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DICHOTOMIES FOR LINEAR DIFFERENTIAL EQUATIONS WITH DELAYS:
THE CARATHEODORY CASE
by

Juan Jorge Schdffer

1. Introduction,

We consider on [O,»[ an equation of the form
(1.1) 4+ Mu =r
in a Banach space E, and the corresponding homogeneous equation
(1.2) i+ Mu = O;
here r 1is a locally integrable vector-valued function; the
"solution" u 1is defined on [-1,o[, and M, the "memory" func-
tional, takes a continuous function u into a locally integrable
function Mu 1in such a way that the values of Mu on an interval
[a,b] depend on the values of u on [a-1,b] only. The equa-
tions are to be satisfied "locally in E} "

The purpose of our investigation, which contiiiues the work
in [9] (and also in [2] and [3]) is to relate properties of (1.1)
such as "admissibility" ("for every r in some given function
space there is a solution in some given function space") and cer-
tain forms of conditional stability behaviour ("dichotcwies") of
the solutions of (1.2) and of its restrictions to intervals of
the form [m,o[. The method consists, as in [9], in reducing this
problem to a similar problem about a linear difference equation
in a function space; this difference equation can then be studied
by means of the theory developed in [1]. We refer to the introduc-
tion of [9] for further comments on method and significance, and
to the work of Pecelli [6] for some related resulits obtained under

more special assumptions and by a different method.



In [9] a special instance of the "continuous case" was con-
sidered: that is, r and Mu were assumed to be continuous, and
the equations were to hold everywhere; and (Mu)(t) depended
only on the values of u in [t-1,t]. In this paper we describe
instances of the "Carathéodory case", in which continuity is re-
placed by local integrability. The reduction of the problem to
one about difference equations is much simpler in the Carathéodory
case (contrast Theorem 6.2 with [9; Theorem 6.2]). The more basic
question of the existence, uniqueness and growth of solutions,
which is almost trivial in the continuous case, becomes, on the
other hand, a major issue if we wish to make our "Carathodory
assumptions' as natural as possible, and consequently quite a bit
more general than those usually encountered as, e.g., in [6].
The relevant results were obtained in [4] in a form suitable for
use here (see Section 5).

This paper is best read in conjunction with [9], although
the formal dependence on that paper consists only in the use of
some proofs., On the other hand, our present approach does depend,

especially in Section 8, on material in [1] and [8].

2, Spaces,
Throughout this paper, E shall denote a real or complex
Banach space, The norm in E, as in all normed spaces other than

the scalar fields and the function and sequence spaces described

below, is denoted by H |. If X and Y are Banach spaces, [X-Y]
denotes the Banach space of operators (bounded linear mappings)
from X to Y, and we set X = [X-X].

In this paper spaces of sequences occur together with spaces

of functions on certain intervals of the real line. For the former,



we adopt without elaboration the notation described in [1; Sections

2 and 3]. In particular: w ={ 0,1,...}, and s

X denotes the
A{m]( )

Fréchet space of all functions on w[m] ={m,m+l,...} with values

in the Banach space X, where m € w; and notations such as lpm](X)

~

are to be understood by the obvious analogy. If f ¢ s[m](X) and

m' 2 m, then f£ is the restriction of £ to Wy

[m'] € Ym' )& m']”

The intervals that will occur as domains of measurable func-
tions will be [-1,0] and [m,»[ for real numbers m. We shall in
general follow the notation and terminology of [5; Chapter 2] for
spaces consisting of such functions, with some special simplifying
conventions,

Spaces of functions on [-1,0] will have no label indicating
the domain., For instance, E}(E) is the Banach space of (equivalence
classes modulo null sets of) Bochner integrable functions
£: [-1,0] > E, with the norm [ff, = f?lnf(t)ndt. The space C(E) of
continuous functions f: [-1,0] » E with the norm [f] = max”f(t)”,
which plays a central part in our work, is abbreviated to E, and its
norm written without a subscript.

s indicated in these examples, thick hollow bars are used for

the norms of function spaces with [-1,0] as domain, This convention

permits the following arrangement: suppose that, e.g., g € l?m](LP(E)),

where 1 $p,q S and m e w; then Hg” is the element of l?m](Lp)
- the argument R is omitted, as usual - given by Hg”(n) = Hg(n)”,

noe W (where ||g(n)||(t) = |[(g(n))(t)|| for all t e [-1,0]; the

latter norm is the norm in E); Igip is the element of lqm given

~{1]
by Del () = D, = Wlle@|li,, n € w s thus Gei, = illslll s
and Bgﬁq = |ﬂgﬂp|q is the norm of g as an element of ifm](k?(E))'

