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FILTER SPACE MONADS , REGULARITY , COMPLETIONS

Oswald Wyler

1. Introduction

Many completions and compactifications in general topology follow a rigid
pattern, known as the Wallman type. A space X is embedded into a space T X
of filters on X by mapping every point x € X into the point filter X €T X ,
The space T X turns out to be complete or compact because every filter in
T (T X) converges, for the topology of T X , to its contraction in T X , The
completion of a uniform space by Bourbaki [3 ; 1“ ed.] and the Wallman compacti=
fication [28] are early, and typical, examples.

In recent years, the same filter constructions have occured in different
settings. Point filters and contractions of filters of filters were used by Cook
and Fischer (6 ], [#] and by Fleischer (/0] to define and discuss regular con-
vergence spaces, and by Sjcberg [?-7] to discuss regular uniform convergence
spaces. Following this work, the author [32) showed that regularity can be
interpreted as continuity of filter convergence. Manes (/8], [/9] used point
filters and contractions to construct an ultrafilter monad on the category of

sets, and he showed that algebras for this monad and their homomorphisms are com-

pact Hausdorff spaces and their continuous maps.



In the present paper, we try to bring these trends together. We define fil-
ter space monads for categories of convergence spaces and categories of uniform
convergence spaces, and we give numerous examples of such monads, We call a
space X separated, with respect to a filter space monad ('1‘,77,,4;.) y if a fil-
ter in T X converges to at most one point in X , complete if every filter in
T X converges, and regular if filter convergence is a continuous relation from
TX to X, "Separated" clearly means T, , and we show that "regular" means
'1‘3 without ‘I‘o . If the pointsl of TX are the ultrafilters on X , then
"complete" means "compact". If (X,;) is an algebra for a filter monad, then
every filter @€ T X converges to f(?) in X . Conversely, if X 4is sepa-
rated, regular, complete, then X has a unique algebra atructure for the monad,
given by filter convergence q : T X —>X . It follows that eeparated, regular,
complete spaces are categorically very well behaved. We also discuss continuous
extensions of functions, generalizing in particular results of Sjoberg [?_7].

The outline just given requires some supportive work. Thus we include two
sections on filter algebra and one on continuous relations. We define categories
of convergence spaces and categories of uniform convergence spaces, and we obtain
functors connecting these categories. Topological speces and uniform spaces are
among the examples, The plural "categories"” is motivated by the desire to
include these examples, and by the fact that different contexts may require dif-
ferent axioms for convergence spaces and uniform convergence spaces., We shall
use the language of top categories [30], [3/] freely, but not essentially., The
reader is referred to [17] for categorical terms.

Some questions connected with this work remain open. We have been unable

to define filter space monads for categories of generalized proximity spaces or



syntopogenous spaces [7 ] Our work cannot be extended in its present form to
categories of topological algebras, Operations can be lifted easily fram points
to subsets to filters, but most formal lawe do not survive this process. Formal
laws survive for operations on nets, but contraction for nets, i.e. the comnstruc-
tion of diagonal nets for double nets, presents problems. Filters with special
bases usually do not have nice functorial properties; thus our theory cannot be
applied, in its present state, to compactifications of the Wallmen type.

In order to keep the length of this paper in reasonable bounds, we suppress
many proofs which we consider straightforward. Supplying these proofs will pro-
vide the reader with some healthy exercise in filter algebra. A final warning:
in our effort to use coherent notations for filter algebra, we have discarded and

sometimes reversed traditional notations which are incompatible with this effort.

2. Some filter algebra

2,1. We define a filter on a set S as a set F of subsets of S which
satisfies the following two condition.

2.1.1. Every intersection of finitely many sets in F is in F ,

2.1.2, If ACBCS and A&F, then BEF .

It follows from 2.1.1 that SE€ F ,

If AC S, then the subsets of S containing A form a filter on S
which we denote by [A] . More generally, we denote by [G] the filter gener-
ated by a filter base G . We note that F = (] &= PEF for a filter F
on S . This filter is called the pyll filter on S ; all other filters on S

are called proper.



2#2. It + is amonotone binary operation, fromsubsets A of a set st
and subsets 6 of aset S" to subsets A+B of aset Sy, andif F is a
filter on S' and G one on S" , ‘thenthe sets A+ B wth AEF and
BEG forma filter base; we denote by P+ C the filter on S wth this
base. This notation requires of course that the sets S , S' . S are given by
the context. W note that the sets A+ B already forma filter base of P+ G
if we restrict A to some base of P and B to a base of G . It may happen
that A+ B can be enpty for non-enpty sets A and B ; inthis case F+ G
may be the null filter for proper filters P and G.

(ne obvious law [A] +[B] « [A« B] .

\\¢ use the convention introduced above for operations of any finite arity.
Formal laws for operations on subsets can then be extended easily to the corre-
spondi ng operations for filters*

Exanple: for filters F and G onaset S, thefilters F%Q and
PnO on S are generated by, in fact eonsist of, all sets AuB and An B
respectively wth A£F and BE£G . W note that FuG is the intersection
of the sets F and G of subsets of S ; this coincidence should not stand in

the way of consistent notation,

2.5. If U, V are conparable structures ona set Sy thenwe wite
Urv if U is the finer structure than V ; this ensures that nonotone map-
pings fromstructures of one kind to structures of another kind usually preserve
order. In particular, we wite FG for filters onaset S if F is the
finer filter, i.e. if the set F contains the set G . Thus [A] ~[fl] , for
subsets A and B of S, if andonly if Ac By and FA[A] ¢ for a
filter F and a subset A, if and only if AEP .



Filters on a set S form a complete lattice, with the null filter as finest
and the filter [S] as coarsest element. The mapping A > [A] preserves all
suprema, and finite infima, The camplete lattice of filters on S is atomic,
its atoms are called ultrafilters on S . General inequalities for finitary
monotone operations on subsets imply the corresponding inequalities for the core

responding operations on filters.

Zéi‘ If £f:S —>S' 4s amapping and F a filter on S , then the sets
£(A) with AE P form a base of the filter f£(F) on S' , by 2.2. £ (G) is
defined similarly for a filter G on S' ; we note that f(F)< ¢ &=
FL f-l(G) . It follows that f preserves all suprema, and ¢! all infima,

of families of filters. We note that
(2.4.1) BE#F) &= £ lB)EF ,

for BC S' and a filter F on 8 , This is a very useful law,

2.2. Let now S* be a set of filters onaset S . For x €5, we put
%= [{x}] 3 this filter consists of a1l A C S such that x& A . Ve assume
that % € S* for every x€ S .

If AC S, then we denote by A* the set of all ¢e S* with Aéc}) v

In particular, x €A &= xEA* for x€ S . Ve note that always
(AnB)* = A*AB* ,
and that @ = § if S* consists of proper filters on S . We put
P, = {acs:ared},

and call ¢, the contraction of (D, for a filter (O on S* . One sees

easily that this is & filter on S , and that O, is proper if ¢ is proper



and S* consiste of proper filiers on S , We note that

(2.5.1) &, = inf sup ¢
Ped. {fQP

see [251,. Thus qf, is essentially the contraction defined by Kowalsky [/5].

2.6, Let j : 5 —>5* be defined by j(x) =% . let 5** be a set of
filters on S* such that (., & S* for every (UES** ; ve denote by k :
S** __, S* the resulting contraction mapping. We not« the fellowing formal

laws, cnitting the straightforward proofs.

2.6,1. i a*) = A, for AC S,

2.6.2. (;?)*, ¢ for ?gs* , and (§j(F))y = F = (F*),, for a fil-

ter F on S .

2,6.3. 4y ¢ ¥ &= Y« P, for filters F on S and Pon S*,
It follows that ¥ v+ »F* prescrves all infiwa, and tD > q/, all suprema,

of feamilies of filters.
2.6.4. KH(a%) = (a*)* , for A (S,

2.6,5. (k(.F)), = (5 ,),, fors filter F on S** ,

2.7, Consider now u wapping f : R ->5 , and sets R* of filters on R

and S* of filtera on S such that f waps R* into S* . We denote by f* :

R* —> 5* the resulting f'ilter mapping, and we note the following formal laws,

f(x) =y &> t*(x) =3, for x&€R and y€S .

. (f"l(s))* = (g2)"Y(p®) , for BC S,

:

1.3, (P, = (e*({)), , for e tilter ¢ on R* .



