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DICHOTOMIES FOR LINEAR DIFFERENTIAL EQUATIONS WITH DELAYS:

THE CARATHEODORY CASE

by

Juan Jorge Schaffer

1. Introduction.

We consider on [O,<»[ an equation of the form

(1.1) li + Mu = r

in a Banach space E, and the corresponding homogeneous equation

(1.2) u + Mu = 0;

here r is a locally integrable vector-valued function; the

"solution11 u is defined on [-l,<x>[, and M, the "memory" func-

tional, takes a continuous function u into a locally integrable

function Mu in such a way that the values of Mu on an interval

[a,b] depend on the values of u on [a-l,b] only. The equa-

tions are to be satisfied "locally in L ".

The purpose of our investigation, which continues the work

in [9] (and also in [2] and [3]) is to relate properties of (1.1)

such as "admissibility" ("for every r in some given function

space there is a solution in some given function space") and cer-

tain forms of conditional stability behaviour ("dichotomies") of

the solutions of (1.2) and of its restrictions to intervals of

the form [m,oo[ . The method consists, as in [9], in reducing this

problem to a similar problem about a linear difference equation

in a function space; this difference equation can then be studied

by means of the theory developed in [1]. We refer to the introduc-

tion of [9] for further comments on method and significance, and

to the work of Pecelli [6] for some related results obtained under

more special assumptions and by a different method.



In [9] a special instance of the "continuous case" was con-

sidered: that is, r and Mu were assumed to be continuous, and

the equations were to hold everywhere; and (Mu)(t) depended

only on the values of u in [t-l,t]. In this paper we describe

instances of the "Caratheodory case", in which continuity is re-

placed by local integrability. The reduction of the problem to

one about difference equations is much simpler in the Caratheodory

case (contrast Theorem 6.2 with [9; Theorem 6.2]). The more basic

question of the existence, uniqueness and growth of solutions,

which is almost trivial in the continuous case, becomes, on the

other hand, a major issue if we wish to make our "Caratheodory

assumptions" as natural as possible, and consequently quite a bit

more general than those usually encountered as, e.g., in [6],

The relevant results were obtained in [4] in a form suitable for

use here (see Section 5 ) .

This paper is best read in conjunction with [9], although

the formal dependence on that paper consists only in the use of

some proofs. On the other hand, our present approach does depend,

especially in Section 8, on material in [1] and [8].

2 . Spaces.

Throughout this paper, E shall denote a real or complex

Banach space. The norm in E, as in all normed spaces other than

the scalar fields and the function and sequence spaces described

below, is denoted by || ||. If X and Y are Banach spaces, [X-»Y]

denotes the Banach space of operators (bounded linear mappings)

from X to Y, and we set % = [X-»X] .

In this paper spaces of sequences occur together with spaces

of functions on certain intervals of the real line. For the former,



we adopt without elaboration the notation described in [1; Sections

2 and 3] . In particular: uu = { 0,1, . ..} , and sr , (X) denotes the

Frechet space of all functions on u)r •, = { m,rrH-l, ... } with values

in the Banach space X. where m e 0); and notations such as if n (X)
~[mj

are to be understood by the obvious analogy. If f e sr , (X) and

m1 ^ m, then fr ti G fr 11 00 i s t h e restriction of f to uUr T, .

The intervals that will occur as domains of measurable func-

tions will be [-1,0] and [m,oo[ for real numbers m. We shall in

general follow the notation and terminology of [5; Chapter 2] for

spaces consisting of such functions, with some special simplifying

conventions.

Spaces of functions on [-1,0] will have no label indicating

the domain. For instance, L (E) is the Banach space of (equivalence

classes modulo null sets of) Bochner integrable functions

f: [-1,0] ->E, with the norm Qf fl x = J ||f(t)||dt. The space C(E) of

continuous functions f: [-1,0] -» E with the norm 0 f D = roax||f(t)||,

which plays a central part in our work, is abbreviated to E, and its

norm written without a subscript.

As indicated in these examples, thick hollow bars are used for

the norms of function spaces with [-1,0] as domain. This convention

permits the following arrangement: suppose that, e.g., g e 1? -i(LP(E)),

where 1 % p,q {S oo and m e oj; then ||g|| is the element of 1? 1 (L
P)

11 ' ^/[mj rsj

- the argument R is omitted, as usual - given by ||g||(n) = ||g(n)||,

n e u)[m] (where | |g(n)| |(t) = ||(g(n)) ( t ) || for a l l t e [ -1 ,0] ; the

l a t t e r norm is the norm in E); |gj is the element of 1^ given

by Ogflp(n) = Dg(n)Bp - D||g(n)||Bp, n e uu[m] ; thus Ogflp = i | |g | | ip ;

and ggg = IDgD I is the norm of g as an element of l!1 (LP(E)) .

