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FILTER SPACE MGNAK , REGULARITY , COMPLETIONS

Oswald Wyler

1. Introduction

Many completions and compactifications in general topology follow a rigid

pattern, known as the Wallman type* A space X is embedded into a space T X

of filters on X by mapping every point x fe X into the point filter x € l X •

The 8pace T X turns out to be complete or compact because every filter in

T (T X) converges, for the topology of T X f to its contraction in T X , The

completion of a uniform space by Bourbaki [3 ; 1 ed.] and the Wallman compact!*-

fication [2#] are early, and typical, examples*

In recent years, the same filter constructions have occured in different

settings« Point filters and contractions of filters of filters were used by Code

and Fischer [6 ] f [4»] and by Fleischer [fo] to define and discuss regular con-

vergence spaces, and by Sjoberg [2-*?] to discuss regular uniform convergence

spaces* Following this work, the author [32J showed that regularity can be

interpreted as continuity of filter convergence. Manes [/&]f [/?] used point

filters and contractions to construct an ultrafilter monad on the category of

sets, and he showed that algebras for this monad and their homonorphisms are c

pact Hausdorff spaces and their continuous nape.



In the present paper, we try to bring these trends together. We define fil-

ter space monads for categories of convergence spaces and categories of uniform

convergence spaces• and we give numerous examples of such monads* We call a

space X separated, with respect to a filter space monad (T.'n,!*.) , if a fil-

ter in T X converges to at most one point in X , complete if every filter in

T X converges, and regular if filter convergence is a continuous relation from

T X to X . "Separated" clearly means T 2 . and we show that "regular11 means

T without T Q . If the points of T X are the ultrafilters on X 9 then

"complete" means "compact". If (X.O is an algebra for a filter monad, then

every filter cp£T X converges to t(<p) in X • Conversely 9 if X is sepa-

rated, regular, complete, then X has a unique algebra structure for the monad,

given by filter convergence q : T X — > X . It follows that separated9 regular,

complete spaces are categorically very well behaved* We also discus* continuous

extensions of functions, generalizing in particular results of Sjoberg [27].

The outline just given requires some supportive work. Thus we include two

sections on filter algebra and one on continuous relations. We define categories

of convergence spaces and categories of uniform convergence spaces, and we obtain

functors connecting these categories* Topological spaces and unifora spaces a n

among the examples. The plural "categories" is motivated by the desire to

include these examples, and by the fact that different contexts may require dif-

ferent axioms for convergence spaces and uniform convergence spaces. We shall

use the language of top categories [30]9 [3l] freely, but not essentially. The

reader is referred to [17] for categorical terms.

Some questions connected with this work renain open. We have been unable

to define filter space monads for categories of generalised proximity spaces or



syntopogenoufl spaces [7 ]. Our work cannot be extended in its present form to

categories of topological algebras* Operations can be lifted easily from points

to subsets to filters, but most formal laws do not survive this process. Formal

laws survive for operations on nets, but contraction for nets, l*e« the construe-

tion of diagonal nets for double nets, presents problems* Filters with special

bases usually do not have nice functorial properties; thus our theory cannot be

applied, in its present state, to compaotifications of the Vallman type.

In order to keep the length of this paper in reasonable bounds, we suppress

many proofs which we consider straightforward• Supplying these proofs will pro-

vide the reader with some healthy exercise in filter algebra* A final warning:

in our effort to use coherent notations for filter algebra, we have discarded and

sometimes reversed traditional notations which are incompatible with this effort*

2. Some filter algebra

2*1. We define a filter on a set S as a set F of subsets of S which

satisfies the following two condition*

2.1.1* Every intersection of finitely many sets in F is in F .

2.1*2* If A C B C S and A6.F , then B 6 P .

It follows from 2.1.1 that S 6 F .

If A C S , then the subsets of S containing A form a filter an S

which we denote by [A] # More generally, we denote by [G] the filter geneiv

ated by a filter base G . We note that F « [<$ <fc»̂  JZf 6 F for a filter F

on S . This filter is called thm null filter on S ; all other filters on S

are called proper-



2#2. If + is a monotone binary operation, from subsets A of a set S1

and subsets 6 of a set SM to subsets A + B of a set S 9 and if F is a

filter on S1 and G one on S" , then the sets A + B with A£ F and

B £ G form a filter base; we denote by P + C the filter on S with this

base. This notation requires of course that the sets Sf , Sw , S are given by

the context. We note that the sets A + B already form a filter base of P • G

if we restrict A to some base of P and B to a base of G . It may happen

that A + B can be empty for non-empty sets A and B ; in this case F + G

may be the null filter for proper filters P and G .

One obvious law: [A] + [B] « [A • B] .

We use the convention introduced above for operations of any finite arity.

Formal laws for operations on subsets can then be extended easily to the corre-

sponding operations for filters*

Example: for filters F and G on a set S , the filters F %jQ and

P n O on S are generated by, in fact eonsist of, all sets A u B and An B

respectively with A £ F and B £ G . We note that F u G is the intersection

of the sets F and G of subsets of S ; this coincidence should not stand in

the way of consistent notation,

2.5. If U , V are comparable structures on a set S 9 then we write

U ̂  V if U is the finer structure than V ; this ensures that monotone map-

pings from structures of one kind to structures of another kind usually preserve

order. In particular, we write F^ G for filters on a set S if F is the

finer filter, i.e. if the set F contains the set G . Thus [A] ̂  [fl] , for

subsets A and B of S , if and only if A c B f and F ̂  [A] f for a

filter F and a subset A , if and only if A £ P .



Filters on a set S fora a complete lattice f with the null filter as fioest

and the filter [s] as coarsest element. The napping A h-> [A] preserves all

suprema, and finite infima. The complete lattice of filters on S is atomic,

its atoms are called ultrafilterg on S . General inequalities for finitary

monotone operations on subsets imply the corresponding inequalities for the cor*

responding operations on filters.

2.4. If f : S — > S9 is a mapping and F a filter on S , then the sets

f(A) with A 6 F fora a base of the filter f(P) on Sf , by 2.2. f~X(G) is

defined similarly for a filter G on Sf ; we note that f (F) ̂ G #«£>

F <£ f (G) . It follows that f preserves all suprema, and f~ all infima,

of families of filters* We note that

(2.4.1) B 6 f ( F ) <£H> tml(B)e? ,

for B C Sf and a filter F on S . This is a very useful lav*

2.5. Let now S* be a set of filters on a set S . For x € S f we put

* - [{*}] i this filter consists of all A C S such that x £ A . We assume

that i £ S * for every x € S .

If A C S , then we denote by A* the set of all <p€ S* with A€<p .

In particular, x € A <«^> i € A* for x € S # We note that always

(AnB)* « A»n B* ,

and that 0* «= # if S* consists of proper filters on S . We put

Cf># . { A C S ; A*£( t>} ,

and call <j\ the contraction of (J) f for a filter 0 on S» # One sees

easily that this is a filter on S , and that <£)# is proper if <J3 is proper



and S* consist© of proper filters on S , We note that

(2*5.l) U>* - inf sup cp ;

see [2Sj. Thus cj^ is essentially the contraction defined by Kotralsky

2.6, Let j : S — > S* be defined by j(x) =* i . Let S** be a set of

filters on S* such that q^*£ S* for evexy (£>£S»* » we ctenote l*y k 5

S** ^ S* the resulting contraction mapping. W« not** the following formal

laws, chitting the straightforward proofs,

2.6,1, j~^A*) = A , for A C S ,

2.6.2. (cp# - <p for <p£S* , and (j(P))» « F » (P*)# f fora fil-

ter P on S ,

C}/# < P ^^^^ Cp .̂. P* • for filters F on S and <J) on S* •

It follows that F \ > F* pr«. ̂rves all infixoa9 and Cf) »••-> <f>» all supre3aaf

of families of filters.

2>6,4. k^CA*) * ( A * ) * , for A C S ,

2.6.5. (k(P)) # * (>"*)« • for » filter F on S** .

2.7# Consider no« u iiiapping f : R •—* S f and sets R* of filters on fi

and S* of filters on S such that f iaaps R* into S # . We denote tyr f* *

R* — ^ S * the resulting filter mapping, and we note the following formal laws*

. f(x) * y 4H^> f*(x) • y , for x € R and y 6 S ,

. (f-1(B))* » (f^r^B*) , for B C S .

2.7.3. f(cp^) = (f*(<3>))# t for a filter <p on R* .



Categories of convergence spaces

3^1. We define a convergence structure on a set S as a relation q from

proper filters on S to S , subject to the two Pr^chet axioms*

L 1, If x€ S , then i q x ;

L 2. If P q x and ¥'4 ¥ 9 then P q x .

