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DICHOTOMIES FOR LINEAR DIFFERENTIAL EQUATIONS WITH DELAYS:

THE CARATH^ODORY CASE

by

Charles V. Coffman and Juan Jorge Schaffer

1. Introduction.

We consider on [0,<») an equation of the form

(1.1) u + Mu = r

in a Banach space E, and the corresponding homogeneous equation

(1.2) ti + Mu = 0;

here r is a locally integrable vector-valued function; the

"solution" u is defined on [-l,a>)̂  and M, the "memory" func-

tional, takes a continuous function u into a locally integrable

function Mu in such a way that the values of Mu on an inter-

val [a,b] depend on the values of u on [a-l,b] only. The

equations are to be satisfied "locally in L ".

The purpose of our investigation, which continues the work

in [10] (and also in [2] and [3]) is to relate properties of (1.1)

such as "admissibility" ("for every r in some given function

space there is a solution in some given function space") and cer-

tain forms of conditional stability behaviour ("dichotomies") of

the solutions of (1.2) and of its restrictions to intervals of

the form [m,oo) . The method consists, as in [10], in reducing

this problem to a similar problem about a linear difference equa-

tion in a function space; this difference equation can then be

studied by means of the theory developed in [1]. We refer to the

introduction of [10] for further comments on method and signifi-

cance, and to the work of Pecelli [7] for some related results ob-

tained under more special assumptions and by a different method.



In [10] a special instance of the "continuous case" was

considered: that is, r and Mu were assumed to be continuous,

and the equations were to hold everywhere; and (Mu)(t) depended

only on the values of u in [t-l,t]. In this paper we describe

instances of the "Caratheodory case", in which continuity is re-

placed by local integrability. The reduction of the problem to

one about difference equations is much simpler in the Caratheodory

case (contrast Theorem 8.1 with [10; Theorem 6.2]); the more

basic question of the existence, uniqueness, and growth of solu-

tions, which is almost trivial in the continuous case, becomes,

on the other hand, quite complicated under our very general as-

sumptions. We wish to avoid, in particular, any assumption on the

representability of M as, say, a Stieltjes integral. We are

thus forced to devote quite a bit of space to these questions

(Sections 5 and 7); and yet we do not feel that our present for-

mulation of the assumptions on M - summarized in Lemma 7.2 -

is definitive. In a forthcoming paper we plan to discuss in detail

the autonomous ("constant coefficient") case.

This paper is best read in conjunction with [10], although

the formal dependence on that paper consists only in the use of

some proofs. On the other hand, our present approach does depend,

especially in Section 10, on material in [1] and [9],

2 . Spaces .

Throughout this paper, E shall denote a real or complex

Banach space. The norm in E, as in all normed spaces other than

the scalar fields and the function and sequence spaces described

below, is denoted by || || . If X and Y are Banach spaces, [X->Y]

denotes the Banach space of operators (bounded linear mappings)



from X to Y, and we set 5t = [X-*X] .

In this paper, spaces of sequences occur together with spaces

of functions on certain intervals of the real line. For the former,

we adopt without elaboration the notation described in [1; Sections

2 and 3]. In particular: (0 = { 0,1, . . .} , and s -.(X) denotes the

Frechet space of all functions on oq. -i - { m,ntf-l, . .. } with values

in the Banach space X, where m e ox and notations such as 1, , (X)
~[mj

are to be understood by the obvious analogy. If f e sr ,(X) and
H.mj

mf ^ m, then f_ t1 € sr ,n(X) is the restriction of f to OJ- ,-i •
[mTJ ~[m!] LtnT]

The intervals that occur as domains of measurable functions

will be [-1,0] and [m,<») for real numbers m. We shall in general

follow the notation and terminology of [6; Chapter 2] for spaces

consisting of such functions, with some special simplifying conventions,

Spaces of functions on [-1,0] will have no label indicating

the domain. For instance, L (E) is the Banach space of (equivalence

classes modulo null sets of) Bochner integrable functions

f: [-1,0] -»E, with the norm J f ^ = I ||f(t)||dt. The space C(E) of

continuous functions f: [-1,0] -» E with the norm |f| = max ||f(t)||,

which plays a central part in our work, is abbreviated to E, and its

norm written without a subscript.

As indicated in these examples, thick hollow bars are used for

the norms of function spaces with [-1,0] as domain. This convention

permits the following arrangement: suppose that, e.g., g € 1? ,(LP(E)),

where 1 ̂  p,q ̂  oo and m € cc; then ||g|| is the element of 1? (LP)

- the argument R is omitted, as usual - given by ||g||(n) = ||g(n)||,

n e c^m] (where ||g(n)||(t) = || (g(n)) (t) || for all t e [-1,0]; the

latter norm is the norm in E) ; |g| is the element of 1? . given

p ^ [ m j
by | g | p ( n ) = | g ( n ) | p = | | | g ( n ) | | l p , n € ^ m ] ; t h u s I g | p = | | | g | | | p ;



q p
and |g| = ||g| | is the norm of g as an element of 1? , (L̂  (E)).

We recall from [6; Chapter 2] that b3 is the class of all

Banach spaces F of (equivalence classes of) measurable functions

cp: [-1,0] -» R such that

(N): F is stronger than L , i.e., F is algebraically con-

tained in L and there exists a number OL, > 0 such that

\<p\l % Oplcplj, for all cp e F;

(F) : if cp e F and 0: [-1,0] -* R is measurable and |0| ̂ jcp|,

then 0 6 F and |0| p ̂  |cp|p.

If F € b3, then F(E) denotes the Banach space of (equivalence

classes of) measurable functions f: [-1,0] -» E such that ||f|| e F,

with the norm If 1^ = |||f||lF.

In considering spaces of functions defined on intervals of the

type [m,00) , we shall use the following conventions. If m ̂  m! and

f is some function defined on [m,oo) y f shall denote its re-

striction to [mT,co). The subscript [m] is also used when the fact

that [m,oo) is the domain has to be recorded (these usages are com-

patible) . Thus Lr ,(E) denotes the space of all (equivalence classes

~LmJ

of) measurable functions f: [tn̂ oo) -> E that are Bochner integrable

on each compact interval; Kr ,(E) denotes the space of all continuous

~[m]

funct ions f: [m,oo) -> E ( c f . f l O ] ) ; and s i m i l a r l y for the space Mr , (E)

rt+1.. .1
of all functions f e L _ , (E) with |f| = sup ||f(s)||ds < oo; for
the spaces L^ n(E). 1 ̂  p ̂  »; and for the space C r , (E) of bounded

/-̂ [mj /^[mj

continuous functions f: [m^<») -> E with the supremum norm, and the

subspace CnkT 1 (E) of those that tend to 0 at infinity. The norms

of all normed spaces of this kind will be indicated, as in [6 ] , by

thick bars with the appropriate subscript; the subscript is omitted

for the supremum norm.



3. Slicing operations.

Let m ̂  0 be a given real number. For each t ̂  m we

define the linear mapping Il(t) : Lr - , (E) -» L (E) by

(3.1) (n(t)f)(s) = f(t+s), s € [-1,0], f € L [ m - 1 ]

Thus II(t) maps f into the "slice" of f between t-1 and t,

transplanted to [-1,0] for convenience. (Note that indication of

m is omitted; this will not cause any confusion.)

