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Abstract

It is shown that any convex or concave extremum problem

possesses a subsidiary extremum problem which has certain

homogeneous properties. Analogous to the given problem, the

"homogenized11 extremum problem seeks the minimum of a convex

function or the maximum of a concave function over a convex

domain. By using homogenized extreraum problems new relation-

ships are developed between any given convex extremum problem

(P) and a concave extremum problem (P*) (also having a convex

domain), called the "dual" problem of (P). This is achieved

by combining all possibilities in tabular form of (1) , the

values of the extremum functions and (2) , the nature of the

convex domains including perturbations of all problems (P),

(P*), and each of their respective homogenized extremum prob-

lems.

This detailed and refined classification is contrasted to

the relationships obtainable by combining only the possible

values of the extremum functions of the problems (P) and (P*)



and the possible limiting values of these functions stemming

from perturbations of the convex constraint domains of (P)

and (P*) respectively.

The extremum problems in this paper and classification

results are set forth in real topologically paired vector

spaces having the Hahn-Banach separation property.



1. Introduction

Iliis paper develops new relationships between a given

convex extremum problem and another extremum problem, called

its "dual" problem. A convex extremum problem (P) seeks to

minimize a convex function over a convex constraint domain,

while the dual problem (P*) seeks to maximize a concave func-

tion over another convex constraint domain. We study the

structure between these two problems by classifying conceivable

and permissible events on:

(a) the minimizing value of the convex function <of (P)

and the maximizing value of the concave function

o_f (P*) and

(P) the nature of the convex constraint domains <of

(P) and (P*).

Some of these events are easily illustrated in the well-

known finite elementary linear programming classification table.

Here problem (P) and its dual (P*) are elementary finite linear

programs.
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The abbreviation " CONS" or " INC" denotes whether the convex

constraint domain is non-empty or empty, respectively, called

"consistent" or "inconsistent" in the linear programming lit-

erature. When the constraint domain is non-empty, then the

linear functional value is either bounded "BD" or unbounded

"UBDT!. Any given linear problem (P) and its dual (P*) may

occur only in one of the joint-events 1, 2, 3, or 4, and all

other joint-events are forbidden and thereby denoted by "0".

Elementary examples show that the four events are realizable.

Returning to the general case, classification table 0 is

not valid because of examples where problem (P) is consistent

and bounded but (P*) is inconsistent, see [2]. When the convex

constraint domain is not a finite dimensional polyhedral set

or when the extremum problem is in an infinite dimensional

space, various convergence complexities arise. Therefore

various subclasses of events are required. Consequently more

rows and columns are needed in classification table 0.

For example, the minimizing value of the functional of a

convex extremum problem (P) may be finite, -oo, or +oo . Its

constraint domain may be empty, or not. However, by slightly

relaxing the constraint condition by a perturbation, the relaxed

domain is another convex domain which may not be empty. In this

case when the perturbations approach 0, one obtains special

solutions termed "asymptotic solutions". By computing functional

values of asymptotic solutions, further conceivable events for

(P) arise. For the given problem (P) only certain combinations

of conceivable events are permissible, and their total number is 7,



Events analogously described arise for the dual problem (P*),

and their total permissible number is also 7. However, when

combining permissible events for both problems (P) and (P*)

together, many of the conceivable joint-events are forbidden.

In fact, out of a total of 49 conceivable joint-events only 11

are permissible. Some of these and related classifications are

given in references [2], [3], [6], [11], [14], [15], and [23].

In this paper we carry the classification process much

further by introducing a new construction which yields even

more detailed and refined information about the original convex

extremum problems* This is in the form of a pair of subsidiary

problems associated with the given convex extremum problem and

its dual problem, respectively. These new problems are also

convex and concave respectively, but satisfy certain homogeneous

properties. Because of this they are called "homogenized extre-

mum problems'1.

In linear programming the existence of a homogeneous problem

is rather transparent. In this case this construction has already

been done by Duffin [6] in 1956. We illustrate this case.

Example 1̂. Let A be a continuous linear operator on a locally

convex space E to a locally convex space F and let E* be a

space paired topologically with E. Let ceE*, be F, and let C

be a closed convex cone in E.