A convergence space (S9q) consists of a set S and a convergence structure q

on S ; we may put q « q~ and S « |X| if X * (S#q) •

We call q* finer than q f and put q 1 ^ q f for convergence structures

q and q9 on the same set, if P qf x always implies P q x « With this nota-

tion, convergence structures on S form a complete lattice, with F (inf q.) x ,

for a family (q,). ~j of convergence structures on S t if and only if P q . i

for every i & I •

If f : S —> S9 ie a mapping and q9 a convergence structure on S1 ,

then F ( f % 9 ) x <£=^ f(P) qf f(x) f for x & 3 and a proper filter P

on S , defines a convergence structure f q9 on S . This mapping f pre-

serves infima, and thus

(3.1.1) q < f*V 4*^ f^q ^ q9 ,

for a mapping f"* from convergence structures on S to convergence structures

on S* . We say that f : (Sfq) —^ (S
9
tq

f) is continuous if these inequalities

are satisfied*

This defines a category CONV of convergence spaces and continuous func-

tions j the word map will always refer to a continuous function*

3*2• The category CONV is too large for many purposes; many authors have
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considered additional axioms. We list some axioms which have been proposed,

J>»2_.1. A convergence space (S,q) is called a limit space if ? q x and

G q x always juaply (P KJ G) q x •

J5.2.2. A convergence structure q on a set S is called a pseudotopology*

and the space (S^q) a Choquat space, if P q x whenever eveiy ultrafilter

finer than P converges to x •

3»2«3» A convergence space (Stq) is called a neighborhood space or a

closure space if every x € S has a neighborhood filter N such that P q x

<p=^ P <£ H t for every x € S and every proper filter P on S „

3*2Am k convergence structure q on S is called topological if q is a

neighborhood structure, and every neighborhood filter N has a base of open

sets. Hei^ U a 3 is called open for q if P q x and x € U always imply

U £ P • One sees easily that q is topological if and only if q is filter

convenience for a topology on S .

The following two axioms are of different nature.

^•2#5. A convergence space (S,q) is called uniform!zable if the relations

P q x t G q x f G q y always imply P q y ,

3*2.6. A convergence space (S,q) is called Quasi-uniformizable if the

relations P q x and i q y always imply F ^ y .

^«3« We do not want to specify a particular system of axioms for conver-

gence spaces, and thus we proceed as follows. We specify for every set S a Bet

Q S of convergence structures of S t subject to the following two conditions.

5»'5ol« If U j ) ^ ! *s a family of structures in Q S f then inf q. is

a structure in Q S #

3.3.2. If f i S ^ S 1 is a mapping and qf € Q Sf
 f then f f q ' G Q S .



We denote by ENS the category of all convergence spaces (Sfq) with

Qq ^ Q S and their continuous functions, and we call such a category ENS a

category of convergence spaces•

?*4* If EliS is a category of convergence spaces and S a set, then Q S

is a complete lattice , with the indiscrete convergence structure of S as its

coarsest element* If f : S — > S* is a mapping, then we denote by Q f :

Q S9 — > Q S the mapping obtained by restriction of f . The mappings Q f

preserve infima and define a contravariant functor*

In the language of [30] and [3f], every category ENS of convergence

spaces is a top category, and EHSn is a top eubcategory of ENS if

Q1 S C Q S for every set S # If this is the case, then ENS^ is a reflec-

tive subcategory of ENS1* f with reflections id S : (Sfq) — > (S,pq) , for

q £ Q S and aq the finest structure in Q1 S which is coarser than q •

*5. Let E1EQ be a category of convergence spaces* If r is a relation*

from proper filters on a set S to S * then there is a finest structure q in

Q S such that F r x always implies F q x • We say that this structure <t

generated by r , or \sy the convergences F r x .

5»5*lf Proposition* Let q ia Q S be generated by a relation r •

If f : S — » S1 is a mapping and qf ia Q S , then f : (Sfq) — > (Sf fq»)

is continuous if and only if F r x always Implies f(F) q1 f(x) •

Ve omit the simple proof of this useful result.

5•6* The logical connections between the axioms of 3*2 are mostly obvious;

we note only that every topological convergence structure is quasi-unifoiroizable.
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Every combination of axioms in 3«2 leads to sets Q S of convergence structures

Qwhich satisfy 3*3.1 and 3.3.2, and hence to a category EVS of convergence

spaces. In particular, we shall regard the category TOP of topological spaces

as a category of convergence spaces.

Many possible axioms for convergence spaces do not lead to a top category
A

ENS of convergence spaces. We list only two important examples.

T . If i q x , then x * y •

T ? # If F q x and F q y for some filter F , then x » y .

In both cases, 3.3*2 is not validf and 3#3«1 fails for empty families.

Convergence spaces of filters

Q/1 • We work in a category ENS of convergence spaces. If S* is a set

of proper filters on a set S f with i £ S* for every x € S f then a con-

vergence structure q* in Q S* will be called compatible with a structure q

in Q S if q* satisfies the following three conditions.

4q.1. If F q x t then F* q* x .

4.1.2. If <p q* <p and <fc# » % 9 then ^ q » m .

4.1.3. If (p q* GJ and <jr q x f then (j)# q x ,

We note that properties 4.1.1 and 4.1.2 are preserved by infima in Q S * f

for a given q £ Q S . If one structure q* in Q S* satisfies 4«1#3* then

every finer structure in Q S* satisfies 4.1.3. Thus if Q S* admits a struc-

ture compatible with q in Q S 9 then Q S* admits a finest structure which

is compatible with q •

* If a structure q* i£ Q s* is compatible with a
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structure q jjj, Q S f then q ia quasi-uniforaizable (3.2.6), and

(4.2.1) <J)q* * <£=^> 4 ) # q x ,

for x € S and a filter Cp on S» # If q* jja Q S * is auasi-uniformigable

and satisfies (4.2.1) £n& 4.1.2, then q* is compatible with q la Q s •

Proof. If P q x and i q y , then P* q* i by 4.1.1, and P q y fol-

lows from 4.1.3 and 2.6.2. If <p q# i 9 then <£# q x by 4.1.3 and L 1# Con-

versely, if Cp# q x , then <X> q* i by 4.1.1, 4.1.2 and 2.6.2.

4.1.1 for q* follows from (4.2.l) by 2.6.2. If $>q*n> and <p q x f

then ^ q* i by (4.2.1) and 2.6.2, and <p q* i and <|)# q x follow if q* is

quasi-uniformizable•

4.g. Because of 4.2, we look for examples only if EJBQ consists of quasi*

uniformizabie convergence spaces.
Q '

If EMS is the category of all quasi-uniformiMble convergence spaces,

then we put Cp q* o> , for <l) in S # and a proper filter (p on S* f if and

only if either 0 # ^ cp or <t># q x for some xQS such that x ^tt>.

This clearly defines a convergence structure q* which satisfies (4.2.1)

and 4.1.2. If <pq*Q and O q * ^ , then we must prove (pq*y> . The only

nontrivial case is (j># q x , Cp q y , with x £(D and f ^ tf. But then also

i q y , and <$)+ q y since q is quasi-uniformizable.

If q* in Q S* is compatible with q in Q S 9 then clearly C}> q* O> if

• If i ^<P and (J)# q x f then CJ)q*i^ and vpq*<p for W » x , and

follows if q* is quasi-uniformiaable. Thu*> we have obtained the finest

•truotux« q* in Q 3* which is compatible with o •
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If EMS^ is the category of quasi-uniformizable limit spaces, then we

put (£)q*cp , for <p£S* and a proper filter <$> on S* f if <p ̂

for a finite family of filters T± on S such that (F^* q* <p by 4*3. This

defines the finest structure q* in Q S* compatible with q in Q S . The

proof proceeds as in 4.?; we omit it.

4.5. If ENSy is the category of quasi-uniformisable neighborhood spaces,

and if N^ is the neighborhood filter of C P £ S * for q* f then N^a* (F<J#

for P^ - (Np)# , by 4.1.2 and 2.6.2, with ^ m \ for x £ S by (4.2*l)»

Conversely, putting K̂ > • (F^)* for < p 6 S # , with c p ^ F ^ and F. » H for

x £ S , defines a neighborhood structure q* on S* which satisfies 4.1*2 and

(4*2.1).

If we say that a filter F on S is q-saturated if i ^ F always implies

N ^.F , then the infimum of a family of q-saturated filters is q-saturated.

