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DI CHOTOM ES FOR LI NEAR DI FFERENTI AL EQUATI ONS W TH DELAYS:

THE CARATH*ODORY CASE

by

Charles V. Coffrman and Juan Jorge Schiaffer

1. Introduction.

W consider on [0,<») an equation of the form
(1.1) d+ M =r
in a Banach space E, and the correspondi ng honbgeneous equation
(1.2) ti + M1 = O;
here r is a locally integrable vector-valued function; the
"solution" u is defined on [-l,a>" and M the "nenory" func-
tional, takes a continuous function u into a locally integrable
function M1 in such a way that the values of M1 on an inter-
val [a,b] depend on the values of u on J[a-l,b] only. The

equations are to be satisfied "locally in Ll

The purpose of our investigation, which continues the work
in [10] (and also in [2] and [3]) is to relate properties of (1.1)
such as "admissibility" ("for every r in some given function
space there is a solution in sone given function space") and cer-
tain forns of conditional stability behaviour ("dichotonies") of
the solutions of (1.2) and of its restrictions to intervals of
the form [moo) . The nethod consists, as in [10], in reducing
this problemto a simlar problemabout a linear difference equa-
tion in a function space; this difference equation can then be
studied by nmeans of the theory developed in [1]. W refer to the
introduction of [10] for further coments on nethod and signifi-
cance, and to the work of Pecelli [7] for some related results ob-

tai ned under nore special assunptions and by a different method.



In [10] a special instance of the "continuous case" was
considered: that is, r and M were assuned to be continuous,
and the equations were to hold everywhere; and (Mi)(t) depended
only on the values of u in [t-1,t]. In this paper we describe
i nstances of the "Carathéodory case", in which continuity is re-
pl aced by local integrability. The reduction of the problemto
one about difference equations is nuch sinpler in the Carathéodory
case (contrast Theorem8.1 with [10; Theorem6.2]); the nore
basi c question of the existence, uniqueness, and growh of sol u-
tions, which is alnost trivial in the continuous case, becones,
on the other hand, quite conplicated under our very general as-
sunptions. W wish to avoid, in particular, any assunption on the
representability of M as, say, a Stieltjes integral. W are
thus forced to devote quite a bit of space to these questions
(Sections 5 and 7); and yet we do not feel that our present for-
mul ati on of the assunptions on M- summarized in Lemma 7.2 -
is definitive. In a forthcom ng paper we plan to discuss in detail
the autonormous ("constant coefficient") case.

This paper is best read in conjunction with [10], although
the fornmal dependence on that paper consists only in the use of
sonme proofs. On the other hand, our present approach does depend,

especially in Section 10, on material in [1] and [9],

2. Spaces.

Throughout this paper, E shall denote a real or conplex
Banach space. The normin E as in all norned spaces other than
the scalar fields and the function and sequence spaces described
below, is denoted by || || . If X and Y are Banach spaces, [X>Y]

denotes the Banach space of operators (bounded |inear mappi ngs)



from X to Y, and we set X = [X-X].

In this paper, spaces of sequences occur together with spaces
of functions on certain intervals of the real line, For the former,
we adopt without elaboration the notation described in [1l; Sections
2 and 3]. In particular: g ={ 0,1,...}, and E{m](x) denotes the
Fréchet space of all functions on Y] ~ {m,m+1,...} with values
in the Banach space X, where m € (3 and notations such as lfm](x)

are to be understood by the obvious analogy. If f ¢ s[m](X) and

m' 2 m, then f

[m'] € E{m,](x) is the restriction of f to uim,].

The intervals that occur as domains of measurable functions
will be [-1,0] and [m,») for real numbers m. We shall in general
follow the notation and terminology of [6; Chapter 2] for spaces
consisting of such functions, with some special simplifying conventions,

Spaces of functions on [-1,0] will have no label indicating
the domain, For instance, E}(E) is the Banach space of (equivalence
classes modulo null sets of) Bochner integrable functions
f: [-1,0] » E, with the norm |f|1 = f?luf(t)udt. The space E(E) of
continuous functions f: [-1,0] » E with the norm [f] = max |[f(t)]],
which plays a central part in our work, is abbreviated to E; and its
norm written without a subseript,

As indicated in these examples, thick hollow bars are used for
the norms of function spaces with [-1,0] as domain, This convention
permits the following arrangement: suppose that, e.g., 8 € l?m](EP(E)),
where 1 Sp,qS® and me u then |g]| is the element of l?m](EP)
- the argument R is omitted, as usual - given by ||g||(n) = Hg(n)“,
noe o (where |lg(n)||(t) = ||[(g(n))(t)|| for all ¢t e [-1,0]; the
latter norm is the norm in E); |g|p is the element of l?m] given
by el () = le@l, = llg@|ll, n e 45 thus Tel, = Mgl ;



and |g|q = ||g|P|q is the norm of g as an element of l?m](k?(E)).
We recall from [6; Chapter 2] that b& is the class of all
Banach spaces E of (equivalence classes of) measurable functions
@w: [-1,0] » R such that
(N): F 1is stronger than E}, i.e., E, is algebraically con-

~

tained in L1 and there exists a number aF > 0 such that

lol; s O‘EME for all ¢ ¢ F;

(F): if @ e¢F and P: [-1,0] » R is measurable and || s lol,
then 3 € F and |¢|E’§ |¢|E.

If E‘e b&, then EKE) denotes the Banach space of (equivalence
classes of) measurable functions f: [-1,0] » E such that “f“ €F,
with the norm |f|F = |”fH|F.

In considering spaces of functions defined on intervals of the
type [m,»), we shall use the following conventions, If m S m' and
f 1is some function defined on [m,»), f[m,] shall denote its re-
striction to [m',o), The subscript [m] is also used when the fact
that [m,») is the domain has to be recorded (these usages are com-
patible). Thus E{m](E) denotes the space of all (equivalence classes
of) measurable functions f: [m,o) -» E that are Bochner integrable
on each compact interval; £[m](E) denotes the space of all continuous
functions f: [m,©) - E (cf.[10]); and similarly for the space %{m](E)
of all functions f ¢ E{m](E) with lflM,=-&;£f:+le(S)“ds < w; for
the spaces Efm](E), 1 Sp S o; and for the space E{m](E) of bounded
continuous functions f: [m,») > E with the supremum norm, and the
subspace Eo[m](E) of those that tend to O at infinity., The norms
of all normed spaces of this kind will be indicated, as in [6], by
thick bars with the appropriate subscript; the subscript is omitted

for the supremum norm,



3, Slicing operations.

Let m 2 0 be a given real number, For each t 2m we

1
define the linear mapping II(t): L (E) > L (E) by

~[m-1]

(3.1) (MI(t)£) (s) = f(t+s), s € [-1,0], f € E{m-l](E)'

Thus [I(t) maps f into the "slice" of f between t-1 and ¢t,
transplanted to [-1,0] for convenience. (Note that indication of
m is omitted; this will not cause any confusion,)
1

When m 1is an integer, we define af ¢ E{m](L (E)) for each
fe E{m—l](E) by
(3.2) (mf) (n) = lI(n)f, n=mml,... .