We reca l l from [5; Chapter 2] that bU is the class of a l l



Banach spaces F of (equivalence classes of) measurable functions

tp: [-1,0] -» R such that

(N): F is stronger than L , i.e., F is algebraically con-

tained in L and there exists a number ot > 0 such that

for

(F) : if <p e F and 0: [-1,0] -» R is measurable and \ih\ < |<p| ,

then ih e F and fllMl ̂  fl(n[]_ .

If F G b3», then F(E) denotes the Banach space of (equivalence

classes of) measurable functions f: [-1,0] -» E such that ||f|| e F,

with the norm Qffl = 0||f||0F .

In considering spaces of functions defined on intervals of the

type [tn,»[ y we shall use the following conventions. If m S mf and

f is some function defined on [m,»[, f f - shall denote its re-

striction to [mt,oo[. The subscript [m] is also used when the feet

that [tn,»[ is the domain has to be recorded (these usages are com-

patible) . Thus L (E) denotes the space of all (equivalence classes

of) measurable functions f: [m,c©[ -» E that are Bochner integrable

on each compact interval; Kr ,(E) denotes the space of all continuous

functions f: [m »[ -> E (cf. [9]); and similarly for the space Mr . (E)
^[mj

pt+1
L,, (E) with jfl = supl |

the spaces L^ ,(E), 1 ^ p ^ QO; and for the space Cr , (E) of bounded
^LmJ ' [mj

pt+1
of all functions f € L,, (E) with jfl = supl ||f(s)||ds < » ; for

continuous functions f: [m,a>[ -> E with the supremum norm, and the

subspace C^r ,(E) of those that tend to zero at infinity. The norms
/^U[mj

of all normed spaces of this kind will be indicated, as in [5], by

thick bars with the appropriate subscript; the subscript is omitted

for the supremum norm.



3. Slicing operations.

Let m ^ 0 be a given real number. For each t > m we define

the linear mapping II(t): Lr -, (E) -» L (E) by
/^i m - 1 j ^

(3.1) (n(t)f)(s) = f(t+s), s e [-1,0], f e L ^ j C E ) .

Thus II(t) maps f into the "slice" of f between t-1 and t,

transplanted to [-1,0] for convenience. (Note that indication of

m is omitted; this will not cause any confusion.)

When m is an integer, we define tuf e sr ,(L (E)) for each

f € L ,(E) by
^[m-lj

(3.2) (tIJf)(n) = II(n)f, n = m,nH-l,... .

Thus *0T: L. ,. -> s. ., (L (E)) is a linear bijective mapping. This
^m-lj r4mj ~

mapping has obvious restrictions to linear mappings of Kr

into s J m l(E), of C n ( E ) into lTml(E), and of C (E)

l
into

The mapping *w has other restrictions that are "natural"

isomorphisms between certain normed function spaces: e.g.,

'W: L^ T i (E) -> if , (L (E)) is a congruence (linear isometry) for
^Lm-lJ r4^j ~

eo 1
1 ^ p ̂  oo; "uj: Mr n ( E ) -> lr T (L (E)) is an isomorphism with norm

••̂l m - 1 J r^Y m J r**/
1 oo

1, the norm of the inverse being 2; *Gd: Tr in(E) -> lr , (L (E))
^[m-ij H.niJ /%/

is another isomorphism, with norm 2, the norm of the inverse being

1 (for the space T see [5; pp. 61-62]). We might indeed define

new normed spaces of functions on [m,oo[ in this way, but we shall

not do this here.

4. Memories.

In this section we shall make precise some of the assumptions on

the "memory functional" M that appears in (1.1). We express the lin-

earity of the functional and the fact that the scope of the memory ex-

tends at most one unit of time into the past by the following definition.