2. _Categories of convergence spaces

3"l Ve define a convergence structure ona set S as arelation gq from

proper filters on S to S, subject to the two Prchet axions*

L1, If x€S, then iqgx ;

L2 If Pgx and ¥4 ¥4 then Pqgx .
A convergence space (Seq) consists of a set S and a convergence structure q
on S ; wemy put q«qgyz and S« [X if X* (Sq) e

W call q* figer than q and put q*” q; for convergence structures
q and g° onthe sane set, if Pqg x always inplies Pqx « Wth this nota-
tion, convergence structures on S forma conplete lattice, with F (inf qi) X,
for a famly (qi)u_:j of convergence structures on S, if and only if Pqii
for every i &1

If f: S-S ieamppingand q° a convergence structure on S' |
then F (f%°) x <£=r f(P) q" f(x) + for x&3 and a proper filter P

9

on S, defines a convergence structure f g on S . This mapping f pre-

serves infim, and thus

(3.1.1) q<f*Vv 4*r fagnr g

for a mapping f"* fromconvergence structures on S to convergence structures
on S . W say that f : (Siq) - (S%qf) is continuous if these inequalities
are satisfied*

This defines a category CONV of convergence spaces and continuous func-

tionsj the word ggp wll always refer to a continuous function*

3:2+ The category CONV is too large for many purposes; nany authors have



considered additional axioms. W list sonme axions which have been proposed
J>»2 .1 A convergence space (S,q) is calledalimt space if ?-q x and
Gqx always juaply (PKIGQ q x °
J5.2.2. A convergence structure q ona set S is called a pseudotopology*
and the space (S'q) a Choquat space, if P g x whenever eveiy ultrafilter

finer than P converges to X

3»2«3» A convergence space (S;q) is called a nejighborhood space or a

closure space if every x €S has a neighborhood filter h& such that P g x

p=" P <£I; t for every x €S and every proper filter P on S ,

3*2Am k convergence strﬁcture g on S is called topological .if g is a
nei ghborhood structure, and every neighborhood filter Nx has a base of open
sets. Hei® Ua 3 is called gpen for q if Pqgx and x€ U always inply
UE P+ (ne sees easily that q 1is topological if and only if q is filter
conveni ence for a topology on S .

The followng two axions are of different nature.

Ne245. A convergence space (S,q) is calledunifornzable if the relations
Pgx: Ggxf¢ Gqy always inply Pqy ,

3*2.6. A convergence space (S,q) is called Quasi-uniformzable if the

relations Pqg x and i qy always inply F ™y .

N3« W do not want to specify a particular system of axionms for conver-
gence spaces, and thus we proceed as follows. W specify for every set S a Bet
QS of convergence structures of S subject to the followng two conditions. -

2« If Uj )Mt 2% fanily of structures in QSy then inf q., is
a structure in QS 4

3.32. If fiS~S?! isamapingand g€ QS ; then f'q'GQS .



We denote by Exs® the category of all convergence spaces (S,q) with

qg € QS and their continuous functions, and we call such a category EtBQ a

category of convergence spaces.

g. If EIEQ is a category of convergence spaces and S a set, then QS
is a complete lattice, with the indiscrete convergence structure of S as its
coarsest element. If f : S —> S' is a mapping, then we denote by Q f ¢
QS* —»> QS the mapping obtained by restriction of f‘_. The mappings Q f
preserve infima and define a contravariant functor.

In the language of [30] and [37], every category Exs? of convergence
spaces is a top category, and EDBQ' is a top subcategory of E!BQ if
Q'S C QS for every set S , If this is the case, then EISQ' is a reflec-
tive subcategory of exs® , with reflections id S : (S,q) — (S,?q) , for

q€ QS and ?q the finest structure in Q' S which is coarser than q .

2&2' Let EIEQ be a category of convergence spaces. If r 1is a relation,
from proper filters ona set S to S , then there is a finest structure q in
QS such that F r x always implies F q x . We say that this structure ¢

generated by r , or by the convergences F r x .

3.5.1s Proposition. Lat q in QS )e generated by a relation r .
If f:S—>S' js amappingand q' in QS , then f : (S,q) — (5',q")
is continuous if and only if F r x always implies f(F) q' f£(x) .

We omit the simple proof of this useful result.

&. The logical connections between the axioms of 3.2 are mostly obvious;

we note only that every topological convergence structure is quasi-uniformizable.
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Every combination of axiome in 3.2 leads to sets QS of convergence structures
which satisfy 3.%.1 and 3.3.2, and hence to a category EISQ of convergence
spaces. In particular, we shall regard the category TOP of topological spaces
as & category of convergence spaces.

Many possible sxioms for convergence spaces do not lead to a top category
EISQ of convergence spaces. We list only two important examples.

'1‘1. If xqx, then x=y .

T2 . If FPqx and Fqy for some filter F, then x=y .,

In both cases, 3.3.2 is not valid, and %.3.1 fails for empty families.

4o Convergg_xgge spaces of filters

i—é;' We work in a category EDBQ of convergence spaces. I1f S* is a set
of proper filters on a set S , with X& S* for every x €S5S , then a con-
vergence structure q* in Q S* will be called compatible with a structure q
in QS if q* satisfies the following three conditions,

4,1,1, If Fqx . then F* q* x .

412, It @atg wnd Gy =¥, then Yatg .

4.1,3, If q;vq*?; and qu, then ¢, q x .

We note that properties 4.1.1 and 4.1.2 are preserved by infima in Q S¥* ,
for a given q <€ QS . If one structure q* in Q S* eatiefies 4.1.3, then
every finer structure in Q S* satisfies 4.1.3, Thus if Q S* admits a struc-
ture compatible with q in QS , then Q S* admits a finest structure which

is compatible with q .

4.2. Proposition. If a structure q* jim QS* js compatible with a
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structure q in QS , then q is quasi-uniformizable (3.2.6), apd
(4-201) CPQ‘* @d)*qx »

for x€S anda filter pon S* . If q¢* in QS* is guasi-uniformizable
and satisfies (4.2.1) and 4.1.2, then q* is compatible with q in Q8.

Proof. If Fqx and Xqy, then FP* q* X by 4.1.1, and Fqy fol-
lows from 4.1,3 and 2.6,2, If Pq* £, then P, q x by 4,1.3 and L 1. Con-
versely, if CD* q x, then d q* ¥ by 4.1.1, 4.1.2 and 2.6.2.

4.1.1 for q* follows from (4.2.1) by 2.6.2. If (Dq*cf» and @qx,
then @ q* £ by (4.2.1) end 2.6.2, and ¢'q* £ and P, q x follow if q* is

quasi-uniformigzable.

iz.é. Because of 4.2, we look for examples only if EtBQ consists of quasi-

uniformizable convergence spaces,
Q

’

If ENS™ ia the category of all quasi-uniformizable convergence spaces,
then we put CDq‘C() , for @ in 5* and a proper filter O on S* , if and
only if either (f),é? or @, q x for some x €S such that % ét?.

This clearly defines a convergence structure q* which satisfies (4.2.1)
and 4,1,2, If (I)q*(f and ci‘:q*xy » then we must prove QJq*y/ . The only
nontrivial case is d)* qQx, CP qQy, with x éc"; and } <4’. But then also
tqy, and §, qy since q is quasi-uniformizable.

If g* in QS* is compatible with q in QS , then clearly P o* ¢ 1r
Cb,écf;. Ir % SCF and d),_ qQ x, then d)q*ifv and ".izq*(l) for tllai » and
(pq*q: follows if q* is quasi-uniformizable. Thw. we have obtained the finest

struoture q* in Q S* which is compatible with ¢ .



4.4. If ENSQ is the category of quasi-uniformizable limit spaces, then we
mt Qg @, for (ES* and a proper filter O on s+, irb< (UF)
for a finite femily of filters F, on S such that (Fi)* q* ¢ bty 4.3. This
defines the finest structure q* in Q S* compatible with q in QS , The

proof proceeds as in 4.3; we omit it.

4.5. If EBQ is the category of quasi-uniformigable neighborhood spaeces,
and if Ng is the neighborhood filter of c?es* for q*, then Ng= (F?)*
for ¥y = (N?), » by 4.1.2 and 2.6.2, with F, =N_ for x€5 by (4.2.1),
Conversely, putting N"f = (F;’.,)* for ¢ €5* , with @< F‘? and F, =N for
x €S , defines a neighborhood etructure q* on S* which satisfies 4,1.2 and
(4.2.1).