Compute min(c,x) for all x e E subject to the constraints

Ax = b and x € C.



This is an infinite linear program and its infinite linear

homogenized program is:

Compute min(c,x) for all x e E subject to the constraints

Ax = 0 and x € C«

Duffin [6] used the linear homogenized program to give in-

formation about the original linear program. For example, he

used a linear homogenized program to characterize the existence

of asymptotically consistent solutions as well as the existence

of consistent solutions of the given linear program,,

in linear programming the existence of homogenized subsid-

iary problems permits classification refinements. These are

achieved by first collecting information on the extremum values

of the linear functions of the homogenized problems of (P) and

(P*) and the nature of their convex domains including perturba-

tions. This information is then joined with permissible events

on (a) and (p) above, but for the given linear problem and its

dual problem. This process increases the number of permissible

events associated with a linear problem from 7 to 11. However,

when considering joint-events of both a linear extremum problem

and its dual, many conceivable joint-events are forbidden. In

fact out of 121 conceivable joint-events only 11 are permissible.

Classifications of this type are given in Kalina-Williams [14]

and reference [15], for linear extremum problems.

In convex programming, however, the question arises as to

whether there is a related homogenized problem associated with

any convex extremum problem. For example, what, if any, is the



convex homogenized problem of the following problem.

Example 2. Let x e R and u e R and define

g(u,x) = -

-log(x+u) if x > -u

+00 if x £ -u.

Compute the minimum of g(O,x) for all x € R o

This is a convex extremum problem with perturbations of the con-

straint condition by the variable u, which relaxes the convex

constraint domain,,

The answer to the question is that any convex extremum prob-

lem (P) has a convex homogenized subsidiary problem (H), and its

dual problem (P*) has a concave homogenized subsidiary problem

(H*). Problems (H) and (H*) are constructed from linearizations

of problems (P) and (P*) respectively. Two theorems establish

elementary equivalences between the dual of a convex extremum

problem and the dual of its linearization. This aids in deter-

mining conceivable and permissible events on (a) and (p) but with

respect to all the problems (P) , (P*) , (H) , and (H*). The desired

classification refinements are then obtained in this paper by

applying four theorems in order to determine forbidden joint-

events. The first theorem extends the 49 conceivable joint-

event classification achieved for linear extremum problems to

an arbitrary convex problem (P) and its dual (P*). The second

theorem characterizes consistency of (P) [(P*)] by the existence

of a specific permissible event of (H*)[(H)]o The third theorem
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characterizes asymptotic consistency of (P) [(P*)] by the existence

of another specific permissible event of (H*) [(H)]. The fourth

theorem ties certain permissible events of (P) [(P*)] to certain

permissible events of (H)[(H*)].

1he end result is a classification similar to the linear*

extremum problem case. It states that out of 121 conceivable

joint-events between any convex extremum problem (P) and its dual

(P*) , only 11 are permissible.

In an analogous manner another pair of convex extremum sub-

sidiary problems having homogeneous properties is introduced.

When permissible events of these particular subsidiary problems

are combined with those of the original (P) and (P*) , then 400

joint-events are conceivable but only 93 are permissible.

Finally these classifications are contrasted to those obtain-

able from combining only the permissible values and limiting val-

ues of the extremum functions of a convex extremum problem (P)

and its dual (P*)„ By using classification methods a new char-

acterization is obtained for when 0 is in the closure of the

domain of an arbitrary closed convex function.

To begin the process, we make a choice of a particular form

of the dual problems to study. We present the dual convex prob-

lems in the underlying framework of Galefs work [10], but as gen-

eralized in the convex "bifunction" terminology of Rockafellar,

[24], sections 29 and 30, which are all related to the conjugate

function approach of Fenchel [9]; see also Stoer-Witzgall [28].

We turn now to the development of classification schemes for

convex extremum problems over real topological vector spaces having



the Hahn-Banach extension property. The first task is to intro-

duce definitions which adequately encompass and discriminate the

phenomena of "events" that occur on (a) and (p) . This is done by

defining duality states for any given convex extremum problem

(P) and its dual (P*).