A memory is a linear mapping M: Kr - .. (E) ->Lrrn(E) such that
H.-1J ~[v\

^ml) *[a-l,b]U = ° i m P l i e s X[ a,b]
( M u ) = °

for a l l u € Kr i n(E) and each interval [a,b] c [0,<»[
H. -1J

I t is clear that a memory is uniquely determined by i t s restr ict ion

to E[-i]<E)-
Condition (4.1) permits, for each m ̂  0, the "cutting down"

of M to a linear mapping Mr , : Kr in(E) -» Lr ,(E): indeed each
[mj r^[m-ij ^ m J

u € Kr -,n(E) can be w r i t t e n as u = v r i n for some v e Kr i n ( E ) ,
^ .m- l j l^n-lj H.-J-J

and we may s e t Mr .u = (Mv)r . ; s ince v ' . = u = v r - . implies[m] v y [m] 5 [m-1] [m-1]

Xr ^^(vt"v) = ° for each t - m> (4*1) yields (M(vT-v))r . = 0;[m-i}tJ [mj

thus the definition does not depend on the choice of v. We have

= M; if mf ̂  m ̂  0, these "cut-down" memories satisfy

A memory is usually assumed to have some continuity or bounded-

ness properties; it is typical to assume (or imply by the assumptions

on M) that the restriction of M to Cr ni(E) is continuous (equi-

valently, closed) as a mapping from Cr ^.. (E) to the Frechet space
H. -i J

Lr 1(E). For our purposes, we shall usually require a uniform condi-

tion of this type, namely:
(M) : The restriction of the memory M to Cr ... (E) is a— H.-1J

bounded linear mapping M : Cr -.-.(E) -

Thus M H» ||M || is a norm on the linear space of all memories satis-

fying (M) .

Remark _1. Our definition of "memory" coincides with that of

"short memory" in [4; Section 5], and our condition (M) is identical

with condition (M1) in that paper. The results in [4; Sections 5 and

6] are therefore applicable here (see Section 5 ) .

A special kind of memory (one with no recall1.) is described as



follows: if L G Mjo,(ff), the mapping M ^ K[_1^(E) - * L J Q J ( E ) de-

fined by

(4.3) ( M ^ X t ) = L(t)u(t) t e [(>,•[, U e K^.ij

is a memory satisfying (M), with ||0\)c|| - | J J BM #

We shall wish to investigate equation (1.1) by allowing r to

range over a suitable function space. Our methods will be applicable

if the behaviour of the memory M is adapted to the local properties

of the functions of such a space.

For a memory M, Condition (M) may be rephrased as follows: The

restriction of the composite mapping tfiM: K, 1, (E) -» ŝ. -, (L (E)) _to

co 1
Cr n (E) is a bounded linear mapping from Cr -. •* (E) to l r n (L (E)) ;ẑ [ - i J ^4 -1J ~[ l J ^

the norm of this mapping, incidentally, lies between —IJM |j and ||M ||

The condition we now envisage is a more restrictive assumption of the

same type on the slices of Mu. For each given space F e b3 (see

Section 2), we consider the following condition on a memory M:

: The restriction of vM ^o Cr ^(E) is a bounded linear
*w L J

mapping from Cr n, (E) to 1?-, -i (F(E)) . The norm of this mapping
H. -1J ^L J- J ^

shall be denoted by |[BM|L .

We remark that, if M satisfies (M), the Closed Graph Theorem

reduces the verification of (M̂ ,) to ascertaining that-odM maps Cp (E)

into 1.11(F(E)). Certain special cases of Condition (M ) are easier

to state. We have already observed that (M^i) is equivalent to (M);

and since every space F € bj? is stronger than L , each condition

(K^) implies (M) . In the same vein, (M^) may be rephrased as follows:

The restriction of M ^o Cf , (E) JLŝ  £ bounded linear mapping from

00

£r ji (E) _to Lj , (E) . Similar rephrasings, involving other transla-

tion-invariant function spaces, are of interest for F = LP, 1 < p < »^

among others, and may be supplied by the reader.



Remark 2_. An important special kind of memory is, of course,

the autonomous or time-independent memory; i.e., more precisely, a

memory that commutes with left-translations. It will be shown else-

where that if E is isomorphic to a Hilbert space (in particular

finite-dimensional), an autonomous memory satisfies (M^) .

We have spoken as if the memory functional M apearing in

(1.1) were to be itself subjected to Condition (M_). In actual fact,

however, it is typical of the problems we are dealing with that the

condition need only be imposed on the dependence of Mu on the past

of u, while its dependence on the current value of u is less re-

stricted: for a given space F e b*<J, we shall say that the memory M

satisfies the standard assumptions with respect to F if M = M + M!,

_ _ _ _ _ _ _ _ _ _ _ — ^ ^

where M_ is given by (4.3) for some L € Mr - (fiT), and M
f is a

memory satisfying (M_,) . Under these conditions, M obviously satis-

fies (M). We remark that these conditions include as a very special

case those considered in [6]. The results in [6] can, as a consequence,

be obtained by a specialzation of the methods and results of the pre-

sent work.

5 . Solutions.