If we say that a filter F on S is q-saturated if % <F always implies
Nx <F, then the infimum of a family of q-saturated filtere is q-saturated.
Thus there is a finest q-eatureted filter F on S which is coarser than ¢ ;
we choose this filter as Fp for op € S* ,

The neighborhood filter Nx of x€S 1is q-saturated if q is quasi-
uniformizable, and ¥ KN . Thus F, =N . If ®q*y, then p<£P,, and
Fo <F, follows by our comstruction. But then d)q*ﬁ) tmplies q*y . Thus
q* is quasi-uniformizable, and compatible with q by 4.2.

On the other hand, if q* 4s compatible with q and ¥ <F,, for x €S8
and cPé S* |  then (Nx)* q* ¢ and q:’q*(P for ¢ = £, and (Nx)* q*9 and
N_< F;(> follow. Thus F_ must be q-saturated, and the structure g¢* con=-

?
structed above is the finest structure in Q S* which is compatible with q .

4,6. Let now Exs9 be the category of topological spaces. Neighborhood



13

filters for q* must again be of the form Nq,n (rq,)* » with p<£Fy, and
with Fi = Nx for x &S . These conditions are satisfied for the topology of
S* constructed in [32], with the sets U* for q-open sets U as & basis of
open sets, For this topology, F?, is generated by the q-open sets in P

We claim that this topology of S* is the finest structure q* in Q S* which
is compatible with q .

If U is q-open, then U* is q*-open since q* is finer than the topo-
logy of S* described above, Thus U € F‘P if U 4n P is q-open, On the
other hand, if V& F_ , then there are sets P C S* and W& F‘P such that P
is q*-openand W* C PcC V*, If x&€W , then £ &€W*¥, and P 48 in
Ny = (Nx)’ . Thus (Ux)* C P for same open q-neighborhood U_ of x , and
Ux C V follows. If U is the set union of these open sets Ux » then
WCuUuCcCv, and UG F? follows. Thus F‘f is generated by the q-open sets

in F

9 and our claim is verified.

Filter space _for convergence spe

gé}‘. Let EI‘SQ be a category of convergence spaces, and let T : ENSQ
—> N be a functor. We put T X = (X*,qy;) for an object X of Exst |

end we say that T is a filter space functor on EIBQ if the following three

conditions are satisfied.

5.1.1. For every object X of Exs® , the set X* is a set of proper
filters on |X| , with % €X* for every x¢& |X|.

5.1.2. For every object X of ENS®, the structure qn of TX is

compatible (4.1) with the structure qy of X .,

BT LISRARY
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5.1.3* If f : X—=Y in BKS?; then Tf maps every filter qac—.-x*

intothe filter f(€? on |V .

Y
Ve say that a filter space functor T on ENS is-kemke if g is the

finest structure in QX which is conpatible with a3 o for every object X

of ENS® .
5.2. Theorem _Let ENSQ be a_cateqgory of convergence spaces» and assunme
that a set X* of proper filters on IX is assiagned to every object X
Q Q

— L L

of ENS 4 This assignnent deter”i"”s a fine filter space functor T jjn EHB

if and only if the followi ng three conditions are satisfied.

5.2.1. 1£ x€|X ¢ thenalways * € X*

5.2424 For every object X jgf E1B"; there is in QX a structure g*

which is compatible with gy *

———

5.2.3. Il f : X —Y ia B»S?®t thenthe filter fty fla ~| is in

Y* for every filter <p€ X*
P=eef. The conditions obviously are necessary. Conversely, they deternine

a fine filter space functor T on ENS uniquely, provided only that the
i nduced filter mapping T f : (X*?‘iw) L (Mt rIy) 'S continuous for evexy map
f : X3 Y in ENS?.

W note that g* is the finest structure g* in QX* which satisfies

Cb*‘lxx -3 Pqg*i,

for x€ |X andafilter (p on X*; and 4.1.2; Thus all we have to dois to
show t hat (if)é’q"j satisfies these conditionse This follows inmediately from

2.7.3 and the definitions; we omt the details.



5.3. Let °
T be afilter space functor on a category ENS* of convergence

spaces* For a space X in ENEH, we define rj» : X— T X by putting

ﬁ"’"(x) ai for every x +£IX o

Proposition* Tiy | X--2TX [s,_an enbedding* and.natural in X

Proof . AL Is injective, and natural in X by 2.1.1. It follows from

2.6.2 and (4.2.1) that always ?2q,x <t**$>-y,(P) g%, for x£| Xl anda
filter F on U . Thus-"l I's an enbeddi ng*

5.4, Ve say that a filter space functor T on a category ENS* of conver-

gence spaces defines a filter space mopad if T satisfies the condition:

1, If Q) &(TX»; thenalways Q> "™ e

241
Q

for every object X of ENEP e« |If this is the case, then we denote by 1351

TTX-2TX the contraction map given by /A(°t7) »<!>## for <) e (T! ) .
Q

5*5* Theor?h* If a filter space functor T on a category EKS' of con-

vergence spaces defines a filter space monad, then (T*_fl“fl_'A) is a manad

an ENS .
We call a monad (T;fjo/uS) obtained in this way a<ttter—space~moned:

Proof* A is natural in X by 2.7¢*3* |f 4>£(T X)* and <p * 04 .
then (p gjjjcp ty 26*2* 4.1.2 and L 1. Thus &qy*ty implies F* g*j <p .
by 4.1.3* Since ("("))x « (M4)s iy 2.6.5 yu(d=-) g~y follows ly 4.1.2*

Thus Wy is continuous® The foxnal laws for a monads

pr B - TATX = gy gy o py (Bpg) = pypag

fol low imrediately from2.6*2 and 2*6*5.



16

gz.g. By 4.2, a category qu of convergence spaces can have a filter
space functor only if every space X in E‘JBQ is quasi-uniformizable, On the
other hand, ENSQ alwvays admits a trivial filter space monad if this condition
is satisfied: let X* be the set of all filters %t for x¢ (X| . For the
resulting filter space monad, 7 and 4 are natural equivalences.

For the categories Exs® discussed in 4.3 - 4,6, filter space functors and
monads are easily obtained. 5.2,2 is automatically satisfied, and thus only

5.2.1, 5.2.3 and 5.4.1 have to be verified. We list some obvious examples.

5.,6.1. Let X* be the set of all proper filters on [X| .
5.6,2. Let X* be the set of all filters on [X| which converge for gy .
54643, Let X* be the set of all ultrafilters on |X| .
5,6,4. Let X* be the set of all ultrafilters on |X| which converge
for 9
5,6,5. Let X* be the set of all proper filters on (X| with the

countable intersection property.

6. _Categories of uniform convergence spaces

6.1. We define a pre-uniform convergence structure on a set S as a set U
of filters on S X S which satisfies the following two axioms.

6,1.l. If xS, then xX xe& ll.

6,1.2. If PclL and W<, then YU .
We include the mull filter on SX S in Ul. A pre-uniform convergence space
(S,w consists of a set S and a pre-uniform convergence structure L{ on S ;

we may put usllx and S = \X| if X = (S,l) .
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We order pre-uniform convergence structures on S by calling u' Liner
than 2l , and putting W' <€ 1(, if W < U . This defines a complete lattice
of pre-uniform convergence structures on S , with set intersections as infima,

If £:5S —>S' is a mapping and W a pre-uniform convergence structure
on S' , then we denote by f£< /' the pre-uniform convergence structure on S
consisting of all filters ¢’ on S X S such that (f x f)(d) is 4n W'. Tne
mapping £ thus defined preserves infima.

These data define a category of pre-uniform convergence spaces; a map f @
(8,u) — (S',U) 4s a mapping f : S—>S' such that LU < £52. A map of
this category is also called a uniformly contjnuous function,

6,2, If U and V are subsets of S XS , then we put

a2z
vl s {(xy) : (x)eul

and VoU = {(x,y) : (32)((x,8) €U and (g,y) e Y

the corresponding operations for filters on Sx S are then defined by 2.2, See

[5] for some laws satisfied by these filter operations.

6.3. We list some additional axioms for pre-uniform convergence spaces,

(S,l) will be a pre-uniform convergence space.

6.3.1. We call (S,l) a guasj-uniform conversence space if Yo is in
‘W for every pair of filters (b and W in UL .
6.3,2. We call (S,u) a semi-uniform convergence space if &1 1e 1 U

for every filter ¢» in Li .

6.3.3. We call (S,U) a demi-uniform convergence space if ¢ od)'lo o)
is in ULl for every filter (P in W .
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6.3.4. We call (S,u) a upiform convergence space if (S,U) 4is both semi-
uniform and quasi-uniform,

The following two axioms belong to another group of axioms.