2. Duality States for Closed Convex Bifunction Dual Families,

Let E, F be real topological vector spaces which have the

Hahn-Banach extension property (HBEP), see [12] and let E*, F*

be topologically paired with E, F respectively, see [4]. Thus

F x E is topologically paired with F* x E* in the product

topology.

Let G be a bifunction from F to E, that is, to each

u e F is associated an extended real valued function on E,

Gu : E —> [-00,00]. The value of Gu at a point xe E is

denoted by (Gu)(x), see Rockafellar [24]9 sections 29 and 30«

We assume throughout that G is a proper closed convex bifunction.

This means that the graph function g is proper, closed, and

convex on F x E where by definition:

g(u,x) = (Gu) (x) . (1)

Recall that proper means that g(u,x) is not identically

+00 and g(u,x) is not allowed to take on the value -00.

The adjoint of G is defined as the bifunction, see Rocka-

fellar [24], from E* to F* given by:

(G*x*)(u*) = inf{(Gu)(x) - (x,x*) + (u,u*)) (2)
ueF
xeE

G* is also proper closed and convex since G is. Then it
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follows that

(G*x*) (u*) = -g*(-u*,x*) (3)

where g* is the conjugate transform of g, valid in this

infinite dimensional setting (Asplund [1], Brondsted [5] and

Moreau [20], [21], see also Rockafellar [24], po309).

Remark« Following the conventions of [24]y the closure

of a convex function is defined to be the lower semi-continuous

hull of f if f nowhere has the value -co. If f assumes

the value -oo somewhere, then its closure, cl f, is defined

to be the constant function -oo. These distinctions are given

in [24], p.52-54, in particular the comment after Corollary 7.2.2,

Throughout this paper we use the definition of closure as

given in Rockafellar [24], and thus for example, Corollary 30.2.2

is applicable to our analysis.

We consider the following pair of dual convex programs

Program (P) Seek inf(G0)x subject to x e E (4)

and

Program (P*) Seek sup(G*0) (u*) subject to u^eF, (5)

These dual programs are related to the dual family,

[P:P*] = [(Pu) : (P*x*)] (6)

(u,x*) € FXE*

which usually arises from perturbations of a given convex

program.



Following [24] l e t

dom(Gu) = { x e E | (Gu) (x) < oo } (7)

and

dom G = (ueF | Gu is proper on E). (8)

We say that Program (P) [(P*)] is

CONS (consistent) if dom GO ̂  0[dom G*0 ̂  0] (9)

INC (inconsistent) if dom GO = 0 [dom G*0 ̂  0] (10)

AC (asymptotically

consistent) if 0€ C/t(dom G) [0 € c£(dom G*) ] (11)

SINC (strongly

inconsistent) if 0/c>t(dom G) [O^c>t,(dom G*) ] (12)

The value of Program (P) [(P*)] is

(inf G)(0) [(sup G*)(0)] (13)

while the subvalue of Program (P) [(P*)] is

[(c-t(sup G*))(0)]. (14)
Any of these may be finite or infinite. See Rockafellar [24]

for definitions of these terms in ]

infinite dimensional setting here.

for definitions of these terms in Rn-space, which extend to the
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Using definitions (9) through (14) the following states

are introduced for Program (P) [(P*)"].

(i) Let Program (P) [(P*)] be CONS. Then it is BD (bounded

if (inf G) (0) > -oo [(sup G*) (0) < co]. Otherwise it is

UBD (unbounded)o

(ii) Let Program (P) [(P*)] be AC. Then it is PAC (properly AC)

if (ct(inf G) ) (0) < oo [(c£(sup G*) ) (0) > -oo ] o Otherwise

it is IAC (improperly AC) .

(iii) Let Program (P) [(P*)] be PAC. Then it is ABD (asymptotically

BD) if (cl(±nf G)) (0) > -oo [(c^(sup G*) ) (0) < oo ] . Other-

wise it is AUBD.

A duality state of the pair of programs (P) and (p*) _is a.

pair of states, one of Program (P) and one of Program (P*) .