We say that a function f e Kr ,(E) is a primitive (function)
~[mj

pt
if there exists g e Lr .(E) such that f(t) - f(m) = g(s)ds for

~LmJ Jm

all t e [m,oo[ ; then g is unique, is denoted by f, and is called

the derivative of f.

Assume that we are given a memory M and, in addition, a func-

tion r € L f Q l(E). A solution of the "differential equation with delay"

(5.1) u + Mu = r

is a function u e Kj ,,(E) whose restriction uf , to [0,<»[ is

a primitive whose derivative i!L - satisfies uro, + Mu = r in



More generally, for each m ̂ r 0, a solution of

is a function u e Kr nl(E) whose restriction u to [m,«>[ is
~[m-l] LmJ

a primitive whose derivative il. , sa t i s f ies (5.1)rmi in L, -. (E) .

These definitions of course also apply to the homogeneous equations

(5.2) u + Mu = 0

(5'2)[m] % ] + M
[ m ] U = ° -

As usual, it is preferable to deal with integral equations

equivalent to these differential equations.

5.1. Lemma. Let the memory M and r € Lr , (E) be given. A

function u e Kr *, (E) is a solution of (5.1)r , if and only if~[m-l] v v ' [m] «*- —

it satisfies
pt

(5.3) u(t) - u(m) - ((Mr ,u)(s) - r(s))ds
Jm LmJ

for all t > m. If mT ^ m ^ 0 and u i^ a solution o^ (5.1) r ,,

then ur f ^ is a solution of (5.1)r t,.

Proof. Definition of "solution" and (4.2).

We quote from [4] the results relative to the existence and

uniqueness of solutions of (5.1)r -., estimates on their growth, and

the compactness of certain "transition operators", that we shall

require here. The applicability of these theorems to our present

situation was pointed out in Remark 1 in Section 4.

^ *2. Theorem. Let M b<s a. memory satisfying (M) . Then there

exists a. number a > 0 and, for each m ̂  0, there are linear map-

£inSS P(m): E + K ^ j C E ) and Q(m) : L^ (E) -• K ^ j (E) such

that for every v e E and r e Lr_,(E):

(1): u = P(m)v + Q(m)r is the unique solution of (5.1)r ,
l̂ mj

H(tn)u = v;
(2) : if t. > m, then u e Kr -, (E) satisfies II(m)u = v

—— \j ————•— ^̂ ^ tn— JL J — — — — —
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and (5.3) for m % t ^ t JLf and only ^f u and P(m)v + Q(m)r
——— \J

agree on [m-l,t 1;

(3): .for a l l t =? m,

(JLf M = 0, read 1 jfor ||Mc | |~
1(e°-l)) ; here [ ] jLs the "greatest

integer" function;

(4): if E is finite-dimensional, II(m4-l)P(m) : E -» E is compact,
N — — — — — — — — - — ' OJ rsj — — — — — — — — —

Proof. [4; Theorems 5.1, 5.3, 6.2].

5 .3. Corollary. Let M b£ a. memory satisfying (M) . If u is

at solution _of (5.2)r , for some m ̂  0, then

OH(t)ufl < ecr(t"t°*"1)Dn(OuO for all t i t > m,
u — ——— y

where cr _is. a^ J^ Theorem 5_.2.»

Proof. ur in is a solution of (5.2)r. , (Lemma 5.1); the con-

elusion follows by applying Theorem 5.2,(1),(3) to this solution.

(Cf. [4; Corollaries 5.2, 5.4].)

6• T Q e associated difference equation.

Let us assume that the memory M satisfies (M). We construct a

linear difference equation in E in such a way that the values of a

solution of this equation are the slices of a solution of (5.1). For

this purpose, we define the linear mappings

A(n) = - II(n)P(n-l): E -> E
(6.1) ~ ~ n = 1,2,...

B(n) = IKn)Q(n-l): Ljo](E) -» E

and observe that Theorem 5.2,(3) implies

A(n) € E, ||A(n)|| S eff n = 1 , 2 , . . .
(6 .2) ~ ,

BB(n)rO < ||M ||" (e°-l)0(TSr)(n)01 , n = 1 , 2 , . . . , r e L (E) .

00 /-w
We se t A = (A(n)) e l r i 1 ( E ) and define the l inea r mapping

~[ 1J ~
B : £ { 0 ] ( E ) •* ! [ ! ] (£> ^ ( B r ) ( n > = B ( n > r . n = ! , 2 , . . . , r e
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With A thus defined, we consider the following difference

equations in E:

(6.3) x(n) + A(n)x(n-1) = f(n) n = 1,2, . . .