6,3.5. We call (S,U) a pre-upiform limit spece if Pou W is in U for
every pair of filters © and ¥ in UL . '

6,3,6. We call (S,) =a pre-uniform space if there is a filter ¢, in Ul
such that (e U &= P<L P, , fora filter ¢ on Sx S,

We shall combine the two groups of names freely; thus (S,l) will be
called a quasi-uniform limit space if 6.3.1 and 6.3.5 are satisfied. We shall

write WL = [®] if UL is a pre-uniform structure with coarsest filter <p .

6.4. As in 3.3, ve avoid choosing a particular system of axioms for uniforn
convergence spaces as follows. We assign to every set S & set US of pree
uniform convergence structures on S , subject to the following two conditioms.

6.4.1. If (ui)iél is a family of structures in US , then infu‘ is
a structure in US ,

6.4.2, If £:S —>S' 4s a mapping and LEUS' , then S UeUS,
We denote by ErBU the category of all pre-uniform convergence spaces (S,'u)
with U, €US and their uniformly continuous functions, and we call such a cate-
gory EDBU a category of uniform convergence spaces.

We note that the indiscrete uniform structure of S , consisting of all
filters on SX S, is in US for every set S , by 6.4,1. The considera-

tions of 3.4 and 3.5 can be taken over almost verbatim; we consider this done.

6.5. If S is asetand ¢) a filter on S XS, then the set [d1] of

all filters @ £ P on S XS is a uniform structure on S in our sense if
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and only if 4>, is auniformstructure of S in the Bourbaki sense. Thus uni*
form spaces define a category of unifoxm convergence spaces* The sane renark
applies to quasi-uniformand sem-uniform spaces*

W\ have tried to adopt a standardized and consistent taxonony for conver-
gence 8paces and uniform convergence spaces. 3*5 and 6.4 enabl e readers who so
desire to substitute their termnology for ours. A uniform convergence space in
the sense of Cook and Fischer [ 5] is a uniformlimt space in our sense, with
6.1,1 replaced by the stronger axiom [<€5] <€ U; where A is the diagonal of
SX S These spaces define a category of uniform convergence spaces in our
sense. The main effect of [ A]el X seens to be that the null filter on SXS
can be avoided in conputations. On the other hand, exanples become harder to
construct, and our theory of spaces of Cauchy filters has to be nodified, if this
axi omis adopt ed.

Demi-uniformty (6. "5.3) seems to be the appropriate axiomfor generalised
epsilonties. W note that a dem-unifonn [imt space (S t# wth [A]leZX is

already a unifona limt space, and that always < 4 Cpr"OCD ‘

7. Induced and fine structure functors

LD It (S1) s a pre-uniformconvergence space, then
Fqu! G Fxtell,

for a proper filter F on S and x£S , defines a convergence structure @,
on S, W say that g" is induced by 1A and we wite q(li) for qy if
this notation is nore convenient*

If f . (SU ~7 (S\2X') is uniformy continuous, then f : (S,q") -
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(S',qZ L,) is continuous. This follows immediately from

(fx £)(Fx %) = £(F)x £(z) .
This formula is &lso used in the proof of our next result; we omit this proof.

7.2, Proposition. The papping Ul i—> q, L TQ= n
structures to convergence structures preserves infima, and it satisfies

a(t€w) = qy) ,

for a mapping f : S —> S' and a structure 2 on S',

1.3. Putting P (S,U) = (S, u) defines a functor P which preserves not
only underlying sets and mappings, but elso infima of structures and inverse
image structures. We call this functer P an induced structure functor. In the
terminology of [3/], P is a top functor.

We need in fact not one but many induced structure functors. If EHSSQ is
a category of convergence spaces and ENSU e category of uniform convergence
spaces, then we may denote by U' S , for a set S , the set of all structures
U in US such that q,, €QS . It follows from 7.2 that the sets U' S
satisfy 6.4.1 and 6.4.2. Thus a category ENSU' of uniform convergence spaces

]
and an induced structure functor P : EIBU —_> EISQ are defined.

7.4. Every induced structure functor P : ENSU' —> ElBQ has a left
adjoint F : ENSQ -7 EIBU' which also preserves underlying sets and mappings.
We call such a left adjoint F a fine structure functor. In the terminology
of [3/], F is a cotop functor.

If P:ENS' —> ENSY s given, then an object (S,q) of ENMSY will be

called uniformizable, with appropriate prefixes or constraints to indicate P
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or E)BU ,» if q = qq, for some LU’ S . One sees easily that (S,q) is of

this form if and only if (S,q) =P F (S,q) .

1.5. If (S,q) is & convergence space, then the filters Fx £ on Sx 8
for which F q x generate a demi-uniform convergence structure on S which
induces q . Thus every convergence space is demi-uniformigable.

A pre-uniform limit structure 1L induces a limit structure gq, . Con-

U > Exs? goes from demi-uniform limit spaces to limit

versely, if P : ENS
spaces, then every limit space is (demi-)uniformizable for P .

If P: EI‘BU —> EIBQ goes from uniform convergence spaces to convergence
spaces, or from uniform limit spaces to limit spaces, then an object (S,q) of
ES? is uniformizable for P if and only if q satisfies the uniformizability

condition of 3.2.5, by results of Ramaley (23], [24] and Keller [/3].

7.6. It is well known that every topology is induced by a quasi-uniform

structure; see [22] or [2/] . The following result seems to be new.

Proposition. A convergence structure or limit structure q on a set S

is induced by a guasi-uniform convergence struc r a

structure on S if and only if q satisfies the conditjon of 3.2.6.

Proof. A composition (G X §) o (FXx %) is null if G~ % is the null
filter, and FX§ if %G . Tus Fq,x and fquy imply Fq,§ if u
is quasi-uniform. On the other hand, one sees easily that the fine pre-uniform
convergence structure generated by the filters F X x sug:h that Fqx, and
the fine pre-~uniform limit structure generated by finite joins of such filters

if q is a limit structure, are quasi-uniform if q satisfies 3.2.6.



8. More filter algebra

8.1. Let again S* be a set of proper filters on a set S , with % &€ S*
for every x€ S . We use the notations of 2.5, and the following notations.
If UC SX &, then we denote by U* the set of all pairs ((P,(f) in

S* X S* guch that U €ci>)(q) . VWe note that
(UAV)* = " AV  and (£,J)EW <= (xy)€U ,

for subsets U and V of SxX S and (x,y)€SxS, and that # = g,

We define the compression J, of a filter F on S* x S* by putting
Fe =1VCSxSs:weFY ,

One verifies easily that ¥, is a filter on Sx S, and that F, is proper if
¥ is proper.
We plead now guilty to using the same notations simultaneously for different

concepts, but we contend that this should not cause any confusion.

§~é_2_ We define j : S —>S* as in 2.6, and we note the following formal
laws,

8.2.1. (AX B)* = A*X B* and (FXG)* = F*XG* , for subsets A ,
B and filters F , G on S ,

8:2.2. F <@ <= F<P*, and (P*)y =P, for filters P on
SXS.and § on S*Xx S* |

8:2.3. (§xy)y = @xy, for ¢ and y in S*,

8:2,4. (3 x i)7Hu*) = U for U SxS .

8.2,5. ((3 X 3)(P))y = © for a rilter d on Sx S ,

We omit the straightforward proofs of these statements,



23

8.3. The following formal laws involve the operations defined in 6.2.
8.5.1 (ITH* « (U)"t for UdSXS.

2. (J"t) 4 = (F*)"! forafilter F on S*x St .

3. VFou*c(Vcu)* for subsets U and V of SxS,

4. ("-J:)#ké‘Q‘oT" for filters f and » on S»xS».

(o]
(O8]

oo
o1

o
o

835, U<E<EX 4> =£ Uo i*'o U<E(p* x%, for 0CSXS and
filters < and ~ on S .

836 (<t>*V)y < 0>*xq” (@ xW), o (WxP)y o (PxY), , for
filters <p and » on S .

The proofs of the first four laws and of the first half of 8.3.6 are easy.
The second hal f of 8.3.6 follows directly from8.3.5 which we now prove.

8.3.5is trivial if 4> or 4" is the null filter. Qherwise, choose P&
and Q&V so that PxQCH*, fix "6 P and "G Q, and choose
Xlt vITl and A 6 4, S0 that | X \ CU. For every <">EP there is Xp ccp
and Y'."yl so that X"_X Y«?,CU, and for every y c£Q there is Xspfc*?

and Yc‘f/\y so that XAxY™T U . If X - U**‘i and YﬂL)Yf., for all
?péP and all y6Q , then PdX* and QC Y* . Thus Xe<f£»; and
Y<SA, . If xtX”~ and yC-ly, then U,y') , (x'.,y') and (x')y) are
in U for x eX'vn A — which isin Cf>* — and y'<t YAnY . Thus
(x,y)€0<aU''oU, and XXY C. Uo U0 U which proves 8.3.5.