Duality states of the above type were developed by Duffin [6]

and Ben-lsrael-diarnes-Kortanek [2], [3], for infinite linear pro-

grams. Definitions related to those above were developed in [3]

for convex programming problems.

3* Linear Programming Equivalents for Programs (P) and ( P*)

We first present Program (P) and Program (p*) in slightly

altered but equivalent forms,, respectively

Program (P)

Seek to inf g(u,x)

subject to (u,x) e ox E 0 F x E (15)

and
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Program (P*)

Seek tc> sup [-g* (-u*,x*) ]

subject to (u*,x*) e F* x 0 0 F* x E* (16)

3.JL Program (P)

We seek homogenized convex programs of Programs (P) and (P*)

respectively. These are to be called homogeneous derivant bi-

functions, Ô hese particular bifunctions are constructed from a

linearization of the convex program (P) [(P*)] and are related to

several linear homogeneous type programs in the literature [6],

[14], [15].

To begin this construction we introduce a linear operator

A as follows:

A : (FXE) X R X R —> (FXE) X R X R

by

A( (*),?, 9) = ((£),(), 6). (17)

A is a continuous linear operator in the product topology on

(FxE) x R x R. Using the pairing it follows that the adjoint

T
A of A is given by:

AT : (F*XE*) X R X R —> (F*XE*) X R X R

0,7]) . (18)

A is also continuous in the product topology.

For any set W a (FxE) x R, let C(W) denote the homogenization

of W ([28]) , also called the associated cone in [3 ], defined by

•K-

See also [24], p*63.
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C(W) = {(Y™) | Y ̂  0}.

We shall also use the notation [3 ] ,

W* = {w* e (F*XE*) x R I weW=^<w,w*> ;> 0} (19)

and

W*x = {w* e (F*xE*) x R I w e W = ) <w,w*> ^ -1). (20)

Introduce Program (CP) :

Seek the inf §

subject to A( (£),?, 6) = ((°),0,l) (21)

and ((u) ,§,9) € ct{c(epi g) } c (FXE) x R x R

where epi g denotes the epigraph of g, and

Program ((CP)*)

Seek the sup -yj

s u b j e c t t o A T ( (Jp ,C>n> +
 ( ( Q ) , 1 , 0 ) € c t { C ( e p i g ) } * , (22)

where {c^{c(epi g )}}* c (F*xE*) x R x R

These programs form a dual pair of linear programming prob-

lems over closed convex cones as is well known. Ihis means that

by introducing perturbations in the standard way for linear pro-

grams, see [24], p.311-312, a dual bifunction family can be associ-

ated with Programs (CP) and ((CP)*). Following this construction,

let (CP) denote an associated closed convex bifunction for Pro-

gram (CP). Then (CP)* denotes its adjoint bifunction also closed

and convex.
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In this terminology (CP)(0) denotes the value of the

associated bifunction at the zero vector of perturbations,

which as a vector lies in the space (FXE) x R x R. Therefore

(inf(CP)) (0) is the value of Program (CP)• Similarly,

(sup(CP)*)(0) denotes the value of Program ((CP)*), where

here Oe (F*XE*) x R x R.

Using these identifications the following equivalences

are more computational than conceptual.

THEOREM 1. (a) Program (P) is CONS <£=> Program (CP) is CONS

in which case (inf G) (0) = (inf (CP) ) (0) •

(b) Program (P) is AC <=> Program (CP) is AC in which case

(c4(inf G))(0) = (c£(inf(CP)) (0) .

(c) Program (P*) is CONS <z^ Program ((CP)*) is CONS in

which case (sup G*) (0) = (sup(CP)*) (0) 9

(d) Program (P*) is AC <£z> Program ((CP)*) is AC in which

case (c£(sup G*))(0) = (c-t (sup(CP*) ) (0) .