Thus there is a finest q-eaturated filter F on S which is coarser than <p ;

we choose this filter as Pep for cp € S* #

The neighborhood filter N of x € S is q-saturated if q is quasi-

uniformisable, and i ^ N . Thus F. • N • If d)q* vj/ , then cp ̂ F ^ , and

F«» <SFY follows by our construction. But then CJ)q*<i> implies 4 > q * y • Thus

q* is quasi-uniformizable, and compatible with q by 4.2.

On the other hand, if q* is compatible with q and i ^ FQ> , for x € S

and cp£ S» , then (l^)* q* ip and 4>q*cp for f « x , and (H^)* q» y and

N < F^ follow. Thus F must be q-saturated, and the structure q* con-

structed above is the finest structure in Q S * which is compatible with q .

4.6* Let now ENSQ be the category of topological spaces. Neighborhood
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filters for q* must again be of the foim N^ * (P^)* f with cp^F^ > and

with L e N for x €: S # These conditions are satisfied for the topology of

S* constructed in [32.] . with the seta U* for q-open sets U as a basis of

open sets* For this topology, F^ is generated by the q-open sets in cp .

We claim that this topology of S* is the finest structure q* in Q &• which

is compatible with q •

If U is q-open. then U* is q*-open since q* is finer than the topo-

logy of S* described above* Thus U € V if U in o is q-open. On the

other hand, if V <£ F^ f then there are sets P C S * and W £ F ^ such that P

is q#-open and W* CZ P d V* # If x 6 » , then i G V * , and P ia in

BL « (N )• m Thus (U )• c P for seme open q-neighborhood U of x , and

U CZ V follows. If U is the 6et \anion of these open sets 0'% f then

W C U d v t and U 6 F . follows* Thus F^ is generated by the q-open sets

in F^ , and our claim is verified*

5, Filter space monads for convergence spaces

0 Q
5*1* Let ENSX be a category of convergence spaces, and let T : ENEP

Q be a functor. We put T X « (X^.q^) for an object X of BKS^ f

Q

and we say that T is a filter space functor on EMS^ if the following three

conditions are satisfied,

* For every object X of ESS^ t the Bet X* is a set of proper
filters on |X| f with i £X* for every x €

n

5,1.2. For every object X of EMSH , the structure q ^ of T X is

compatible (4*l) with the structure qx of X .

WOT USSARY
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5.1.3* If f : X —> Y in BKSQ
 f then T f maps every filter

into the filter f(<f?) on |Yl

A

Ve say that a filter space functor T on ENS is fine if q^ is the

finest structure in Q X# which is compatible with q~ 9 for every object X

of ENSQ .

Q5.2. Theorem, Let ENS be a category of convergence spaces» and assume

that a set X* of proper filters on IXl is assigned to every object X

0 Q

of ENS # This assignment deter^i"^s a fine filter space functor T jjn EHB

if and only if the following three conditions are satisfied.

5.2.1. I£ x € |X| f then always * € X* .

5.2#2# For every object X jg£ E1BH
 f there is in Q X# a structure q*

which is compatible with qx *

5.2.3. II f : X — ? Y ia B»SQ t then the filter fty fla ^| is in

Y* for every filter <p € X* .

Proof. The conditions obviously are necessary. Conversely, they determine

a fine filter space functor T on ENS^ uniquely, provided only that the

induced filter mapping T f : (x*?<w) —^ (^ttlmy) is continuous for evexy map

f : X —} Y in ENSQ .

We note that q^ is the finest structure q* in Q X* which satisfies

x

for x € |X] and a filter (p on X* f and 4.1.2# Thus all we have to do is to

show that (if) q^j satisfies these conditions• This follows immediately from

2.7.3 and the definitions; we omit the details.
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Q

T be a filter space functor on a category ENS^ of convergence

spaces* For a space X in ENEH , we define rj^ : X —> T X by putting

n^(x) a i for every x •£ IXI •

Proposition* TIY I X -—^ T X is, an embedding* and natural in X •

Proof. -wx is injective. and natural in X by 2.1.1. It follows from

2.6.2 and (4.2.l) that always ? q x x <***$> yx(P) q^ x , for x £ | X l and a

filter F on Ul . Thus ^ is an embedding*

We say that a filter space functor T on a category ENS^ of conver-

gence spaces defines a filter space monad if T satisfies the condition:

5*4,1, If Cj) & (T X)» f then always C|># ̂
 x* •

Q

for every object X of ENEP • If this is the case, then we denote by /J~ t

T T X —^ T X the contraction map given by /^x(
ct>) »<!>## for <£) e (T ! ) • .

Q

5*5* Theorem* If a f i l t er space functor T on a category EKSn of con-

vergence spaces defines a f i l ter space monad, then (T*fi fLA) is a monad

an ENSQ .
We call a monad (Tf fj 9/uS) obtained in this way a f i l ter space monad.

Proof* ^ is natural in X by 2.7*3* If 4>£(T X)# and <p • 0# t

then (p qjjj cp ty 2.6*2* 4.1.2 and L 1. Thus &qy^ty implies F* q^j <p .

by 4.1.3* Since ( ^ ( ^ ) ) # « ( ^ # ) # iqr 2.6.5 f yux(J=~) q^ y follows ly 4.1.2*

Thus yUg is continuous* The foxnal laws for a monads

- i d T X

follow immediately from 2.6*2 and 2*6*5.
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5.6. By 4.21 a category ENSX of convergence epaces can have a filter

space functor only if every space X in EHS^ is quaai-uniformisable. On the

other hand, ENS* always admits a trivial filter space monad if this condition

is satisfied: let X* be the set of all filters 1 for x€ [1\ . For the

resulting filter space monad, r> and M are natural equivalences.

For the categories ENSy discussed in 4.3 - 4.6, filter space functors and

monads are easily obtained* 5.2,2 is automatically satisfied, and thus only

5,2,1, 5,2.3 and 5,4,1 have to be verified. We list some obvious examples.

5.6.1. Let X* be the set of all proper filters on IXi .

5.6.2. Let X* be the set of all filters on lx| which converge for qx .

5.6.3. Let X* be the set of all ultrafilters on |X1 .

5.6.4. Let X* be the set of all ultrefilters on |X| which converge

for qx .

5.6.5. Let X* be the set of all proper filters on |X| with the

countable intersection property,

6, Categories of uniform convergence spaces

6,1, We define a pre-uniform convergence structure on a set S as a set IX

of filters on S X S which satisfies the following two axioms.

6.1.1, If x 6 3 , then i x i 6 U.

6.1.2. If 4>G.1L and ^^<$> f then "Y&Xl .

We include the null f i l t er on S x S in 1JL, A pre—unifonn convergence space

(S,ti) consists of a set S and a pre-uniform convergence structure IX on S ;

we may put U-Ux and S « \X| i f X « (SfU) .



17

We order pre-uniform convergence structures on S by calling Xi!

than U , and putting U 1 ^ U , if K ' c U # This defines a complete lattice

of pre-uniform convergence structures on S 9 with set intersections as infioa.

If f : S — > S9 is a mapping and u / a pre-uniform convergence structure

on Sf
 f then we denote by f *ll! the pre-uniform convergence structure on S

consisting of all filters Cp on S x S such that (f X f )((£>) is in ll*. The

mapping f *" thus defined preserves infima.

These data define a category of pre-uniform convergence spaces; a map f :

(SfU) -^ (S*,UO is a mapping f : S — ^ S * such that U < t^111. A map of

this category is also called a uniformly continuous function*

6*2. If U and V are subsets of S x S f then we put

V"1 - {U,y) s (y,x) e U \

and V o U * {(xty) : (3 •)((»,») 6 U and {z9y)

the corresponding operations for filters on Sx" S are then defined by 2.2, See

[ ? ] for some laws satisfied by these filter operations.

6»3« We list some additional axioms for pre-uniform convergence Bpaces•

(Svl0 will be a pre-uniform convergence space.

6#3»1« We call (SfU)
 a quasi^jnifonn convergence spac^ if 4^° <J) is in

U for every pair of filters ^ and ty in IL •

6#3#2# We call (S9u) a semi-'Uniforni convergence space if ^~ is in L

for every filter (p in VL .

6.?,j. We call (S

is in 'U. for every filter (/> in 16 •
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6.3.4. We call (Sfu) a unifonn convergence space if (S,U) is both semi-

uniform and quasi-uniform.

The following two axioms belong to another group of axioms .

6.?.g. We call (S,U) a pre-i^fyr^ limit space if <$>o ̂  is in 1L for

every pair of filters <£> and *f in U .

6.^.6. We call (Stl/) a pre-uniform space if there is a filter (pc in It

such that (\> £\i 4*=^ C$> ̂> 4>o , for a filter <p on S X S .