When m is an integer, we define tlf e sr , (L (E)) for each

f eL[m-l](E> b*

(3.2) (Trf)(n) = II(n)f, n = m,mH,... .

Thus TO Lr n(E) -» sr 1 (L (E)) is a linear bijective mapping.
•v[ m - 1 J /•*•[ m J /-̂

This mapping has obvious restrictions to linear mappings of Kr

into sr -.(E), of Cr nl(E) into 1? - (E), and of C^r -,(E) into
~[m]\v/> ^[m-l]v x ^[m] v^ 7^ ^X)[m-l]v

00

io[m]

The mapping qjr has other restrictions that are "natural" iso-

morphisms between certain normed function spaces: e.g.,

*nr* : Lp ii(E) •* I? -I (L (E)) is a congruence (linear isometry) for

<- << oo 1
1 ̂  p ̂  oo; *ocr : Mj. -I-I(E) -» lr -. (L (E)) is an isomorphism with norm

1 00

1, the norm of the inverse being 2; TET: T. , (E) -» lr 1 (L (E))

is another isomorphism, with norm 2, the norm of the inverse being 1,

We might indeed define new normed spaces of functions on [m,oo) in

this way, but we shall not do this here.

4. Memories .

In this section we shall make precise some of the assumptions

on the "memory functional" M that appears in (1.1). We express the

linearity of the functional and the fact that the scope of the memory

extends at most one unit of time into the past by the following defini-

tion.



A memory is a linear mapping M: Kr in(E) -> Lr - (E) such that
H.-1J H.OJ

(4'L) *[a-l,b]U = ° i m P l i e s X [ a , b ] ( M u ) = 0 for all u

and each interval [a,b] c [0,oo).

It is clear that a memory is uniquely determined by its restriction

to Cj.

Condition (4.1) permits, for each m ^ 0, the "cutting down" of

M to a linear mapping Mr , : Kr -,-, (E) -> Lr , (E) : indeed each
[mj ~[m-lj /̂ [mj

u e Kr , (E) can be written as u = vr .., for some v € Kr -,(E),

and we may set Mr nu = (Mv) r ,: since vJ n, = u = vr -, impliesy [m] v '[m]' [m-1] [m-1]

^ (vT-v) = 0 for each t ^ m, (4.1) implies (M(vT-v)) 1 = 0;

thus the definition does not depend on the choice of v. We have

M r n l = M; if m1 ^ m ^ 0, these "cut-down" memories satisfy

A memory is usually assumed to have some continuity or bounded-

ness properties; it is typical to assume (or imply by the assumptions

on M) that the restriction of M to Cr -,(E) is continuous (equi-

valently^ closed) as a mapping from Cr (E) to the Frechet space
~L -1J

Lr-.,(E). For our purposes, we shall usually require a uniform condition
—L 0J

of this type, namely:

(M): The restriction of the memory M to Cr -, (E) is a bounded
—L ~ J- J

linear mapping Mc: C. ^ (E) -»M-Q, (E).

Thus M H ||M II is a norm on the linear space of all memories satis-

fying (M).

In order to obtain an existence and uniqueness theorem for the

initial-value problem as well as certain bounds for the growth of

solutions, it seems necessary to impose an additional condition, ex-

pressing the "uniform local smallness" of the memory when acting on

selected functions u. For this purpose, we assume that the memory M



s a t i s f i e s (M) , and def ine , for each interval [a ,b] C [0,0

k ( M ; a , b ) = s u p { | | J ( M u ) ( s ) d s | | : a ^ K t ' ^ b , u e

( 4 . 3 )
ko(M;a,b) = sup{||J (Mu)(s)ds||:

(Observe that, on account of (4.1), the value of kQ(M;a,b) is not

altered if t = a is required in the definition.)

A (countable) set S c [0,<») is uniformly sparse if there exists

a number N such that no interval [j,j+l), j e ^ contains more than

N points of S; the least number with this property is the sparseness

sp(S); i.e., sp(S) = sup card(S f! [j,j+l)) <°°. We need two trivial

facts about uniformly sparse sets.

4.1. Lemma. jlf S, S T are uniformly sparse sets, then so is

S U S 1, and sp(S U Sf) ^ sp(S) + sp(Sf).

4.2. Lemma. Let (a ) be a strictly increasing sequence JJI

[0,°o) such that {a : n e oo } jj£ uniformly sparse, with sparseness N,

say. Then [a T] - [a ] ̂  [(n'-n)/N], where [] denotes the "greatest

integer" function.

Let § denote the class of all uniformly sparse sets S c [0,°°)

such that o ) c S . If S e g, then S = {a : n e uy] for a well-defined

strictly increasing sequence C ^ ) ^ ^ with a = 0, a^_1 - a ^ 1,

n € co. For this S, and for a memory M satisfying (M), we set

k(M;S) = sup k(M;a ,a ) k (M;S) = sup k (M;a a ) .
n€%> n n-hl 0 n^iti 0 n' n+1

From (M) and (4.3) we have k (M;S) S k(M;S) ^ ||M ||; we may therefore

define

p(M) = inf{k(M;S): S € g} pQ(M) = inf(ko(M;S): S e g}

and find

(4.4) pQ(M) ̂  p(M) ̂ -||MJ|.



4.3. Lemma. p and pn are seminorms on the linear space of
y _ _ _ _ _

all memories satisfying (M).

Proof. k(-;a,b) is a seminorm for each interval [a,b]; hence

so is k(.;S) for each S e g. By Lemma 4.1, the set g ordered

by inclusion is directed. Since k(M;a,b) increases with the in-

terval [a;b], the net S**k(.;S) of seminorms is decreasing;

therefore its limit, which is p, is itself a seminorm. The proof

for p is the same.

Remark. The values of p(M) and Pn(M) do not change if we

replace the predicate "S e gM in their definition by "S is a

uniformly sparse infinite set with 0 e S"

The condition we shall have to impose in general on the memory

M, in addition to (M), is PQ(M) < 1.

There are several conditions on M that ensure that on(M) = 0

or even p(M) = 0; it follows from Lemma 4.3 that the condition

p (M) < 1 is unaffected if terms satisfying such sufficient con-

ditions are added to M. We shall discuss two of these conditions

now; one includes a uniform version of the assumptions usually made

in the literature to ensure existence and uniqueness of solutions.

A third condition of this kind will be presented in Section 7.

We first consider memories that have a "gap" in their recol-

lection of the immediate past. Specifically, a memory M is said

to be uniformly delayed if there exists 6, 0 < 6 =* 1, such that

(4.5) x{_i t_6]
u = ° implies X[o t]

 (Mu) = ° f ° r a11

u 6 Kf -,-,(E) and each t e (0,o>) .

(This could be combined with (4.1) into: Xr K RI(U) = ^ implies
[a-i,b-oj

)(r , n (Mu) = 0.) It is clear - and well known - that an equation

(1.1) with a uniformly delayed memory can be solved by step-by-step



integration; here we wish to include this case in our general treatment,

4.4. Lemma. _If M _i£ £ uniformly delayed memory satisfying (M) ,

then pQ(M) = 0.