Proof. The fact that Program (P) is CONS[AC] if and only if

Program (CP) is CONS[AC] follows from the decomposition of

c£{C(epi g) } jL.e,.

c^{C(epi g)} = C(epi g) U {° ^ g 1 g) }. (23)

See [24], p.63. Then by construction of the linear Program (CP)

and its associated bifunction, denoted (CP), see [24], po311-312;

it follows that:

(inf G) (0) = (inf(CP)) (0) (24)

HINT UBBAXT
CARfiEfilE-ffiUflN UNIVERSITY
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and

(ct(inf G))(0) = (ct(inf (CP) ) ) (0) . (25)

•This proves parts (a) and (b) .

Now Program (P*) is CONS [AC] if and only if Program ((CP)*)

is CONS[AC] follows analogously from the decomposition of

c>t{C(epi g) }*, i.e.

ot{C(epi g)}* = C((epi 9 )^ )U ( ( e p J g ) * ) , (26)

see [3], p#681, where the proof there is valid for any closed

convex set .

To prove the equalities in (c) and (d), it is easiest to use

parts (a) and (b) together with Corollary 30.2.2 of Rockafellar [24]J

Applying this Corollary to the bifunctions associated with

Programs P and P* we obtain:

(sup G*) (0) = (cM,(inf G)) (0) (27)

and

(c^(sup G*))(0) = (inf G)(0). (28)

Applying this Corollary to the bifunctions associated with

Programs (CP) and ((CP)*) we obtain

(sup(CP)*) (0) = (c-Kinf(CP))) (0) (29)

and

(ot(sup(CP)*)) (0) = (inf (CP)) (0) . (30)

t See Appendix 1, relation (*), for a statement of this result.
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Now part (b) together with (27) and (29) shows

(sup G^) (0) = (sup(CP)*) (0) (31)

which proves (c) . Using part (a) with (28) and (30) shows

(ct(supG^))(0) = (cM,(sup(CP)*)) (0) (32)

which proves (d). Hiis completes the proof of Theorem 1.

Program (CP) gives rise to a homogenized linear program to

be introduced shortly. This program gives information about

Program (P) . We also need a homogenized linear program stemming

from Program (P*). To construct this program one could work with

Program ((CP)*). However, it is easier to construct another dual

pair of linear programs whose primal is the associated cone prob-

lem of Program (P*)• Following this route we obtain a parallel

development of the homogeneous derivant bifunctions both positive

and negative for Programs (P) and (P*) respectively.

2.2. Program (P*)

Analogous to section 3.1 define a linear operator B as

follows

B : (F*XE*) X R X R —» (F*XE*) X R X R

where

B<(p,C,T7) =((£*),0,T|). (33)

Thus its adjoint is given by



16

B T : (FXE) X R X R —> (FXE) X R X R

where

Both B and B are continuous linear operators in their

respective topologies.

Consider the following linear programs:

Program (CP*)

Seek the sup £

subject to B(( ^) ,£,?}) = ((J ,0,1) (35)

and ( (U*) ,£,T)) € c£{C(epi h*) } c (F*XE*) x Rx R

where h*(u*,x*) = -g^(-u^,x^) on F* x E^,

and

Program ((CP*)*)

Seek the inf 9

subject to BT((£),?,e) - ((°),l,0) € {c-t{C(epi h*)))* (36)

where {c£{C(epi h*)}}* c (FXE) x R x R.

Analogous to section 3.1 we denote by (CP*) an associated

bifunction to Program (CP*). Ihe dual bifunction shall be denoted

by (CP*)*. Then analogous to Theorem 1 we obtain the following

theorem whose proof is completely symmetrical to the proof of

Theorem 1, and therefore is omitted.
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THEOREM 2. (a) Program (P*) is CONS <=> Program (CP*) is CONS

in which case (sup G*)(O) = (sup(CP*))(O).

(b) Program (P*) is AC <=> Program (CP*) is AC in which

case (c£(sup G*))(0) = (cl(sup(CP*)))(O).

(c) Program (P) is CONS <£=> Program ((CP*)*) is CONS in

which case (inf G)(O) = (inf(CP*)*)(O).

(d) Program (P) is AC <£z> Program ((CP*)*) is AC in which

case (cl(inf G))(0) = {cl(inf(CP*)*))(O).