1

Thus L E) » s L (E is a linear bijective mapping.

@ L 17E) 2 8@ E) j pping
This mapping has obvious restrictions to linear mappings of K[m—l](E)

@©

. . d .
into E{m](E)’ of E{m-l](E) into l{m](E)’ and of Eo[m-l](E) into
oo}
Lotm) ®-

The mapping = has other restrictions that are "natural" iso-
morphisms between certain normed function spaces: e.g.,
o Lfm 1](E) - lfm](Lp(E)) is a congruence (linear isometry) for

<5< o- . ® 1 . . . .
l1SpSw; 7o: Eﬁﬁhl](E) - i{m](E,(E)) is an isomorphism with norm
. . . . 1 ®

1, the norm of the inverse being 2; ar: Ekm-l](E) - l{m](k’(E))
is another isomorphism, with norm 2, the norm of the inverse being 1,

We might indeed define new normed spaces of functions on [m,») in

this way, but we shall not do this here.

4. Memories.
In this section we shall make precise some of the assumptions
on the "memory functional" M that appears in (l1.l1). We express the
linearity of the functional and the fact that the scope of the memory
extends at most one unit of time into the past by the following defini-

tion.



A memory is a linear mappin M: K E) » L
y pping K-11® = Lo

0 implies X[a,b](Mu) =0 for all u ¢ E[_l](E)

](E) such that

(4.1) X[a—l,b]u =

and each interval [a,b] < [O,»).
It is clear that a memory is uniquely determined by its restriction

to E{—l](E)'

Condition (4.l1) permits, for each m 2 0, the "cutting down" of
M to a linear mapping M : K E) » L E): indeed, each
pping M 0: Kep 19 E) 2 Ly (B) ;

u € K

[m 1](E) can be written as u

= V[m-l] for some v € 5[_1](E),

and we may set M. .u = (Mv)[m]; since u implies

Yime1] T T Vim-1]
(4.1) implies (M(v'—v))[m] = 0;

[m]

-v) = 0 for each t 2m,

Xm-1,e] V'

thus the definition does not depend on the choice of v. We have

M[O] =M; if m' 2m 2 0, these "cut-down" memories satisfy

(4.2) M[m']u[m'-l] = (M[m]u)[m.] u € E{m-l](E)'

A memory is usually assumed to have some continuity or bounded-
ness properties; it is typical to assume (or imply by the assumptions
on M) that the restriction of M to C[ 1](E) is continuous (equi-

valently, closed) as a mapping from C to the Fréchet space

L[O](E). For our purposes, we shall usually require a uniform condition

of this type, namely:

(M): The restriction of the memory M to C[ 1](E) is a bounded

linear mapping MC:

~

(E) =My (B).

Thus M HMCH is a norm on the linear space of all memories satis-

Sr-1]

fying (M).

In order to obtain an existence and uniqueness theorem for the
initial-value problem as well as certain bounds for the growth of
solutions, it seems necessary to impose an additional condition, ex-
pressing the "uniform local smallness" of the memory when acting on

selected functions u, For this purpose, we assume that the memory M



satisfies (M), and define, for each interval [a,b] C [0,»),

tf
k(M;a,b) = sup[HIt(Mu)(s)dsH: aSt<t $b,ucC @), lul S

(4.3)

»
A

tl
ko(M;a,b) = sup{Hft (Mu)(s)dsH: t<t's b, u e E[-l](E)’
< =
ful s 1, X[-1,e1" 0}.
(Observe that, on account of (4.1), the value of ko(M;a,b) is not

altered if t = a 1is required in the definition.)

A (countable) set S < [0O,») 1is uniformly sparse if there exists

a number N such that no interval [j,#1), j € ¢y contains more than
N points of S; the least number with this property is the sparseness
sp(8); i.e., sp(8) = ﬁ&f card(S N [j,#1)) <o, We need two trivial
facts about uniformly sparse sets,

4,1, Lemma, If S, S' are uniformly sparse sets, then so is

SUS', and sp(S US') S sp(S) + sp(S").

4.2, Lemma, Let (an)neug be a strictly increasing sequence in

[0,#) such that { a:mne w} is uniformly sparse, with sparseness N,

say. Then [an,] - [an] [(n'-n)/N], where [] denotes the "greatest

integer" function.

Let 8 denote the class of all uniformly sparse sets S C [0,»)
such that @< S, If S € §, then S = {an :ne )} for a well-defined

1

strictly increasing sequence (a_) with a_= 0, an+1 -a =21,

n’ negw 0

n € . For this S, and for a memory M satisfying (M), we set

) Ko(HiS) = sup kp(a,an ).

k(M;S) = sup k(M;a k
N ew
From (M) and (4.3) we have k,(M;S) S k(M;S) S HM ||; we may therefore
define

oM) = inf{k(M;S): S ¢ 8} oo = inf[kO(M;S): S €8}

and find

(4.4) oo S o) S |

1)



4.3. Lemma. p and bn are semnorms on the linear space of
Y— _ _ _ _

att memorres sattstyrg (M) .

Proof. k(-;a,b) is a seminormfor each interval [a,b]; hence
so is k(.;S) for each S e g. By Lemma 4.1, the set g ordered
by inclusion is directed. Since k(Ma,b) increases with the in-
terval [a.b], tHe net S**k(.;S) of senminorns is decreasing;
therefore its limt, which is p, is itself a. sem norm The proof
for pO is the sane.

Remmark. The values of p(M and Py(M do not change if we

repl ace the predicate "S e gV

in their definition by "S is a
uniformy sparse infinite set with 0 e S

The condition we shall have to inpose in general on the nenory
M inadditionto (M, is Py(M <1

There are several conditions on M that ensure that ol M =
or even p(M =0; it follows fromLema 4.3 that the condition
pG(M < 1 is unaffected if terns satisfying such sufficient con-
ditions are added to M W shall discuss two of t'hese conditions
now, one includes a uniformversion of the assunptions usually nmade
in the literature to ensure existence and uni queness of sol utions.
A third condition of this kind will be presented in Section 7.

W first consider nmenories that have a "gap" in their recol-

| ection of the imedi ate past. Specifically, a nenory M is said
<

to be umfornty detayed-if there exists 6, 0 <6 = 1, such that
(45) X{| t_6]u:° InplleS X[Ot,](MJ):O for all

- 2

ubk -,-,(B and each t e (0,0 .

(This could be conbined with (4.1) into: Xr - KR (Y =~ inplies
[a-i, b-0j

)¢ , (M) =0.) It is clear - and well known - that an equation

(1.1) with a uniformy delayed nenory can be solved by step-by-step



integration; here we wish to include this case in our general treatment.

4.4, Lemma, If M is a uniformly delayed memory satisfying (M),

then pO(M) = 0.