(6.4) x(n) + A(n)x(n-1) = 0 n = 1,2,. . .

and their restrictions (6.3)r n and (6.4)r . to n = mfl, m+2,. ..
[mj Imj

for each m € uu. Here f € s r i l(E).
~{i j ~

The fact that (6.3) and (6.4) are, in some sense, reduced forms

of (5.1) and (5.2) is expressed by the following proposition.

6.1. Lemma. Let m e uu and r e Lrnl(E) be given. A function

x € sr , (E) is a solution of (6.3)r -. with f = Br if and only if
~[mj \w [mj *

x = f̂ u for some solution u of (5.1) r -, . In particular, x is a— l̂ mj

solution £f (6.4) r , J^ and only if x = *OQU for some solution u

of (5.2) [ m ].

Proof. This is a direct consequence of Theorem 5.2,(1) and

(6.1), and a straightforward computation. The details may be found

in the proof of [9; Lemma 6.1], which could be reproduced verbatim.

As usual, the main problem in applying difference-equation

theory via Lemma 6.1 to our equations (5.1) and (5.2) is that not

every f e sri,(E) is of the form f = Br. Our fundamental result

(Theorem 6.2) states that it is still possible, however, to relate

equation (6.3) with arbitrary f to equation (5.1) with a suitable r(

In what follows, we assume that M = M, + M1 satisfies the

standard assumptions with respect to a given space F € bj$.

Let V e Kr_,(E) be the unique solution of the operator differ-H.OJ

ential equation V + LV = 0 that satisfies V(0) = I (I is the iden-

tity on E). We refer to [5; Section 31] for a detailed account of

this operator-valued function. In particular, the values of V are

invertible, and we write V" e Krrn(E) for the function defined by
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V"
1(t) = V(t)"1, t e [0,«[. We also have

(6.5) ||v(t)V"1(s)l! < exp|J ||L(s')||ds'|, s,t ̂ 0.

6.2. Theorem. Assume that M = MT + M
T satisfies the standard

———-•———-— — — — — — — — — JLi — — — — — — — — —

assumptions with respect to a given space F e bJ5, F ĵ  (o). For each
————————— — — — — — — ———— — — — fs^ ^ — — —

f e Sr ]i(E) there exists r e LjQ, (E) with tar e Sr^ (£(E)) and

such that

(6.6) Bear)(n)OF ̂  k(|Jf(n-l)D + If(n)I), n = 1,2,...,

and the solution w ̂of

(6.7) w(n) + A(n)w(n-1) = f(n) - (Br) (n) , n = 1,2,...

with w(0) = 0 satisfies

(6.8) Bw(n)0 £ (1 + exP8LlM)Of(n)O, h = 0,1,...,

where we set f(0) = 0, and k > 0 depends only on F, |L| , and

%

Proof. There exists o e F such that <p ̂ 0 and <p(s)ds =

We define w e sr-, (E) by w(0) = 0 and

(6.9) (w(n))(s) = (f(n))(s) - (J 0(s')ds•)V(n+s)V"
1(n)(f(n))(0),

-1 < s < 0, n = 1,2,... .

It is obvious that each w(n) is continuous, hence in E. Also,

(6.10) (w(n))(-l) = (f(n))(-l), (w(n))(0)=0, n-0,1,...;

and (6.9) and (6.5) yield

Bw(n)-f(n)fl < Df(n)OexPaLiJM , n = 1 , 2 , . . . ,

so that (6.8) holds ( i t is t r iv ia l for n = 0) .

We now construct r . For this purpose we choose, for each

n e (jo.-p a function z e Cr 9-i(E) such that

(6.11) n(n-l)z = - w(n-l) Il(n)z = f(n) - w(n)

and such that z is constant on [n,»[; this is possible on ac-

count of (6.10). Then

(6.12) IzJ = max{Dw(n-l)n Jf(n)-w(n)fl} £

< max{flf(n-l)O(l+explLlM), flf(n
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We now d e f i n e r e L r . ( E ) by

(6.13) r(t) = W(t-n)V(t)v"
1(n)(f(n))(O)

n-1 < t ^ n, n=l,2,... .