8.4. As=ume now that f : R —*S induces f* : R*—* S asin 2.7.
We note the following formal laws.

£4*1.. ((frfrtv))* « (fXf*)'V) for VCS*S.

842 ((f*K f*)(3))s - (fX f)(f») for a filter F on RXR.

The proofs are straightforward.
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8,2 Let nan S* be a set of proper filters on S ; with <peS** for
eveiy £ £S and < €S* for eveiy 0€ S* ¢ and let k : S* — S be
the resulting contraction mappi ng. V¢ note the follow ng formal |aws*

851 (kXk)""V) C (U)* C (kxkr*((Uou”o u)«)  for
UaSX s

852 (jtg» < ((kXk)("))¢ » (K)eo ((jFII"0 (tfs)yr fora
filter <# on S* X S*

The first part of 8.5.1 follows fromthe first part of 8. 3«6; the second

part from8.3.5 and 8.5.2 follows from8.5.1 and the definitions.

8.6» Let now (I'L be a pre-uniformconvergence structure of S; and denote
by U the set of all filters J=* on S*)(S* such that J= ei U By 82 3
2/* is a pre-unlformconvergence structure of S* if and only if (;PX<p A XL

for every filter <p in S . Afilter <p on S with this property is called a

Cauchy filter of the space (SU) &«

If X£S¢ then i is a Gachy filter of (SO . |If tLis auniform
convergence structure, then every filter P on S which converges for g" is
a Gauchy filter of (Sli) &

If IL* is apre-uniformstructure, then | : (SO — (S%WF) is an
enbedding, by 8.2.5, and it follows easily from8.2 and 83 that every property

listed in 6.3 which U has is inherited by U

9,__Filter space nonadsi E orj xniform conyer gence_spaces

9.l. Ve assune in this section that a set X of proper filters on IX

is assigned to every object X of a category EI\BU of uni f orm conver gence



spaces, with the follow ng three properties.

9.1.1 If x6|X , thenalways i £X* .

9.1.2 If f: X =T in BNS", thenthe filter f(cp) on | Y always

isin Y- for I516 X*

9.15 If X+ consists of Cauchy filters of X, andif T X« (X*, U)
for the structure U* of X* defined by JMGF <?=*> JF'e. 11" (see 8.6),
then T X is an object of ENSU, and (T X)* consists of Cauchy filters
of TX.

U
9.2. Ve say that an object X of EMS is preconplete  for the given
assignment X 12X ¢ if X consists of Cauchy filters of X ¢ By 9«1.3*

a preconplete object TX = (X £X%) of ENSU is defined for every preconplete
object X of ENSY. W define y» : X =T X \y putting y.(x) « % for
XE |[X o if X is preconplete. If f : X —Y is a map between preconpl ete
objects of EHSY; then we define Tf : TX —=TY by putting (T1)(0)

* f(<p) for every filter a}> in X .

9,3, Theoreine For the data of 9«1» preconplete objects of ENSU define a
category J° of uniform convergence spaces. a top subcategorv of ENSU# The.

data of 9.2 define a functor T : T —+"p: and anatural egbedding 71 t
X —TX for every obiect X gf P.

Proof. Consider a famly of objects X. m(SU) of ENSY; and put
X« (S infU) « If f6X* , then cpE(Xy)* for every H. by 9"1*2; since
: . . U . .
idS : X _>X1 in ENS® . If every Xi i's preconplete, then ;P s in
every Il and thus in inf |t1' o and X is preconplete. A simlar argument

i
proves 6*4,2 for preconpl ete objects of ENsS? .



By 8.4.,2, Tf :TX —>TY is uniformly continuous for f : X —>Y
in 7, and thus the data of 9.2 define a functor T as claimed. 7y 1is an

embedding by 8.6, and natural in X by 2.7.1.

Uif

9.4. Ve say that the data of 9.1 define a filter space monad in ENS
every precomplete object X of ENSU is a demi-uniform convergence space
(6.3.3) and satisfies the following condition.

9.4.1. If P E (T X)*, then always P, € X+,

If this is the case, then we denote by Mx * TTX — TX the resulting con-

traction map, given by /“x(q’) =3, for @& (TX)*.

9.5. Theorem. If every precomplete object of EISU is a demji-unjform con-
vergence space and satisfies 9.4.1, for the data of 9.1, then (T,?],//L) is a
monad_on the category P of precomplete objects of ENSU .

We call this monad (T,A7 ,/u,) a filter space monad in ens’ .

‘Proof. Mx is uniformly continuous by 8.5.2 and the definitions, and

natural by 2.7.3. The monadic laws (see 5.5) follow from 2.6.2 and 2.6.5.

gé. If an induced structure functor P : EIBU — EISQ (see 7.3) is
defined for a category ENSQ of convergence spaces, then the following result

relates Cauchy filter spaces to the filter spaces of section 4.

Proposition. If X jis a precomplete object of ENSU and a uniform conver-
nce space, then the structure qppy = q(U*) of PT X 4s compatible with the

structure qp, = q(’ux) of PX.,

Proof. By 8.3.6 and the definitions, (Dapny ¢ < Cb.ch eld, , for
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@E€X* and a proper filter (P on X* , This clearly satisfies 4.l1.1 and 4.1.2,

and 4.1,3 follows from
(?X 1) © (q)ix ‘f) = Quxi
and the definitions.

We do not know whether Qppy 18 the finest structure in Q X* which is

compatible with qp in Q x| .

9.7. Examples are easily obtained. By 8.6, the topological part of 9.1.3
presents no problems for the axioms listed in 6.3. Since 9.1.1 and 9.1.2 are
5.1.1 and 5.1.%, and 9.4.1 is 5.4.1, the assignments of 5.6 work. We note that
T X is automatically precomplete, by the first part of 8.3.6, if X is precom-
plete and satisfies 9.4.1. For the example 5.6.3 of all ultrafilters on |X| ,
a precomplete space is called precompact or totally bounded. In addition to the
examples of 5.6, we list two examples for which every space is precomplete.

9,7,1. X* is the set of all Cauchy filters of X .

9,7,2. X* is the set of all Cauchy ultrafilters of X .
10. Continuous relations

10.1. We define and discuss in this section continuous relations in a top
category ENS‘t over sets, using for Emt the notations introduced in 3.1 for
convergence spaces, and in 6,1 for uniform convergence sp@cea.

Continuous relations in this sense were introduced in [32] for topological
spaces; see [32] for a comparison with continuous relations as defined e.g. in

[?-0] or in [/ }. Recently, Grimeisen [“] introduced a different continuity con-
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cept for relations between topological spaces. A continuous relation in our
sense is continuous in his sense, but not conversely. Klein {/‘(-] discussed rela~
tions for a large class of categories. 10.5 provides a connection between his

concept and ours; the two concepts may have a common generalization.

10.2. Sets and relations form a category REL ; the composition g f of
relations f : S —»S' and g : S' —>» S" is defined by putting =x (g f) s,
for x€S and zE€S", ifandonly if xfy and yge for some yé&S' .,
If (S,u) and (S',u') are objects of the top category exs® , then we say
that a relation f : S —>S' is continuous, from (S,u) to (S',u') , if the
following condition is satisfied.

10,2,1. If g: R—»S and g' 3+ R —>S' are mappings such that always
g(x) £ g'(x) for x€R, and if g : (R,v)—>(S,u) in exst , for a struc-
ture vetR, then g' : (R,v) —>»(S',u') in Exs® .

For given g and g' , it is sufficient to test 10.2,1 for the coarsest
structure v& t R for which g is continuous, Thus 10,2.1 is equivalent to
the following condition.

10,2,2, If g s R—>S and g' : R —>S' are mappings such that always

g(x) £ g'(x) for xER, then g*u < (g ) .

10,3, Proposition. (1) If £ : (S,u) —>(s',u') apd g: (S',u') —>

(s",u") are continuous relations, then g f : (S,u) —>(s",u") 4is continuous.
(11) A papping f : S —> S' defines a continuous relation f : (S,u) —

(S',u') if and only if f : (S,u) — (S',u') in ENS®,

Proof. If h:R—7S and h" : R—>5" are such that h(x) (g £) n"(x)

for every x €R , choose h'(x) so that h(x) £ h'(x) and h'(x) g h"(x) ,
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for every x ¢ R . Then h¥u & (h')u'< (1")¥u", and gf is continuous,
For (ii), we note that g' = f g 4n 10.2.1. Thus g'€ ElSt if f end g
are in Erst , and £ : (S,u) —> (s',u') in ENS® is continuous es a rela-

tion. For the converse, use g = id (S,u) in 10.2.1, with g' = ¢f .