Proof. With § as in (4.5), let h be a positive integer so

great that h§ 2 1, For each n e ¢ X[-l,n/h]u = 0 then implies
X[-1,(o+1)/h - 51" = 0, which in turn implies, by (4.5),
r(o+1)/n
J /h H(Mu)(s)”ds = 0. Thus kO(M;H/h,(n+l)/h) = 0. But S =
n

= {n/h: n € w} e §, and therefore pO(M) = ko(M;S) = 0,

A memory M 1is said to be uniformly narrow if there exists

@ € E[O]’ @ 2 0, such that

(4.6) |Mul| € Jule for all wu e E{-l](E)'

4,5, Lemma, If M is a uniformly narrow memory, it satisfies

@) and () = p () = O.
Proof. With ¢ as in the definition, (M) is obviously satis-

fied, with “MCH s IgolM . Let the positive integer h be given;

there exists a strictly increasing sequence (an)n€a> such that
1 <
a, =n for each n ¢ ¢, and o(s)ds = |¢|M/h, n € . Then
an ~

(4.6) and (4,3) imply that k(M;an,an+l) < |¢|M/h’ n € . Now

wn
A

h = {an: newled (with sp(S,) = h), and therefore NG
S oM = k(M;Sh) s |¢|M/h. Since h was arbitrarily great, we con-
clude that pO(M) = oM = 0.

Remark 1. The condition of uniform narrowness includes those
usually imposed in the literature for the "Carathéodory case" (e.g.,
[4; p.30]), except that we assume the majorant ¢ in (4.6) to be in

instead of merely in L

E[O] Lo - hence the qualifier "uniform".

We do not discuss here to what extent our definition provides -
up to this uniformity - a genuine generalization of those conditions.

Remark 2. If M e g[o]([EaE]) and M 1is defined by (Mu)(t) =



10

= M) (t)u, t e [0,00), uekK o (E), then M is obviously a
uniformy narrow memory, with cp -||M|. It might be thought that
most uniformy narrow menories are of this form but this is not
so. For instance, the condition that ‘M be measurable with respect
to the norm topol ogy of [E:*E], and hence al nost-separabl e-val ued
[5; Theorem 3.5.3], excludes even such sinple uniformy narrow
memories as the M given by (Mi)(t) = u(t-A(t)), where A is
a continuously varying del ay.
There is one special case of the kind of uniformy narrow
menory described in Remark 2 that should be recorded separately.
4.6. Lemm. If L eFﬁAOJ(I'E')', the mapping M K, \{E) -> LiqE)
defined by '
(4.7) (MACE) = L(t)u(t) t e [0&)

is a _uniformy narrowmenmory, so that P,(M) = p(M) =0.

~ =1 -

Proof. Wworul %yl for all ue(® -1§E) :

5. Sol utions.

W say that a function f e K ,(E) is a primtive (function)

if there exists g e L o(E such that f(t) - f(m = g(s)ds for
~Lm\] \]m

all _t e [moo); then g is unique, is denoted by |, and is called
the derivative of f.

Assume that we are given a menory M and, in additlion, a function
r GL,_,(E). A solution of tHe "differential equation with delay"
(5.1) u+ M= .
is a function u e K ~(E) mm'({svce‘restriction 'uIUJ, to [0,<») is
QLBEim'tive whose derivative Y, satisfies_ “%y-i _+ Mi =71 in
. , (E). More generally, for each m> 0, a solution of

(5.1), i . o+ Moo=,

[ o [m. [ [

is a function u e £r i](E) whose restriction Uri to [moo) 1is
a primtive whose derivative u, , satisfies (5.1), , in L ,(E).
L™ Lnd M™J

1}
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These definitions of course also apply to the honbgeneous equations

(5.2) d+ M =0
(5.2) , u ., +M ,u=0.
Y [ [ [
As usual, it is preferable to deal with integral equations

equi val ent to these differential equations.

5.1. Lemma. Let the memory M and r e Ly 4(E) be given. A

Ij,(E) is a solution of (5.1)|rmJ, if and only if

function u e .
K-f.[m

it satisfies

t
(5.3) u(t) =u(m - f (M _,u)(s) - r(s))ds
: *Jn LT

for T t " m J* m "m”A0 and u j~ £ sofutron of (5.1), +™§
Then un™ -1) 5 7 sorotionm 67 (5.1).M,]

Proor. Definition of "solution" and (4.2).

Qur next major aimis an existence-and-uni queness theorem for
solutions of (5.1)rl™, with estinmates on their growth.
5.2. Tenma. TET The enory M SatTsry (M . Ter The Thrervar

[a,b] ¢ [Qo°) Tegivenand Satisty b-a~ 1 amd kO(Mab ) < 1.
For given v e E ,r e Ll\L”\EE) there exists u e K‘/"_[a—_ll (E) such that

(5.4) n(a)u = v

(5.5) u(t) = u(a) - Jt((Malu)(S) - r(s))ds, ast
a

1in

b.

The restriction of u _to [a-I,Db]

s uniquely determ ned b" these

properties; and u satisfies

(5.6  |lu)] A(1+(VWAWJMvI+(l«@“1§hwnwm
a-l £t £ b,
where ko = koM a, b) .
Proof. Let A be the affine subspace of G ,(E) consisting
of those functions y that satisfy IlI(a)y = v and are constant on
[b,co) . Consider the affine nmapping F A->A defi ned by

[ y(t) =v(t-a) a1l "t Aa
(57 (A1) =g, Moot e
Na) - b (May)(s) - r(s))ds  ant.
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This mapping is well defined., It is contractive: indeed, y,y' € A

implies X[a-l a](y'—y) = 0 and hence, by (5.7), (4.1), (4.2), (4.3),
)
(0]

i S kly'-yl
b
IIE”’{ ’t}<(M[a](y'-y>>(s>dsll} °

and ko < 1 by assumption, Therefore F has a unique fixed point,

a-1Stsa

(5.8) ||(Fy'-Fy) ()| ={
ast;

say ug.

Condition'(a.l) implies that u € K

~

(5.5) if and only if u coincides on [a-1,b] with a fixed point

a_1](E) satisfies (5.4),

of F; i.e., precisely with this establishes the existence of

Ugs
u satisfying (5.4), (5.5) and the uniqueness of its restriction to
[a-1,b].

Define w e A by Il(a)w = v and w(t) = w(a) =v(0), t 2 a,

Since b-a £1, (5.7) implies

b b b
IFw - w] S j H(M w) (s)|lds + j Hr(s)Hds s HM 1wl + f Hr(s)“ds.
a [a] a E} Ja
Since uy = Fuo, it follows from this estimate and (5.8) that
b
|u0 -w] S |Fuo - Fw] + |Fw - w} S koluO - wl + HM£”|W| + fa“r(s)”ds;
finally, since |Jwl = [vl, we conclude that

lugh < 1wl + Jug - wl S Iv] + <1-k0>'1<|lmgl||v| + jleus)Hds).

Since u coincides with u, on [a-1,b], (5.6) holds.