We shall combine the two groups of names freely; thus (Sf£/) will be

called a quasi-uniform limit space if 6.3.1 and 6.3.5 are satisfied. We shall

write l/-«[4>] if XL is a pre-uniform structure with coarsest filter <p .

6.4. As in 3.3, we avoid choosing a particular system of axioms for uniform

convergence spaces as follows. We assign to every set S a set U S of pre-

uniform convergence structures on S 9 subject to the following two conditions*

6.4.1. If ( ^ ) i € I is a family of structures in U S , then inf U^ is

a structure in U S ,

6.4.2. If f : S — > S « is a mapping and U / e u Sf , then f f > ^ 6 U S #

We denote by ENS the category of all pre-uniform convergence spaces (Sfl<)

with U.6 U S and their uniformly continuous functions t and we call such a cate-

gory ENS a category of uniform convergence spaces.

We note that the indiscrete uniform structure of S y consisting of all

filters on S x S , is in U S for every set S f by 6.4.1. The considera-

tions of 3.4 and 3.5 can be taken over almost verbatim; we consider this done*

6.5. If S is a set and ct̂  a filter on S X S , then the set [4k] <*

all filters (p ^ c^ on S x S is a uniform structure on S in our sense if
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and only if 4>o is a uniform structure of S in the Bourbaki sense. Thus uni*

form spaces define a category of unifoxm convergence spaces* The same remark

applies to quasi-uniform and semi-uniform spaces*

We have tried to adopt a standardized and consistent taxonomy for conver-

gence 8paces and uniform convergence spaces. 3* 5 and 6.4 enable readers who so

desire to substitute their terminology for ours. A uniform convergence space in

the sense of Cook and Fischer [ 5 ] is a uniform limit space in our sense, with

6.1,1 replaced by the stronger axiom [<£>] <£ U9 where A is the diagonal of

S X S # These spaces define a category of uniform convergence spaces in our

sense. The main effect of [ A ] e l X seems to be that the null filter on S X S

can be avoided in computations. On the other hand, examples become harder to

construct, and our theory of spaces of Cauchy filters has to be modified, if this

axiom is adopted.

Demi-uniformity (6. "5.3) seems to be the appropriate axiom for generalised

epsilonties. We note that a demi-unifonn limit space (S,t# with [ A ] e Z X is

already a unifona limit space, and that always <$> 4 CpKp^

7. Induced and fine structure functors

7.1» If (S,1() is a pre-uniform convergence space, then

for a proper filter F on S and x £ S , defines a convergence structure q

on S # We say that q^ is induced by 1A.$ and we write q(li) for qu if

this notation is more convenient*

If f : (S,U) ~7 (S\2X') is uniformly continuous, then f : (S,q^) —>
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(Sf,q ) is continuous* This follows immediately from

(f x f)(Fxx) » t(r)x

This formula is also used in the proof of our next result; ire omit this proof*

7.2« Proposition, The mapping LL \—> q.± from pre-uniform convergence

structures to convergence structures preserves infi^ia. and it satisfies

for a mapping f : S — ^ Sf and a structure Vi on S • .

*J.$. Putting P (S9U) m (Sfqu) defines a functor P which preserves not

only underlying sets and mappings, but also infima of structures and inverse

image structures. We call this functor P an induced structure functor. In the

terminology of [3/]t P is a top functor*

We need in fact not one but many induced structure functors* If WB> is

a category of convergence spaces and ENS a category of uniform convergence

spaces9 then we may denote by Uf S t for a set S , the set of all structures

U i n U S such that q u £ Q S . It follows from 7.2 that the seta U1 S

Uf
satisfy 6.4.1 and 6.4.2. Thus a category ENS of uniform convergence spaces

Uf 0
and an induced structure functor P : EMS -—> E K P are defined.

Uf 0
JA. Every induced structure functor P : ENS — > EKSH has a left

Q U1
adjoint P : ENS^ - ̂  ENS which also preserves underlying sets and mappings.

We call such a left adjoint P a fine structure functor. In the tezminology

of [3/], P is a cotop functor.

If P : ENSUf > ENSQ is given, then an object (Sfq) of EJEQ will be

called uniformigable. with appropriate prefixes or constraints to indicate P
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or ENSU , if q = q ^ for some U € U f S . One sees eaaily that (S9q) is of

this fora if and only if (Sfq) » P P (Sfq) .

7.5,. If (S,q) is a convergence space, then the filters P x i on S x S

for which P q i generate a demi-uniform convergence structure on S which

induces q • Thus every convergence space is demi~uniformizable«

A pre-unifora limit structure XL induces a limit structure q^# Con-

U 0
versely, if P : ENS — > EMS goes from demi-uniform limit spaces to limit

spaces, then every limit space is (demi-)uniformizable for P •

U QIf P : EUS — y EBEP goes from uniform convergence spaces to convergence

spaces, or from uniform limit spaces to limit spaces, then an object (S,q) of

EHS^ is unifoxmizable for P if and only if q satisfies the uniformizability

condition of 3*2.5, by results of Hamaley [23]f [uf\ and Keller [/3].

7*6. It is well known that every topology is induced by a quasi-uniform

structure; see [2»2] or [2/] . The following result seems to be new.

Proposition. A convergence structure or limit structure q on a set S

is induced by a quasi—uniform convergence structure or a cwwi—unifom llwit

structure on S if and only if q satisfies the condition of 3.2.6.

Proof. A composition (G X f) o (P X i) is null if Q nx is the null

filter, and P X y if x ̂ G . Thus F q u * and i q^y imply F q ^ if U

is quasi-uniform. On the other hand, one sees easily that the fine pre-uniform

convergence structure generated by the filters F X x such that F q x , and

the fine pre-uniform limit structure generated by finite joins of such filters

if q is a limit structure, are quasi-unifora if q satisfies 3.2.6.



8. More filter algebra

8Jl. Let again S* be a set of proper filters on a set S , with i £ S *

for every x € S . We use the notations of 2.5, and the following notations•

If U C S A S , then we denote by U» the set of all pairs (<p,^) in

S* X S* such that U €. <PX y . We note that

(UnV)* « U»nV* and (i,j)6D» ( )

for subsets U and V of S X S and (x fy) 6 S x S , and that 0» « 0 #

We define the compression 3=̂  of a f i l t e r T on S* K S» by putting

F* « {V C S X S : V* e F \ #

One verifies easily that >""# is a filter on S x S , and that cF̂  is proper if

j 7 is proper•

We plead now guilty to using the same notations simultaneously for different

concepts, but we contend that this should not cause any confusion.

8.2« We define j : S — > S * as in 2.6, and we note the following formal

laws.

8.2.1. (AX B)* « A* X B* and ( P X O ) * = P» X 0* f for subsets A ,

B and filters P f G on S .

8.2.2. T; < Cp <^> F ^ Cj>* , and (<{)*)» « C$ f for filters <p on

S X S . and 5T on S* x S* .

8.2.3. (cpxf)# » <^x^p f for <p and y in S* ,

8.2.4. (i X jrtu*) * U for U C S< S #

8.2.5. ((j X j)«p))* » <$> for a filter <$> on S x S .

We omit the straightforward proofs of these statements.
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8.3. The following formal laws involve the operations defined in 6.2.

8.5.1. (IT1)* « (U*)"1 for U d S X S .

8.3.2. (J " 1 ) # = ( F * ) " 1 for a filter F on S* x S* .

8.5.3. V* o u* c ( V c u)* for subsets U and V of S x S ,

8.5.4. (^ - J= )# ^Q^oT^ for filters f and ^ on S » x S » .

8 . 3 . 5 . U * < £ < £ X 4-> = £ U o u * 1 o U < £ ( p * x % , f o r O C S X S a n d

f i l ters <£> and ^ on S» .

8.3.6. (<t>*V)# < 0 > * x q ^

filters <p and ^ on S* .

The proofs of the first four laws and of the first half of 8.3.6 are easy.

The second half of 8.3.6 follows directly from 8.3.5 which we now prove.

8.3.5 is trivial if 4> or 4^ is the null filter. Otherwise, choose

and Q & V so that P x Q C H * , fix ^ 6 P and ^ G Q , and choose

X t vT. and Y. 6 4-, so that L x Y C U . For every <̂ >£P there is X,p ccp

and Y ' ^ y so that X^ X Y« C U , and for every y c£Q there is X'pfc*^

and Y f ^ y so that X ^ x Y ^ t T U . If X - U * * , and Y f

P and a l l y 6 Q , then P d X* and QC Y* . Thus Xe<£»# and

Y < S ^ # . If x t X ^ and y C - I y , then U,y ' ) , (x' ,y') and (x1 ,y) are

in U for x' e X' n ^ — which is in Cf>^ — and y1 <r Y^nY . Thus

(x,y) € 0 <a U"1 o U , and X X Y C. U o U - 1o U which proves 8.3.5.