10.4. We need the following definition. A map f : (s,u) —>(s',u') in
ENSt is called coarse if u = £€u' . We note the following properties of
coarse maps, omitting the straightforward proofs.

10,4,1. If £:85 —> 5" is amappingand ue+tS, and if g : (S',u')
—> (s",u") is coarse in ENS® , then f : (S,u) —> (S',u') in ENS® if ang
only if g £ : (S,u) —> (s",u") in Exs®,

10,4,2. If f : X —> X' in ElBt, and if g : X' — X" 4is coarse

in Enst , then g f is coarse in ENSt if and only if f 4is coarse.
10.4.3. Every subspace inclusion jn Exs® is coarse.

10.5. The graph of a relation f : S —> S' is a subset of SX 8',
If we replace S and S' by (S,u) and (S',u') , then this subset defines
a subspace I, of the product space (S,u) x (8',u') in exs® ; We regard l}
as the graph of f : (S,u) — (S',u') . The two projections p: T —> (S,u)

and p' : rf —>(S',u') are then maps in Ens® .

Proposition. A relation f : S —>S' is continuous from (S,u) to

(S*,u') if and only if the projection p @ e — (S,u) 4is coerse.

Proof. The subspace structure of I“f is peu n(p')é.u' . If £ is con-
tinuwous, then this is p""u by 10.2.2, and p 1is coarse. Conversely, if g ¢

R—>S5 and g' : R — S' are such that g(x) f g'(x) for every x€ R,
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then g=ph and g' =p' h for a unique mapping h : R—‘;l"f . If g
(R,v) —> (s,u) in ENst and p is coarse, then h : (R,v) ——?T} by 10.4.1,

eand g' : (R,v) — (S',u') follows. Thus f is continuous,

|
10,6, Proposition. A top functor P : Exst —> Enst erves ¢
relations.

Proof. This follows immediately from 10.5; a top functor preserves pro-

ducts, subspaces and coarse maps.

10,7. We list without proof some useful properties of continuous relations

which we shall not need in this paper. We note for 10.7.1 that relations f :
S — 8' form a complete lattice, with f'< f if the graph of f' is con-
tained in the graph of f .

10,7.1. If f : (S,u) —> (S',u') is continuous and f' : S —>S' is
finer than f , then f' : (S,u) ——9(5',\1') ies continuous.

10,7.2. If £ : (S,u) —>(S*',u') 4is & map in Exs® , then the inverse
relation £°% : (s',u') —>(S,u) is continuous if and only if f is coarse.

10,7,3. Every continuous relation is of the form g £ for a coarse map

f and a map g in E}Bt.

1ll. Separated, regular and complete spaces

1l.l. A definition of a filter space functor T : Enst —_— ElBt on a top
category ENSt can easily be abstracted from sections 4 and 9, We assume in
this section that such a functor, and a top functor P : ENSt - EI‘BQ from

Exst to a category of convergence spaces, are given., The objects of ENSt will



be called spaces. For a space X; we denote by 8 : X* «— X the relation
obtained by restricting the structure 0 of the induced convergence space P X
to the underlying set X* of IX,

A space X wll be called geparated if dy is functional, i.e. if afilter
in Xt converges to at nost one poi nt of Xt conplete if every @6 X con-
verges to at least one point of X, and regular if <L @ TX—X is continu-
ous* These properties are defined relative to a given filter space functor Tg
but different filter space functors may produce the same separated, regular or
conpl ete spaces*

If X is aspace and ACI XI , then 4xU*) wll be called the closure
of A in X relativeto I, and A will be called ¢losed if ofi(A*) «A .
Cosure is nonotone, and ’qf(O) *0 and Ad ¢§_U) ¢ The other two Kurat owski
laws are not necessarily satisfied. The intersection of closed sets is closed*

A will be called dense in X if |[X is the only closed set containing A

11»2« Proposition* A product gpace of separated spaces |s_separated*
I f: X—Y in EMS* wth f infective and Y separated* then X jy£
separated* TIhus separated spaces define an epireflective subcategory. of Ens® ;

all reflections for this subcate™ory are quotient maps i.n ENs® +

Proof* If _<ijX* for a product space X and fpﬁx X ¢ then the projec-
tions of §D converge to the projections of x ¢« If X is the product of sepa-
rated 8paces, this determines x uniquely; thus X is separated* The second
statenent is proved simlarly* Now separated spaces forman epireflective sub-
category of ENs® by [iZl 10*2*1]4 and the reflections are quotient maps by
[33j 5.5 «



11.2. Proposition. _Reqular spaces define a top subcategory of ess®
Proof. Let X. = (Suy) for i €1 , andlet X« (S inf us) « W nust

show that X is regular if all 7L, are regular. Thus let g : (Rv)-—TX
in ENS* , and let g" 5 R —S be a mapping such that g(x) $ g'(x) for
every i £R. We note that idS : X— Xy. If go«(Tid$S g: (Rv)

£ TX g t hen g.{x) q‘;'g'(x) follows for every x £R+ But then g t

(Rfv)—>X1 since Xi islregular, and g" : (Rv) — X follows* Thus X
is regular*

If f: S-S is amppingand (S;u’) a regular spaces then we nust
show that the space (S, f(—u) is regular. The method of the preceding para-

graph can be used for this; we omt the details.

Ne 4. Proposition, _The product of conplete spaces is conplete, and every

sed supspace_of lete is conplete.

Proof. If cpCz X* for a product space X; and if every projection of o
converges, then qP converges. This proves the first part.

Let now | : A—S be aninclusion and X » (Su) a space, and |et
Y* (A j*~u) be the resulting subspace. If <p6Y* , then i(gb)e X and
AGi(<j>) . Thus if 'qfo>) 4y x and A is closed, then x £A, and <pg" %

follows. This proves the second part.

11J].___lemm. _| £f : X—"Yandg: X—VY in ENS* and Y IS sepa:
rated, then the set of all x £)XJ such that f(x) » g(x) is closedin X .

Proof - Let A be this set. If q>eA# and <p @y x , then f(<) « g(?) ,
and this filter converges to f(x) and to g(x) by %y e Thus XE£Ay
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11.6. By 11.5, every map f : X — Y of separated spaces with dense range
is epimorphic in the category of separated spaces. However, we cannot use
[12; 10.2.1] to conclude from this and 11.4 that separated complete spaces or
separated regular complete spaces define an epireflective subcategory of sepa-
rated spaces. The reason for this is that the category of separated spaces in

Exst

may fail to be co-well-powered with respect to maps with dense range. See
[34) for examples.

Epireflectora may still exist. For completeness in the usual sense that X*
is the set of all Cauchy filters of X , the epireflector from separated uniform
limit spaces to complete separated uniferm limit spaces has been constructed
in [29], but we do not know whether separated regular complete spaces form an
epireflective subcategory of separated speces for this example.

Every space is complete if X* always consists of filters on |X} which
converge for Qpyx but 11.2 and 11.3% are still useful in this situation., Even
the trivial case that X* consists of all filters % for x & |X| , and Pyt
X—> T X is an isomorphism of ENSt for every space X , has some interest,

Separated spaces are ’1‘1 spaces in this situation.

11.7. We consider now the situation that T indices a filter space monad

t
(T,7,40 on EX®, i.e. 5.4.14s satisfied, and g1y : TTX—>T X in exs®
for the resulting contraction mapping iy * (T X)* —>X* , for every space X ,

We assume, moreover, that the convergence structure Qprx in QX* is com=

patible (4.1) with apz in Q |X| , for every space X .

Eroposition. If (X,}) is analgebrafor (T,7,m), then ¢ 4 §(p)
for every filter q)eX* .



Proof. Ve have " (<p) Gipx<p for 9|>6x* , by 4.1.2 and 2.6.2. Since f
i's continuous and )£<‘<'X «id Xy <pqx|(<p) follows.

This result has an inportant converse.

11,8 Theorem |jf Y is a separated regular conplete space, under the
assunptions of 11.1ftAfl11.7, ther™ (VYifQy) Ls analgebrafor (T," I,t) o Mre*
over. XL (*tg‘) is an alogebra for thismonadand f : X—Y i& ENS¥, then

f Lnduces a honomorphism f : (ch) — (qu(i) of al gepras for (Tff}.,;) .