We recall from [5; Chapter 2] that b& is the class of all



Banach spaces F of (equival ence classes of) neasurable functions
tp: [-1,0] -» R such that
(N): F is stronger than Ll, i.e., F is algebraically con-

~ L Ll

tained in L1 and there exists a nunber otF > 0 such that

At
~

[Iq;ﬂl Sazl](oﬂz for all ¢ € F;

(F): if <peF and 0: [-1,0] -»R is neasurable and \ihl <|q ,
then iheF and fIITM A fI(n[]_.

| f EG b3» then E(E) denotes the Banach space of (equival ence
cl asses of) measurable functions f: [-1,0] -» E such that ||f|| eE,
with the norm Qfl E,: 0||f||0£.

In considering spaces of functions defined on intervals of the
type [tn» , we shall use the follow ng conventions. If mSnm and
f is some function defined on [m»[, f[n{ g shall denote its re-
striction to [m,o0[. The subscript [n] is also used when the feet
that [tn» is the donmain has to be recorded (these usages are com
patible) . Thus ..l.[m] (B) -denotes the space of all (equival ence classes
of ) neasurable functions f: [mc§g -» E that are Bochner integrable
on each conpact interval; ﬁlm](E) denotes the space of all continuous
functions f: [mp[ ->E (cf. [9]); and simlarly for the space M . (E

"~
of all functions f € L. (B Wik J-jifIL%Z:%bizﬂ:l”f(s)Hds <»; for

the spaces -I"ALm]( E),, 1 " p~ @ and for the space g[nj (BE) of bounded
continuous functions f: [ma ->E wth the supremumnorm and the
subspace ?’/\\an(E) of those that tend to zero at infinity. The norns
of all nornmed spaces of this kind will be indicated, as in [5], by
thick bars with the appropriate subscript; the subscript is omtted

for the supremum norm



3. Slicing operations.

Let m~™ 0 be a given real nunber. For each t > m we define

the linear mapping I1I(t): L -, (B -» Ll(E) by

/Nim- 1] A
(3.1) (n(t)f)(s) = f(t+s), s e [-1,0, f e™"jCE).
Thus 1I(t) mps f into the "slice" of f between t-1 and t,

transplanted to [-1,00 for convenience. (Note that indication of
m is omtted; this will not cause any confusion.)

Wen m is an integer, we define tuf e s, ,(L (E)) for each

(3.2) (t1I)(n) = 11(n)f, n=mnHl,...

Thus *OT. JV'm ] "L d_ (E)) is a linear bijective mapping. This

Py
mappi ng has obvious restrictions to |inear nmappings of Krm_ll(E)
into sym(E), of C L(E) into ITn(E), and of C~ "7 (F
i nto ;;Z{m](ﬁ)'

The mapping *w has other restrictions that are "natural"

i sonor phi sns between certain normed function spaces: e.g.,

WA B2

J,_@_ (E)) is a congruence (linear isometry) for

@ 1
1~p”™roo "uy: M n(E) ->1, T(L (BE)) 1is an isonmorphismw th norm
im1] mym r*/
. 1 oo
1, the normof the inverse being 2; *@& T, ;n(E) ->1, , (L (E)
ANmij HnJd /%

i s anot her isonorphism with norm 2, the normof the inverse being
1 (for the space T see [5; pp. 61-62]). W mght indeed define
new norned spaces of functions on [moo[ in this way, but we shall
not do this here.
4. Menories.

In this section we shall make precise sone of the assunptions on
the "menory functional™ M that appears in (1.1). W express the lin-
earity of the functional and the fact that the scope of the nmenory ex-

tends at npst one unit of tine into the past by the follow ng definition.



A memory is a linear mapping M: K[_1](E) - L[O](E) such that

(4.1) u =0 implies X[a b](Mu) =0
5

X[a-1,b]

for all u € E{—l](E) and each interval [a,b] < [0,x[.