8.4. Assume now that f : R —*S induces f* : R*—* S* as in 2.7.

We note the following formal laws.

£.4*1.. ( ( f ^ f r t v ) ) * « ( f X f * ) ' V ) for V C S * S .

8 . 4 . 2 . ( ( f * K f * ) ( J ) ) # - ( f X f ) ( f » ) for a f i l t e r F on R X R .

The proofs are straightforward.
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>. Let nan S** be a set of proper filters on S* f with <peS** for

eveiy <j> £ S* and <£># € S* for eveiy 0 € S** f and let k : S** —> S* be

the resulting contraction mapping. We note the following formal laws*

8.5.1. (kXk)""V) C (U*)* C (kxkr1((U o u ^ o u)«) t for

U a SX s #

8.5.2. (jt«)» < ((kXk)(^))t ^ (<K#)# o ((jfJJ^o (tf#)# f fora

filter <# on S** X S** .

The first part of 8.5.1 follows from the first part of 8.3«6f the second

part from 8.3.5, and 8.5.2 follows from 8.5.1 and the definitions.

8.6» Let now (IL be a pre-uniform convergence structure of S f and denote

by U* the set of all filters J=* on S*)(S* such that J=; eiU* By 8.2.3f

2/* is a pre-unlform convergence structure of S* if and only if QPX<p GL XL

for every filter <p in S* . A filter <p on S with this property is called a

Cauchy filter of the space (SfU) #

If x £ S f then i is a Cauchy filter of (SfO) . If tL is a uniform

convergence structure, then every filter P on S which converges for q^ is

a Cauchy filter of (Sfli) #

If IL* is a pre-uniform structure, then j : (StO) —> (S%UF) is an

embedding, by 8.2.5, and it follows easily from 8.2 and 8*3 that every property

listed in 6.3 which U has is inherited by U* .

9, Filter spacejnonadsjE;orjxniform convergence spaces

.l. We assume in this section that a set X* of proper filters on IXI

is assigned to every object X of a category ENS of uniform convergence
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spaces, with the following three properties.

9.1.1. If x 6 |Xl , then always i £ X* .

9.1.2. If f : X —* T in BNSU , then the filter f(cp) on | YI always

is in Y* for a6 X* .

9.1,5. If X* consists of Cauchy filters of X , and if T X « (X*,U*)

for the structure U* of X* defined by J^GU* <?=*> JF^e.11^ (see 8.6),

then T X is an object of ENS , and (T X)* consists of Cauchy filters

of T X .

U
. We say that an object X of EMS is precomplete. for the given

assignment X I—? X* f if X* consists of Cauchy filters of X • By 9«1.3*

a precomplete object TX = (X*f £X*) of ENS is defined for every precomplete

object X of ENSU . We define y^ : X —> T X \y putting yx(x) « x for

x£ |Xl 9 if X is precomplete. If f : X — > Y is a map between precomplete

objects of EHSU
 f then we define T f : T X —> T Y by putting (T f )(O>)

* f(<p) for every filter a> in X* .

Theoreine For the data of 9«1» precomplete ob.iects of ENS define a

category J5 of uniform convergence spaces, a top subcategorv of ENS # The

data of 9.2 define a functor T : T —r'p t and a natural embedding

X — ^ T X for every ob.iect X g£ P .

Proof. Consider a family of objects X± m (SfU±) of ENSU
 f and put

X « (Sf inf U±) • If f 6 X * , then cp£ (X±)* for every H± by 9^1*2f since

id S : X — > X in ENS . If every X. is precomplete, then <PXQ> is in

every II and thus in inf It. 9 and X is precomplete. A similar argument

proves 6*4,2 for precomplete objects of ENS .
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By 8.4.2, T f : T X — » T I is uniformly continuous for f t X — > X

in !P , and thus the data of 9.2 define a functor T as claimed. ft~ is an

embedding by 8.6, and natural in X by 2.7.1.

9«4. We say that the data of 9.1 define a filter space monad in ERS if

every precomplete object X of ENS is a demi-unifonn convergence space

(6.3.3) and satisfies the following condition.

9.4.1. If <p € (T X)» f then always <j># B X* .

If this is the case, then we denote by fu~ : T T X —? T X the resulting con-

traction map, given by yu^^p) « <ti $ for Cp 6 (T X)» .

Theorem. If every preccanplete ob.iect of ENS is a demi-unifonn con**

vergence space and satisfies 9.4.1f for the data of 9.1f then (Tf V$i^) is a

monad on the category P of precomplete ob.iects of ENS .

We call this monad (Tf f) 9u) a filter space monad in ENS .

Proof. )JL^ is uniformly continuous by 8,5.2 and the definitions» and

natural by 2#7«3. The monadic laws (see 5.5) follow from 2.6.2 and 2.6.5*

.6. If an induced structure functor P : ENS — > ENSQ (see 7.3) is

Qdefined for a category ENS^ of convergence spacesf then the following result

relates Cauchy filter spaces to the filter spaces of section 4.

Proposition. If X is a precomplete ob.iect of ENS and a uniform conver-

gence space, then the structure q ^ * q(*^t*) ^ L P T X is compatible with the

structure q ^ = q(2/x) of P X .

Proof. By 8.3.6 and the definitionst ^ ^ p j x ^ ^ ^ ^ » X d ) &2/ x t for
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<p€X* and a proper filter Cp on X* . This clearly satisfies 4.1.1 and 4«1.2f

and 4.1.3 follows from

(<f X *) o ((^#Xcp) * <t>*X*

and the definitions.

We do not know whether q ^ is the finest structure in Q X* which is

compatible with q ^ in Q |X| •

2/7# Examples are easily obtained* By 8.6, the topological part of 9.1.3

presents no problems for the axioms listed in 6.3. Since 9.1.1 and 9*1*2 are

5.1.1 and 5*1.3, and 9.4.1 is 5.4.1, the assignments of 5.6 work. We note that

T X is automatically precomplete9 by the first part of 8.3*6f if X is precom-

plete and satisfies 9.4.1. For the example 5.6.3 of all ultrafilters on (X) ,

a precomplete space is called precompact or totally bounded. In addition to the

examples of 5.6, we list two examples for which every space is precomplete•

. X* is the set of all Cauchy filters of X .

. X* is the set of all Cauchy ultrafilters of X ,

10. C ontinuous relations

10,1. We define and discuss in this section continuous relations in a top

category ENS over sets, using for ENS the notations introduced in 3*1 for

convergence spaces, and in 6.1 for uniform convergence spaces.

Continuous relations in this sense were introduced in [3^] for topological

spaces; see [32] for a comparison with continuous relations as defined e.g. in

[2.0] or in [/ ]. Recently. Grimeisen ["] introduced a different continuity con-
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cept for relation between topological spaces. A continuous relation in our

sense is continuous in his sense, but not conversely. Klein [/ff] discussed rela-

tions for a large class of categories. 10#5 provides a connection between hie

concept and ours; the two concepts may have a common generalization.

10.2. Sets and relations form a category REL I the composition g f of

relations f : S —->S' and g : Sf — ^ Slf is defined tqr putting x (g f) z ,

for x € S and z £ Sfl f if and only if x f y and y g z for some y g S 1 •

If (Sfu) and (S'tu
f) are objects of the top category ENS f then we say

that a relation f : S — ^ S 1 is continuous, from (S,u) to (Sf
fu

f) f if the

following condition is satisfied.

10.2.1. If g : R — ^ S and g1 : R — * S f are mappings such that always

g(x) f gf(x) for x € R f and if g : (R fv)—>(S fu) in EKS* t for a struc-

ture v ^ t R f then g1 : ( R f v ) — ^ ( S ^ u
1 ) in EMS* .

For given g and g9 , it is sufficient to test 10.2.1 for the coarsest

structure v € t E for which g is continuous. Thus 10.2.1 is equivalent to

the following condition.

10.2.2. If g : R — > S and g1 : R — > S * are mappings Buch that always

g(x) f gf(x) for x £ R , then g<~u ^ (g'^u 1 .

