i-continuous and countably additive on £ (see [23] ,3.2).

The function norm p is said to be continuous at zero if for every

r > 0 there is a h > 0 such that ,u(E) < 6 implies o (Xp) < €•

In the following all integrals pertaining to (finitely) ad-

ditive measures will be understood to be in the sense of [9] (namely,

IV.10). Consequently we will make no further mention of this.

We may now define a collection of semi-norms to generate the

required topologies. If Ae V, and if ye]x f (fi) , we may define a



semi-norm p w on X* by
y 9 A

P , , A ( X " ) = S U P fjj : fc.M°

For AC'S let us denote by y the restriction of y to
O A

£ | A = f BOA : B^L]. It is clear that

lWA!|p! - sup(p^A(xM : x^GX;).12

The set function y above is called pf countably additive

if for every sequence fA } in L , decreasing monotonically
oo

to 0 ( that i s , n A = 0) , one has the sequence f||y || , }
n=l n A n D

converging to zero.

The boundary of U . (a) i s the set
pf

f Y(:-U t (^) : f ° r ^ach Ac L there i s x*rX* with

If 8 is a collection of semi-norms on X* then by the

topology generated by H we mean the coarsest topology on X*

which makes all semi-norms prft continuous (as such it is always

locally convex) • In particular if ye)x ? ((Lt) and if Ae T by P(y>A)

we mean the topology on X* generated by the single semi-norm

p • If U is any subcollection of U (/i) then by (P(Uf) we
Y 9 A p

mean the topology generated by u1. Of particular interest will

be the subcollection U! = [y] whose generated topology we will

designate by P(y) anc^ the subcollection u1 = U = U , (j-0 whose

generated topology we will simply designate by P(U) or simply P.

Of course it is clear that P(y^A) c P(y) c P(U). Of especial
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interest for our work is the restriction of these topologies to

the linear subspace X* of X*. Consequently for the rest of

this discussion, the above designations will refer to the re-

spective topologies restricted to X* unless specific mention

is made otherwise.

3• Main Results

Some statement about the relationships of these topologies

to the generating set functions y (and therefore semi-norms) is

appropriate here. If yc;U ? (f-0 an<^ if the topology P(y>A),

Ae Tt i on x!" is compact, then the o?-norm of y is precisely

given by the evaluation of the semi-norm o n at some x*eXt,
Y * A 1

that is Y lies in the boundary of U , (|i) • Moreover if X*

is compact in the topology P(U) then the above is true for

each YeU , (fi) . This we state formally in the following easily

shown lemma•

LEMMA 3.1. Let YeU , (u) . If for each Ae £ , X̂~ is com-

pact in the topology P(y,A) then y _i_ŝ  iri the boundary of

U , (a) . In particular, if xt is compact in the topology P(U)
P 1
then U .(u) coincides with its boundary.

pi r-

Proof. Let fx*} ._ be a sequence in X* forn neN 1 which

Since X^ is compact in the topology P(y,A), without loss of

generality, we may assume for x)f6X1 that fxx} converges to x*
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Then !i v ! . = P -*(**) and the rest of the lemma follows.

This lemma leads us to the countable additivity of the dual

14

norm p T. But first we need to define the concept of a set func-

tion enjoying the Fatou property.

If ju and Y\ are scalar valued set functions defined on a

ring t where ft is subadditive, then a has the Fatou property

(or a has property (F,) ) if for every sequence of sets ^ E
nE c EeS, for which the sequence fh(E-E ) ) n . N converges to zero,

one also has

lim inf /i(E )

The set function \x is said to be strongly bounded if the sequence

{/i(E ) } converges to zero for every sequence {E ) of pair-

wise disjoint sets.

The following theorem shows how these concepts are used to

yield the p!-countable additivity of yc-.U , (|tl). The proof is ob-

tained by applying Theorem 7 in Orliczfs paper [21] to our specific

situation.

THEOREM 3.2. If a is finite on S and if there is a

scalar valued set function A defined on Z such that
— o

A i§. strongly bounded;

(2) for each x*eX* , p (x*) satisfies (F-.)-
1 Y*A 1

(3) p -(x^-) < A (A) for all x ^ X * and Ac £
YjA "*• 1 O

then y is. Q! - countably additive.

On the other hand, under an appropriate topology on X̂ ', y

being pT-countably additive is equivalent to a sequence fp (xx) }
Y3 ** AG W
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-X-

converging to zero for all x*eX.. where U is a sequence of sets

in XL. TTiis will follow from the next theorem.

If G is a subcollection of £ , we will say that the semi-

norms p „ for AeG are oT -norm attainable if for each AeG

there is an x*̂ X'* such that p A(^^) ~= ||Ya|l i-
 Tlle point

[- is called the pT -attained point for A. It is clear that

if Y is in the boundary of U T (jj,) then for each Ac £ the

semi-norm p is pT-norm attainable.

THEOREM 3_..3.. Let G = fA } b£ .a sequence in XL decreas-

ing monotonically to 0 and assume that the topological space

(X*,P (Y,A-. ) ) is compact. TTien there is a sequence fx*} x,eX* such1 ' i — — — n ne N l

that x* is the pT -attained point for A . Furthermore if x*______ n " ~ - — - — — — ----_-—. -Q

is â  limit point of f x*} then the sequence | \\y \\ f j . con-
n ̂

verges to zero whenever fp (x*) } does.
^* n

Proof. By Lemma 3.1 for each A G£ there i s an x*r.X^ suchu n o n 1

that xK i s the of - a t ta ined point for A • If y i s not

o !~countably addit ive then for some c > 0, \\y \\ t > G. Since
An p

for n sufficiently large p (x*-x*) < r/4, we have

p (x^-x^) < G/4. Consequently, p (x*) > G/2 which contra-

dicts the convergence to zero of the sequence fp (x*) }

COROLLARY _3._L- Let fA } b_a â  sequence in £ decreasing

monotonically to 0 for which the sequence { sup I f d (x* y) I } XT
n

converges to zero (where x*eX* and where the supremum is taken

over all fe&P) • if (xt ,P (y) ) JLS_ compact then y ±s_ o1 -countably

additive.
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For fr.L , one defines the " averaged" step function of f
o

to be

' fldu „

where 6 is a partition in £ . The function norm o is weakly

leveling if, for each partition 6 in £ , p(f«) £ p(f) .
O \v

All well known Banach function spaces such as the Orlicz

spaces (and in particular the Lebesgue spaces) have weakly level-

ing function norms. In [11] this concept was referred to as p

having property (J). We prefer the present terminology since the

condition is weaker than the concept of leveling as discussed in

[10].

COROLLARY 3.5. If (x*,P(y) ) is compact, then the following

statements are equivalent.

(1) The set function y ±s_ or - countably additive;

(2) For every sequence fA } __e£ decreasing monotonically
Yi Y\£ JN O

to 0 and for every x*c-:X', , the sequence | p _ (x*) )
— 1 Y,An

converges to zero;
(3) For every sequence I A ) < 13 decreasing monotonically

to (6, the sequence f fdy] _. converges to zero in
j ' nc JN — —

n
the norm topology (uniformly for feM(?) .

Proof. In 3.4 we have shown that (2) implies (1) , and the

converse is obvious. The other equivalence follows from the fact

that

yA || = sup( |J fd(x*Y)r
j
n

HOT U M A H
CARNE8IMKUIH ttMIVERSITY
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An interesting interpretation of p!-countable additive is

the following. Suppose we define the set function m- on E
I ) X O

for feMp and x*eXf by

(A) = j fd(x*y) .