It is clear that a memory is uniquely determined by its restriction
to C E).
Cr-11®

Condition (4.1) permits, for each m 2 0, the "cutting down"
of M to a linear mapping M[m]: E{m-l](E) - E{m](E): indeed, each
u € K

~

and we may set M

m_1](E) can be written as u = v[m_1] for some v € E{-ll(E)’

[m]u = (Mv)[m]; since vfm—l] =u = V[m_1] implies

X[m-1 t](v'—v) = 0 for each t 2m, (4.1) yields (M(v’—v))[m] = 0;
)
thus the definition does not depend on the choice of v, We have

M[O] =M; if m' 2m 2 0, these "cut-down" memories satisfy

u €

(4.2 Mo me-11 = Mm® m) K17 E) -

A memory is usually assumed to have some continuity or bounded-
ness properties; it is typical to assume (or imply by the assumptions
on M) that the restriction of M to E{ 1](E) is continuous (equi-

valently, closed) as a mapping from E{ 1](E) to the Fréchet space

For our purposes, we shall usually require a uniform condi-

E{O](E)'

tion of this type, namely:

(M) : The restriction of the memory M to E{—l](E) is a

bounded linear mapping &Q: E{-l](E) > %{O](E)'

Thus M ||M is a norm on the linear space of all memories satis-

cl

~

fying (M).

Remark 1. Our definition of "memory" coincides with that of
"short memory" in [4; Section 5], and our condition (M) is identical
with condition (M') in that paper. The results in [4; Sections 5 and
6] are therefore applicable here (see Section 5).

A special kind of memory (one with no recall!) is described as



. ) . : d -

follows: if L € E&O](E)’ the mapping M. E{—l](E) - E{O](E) e

fined by

(4.3) (1, u) (£) = L(E)u(t) te 0w, uek 1 (8

. . . . S

is a memory satisfying (M), with ”(ML)Q“ = ILIM:
We shall wish to investigate equation (l1.1) by allowing r to

range over a suitable function space. Our methods will be applicable

if the behaviour of the memory M is adapted to the local properties

of the functions of such a space.

For a memory M, Condition (M) may be rephrased as follows: The

P . . . 1
restriction of the composite mapping twM: EI—I](E) —95{1](2’(E)) to

® 1
C E is a bounded linear mapping from C E to 1 L (E));
¢ .11 E) is a bou pping G 1y ® to I/ (L(E))
the norm of this mapping, incidentally, lies between %HMQH and HMC“.

~

The condition we now envisage is a more restrictive assumption of the
same type on the slices of Mu. For each given space F ¢ b¥F (see

Section 2), we consider the following condition on a memory M:

(MF): The restriction of =M to C[ 1](E) is a bounded linear

wmapping from to 17 (F(E)). The norm of this mapping

G-u®
shall be denoted by |l .

We remark that, if M satisfies (M), the Closed Graph Theorem
reduces the verification of (ME? to ascertaining that wM wmaps g[-l](E)
into l?l](E(E))' Certain special cases of Condition (ME? are easier
to state. We have already observed that (MLl) is equivalent to (M);
and since every space F e bd 1is stronger :Lan E}, each condition
(ME? implies (M). In the same vein, (ML?) may be rephrased as follows:

The restriction of M to C[ 1

](E) is a bounded linear mapping from
g[—l](E) to ETO](E). Similar rephrasings, involving other transla-
tion-invariant function spaces, are of interest for F = Lp, 1<p<e,

among others, and may be supplied by the reader.



Remark 2. An important special kind of memory is, of course,

the autonomous or time-independent memory; i.e., more precisely, a

memory that commutes with left-translations. It will be shown else-
where that if E 1is isomorphic to a Hilbert space (in particular
finite-dimensional), an autonomous memory satisfies (MLz).

We have spoken as if the memory functional M apearing in
(1.1) were to be itself subjected to Condition (MF). In actual fact,
however, it is typical of the problems we are dealing with that the
condition need only be imposed on the dependence of Mu on the past
of u, while its dependence on the current value of u is less re-
stricted: for a given space E’e bd, we shall say that the memory M

satisfies the standard assumptions with respect to F if M =M + M',

~ L
where M, is given by (4.3) for some L € M[O](E), and M' is a

memory satisfying (MF). Under these conditions, M obviously satis-
fies (M). We remark that these conditions include as a very special
case those considered in [6]. The results in [6] can, as a consequence,
be obtained by a specialzation of the methods and results of the pre-

sent work,

5. Solutions.

We say that a function f ¢ E{m](E) is a primitive (function)