Proof. With 6 as in (4.5), let h be a positive integer so

great that h6 = 1. For each n e oo, Xr i /hlu = ^ then implies
[ -1, n/QJ

c n u = 0, which in turn implies, by (4.5) ,

f ||(Mu)(s)||ds = 0. Thus k (M;n/h, (n+l)/h) = 0. But S =
*>n/h u

= fn/h: n € co} € §, and therefore PO(M) = ^O(M;S) = 0.

A memory M is said to be uniformly narrow if there ex i s t s

cp € M ro l , cp ^ 0, such that

(4.6) ||Mu|| S |u|cp for a l l u € C [ _ 1 ] ( E ) .

4.5 . Lemma. j[f M _i£ a uniformly narrow memory, i t s a t i s f i e s

(M) and P(M) = p (M) = 0.
u

Proof. With cp as in the definition, (M) is obviously satis-

fied, with ||M || ̂ IcplM • Let the positive integer h be given;

there exists a strictly increasing sequence (a ) such that

a. = n for each n e &, and cp(s)ds ̂  |cplM/h, n e co. Then

(4.6) and (4.3) imply that k(M;an,arU_1) ̂  |q>| /h, n e co. Now

S h = {a : n € co } e S (with sp(S,) = h)^ and therefore P0(M) ̂

S p(M) ̂  k(M;S.) ̂  |cplM/h. Since h was arbitrarily great, we con-

elude that pQ(M) = p(M) = 0.

Remark ̂ . The condition of uniform narrowness includes those

usually imposed in the literature for the "Caratheodory case" (e.g.,

[4; p.30]), except that we assume the majorant cp in (4.6) to be in

Mrrn instead of merely in Lrrv1 - hence the qualifier "uniform".~[ u J ~[ o J

We do not discuss here to what extent our definition provides -

up to this uniformity - a genuine generalization of those conditions.

Remark 2. If M € Mr o l([£-*]) and M is defined by (Mu)(t) =
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= M(t)II(t)u, t e [0,oo), u e Kr n l(E), then M is obviously a

uniformly narrow memory, with cp - ||M|| . It might be thought that

most uniformly narrow memories are of this form, but this is not

so. For instance, the condition that M be measurable with respect

to the norm topology of [E-*E], and hence almost-separable-valued

[5; Theorem 3.5.3], excludes even such simple uniformly narrow

memories as the M, given by (Mu)(t) = u(t-A(t)), where A is

a continuously varying delay.

There is one special case of the kind of uniformly narrow

memory described in Remark 2 that should be recorded separately.

4.6. Lemma. If L e M. (E), the mapping M^ K (E) -> L [ 0

defined by

(4.7) ( M ^ C t ) = L(t)u(t) t e [0,a>)

is a. uniformly narrow memory, so that Pn(Mj) = p(M^ ) = 0.

Proof. HMJ^UII % |U|||L|| for all u e (̂  (E) .

5 . Solutions.

We say that a function f e Kr ,(E) is a primitive (function)

rt
if there exists g e Lr n (E) such that f(t) - f(m) = g(s)ds for

~LmJ Jm

all t e [m,oo) ; then g is unique, is denoted by I, and is called

the derivative of f.

Assume that we are given a memory M and, in addition, a function

r G L r_,(E). A solution of the "differential equation with delay"

(5.1) u + Mu = r

is a function u e Kf ^(E) whose restriction uf , to [0,<») is

a primitive whose derivative u
rnl satisfies u

rn-i + Mu = r in

Lj. , (E) . More generally, for each m > 0, a solution of

(5.1)r i ur n + Mr nu = rr n

[m] [m] [m] [m]
is a function u e £r i](E) whose restriction Uri to [m,oo) is
a primitive whose derivative ur n satisfies (5.1)r n in Lr ,(E).

LmJ LmJ M m J
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These definitions of course also apply to the homogeneous equations

(5.2) u + Mu = 0

(5.2)r , ur , + Mr ,u = 0.
V [m] [m] [m]

As usual, it is preferable to deal with integral equations

equivalent to these differential equations.
5.1. Lemma. Let the memory M and r e Lr ,(E) be given. A

~LUJ —

function u e Kr .. , (E) is a solution of (5.1)r , if and only if
~[m-lj LmJ

it satisfies

(5.3) u(t) = u(m) - f ((Mr ,u)(s) - r(s))ds
*Jm LmJ

for all t ^ m. J^ m! ^ m ^ 0 and u j^ £ solution of (5 .1) r , ,

then uf T . is a solution of (5.1)r f,.

Proof. Definition of "solution" and (4.2).

Our next major aim is an existence-and-uniqueness theorem for

solutions of (5.1)r -, with estimates on their growth.

5.2. Lemma. Let the memory M satisfy (M) . Let the interval

[a,b] c [O,o°) _be given and satisfy b-a ^ 1 and k (M;a,b ) < 1.

For given v e E. r e Lr , (E) there exists u e Kr .. -, (E) such that
~ —̂L ̂J /^[a-lj

(5.4) n(a)u = v

(5.5) u(t) = u(a) - J ((M[a]u)(s) - r(s))ds, a < t < b.

The restriction of u _to [a-l,b] _is uniquely determined b^ these

properties; and u satisfies

(5.6) ||u(t)|| ^ (1 + (l^r^Mgjhlvl + (l-kQ)"

a-1 £ t £ b,

where kQ = kQ(M;a,b) .

Proof. Let A be the affine subspace of Cr n ( E ) consisting

of those functions y that satisfy II(a)y = v and are constant on

[b,co) . Consider the affine mapping F: A -> A defined by

y(t) = v(t-a) a-1 ^ t ^ a

(5.7) (Fy)(t) = << ^ i n f b t}
^(a) - J ((M[a]y)(s) - r(s))ds a ^ t.



12

T h i s mapping i s w e l l d e f i n e d . I t i s c o n t r a c t i v e : i n d e e d , y , y ' e

i m p l i e s Xr i * i ( ? ' " ? ) " ° a n d h e n c e > b ? < 5 - 7 >> < 4 - 1 ) * < A - 2 ) >i a i a j

(5.8)
O

in{b,t>
((M[a](y'-y))(s)ds||

and k < 1 by assumption. Therefore F has a unique fixed point,

say uQ.

Condition (4.1) implies that u € Kr n ( E ) satisfies (5.4),

(5.5) if and only if u coincides on [a-l,b] with a fixed point

of F; i.e., precisely with u ; this establishes the existence of

u satisfying (5.4), (5.5) and the uniqueness of its restriction to

Define w e A by II(a)w = v and w(t) = w(a) = v ( 0 ) , t > a.

Since b-a _» 1, (5 .7) implies

|Fw - w | S [ || (Mr 1 w ) ( s ) | | d s + [ | | r ( s ) | | d s _> ||M | | | w | + j | | r ( s ) | | d s .
J a LaJ J a ~ J a

Since u = Fu i t follows from this estimate and (5.8) that

||r(s) ds;

finally, since |w| = |v|, we conclude that
- 1 .. .. I * . . ii

lun| _? |w| + |u - w| < |vj + (1-k )
 x( M |v| + ||r(s)||ds).

Since u coincides with u on [a-l,b], (5.6) holds.

5.3. Lemma. Let the memory M satisfy (M) and p^(M) < 1. Then
____——_—_ —_— ——— Q

there exist positive numbers a, C, C1 with the following properties.