5.3. Lemma, Let the memory M satisfy (M) and QO(M) < 1. Then

there exist positive numbers o, C, C' with the following properties,

For given m and ¢t , t, 2m 20, and given v ¢ E and r ¢

there exists u ¢ K{m-l](E) satisfying II(m)u = v and (5.3) for all

t, msSts the restriction of u to [m-l,to] is uniquely deter-

to;

mined by these properties; and

t
lacell s ce®CO™ vy + e[ 9e9(t0~%) |Ir (s) ||ds..
m

Proof. 1. Since QO(M) < 1 there exists a uniformly sparse set

S © [0,%) including the integers and such that kO = kO(M;S) <1,
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Set N = sp(S). We claim that the conclusion holds with

-1 oW1
5.9 o=Nlogk, €=M ¢ = (1-k) KM, where

|

We know that S is the range of a strictly increasing sequence

-1
K =1+ (1-kp) ™ [M,

~

(an)nea) with ajs =0, iiﬂoan = », Let now m and to be given,
with to >m 2 0 (the conclusion is trivial for tO = m); define the
i > s <
integers n, 2 0, h >0 by ano s m< an0+1, an0+h—1 < to = ano+h'
Set b0 = m, bn = an0+n for n=1,,..,h-1, and bh =ty Then
- < . < ; = =
o< bn bn-l =1 and kO(M’bn—l’bn) = kO(M,S) ko <1l, n=1,.,..,h,

2. Let veE and r € L[O](E) be given., We claim that there

is a sequence (uo,...,uh) in E{m-l](E) satisfying

(5.10) Nm@u_ = v
G.1h Xm-1,b;1% = ¥[m-1,b;1% 1=0,...,n
t
(5.12) u_(t) = u_(m) - J;((M[m]un)(s) - r(s))ds mEtSh

for each n =0,...,h, and that the restriction of each u to
[m-l,bn] is uniquely determined by these conditions,

For n = 0, the conditions merely require H(m)uo =V, u,
being otherwise arbitrary. Assume that 0 < j S h and that

uo,...,uj_1 satisfy (5.10), (5.11), (5.12) for n = 0,...,j-1,
and that these conditions determine the restriction of uj_1 to
[m-l,bj_l] uniquely., Then uj € E[m-l](E) satisfies (5.10), (5.11),

(5.12) with n = j 1if and only if
5.13 . = .

(5.13) X[m—l,bj_l]th Am-1,b5_11%3-1

5.14) u,(t) = u,(b, - M, .u,)(s) - r(s))ds b,  StSb,;
Go18) uy(® =uyy ) = [ (e - x@)ds by ;
by (4.2), this will be the case if and only if (5.13) holds and

u' = € K (E) satisfies
_1-11

C“31by_1-11 € Xib;

H(bj_l)u' = I'I(bj_l)uj_1

t
1 - 1 - 1 - < <
u'(t) u (bj_l) ij_l((M[bj_I]u ) (s) r(s))ds bj-l S ts bj

BT LBMARY
CARMERIE-ReLLee BMIVERSITY



14

1

Now Lemma 5.2 shows that such a u exists and that its restriction

to [bj_i'l’bj] is uniquely determined; it follows that u.__I satis-

fying (5.10), (5.11), (5.12) for n =] exists (define it to coincide

with u on [ml,b. and with u'

1-1 _]—l]
its restriction to [ml,b.:l] is uniquely determ ned by these conditions.

on [b._ ;1,b.]), and that
[b. _1.b])
The existence and claimed properties of the sequence (“,j»*->"u) have
thus been established by induction on j.

Now u=u, satisfies II(mMu =v and (5.3) for m"t "b,n=t0

(by (5.10), (5.12)); conversely, if u e K ,(E) satisfies
r-~m-aJ

[I(mMu =v and (5.3) for m~t 7 to, the constant sequence defined

by u,=u, n=20,...,h, satisfies (5.10), (5.11), (5.12) for each n;
therefore the restriction of u =u " to [ml,t ? = [ml,b.h] i's

uni quely determined. We remark that up to this point the uniform

sparseness of S has not been used. :
3. Let u eﬁrmlﬂ(E) satisfy Il(mu =v and (5.3) for

= mx{|[u(t)[|: m- I ~t b}, n=0,...,h so

mht At g and set (ag

that [¥ = 1v[ . Using (4.2) we may now apply Lemma 5.2 to b, 5, b,

and u;D 1_“ instead of a, b, and wu, and find, with K as in (5.9),

~ irP
HuOI = {lury 4= x (DI " K”n(br:x)u_rbn_l- o+ (1-kg" I,]rb:_lllr(S)lldS =
= KIo>  -)"! + (1-6.)"\/13” Jlr(s)llds, b, =tAb n=1,..h,
This implies \i "~ Kp . + (1-ku)"1jl"g"_ lIr(s)]|ds, n = I,...,h, and hence
(5.15) lut QI ~ & A Ko Tvj + (10K )" %\’;SK "Jbln_1||r'(s)||ds.
From the definition of b”,...,b, and from Lemma 4.2 we have
h-n = (h-1) - n + 1’\c|)\l(a iUn. -a , +2)+ 17~ N(t-b+2)+ 1,
noi-n-I "cT"" On !
n=1,...,h,

h = (h-1) + 1 » N(tg-b1+2) + 2 S N(t-m+2) + 2.

Therefore (5.1?) imgl)ies
N (to-mk2)+2 “In T u Jhiepearirri _
lacep|l € ¥ vl + (1-ky) ﬁjbn-lx \OTEITEIT Y (g)||ds =
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t
= Cec(to-m)lvl +C' J 0c0(to S)Hr(s)“ds,
m
where 0, C, C' are as given in (5.9).

5.4, Theorem, Let the memory M satisfy (M) and pO(M) <1,

Then there exist positive numbers o, C, C', and, for each real

m 2 0, there exist linear mappings P(m): E - E{m-l](E) and

: h that f E d
Q(m) E[O](E) - E{m-l](E) suc at for every v € E and

T € E[O](E):

(1): u = P(m)v + Q(m)r is the unique solution of (5.1)[m]
with [I(m)u = v;

(2): if £, 2 m, then u e E{m-l](E) satisfies [(m)u = v
and (5.3) for ms t S ty, if and only if u and P(m)v + Q(m)r

coincide on [m-l,tO];
(3): for all t2m,
- t -
le@w ol £ e, flamo @l $ e[ 2D res)jas.