if there exists g e L

|

all t € [m,o[; then g 1is unique, is denoted by f, and is called

t
m](E) such that f£(t) - f(m) = jmg(s)ds for

the derivative of f£,

Assume that we are given a memory M and, in addition, a func-
tion r € E{O](E)' A solution of the "differential equation with delay"
(5.1) 4+ Mu=r

ig a function u € E{—l](E) whose restriction u to [O0,o] 1is

[o]

a primitive whose derivative d satisfies ﬁ[O] 4+ Mu =r in

(o]



with

L E). Mre generally, for each m”r 0, a sol ution of

is a function ue K ., (E) whose restriction u. . to [m«f s
~[m-I] LmJ

a primitive whose derivative ill®} satisfies (5.1)rkhi- in L% () .

These definitions of course also apply to the homogeneous equations

(5.2) u+ Mu =0
?[m] %] " m]Y 7
As usual, it is preferable to deal with integral equations

equivalent to these differential equations.

5.1. Lemma. Let the menory M and- r € L, ; (B be glven A
function u e Ig_,[m*l,]QE) is a solution of (5. 1)[r if and onl¥ |f

it satisfies
pt

(5.3 u(t) - u(m - U ((M-.u)(s) - r(s))ds
Jm LTI

m If M ~"mA"0 and u i~ a solution or (5.1), v

vl

for all t

— — —

t hen ur‘mf X is a solution of (5.1): t,.

Proof. Definition of :sol ution" and (4.2).

W quote from[4] the results relative to the existence and
uni queness of solutions of (5.1) ﬁ‘m-j., estimates on their growth, and
the conpactness of certain "transition operators”, that we shall
require here. The applicability of these theorens to our present
situation was pointed out in Remark 1 in Section 4.

A*2 "Theorem Let M bs a. menory satisfying (M . Then there

exists a. number a >0 and, for each m”" 0, there are linear map-

£inSS P(m: E+K~j CE) and Qm : L” (B -."T<’\j (B such

that for every v e E and r e L, (E):

(1): u=PmMv+QAMr is the unique solution of (5.1), ,
[ g

Htn)u = v;
(2) : if t.=m then uek -, (E satisfies llI(Mu=yv
— \j —_— mtpIL) —————



10

1VAN

and (5.3) for m St Sty if and only if u and P(m)v + Q(W)r

agree on [m-1,t ];

(3): for all t Zm,

[e@v) (8)|| § L™y

- t -
I @ S ™ -0 [ e o fos

(if M=0, read 1 for HMCH'l(eG-l)); here [ ] 1is the "greatest

integer" function;

(4): if E 1is finite-dimensional, [I(m+1)P(m): E->E is compact.

Proof, [4; Theorems 5.1, 5.3, 6.2].

5.3. Corollary. Let M be a memory satisfying (M). If u is

a solution of (5.2)[m] for some m 2 0, then
jcoyu) € D nce yu) for all ezt zm

where ¢ 1is as in Theorem 5.,2.

—_— — —_————— ==

. u is a solution of (5.2 Lemma 5.1); the con-
Fioof. upy i (52 7 ( 1)
clusion follows by applying Theorem 5.2,(1),(3) to this solution.

(Cf. [4; Corollaries 5.2, 5.4].)

6. The associated difference equation.

Let us assume that the memory M satisfies (M). We construct a
linear difference equation in E in such a way that the values of a
solution of this equation are the slices of a solution of (5.1). For

this purpose, we define the linear mappings

n

A(n) - I(n)P(n-1): E > E
(6.1) ~ n
B(n) I(n)Q(n-1): E{O](E) - E

1,2,...

and observe that Theorem 5.2,(3) implies

95y e

A(m) ¢ E, lam)y|| € & n=1,2
(6.2) _ Tl o
iB(n)r) <€ HMQH -DI@) My , n=1,2,..., reLy®E.