For given m and t , t_ «_? m _? 0, and given v e E and r e L. - (E),

there exists u e L , (E) satisfying II(m)u = v and (5.3) for all

t, m I* t _i t ; the restriction of u Jto [m-l,t ] _L£ uniquely deter-

mined by these properties; and

||u(t )|| _> Ce v u y|vl + C e v u /||r(s)||ds.

Proof. 1. Since Pn(M) < 1 there exists a uniformly sparse set

S c [0 ,») including the integers and such that k = k (M;S) < 1.
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Set N = sp (S ) . We claim that the conclusion holds with

9N4-? - 1 2N4-1
( 5 . 9 ) a = N logK, C = KZ , C = ( l - k Q ) r W , where

K - i + (i-k )-1||MC||.

We know that S is the range of a strictly increasing sequence

(a ) with aA = 0, lim a = oo. Let now m and t^ be given,v n'neco 0 > n^oo n 0 ° >

with t > m ̂  0 (the conclusion i s t r i v i a l for t = m); define the

integers n^ > 0, h > 0 by a ^ m < a M , a i U 1 < t . ^ ae 0 ' n 0 n O f l ngfh-1 0 n

Set b^ = m, b = a , for n = l,...,h-l, and b, = t^. Then
0 ' n n(jt"n n 0

0 < b n - b n_ 1 ̂  1 and k()(M;bn_1,bn) ^ ko(M;S) - k Q < 1, n-l,...,h.

2. Let v e E and r e Lr/-,(E) be given. We claim that there

is a sequence (u , ...,uh> in Kj^ ̂  (E) satisfying

(5.10) n(m)un = v

(5.12) u (t) = u (m) - ̂ ((M u )(s) - r(s))ds m ̂  t ̂  b
n n j m [mj n n

for each n = 0 , . . . , h , and that the r e s t r i c t i o n of each u to

[m-l,b ] i s uniquely determined by these condi t ions .

For n = 0, the conditions merely require II(m)u = v , u

being otherwise arbi trary . Assume that 0 < j ^ h and that

U 0 ' # " ' U ' - l s a t i s f y ( 5 - 1 0 ) ; ( 5 . H ) , (5.12) for n = O , . . . , j - l ,

and that these condit ions determine the r e s t r i c t i o n of u. - to

[m-l,b. ] uniquely. Then u. e Kr -.-.(E) satisfies (5.10), (5.11),
j -1 j ~[ m-1 j

(5.12) with n = j if and only if

(5.14) Uj(t) = UjCb^j^) - J ((M[m]Uj)(s) - r(s))ds b ^ t ̂  b ;

by (4.2), this will be the case if and only if (5.13) holds and

u'
j t b j - l"

u'(t) = u'

1 J r*j>[ D .2 _I " 1

b j -

-. (E) satisfies

itoii*i-ii<' i ) t">
- r(s))ds

W

b > 1 "

liliiT

J t < b .

USMIT

MK mnm
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Now Lemma 5.2 shows that such a u1 exists and that its restriction

to [b. --l,b.] is uniquely determined; it follows that u. satis-

fying (5.10), (5.11), (5.12) for n = j exists (define it to coincide

with u. on [m-l,b. ] and with u1 on [b. -l,b.]), and that

its restriction to [m-l,b.] is uniquely determined by these conditions.

The existence and claimed properties of the sequence (u
nj»*->

uu) have

thus been established by induction on j.

Now u = u, satisfies II(m)u = v and (5.3) for m ^ t ^ b, = t

(by (5.10), (5.12)); conversely, if u e Kr i n(E) satisfies
r-^ m— 1J

II(m)u = v and (5.3) for m ^ t ^ t , the constant sequence defined

by un = u, n = 0,...,h, satisfies (5.10), (5.11), (5.12) for each n;

therefore the restriction of u = u, to [m-l,t ] = [m-l,b. ] is

uniquely determined. We remark that up to this point the uniform

sparseness of S has not been used.
3. Let u e Kr n 1(E) satisfy II(m)u = v and (5.3) for

H.m-1J

m ^ t ^ t , and set (a = max{||u(t)||: m - l ^ t ^ b } , n = 0,...,h, so

that [X = lv| . Using (4.2) we may now apply Lemma 5.2 to b -, b ,

and Uj., -, instead of a, b, and u, and find, with K as in (5.9),
n ~ 1 i r b n

| | u ( t ) | | = | | u r b x l ( t ) | | ^ K||n(bn x ) u r b j j + (1 -k ) " | | r ( s ) | | d s =

= KIIIO> - , ) " ! + ( 1 - k . ) " 1 ^ n | | r ( s ) | | d s , b < t ^ b , n = l , . . . , h ,
n*" x v b i n~* J. n

T h i s i m p l i e s \ i ^ Kp. . . + ( 1 - k )" n | | r ( s ) | | d s , n = l , . . . , h , a n d h e n c e
n n— 1 u j b -

(5.15) ||u(t )|| ^ \± ^ K Ivj + (1-k )" 2^ K " | |r(s) | |ds.
0 ° tvS J bn-1

From the d e f i n i t i o n of b ^ , . . . , b , and from Lemma 4 . 2 we have
0 n

h-n = (h -1 ) - n + 1 ^ N(a i U . - a , +2) + 1 ^ N( t -b +2) + 1,
n0i-n-l nCT"n On 7

n = 1, . . . , h ,

h = (h-1) + 1 ^ N(tQ-b1+2) + 2 S N(to-m+2) + 2.

Therefore (5.15) implies

r(s)||ds =
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= C e > | v | + C-

where a, C, CT are as given in (5.9).

5.4. Theorem. Let the memory M satisfy (M) and P Q W < 1

Then there exist positive numbers a, C, C1> and, for each real

m _? 0, there exist linear mappings P(m) : E -» Kr , -. (E) and
__________ _-_-______ -_—_—_—_—_ —_# r^[_ m— J. j *~""•"-"

Q(m) : L r / % 1 (E ) -> Kr n . ( E ) s u c h t h a t f o r e v e r y v e E a n d
OJ ^ m l j ^

(1) : u = P(m)v + Q(m)r jLs the unique solution of (5.1) r ,

with Il(m)u = v;

(2) : if t^ _? m, then u e Kr -, (E) satisfies Il(m)u = v

and (5.3) for m < t ̂  t , if and only if u and P(m)v + Q(m)r
______ ___— Q —_ ___ ~—

coincide on [m-l,t ];
_______________ —»«. Q

(3): for a_ll t > m,

| | ) ( t ) | | < Cea(t-m)lv|, ||(Q(m)r)(t)|| ̂  c , fV
( t- S> ||r (s) ||ds .

«m

Proof. We choose a, C, C! as in Lemma 5.3. Let m _? 0, v e E,

r e Lrrkl(E) be given. For each t ^ m there is. by Lemma 5.3. a
function u^ € Kr in (E) satisfying Il(m)u^ = v and (5.3) for

t 0 <̂ [m-lj t0

m _* t _» t ; and the restriction of u to [m-l,t ] is uniquely

determined by these conditions. It follows that if t -̂  t -? m^

then u and u coincide on [m-l,t ]. There exists^ therefore,fcl t 0 °
a function u e Kr n(E) that coincides with u on [m-l,t ]

r^m-lj ZQ O

for each t Sim; it follows that n(m)u = v and u satisfies (5.3)

for all t > m; by Lemma 5.1, u is a solution of (5.1)r ,.