10.3. Proposition, (i) I£ f : (Sfu) — ^ ( S ^ u
1 ) £fl£ g : (SSu 1) — >

(S11^11) are continuous relations, then g f t ( S f u ) — M s ^ u " ) is continuous,

(ii) A mapping f j S -—^ Sf defipnes a contiguous relation f t (Sfu) >

(Sf
fu

f) if and only if f : ( S , u ) — t (Sf
fu

f) JLa *

Proof. If h : R — * S and h11 2 R — > SM are such that h(x) (g f) h"(x)

for every x ^ R f choose hf(x) so that h(x) f hf(x) and hf(x) g hw(x) ,
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for every x £ R . Then h ^ u ( (hf)^uf ̂  (h*)*"^ , and g f is continuous.

For (ii)f we note that g1 * f g in 10.2.1. Thus g'£ ENS* if f and g

are in ENS* f and f : (S,u) — > (Sf
tu') in ENS is continuous as a rela-

tion. For the converse, use g » id (Sfu) in 10.2.1, with g1 « f .

10.4, We need the following definition. A map f : (Sfu) — > (Sf ,uf) in

ENS* is called coarse if u » f^u1 • ¥e note the following properties of

coarse maps, omitting the straightforward proofs•

10.4.1. If f : S —^ S1 is a mapping and u e t S f and if g ; (Sf
tu

f)

— > (Sn9u") is coarse in ENS* , then f : (Sfu) — > ( S \ u
f ) £n ENS* if and

only if g f : (Sfu) — > (SH
fu

M) in ENS* .

10.4t2. If f : X — ^ Xf in ENS* t and if g : Xf — » XH is coarse

in ENS* f then g f is coarse in ENS* if and only if f is coarse.

10>4.3» Every subspace inclusion in ENS is coarse>

10.5, The graph of a relation f : S — ^ Sf is a subset of S x 51 •

If we replace S and Sf by (S9u) and (S',u') , then this subset defines

a subspace P f of the product space (Stu)x (S
f
fu

f) in ENS ; we regard fl

as the graph of f : (S,u) — ? (S^u1) . The two projections p : r — > (Sfu)

and pf : Ff — * ( S \ u f ) are then maps in ENS* .

Proposition. A relation f : S — > S f is continuous from (S,u) to

(Sf
ru

f) if and only if the prejection p : f \ — > (Sfu) is coarse.

Proof. The subspace structure of l"l is p ^ u n l p ' ^ u 1 . If f is COXJH

tinuou8t then this is p*~ u by 10.2.2, and p is coarse. Converselyf if g :

R — > S and gf : R —* Sf are such that g(x) f gf(x) for every x€. R ,



30

then g * p h and g1 « pf h for a unique mapping h : R —* ^ , If g :

(Rfv) ~ » (Sfu) in ENS1"' and p is coarse, then h : (Rfv) — > Ff by 10,4.1,

and gf : (Rfv) —•>(S
l
fu

l) follows. Thus f is continuous.

t tf. A top functor P : EMS — > E N 5 preserves continuous

relations.

Proof. This follows immediately from 10,5; a top functor preserves pro-

ducts, subspaces and coarse maps.

10.7. We list without proof some useful properties of continuous relations

which we shall not need in this paper. We note for 10.7.1 that relations f i

S — ^ S f form a complete lattice, with f 1 ^ f if the graph of f1 is con-

tained in the graph of f .

10.7.1. If f : ( S f u ) — } (S
f,uf) is continuous and ff : S — > S f is

finer than f f then ff : (S,u) —>(S f,u f) is continuous.

10.7.2. If f : (Sfu) — > ( S
f , u f ) is a map in ENS* , then the inverse

relation f~ : (s^u1) — > ( S , u ) ia continuous if and only if f is coarse.

10.7.3. Evexy continuous relation is of the form g f~ for a coarse map

f and a map g in ENS .

11. Separated f regular and comglete^sjgaces

11 >1. A definition of a filter space functor T : EMS — » ENS on a top

category ENS can easily be abstracted from sections 4 and 9* We assume in

this section that such a functor, and a top functor P : ENS —-> EMS from

ENS to a category of convergence spaces, are given. The objects of ENS will



be called spaces. For a space X t we denote by qx : X* «—> X the relation

obtained by restricting the structure q» of the induced convergence space P X

to the underlying set X* of IX ,

A space X will be called separated if qx is functional, i.e. if a filter

in X* converges to at most one point of X t complete if every Cf> 6 X* con-

verges to at least one point of X t and regular if <L : T X — > X is continu-

ous* These properties are defined relative to a given filter space functor T 9

but different filter space functors may produce the same separated, regular or

complete spaces*

If X is a space and A C l X l , then 4 XU*) will be called the closure

of A in X f relative to I, and A will be called closed if qx(A*) « A .

Closure is monotone, and qx(0) * 0 and A d q x U ) • The other two Kuratowski

laws are not necessarily satisfied. The intersection of closed sets is closed*

A will be called dense in X if |X| is the only closed set containing A •

11»2« Proposition* A product space of separated spaces is separated*

If f : X — » Y in EMS* with f infective and Y separated* then X jy£

separated* Thus separated spaces define an epireflective subcategorv of ENS ;

all reflections for this subcate^ory are quotient maps i,n ENS *

Proof* If <jp G X* for a product space X and <p qx x • then the projec-

tions of <D converge to the projections of x • If X is the product of sepa-

rated 8paces, this determines x uniquely; thus X is separated* The second

statement is proved similarly* Now separated spaces form an epireflective sub-

category of ENS by [iZl 10*2*l]9 and the reflections are quotient maps by

i 5-5] •



!!•?• Proposition. Regular spaces define a top subcategorv of ESS #

Proof. Let X± = (S,u±) for i € I , and let X « (Sf inf u±) • We must

show that X is regular if all 7L± are regular. Thus let g : (R,v) - — ^ T X

in ENS* , and let gf 5 R — > S be a mapping such that g(x) $x g
f(x) for

every i £ R . We note that id S : X —f X% . If g± « (T id S) g : (Rfv)

—^ T X , then g.(x) qx g'(x) follows for every x £R • But then gf t

( R f v ) — > X since X is regular, and gf : (R,v) — * X follows* Thus X

is regular*

If f : S —> Sf is a mapping and (Sf
fu

f) a regular space 9 then we must

show that the space (S, f u) is regular. The method of the preceding para-

graph can be used for this; we omit the details.

^ • 4 . Proposition, The product of complete spaces is complete, and every

closed subspace of a complete space is complete.

Proof. If cpCz X* for a product space X f and if every projection of O>

converges, then CP converges. This proves the first part.

Let now j : A — ^ S be an inclusion and X » (Sfu) a space, and let

Y * (Af j*~u) be the resulting subspace. If <p 6 Y* , then i((b)e X* and

A G i(<j>) . Thus if ofo>) 4X x and A is closed, then x £A , and <p q^ %

follows. This proves the second part.

11J). Lemma. I £ f : X — ^ Y a n d g : X — > Y in ENS* and Y is sepa-

rated, then the set of all x £jXJ such that f(x) » g(x) is closed in X .

Proof.- Let A be this set. If 0>eA # and <p qx x , then f(<p) «

and this filter converges to f(x) and to g(x) by qY • Thus x £ A #
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11«6. By 11.5 f every map f : X — > Y of separated spaces with dense range

is epimorphic in the category of separated spaces. However9 we cannot use

[/£; 10.2.1] to conclude from this and 11.4 that separated complete spaces or

separated regular complete spaces define an epireflective subcategoxy of sepa-

rated spaces. The reason for this is that the category of separated spaces in

EMS may fail to be co-well-powered with respect to maps with dense range. See

[3*/) for examples.

Epireflectors may still exist. For completeness in the usual sense that X*

is the set of all Cauchy filters of X 9 the epireflector from separated uniform

limit spaces to complete separated uniform limit spaces has been constructed

in [£.*?]# but we do not know whether separated regular complete spaces form an

epireflective subcategoxy of separated spaces for this example.

Every space is complete if X* always consists of filters on |X| which

converge for qra 9 but 11.2 and 11.3 are still useful in this situation. Even

the trivial case that X* consists of all filters i for x G[JL\ , and tt^ :

X — > T X is an isomorphism of ENS for every space X f has some interest.

Separated spaces are T. spaces in this situation.

II.7. We consider now the situation that T indices a filter space monad

on ENS* f i.e. 5.4.1 is satisfied, and ^ x : T T X — > T X in ENS*

for the resulting contraction mapping yU~ s (T X ) # — > X * f for every space

We assume, moreover, that the convergence structure q ^ in Q X* is com-

patible (4.1) with qpg. in Q |x| f for every space X .

ition. I£ (Xf£) is an algebra for (T fw fyu) f then <pqx|(<p)

for every filter
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Proof. We have ^x(<p) qipX <p for d>6X* , by 4.1.2 and 2.6.2. Since

is continuous and £ «x « id X t <p qx |(<p) follows.