Assuming (X*,P(y)) to be compact, the mentioned interpretation is

24given as a "uniform countable additivity" on E of the

family i m : feMP !.
L , X

Let us now consider the topology P on X* which is generated

by all the semi-norms p for all yeU f (/i) and all AeS . We

will see later that this topology is not Hausdorff. But first we

investigate conditions equivalent to Hausdorff.

Subcollections U1 of U T (fi) of set functions mapping S

into X give rise to interesting linear subspaces of X. We de-

fine the UT-hull in X to be the set X, . of all finite sums of

the form Say (A) as A ranges over £ , a ranges over the scalar

rield, and y ranges over u1. Again of particular interest will

be the case when u1 = f yi an<^ ^T = U = U , ()Lt) . TTiese we will

simply refer to as the y-hull in X and the U-hull in X, respec-

tively.

The importance of the U!-hull in X stems from its influence

on the relationship between the P(U!) and weak* topologies on xt•

In particular, as the following lemma demonstrates, if the closure
.V.

of the UT -hull in X is X then the weak* topology on X.. is

coarser than the P(UT) topology. Consequently the P(U!) topology

must be Hausdorff.
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LEMMA 3_.6.. Let U' be_ some subcollection of U , (/i) . IJ.
V.

cl X . = X then the weak* - topology on Xn is coarser than its

P(U') topology.

Proof. Let us suppose that fx*} _ is a net in X. con-x a ac I l

vergent in the P(U!) topology to the point x*c.X*. We wish to

show that it is also convergent in the weak*-topology to x*. If

y is any point in X then there is a finite set of scalars a.,

set functions \.rUT and sets A-eE. i = l,...,n, such that

|(y-Sa. Y-(A.)|| < e/2. Since the net converges in the (P(U!) topol-

ogy, we have for a ^ a ,

Thus

A i

1 L | a i | p ( x A )P ! [(x^-

Consequently

y,x^-x^->| <i | < y - L a i \ i ( A i ) ,x^-x * -x*> | < 2c

This completes the proof of the Lemma.

We may now formulate Hausdorf fness of (X* (p) in terms of the

weak*- topology on X*.

PROPOSITION 3_.7̂  The following conditions are equivalent.

(1) The topological space (X^,P) is Hausdorff;
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(2) The closure of the U-hull X, i_s_ X;

(3) The weak topology P jLs[ finer than the weak*- topology.

In particular if (X*,P) is Hausdorff then (X*,P) is compact

if and only if P coincides with the weak*- topology.

Proof. Since the locally convex weak*-topology is always

Hausdorff, the implication (3) implies (1) is obvious. If (2) is

assumed to be false then there must be some x xeX*, x* ^ 0 such

that <y(A) , X * > = 0 for all AeS , yeU f (u) . But this means

p A(x*) = 0 which contradicts (1). Now statement (2) implies (3)

from Lemma 3.6 and the final implication follows directly from (3).

This completes our proof.

For the topology P ( Y ) , we can also formulate conditions for

when ( X ' , P ( Y ) ) is Hausdorff.

PROPOSITION 2*8.. JLf the topological space (X* P) is_ Hausdorff

then the following statements are equivalent.

(1) The topological space (X* ,P(y) ) i_s Hausdorff.

(2) If f fd(x*Y) = 0 for all fc:M° anid Ae S then
~ JA °
j fd(x*j) = 0 for all feJV^, Ac. S and ueU.(u);JA ° °

(̂) The topology P (y) i_s_ finer than the weak* - topology.

Proof. The implications (1) implies (2) and (3) implies (1)

are both clear. In showing (2) implies (1), let us assume that

(1) does not hold, that is, there is some x*ex!, x* ^ 0, yet

Pv A ( X K ) = ° f o r a 1 1 A € ^ • But (2) says that p (x*) = 0

for all UG U t (p,) and AeZ which contradicts P being Hausdorff.
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A few comments are now in order. If (0, ̂, u) is a finite

measure space, and if we let
jL

o(f) - (j|f|pdM)
p

then pf (x*y) i s t l i e q - semi -va r i a t ion of x* y for yrij, f (JLI) . I f

\x = O then Y = O and (2) of Propos i t ion 3.7 shows t h a t (X*5P) i s

22

not Hausdorff. On the other hand if JJL is purely atomic we may

split £1 into atoms A such that /u (A ) > O. If t is a fixed

point of Q, we may define y on £ to be 0 if t/A and
Yx. (A) ~ x if teA where x is some element of X. liien11 o o

YJ-^U t (jLt) and Proposition 3.7 shows that (X* ,P) is Hausdorff.

For Ae S , let us denote by L (A) those functions in L which
o o p

vanish on the complement of A. For Tc L(L , X) we will denote by

T the restriction of T to L (A) and by r the correspondent of

T given by (2.1).

THEOREM 3_.9̂  For TcL(L , X) and for r the correspondent

element in n . (a) , the following statements hold,

(1) UL T i§. ̂. compact operator, then (X-. ,P ( T ) ) is_ a. com-

pact topological space;

(2) jrf the topological space (X* ,P(r) ) .is. compact then the

operators T , Ae L , are compact.

In particular if p (xd < oo then T _is_ compact if and only if

the topology P ( T ) _is_ compact on xi!".

Proof. Assuming that T is a compact operator, let {x*}

be a net in X* converging in the weak*- topology to x^fXi|. We

show that convergence is retained with the P ( T ) topology. In the
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norm topology on X*, one has the net If (x*))arI converging

to T*(x*). But

p^ a(x*-x*) - supf |< fdT,x*-x*>| : feM^l

= supf |<T(fxA) ,x̂ -x̂ :•• I : feM^!

Thus we have convergence in the P(T) topology.

To show statement (2) let f x* } again be a net in X* con-

a l
verging to x* in the P(r) topology on X* and let feL with

o(f) <1 1. If A<̂ S then f\ , having support in Y, is in M^
o x\ o

and

Consequently the net fT^(xx')} converges in the norm of X* to

Tl(xx) which is the compactness of T (see [9]). "The rest of

the theorem follows immediately.

In [13], some characterizations of the compactness of T in

terms of r have been given. It would be interesting to charac-

terize the weakly compact operators on L since L* * has a known

representation. To this end one may apply the Kakutani representa-

tion for abstract M spaces (see Theorem 2.7 in [23])o

The semi-norms p have been defined and have been shown to
Y * A

be worthwhile. Let us now consider the semi-norm p ^ defined

for X*GX* by

- supf | J fd(x*Yl) :
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Since oT (x* yi) i s finite, it is clear that p n(x>f) i s also.

Let P(Y*O) b e t^e topology generated by this semi-norm p n.

If x* is a

<T,x*> on Mp by

If x* is an element in X* , we may define the operator

<T,x*>(f) = <T(f),x*>.

As above, it is the restriction of this operator to L (A) which

will be of interest. This we will designate by <T,x*> . It is
/\

clear that for any x*eX, , one has

Utilizing this terminology we may now formulate a condition

for T to be accountably additive.

COROLLARY 3.10. Assume that Te.L(L ,X) i_s compact and that
p

for every sequence !A ) ,T in £ monotonically decreasing to 0,
J^ ^ £ ̂  Q U.

the sequence f II^TjX*^ 11} ^ converges to zero. Then
n - A ne, JN — 1

i§L _5 compact space and r jLs_ ,oT -countably additive.