Proof, We choose 0, C, C' as in Lemma 5.3. Let m 2 0, v ¢ E,

~

r € E{O](E) be given, For each tO 2 m there is, by Lemma 5.3, a
function uto € E{m—l](E) satisfying H(m)uto =v and (5.3) for
mSts tos and the restriction of u,  to [m-1,t.] 1is uniquely
0
determined by these conditions., It follows that if t 2 tO 2 m,
then utl and u coincide on [m-l,to]. There exists, therefore,
0

a function u € E{m—l](E) that coincides with u on [m-1,t ]

t
0
for each to & m; it follows that [I(m)u = v and u satisfies (5.3)

for all t 2 m; by Lemma 5.1, u is a solution of (5.1)[m].
Conversely, if u is a solution of (5'1)[m] with [[(m)u = v,
it satisfies (5.3) for all t 2 m (Lemma 5.1); by Lemma 5.3, its

restriction to [m-1,t is uniquely determined by these assumptions

o)
for every tg 2 m; it is therefore itself unique.
This unique solution u depends linearly on v and r; the

linear mappings P(m) and Q(m) such that u = P(m)v + Q(m)r is
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this solution are therefore well defined, Part (1) of the conclusion
has thus been proved, and Part (2) follows from Lemma 5.3,
From Part (2) and Lemma 5.3 we also have
lemwemr) (©)] $ ce® vy + c'jze°‘t'S)Hr<s)Hds
for all t 2 m, Since this holds for every v and every r, Part (3)

of the conclusion follows.

5.5. Corollary, Let the memory M satisfy (M) and po(M) <1,

—— _—

If u is a solution of (5.2)[m] for some m 2 O, then
II(t)u] € Cec(t‘t0)|n(t0)u| for all t2t, 20,

where 0o, C are as in Theorem 5.4.

Proof. is a solution of (5'2)[t0] (Lemma 5.1); the

“lto-11
conclusion follows by applying Theorem 5.4, Parts (1) and (3), to

this solution, and observing that C 2 1 by (5.9).

6. The associated difference equation,

Let us assume that the memory M satisfies (M) and po(M) <1,
We construct a linear difference equation in E in such a way that
the values of a solution of this equation are the slices of a solution

of (5.1). For this purpose, we define the linear mappings

A(n) = - [[(n)P(n-1): E > E

(6.1) ~ T n=12,...
B(n) = MI(n)Q(n-1): E{O](E) - E

and observe that Theorem 5.4,(3) implies
A(n) € E, lam)|| = Cec, n = 1,2,...

(6.2)
Bl Scre’l@n @l , n=1,2,..., 1 el (E.

We set A = (A(n)) € 1;1](55 and define the linear mapping

B: E{O](E) -> i[l](E) by (@Br)(n) = B(n)r, n=1,2,,,., r € E{O](E).
With A thus defined, we consider the following difference

equations in E:

(6.3) x(n) + A(n)x(n-1)

£ (n) n=1,2,...

(6.4) x(n) + A(n)x(n-1)

]
o
=]

]

1,2,...
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and their restrictions (6.3)[m] and (6.4)[m] to n=ml, m2,,...
for each m € ¢y Here £ € f{l](E)’
The fact that (6.3) and (6.4) are, in some sense, reduced forms

of (5.1) and (5.2) is expressed by the following proposition,

6.1, Lemma, Let m € ¢y and r ¢ E{O](E) be given, A function

E

X € 8

~
x =-gu for some solution u of (5.1)[m]. In particular, x is a

m](E) is a solution of (6.3)[m] with f = Br if and on if

solution of (6.4)[m] if and only if x =qru for some solution u

of (5.2)[m].

Proof. This is a direct consequence of Theorem 5.4,(1l) and (6.1),
via a straightforward computation, The details can be found in the
proof of [10; Lemma 6.1], which could be reproduced here verbatim.

As usual, the main problem in applying difference-equation
theory via Lemma 6.1 to our equations (5.1), (5.2) is that not every
fe E{l](E) is of the form f = Br, Our fundamental theorem (Theorem
8.1) states that it is still possible, however, to relate equation
(6.3) with arbitrary f to equation (5.1) with a suitable r.

The amount of information obtainable from the use of equations
(6.3) and (6.4) is considerably greater when the operators A(n) are
known to be compact., It is easy to see that this can happen only when
E is finite-dimensional; for this case we now provide a simple com-
pactness criterion. |

6.2, Lemma, If E is finite-dimensional and (M) = O, then

each A(n) 1is a compact operator.

Proof. Let n € 91 be given., Since p(M) = O, there exists,

1

for given €.> 0, a set S ¢ § such that k(M;S) S 5€ -

Let §6 >0
be the least distance between distinct points of the finite set
[n-1,n] N'S; then clearly k(M;a,b) ¢ for [a,b] € [n-1,n],

b-a S 6.
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For given v e E let ue G n(E) coincide with P(n-1)v
on [n-2,n] and be constant on either side of this interval. By
Theorem 5.4, (3) and (5.9), we have |u| ~ Ce9vl. By Theoremb5. 4, (2)

and (4.2) we have

t t
o) =uln-b) - [ (ML iaUe_g)(s)ds = u(n-1) - £  (Mi)(s)ds,
g I RS I IS By
n-1 2t ~n.
Therefore (4.3), (6.1) and the precedi ng argunment show t hat

[[(A(n)v)(s’) - (AMMV)(S)II = II(P(n-1)v) (n+s) - (P(n-h)v) (H-9 | =

= |lu(rH-s) - u(n+s)|| = ||1F+S (Mu)(s)ds|| » lulk(M;rH-srH-s") ~ Ce?|v]e
O%irtf-s

for all s,s" G[-1,0], 0<s'™-s ™ 6. Since e was arbitrarily small,
we conclude fromthis and (6.2) that the inmage under A(n) of the
unit ball of £ is a bounded equicontinuous set of continuous func-
tions [-1,0] -» E When E is finite-dinensional, it follows from
the Arzel a-Ascoli Theoremthat the closure in E of that image is
conmpact; hence A(n) is a conpact operator.

7. More conditions on the nenory.

W shall wishto investigate equation (5.1) by allowing r to
range over a suitable function space. CQur nethods VVI [l be applicable
if the behaviour of the memory M is adapted to the local properties
of the functions in such a space.

For a menory M Condition (M may be rephrased as follows: The

restriction of the conposite mapping '@PM K 1 (B -»s; B} (Ll(la) to
- ~ Ly ~M1)~ —

G 1-, (BE) is a bounded linear mapping from G ,, (E to I™..(L %E));
the normof this mapping, incidentally, lies between I!'Ill\/l]l and 1M ][,
The condition we now envisage is a nore restrictive assunption of the

sane type on the slices of Mi. For each given space F e hl5 (see

Section 2), we consider the following condition on a menory M

(MF): The restriction gf iaM to H_"(E) ~£ a. bounded |inear
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Mappi ng from |_Cl:,_i,‘](E) to IH,}L,](F(.‘E)) . The normof this mapping

shal | bf denoted b" H-wM“E :
Certain special cases of this condition are easier to state.

W have already noted that (M i) is equivalent to (M ; and since

every space F e bl is stronger than Ll, each condition (M,)

. . . n )
inplies (M . In the sane vein, (I\ﬁ ) may be rephrased as: The

o

restriction of M to E{ ?L’J(E) i s a bounded l|inear nmapping from

“C'[ -|1TJ( E) _toA{I_Og.J,(E) . Simlar rephrasings, involving other trans-
lation-invariant function spaces, are of interest for E = | ,
1 <p <o anong others, and may be supplied by the reader.