Conversely, if u is a solution of (5.1)r , with TI(m)u = v,

it satisfies (5.3) for all t _? m (Lemma 5.1); by Lemma 5.3, its

restriction to [m-l,to] is uniquely determined by these assumptions

for every t _? m; it is therefore itself unique.

This unique solution u depends linearly on v and r; the

linear mappings P(m) and Q(m) such that u = P(m)v + Q(m)r is
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this solution are therefore well defined. Part (1) of the conclusion

has thus been proved, and Part (2) follows from Lemma 5.3.

From Part (2) and Lemma 5.3 we also have

||<P<m)vKK»)r)(t)|| ̂  Ce0(t-m)|vl + C • [ V ^ j|r(s)||ds
«Jm

for all t ̂  m. Since this holds for every v and every r, Part (3)

of the conclusion follows.

5.5. Corollary. Let the memory M satisfy (M) and pn(M) < 1.

If u is a solution of (5.2)r , for some m ^ 0, then

"— LmJ
|n(t)ul < Cea(t"t0)in(tn)ul for all t > t > 0,

u — y
where a, C are as jLn Theorem 5>^.

Proof. u. -, is a solution of (5.2)r4_ , (Lemma 5.1); the
[to-i] ^ol

conclusion follows by applying Theorem 5.4, Parts (1) and (3), to

this solution, and observing that C ^ 1 by (5.9).

6. The associated difference equation.

Let us assume that the memory M satisfies (M) and pft(M) < 1.

We construct a linear difference equation in E in such a way that

the values of a solution of this equation are the slices of a solution

of (5.1). For this purpose, we define the linear mappings

A(n) = - n(n)P(n-l) : E -» E

(6.1) ~ n = 1,2,...
B(n) = II(n)Q(n-l): L (E) ^ E

and observe that Theorem 5.4,(3) implies

A(n) e E, ||A(n)|| < CeQ, n = 1,2,...
(6.2) ^

lB(n)rl ^ C»eul(TD"r)(n)|1 , n = 1,2,..., r e L[0](E)

1?(E)We set A = (A(n)) e 1?-n(E) and define the linear mapping
~L lj ~

B: LJQJCE) -> ̂x](E) b^ (Br) (n) = B(n)r, n = 1,2,..., r e

With A thus defined, we consider the following difference

equations in E:

(6.3) x(n) + A(n)x(n-1) = f(n) n = 1,2,...

(6.4) x(n) + A(n)x(n-1) = 0 n = 1,2,...
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and their restrictions (6.3), , and (6-^)rm-i to n = mfl, m+2,...

for each m G co. Here f G s r i 1(E).

The fact that (6.3) and (6.4) are, in some sense, reduced forms

of (5.1) and (5.2) is expressed by the following proposition.

6.1. Lemma. Let m G co and r G Lr.,(E) be given. A function
M.UJ —

x e sr , (E) is a solution of (6.3)r . with f = Br if and only if
^mj ***> — — LmJ

x = +OJ\I for some solution u of (5.1) r -, . In particular, x is a

solution of (6.4) , jlf and only jj x = i&yi for some solution u

of (5.2) [ m ].

Proof, This is a direct consequence of Theorem 5.4,(1) and (6.1),

via a straightforward computation. The details can be found in the

proof of [10; Lemma 6.1], which could be reproduced here verbatim.

As usual, the main problem in applying difference-equation

theory via Lemma 6.1 to our equations (5.1), (5.2) is that not every

f G sril(E) is of the form f = Br. Our fundamental theorem (Theorem

8.1) states that it is still possible, however, to relate equation

(6.3) with arbitrary f to equation (5.1) with a suitable r.

The amount of information obtainable from the use of equations

(6.3) and (6.4) is considerably greater when the operators A(n) are

known to be compact. It is easy to see that this can happen only when

E is finite-dimensional; for this case we now provide a simple com-

pactness criterion.

6.2. Lemma. If E is finite-dimensional and p(M) = 0, then

each A(n) jl£ a compact operator.

Proof. Let n G tq..., he given. Since p(M) = 0, there exists,

for given e > 0, a set S G g such that k(M;S) ^ ê . Let 6 > 0

be the least distance between distinct points of the finite set

[n-l,n] (1 S; then clearly k(M;a,b) ^ e for [a,b] c [n-l,n],

b-a ^ 6.



18

For given v e E let u e Cr n(E) coincide with P(n-l)v

on [n-2,n] and be constant on either side of this interval. By

Theorem 5.4,(3) and (5.9), we have |u| ^ CeQ|vI. By Theorem 5.4,(2)

and (4.2) we have

u ( t ) = u(n-l) - | (M, i n u 9l)(s)ds = u(n-l) - f (Mu)(s)ds,
l L11"1] Ln~^J *l

n-1 ^ t ^ n.

Therefore (4.3), (6.1) and the preceding argument show that

| |(A(n)v)(s') - (A(n)v)(s)|| = || (P(n-l)v) (n+s') - (P(n-l)v) (iH-s) || =

= ||u(rH-sl) - u(n+s)|| = || f S (Mu)(s)ds|| ^ Iulk(M;rH-s,rH-s !) ^ CeQ|v|e
%i rt f - s

for all s,sT G [-1,0], 0 < sT-s ^ 6. Since e was arbitrarily small,

we conclude from this and (6.2) that the image under A(n) of the

unit ball of E is a bounded equicontinuous set of continuous func-

tions [-1,0] -» E. When E is finite-dimensional, it follows from

the Arzela-Ascoli Theorem that the closure in E of that image is

compact; hence A(n) is a compact operator.

7. More conditions on the memory.

We shall wish to investigate equation (5.1) by allowing r to

range over a suitable function space. Our methods will be applicable

if the behaviour of the memory M is adapted to the local properties

of the functions in such a space.

For a memory M, Condition (M) may be rephrased as follows: The

restriction of the composite mapping 'GP'M: Kr n 1 (E) -» sr .. (L (E)) to

Cr 1 -, (E) is a bounded linear mapping from Cr n , (E) to I™ .. (L (E)) ;

the norm of this mapping, incidentally, lies between R||MJ| and IJM ||

The condition we now envisage is a more restrictive assumption of the

same type on the slices of Mu. For each given space F e bJ5 (see

Section 2), we consider the following condition on a memory M:

: The restriction ojf iajM to Cr ^ (E) ^£ a. bounded linear
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mapping from Cr n,(E) to l",n(F(E)) . The norm of this mapping
— H.-1J H 1 ] ~

shall b£ denoted b^

Certain special cases of this condition are easier to state.

We have already noted that (My i) is equivalent to (M); and since

every space F e bJJ is stronger than L , each condition (M_)

implies (M) . In the same vein, (M-^) may be rephrased as: The

restriction of M to Cr n,(E) is a bounded linear mapping from
H.-1J

00
Cr IT(E) to Lr ,(E) . Similar rephrasings, involving other trans-~[ -1J — ^{ 0 J

lation-invariant function spaces, are of interest for F = L ,

1 < p < oô  among others, and may be supplied by the reader.

In addition to the part Condition (frL) will play in making

the memory amenable to our methods, this condition is also some-

times sufficient to ensure that Pn(M) = p(M) = 0, as we now show.