Proof. Since both topologies P(T,A-.) and P{r,Q are sub-

collections of P(T) if the operator T is compact then it is

clear from the theorem that these topologies are also compact,, To

show T is o!-countably additive we must demonstrate that for se-

quences (A 1 N in £ monotonically decreasing to 0, also the

sequence C||TA \\ f } M converges to zero, where (|T- \\ T =
A
n P

 n^ JNI A^ p
sup{p (x*) : x*c.xt). To this end we will apply Theorem 3.3. That

T> n X

is, we will assume that xK is a PtT^Aj limit point of a sequence
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n; in X1 for which
1

converges to zero. Forand we will show that fp (xy) )
T 3 A nt. JN

c > 0, there is N > 0 such that p (x*-x*) < e/4 for al l
*

n > N and such that for r > N

n m
4

for all n,m > N. Thus for all n,m > N we have

A
n

A
in
(XX) I - PT A

n

p (x )-p
T' An r

(xr) + p (x -
r

T, r A
n

This completes the proof.

In the second part of Theorem 3.3 we considered conditions

which would insure the oT-countably additivity. We note that a

similar thing may be done here for ||<T,x*>_|j.

We now assume that Q, is a locally compact space and that 6

is a semi-tribe (5-ring) of Baire sets (see [7]). We will say that

a set function yeU f (ju) is regular at A c Cl if for every e > 0

there is a compact set K and an open set 0 both in (fi such

that K c A c 0 and if S cz 0\K, Se £ , then ||YGII t < G* As in

[8] it is easy to see that y is regular on every compact G,-set

and the collection of subsets on which y is regular is a ring of

sets. Thus y is regular on 6.
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PROPOSITION 3.11. If YGU . (ji) and if p (v) < oo for
— p J\

every compact set KG £, then the following statements are equiva-

lent.

(1) The set function y ij^ o! -countably additive on (B;

(2) For every sequence [A ] _T of V monotonically de-

creasing to 0, there is a sequence fB } _Te(B of open
— Yl Yl£ ]\j —*

Baire sets such that A c B and the sequence
-Q Y\ __-

f jl I f dy|(} converges uniformly to 0 for every

sequence f f } ^ of M? for which f 5 0 on the
n nG N — l n

complement of B .

Proof, Since Y is regular on 8, in showing that (1)

implies (2) let us obtain a sequence IB of open sets in (B such

that UIYTJUD (a converges to zero. Let us note that since
o

cl B is compact, B eL . If ff } XT is a sequence as defined in
n o n ncN

(2) and is related to 6 , we have for x*eX.,v o* 1'

i j f n d ( x * Y ) | l p ( f n ) | | Y l

n ^

Thus statement (2) follows.

If y i s not of -countably add i t ive on (B then we may assume

tha t for the sequence G c <B monotonically decreasing to 0,

HYTVII ? > e f o r some e > 0 and for a l l AeG. Let B be a

sequence in IB as u t i l i z e d in (2) . Then for AeG, s ince

||YAi| , = SUpfHj fdY|| : feM°}
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one has iljfAXA
d>':! I_ G/2 for a 1 1 AcQ where {' f A } A e Q is a

sequence in M^. Since f'X, vanishes on the complement of

Be R where A c B, we have a contradiction to (2). Thus y is

p!-countably additive on (B.

We have made the assumption that ft be locally compact.

As it is, this is not much of a restriction. If L = L {Q, £,fi)

is a Banach function space, then one may find a measure space

(0f JRJY) where ft1 is a locally compact space, IB is the o~ field

generated by the compact subsets, y is finite on the compact sub-

sets and L is isometric and (lattice) isomorphic to L (OP ,fo,Y)•

Moreover if (£i,Z,/i) is o-finite or if there is some f e.L such

that f > 0 almost everywhere, then IB is the a-field generated

by all clopen subsets of the compact space Q! and y (SV) is fi-

nite. The reader is referred to [23] for more in this direction.

Finally let us note that if p has the weak leveling property

then |i(E) < oo implies p(XF) ' °° (see [23]).

4. Operators on Bounded Functions of L

In conjunction with our remarks ending the previous section,

we will assume that there is some f eL (where L is now a
op p

real Banach function space) such that f > 0 almost everywhere.

Let B be the algebra of essentially bounded functions in L

and cl B will be its closure in L (ft,Z,/i). (These defini-

tions are given in the footnotes). For any topological space Q,

we will let C(Q) represent all continuous real-valued functions

on ft.
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Since B is a vector lattice, the closed subspace cl B

in L is an abstract M-space (in the sense of Kakutani, see

[13]). Also since f = min!f,n) belongs to B and since

f > 0 almost everywhere, it follows from Theorem 2.1 of [24]

that there is a compact Stone space JX such that c£ B is

isometrically isomorphic C(fl) (the topology being that obtained

from the sup norm). The adjoint space C(CL) X is an abstract

L-space (also in the sense of Kakutani, see [18]). It is iso-

metrically equivalent to £ (O^,BjU) where u is a finite regular

measure on the. Bore1 sets B of some Q (see [23], Theorem II.1.1)

From Theorem 1.3.2 CL can be homeomorphically identified with a

closed subset of Q^.

In our particular case we are interested in bounded linear

operators Tt:L(L , X) for which T restricted to cl B is also

a bounded linear operator.

THEOREM 4..JL. Let T be <a continuous linear operator from

cl B into X.
oo p

(1) For every sequence j A ] ... in £ of pairwise disjoint
——, -pi fi(- N O

sets, for every sequence [a ) -, of scalars with la I < 1 and
-ft -£lf Jfl I -Q I --w

for xK^X*, the series Z<x* ,a T (A )> ij3 convergent where T is

the measure corresponding to T (.in. the representation Theorem 2_.JJ .

(2) U . T i_s_ â  compact (respectively^ weakly compact) opera-

tor from cl B into X, if fa } AT and r are as in (1) and if
[B } „ is a finite sequence in E then the subset X of X
n ne F — — o F —

consisting of all elements of the form 2f a T (B ) : neF] is con-

ditionally compart (respectively, weakly compact). In addition if
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fA } AT in £ is monotonically decreasing to 0, then the
n x\f N — o

sequence ' T (A ) ! XT converges to zero in the norm of X.
' n T\r N —

Proof. Since d B may be identified with C(Q), we may
—- oo p -j-

consider T as a bounded linear operator from C(Q.) into X.

Then there is a finitely additive set function y from B, the

a-field of Borel subsets of £L, into X such that T(f) = Ifdy

for ffcl B where f is the function in 0(0^) corresponding
oo p 1

to f. Since T is bounded, the semi-variation of y is finite.

In [4] it is shov/n that this is equivalent to the series

S<x*,a Y(B )> being convergent for all sequences { B ) in B

of pairwise disjoint subsets. On the other hand for Af £ * its

correspondent A in B is clopen and

T(v ) = U^dY = Y(A).

Thus T (A) = y (A) which shows statement (1). It follows that if

T is a compact (respectively, weakly compact) operator on C(Q,)

then the subset X_ of X as given in statement (2) is conditionally
r

compact (respectively, weakly compact). In this case it is known

that the y utilized in the proof of (1) above must be countably

additive in the norm of X. If A^B denotes the corresponding

clopen set of Ae£ 9 then for x*^X*,

Y „ (A) = IXadY^ =<T(xA),x*> = < T ( A ) , X * > .