We set A = (A(n)) € l$1](§> and define the linear mapping

B: Ligy(B) > sy19(E) by (Br)(n) = B(m)r, n=1,2,..., T ¢ Lo (.
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With A thus defined, we consider the following difference

equations in E:

(6.3) x(n) + A(n)x(n-1) = £(n) n=1,2,...
(6.4) x(n) + A(n)x(n-1) = 0 n=12,...

and their restrictions (6.3)[m] and (6.4)[m] to n=ml, m2,...
for each m € w. Here f£ € s[l](E)'

The fact that (6.3) and (6.4) are, in some sense, reduced forms
of (5.1) and (5.2) is expressed by the following proposition,

6.1. Lemma, Let me w and 1 € EIO](E) be given. A function

X € s[m](E) is a solution of (6.3)[m] with f = Br if and only if

=

x =qu for some solution u of (5.1)[m]. In particular, x is a

solution of (6.4)[m] if and only if x =qu for some solution u

of (5.2) [m]

Proof. This is a direct consequence of Theorem 5.2,(l) and
(6.1), and a straightforward computation, The details may be found
in the proof of [9; Lemma 6.1], which could be reproduced verbatim,

As usual, the main problem in applying difference-equation
theory via Lemma 6.1 to our equations (5.1) and (5.2) is that not
every f ¢ 2{1](5) is of the form f = Br. Our fundamental result
(Theorem 6.2) states that it is still possible, however, to relate
equation (6.3) with arbitrary f to equation (5.l1) with a suitable r,

In what follows, we assume that M = M+ M' satisfies the
standard assumptions with respect to a given space E’e b,

Let V € E[O](EB be the unique solution of the operator differ-
ential equation V+ LV =0 that satisfies V(0) =1 (I 1is the iden-
tity on E), We refer to [5; Section 31] for a detailed account of

this operator-valued function, In particular, the values of V are

invertible, and we write V-1 € K[O](§3 for the function defined by
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V_l(t) = V(t)'l, t € [0,o[. We also have

t
(6.5) HV(t)V-l(s)” < explISIIL(s')||ds'|, s,t 20,

6.2. Theorem, Assume that M = ML 4+ M' satisfies the standard

assumptions with respect to a given space F € b, F # {O}. For each

f e 5{1](2) there exists r € E{O](E) with wr e 3{1](£(E)) and

such that
(6.6) ﬂfwr)(n)ﬂF S k([£(n-1)] + (£()I), n=1,2,...,

and the solution w of

(6.7) w(n) + A(n)w(n-1) = £(n) - (Br)(n), n=1,2,...

with w(0) = O satisfies

6.8) Wl S (1 + expiLiyl£@]I, n=0,1,...,
where we set £(0) = 0, and k > O depends only on E; ILIM , and
[Pt [|,

L

0
Proof. There exists ¢ € F such that ¢ 2 0 and I ©(s)ds =1,
~ -1

We define w e s 0](E) by w(0) = 0 and

5
S
(6.9 (M) (®) = (E@)() - (| o(s)dsHVmrV () (£) (@),
-1Ss S 0, n=12,...

It is obvious that each w(n) is continuous, hence in E. Also,
(6.10) (w(n))(-1) = (£(m))(-1), (w(n))(O) = O, n=0,1,...;
and (6.9) and (6.5) yield

fwn)-f(n)] S £ (n)fexpiLi, , n=12,...,
so that (6.8) holds (it is tri:ial for n = 0).

We now construct r, For this purpose we choose, for each

n e w[l]’ a function z 2](E) such that

€ C
n ~[ n-
(6.11) H(n-—l)zn = - w(n-1) H(n)zn = f(n) - w(n)

and such that z is constant on [n,o[; this is possible on ac-

count of (6.10). Then

]

(6.12) izni max{lw(n-1)],0f(n)-w(n)[} €

< max([£(n-1)[ (L+expiLly), 1£(n)DexpiLi}.
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We now define r e L,..(E) by
(6.13)  r(t) =u(t-mV(O)V'Hn)(F(N)(O + (M 4z )(D),
n-1 <t " n, n=1,2,...

From (6.5) and the fact that M satisfies (M-r) it follows that
(upr)(n €£(E) and ~

1) ()i € Dol gl £(m)PexpiLiy + [laM'|iiz §, n=1,2,...;
conbi ni ng t;;is vm't;:(6. 12) we frnd (6. 6)~with

k= |'r[i)M'HFexpiLﬂM+ max{“[m'”F, H(pﬂFeprng‘].

It remains ?or us To prove that~ w a:d r thus constructed
satisfy (6.7). For this purpose, let n e u:f},] and t, n-1 <t "n,
be fixed for the tine being. In the follow ng conputation, we use in
succession: (6.11) and (6. 10); (6.9); differentiation of products and
the definition of V, (6.13) and (6.9); (6.11); the definition of M
and (4.3).