We shall say that a space F € bJJ is tame if for every e > 0

there is a positive integer h such that

r(i-l)/h
(7.1) |cp(t)|dt ^ elcpl for all i = l,...,h and all cp e F.

j-i/n £, ~

Since [-1,0] is compact, this is equivalent to assuming that for

each t e [-1,0] and e > 0 there exists an interval [a,b] such

that t e [a,b] c [-1,0] and | jcp(s)|ds ̂  e |cp| for all cp € F.

We note, in particular, that LP j^ tame for 1 < p ^ oo: indeed,

it is sufficient to choose h ^ e~p/^P" \

We shall say that a memory M is tame if it satisfies (M_)

for some tame F e b2P. As observed above, a tame memory satisfies (M) .

7.1. Lemma. If M is a tame memory, then pn(M) = p(M) = 0.

Proof. Let F € bJ5 be the tame space such that M satisfies
— — — — — frn+j

(M_) . Let e > 0 be given, and choose the positive integer h so

as to satisfy (7.1). The set S, = {n/h: n e co} is uniformly sparse

and contains the positive integers. For given n e oo, choose j € u\

so that j-1 S n/h < (n+l)/h ^ j; then (Mp) implies, for each u e Cf ^ (E) ,



20

r ||(Mu)(t)||dt = I"" w_ ||<ectrMu)(j))(s)||ds £
Jn/h J-(jh-n)/h

then p(M) ^ k(M;Sh) ^ e||nrM|| ; but e > 0 was arbitrary.

Remark _1. An important special kind of memory is, of course,

the autonomous or time-independent memory; i.e., more precisely, a

memory that commutes with left-translations. It will be shown in a

future paper that if E is isomorphic to a Hilbert space (in part-

icular finite-dimensional), an autonomous memory satisfies (M^)>

so that such a memory is always tame.

In this section we have spoken as if the memory functional M

appearing in (5.1) were to be itself subjected to Condition (Mr,) . In

actual fact, however, it is typical of the problems we are dealing

with that the condition need only be imposed on the dependence of

Mu on the past of u, while its dependence on the current value

of u is less restricted. The standard assumptions we shall make

are stated in the following lemma.

7.2. Lemma. Let L e Mrri,(Ef) be given and define M_ by (4.7) .

Let F e bj? b£ given, and assume that the memory M1 satisfies (ftL)

and p (Mf)< 1, Then the memory M = M + MT satisfies (M) and

p (M) < 1, j3£ that the conclusions o_f Theorem _5 .4;, Corollary 5̂ .5̂ , and

Lemma J5._l hold, If, in addition, p(MT) = 0 and E jj3 finite-dimensional,

the conclusion jof Lemma j>.2̂  also holds .

Proof. Lemmas 4.6 and 4.3.

7.3. Scholium. The condition p (M1) < 1 in Lemma 7.2 appears

to be the one most difficult to verify. However, we know that indeed

p (M1) = 0 if MT is a sum of memories each one of which is uniform-

ly delayed, uniformly narrow, or tame (Lemmas 4.3, 4.4, 4.5, 7.1),

hence in particular if the space F is tame (since then M! is
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itself tame). If M1 is a sum of uniformly narrow and tame memories,

or in particular if F is tame, then we also have p(M!) = 0, so that

the conclusion of Lemma 6.2 holds.

Remark 2_. The assumptions of Lemma 7.2 with W uniformly de-

layed are precisely those considered in [2] for the Caratheodory

case (up to an obvious change in time-scale); the results pertaining

to this case in [2] are thus subsumed in the present paper. We note,

however, that [2; Lemma 8.1], asserting that the transition opera-

tors are compact for finite-dimensional E, is invalid on account of

an error in the proof.

Remark 3^ The assumptions of Lemma 7.2 with L = 0 and M = M!

uniformly narrow include those considered by Pecelli [7]. Most of the

results in [7] can, as a consequence, be obtained by a specialization

of the methods and results of the present paper.

8. The fundamental theorem.

We now return to the basic problem of using the difference equa-

tions (6.3), (6.4) to obtain information, via Lemma 6.1, about equations

(5.1), (5.2). As in earlier work, the core of our method is a proposi-

tion that permits us to infer properties of (6.3) with arbitrary f

- and not just those of the form f = Br - from information on (5.1).

We assume throughout this section that M = M + MT satisfies

the assumptions of Lemma 7.2 with respect to some given space F e b3,

so that Theorem 5.4 and Lemma 6.1 are applicable. We assume that A, B

are as defined in Section 6.

Let V € Krri, (E) be the unique solution of the operator differen-

tial equation V + LV = 0 that satisfies V(0) = I (I is the identity

on E) . We refer to [6; Section 31] for a detailed account of this
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operator-valued function. In particular, V is invertible-valued,

-1 ~
and as usual we write V e Krr., (E) for the function defined by

V"1(t) = (V(t))" , t ̂  0. We also have

(8.1) ||V(t)V"1(s)|| ̂  exp|| ||L(o)||do|, s,f ̂  0.

8.1. Theorem. Assume that M = M^ + M1 satisfies the assump-

tions of Letrena 7̂ 2_ with respect _to £ given space F € bJJ. For each

f e sfll(E) there exists r € Lro-i(E) with fRr e ̂ X 1(F(E))

such that

(8.2) l«pr)(n)|F ^ cQ(|f(n-l)l + |f(n)|), n = 1,2,...,

and such that the solution w jsf

(8.3) w(n) + A(n)w(n-1) = f(n) - (Br) (n) , n = 1,2,...

with w(0) = 0 satisfies

(8.4) |w(n)| ̂  (1 + exp|L| )lf(n)|, n = 0,1,...,

where we set f(0) = 0, and c > 0 depends only on F, |L| , and

I|WM'||E •

Proof. There exists cp € F such that cp *= 0 and cp(s)ds = 1.

We define w e s, ,(E) by

(8.5) (w(n))(s) = (f(n))(s) - (JS
icp(a)da)V(n+s)V'1(n) (f (n)) (0) ,

-1 S s S 0, n = 0 , 1 , . . . .

It is obvious that each w(n) is continuous, hence in E, and that

w(0) = 0, as required. Also,

(8.6) (w(n))(-l) = (f(n))(-l), (w(n))(0) = 0, n = 0,1,...;

and (8.5) and (8.1) yield

|w(n)-f(n) | ^ |f(n) |exp|L|M ,

so that (8.4) holds.

We now construct r. For this purpose we choose, for each n e ov n

a function z € Cr ^-.(E) such that
n X[n-2]v '
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(8.7) n(n-l)zn = - w(n-l) II(n)zn = f(n) - w(n)

and such that z is constant on [n,<»); this is possible on ac-

count of (8.6) . Then

(8.8) |z I = max{|w(n-l)|,|f(n)-w(n)|} ^ max{|f(n-l)|(l+exp|L| ) ,

We now define r e Lr , (E) by

(8.9) r(t) = Cp(t-n)V(t)V"1(n)(f(n))(O) + ( M j ^ ^ ) (t) ,

n-1 < t £ n, n = 1,2, . . . .