From (6.5) and the fact that M! satisfies (M_) it follows that

(ujr)(n) € F(E) and

combining this with (6.12) we find (6.6) with

k =

It remains for us to prove that w and r thus constructed

satisfy (6.7). For this purpose, let n e uur 1, and t, n-1 < t ^ n,

be fixed for the time being. In the following computation, we use in

succession: (6.11) and (6.10); (6.9); differentiation of products and

the definition of V; (6.13) and (6.9); (6.11); the definition of M

and (4.3).

z (t) - z (n-1) = (f(n)-w(n))(t-n) = (f <p(s!)ds»)V(t)V"1(n)(f(n))(0) =
n n v«1

= f (<p(s-n)V(s) - (f o(s')ds')L(s)V(s)) V ' V ) (f (n)) (O)ds =
Jn-1 J-l

((MJ -n^Ms) - r(s) + L(s)(f(n)-w(n))(s-n))ds =

= " r ((Mrn ilZnXs> - r(s> + L(s)zrn(s))ds = - [ (QA z ) (s)-r (s))ds .
•'n-l L"--1-] n n Jn-1 Ln-ij n

Since this equality holds for al l t e ]n-l ,n] , it follows from

Theorem 5 .2, (2) that z agrees on [n-2,n] with

P(n-l)II(u-l)z + Q(n-l)r = - P(n-l)w(n-l) + Q(n-l)r. Combining this

with (6.11) and (6.1) we find

f(n) - w(n) = II(n)z = II(n) (- P(n-l)w(n-l) + Q(n-l)r) =

= A(n)w(n-1) + B(n)r;

that is, w(n-l) and w(n) satisfy (6.7) for the given n. Since n

was arbitrary, the proof is complete.

HUT UUAKY
GAmEME-KUIN IWfERSITY
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7. Admissibility.

The purpose of Theorem 6.2 was to allow us to replace the study

of equations (5.1), (5.2) by that of the difference equations (6.3),

(6.4); in this section and the next we propose to show how the

method works. We shall assume that the memory M satisfies the stand-

ard assumptions with respect to a given space F e b3? F ^ [($ (this

extra assumption excludes a trivial case in which the equations are

ordinary differential equations). A and B are defined as in Section 6.

We suppose that the reader is acquainted with the concept of

;£-pairs and X -pairs of sequence spaces, i.e., pairs (b,d) of

sequence spaces with b e hi or b € b/t respectively, and d e bt

in either case (the classes hi. and b% of translation-invariant

Banach sequence spaces are discussed in [1; Section 3]). We recall

that such a pair (b,d) is admissible for A if (6.3) has a solu-

tion x G d (E) for every f e b (E) . For details, see [1; Section 8]

rw[OJ ^ ~l 1 J ^

7.1. Theorem. Assume that the memory M = M_ + M! satisfies the

standard assumptions with respect to a given space F € b<J, F $ {0} .

For each given t -pair (or, j_n particular, ̂ -pair) (b,d) the fol-

lowing statements are equivalent:

(a) : b is stronger than d; and for every r e Lrril (E) with

%jr e bril(F(E)) equation (5.1) has a solution u with TDU e d . (E) ;

(b): (b d) is admissible for A.

Proof, (a) implies (b) : Let f € b^-^E) be given, and let r, w

be as provided by Theorem 6.2. Since b e b£ , (6.6) implies

'Ckjr € ^ni(£( E))- Further, (6.8) implies w e b f Q i ( E ) , whence

w € ^r^i(E), since b is stronger than d.

By the assumption, (5.1) with this r has a solution u such

that TXJU € d ,(E). By Lemma 6.1 we have (rru) (n) + A(n) (̂ u) (n-1) =
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= (Br)(n), n = 1,2,...; since w is a solution of (6.7), we conclude

that x = tflu + w € d.^ (E) is a solution of (6.3). Thus (b,d) is

admissible for A.

(b) implies (a): By (6.2), A € l ^ J E ) ; since (b,d) is admis-

sible for A, we conclude that b is stronger than d [7; Lemma 4.1].

Let now r e L ^ ^ E ) be given with ujr G bril(F(E)). Then (6.2) and
L U J ~L i J ~

the fact that F satisfies Condition (N) (see Section 2) imply

|~1(eCTQBrg <, ||Mc||~
1(eCT-l)aFD'O0rDF , so that Br e Jjj^OO. Since (b,d) is

admissible for A, there exists a solution x e d .(E) of

x(n) + A(n)x(n-1) = (Br)(n), n = 1,2,..., and by Lemma 6.1 there

exists a solution u of (5.1) with *0)u = x € d r r n(E), as asserted in (a)

If B is a subset of Lr_, (E) and D is a subset of Kr n l(E),

it is in keeping with earlier terminology to say that the pair (B,D)

is admissible for M - more loosely, for (5.1) - if for every r € B

___ _______—«_— __—. — — ^̂

there exists a solution x e D of (5.1). Thus Statement (a) in Theorem

7.1 expresses the admissibility of a certain pair (B,D) for M. To

exemplify the uses of Theorem 7.1, we shall now specify B to be one
of the spaces L^_,(E), 1 ̂  p ̂  » or Mr_,(E) or Tr_.(E), and D to

HOJ H.OJ MOJ ~

be either Cr i n (E) or Ĉ ,. -,(E); but the choices may easily be ex-
~L-1J '^L-IJ

tended in the spirit of [5; Chapter 2] and the remark at the end of

Section 3. Following earlier practice, the name of a pair of such

spaces is abbreviated, as, e.g., (LJ^CQ) for (j| 0 ] (E) ,C j 0^ 1 ] (E)) ,

since there is no ambiguity.