2 (1) - 2 (1) = (F(m-w(n)(t-n) = (1, <p(s)ds») W)V () (F(n))(0) =

I:,_(fp(S-n)V(S) : J(fT-%(S')dS')L(S)V(s)) V' V) (f(n) (Qds =

- Jn-l((m -ntMs) - r(s) + L(s)(f(n)-w(n))(s-n))ds =

| =,

= r (('V'r'n" 1|an5> - "> T L(9zin(9))ds = - Jt @ .z ) (9)-r(s))ds..
en-l L4 n n n-1  Ln-ij n
Since this equality holds for all t e ]n-1,n], it follows fram
Theorem 5.2, (2) that Z* agrees on [n-2,n] with
P(n-DI1(u-Dz™ + Q(n-Dr = - P(n-Dw(n-1) + Q(n-I)r. Combining this
with (6.11) and (6.1) we find
f(n) - w(n) = HMz® = 1I(n) (- P(n-Dw(n-1) + Q(n-I)r) =
= A(Nw(n-1) + B(N)r;
that is, w(n-1) and w(n) satisfy (6.7) for the given n. Since n

was arbitrary, the proof is conplete.

HUT UUAKY
GAMEME-KUIN IWfERSTY
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7. Admissibility.

The purpose of Theorem 6.2 was to allow us to replace the study
of equations (5.1), (5.2) by that of the difference equations (6.3),
(6.4); in this section and the next we propose to show how the
method works. We shall assume that the memory M satisfies the stand-
ard assumptions with respect to a given space E’e b&, El# {3 (this
extra assumption excludes a trivial case in which the equations are
ordinary differential equations). A and B are defined as in Section 6,

We suppose that the reader is acquainted with the concept of
X-pairs and ;t%tggizg of sequence spaces, i.e., pairs (b,d) of
sequence spaces with E’e bt or E’e btﬁ, respectively, and 2 e bt
in either case (the classes bZ and btg of translation-invariant

Banach sequence spaces are discussed in [1l; Section 3]). We recall

that such a pair (b,d) is admissible for A if (6.3) has a solu-

tion x € d[o](E) for every f € b[l](E)' For details, see [1l; Section 8].

7.1, Theorem., Assume that the memory M = ML + M' satisfies the

standard assumptions with respect to a given space F ¢ b&, F # {0}.

For each given f_ipair (or, in particular, £-pair) (b,d) the fol-

lowing statements are equivalent:

(a): b 1is stronger than d; and for every r €

~

with

*01®
WL € E{l](EﬂE)) equation (5.1) has a solution u with Wu ¢ S{O](E);

(b): (E/E) is admissible for A.

Proof, (a) implies (b): Let f ¢ E{l](E) be given, and let r, w
be as provided by Theorem 6.2. Since b ¢ biﬁ; (6.6) implies
wr € E{l](EﬂE))‘ Further, (6.8) implies w ¢ E{o](E)’ whence
w € E{O](E)’ since E’ is stronger than i.

By the assumption, (5.1) with this r has a solution u such

that wu € 2[0](E)' By Lemma 6.1 we have (mu)(n) + A(n)@wu)(n-1) =
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= (Br)(n), n = 1,2,,..; since w 1is a solution of (6.7), we conclude
that x =7u + W € d[O](E) is a solution of (6.3)., Thus (b,d) 1is
admissible for A,
m ~, 3 ] 3
(b) implies (a): By (6.2), A ¢ 1{1](5); since (EJS) is admis-

sible for A, we conclude that b is stronger than d [7; Lemma 4.1].

~

Let now T € ](E) be given with wr € A{l](F(E)) Then (6.2) and

~{0
the fact that F satisfies Condition (N) (see Section 2) imply
-l o , .

IBr] = HME“ (e -1)arymrnzl, so that Br ¢ A{1](E) Since (E/E) is
admissible for A, there exists a solution X ¢ A{O](E) of
x(n) + A(n)x(n-1) = (Br)(n), n = 1,2,..., and by Lemma 6.1 there
exists a solution u of (5.1) with Wu = x € 2{0](E), as asserted in (a).