From (8.1) and the fact that M' sat is f ies (Mp) i t follows that

<TPr)(n) € F(E) and

l ( t r r ) ( n ) | ^ l c p l F | f ( n ) | e x p | L | + | k M I | | F l z
n l n " 1 , 2 , . . . ;

combining th i s with (8 .8) we find (8 .2) with

c 0 - | |tDMI | |Fexp|L|M+ max{||roM'||£ , icplpexplLl^} .

I t remains for us to prove that w and r thus constructed

s a t i s f y ( 8 . 3 ) . For th i s purpose, l e t n e m- -,-i and t , n-1 < t ^ n,

be fixed for the time being. In the following computation we use in

success ion: (8 .7) and ( 8 . 6 ) ; ( 8 . 5 ) ; d i f f eren t ia t i on of products and

the d e f i n i t i o n of V; (8 .9) and ( 8 . 5 ) ; ( 8 . 7 ) ; the de f in i t ion of M

and ( 4 . 7 ) .

zn(t) - zn(n-l) = (f(n) - w(n))(t-n) = ( j " V ) ^ ) V ( t ) V 1 ( n ) (f (n)) (0) =

= f (cp(s-n)V(s) - (fS ncp(a)da)L(s)V(s)) V"1(n)(f(n)) (O)ds =
Jn-1 *i-l

- l ] 2 n ) ( s ) " r ( s ) + L(s)(f(n)-w(n))(s-n))ds =

f ( ( r n nzn>(s> - r( s> + L(s)zn(s))ds = - \ ((M, z )(s)-r(s))dsn-1 Ln-iJ n n Jn-1 In-lj n

Since this equality holds for al l t, n-1 < t % n, i t follows from

Theorem 5.4y (2) that z coincides on [n-2,n] with

P(n-l)II(n-l)zn + Q(n-l)r = - P(n-l)w(n-l) + Q(n-l)r. Combining this

with (8.7) and (6.1) we find
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f(n) - w(n) = n(n)zn = II(n) (- P(n-l)w(n-l) + Q(n-l)r) =

= A(n)w(n-1) + B(n)r;

that is, w(n-l) and w(n) satisfy (8.3) for the given n. Since

n was arbitrary, the proof is complete.

9. Admissibility.

The purpose of Theorem 8.1 was to allow us to replace the study

of equations (5.1), (5.2) by that of the difference equations (6.3),

(6.4); in this section and the next we propose to show how the

method works. We shall assume that the memory M satisfies the as-

sumptions of Lemma 7.2 and that A and B are as defined in Section 6.

We suppose that the reader is acquainted with the concept of

f̂c-pairs and X -pairs of sequence spaces, i.e., pairs (b,d) of

sequence spaces with b e bA or b e bjt , respectively, and

d e b;t in both cases (the classes bt and bt of translation-

invariant sequence spaces are discussed in [1; Section 3]. We recall

that such a pair (b,d) is admissible for A (or for (6.3)) if
r^> r*s — — — — — — —

(6.3) has a solution x e dr ,(E) for every f e b (E) . For

details see [1; Section 8].

9.1. Theorem. Assume that the memory M = MT + M
! satisfies

the assumptions <of Lemma ĵ .2. with respect Jto a given space F e b3.

For each given X -pair (or, jln particular, X -pair) (b,d) the fol-

lowing statements are equivalent:

(a): b is stronger than d; and for every r e Lrrn (E) with

"Gj-r e b M 1(F(E)) equation (5.1) has a solution u with **& a e d ,(E);

(b): (b,d) is admissible for A.
r*s rss — — — — — — — — — — — — — —

Proof, (a) implies (b): Let f e bri,(E) be given, and let r, w

be as provided by Theorem 8.1. Since b e b)t~*, (8.2) implies
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G bril(F(E)). Further, (8.4) implies w e b (E), whence
/-41J ~ ~[ u j ~

w G d ..(E) since b is stronger than d.

By the assumption, (5.1) with this r has a solution u

such that ip u G <*.. , (E) . BY Lemma 6.1 we have (r̂ r u)(n) + A(n) (-733 u) (n-1)

= (Br)(n), n = 1,2,...; since w is a solution of (8.3), we

conclude that x = "ZD*u + w e d ol (E) is a solution of (6.3).

Thus (b,d) is admissible for A.

(b) implies (a): Since A G 1* ,(E) (by (6.2)) and (b,d)

is admissible for A, we conclude that b is stronger than d

[8; Lemma 4.1]. Let now r G LrQ-|(
E) b e given with JJJT e brii(F(E))*

Then (6.2) and the fact that F satisfies Condition (N) (Section 2)

imply |Br| ^ C'e 0^ fa0rlF , so that Br G ^ J E ) . Since (b,d) is

admissible for A, there exists a solution x e dIn, (E) of

x(n) + A(n)x(n-1) = (Br) (n), n = 1,2,..., and by Lemma 6.1 there

exists a solution u of (5.1) with ĉru = x G d, ,(E) , as asserted

in (a) .

If B is a subset of Lr , (E) and D is a subset of Kr ,-. (E),

it is in keeping with earlier terminology to say that the pair (B,D)

is admissible for M - more loosely, for (5.1) - if for every r e B

there exists a solution x G D of (5.1). Thus, statement (a) in

Theorem 9.1 expresses the admissibility of a certain pair (B,D) for M.

To exemplify the uses of Theorem 9.1, we shall here specify B to be

one of the spaces L^ , (E) , 1 ^ p < 00, or Mf , (E) or Tf ,(E), and D

to be either xCr nl(E) or C ^ ( E ) ; but the choices may easily be
~l ~1 J JJ[ 1J

extended in the spirit of [6; Chapter 2] and the remark at the end of

Section 3. Following earlier practice, the name of a pair of such

spaces is abbreviated, as, e.g., (J^,^) for 0 ^ 0 ]
( E ) >So[-l]

since there is no ambiguity.
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We now record some of the special cases covered by Theorem 9.1

9.2. Corollary, Assume that the memory M = IL + MT satisfies

the assumptions £f Lemma 1_•! w i t h respect _to a. given space F. With

F, (B,D), (b,d) as specified in the following table, (B,D) is ad-

missible for M _if and only \t_ (b,d) _is admissible for A.
— — — — — ——— —— r^/ tm^J ^ — — — — ^ — —

F (B,D) (b,d)

L
/v.

L

L

p

p

i

CO

(LP

(M,

(T,

,c> ap ,O

c) (i-,i*)

C) (I1 ,!00)

Proof, Theorem 9.1, and the remarks on the slicing operator -^

in Section 3.

10. Admissibility and the solutions of the homogeneous equation.

The admissibility of certain pairs (b,d) of sequence spaces for

A implies, under some additional assumptions, an (ordinary) dichotomy

or an exponential dichotomy of the solutions of the homogeneous equa-

tions (6.4) j. , (see [1; Section 7]). An exponential dichotomy, for

instance, may roughly be described thus: the bounded solutions tend

uniformly exponentially to 0, there exists a "complementary" manifold

of solutions of (6.4) tending uniformly exponentially to infinity, so-

lutions of the two kinds remain uniformly apart, and together they

span all solutions. Since Lemma 6.1 provides a bijective correspondence

between solutions of (5.2)r , and solutions of (6.4)r , for integral
[mj [mj

m, Theorem 9.1 and Corollary 9.2 will allow us to translate that result

into an analogous implication for differential equations with delays.