* 25
Now for X*GX.. , Y x ^ r e uniformly countably additive. Consequently

the second part of statement (2) holds.
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For the locally compact Hausdorff space Q, let CQ =

C (Q, X) be the set of continuous functions on Q mapping into

the Banach space X and vanishing at infinity. The uniform

norm is placed on C . Let TL be a ring of subsets of Ct

and for the Banach space Y, let y be a finitely additive

~16

measure from £. into L(X,Y) with finite semi-variation y

For y*eY*, a set function y x from £-, and Y* may be

defined by
<Yy* (A) ,x> = <y*,y(A)x>

for XfiX and Ac: £, . If y ^ denotes the total variation

of y ^ then for Ac S-i the semi-norm g on Yx may be

defined as

The topology generated by the collection [g : A(-XL } will be
y, A l

designated by Q(y). It is shown in [11-] that every bounded

linear operator Tc-L(C (£1,,X)5Y) corresponds to a unique weakly

regular, finitely additive vector measure r from the Borel

o-algebra of subsets of Q1 into L(X,Y**). The weak regularity

of T means that <r (•) x,yx> is a regular Borel measure for each

xeX and y*^Y*. The operator T is compact if and only if

(Y^, Q ( T ) ) is a compact topological space. We can now develop

this for operators T from cl B into X.

We will say that the unit ball x! is weak*- sequentially

x
compact relative to T if every sequence S a xt has a subsequence

\fxx] and a point x*eX* for which the sequence
fsupf |<T(f) ,x*'-x*> | : feL ; \\f\\ ^ 1] converges to zero.

n p " " o o ,
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PROPOSITION 4.2. The bounded linear operator T from cl B
_ QQ

into X is compact if and only if X* is weak*- sequentially

compact relative to To

Proof. Considering T again as a bounded linear operator

from C(Q-) into X then T is a compact operator if and only if

(xt,Q(T)) is a compact space. But Q, is a compact space also.

Consequently T is compact if and only if for every sequence

S in X* there is a subsequence fxx] c S and a point
TO

x*cX* such that [r ̂ _ x (Q) } converges to zero. If feC(CL)
n

corresponds to the function fccl B then for all f

<T(f) ,x*-x*>| - [fdT
n x* -x

n

Now ct B is a dense subset of C(Q.) using the essential sup

norm relative to a. Consequently

¥ ; : fL ||f||
n ^ n

This completes the proof.

5. Operators into L
p

Let us now consider operators T which map the Banach space

X into L . We will assume that the dual norm pf has the weak

19leveling property. it is easy to see that if p has the weak

leveling property then also does oT.
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Now y w i l l be a f i n i t e l y a d d i t i v e s e t funct ion from

S! = fEe£ : p ? ( x J < °° ^ i n t o x* w h e r e <Y( ' ) ,x>* for xeX,
O ill

is countably additive and fi-continuous for each xcX. Let

\s be the linear space of all such finitely additive set func-

tions Y- W e ™aY define a norm V on V by taking
P o

V (y) = sup{ p(i: ̂ H j ^ X E ) :
 g partition in T!Q, \\X\\ £ 1} .

This norm is often called the p-variation of Y anc^ with it

\s is complete (see [11] for the details) .
P

If y?.\s then y is finitely additive and not, in general,

countably additive. In addition it vanishes on u-null sets. Let

us also note that if ft is a partition then the simple function

f = Sfax-ri : Ee6} taking its constant values on the members of &

is in both L and L , • For the sake of simplicity we will

allow for Er&, /i(E) = 0 in which case —• will be interpreted

as 0. For a subset A c Q, ft will denote a finite family of

disjoint sets EG t with E c A.

Motivated by the definition of the p-variation of Y* we may

define a family of semi-norms on X. If yey then define r
o '

on X to be

\ ( X ) =

and for A c J] define r by
Y 9 A

(E) >x> v . E e R }



28

As was done previously we may use these semi-norms to generate

topologies on X. We designate them in an analogous fashion as

ft{y,A), &(Y)> a n d ft« Utilizing these, we may then define for

any A c Q the V -norm of v relative to A or V [v]-relative
P P

to A as

V [Y] (A) - supfr (x) : X G X * } .
P Y 9 A ±

We shall say that Y is V -countably additive if for every

sequence fA ] _ ̂  £ the sequence |V [y] (A ) ) converges to

zero. If for each AG £ there is some xeX, with V [Y] (A) =
1 o

r (x) then we shall say, as was done previously, that r

is V - attainable. Again as we have done previously we may define

the boundary of li to be

P
bdry V = f yeV : for each Ac £ , r is V -attainable},

p o o Y 9 A o

Adjusting our proof to Lemma 3.1 we may now state

PROPOSITION 5.1. If (Xn,ft) is a compact space then the bound-

ary of 1/ is U .
— l p — o

With appropriate adjustments in the proof of Theorem 3.3 we

may use the above to obtain

THEOREM 5.2. For a sequence g = f A } .T c £ monotonically— — — YI n£ N ———<~

decreasing to 0 let us assume that (Xn,B(v,An) ) is a compact
j_ j_ —

space. There is a. sequence S c x1 such that for each A ,

r is V -attainable. Furthermore if x is a limit point of S
Y,An — o ^

then the sequence (V [y](A )} converges to zero whenever
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f r „ (x) I XT does. Thus if (X. , ft(v) ) is a compact space and
y,A nrN 1 —

if (r _ (x) ) _ _ converges to zero for all such sequences S
y ̂  J^ ^£ ̂

in T> then v is V - countably additive.

Assuming reflexivity on X, we may give equivalences for

(X..,ft) to be Hausdorff. The space being Hausdorff will readily

follow if the weak topology on X.. is coarser than R. But

more interesting appears this analogy to the U-hull in X. We

will define the averaged V -hull in X* to be the set avxf of
Y (E)

all finite sums of the form £a ' ; ( where EeS, ft is some finite
u {&)partition of 10, yz\s , \s = \s and a is a scalar.

P P

PROPOSITION 5_.3_. X£ x i§. 5. reflexive space then the fol-

lowing conditions are equivalent.

(1) The space (X,,ft) is Hausdorff;
_ _ ĵ  _ _ — _ _ _ _ _ _

(2) The closure of the averaged lr -hull in XK in the norm
p

topology is X*;

(3) The weak topology on X-. i_̂  coarser than the ft-topology.

Proof. To show (1) implies (2) assuming X is reflexive,

let us also assume there is an xfX, x ̂  0, such that <y(E)5x> = 0

for all E in a partition 6 and ye\j . As in Proposition 3O7

this yields a contradiction to (1). In showing that (2) implies (3)

assume the net {x ) in X.. converges in the ft- topology to xeX..

and let x*eX*. Then there are finite sets of scalars a.., set

functions y., and a partition & such that for E.e6

Y, (E.)
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On the other hand for all a greater than some fixed a el,

we have

Y. (E.)x-x>
1 1 QL 2 '

The rest of the proof follows as in Proposition 3.1.

Now it is clear, that as we have proceeded in Section 3, one

could give conditions for which the space (X,,R(T)) would be

Hausdorff. Then utilizing results by Orlicz in [21] conditions

for y to be V -countably additive could be given.

In Theorem II.6 of [11], there is exhibited an isomorphism

between L(X,L ) and \s (under the assumption that of satis-
P P

fies the weak leveling property). To this end let r be the

correspondent in \s of the operator TeL(X,L ). More precisely
P o

this correspondence is given by

<T (E) ,x> = JTxdjU

and

Tx = — — < T ( » ) ,X>

where the integral is as defined in [11].

THEOREM .5..4̂  Suppose that o has the weak leveling property.

(1) jrf X JL£ reflexive and if T _i^ a. compact operator

from X into L jLŝ  compact then (X.. ,-R(r) ) is, a_ compact space.