In addition to the part Condition (frg) will play in making
the nmenory amenable to our nmethods, this condition is also some-
times sufficient to ensure that Py(M = p(M =0, as we now show.

W shall say that a space F € bl is tane if for every e >0
there is a positive integer h such that

f(i-1)1

(7D

Since [-1,00] is conpact, this is equivalent to assum ng that for

h
| cp(t)] dt "elcpl.E for all i =1,...,h and all cp e F

each t e [-1,00] and e >0 th;abre exists an interval [a,b] such
that t e [a,b] ¢ [-1,00 and | jcp(s)|ds ~ e|cp|— for all cp € F.
W note, in particular, that L7 j» tame fe 1 < p " oo indeed,
it is sufficient to choose h e~"”\P"l\\
W shall say that a nemory M is tame if it satisfies (l\@
for sone tane FE,e b2P. As observed above, a tame nenory satisfies (M .

7.1 lemmm. Af M s a tanme senmory, then p,(M =p(M = 0.

Proof. Let F € bJ5 be the tane space such that M satisfies

,,,,, fro

(M) . Let e >0 be given, and choose the positive integer h so
as to satisfy (7.1). The set St ={n/h: n e co} is uniformy sparse
and contains the positive integers. For given n e oo choose j € u\l]

so that j-1 Sn/h< (n+l)/h~j; then (M) inplies, for each ue G-"(E,
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(n+l)/h -(jh-n-1)

Jn/h “(Mu)(t)“dt - j-(jh-n)/h

Sel@M) (DI, S elbwmulyl S el 1ol

then p(M) s k(M;Sh) s e”uyMHE; but € > 0 was arbitrary.

/h
| CcorMu) (3)) (s)||ds S

Remark 1, An important special kind of memory is, of course,

the autonomous or time-independent memory; i.e., more precisely, a

memory that commutes with left-translations. It will be shown in a
future paper that if E 1is isomorphic to a Hilbert space (in part-
icular finite-dimensional), an autonomous memory satisfies (MLZ),
so that such a memory is always tame,

In this section we have spoken as if the memory functional M
appearing in (5.1) were to be itself subjected to Condition (MF)' In
actual fact, however, it is typical of the problems we are dealing
with that the condition need only be imposed on the dependence of
Mu on the past of u, while its dependence on the current value
of u 1is less restricted. The standard assumptions we shall make
are stated in the following lemma.

7.2, Lemma, Let L e M

~[ 0]

F € b¥ be given, and assume that the memory M' satisfies (MF)

(®) be given and define M by (4.7).

Let
and

QO(M‘)< 1, Then the memory M = ML + M' satisfies (M) and

pO(M) <1, so that the conclusions of Theorem 5.4, Corollary 5.5, and

Lemma 6.1 hold, If, in addition, p(M') = 0 and E is finite-dimensional,

the conclusion of Lemma 6.2 also holds.

Proof., Lemmas 4.6 and 4.3,

7.3. Scholium, The condition po(M') <1 in Lemma 7.2 appears
to be the one most difficult to verify. However, we know that indeed
QO(M') =0 if M' 1is a sum of memories each one of which is uniform-
ly delayed, uniformly narrow, or tame (Lemmas 4.3, 4.4, 4.5, 7.1),

hence in particular if the space F 1is tame (since then M' is
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itself tame)., If M' 1is a sum of uniformly narrow and tame memories,
or in particular if E, is tame, then we also have p(M') = O, so that
the conclusion of Lemma 6.2 holds.

Remark 2. The assumptions of Lemma 7.2 with M' uniformly de-
layed are precisely those considered in [2] for the Carathéodory
case (up to an obvious change in time-scale); the results pertaining
to this case in [2] are thus subsumed in the present paper. We note,
however, that [2; Lemma 8.1], asserting that the transition opera-
tors are compact for finite-dimensional E, is invalid on account of
an error in the proof.

Remark 3. The assumptions of Lemma 7.2 with L =0 and M=M'
uniformly narrow include those considered by Pecelli [7]. Most of the
results in [7] can, as a consequence, be obtained by a specialization

of the methods and results of the present paper,

8. The fundamental theorem,

We now return to the basic problem of using the difference equa-
tions (6.3), (6.4) to obtain information, via Lemma 6.1, about equations
(5.1), (5.2). As in earlier work, the core of our method is a proposi-
tion that permits us to infer properties of (6.3) with arbitrary f
- and not just those of the form f = Br - from information on (5.1).

We assume throughout this section that M = ML + M' satisfies
the assumptions of Lemma 7.2 with respect to some giveﬁ space Ele b¥,
so that Theorem 5.4 and Lemma 6.1 are applicable. We assume that A, B
are as defined in Section 6.

Let V € EIO](E5 be the unique solution of‘the operator differen-

tial equation V + LV = 0 that satisfies V(0) = I (I 1is the identity

on E). We refer to [6; Section 31] for a detailed account of this
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operator-valued function, In particular, V is invertible-valued,

-1

and as usual we write V ~ € for the function defined by

E{O](E)
V_l(t) = (V(t))_l, t 2 0., We also have

N

- t
(8.1) lv(eyv 1(s)H eprJSHL(O)HdGI, s,t 2 0,

8.1, Theorem. Assume that M = ML + M' satisfies the assump-

tions of Lemma 7.2 with respect to a given space F ¢ b&X. For each

f e E{l](E) there exists r € E{O](E) with 0r € f{l](EfE))
(8.2) @)@, S c (Mf@-DI + @D, n=1,2,...,
and such that the soILcion w of

(8.3) w(n) + A(n)w(n-1) = £(n) - (Br)(n), n=12,...
with w(0) = 0 satisfies

(8.4) wmn§<1+wmmgumn, n=0,1,...,

where we set f(0) = 0, and o > 0 depends only on E} 1L} and

M )
oo 24|

Proof. There exists ¢ € F such that ¢ 2 0 and f01¢(s)ds =

We define by

Ve s .

(8.5) (w(m))(s) = (£(m))(s) - <j_1¢<c)dc>V<n+s)v'1(n><f(n>)<0),
-1$s£0, n=0,1

It is obvious that each w(n) is continuous, hence in E, and that

w(0) = 0, as required, Also,

(8.6)  (w(n))(-1) = (£(m))(-1), (w(n))(0) = O, n.=0,1,...;

and (8.5) and (8.1) yield

lw(n)-£(m)] € 1£(n)fexplLl, ,

so that (8.4) holds.

We now construct r, For this purpose we choose, for each n ¢ 011],

a function z € E{n-Z](E) such that
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(8.7)  M(n-1)z_ = - w(n-1) I(n)z_ = £(n) - w(n)
and such that z is constant on [n,»); this is possible on ac-
count of (8.6). Then
(8.8) lz | = max{ lw(n-1)},1f(n)-w(n)]} € max[|f(n-1)|(L+exp|L|M),
1£(n) IeXPILIn} .
We now define r ¢ E{O](E) by
(8.9)  T(B) = Q(E-mV(DV (@) (E@)) (0) + (M7, 120 (8),
n-1<tsn, n=1,2,..,.