4. Ihe Homogenized Problems for (P) and (P*)

For linear programming problems over convex cones in linear

topological spaces under minimization, the "positive homogeneous

derivant" [15] or "modified homogeneous constraint set" of [14],

is related to Duffin1s homogenized program [6], p o163, developed

17 years ago. Duffin*s homogenized program is always consistent

and subconsistent and its value and subvalue is either 0 or -oo.

As a subsidiary linear extremum problem the positive homogeneous

derivant may be consistent, inconsistent, asymptotically consistent,

or strongly inconsistent, and thus the terminology CONS, INC, AC,

and SINC has been used for these mutually exclusive and collectively

exhaustive states. The following equivalences can then be verified*

Homogenized Program [6] Positive Homogeneous Derivant [15]

(a) with subvalue 0 SINC

(b) with subvalue -oo AC

(c) with value 0 INC

(d) with value -oo CONS

Table 1
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Each line in the table is an equivalence, eog., for line (b) ,

HP has subvalue -oo <n> PHD is AC. Therefore the homogenized

program when taken together with its 2 possible values and

2 possible subvalues is equivalent to the 4 duality states of

the positive homogeneous derivant listed in Table 1#

Analogous to infinite linear programming we now develop

both positive and negative homogeneous derivant bifunctions for

closed convex bifunction dual families.

£. 1, Homoqeneous Derivant Bifunctions for Program (P)

Working on Program (CP) we obtain the positive homogeneous

derivant.

Program (HD(CP))

Seek inf 0T((u) ,5,9)
x

subject to 5 £ -1 (37)

arid A((£),5,9) = ((°),0,0)

where ( (£) ,5,9) e c^{c(epi g) }.

Program (HD(CP)) gives rise to the following bifunction

(iv) (x) where v = (u,0) e F x E and xeE,

f + u
0 if (go ) O £_ -1 and 9 = 0

(iv) (x) = 0 if 9 g(eV) ^ ~1 and 9 > ° <38)

H-oo otherwise.

As usual the bifunction (38) generates a collection of programs

given by:
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Program (iv)

Seek inf (Iv) (x)

subject to x € E (39)

PROPOSITION 1« Program (10) is equivalent to Program (HD(CP))

in the sense of equivalence of all bifunction duality states of

each program.

Proof. We use the fact that 0 (epi g) = epi(gO ), where gO

is the recession function of g(u,x), see [24], p#66. Now Pro-

gram (10) is CONS ̂  3x € E such that (gO+) (°) £ -1. Upon
x

setting ? = (gO+) (U) , this is equivalent to ((°),?,0) e (° ^J!1 g ))

X X \j

which is equivalent to Program (HD(CP)) being CONS. In this case

the objective values agree because they are both 0 trivially.

Assume now that Program (10) is AC, Then there exists a

net {(u ,9 ),x |Y) such that
lim(u , 9 ) = 0
Y Y Y

and (gO+) (x
Y) £ -1 if 6 = 0 and 8 g(~~( Y)) 1 -1 if 9 > 0.

Y
 Y Y Y Y Y

Define

Y ) if 9 = 0
Y

< f ( x Y » if 9
Y > °'

Y Y

(40)
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Now if (a) 9Y = 0, then ((^Y),?Y,0) e f^g
0 >). if (b) 6y > 0,

(7=—( Y) ,-r- ? ) € epi g by definition (40) . This implies
Y Y Y Y

Hence combining (a) and (b) , it follows that for each y

((X
Y),5V,9 ) eC(epi g) + (^^O >) = c<,{c(epi g) }.

U U
Furthermore, lim A( (X

Y) , ? ,6 ) = lim((J),0,9 ) = ((Q),0,0).

Y Y Y

Finally lim sup § <̂  -1 showing that Program (HD(CP)) is also
Y Y

AC. In this case the subvalues of 10 and HD(CP) agree since

they are both trivially zero.