(2) JTjf (X1 ,R(r) ) is. â  compact space then T must be a_
•i .

compact operator.
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Proof. Whenever X is reflexive, every net in X, has

a weakly convergent subnet. Thus in showing (1) we may assume

that (x ) e x , is a net converging weakly to x. Now T*

is compact and T** may be identified with T. Thus the net

(T(x )} converges in the norm of L to T(x). Utilizing

the representation for r, we now have

<T(E),x-x>
r (x -x) = supfo[ £ -7^ xp]

 : partition 6 c £] £_

xE p
sup{p[ L 777-̂ r i T ( x

a-
x ) \d^ : partition e c £,}

E

^ sup o[T(xa-x) £]

where T(x -x)r. is the averaged step function of T(x -x) . Since
a c- (x

p has the weak leveling property it follows that

r a ^ " a *

Since the net [p[T(x -x) ] } converges to zero i t follows that

(X, ,61(T)) i s compact.

In Lemma I I . 5 of [11], i t i s shown that

(I) kp[T(x)l £ supfo[ S 1
<T(^(X>I x^] : 6 partition in

U ( E ) E

where k is some constant, 0 < k <̂_ 1. Thus to show (2) since

(X-,R(T)) is compact we may assume the net fx } in X. con-
1 uL OLG 1 JL

verges in the ft(r) topology to x. Applying inequality (I) to

x - x, then the right side will converge to zero. Thus [Tx }
Ĉ  OL OCG I

converges to Tx in the L -norm and T is compact.
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6. Operators with Range in L(X,Y)

Our attention is now directed to the vector valued case for

spaces of the type L . We will consider the same questions as

previously posed in Section 3. In particular for the Banach

space X let L *X be the Banach function space of strongly

measurable X-valued functions f defined on Q,, with p(f) =

p(|f|) where |f| is the X-norm of f. Corresponding to M we

have the linear subspace M *X of L #X defined as
P P

M -X = spff*x : feL°,X€X}.

Our questions then are formulated in terms of obtaining meaning-

ful topologies related to bounded linear operators T from M *X

into the Banach space Y. The restriction of T to elements of

M «X which vanish on the complement of Ae£ will be designated by T •

In [23], a characterization of the subspace L(M *X.Y) of
P

L(L -X,Y) is obtained. For t h i s we define the norm | |T | |^ of T

to be n n
\\?\\~ = supf L |<Y*,T(f . .x . )> | : y*€Y*,p( £ f - x . ) £ 1}.

i=l x x x i=l x x

As before if Z is a lso a normed l inea r space, l e t us define

G . (L(Z,Y),ju) to be the family of a l l addi t ive se t functions y

mapping £ in to L(Z,Y) which vanish on /i-null se t s and for which

N f (y) < OO where

N (y) = supfn (YZ) : Z G Z ^ .

Let B (L(Z,Y) , JLI) be the family of all additive set functions y

mapping £ into L(Z,Y) which vanish on /i-null sets and such that
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for each y*€Y* , zcZ, <y),y#z> is purely finitely additive with

its support contained in the support of a function of L M and

for which I|Y||(Q) < °° where

\\y\\(£l) = supf ||Y-Z||(Q) : zc-Z^

(||Y-Z|| is just the variation of Y* z)- Finally we let

U f ( L ( Z , Y ) , a ) =G f (L(Z ,Y) , ( i )©» f (L(Z,Y) , fi) and Y^U . ( L ( Z , Y) , fi) ,

Y = Y-, + Y9 i m p l i e s R T (Y) < oo w h e r e

r, / N r u n r. i 2 0
R f (y) = supf UY*Z|| , : zeZnj.

Of p a r t i c u l a r i n t e r e s t for us w i l l be the case when Z = X.

Thus for YrU , (L) = U t (L(X,Y) 9\i) we may def ine the semi-norm

s on Yx to be

r
s (y* ) = supf | j fd<x,y*Y>| : XGX-, fpMP]f

Y ' A ' A -1-

where Ae S • By g(y»A) we will mean the topology on Y* generated

by the one semi-norm s ^. Meanings similar to that used for the
Y 9 A

t opo log i e s P(Y) an<3 P w i l l be a t t ached to ^ (Y) a n <^ *•

PROPOSITION 6..JL Let TGL(M #X,Y) wi th | | T | P < oo. There

is a. unique TeU , (L(X,Y) , ji) and a. bounded l i n e a r o p e r a t o r

T feL(L ,L(X,Y)) such t h a t for feL and XGX
P o

T! (f) -x = T(f-x) = f fd(r-x) .

If T is_ a. compact operator then Y* will be a. compact space

with the topology g(r). Conversely if (Y*,g(r)) is a compact

space then all TA, for Ael^, will be compact operators.
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Proof. The first statement is demonstrated in [23]. As in

Section 3, let us assume that the net fy } T
eYi converges in

the weak*-topology to y*. Since

<f fd(T.x,y*-y*>f

for xeX, it follows that

S T , A ( V y * ) ^ U T ( y 3 T ) II-

This shows that (Ytf§(T)) is compact whenever T is a compact

operator. For the converse utilize the inequality

|<f-XA(x) ,T*(yJ-y*) | 1 sr^A(y*-y*) .

Consequently if (y*} T in Yt converges in the S(T) topology

to y* then T must be compact for each Ae£ . This completes

the proof.

In [23], it is shown that T1(f) = j fdr and that

We should also note that the semi-norms s will yield

information for both T and Tf in much the same way as we have

already done in Section 3. The statements and their proofs would

be similar to the corresponding ones in Section 3. Consequently

they are omitted here.

Some of the basic results dealing with the scalar case of

function spaces L may be transferred to the vector valued
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spaces L • X. This not only pertains to our results here but

also to many results as found in [23]. Thus the importance of

tensor products in function spaces L is largely due to this.

To this end, we need to consider results pertinent to greatest

and least cross-norms for L and X (see [23]).
o

For the Banach spaces X and Y we will consider the bi-

linear forms x^y defined on X'xYr (XT and YT are the alge

braic duals of X and Y respectively) by

y!) = xf (x)*y» (y) .

If t with representation

n
t = £ x.«y.eX®Y

X 1

is a formal tensor product, then the greatest cross norm g is

defined by

n
g(t) = inf{ £ Hx.||-|ly.|| : all representations of t}.

i=l X X

By X® Y is meant the completion, in this norm, of the tensor

product XOT, In a similar manner one defines the least cross

norm I by

n
= sup{ | Sx*(x.).y»(y,)| : x*eX* y*eY*}

i = 1 l l 1 1

and X® Y to be the completion, in this norm, of X®Y.

Our interest will be in the completion L ® X where we will
p L

assume that M = L . This last assumption can occur under some

very general conditions. For example in the case of Orlicz spaces,

one may consider the so-called A2-Condition (see [22]).
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For a function f mapping Q into the Banach space X

we may define the norm w as
P

w (f) = supfp(x*©f) : x*eX*}.
21

Such a function f is said to be weakly measurable if the scalar

function x*°f is measurable for each x*eX*. By W v is
Pi X

meant the closed linear subspace

W = cl spff : Q -> X : f is weakly measurable, w (f) < 00}
p 9X p

From the definition it is clear, for example, that if f.GL
n ^

and x . e X , t h e n f o r t h e c a s e of L • X = M • X one h a s w ( £ f . » x . )1 p o p ^=1 ! 1

w e l l - d e f i n e d . Al so f o r Ae £ we may d e f i n e w t o b e
o

w! (A) = sup{w ( £ x E
# x • E€fi c 2AJ a a partition,

EGI;O n T^, p(SxE'x) 1 1},

where X^ = {AGL : u(A) < 00 } .