In order to avoid unenlightening complications, we restrict our-

selves in this section to the case in which d is specified to be I00,
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i.e., in which bounded solutions of (5.1) and of (6.3) are sought.

The case in which d is 1 , so that attention is centred on so-

lutions of (5.1) and of (6.3) that tend to 0, can easily be treated

in a similar fashion; as can also cases with more general d e b"t,

with appropriate use of [1].

We assume given a memory M = M_ + MT that satisfies the as-

sumptions of Lemma 7.2. We denote by £.(0) C E the set of "initial

slices" II(0)u of the bounded solutions u of (5.2); by Lemma 6.1,

E (0) is the set of values at n = 0 of the bounded solutions of (6.4)

We now state the main "direct" theorem, to the effect that the

admissibility of certain pairs of function spaces for M implies a

behaviour of the solutions of (5.2) r - that may be termed an ordin-
[mj

ary or an exponential dichotomy.

10.1. Theorem. Assume that the memory M = M^ + M ! satisfies

the assumptions of Lemma 7 .2 with respect to a given space F e bJ5.

*"-~—- ——————*———— —— ————— r^J
Assume that E (0) _L_ closed in E. Assume that b e b£ (_Ln partic-
ular, b e bjt) is [not stronger than 1 and] such that for every
_ _ _ _ _ _ _ ^j _____ _ _ _ _ _ _—_-——•-— ^j •_-_———» _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

r € Lr_.,(E) with ĵ-r e b ,(F(E)) equation (5.1) has a bounded
H.0J ^iJ ^

solution.

Then there exists [a number v > 0 and] £ number N > 0 such

that, for every real m _? 0, every bounded solution v of (5.2)r

satisfies

(i): in(t)v| _:N|II(to)v| [ |n(t)v| ̂  Ne"v(t"tO)|n(t())vI ]

for all t _? t _T m;

there further exist a set W __f solutions of (5.2), [a number vT > 0]
_ _ _ _ _ _ _ _ _ ________________ _ _ _ _ _ _ _ _ _ _ ______ ^j __________________ _____ ____________

and numbers NT > 0, A, > 1 such that, for every real m __* 0, every
_____ _____________ Q _______ _______ _____ ________

solution u of (5.2)r , is of the form u = v 4- wr , n , where v
— [m] [m-1]'

is £ bounded solution and w e W, and such that every solution w e W
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satisfies

(ii): |II(t)w| ^ Nf"1|II(to)w| [ lll(t)w| ^ N!~ e V ^ t

for all t ^ t > 0;

(iii) : III(t)w| ^ XQin(t)w - II(t)v| for all t > m > 0 and

all bounded solutions v ££ (5.2)r -. .

Ĵ f E _i£ finite-dimensional and p(M!) = 0, then the assumption

that E (0) jL£ closed is redundant, and W may be chosen to be <a

finite-dimensional linear manifold.

Proof. 1. By Theorem 9.1, (b,l°°) is admissible for A. We now

refer to [1] and [9] in order to deal with equations (6.3), (6.4).

Specifically, Condition (d) of [9; Lemma 4.2] is satisfied with d = 1 .

We consider the covariant sequence E (whose general term is E (n),

the set of initial values of the bounded solutions of (6.4). , ) .

Since E (0) is closed by assumption, [9; Theorem 4.3,(a)] shows

that the covariant sequence E is (closed and) regular. We can

therefore apply the fundamental "direct" results [1; Theorems 9.1 and

10.1] for difference equations, and find that this covariant sequence

induces a dichotomy [an exponential dichotomy] for A.

2. To make this result manageable, we use the description of a

dichotomy [an exponential dichotomy] given by [1; Theorem 7.1,(c)].

We observe in the proof of that theorem that we are free to choose

the splitting q (a "non-linear projection" in E annihilating E (0));

this will be important in Part 3 of this proof. We choose q and de-

note its range by Z. Thus E = E (0) + Z. Now the covariant sequence

E is regular; therefore we have, for every integer n ^ 0, by

[1; Lemma 5.2,(b) and (5.2)],

E = ^(n) + U(n,0)E = ^(n) + U(n,0)^(0) + U(n,O)Z = ^(n) + U(n,O)Z.

This means that if x is a given solution of (6.4)r , there exists a
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solution z of (6.4) with z(0) e Z such that y = x - z. , is

a bounded solution of (6.4)r , .

We define W to be the set of those solutions w of (5.2)

that satisfy II(O)w e Z. The remainder of the proof of the main

conclusion of the theorem is now identical to that of [10; Theorem

7.3] (from the last paragraph of Part 2) with the following changes:

[1; Theorem 9.1] is used, and the exponential factors deleted, in

the"ordinary dichotomy" case; and Corollary 5.5 and the factor Ce

are used instead of [10; Lemma 5.2] and the factor exp||M ||.

3. If E is finite-dimensional and p(M!) = 0, then each

A(n) is compact (Lemmas 7.2 and 6.2). Therefore [9; Theorem 4.3,(b)]

is applicable and E (0) is closed and has finite co-dimension in E.

We may therefore choose the splitting q in the preceding proof to be

a linear projection of E along E (0) onto some finite-dimensional

complementary subspace Z. Then W is a finite-dimensional linear

manifold of solutions of (5.2).

10.2. Corollary. Assume that the memory M = IVL. + MT satisfies

the assumptions £f Lemma ]_.2_ with respect Ĵ o a_ given space F e b3,

Assume that En(0) _s closed in E. Assume that (B,C) _is admissible

for M, where F = L1 and B = L1, or F = L°° and B = T [F = LP

and B = L , l < p ^ » , or F = L and B = M] . Then the conclusions

_f Theorem 10.1 hold.

Proof. Use Corollary 9.2 instead of Theorem 9.1 to enter the proof

of Theorem 10.1.

10.3 Scholium. Since L is tame when 1 < p ^ <», Scholium 7.3

implies that the conditions pn(M
!) = 0, p(Mf) = 0 are automatically

verified when F = L for such a p.
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To conclude, we state a reasonably strong form of a "converse"

theorem to Theorem 10.1, and sketch its proof.

10.4. Theorem. Assume that the memory M satisfies (M) and

p (M) < 1. j[f the main conclusion of Theorem 10.1 holds for the

solutions of (5.2)r ,, then the pairs (L ,C) and (T,C) [the
[mj ~ ~ ~ ~

pairs (LP,C), 1 ̂  p ^ oo, and (M,C)] are admissible for M.

Proof. The assumption on M implies that it satisfies the

assumptions of Lemma 7.2 with L = 0, M* = M, and F = L . The main

conclusion of Theorem 10.1 implies, via Lemma 6.1 and a little com-

putation, that E (0) is indeed a regular covariant sequence for

A and induces a dichotomy [an exponential dichotomy] for A

[1; Theorem 7.1]. From the "converse" theorems for difference

equations [1; Theorems 9.2 and 10.3] it follows that the pair

(1 ,1°°) [the pair (I00,!00)] is admissible for A. From Corollary

9.2 we conclude that the pair (L ,C) [the pair (M,C)] is admis-

sible for M. The other pairs in the statement are then obviously

admissible, since Trn1(E) is stronger than Lr^^E) [since every

is stronger than M [ Q ](E)].
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