On the other hand, assume that Program (HD(CP)) is AC.

u1

Ihen there exists a net {( *) , ? ,9 | y) such that
xf Y Y
Y

u1

(( Y) 3 ?T 3 6!) € cl, {C (epi g) } for each y
XY

and limCu^e1) = 0 and lim sup %x <^ -1. Since ct{C(epi g) }
Y > Y Y Y

U
is a convex cone, it follows that (( Y) , % ,Q ) =

X
Y Y Y

u 1

2 ( ( Y) , S ' , e ' ) € c>t{C(epi g) }. 1?hus l im sup ? £ - 2 .
X Y Y Y

Y Y
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Therefore, for infinitely many y,

(go+) (X
Y) i ? i -l if e = o
Y Y Y

and

9 ("o" ( Y)) <L ? <L -1 if 0 > 0.

Hence for infinitely many y, (Iv )(x ) < +oo# Since lim v =
T i Y

l im(u ,9 ) = 0 , it fol lows that Program (10) is AC This con-
Y Y Y

eludes the proof of Proposition 1.

Since it stems from a linear program, the bifunction (iv) (x)

of (38) is closed convexo It is called the positive homogeneous

derivant bifunction of Program (P) • By applying definitions (9)-(14)

to Program (10), additional states may be defined for Program (P) •

Because the value (and subvalue) of Program (10) is either 0 or

+oo, only 4 new states arise and are as follows*

We say that Program (P) is

(i) HCONS if Program (10) is CONS

(ii) HINC if Program (10) is INC (41)

(iii) HAC if Program (10) is AC

(iv) HSINC if Program (10) is SINC.

Analogously the negative homogeneous derivant bifunction is

determined by replacing the constraint S <L -1 in Program (HD(CP))

by the constraint ? ^. 1. This gives rise to another bifunction

called a negative homogeneous bifunction.
r

(I v) (x) =

if (gO+) (£) ;> 1 and 9 = 0

if 6g(iO) ^1 and 9 > 0 (42)

+oo otherwiseo
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Analogous to Proposition 1, we have the following result

for the negative homogeneous derivant bifunction.

PROPOSITION 2.. Program (l"0) from (42) is equivalent to Program

(HD~(CP)) where the latter is gotten from HD(CP) by replacing

? <1 -1 with % ^ 1, in the sense of equivalence of all bi-

function duality states of each program. Analogously, Program (P)

is said to be Ef CONS, H~INC, H~AC, or Ef SINC according to whether

Program (I~~0) is CONS, INC, AC, or SINC respectively.

4..J2 Homogenized Programs for Program (P*)

Working with Program (CP*), (35), we obtain a positive

homogenized linear program:

Program (HD(CP*))

Seek sup 0 (( ^)J£JT))

subject to B( (£*),£,7)) = ((°),0,0) (43)

and £ ^ 1

+
where ((U*)*£J1?) e cl{ C(epi h*) } = c(epi h*) U ( n

Let X* = (x*,7)) e E* x R and introduce the bifunction:

• if (h*0 ) (U .̂) _̂ 1 and T) = 0

(u*) = 0 if Tjh*(^(^)) ^ 1 and rf > 0 (44)

-oo otherwise
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and the related program:

Program (JO)

Seek sup(JO)(u*) (45)

subject to u* e F*.

Analogous to Proposition 1 (and its proof) we have the following

result.

PROPOSITION 3, Program (JO) is equivalent to Program (HD(CP*))

in the sense of equivalence of all bifunction duality states of

each program.

The bifunction (JX*)(u*)9 (44), is a positive homogeneous

derivant for Program (P*). Analogous to introducing 4 new states

for Program (P), we say that Program (P*) is

(i) HCONS if Program (JO) is CONS

(ii) HINC if Program (JO) is INC (46)

(iii) HAC if Program (JO) is AC

(iv) HSINC if Program (JO) is SINC.

Analogous to the development of (42), a negative homogenized

program for Program (P*) is obtained by replacing the constraint

£ ^ 1 in Program (HD(CP*)) by £ £ -1. This new program is denoted

HD~(CP*). It gives rise to the negative derivant bifunction for

Program (P*) as follows:

0 if (h*0+) (̂ ) £ -1 and rj = 0

(J~x*) (u*) = \ 0 if T)h* (;=•:(x*) ) 1 -1 and rj > 0 (47)

-oo otherwise.
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Analogous to the preceding propositions we have the follow-

ing result.