The function norm p is said to be countably additive if

w (C2j) < 00 and if for every sequence (A } >T c £, monotonicallyo n ne N

decreasing to 0, the sequence fw (A )} converges to zero.

We are interested in defining a topology on X.. such that

if X^ is compact in this topology then p countable additivity

will be equivalent to the statement that some elements of L 3>, X

converge uniformly in the 4,-norm to zero. This, in turn, will be

equivalent to a family of compact operators of L(L*,X) converging

uniformly to zero.
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In particular let 6 denote a finite family of sets

Ee S 0 Tjp, E a A, which are pairwise disjoint. Let t in the

formal tensor product L ̂ X be defined as
P

t = S{xA^x : AeeQ, xeX}.

In particular, if this finite sum is taken over sets AeS then
B

we will designate t as t_. We will also consider

x) 1 1}.

t t 26
If ^ = SXT\X f o r t a s above then x is strongly (and

therefore weakly) measurable and

For each such t, the linear operator T of L into X may
o

be defined as follows. Let us recall (as mentioned in Theorem 2.1)

that for each cpeL* there is a unique v eU , (a) such that
0 <p p ^

cp(f) = f fdy , f€L .

Thus for (£€L* we define T from L* into X to be
o o

Y

Thus it is easy to see that

(A) l(t) = llT̂ l = sup{ |<Tt(Yr/5),x*>| : p« (Y )

*} = w
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We may now define the semi-norm o for AeL on X* by

°A(**) = sup(o(SxB'X*(x)) : Be^A, p(^XB'X) £ 1}.

By $ (A) and & we mean the topologies generated (respectively)

by o for fixed Ae £ and by o for all AG £ .

It is clear from the definitions that

(B) sup{OA(x*) : X*GX*] = supfw^Xg-x) : BeeA} = w' (A) .

THEOREM 6.1. If (X*,<&(0)) is compact then the following
— ^

statements are equivalent,

!• The function norm p _is_ countably additive;

2* For every sequence § c £ monotonically decreasing to 0,

the sequence (̂ (t̂ ) : AeS} converges to zero;

3. For every sequence § c S monotonically decreasing to 0,

the sequence [sup /. (T ) : AeS] converges to zero?

4. For every sequence S c S monotonically decreasing to 0,
the sequence [o (x*) : AeS} converges to zero for eachA

Proof, Using an argument similar to that of Theorem 3.3 and

the observation (B) above we may show that (1) and (4) are equiva-

lent. We also bring forth the fact that l{t ) = ||T A|| and that

w (X ) = ^(ta) (from (A)) to prove the rest of the theorem. That

is, the countable additivity of p is translated into the sequence

[w (A) = l{t ) : AGS} converging to zero for % c S as described
P A

in (2), (3) or (4). This completes the proof.
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The above theorem has an interesting interpretation. if_

X* is compact in the topology 6(Q) then the countable additiv-

ity of p is_ equivalent to a_ family of compact operators in

L(L*,X) converging to zero. Surely the operators T defined

above are compact. Again we omit the results that may be ob-

tained analogous to those in Section 3 by considering the topolo-

gies & and &(A).

For the purposes of our discussion below let h designate

the norm topology and to* the weak*-topology. We also designate

by G t (K) that subset of G , = G , (L(X,Y),/i) consisting of

all TeG T whose corresponding operator T from L into

L(X,Y) is compact. For the sake of simplicity we will assume

that \x is positive and finite on Q and that p still has

the weak leveling property (and L = M ) .
o p

For Y^G I (K) and for ji(A) > 0, Ae £ we define the semi-
norm k _ on Y* by

Y A 1

T
A(y*) = supf|J fd<y*,Y-x>| : xeX , feM^) } .

By K(A5X) we mean the topology on Yn generated by such k

where A is fixed in L and y varies through G . (K) • The
o o

space Y is called an Q-space if for some fixed AeS with

jLt(A) > 0 and for all X, (Y^,X(A,X)) is a compact space.

THEOREM 6. 2. If (Y*,K(A,X)) is a Hausdorff space then the
j. — — • '

Vx-topology on Y^ i^ finer than the K (A, X) - topology which in

turn is finer than the to*-topology. Moreover there are Banach

spaces X1 and Xo such that to* = K(A,XJ and n = M(A,XO) .
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In particular if Y is_ an 0- space, then Y must be finite

dimensional.

Proof. Using a proof similar to that found in Proposition 3.7,

it is clear that if (Y*,K(A,X)) is Hausdorff then to* c K(A,X) .

Clearly if Y is an Or space then to* = X(A,X) . To see that

K(A,X) is a subfamily of ft follows from

<Lsup{||JJ

where T is the compact operator corresponding to red , (K) .

If Y is not an Q-space, we may find an X.. such that

M(A,X1) = UD̂ . Let X1 be the scalar field. If the net
y

{y^} T c: Yn converges in the to*-topology to Y* then for the
OC OLG J. 1

compact operator T corresponding to reQ ,(K) we have

|T*(y*-y*)||.

Thus {y*j must converge to y* also in the X(A,X,)-topology.
OC CLfc 1 1

We now exhibit an X9 for which M(A,X9) = ft. In fact let

X2 = Y and define y from 2L into L(X,Y) by

Y(A) = |U(A) I

where I is the identity operator of L(X,Y) . It is clear that

y is finitely additive and attains the value zero on \x zero sets
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Also yeG T (K). Obviously the collection

jililJ_ = p (E) : Ee£ 9 P-, (E) <̂_ 1} is conditionally compact since
E

\X is bounded on Z . This implies that

[ 2 O 2 ^ "^ is c o n d i t i o n a l lY compact. In

[23], it is shown that the latter is a sufficient condition to

demonstrate that ŷ G f (
K)• Thus

I fXA<Ky*,fl-x>| .

Since o has the weak leveling property,

= p(xA)o' (XA). Let f = ^ A - ) .

Consequently K(A,X) = h. Finally if Y is an £>-space then

U)* = H and Y must be finite-dimensional. This completes our

proof.

7. Concluding Remarks

We would propose that other classes of operators be considered

in this topological setting. For example, the weakly compact

operators, nuclear operators or others as mentioned in [9] may be

interpreted appropriately. It would be interesting to see if all

operators can be so interpreted, even the non-linear ones. On the

other hand, one may want to consider appropriate conditions (for

example, paracompactness) on the topologies herein defined and to

determine the significance of the operators obtained.

In another direction, one may want to consider more general

structures than the normed linear space structure we have studied.
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For example, the generalization obtained by replacing the norm

with local convexity seems to be fruitful. Here one would need

to replace the "variations" used to define our topologies by an

appropriate concept. Pertinent to this appears to be the paper [12].

Since semi-norms define pseudometrics which in turn define

uniformities, it is clear that uniform space theory is appropriate

to inter-relate the theories of operators, topology, and measure,

as we have begun to show. How the latter two interact may be seen

in [31] and other recent papers by Frolik. Some other papers as-

sisting in this development would be [29] and [30].

As we have mentioned in the Introduction one would also want

to consider the above questions for the more general classes of

normed vector lattices or ordered topological linear spaces.

They both include the normed KOthe spaces and Banach function

spaces.

In summary, we have been considering linear operators T in

(1) L(L ,X), in (2) L(X,L ), in (3) L(M -X,Y) and in

(4) L(c/t/Qo B ,X) . Appropriate topologies, in each case, have been

defined to relate conditions on T to conditions on the topologies.

In the above cases, a statement about compactness of T can

readily be interpreted using the underlying representative measure T.