This result has an important converse.

11,8. Theorem, jf Y is a separated regular complete space, under the

assumptions of 11.1 ftAfl 11.7, ther̂  (YfqY) is an algebra for (T,^ fjLt) • More**

over. XL (*t£) is an algebra for this monad and f : X — > Y i& ENS , then

f induces a homomorphism f : (X,fc) —^ (Yfq«) of algebras for (Tffl

qY is a map from T Y to Y by the definitions, and

- id Y since f qy y for ye Ul • If (p 6 (T X)» , then <t> q^ (f for

cp ** (fj+ ** fa(<p) f by 4.1.2 and 2«6.2# But then qY((|)) converges to q^

since qv is continuous. This means that qv (T qv) = qvA^v • ^hus (Y.qv
X X X X ' X X

is an algebra.

If f : X —^ Y and (X,t) is an algebra, then w q« ^(cp) for cp

by 11.7, and f(cp) qY f(£;(<?>)) results since f is continuous. But this says

that q» (T f) = f t , and f is a hoaomorphism of algebras as claimed.

v
12. Stone-Cech compactificationa

12.1. We consider in this section the important case that X* is the set

of all ultrafilters on |X| , for every space X . It is well known that every

Mapping f : S — > S f maps ultrafilters on S into ultrafilters on S1 . Thus

5.1.1 and 5.1.3 are satisfied in this situation.

If X* consists of ultrafilters on |X| f then ( A u B ) # « A* ̂  B* for

any subsets A and B of | XI f and it follows that (j)# is an ultrafilter on
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U | for every ultrafilter 0 on X* . Thus 5.4.1 is satisfied in our present

situation.

We assume now that the assignment X \—>ultrafilters on |X\ can be lifted

to a filter functor T : ENS1 -—^ ENS* which satisfies the assumptions of 11.7.

A complete space will be called compact for this example• Separated and regular

spaces relative to T are separated and regular spaces in the usual sense, and

closure relative to T i» closure in the usual sense.

12.2. jnpggrem. Under the assumptions of l?.lf separated regular compact

8paces define an epireflective subcategorv of the category of separated spaces.

f# Let X be a space; X need not be separated. If f : X — > Y is

a map from X to a separated regular compact space Y , then f » g V^ for a

unique hamomorphism g : (T Xf ixJ) — > (YfqY) of monadic algebras f by the gen-

eral theory of monads* By the second part of 11.89 g is also the unique map

in ENS* for which f » g n^ •

By 11,2 and 11.3t separated regular spaces define an epireflective subcate-

goxy of EMS*1 ; let r T X : T X — ^ R T X be the reflection for this situation.

It follows that g = h r T X for a unique map h : R T X — > Y # Since r T X is

epimorphic in ENS and thus surjective f every ultrafilter on | R T X | is the

image by r T X of an ultrafilter <\> in (T X ) * . Won (p q ^ PyXty) by 11.7,

and thus rTX((£)) converges for R T X . This shows that R T X is compact.

Now h : R T X — J > Y is uniquely determined by f » h r ^ ^ f and thus

rTx7x : X — * R T X is a reflection for regular separated compact spaces.

The range of the reflection r ^ rjj. is dense in R T X since every closed

subspace of a compact space is compact, by 11.4. If X is separated, it follows
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that rTX *7X is an epimorphism in the category of separated spaces, by 11.5#

»?« Theorem 12«2 is known for topological spaces, precompact uniform

spaces, and limit spaces [_2S\. Precompact uniform convergence or limit spaces

provide an application of 12.2 which is new* We do not know whether the Smirnov

ccopactification of a proximity space results from an ultrafilter space monad on

the category of proximity spaces.

The epireflection constructed in the proof of 12.2 is usually not a compact

t if i cat ion in the usual sense 9 i«t>* a dense embedding into a compact space • For

convergence spaces and limit spacest Kent and Richardson [?-£] have answered fully

the author's question: when is the Stone-Cech compactification of Theorem 12.2

a dense embedding? Their conditions are necessary for any examplev but we do not

know whether more restrictive conditions are needed for uniform convergence

spaces«

13• Regular convergence spaces

13 »1» The condition by which Cook and Fischer [6 ] and Fleischer [/o]

defined regularity for convergence spaces is clearly a special continuity con-

dition for filter convergence • Biesterfeldt [2.] pointed out that it is equi-

valent to the topological axiom T~ adapted to convergence spaces. However9

his proof is valid only for separated spaces. We shall close this gap*

We work with a category Eien of convergence spaces in which a filter space

functor T , in the sense of 5»lf is given. For a space X in B H D * f

we denote l?y q^ : X* — ^ \ X l the restriction of the structure qx to X* #

We recall that 4 XU*) is, by definition, the closure of A CZ |X| f and we
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define the closure qx(P*) of a filter P on lX\ by 2.2i $%(**) i» gener-

ated by the sets qx(A*) with A in some filter base of P • Note that (2.4.l)

cannot be used here since q« is in general not a mapping*

15.2. Theorem, Under the assumptions of 13*19 the following two statements

are logically equivalent for a space X i& ENST •

(i) X is regular. i.e. qx : T X — ? X is continuous.

(ii) X satisfies T , i.e. if P q ^ x , then always 5X(P*) qx x .

Proof. Let T be the graph of qY , with projections p : C — ^ T Xq A q

and p1 : T — ^ X . Por A d |X| , let S « p ^ U * ) f and define S v

q A F

accordingly for a filter P on X . Then p(SA) a A* and Pf(SA) « q xU*) f

with corresponding results for filters. If P qx x 9 then P* q« i f and it

follows that S converges to (i,x) in T~ if qY i8 continuous, i.e# p
r q Acoarse (10.5). But then qx(?*) qx x by continuity of p1 , and (i) = ^ (ii).

Conversely, consider g : (R,q) —?> T X and g1 : R — > | X \ such that

g(x) qx g'(x) for every x £ R . If P q x for (R,q) , then g(p) qTX g(x)

and g(x) qx g'(x) . Thus G qx g'(p) for G = (g(P))# , by 4.1.3. Now if

B £ G , then g(A) CZ B* for some A <5 P by the definition of C , and it

follows that g ' ( A ) C q x ( B * ) , Thus g'(P)-< qx(G») , and g'(P) qx x follows

if X satisfies T . Thus (ii) «^> (i).

13.3» Por the first four examples in 5.6, qY(A*) is the usual closure of
11 A

A in X • Thus the four corresponding filter functors define the same regu-
Q

larity for spaces in ENS^ . They also provide the same separated spaces9 but

complete spaces are not the same. Regularity for 5.6.5 seems to be different

from regularity for the other examples in 5.6.
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Continuity of qL depends on the existence of T X f and T X can exist

only if X is quasi-uniformizable, by 4.2« On the other hand, 1L and sepa-

rated and complete spaces depend only on the assignment X I—^X* which must of

course satisfy 5*1.1 and 5.1.3. This has the added advantage that spaces in

EMET need not be quasi-uniformizable. The proof of 13-2 can be remodeled easily

into a proof that T- is equivalent to the regularity condition of Cook and

Fischer [6 ] and Fleischer [ic] . The first part of this proof closes the gap

in [2 ] mentioned above.

13*4. One equivalence in [3Zi Thm. 3] is a special case of 13#2. The whole

theorem can easily be adapted to the more general case considered here, with T_

formulated as in 13.2. We digress from the main theme of this paper by adding

the following equivalence to [32; Thm. 3], using our present notation.

Proposition, A topological space X is regular if and only if X satis-

fies R. and qx : T X — > X is lower semi-continuous on its domain.

Proof. R. is one of the axioms of Davis [ff ] and can be stated as follows•

If P q ^ x and F qx y for some filter F t then always x qx y . This fol-

lows from T ; see [ & ] # Contiiiuity of qY implies lower semi-continuity by

[32.; Thm. 2]. Thip proves the Proposition in one direction.

On the other hand, let x € U with U open in X . (qx)""
1(U) is rela-

tively open and thus contains all convergent filters in some neighborhood V*

of * in T X , with V open in X . If <f> & V* and <p qx x , then also

(pqx y for some y £ U # But then x q x y by IL , and x £ U follows*

Thus V C U , and X satisfies T_ in its usual form*
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13«5« We give two examples. For the first example, let S be infinite,

with two points x f y singled out. We define a neighborhood structure of S

as follows. N consists of all sets A C S with x and y in A and with

S \ A finite. N » %u f , and N = z for all other points. One sees easily

that these filters are closed; thus the given neighborhood space (S,q) is

regular. On the other hand, the space ifl not quasi-unifoxmizable, as i q y ,

but N does not converge to y .