If E' is a subset of E{O](E) and 2’ is a subset of E{—l](E)’

it is in keeping with earlier terminology to say that the pair (B,D)

is admissible for M - more loosely, for (5.1) - if for every r ¢ B

~

there exists a solution x ¢ D of (5.1). Thus Statement (a) in Theorem
7.1 expresses the admissibility of a certain pair (B,D) for M., To
exemplify the uses of Theorem 7.1, we shall now specify B to be one

®©, Or

Sp¢S
Hoy®» 1sp s,

of the spaces ](E) or ](E), and D to

Yo Lo

be either or ~O[-1](E); but the choices may easily be ex-

C E
tended in the spirit of [5; Chapter 2] and the remark at the end of

Section 3, Following earlier practice, the name of a pair of such

spaces is abbreviated, as, e.g., (LP for

,Co) (L 07 (B),Cop_17 E),
since there is no ambiguity.
We now record some special cases covered by Theorem 7.1,

7.2, Corollary, Assume that the memory M = ML + M' satisfies

the standard assumptions with respect to a given space F. With F,
~ ~

[

(B,D), (b,g) as specified in the following table, (B,D) is admis-

sible for M if and only if (b,d) is admissible for A.
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F (B,D (b, d)
o (1.0 (1I°,1)  15pse=
L” (L%5e0) (17, 0 1SpsSew
L (MO (1 " 100)
L (r,9 a1
L’ (T,Cy) SRy

Proof. Theorem 7.1 and the remarks on the slicing operator tsr

in Section 3.

8. Adnissibility and the solutions of the honbgeneous equation

The admissibility of certain pairs (b,d) of sequence spaces for

Pt P

A inplies, under some additional assunptions, an (ordinary) dichotony

or an exponential dichotony of the solutions of the hombgeneous equa-

tions (6.4)trmj (see [1; Section 7]). An exponential dichotomy, for

i nstance, may roughly be described thus: the bounded sol utions tend

uniformy exponentially to 0, there exists a "conplenentary" manifold

of solutions of (6.4) tending uniformy exponentially to infinity, so-

lutions of the two kinds remain uniformy apart, and together they span

all solutions. Since Lenma 6.1 provides a bijective correspondence be-

tween solutions of (5.2), -. and solutions of (6.4) , for integral m
M [m}

Theorem 7.1 and Corollary 7.2 will alow us to translate that result

into an anal ogous inplication for differential equations with del ays.

In order to avoid unenlightening conplications, we restrict our-
selves in this section to the case in which 2, is specified to be {T,
i.e., in which bounded solutions of (5.1) and of (6.3) are sought. The
case in which ﬂ, is 1“, so that attention is centred on solutions of
(5.1) and of (6.3) that tend to 0, can easily be treated in a simlar

fashion; as can also cases with more general d e bt, with appropriate

use of [1].
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We assume given a memory M = ML + M' that satisfies the stand-
ard assumptions with respect to a given space E € bd, E’# {0}. We
denote by EO(O) cE the set of "initial slices" T[I(0)u of the
bounded solutions u of (5.2); by Lemma 6.1, EO(O) is the set of
values at n = 0 of the bounded solutions of (6.4).

We now state the main "direct" theorem, to the effect that the
admissibility of certain pairs of function spaces for M implies a
behaviour of the solutions of (5.2)[m] that may be described as an
ordinary or an exponential dichotomy.

8.1, Theorem. Assume that the memory M = ML + M' satisfies the

standard assumptions with respect to a given space F ¢ bJ, F # [0},
. . - .
Assume that EO(O) is closed in E. Assume that E € bt (in part-

icular b e b#) is [ not stronger than 11 and ] such that for every

re L[O](E) with -wr e E{l](F(E)) equation (5.1) has a bounded so-
luticn,

Then there exists [ a number v >0 and ] a number N > 0O

such that, for every real m 2 0, every bounded solution v of

(5'2)[m] satisfies
D: IOVI SNVl [ vl $ 8 VE0nee yvp

for all t 2 to 2 m;

Theie further exists a set W of solutions of (5.2), [ a number

v' >0 ] and numbers N' >0, Aj > 1 such that, for every real m 20,

every solution u of (5.2)[m] is of the form u=v + w where

[w-1]°

is a bounded solution and w € W, and such that every solution

<

w € H' satisfies

(i):  DIewl 2N TN Wl 1INl 2 NV TR0 yup
for all t 2 £ 2 0;

(1i1): JOCE)W] € A JTI(E)w - I(E)v] for all € 2m2 0 and all
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bounded solutions v of (5.2),