In particular for (1), if p(xJ < °° then T is compact if and

only if (X*,P(T)) is a compact space (see 3.9). For (2), we assume

p has the weak leveling property. if X is reflexive and if T

is compact then (X^,R(T)) must be a compact space. Conversely if

(Xj,ft(r)) is a compact space then T must be a compact operator
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(see 5.4). For (3), we need to assume that norm ||T||̂  of T

is finite. Then T compact implies that (Yt,%(T)) is a compact

space which in turn implies that the operators T , for Ae£ ,
i\ o

are compact operators (see 6.1). For (1) a similar statement

was made in (3.9) when p(xo)
 w a s n o t necessarily finite. In

[14] it is shown that if TeL(C (fi^X) ,Y) then T is a compact

operator if and only if (Y*,Q(r)) is a compact space where £L

is a compact Stone space. However, the interest here lies in

Te(ct B ,X). As such T is compact if and only if X* is

weak*-sequentially compact relative to T (see 4.2). Moreover

we have related compactness (respectively, weak compactness) of

T to the conditional compactness (respectively, weak compactness)

of the appropriate subset X of X. Also here it will turn out

that if T is compact then its corresponding set function r is

countably additive.

A concept that proved significant throughout the discussions

was for a set function Y^U f (fi) to be p1 countably additive.

The concept arises naturally as a conclusion to conditions which

are practical for scalar valued set functions as shown in the work

[21] of Orlicz. This continuity type of condition on y has an

interesting interpretation under the assumption that (X*,P(Y)) is
p

compact. Precisely it is that the set functions m^ .(A) = i fd(x*v)
f' X JA

satisfy a uniform continuity condition. If ft is a locally com-

pact Hausdorff space, then the compactness of P(y) may be relaxed

to give an interesting characterization of p! countable additivity

more in terms of the topology (in particular its open Baire sets)
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on £i (see 3.11). The countable additivity of the function norm

ps as we have defined it in terms of the continuity of the norm

w! also has an interesting interpretation for operators. As in

6.1 if it is assumed that (X*, &(£})) is compact then this may be

characterized as the family of operators T eL(L*,X) for teL ®X

being compact.

Ihe assumption that Q be locally compact is rather interest-

ing, in fact for any Banach function space L (0,2,/i) , one may

find a measure space (OT,&*Y) such that L is isometric and

lattice isomorphic to L (O',S*Y) where B is the a-field generated

by the compact subsets of the locally compact space Q! and where

Y is finite on compact sets. When (£2, Z,fi) is a-finite then £V

may be taken to be a compact (extremally disconnected) Hausdorff

space and y develops as a regular Borel measure on the a-field

B generated by the clopen subsets of ii1 (see [23]). Reminiscent

of the maximum modulus principle in complex analysis, the boundary

of the collection u t (JJL) of set functions was defined. Compactness

of (X* ,P ( y9 A) ) for all AeS puts y in the boundary, and compact-

ness of (X*,P(U)) makes U T (jx) coincident with its boundary. An

interesting interpretation is that if y is in the boundary then

for each AeZ , the semi-norm p is p!-norm attainable. Under

an appropriate compact topology on X*, sequences [A } ^e

monotonically decreasing to 0 give rise to sequences fx*} 1^^^

such that x* is the pT-attained point for A (see 3.3) with an

appropriate convergence statement holding*,
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The weak topologies defined herein were in general not

Hausdorff. However if the U'-hull X t, for Uf c U t (/i) , has

its norm closure as X itself, then (X*,ip) must be Hausdorff.

Consequently if (X*,P) is Hausdorff, that is if there are enough

semi-norms to distinguish points on X*, then (X*,P) will be com-

pact if and only if P coincides with the weak* topology on X*

(see 3.7). However the compactness of T€L(L ,X) is related to

the compactness of the smaller P(T) weak topology. It is in-

teresting to note that if (x£,P) is Hausdorff then (X*,P(y)) being

Hausdorff is equivalent to a type of absolute continuity for appro-

priate set functions (see 3.8). if (£},£,|u) is a finite measure

space and if p is the <£̂ (fi) norm then (X*,P) is not Hausdorff,

However if ju is purely atomic, (3.7) shows that it will be Haus-

dorff. For the other topologies, herein defined, analogous situ-

ations occured. These give additional information interrelating

the operators, the underlying measures and the topologies.
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Footnotes

1. For a very coherent compendium of the theory of Banach function
spaces,, answering most of the relevant questions as known at
the time, the reader is referred to the series of papers by
W. A. J. Luxemburg and A. C. ^aanen in [17].

2. The a-finite case is sufficiently complicated. More generally,
the study of this case is an essential prerequisite for the
non-a-finite case (see [17]). Many of the results will follow
under even weaker conditions (see [18]).

3. For any real number p, 1 <^ p < oo we may define a function

~~ JL
norm o for feM by p (f) = (jfpdji)p. If p = 1 we have

P P
simply the integral of f over Q. A function norm p may
also be defined as follows. For any a, 0 £ a < cx> , set
A = fx€O : f (x) > a}. If fi(A ) > 0 for all a define
CX GO

p (f) = +oo ; if, (i(A ) = 0 for some value of a, define

oOQ(f) = aQ where aQ = inffa : ^(
A
a) = °}«

 1^ie number P (f)

is called the essential upper bound of f (for p (f) < oo

there is f - | M , almost equal to f, such that f.. is bounded

on X with its least upper bound equal to p (f)). The tri-

angle inequality for these norms p , 1 <^ p <^ oo , follows from
p — —.

the Holder inequality discussed in the footnote below. Later on
in Section 4 we will have occasion to make use of the Banach
function space L which designates the space L for o - p

4. These are functions f = f, + if2 where f- and f2 are

functions whose values lie in the extended real number system.
Besides the usual rules for operating with +oo and -oo it
is understood that (+po) + (Too) = (+po) - (+po) = 0 and
0(+po) ~ 0. Associativity of addition no longer holds unless
we are in the non-negative extended real numbers. However the
presence of finite valued functions will guarantee the associ-
ativity in our function space.
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5. Actually one should consider the collection M* =
(feM : p(f) < 00} and its decomposition into equivalence
classes [f] modulo the collection of /i-null functions. Then
each class [f] contains a finite-valued function on Q,
namely, f•\n where E = [x : |f(x)| =00}, guaranteeing

associativity of addition (see previous footnote). If f = g
then p(f) = P (g) and one may define p([f]) = p(f). Using f
for [f] one may now return to the above definition of L .

Actually L is a linear subspace of the linear space of all
o

(i-almost everywhere finite functions in M which in itself is
not a. linear space (recall that addition is not associative
in M) .

6. A few remarks are pertinent here regarding the definition.
It follows immediately that if f is ji-measurable and if
geL , with |f| £ |g| on Q, then p(f) <L p (g) < 00 and

feL . If feL and if E = fx : |f(x) I =00} then the
P P

characteristic function x satisfies p (n\ ) <_ p(f) < 00
for all neN. Consequently p (y_) = 0 which by (v) of the

axioms for p implies f = 0 almost everywhere, that is,
JLX(E) = 0 or more succintly f is finite almost everywhere
on Cl. In another vein, the axioms do not exclude the exis-
tence of a positive measure set Ae £ such that not only
p(XA)

 = °° b u t also o(xB) = °°
 f o r aH B c: A and B of

positive measure. Such sets A are called, in the literature,
unfriendly sets. Using the above argument, it follows that if
A is an unfriendly set then any feL is identically zero

on A. Consequently to investigate L -spaces, it is worthwhile

to remove the unfriendly sets A. Throughout we will assume
that this has been done. It is shown in [17] that there is a
largest unfriendly set A and once removed the remaining set

max
again designated by fi contains no unfriendly sets and ju(O) is
still positive. (See [19] for additional remarks). It seems more
appropriate to call such unfriendly sets A above purely infinite.