We now record some special cases covered by Theorem 7.1.

7 -2. Corollary. Assume that the memory M = VL + M ! satisfies

the standard assumptions with respect to a given space F. With F,
— — — — — — — — — • /v/ — — — ^ ^

(B,D) , (b,d) as specified in the following table, (B,D) is admis-

sible for M tf^ and only if (b,d) ^s. admissible for A.
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F (B,D) (b,d)

LP (LP,C) (lP,r)

LP (L P
J £ O) (1 P,O

1 00 00

L1 (M,C) (1 ,1 )

Proof. Theorem 7.1 and the remarks on the slicing operator tsr

in Section 3.

8. Admissibility and the solutions of the homogeneous equation.

The admissibility of certain pairs (b,d) of sequence spaces for

A implies, under some additional assumptions, an (ordinary) dichotomy

or an exponential dichotomy of the solutions of the homogeneous equa-

tions (6.4)r , (see [1; Section 7]). An exponential dichotomy, for

instance, may roughly be described thus: the bounded solutions tend

uniformly exponentially to 0, there exists a "complementary" manifold

of solutions of (6.4) tending uniformly exponentially to infinity, so-

lutions of the two kinds remain uniformly apart, and together they span

all solutions. Since Lemma 6.1 provides a bijective correspondence be-

tween solutions of (5.2)r -. and solutions of (6.4) , for integral m,

Theorem 7.1 and Corollary 7.2 will alow us to translate that result

into an analogous implication for differential equations with delays.

In order to avoid unenlightening complications, we restrict our-

selves in this section to the case in which d is specified to be 1°°,

i.e., in which bounded solutions of (5.1) and of (6.3) are sought. The

case in which d is 1^, so that attention is centred on solutions of

(5.1) and of (6.3) that tend to 0, can easily be treated in a similar

fashion; as can also cases with more general d e bt, with appropriate

use of [1].
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We assume given a memory M = M_ + MT that satisfies the stand-

ard assumptions with respect to a given space F € b3L F £ {0}. We

denote by E^(0) c E the set of "initial slices" II(O)u of the

bounded solutions u of (5.2); by Lemma 6.1, EQ(O) i s t h e s e t o f

values at n = 0 of the bounded solutions of (6.4).

We now state the main "direct" theorem, to the effect that the

admissibility of certain pairs of function spaces for M implies a

behaviour of the solutions of (5.2)r , that may be described as an

ordinary or an exponential dichotomy.

8.1. Theorem. Assume that the memory M = VL + Mf satisfies the

standard assumptions with respect to a given space F e b3, F ^ (0),
_ _ _ _ _ _ _ _ _ _ _ — — — ^ j r<tJ

Assume that E_(0) is closed in E. Assume that b e bi (in part-
Q ^

icular b e hi) is [ not stronger than 1 and ] such that for every

r € L ^ , (E) with *&jr € bril(F(E)) equation (5.1) has a bounded so-
H.OJ H.1] ^ —

lution.

Then there exists [ £ number v > 0 and ] <a number N > 0

such that, for every real m ^ 0, every bounded solution v £f

(5.2)r , satisfies
LmJ

(i): 0n(t)vO ^NDn(to)vD [ On(t)vl ^ Ne"v(t"tO)0n(t())vD ]

_for all t ̂  t = m;

There further exists £ set W o£_ solutions ĉf (5.2)^ [ £ number

VT > 0 ] and numbers NT > 0, X > 1 such that, for every real m ^ 0,
0 — — — — — _ — •

every solution u of (5.2)r n is of the form u = v + wr -n, where— l̂ mj Lm-lJ

v JL£ £ bounded solution and w e W, and such that every solution

w € W satisfies

for all t _* tQ ^ 0;

(iii): On(t)wO < UII(t)w - II(t)vQ for all t > m > 0 and all
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bounded solutions v of (5.2)r ,.
— [m]

If E jus finite-dimensional, then the assumption that E (0) j-̂s

closed is redundant, and W may be chosen to be a. finite-dimensional

linear manifold.
Proof. 1. By Theorem 7.1, (b,l ) is admissible for A. We now
— — — — — /+*? <v/

refer to [1] and [8] in order to deal with equations (6.3), (6.4). Spe-

cifically, Condition (d) of [8; Lemma 4.2] is satisfied with d = 1°°.