_ - [n]
TF E jis Tinite-dinensional, then the assunption thaf E'O(O) s

closed is redundant, and W may be chosen to be a. Tinite-di mensional

[Tnear mani fol d.
Proof. 1. By Theorem?7.1, /(bllm) is adm ssible for A W now

refer to [1] and [8] in order to deal with equations (6.3), (6.4). Spe-
cifically, Condition (d) of [8; Lemma 4.2] is satisfiedwith d = 1°°
e consiaer the covariant sequence E. (whose general termis E {(n),
the set of initial values of the bounded sol utions of (6.4), ;nj)'
Since E.(0) is closed by assunption, [8; Theorem4.3,(a)] shows that
the covariant sequence E. is closed and regular. W can therefore
apply the fundamental "direct" results [1; Theorenms 9.1 and 10.1] for
difference equations, and find that this covariant seqguence induces a
di chotonmy [ an exponential dichotomy ] for A

2. To make this result manageabl e, we use the description of a
di chotony [ an exponential dichotony ] given by [1; Theorem7.1,(c)].
W observe that in the proof of that theoremwe are free to choose the
splitting g (a "non-linear projection" in E annihilating E (0));
this will be inportant in Part 3 of this proof. W choose q and de-
note its range by Z Thus E = EA-(0) + Z Now the covariant sequence
E- is regular; therefore we have, by [1; Lemma 5.2,(b) and (5.2)], for
every integer n ~ 0,
E = E~-(n) + Yn,0E = E~(n) + Yn,0E.(0) + Yn,OZ = E..(n) + U(n,0)Z
This nmeans that if x is a given solution of (6.4)an.J there exists a
solution z of (6.4) with z(0) € Z such that y =x - z, ; is a

~ L"J

bounded solution of (6.4), ,.

[n]
Ve define W to be the set of those solutions w of (5.2) that

satisfy IlI(Qw € Z The remainder of the proof of the main concl usion

of the theoremis now identical to that of [9; Theorem7.3] (fromthe
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| ast paragraph of Part 2) with the follow ng changes: [1; Theorem 9.1]
i's used, and the exponential factors deleted, in the "ordinary dicho-
tomy" case; and Corollary 5.3 and the factor e? are used instead of
[9; Lenma 5.2] and the factor exijMC||.

3. If E is finite-di nensional‘:’ then each A(n) is conpact,
by (6.1) and Theorem5.2,(4). Therefore [8; Theorem4.3,(b)] is ap-
plicable and E.(0) is closed and has finite co-dinension in E W

may therefore choose the splitting g in the preceding proof to be a

linear projection of E along E.,(0) onto sonme finite-dinensional
A rJj

conpl enentary subspace Z. Then W is a finite-dinmensional |inear

mani fol d of solutions of (5.2) .
8.2 . Corottary. ASSUNME That The Tenory M= /4% + M Tarrsrres

the standard assunptions with TESpecr TO & grven space F. Assune

________________________ ' /v —_——
that E (0) is closed in E Assune that (B,C is adnmissible for
- /ﬂQ _ — —. _ N _ . //\ N

1 1

M where F=L and B=L_, or F=1° and B=T [ F =1LP and

B=L, 1<p”™» ot F=L and B =M] . Then the conclusions §]

Theorem B.T hol d.
Proof. Use Corollary 7.2 instead of Theorem 7.1 to enter the

proof of Theorem 8. 1.

To conclude, we state a reasonably strong formof a "converse"

theoremto Theorem 8.1, and sketch its proof.

8.3. Theorem Assune that the nenmory M satisfies (M . _If the

mai n conclusion of Theorem 8.1 holds for the solutions gf__(5.2),m],

then the pairs (Ll,C) and (T,Q [ jthe pairs (LP,S), 17 p R,

~

and (MQ] are adm ssible for M

Proof. The assunption on M inplies that M satisfies the
standard assunptions with L =0, M =M and F = Ll. The mai n con-
clusion of Theorem 8.1 inplies, via Lemma 6.1 and a little computa-

tion, that EO is indeed a regular covariant sequence for A and
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induces a dichotomy [ an exponential dichotomy ] for A [1; Theorem
7.1]. From the "converse" theorems for difference equations [1l; Theo-

. 1 e . © oo
rems 9.2 and 10.3] it follows that the pair (17,1 ) [ the pair (1 ’l,) ]
is admissible for A, From Corollary 7.2 we conclude that the pair
(Ll,C) [ the pair (M,C) ] 1is admissible for M. The other pairs of
the statement are then obviously admissible, since Eko](E) is

1 P .,
i th
stronger than EIO](E) [ since every EIO](E) is stronger an

M) ® 1.
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