From (8.1) and the fact that M' satisfies (MF) it follows that
@r)(n) € F(E) and i

l@o) Mg  lolglf@lexplLly + [lwnflglz;l 0 =1,2,...;
combining this with (8.8) we find (8.2) with

o = ||wM'H£exp|L|M+ max{“-wM'“E , |(p|£exp|L|m].

It remains for us to prove that w and r thus constructed
satisfy (8.3). For this purpose, let n ¢ %1y and t, n-1<t € n,
be fixed for the time being. In the following computation we use in
succession: (8.7) and (8.6); (8.5); differentiation of products and
the definition of V; (8.9) and (8.5); (8.7); the definition of M
and (4.7).

t-n _
2z (t) - z (n-1) = (£(n) - w(n))(t-n) = (j_l (@40 (V™ (n) (£(n)) (0) =

rt S~ -1
= | s=mv(e) - ([ e(0)do)L(s)V(s)) V() (£(m) (0)ds =

t .
- [ O 1120 () - X () L) (E() -w(m) (s-m))ds =

t nt
- 1 - [ — - 2
02 () - 5+ L)z )ds = - [T (0, e ) (9)-x()) s
Since this equality holds for all t, n-1 <t $n, it follows from
Theorem 5.4,(2) that z_ coincides on [n-2,n] with
P(n—l)H(n-l)zn + Q(n-1)r = - P(n-1)w(n-1) + Q(n-1)r., Combining this

with (8.7) and (6.1) we find
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f(n) - w(n)

I(n)z = [(n) (- P(n-1)w(n-1) + Q(n-L)r) =

A(n)w(n-1) + B(n)r;
that is, w(n-1) and w(n) satisfy (8.3) for the given n. Since

n was arbitrary, the proof is complete,

9. Admissibility,

The purpose of Theorem 8.1 was to allow us to replace the study
of equations (5.1), (5.2) by that of the difference equations (6.3),
(6.4); in this section and the next we propose to show how the
method works., We shall assume that the memory M satisfies the as-
sumptions of Lemma 7.2 and that A and B are as defined in Section 6.
We suppose that the reader is acquainted with the concept of
%-pairs and i-)-p_ﬂr_s_ of sequence spaces, i.e,, pairs (E,i) of
sequence spaces with E'e bk or E’e Et*, respectively, and
5 e bt in both cases (the classes bt and bt~ of translation-

invariant sequence spaces are discussed in [1l; Section 3]. We recall

that such a pair (b,d) 1is admissible for A (or for (6.3)) if

(6.3) has a solution x ¢ 2{0](E) for every f ¢ For

by ®).

details see [1; Section 8],

9.1. Theorem,., Assume that the memory M

ML + M' satisfies

the assumptions of Lemma 7.2 with respect to a given space F ¢ b&.

For each given i—’—pair (or, in particular, i -pair) (b,d) the fol-

lowing statements are equivalent:

(a): b 1is stronger than d; and for every r ¢

~

Liop(E) with

wr € E{l](EﬁE)) equation (5.1) has a solution u with —=gu € S{O](E);

(b): (b,d) is admissible for A.

~ o~

Proof. (a) implies (b): Let £ ¢ E[l](E) be given, and let r, w

be as provided by Theorem 8.1, Since b ¢ bta, (8.2) implies
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wr GP—réil'J( F(E)). Further, (8.4) inplies We~lf'u"j‘(E~)’ whence

w G droy-(B since b is stronger than (.

By the assunption, (5.1) with this r has a solution u
such that ipu G <,y (B - °¥ Lenma 6.1 we have (ryu)(n) + A(n) (Bu) (n-1)
= (Br)(n), n=1,2,...; since w is a solution of (8.3), we
conclude that x ="ZDu + we dp_(E, is a solution of (6.3).
Thus (h,d) is admssible for A

(b) inplies (a): Since AGl-**,(TE) (by (6.2)) and (b, d)
is admssible for A we conclude that b is stronger than d,
[8, Lemma 4.1]. Let now r GAI{Q-J(E) be given with 39T e t’)._rii*i](i(E))*
Then (6.2) and the fact that FE satisfies Condition (N (Section 2)
inply |Br] "C'eO"NfaOrIL, so that Br G" J E.), . Since (bd) is
adm ssible for A there exists a solution x e g.llm’,](@ of
x(n) + A(n)x(n-1) = (Br) (n), n=1,2,..., and by Lenma 6.1 there
exists a solution u of (5.1) with “cru = x Gclan(@ , % asserted
in(a).

If B is a subset of L s (E) and D is a subset of K ,-. (E),
it is in keeping with earlier termnology to say that the pair (B D
is adnissible for M- nore loosely, for (5.1) - if for every r e B
there exists a solution x GD_ of (5.1). Thus, statenment (a) in
Theorem 9.1 expresses the admissibility of a certain pair (B D for M
To exenplify the uses of Theorem 9.1, we shall here specify B to be
one of the spaces L’:‘qol(E), 1~p=00 or MO’J(E) or Iflo,j(E), and D
to be either Xle EEL(JE) or %‘JI-'I—\]S|E); but the choices nmay easily be
extended in the spirit of [6; Chapter 2] and the remark at the end of
Section 3. Followi ng earlier practice, the name of a pair of such

spaces i s abbreviated, as, e.g., (J", %) for 07,] (F)>So[-1](E)),

since there is no anbiguity.
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W now record sone of the special cases covered by Theorem9.1.

9.2. Corollary, Assune that the nemory M= IE + M satisfies

the assunptions £f Lemma 1 ! "' '" respect to a. given space F. Wth

F, (B,D), (b,d) as specified in the following table, (B D is ad-

mssible for M _if_and only \t  (b,d) _s adnissible for A

- rA/th.] A N ——
F (B, D) (b, d)
PP ab, o 1€p<o
L (LP,c)  (1P,1D) 1S$p<a

w9 G

RN P B (D
m 1 .4
L (I,ey (1,1D)

2

Proof, Theorem 9.1, and the renmarks on the slicing operator -*

in Section 3.

10. Adnissibility and the solutions of the honbgeneous equation

The admissibility of certain pairs (b,d) of sequence spaces for

A inplies, under sone additional assunptions, an (ordinary) dichotony

or an exponential dichotony of the solutions of the honbgeneous equa-

tions (6.4){m], (see [1; Section 7]). An exponential dichotony, for

i nstance, may roughly be described thus: the bounded sol utions tend

uni formy exponentially to 0, there exists a "conplenentary" manifold

of solutions of (6.4) tending uniformy exponentially to infinity, so-

lutions of the two kinds rermain uniformy apart, and together they

span all solutions. Since Lenma 6.1 provides a bijective correspondence

between solutions of (5.2), , and solutions of (6.4), , for integra
[m [m

m Theorem 9.1 and Corollary 9.2 will allow us to translate that result

into an anal ogous inplication for differential equations with del ays.