Proof. @y is ampfrom TY to Y by the definitions, and &7y
-idY since f 8y for yeU « If (p6 (TX» , then <G (f for
cp** (fj+** fa(<p) ¢ by 4.1.2 and 2«6.2, But then §{(])) -converges to d‘“(c?)

)
since §, is continuous. This means that §, (T 4,) = A ¢ Ahus (Y. %)
X X X X' X X

I's an al gebra.
L] ex*
f f: X2 Y‘ and (X,t')S Is an al gebra, then w’q«‘"(cp) for cp
by 11.7, and f(cp) qv f(£f(<‘?>)) results since f is continuous. But this says

t hat q>'>' (Tf) =f1 T , and f is a hoaonorphismof algebras as clained.

v
12, _Stone-Cech conpactificationa

12.1. Ve consider in this section the inportant case that X* is the set
of all ultrafilters on |X , for every space X . It is well known that every
Mapping f : S—>S" maps ultrafilters on S intoultrafilters on S' . Thus
5.1.1 and 5.1.3 are satisfied in this situation.

If X* consists of ultrafilters on |X ¢ then (AuB)” « Ax~B* for

any subsets A and B of | X ; andit follows that (j)« is anultrafilter on
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|X| for every ultrafilter ¢ on X* . Thus 5.4.1 is satisfied in our present
situation,

We assume now that the assignment X t—>ultrafilters on |X| can be lifted
to a filter functor T : ENSt —_ Elﬁt which satisfies the assumptions of 11.7.
A complete space will be called gompact for this example. Separated and regular
spaces relative to T are separated and regular spaces in the usual sense, and

closure relative to T is closure in the usual sense,

12,2, Theorem. Under the assumptions of 17.1, separated regular compact
spaces define an epireflective subcategory of the catesgory of seperated spaces.

Proof. let X be a space; X need not be separated. If f : X —>»Y is
a map fran X to a separated regular compact space Y , then f =g 71 for a
unique homomorphism g : (T X, }J.x) —> (Y,&Y) of monadic algebras, by the gen—
eral theory of monads. By the second part of 11.8, g is also the unique map
in ES® for wnich £ =gy, . |

By 11.2 and 11.3, separsted regular spacee define an epireflective subcate-

gory of ENSt ; let

rx ° T X —>RTX be the reflection for this situation,

It follows that g =h for a unique map h : RT X —> Y , Since 7, is

Trx X
epimorphic in ENSt and thus surjective, every ultrafilter on IRT X| is the
image by Ty, of an ultrafilter P in (T X)* . Now @ dpy py(P) by 11.7,
and thus rTx(Cp) converges for R T X ., This shows that R T X is compact,

Now h

.

RT X —>Y is uniquely determined by f =h Tox My » and thus
1',1,x 7){ ¢t X—> RTX is a reflection for regular separated compact spaces.
The range of the reflection rTX 71 is dense in R T X since every closed

subspace of a compact space is compact, by 11,4, If X 4is separated, it follows



that Tox ’]X is an epimorphism in the category of seperated spaces, by 11.5.

3.___2__:_2. Theorem 12.2 is known for topological spaces, precompact uniform
spaces, and limit spaces [15]. Precompact uniform convergence or limit spaces
provide an application of 12.2 which is new. We do not know whether the Smirnov
compactification of a proximity space results from an ultrafilter space monad on
the category of proximity spaces,

The epireflection constructed in the proof of 12.2 is usually not & compac=-
tification in the usual sense, i.e. a dense embedding into a compact space. For
convergence spaces and limit spaces, Kent and Richardson [14] have answered fully
the author's question: when is the Stone-é/ech compactification of Theorem 12.2
a dense embedding? Their conditions are necessary for any example, but we do not
know whether more restrictive conditions are needed for uniform convergence

spaces,

13. Regular convergence spaces

13.1. The condition by which Cook and Fischer (& ] and Fleischer (/0]
defined regularity for convergence spaces is clearly a special continuity con-
dition for filter convergence. Biesterfeldt [2] pointed out that it is equi-

valent to the topological axiom T, adapted to convergence spaces. However,

3
his proof is valid only for separated spaces., We shall close this gap.

We work with a category ENSQ of convergence spaces in which a filter space
functor T , in the sense of 5.1, is given. For a space X in EIBQ ’
we denote by §, : X* —> 1X\| the restriction of the structure ax to X* .,

We recall that (‘ix(A*) is, by definition, the closure of A C {X| , and we
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define the closure &x(l”) of a filter F on |X\| by 2.2: (‘ix(l"*) is gener-
ated by the sets c‘ix(A*) with A in some filter base of F , Note that (2.4.1)

cannot be used here since QX is in general not a mapping.

13.2, Theorem. Under the assumptions of 13.1, the following two statements
are logically equivalent for a space X in ENS® .

(1) X is_regular, i.e. §y : TX—> X 4s continuous.
(i1) X psatisfies Ty » dses if Faqg x, then slways ﬁx(F") a X .
Proof. Let l; be the graph of ﬁx , with projections p : f; —>TX

A P
accordingly for a filter F on X . Then p(SA)CA* and p'(SA) =§x(A*) ,

and P"”-q —>X . Por AcC iX|{, let S =p_l(A*) , and define S

with corresponding results for filters. If P 9y X, then F* ay %, and it
follows that Sy converges to (%,x) in l'; if § dis continuous, i.e. P
coarse (10.5). But then t'ix(?*) Gy X by continuity of p' , and (1) => (ii).
Conversely, consider g : (R,q) —» T X and g' : R —>|X| such that
g(x) ﬁx g'(x) for every x€R . If Fqx for (R,q), then g(F) Upx g(x)
and g(x) ax g'(x) . Thus G ay g'(F) for G = (g(F)), , by 4.1.3. Now if
BE G, then g(A) C B* for some A &€ F by the definition of G , and it
follows that g'(A) & ﬁx(B*) . Thus g'(F)<L QX(G‘) , and g'(F) gy x follows

if X satisfies T Thus (ii) == (i).

3
13,3, For the first four examples in 5.6, QX(A*) is the usual closure of

A in X . Thus the four corresponding filter functors define the same regu-

larity for spaces in EhBQ . They also provide the same separated spaces, but

complete spaces are not the same. Regularity for 5.6.5 seems to be different

from regularity for the other examples in 5.6.
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Continuity of ﬁx depends on the existence of T X, and T X can exist
only if X is quasi-uniformizable, by 4.2. On the other hand, 'I'3 and sepa-
rated and complete spaces depend only on the assignment X t——> X* which must of
course satisfy 5.1.1 and 5.1.3. This has the added advantage that spaces in
EISQ need not be quasi-uniformizable. The proof of 13.2 can be remodeled easily

into a proof that T, is equivalent to the regularity condition of Cook and

3
Fischer [6] and Fleischer [!'C‘] . The first part of this proof closes the gap

in (2 ] mentioned above.

13,4, One equivalence in [32; Thm. 3] is a special case of 13.2. The whole
theorem can easily be adapted to the more general case considered here, with T.,
formulated as in 13.2, We digress from the main theme of this paper by adding

the following equivalence to [32; Thm. 3], using our present notation.

Proposition. A topological space X is regular if and only if X satis-
fies Rl and QX t: TX —»X jis lower semj-continuous on its domain.

Proof. R, is one of the axioms of Davis [# ] and can be stated as follows.
If Fqux and F ay ¥ for some filter F , then alvays X ay ¥ - This fol-

lows from T see [8] . Continuity of t'ix implies lower semi-continuity by

3
(32; Tmm. 2]. Thie proves the Proposition in one direction.

On the other hand, let x €U with U open in X , (ﬁx)-l(U) is rela-
tively open and thus contains all convergent filters in some neighborhood V*
of ¥ in TX , with V openin X . If ¢ € V* and cp(ixx, then also
q)ﬁxy for some y &U . But then iqu by Rl , and x&U follows.

Thus V C U, and X satisfies '1‘3 in its usual form.
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13.2. We give two examples. For the first example, let S be infinite,
with two points x , y singled out. We define a neighborhood structure of S
as follows. Nx consists of all sets AC S with x and y in A and with
SN\ A finite. Ny =xu ¥y, and N, = £ for all other points. One sees easily
that these filters are closed; thus the given neighborhood space (S,q) is
regular. On the other hand, the space is not quasi-uniformizable, as X qy ,
but Nx does not converge to y .

The second example was suggested by J. J. Schéffer. Let X = (S,q) be an
infinite set S with the coerse '1‘1 topology, and let X* consist of all con-
vergent filters on S . Then q-l(U) = U* for every open set U, and thus g

is lower semi-continuous. This example shows that 13.4 is "best possible".