We consider the covariant sequence E_. (whose general term is E (n) ,

the set of initial values of the bounded solutions of (6.4)r ..).

Since E (0) is closed by assumption, [8; Theorem 4.3,(a)] shows that

the covariant sequence E_ is closed and regular. We can therefore

apply the fundamental "direct" results [1; Theorems 9.1 and 10.1] for

difference equations, and find that this covariant sequence induces a

dichotomy [ an exponential dichotomy ] for A.

2. To make this result manageable, we use the description of a

dichotomy [ an exponential dichotomy ] given by [1; Theorem 7.1,(c)].

We observe that in the proof of that theorem we are free to choose the

splitting q (a nnon-linear projection" in E annihilating E (0));

this will be important in Part 3 of this proof. We choose q and de-

note its range by Z. Thus E = E (0) + Z. Now the covariant sequence

E is regular; therefore we have, by [1; Lemma 5.2,(b) and (5.2)], for

every integer n ^ 0,

E = E (n) + U(n,0)E = E (n) + U(n,0)E_(0) + U(n,O)Z = E_(n) + U(n,0)Z.

This means that if x is a given solution of (6.4)r . there exists a

solution z of (6.4) with z(0) € Z such that y = x - zr 1 is a

~ LnJ
bounded solution of (6.4)r ,.

[n]

We define W to be the set of those solutions w of (5.2) that

satisfy Il(0)w € Z. The remainder of the proof of the main conclusion

of the theorem is now identical to that of [9; Theorem 7.3] (from the
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last paragraph of Part 2) with the following changes: [1; Theorem 9.1]

is used, and the exponential factors deleted, in the "ordinary dicho-

tomy" case; and Corollary 5.3 and the factor e are used instead of

[9; Lemma 5.2] and the factor expjJM ||.

3. If E is finite-dimensional, then each A(n) is compact,

by (6.1) and Theorem 5 .2,(4). Therefore [8; Theorem 4.3,(b)] is ap-

plicable and E (0) is closed and has finite co-dimension in E. We

may therefore choose the splitting q in the preceding proof to be a

linear projection of E along En(0) onto some finite-dimensional
— — — — — ^ rJj

complementary subspace Z. Then W is a finite-dimensional linear

manifold of solutions of (5 .2) .

8.2 . Corollary. Assume that the memory M = l/L + M! satisfies

the standard assumptions with respect to a given space F. Assume
— ~ — — — — — — — — — — — — — — — — — — — — — • ' / v — — — — —

that E_(0) is closed in E. Assume that (B,C) is admissible for
— — — />ijQ — — — _ — . — ^ — — — — /^ ^ — — — — — — — —

M, where F = L and B = L , or F = L°° and B = T [ F = LP and

B = L , 1 < p ^ », or F = L and B = M ] . Then the conclusions oj[

Theorem 8.1 hold.

Proof. Use Corollary 7.2 instead of Theorem 7.1 to enter the

proof of Theorem 8.1.

To conclude, we state a reasonably strong form of a "converse"

theorem to Theorem 8.1, and sketch its proof.

8.3. Theorem. Assume that the memory M satisfies (M) . _If the

main conclusion of Theorem 8.1 holds for the solutions of (5.2)r ,,

then the pairs (L ,C) and (T,C) [ jthe pairs (LP,C), 1 ^ p ̂  «,

and (M,C) ] are admissible for M.

Proof. The assumption on M implies that M satisfies the

standard assumptions with L = 0, M1 = M, and F = L . The main con-

clusion of Theorem 8.1 implies, via Lemma 6.1 and a little computa-

tion, that E is indeed a regular covariant sequence for A and
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induces a dichotomy [ an exponential dichotomy ] for A [1; Theorem

7.1]. From the "converse" theorems for difference equations [1; Theo-

rems 9.2 and 10.3] it follows that the pair (1 1°) [ the pair (I00,!

is admissible for A. From Corollary 7.2 we conclude that the pair

(L ,C) [ the pair (M,C) ] is admissible for M. The other pairs of

the statement are then obviously admissible, since Tr ,(E) is

stronger than Lr~-, (E) [ since every L^ (E) is stronger than
0J HOJ
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