In order to avoid unenlightening conplications, we restrict our-

selves in this section to the case in which ® is specified to be
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i.e in which bounded solutions of (5.1) and of (6.3) are sought,

°)
The case in which d is }E, so that attention is centred on so-

~

lutions of (5.1) and of (6.3) that tend to O, can easily be treated

’
in a similar fashion; as can also cases with more general E’e bi;
with appropriate use of [1].

We assume given a memory M = ML + M' that satisfies the as-
sumptions of Lemma 7.2. We denote by EO(O) c E the set of "initial
slices" T[I(0)u of the bounded solutions u of (5.2); by Lemma 6.1,
EO(O) is the set of values at n = 0 of the bounded solutions of (6.4).

We now state the main "direct" theorem, to the effect that the
admissibility of certain pairs of function spaces for M implies a

behaviour of the solutions of (5.2) that may be termed an ordin-

[m]

ary or an exponential dichotomy.

10.1. Theorem. Assume that the memory M = ML + M' satisfies

the assumptions of Lemma 7.2 with respect to a given space F ¢ bd.
Assume that EO(O) is closed in E; Assume that E'e bté (in partic-

ular, b € bt) is [not stronger than ‘Ll and] such that for every

r € EIO](E) with qgr € E{l](EﬂE)) equation (5.1) has a bounded

solution,

Then there exists [a number v > 0 and] a number N > 0 such

that, for every real m 2 0, every bounded solution v of (5.2)[m]
satisfies
. -v(t-t
(D IIOVE S Nl [ Icovl S ne™VE nee jop
for all t 2 t 2 m;

there further exist a set W of solutions of (5.2), [a number ' > 0]

and numbers N' > 0, A > 1 such that, for every real m 2 0

ever
0

)

solution u of (5.2) is of the form u=v + w where v
I LV E [m-1]7 58

is a bounded solution and w € W, and such that every solution w e W
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sati sfies

(ii): [T1()wW A~ N"Y 11 (to)w [ (t)w "N’~1eV’\t:-t0)|1’I(t0)w| 1
for all 't nt, 20
(i)« re)w N Xgn(t)w - 1i(t)vl for_all t>m>0 and

all bounded solutions v ££ (5.2), Wy

Jf E £ finite-dinensional and p(M) = 0, then the assunption

t hat ED(O) JLE closed is redundant, and W may be chosen to be <a

finite-dimensional |inear nmanifold.

Proof. 1. By Theorem9. 1, (B,I:°) is admi ssible for A W now
refer to [1] and [9] in order to deal with equations (6.3), (6.4).
Specifically, Condition (d) of [9; Lemma 4.2] is satisfiedwith (l: Lm.
We consider the covariant sequence E . (whose general termis E (n),
the set of initial values of the bounded sol utions of (6.4). , } .

Si nce .E..O(O) is closed by assunption, [9; Theorem4.3,(a)] shows
that the covariant sequence ED is (closed and) regular. W can
therefore apply the fundamental "direct" results [1; Theorens 9.1 and

10.1] for difference equations, and find that this covariant sequence

i nduces a dichotony [an exponential dichotony] for A

2. To make this result nanageabl e, we use the description of a

di chot ony [an exponential dichotony] given by [1; Theorem7.1,(c)].
W observe in the proof of that theoremthat we are free to choose
the splitting q (a "non-linear projection” in E, anni hi l ating E.D(O));
this will be inportant in Part 3 of this proof. W choose q and de-
note its range by i Thus E: EO(O) + E Now the covari ant sequence
ED is regular; therefore we have, for every integer n ~ 0, by
[1; Lenmma 5.2,(b) and (5.2)],

E=7(n) +Un0E ="(n) + U(n,0)"(0) + Un,OQZ ="(n) + Un, OZ

This means that if x is a given solution of (6'4)’n] there exists a
L
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solution z of (6.4) with z(0) € Z such that y =x - z is

[n]
a bounded solution of (6.4)[n].

We define E, to be the set of those solutions w of (5.2)
that satisfy T(O)w ¢ E. The remainder of the proof of the main
conclusion of the theorem is now identical to that of [10; Theorem
7.3] (from the last paragraph of Part 2) with the following changes:
[1; Theorem 9.1] is used, and the exponential factors deleted, in
the "ordinary dichotomy" case; and Corollary 5.5 and the factor ce’

are used instead of [10; Lemma 5.2] and the factor epoMC

~

3. If E 1is finite-dimensional and p(M') = O, then each
A(n) 1is compact (Lemmas 7.2 and 6.2). Therefore [9; Theorem 4.3,(b)]
is applicable and EO(O) is closed and has finite co-dimension in E:
We may therefore choose the splitting q 1in the preceding proof to be
a linear projection of E’ along EO(O) onto some finite-dimensional
complementary subspace E; Then E’ is a finite-dimensional linear
manifold of solutions of (5.2).

10.2. Corollary. Assume that the memory M = ML + M' satisfies

the assumptions of Lemma 7.2 with respect to a given space F ¢ bdJ,

Assume that EO(O) is closed in E. Assume that (B,C) is admissible

~

for M, where F =1 and B = Ll, or F = L and B=T [F = LP
and B = Lp, l1<pSw, or F= L1 and B = M]. Then the conclusions

Proof. Use Corollary 9.2 instead of Theorem 9.1 to enter the proof
of Theorem 10.1.

10.3 Scholium, Since EF is tame when 1 < p S », Scholium 7.3
implies that the conditions QO(M') =0, p(M') = O are automatically

verified when F = LP for such a P.
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To conclude, we state a reasonably strong form of a "converse"
theorem to Theorem 10.1, and sketch its proof.

10.4. Theorem, Assume that the memory M satisfies (M) and

pO(M) < 1. If the main conclusion of Theorem 10.1 holds for the

solutions of (5'2)[m]’ then the pairs (Ll,C) and (T,C) [the

pairs (E?,E?, 1S p<Sw, and (E&E)] are admissible for M.

Proof. The assumption on M implies that it satisfies the
assumptions of Lemma 7.2 with L = 0, M'=M, and E = E}. The main
conclusion of Theorem 10.1 implies, via Lemma 6.1 and a little com-
putation, that ED(O) is indeed a regular covariant sequence for
A and induces a dichotomy [an exponential dichotomy] for A
[1; Theorem 7.1]. From the "converse" theorems for difference
equations [1l; Theorems 9.2 and 10.3] it follows that the pair
(l},l?) [the pair (lf,lf)] is admissible for A. From Corollary
9.2 we conclude that the pair (E},E) [the pair (Ebg)] is admis-
sible for M. The other pairs in the statement are then obviously

admissible, since E{O](E) is stronger than E;O](E) [since every

EFO](E) is stronger than E&O](E)].
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