14. Regular uniform convergence spaces

14.1. Ve assume in this section that ENSu is a category of uniform con-
vergence spaces, or more exactly of pre-uniform convergence spaces, with a filter
space functor T : ENSV ——-)El‘SU . The objects of ENs’ will be called spaces.
Thus we assume the conditions of 9.1 for ENSU ,» with the added condition that
X* consists of Cauchy filters of X , for every space X .

For a space X = (S,) , we denote by §y ¢ X* —>S the restriction of
the induced convergence structure Q, (7.1). For Uc Sx S, we call the
set (Qxx c‘ix)(U*) the closure of U in X , relative to T. We shorten this
to QX(U*) ; this abus de langage will not lead to confusion., We carry this
notation over to filters on S X S by the standard procedure. Note again that

(2.4.1) is not applicable because ﬁx is in general a relation.



14,24# Theorenr \ndey_ the assunptions of 13+!$ the following twp ptatenenta
are logically equivalent for a space X [n ENSU.

(i) X 1is reqular._i.e. g0 TX—X LS. contjnuous.

(i) X satisties Ty le if 0" ", thenalways d(cf>*) Uy *

Proof . Let Pq be the graph of qYA, regarded as subspace of the product

space T XXX with projections p: p ->TX and p' : T =X . For
UCZ [XIx (¥ , let S, = (pxp) (U and define S accordingly for a fil-
ter <p . Then (p x:p)(S) CU and (p" Kp')(S) - d(U*) ¢ with correspoo-
ding results for filterse If <ty € U'g it follows that S" is in U(rq i f
Qk is continuous, i.e. p coarse (lO«5). But then "gJ"tp*) EIL by continu-
ity of p's and (i) «* (ii).

Conversely, consider g : (Rt0O 2T X and ¢g" : R—>| X) such that
9(x) Yx g'(x) for every xeR. If 4>6"and I ((gx g (<$))* , then
Md7xy, . If VEip, then (gxg)(u) cZV for sone U6 <py and
(g"Xg")(u) CayVv*) follows. Thus (g X g)(('> » 0,(**) ¢ » X satis-
fies Ts, it follows that g' : (R& -2 X . Thus (ii) =% (i) o

4. 3%, Proposition. [Every uniformspace in ess’ s reqular.

Proof, For an entourage U of the uniformspace X , choose a symmetric
entourage V such that VoVoVCTU. If (xy)<E 4x("¥) t then there are

filters cp and u> in X* such that
Veixcp , chpxt,‘z, Ve l’zxi .

It follows that Ugi xy: i.e. (x¢y) 6U . Thus @(V*) CTU; and X

satisfies T-_, .
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14.4. \% assune for the following result that an induced structure functor

U Q U Q
P: ENS —£ENS from ENS to a category ENS of convergence spaces, and a

filter space functor T' on Be? are given, %" then refers to T

Proposition. If a space X jn ENSU is rezular and if ‘PﬁPx x alwayg

. Q
TIPHTES <p @~ x ¢ “thEemthe Tmuced—space P X £& EKP is—reguorar”

Proof* By the second hypot hesi s;

Gu( F») Xi 4, G((Fx 1))
for a filter F on |X and x"*X . Thus 1:5 for X inplies T) for PX .

Using 10.6 in this situation would require a stronger hypothesis.

14.5. For the first four exanples in 5.6, and for the additional exanples
of 9«74 closure as defined in 14*1 is closure in the usual sense* Thus these
exanpl es produce the same regularity for pre-uniform convergence spaces.

dosure and T3 depend only on the assignment X j—X*, and not on the
filter space functor T . If this functor is not available, e.g. if one uses the
axioms of Cook and Fischer [5] (see 6.5), then one can refornmulate continuity
of q_x as follows.

1451, If g: R-MX* and g : R—>\ X\ are mappings such that

g(x) Y« g'(x) for every xE R, then
(ex e Pllyecly; =9 (exe)XPlely .
for every filter (jp on RXR e

The proof of 14.2 can be transforned easily into a proof that 14.5.1 and T‘,,

are logically equivalent*



15 Extensions of uniformy _continuous functions

15JL. Ve use again the assunptions and notations of 14«1* W call a space
Xa (SL0 in ENEY diagonal, relative to the filter space functor T if for
every mepping u : S —>X* such that u(x) d5 x forall x€S % and for
every filter <$£ ‘U the filter '((uXu)(Cp'))f s againin XL

Qur first result connects diagonal uniform convergence spaces with the dia-

gonal linit spaces defined by Kowal sky {/#].

15¥2* Proposition* Let X » (Sti.)

ENSY « 1f, X is diagonal and u : S —>X* is anppping such that u(x) §* x
for all x£S; then Pqg"x always inmplies (u(F))#qd(. Il_me_maL
a subset A of S is densein X if_and only if du(A*) «S

Proof. If Pchx and (p=u(x) , then (u(P) xch)s and 4f>x® are

in Vi. It follows fromthis with 8.3.6 and 2.6*2 that

(pxt)o ((ulF))yxq) - (u(P)).X*

isin 2Z . This proves the first part* Now the closure operator AH>§_"_(A*)

in X is idenpotent, by [>b\ Satz 8]. and the second part follows*

133" let | @ X—4>Y beampin EMSY such that d((Tj)(X¥)) - JY| ¢
and let Z be a space* W say that amapping T : |Y| —|z| is aueak extent

sion by continuity of amp f : X—Z if always

(1) jdp) Qvy =» f(cp) @ fly)
for cp£X* and y€|Y « If inaddition fj =f , thenwe call T an
extension of f by continuity* |



43

If Z2 is a '1‘1 space in this situation, then every weak extension by con=-
tinuity is in fact an extension; try ¢ =% 1in (1) for y = £(x) . In any
case, (1) is satisfied for y = j(x) if j is coarse and f(y) = £(x) . Every
map g : Y —» 2 is an extension by continuity of the map & j:X—>2.

If Z is separated, then a map f : X —» Z has at most one extension by con-

tinuity.

15.4. Theorem. 1f J is coarse, Y a diagonal space and Z @ regular
space, in the situation of 15.3, then every weak extension by continuity of a

map f : X —>Z is a uniformly continuous map f:Y—2.

Proof. For each y € IYi , choose u(y) € X* such that j(u(y)) dyv .
Then f(u(y)) g, #(y) for a weak extension f of amap f : X —> 2% . Now let

D ve in uy, and put

We (£x £)(((uxu)(@®),) = (T£xT ) ux w)(P)),

As Y is diagonal, the filter
(3 x ((waudP)),) = (T 3% T ) xu)Py

is in Ufy . Thus ((uxu)(d)), isin U, , and hence W in Uy , if J 18
coarse.
Ir Ve, then (T £x T £)(uxu)V) C W* for some V ¢, It fol-

lows that
(Fx D) C 4,00 .

Thus (FXx E)(@) < ﬁz(\P*) , and f is uniformly continuous if 2 ie

regular.



15.5. Theorem. If j is comrse, Y a diagonal space, and Z & separated

—_— e

regular complete space, in the situation of 15.3, then every map f : X —>Z

has a unique extension to a map f:Y —2 such that f =7 J .

Proof. Construct u : \Y|—>X* as in the proof of 15.4. If y € |¥| ,
then f(u(y)) c‘iZ z for a unique gz ¢& \Z‘ in the present situation, with
z=f(x) for y = j(x) . Ve must put T(y) = z . Now the proof of 15.4 can be

carried through for this mapping f , and thus f is a map.

____5_-_0_20 Weak extensions by continuity can be defined in the general situation
of 11,1, and the remarks in 15.3 remain valid in this situation. Extensions by
continuity have usually been considered only if j : X —> Y is a dense embed-
ding. 15.4 is well known for topological spaces, and 15.4 and 15.5 are well
known for uniform spaces. In these two cases, every space Y is diagonal.
Cook [4] proved 15.4 for convergence spaces.

Sjoberg [2.7] proved 15.4 and 15,5 for uniform convergence spaces, with the
following condition for Y .,

(4). For every filter 4* in UY » there is an open filter W in ?,(Y
such that @ £ v,

Here U < Y] X |{Y] ie open if the complement of U is closed, in the
sense of 14.1, and a filter ‘' is open if ‘4’ has a base of open sets. Every
uniform space satisfies condition (A). If a uniform convergence space Y satis-

fies condition (A), then Y is diagonal, and the induced convergence structure

q(UY) is a topology.
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