7. A sufficient condition to insure completeness is that the
function norm p satisfy the weak Fatou property, that is,

whenever the sequence (f } and feM*, [f ) monotonically

increasing and pointwise convergent to f, sup p(f ) < 00 im-

plies that p(f) < 00. This is weaker than the more recognizable

(sequential) Fatou property (all £^-spaces, 0 <^ p < 00, satisfy
it and it may be used to prove completeness of these spaces);

(continued on next page)
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that is, where the pointwise convergence of the above sequence
implies that the sequence (p(f )} is monotonically increasing

and convergent to p(f). Completeness of L is equivalent to

the norm p having the Riesz-Fischer property, that is, for any

sequence (fn}n€NGL 0 M+, S°(f
n) < °° implies £f neL (or

p(Jf ) < oo) . Some examples from [27] are appropriate. Let

jLt be discrete measure on Q = N and for any feM , let
o(yi) = sup f(n) + a lim sup f(n), for a a positive constant.
Then the function norm p has the weak Fatou property but not
the Fatou property. If o is adjusted in this example so that

for any feM , o(f) = sup f(n) if [f(n)} converges to 0, and
p(f) = +oo otherwise, then p is a function norm having the
Riesz-Fischer property but not the weak Fatou property.

8. We have already mentioned the early works for the development
of the general theory in [10] and [16]. However definite con-
nections exist with the theory of Kothe spaces as evidenced in
the work of Dieudonne in [6]. Besides the later work of Luxem-
burg and Zaanen already cited, also the work of J. J, Schaffer
in [25] and [26] should be noted. The book [20] by Massera and
Schaffer has a summary of these results in a more general set-
ting.

9. That p1 is actually a norm and not a semi-norm follows from
the fact that unfriendly sets have been removed (see previous
footnote on unfriendly sets)•

10. Using our above stated conventions for infinite arithmetic it

follows that l|fg|dji £ o(f)p! (g) for any f and geM, in

particular if feL and geL t then a Holder inequality (as

in the case L = £p, 1 <L P <L oo , and L f = £
q, — + — = 1)

holds as

1 JI fg|dfi £ p(f)p f (g) < oo.

Moreover if o1 (g) < oo then o! (g) = sup{|Jfgdfi| : p(f) £ ! } •

From this i t follows that if G is defined for a l l feL by

G ( f) = I fgdjj

then G is a bounded linear functional on L and \\G\\ = pf (g)

(continued on next page)
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Consequently L , is isometrically and algebraically embedded

in the first Banach dual space L* of L , that is, L . is
y P P P'

a closed linear subspace of L . Thus the elements GcL
P P

belonging to L f are characterized by the existence of a

function gc L , which is identified with G and such that
r °

G(f) = J fgdji for all fcL . In [18], a characterization of
these G is given without requiring knowledge in advance that
G is represented by a function g. In particular GeL f if

and only if for every sequence (f I __GL converging pointwise
n nG JN p

to zero it follows that lG(f )} converges to zero.
In the recent work [23], a representation of (L )* is

P
given. For this purpose a modification of the norm of for
set functions is made. In brief let A f (ju) = A t (0, S 3 \i)

the class of all finitely additive scalar-valued functions
Y on £ which vanish on /Lt-null sets and for which p! (y) < 00

where now

0T (Y) = sup f I J fdy| : p(f) <1 1, fa*?}.
Ox

The integrals given relative to finitely additive set functions
are in the sense of [9] (see Chapter III). This definition of
p1 does give a norm for which A f (JU) is a normed linear space.

If, however, dy = gdfi then o! (y) = OT (g) (see [18]) then the

itwo definitions agree. Let B , (/i) represent the set of purely

finitely additive scalar-valued set functions y, vanishing on
ji-null sets and having their support in the support of some

feL\Mp such that y has finite variation. Then as in [23]

le t G T (jLt) = A , (u)©B . (jLt) and (L ) * is isometrically- isomorphic
p o p p

to G , (jLt) .

11. The theorem in [23] gives a decomposition of T into components
T and T . The T component is the restriction of T to the

space M° and o} (T-,) = ||T!M|. The component T2 is simply

T - T± and !|T2|| (« = ||T̂ ||.
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12. It is worthwhile to remark here that if U is a finitely ad
ditive set function in U T [/i] and if Ae S then we may

write

This follows from the definition of o! and from the fact
that x*Yo is purely finitely additive with support contained

in the support of a function in L \ M ° . Thus for Ae£ > we

have Ix*y?I = 0.

13. The fact that p! is countably additive should yield some
information on the T.. component (as discussed above) of T.

In fact in [11] , it is pointed out that if y ^s positive
and purely finitely additive measure then there is a sequence
fB I N of sets in "C such that for all countably additive

measures h the sequence fh(B )} converges to zero and

Y(Bn) = Y ( « •

14. This in turn leads to information about the component T-. .

15. For our purposes let us remark that in [11], it was shown that
if o is weakly leveling then u(E) < 00 implies P(XTJ < 00.

Since x* y is purely finitely additive, if /i(Q) < 00 and if

p is weakly leveling then y being p!-countably additive im-
plies that y = 0.

16. The semi-variation 7 of a vector-valued set function y from
XL into L(X,Y) is defined as follows. It is assumed that

Y (0) = Oo For every set A c Q, let

7(A) = supf I X>/ (A.) x. I : finite partitions (A.} and) x .
finite collections

Note that the semi-variation 7 °f Y depends essentially on

the spaces X and Y and as such should be emphasized as y
X,Y'
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17. If y is a set function from 2 into X, the (total) vari-
ation y of y is defined (it is assumed that y (0) = 0)
for A c Q as

Y (A) = S U P ! L | Y ( A . ) I : finite partitions (A.} of A},
l l

It is shown in [7], page 54, that the spaces X and Y may-

be so chosen so that the semi-variation y* °f Y (relative

to X and Y) is the variation y of y.

18. Since r * is scalar-valued, its variation coincides with
n

its semi-variation (see [7]).

19. Thus partitions in £! and in £ are identical (see [11]).

20. It is pointed out in [23] that this definition is necessary to
restate a version of the representation theorem for T G L ( L , X ) ,

that is L(L , X) ~ U T (fi) , when X = L(Z,Y) . This is useful in

characterizing some tensor product spaces L %> X as discussed
later in the reference. ° ^

21. This norm is defined by Pettis in the paper, MOn integration
in vector spaces", Trans. Amer. Math. Soc. 4_4(1938) , 277-304,
for the L -case.

P

22. A set AeZ is an atom (with respect to JLO if <u(A) > 0 and
if for every set BeZ, B c A, either ju(B) = 0 or /LX (B) = fi(A)
Then ji is atomic if there is at least one atom in E; \i is
purely atomic if Q, is a finite union of atoms.

23. in the case that r) is not positive then r\ is defined to be
purely finitely additive if its variation is.

24. That is, if [A } eZ is monotonically decreasing to 0 then

such that for all n > N ,for

|m

all e

x, (A) |

>

<

0

e

there is

for all

an

X*€

> 0
and
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25 # This is in the sense of footnote 24 except that the uniform

aspect is only over x*eX*.

26. The function f from Q into X is strongly measurable if

it is the limit in u-measure of a sequence of JU-simple func-

tions. It is weakly measurable if x*°f is measurable in

the usual scalar sense for xxeX*.