The second example was suggested by J. J. Schaffer. Let X •• (S,q) be an

infinite set S with the coarse T topology, and let X* consist of all con-

vergent filters on S . Then q~ (u) « U* for every open set U , and thus q

is lower semi-continuous• This example shows that 13*4 is "best possible".

14«

14.1* We assume in this section that ENS is a category of uniform con-

vergence spaces, or more exactly of pre-uniform convergence spaces, with a filter

space functor T : ENS — > E N S . The objects of ENS will be called spaces.

Thus we assume the conditions of 9*1 for ENS , with the added condition that

X* consists of Cauchy filters of X , for every space X •

For a space X * (SfU) f we denote by q~ : X* — ^ S the restriction of

the induced convergence structure q-^ (7.l)« For D c S x S , we call the

set (qx x qx)(U*) the closure of U in X , relative to T. We shorten this

to qx(U*) ; this abus de langage will not lead to confusion* We carry this

notation over to filters on S X S by the standard procedure. Note again that

(2.4.l) is not applicable because qx is in general a relation.
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14 f 2 # Theorem * Undey the assumptions of 13•!$ the following two ptatementa

are logically equivalent for a space X in ENS .

(i) X is regular. i.e. L : TX — > X is continuous.

(ii) X satisfies T f i.e. if 0 ^ ^ , then always qx(cf>*)^Ux *

Proof . Let P be the graph of qY , regarded as subs pace of the productq A

space T X X X f with projections p : p - > T X and pf : T — > X . For

U CZ |Xlx (Xj , let Su = (px p)
-1(U^f and define S^ accordingly for a fil-

ter <p . Then (p x:p)(Su) C U* and (pf K pt)(Su) - qx(U*) f with correspoo-

ding results for filters • If <ty € U^ 9 it follows that S^ is in U(r ) if

qL is continuous, i.e. p coarse (lO«5). But then qJ^tp*) £lL by continu-

ity of pf $ and (i) « ^ (ii).

Conversely, consider g : (Rft0 —^ T X and gf : R — > | X ) such that

g(x) qx g
f(x) for every x eR . If 4 > 6 ^ and l^» ((gx g)(<$>))* , then

M^d7xx . If V £ ip, then (g x g)(u) cZ V* for some U 6 <p 9 and

(g fX gf)(u) C qx(V*) follows. Thus (gf X g')((!>) ^ qx(^*) • » X satis-

fies T5 , it follows that g1 : (R&) —^ X . Thus (ii) ==$> (i) o

14.3# „ Proposition. Every uniform space in ESS is regular.

Proof. For an entourage U of the uniform space X , choose a symmetric

entourage V such that V o V o V C T U . If (xfy)<£ 4X(
V#) t then there are

filters cp and u> in X* such that

It follows that U g i x y f i.e. (xfy) 6 U . Thus qx(V*) CT U f and X

satisfies T- •
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14.4. We assume for the following result that an induced structure functor

U 0 U Q.
P : ENS — ^ E N S from ENS to a category ENS of convergence spaces, and a

filter space functor T1 on EKS> are given, q^ then refers to Tf •

Q
implies <p q~ x f then the induced space P X £& E K P is regular*

Proof* By the second hypothesist

q H ( F » ) X i 4, qx((Fx !)•) ,

for a filter F on |X| and x ^ X . Thus T for X implies T, for PX .

Using 10.6 in this situation would require a stronger hypothesis.

14.5. For the first four examples in 5.6, and for the additional examples

of 9«79 closure as defined in 14*1 is closure in the usual sense* Thus these

examples produce the same regularity for pre-uniform convergence spaces.

Closure and T depend only on the assignment X j—>X#
 t and not on the

filter space functor T . If this functor is not available, e.g. if one uses the

axioms of Cook and Fischer [5 ] (see 6.5), then one can reformulate continuity

of qx as follows.

14.5.1, If g : R -™>X* and gf : R — > \ X \ are mappings such that

g(x) qx g'(x) for every x£ R , then

for every filter (jp on R X R •

The proof of 14.2 can be transformed easily into a proof that 14.5.1 and T,

are logically equivalent*
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15* Extensions of uniformly continuous functions

15JL. We use again the assumptions and notations of 14«1* We call a space

X a (SfL0 in ENEU diagonal, relative to the filter space functor T f if for

every mapping u : S —> X* such that u(x) q~ x for all x € S * and for

every filter <$£ U. the filter ((uXu)(Cp))f is again in XL.

Our first result connects diagonal uniform convergence spaces with the dia-

gonal limit spaces defined by Kowalsky

15*2* Proposition* Let X » (S.ti.)

ENS • If, X is diagonal and u : S — > X * is a mapping such that u(x) q^ x

for all x £ S f then P q^x always implies (u(F))# q x . It follows that

a subset A of S is dense in X if and only if qx(A*) « S •

Proof. If P c^x and (p= u(x) , then (u(P) x cp)# and 4f>xx are

in Vi. It follows from this with 8.3.6 and 2.6*2 that

- (u(P)) #X*

is in 2Z. . This proves the first part* Now the closure operator A H-> ^

in X is idempotent, by [>b \ Satz 8]. and the second part follows*

13*3* Let j : X —j>Y be a map in EMSU such that qy((T j)(X*)) - JY| f

and let Z be a space* We say that a mapping f : |Y| —> |z| is a weak extent

sion by continuity of a map f : X —> Z if always

(1) jdp) qY y = » f(cp) qz f(y) ,

for cp£ X* and y € |Yl • If in addition f j = f , then we call f an

extension of f by continuity*
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If Z is a T space in this situation, then eveiy weak extension by con-

tinuity is in fact an extension; try <p * i in (l) for y * f(x) . In any

case, (l) is satisfied for y « j(x) if j is coarse and f(y) « f(x) • Every

map g : Y —f Z is em extension by continuity of the map g j : X — > Z •

If Z is separated, then a map f : X — } Z has at most one extension by con-

tinuity.

15.4. Theorem. If J is coarse. Y a diagonal space and Z a regular

space, in the situation of 15.3* then every weak extension by continuity of a

map f : X — f Z is a uniformly continuous map f : Y — > Z .

Proof. For each y € iY! f choose u(y) €z X* such that o(u(y)) qY y .

Then f(u(y)) qz f(y) for a weak extension f of a map f : X —* Z . Now let

<P be in U y f and put

V « (f Xf)(((uxu)(<$>))#) = ( ( T f x T f ) ( u x u ) ( $ ) ) # •

As Y is diagonal, the filter

(jXj)(((uAu)((p))#) * ((T j X T j)(uxu)(Cf)))#

is in l[Y . Thus ((u x u)(cf)))# is in U^ t and hence ^ in ^ f if i Is

coarse.

If K V , then ( T f / T f )(u x u)(v) C W* for some V <£<^. It fol-

lows that

(f X f)(V) CZ qz(W*) .

Thus (?X f)(Cp) ^ q z(y*) # and f is uniformly continuous if Z is

regular.
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15.5* Theorem* 1£ J is coarse. Y a diagonal space, and Z a separated

regular complete space, in the situation of 15.3* then every map f t X — > Z

has a unique extension to a map ? : Y — > Z such that f » f j •

Proof. Construct u : \Y\—^X» as in the proof of 15*4. If y € IY| f

then f(u(y)) qz z for a unique z £ \Z | in the present situation, with

z = f(x) for y = j(x) . We must put f(y) = z • No* the proof of 15*4 can be

carried through for this mapping f , and thus f is a map.

~ ~ # Weak extensions by continuity can be defined in the general situation

of 11.lf and the remarks in 15.3 remain valid in this situation. Extensions by

continuity have usually been considered only if j : X — > Y is a dense embed-

ding. 15.4 is well known for topological spaces, and 15.4 and 15.5 are well

known for uniform spaces. In these two cases, every space Y is diagonal.

Cook [*f ] proved 15.4 for convergence spaces.

Sjbberg [Z7] proved 15.4 and 15.5 for uniform convergence spaces, with the

following condition for Y .

(A). For every filter 4' *n ^Y
 f there ie an open filter ^ in Ux

such that 0 4 V .

Here U d jY| X |Y| is open if the complement of U is closed, in the

sense of 14.1, and a filter ^Y is open if ty has a base of open sets. Every

uniform space satisfies condition ( A ) . If a uniform convergence space Y satis-

fies condition ( A ) , then Y is diagonal, and the induced convergence structure

q(Z/Y) is a topology.
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