PROPOSITION 4. Program (J~0) from (47) is equivalent to Program

(HD""(CP*)) where the latter is gotten from Program (HD(CP*))

by replacing £ ̂  1 with £ £ -1, in the sense of equivalence

of all bifunction duality states of each program*

Program (P*) is said to be H~CONS, H~INC, H~AC, and EfSINC

according to whether the problem determined by (J~0)(u*) is CONS,

INC, AC, or SINC respectively.

5. Determining Permissible "Compound" Duality States of
(P) and (P*)

Table 6 of Appendix 1 indicates that any convex extremum

problem (P) (and its dual (P*)) has 7 permissible states itself.

This is seen from examining the rims of the table. To each of

these states, however, conceivably three new ones arise logically

from its positive homogeneous derivant, namely, HSINC, HAC and

HCONS, HAC and HINC. Ilius, the mixing of permissible states of

(P) with permissible states of its positive derivant gives rise

to new states for (P) termed compound states, conceivably 21 in

number. But Theorems 3, 4, and 5 applied to Table 6 restrict both

the number of permissible compound states of (P) and (P*) individu-

ally and the number of permissible compound duality states between
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them jointly. The net result is Theorem 7 and Table 2 of the

next section whose proof is given in Appendix 2.

An analogous approach is taken with respect to negative

homogeneous derivants. However, Theorem 6 permits only a slight

reduction in the number of permissible compound duality states,

and hence the compound classification scheme here is much more

combinatorial as set forth in Theorem 8 and Table 3#

Theorems 3 and 4 below are extensions to convex programming

of Duffinfs Corollaries 2 and 1, [6], respectively.

THEOREM 3, Program (P) [(P*)] is AC <£z> Program (P*) [(P)] is HINC.

Proof. Program (P) is AC <£=> Program ((CP*)*) is AC by Theorem

2(d). By Corollary 2 [6], Program ((CP*)*) is AC <=> Program

(HD(CP*)) is INC, when HINC is identified to the condition of



Corollary 2 by Table 1. Further Program (HD(CP*)) is INC

Program (P*) is HINC by Proposition 3.

Next, Program (P*) is AC <r$> Program ((CP) *) is AC by

Theorem l(d). By Corollary 2 [6] Program ((CP)*)is AC ^z>

Program (HD(CP)) is INC using Table 1, Finally Program (HD(CP))

is INC <z£> Program (P) is HINC by Proposition 1.

THEOREM ±. Program (P) [(P*)] is CONS <=> Program (P*)[(P)] is

HSINC.

Proof, Program (P) is CONS <=> Program ((CP*)*) is CONS by

Theorem 2(c). By Corollary 1 [6], Program ((CP*)*) is CONS <=>

Program (HD(CP*)) is SINC, again using Table 1. Now Program

(HD(CP*)) is SINC <=> Program (P*) is HSINC by Proposition 3.

Next, Program (P*) is CONS <=> Program ((CP)*) is CONS by

Theorem 1(a). By Corollary 1 [6], Program ((CP) *) is CONS <—>

Program (HD(CP)) is SINC Therefore using Proposition 1, Pro-

gram (HD(CP)) is SINC <£=£> Program (P) is HSINC, completing the

proof of Theorem 6.

THEOREM 5..

(a) Program (P) [(P*)] is ABD =$> Program (p) [(P*)] is HSINC.

(b) Program (P) [(P*)] is IAC =$> Program (P) [(P*)] is HSINC.

(c) Program (P) [(P*)] is AUBD <=> Program (P) [(P*)] is ACc

and HAC.

Proof, Program (P) [(P*)] is ABD or IAC = > Program (P*) [(P)] is

CONS by Table 6 of Appendix 1. Hence Program (p.) [(P*) ] is HSINC

by Theorem 4, which proves (a) and (b).
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To prove (c) assume Program (P) [(P*)] is AUBD (hence AC),

and assume to the contrary that Program (P) [(P*)] is HSINC.

Then by Theorem 4, Program (P*) [(P)] is CONS which contradicts

Program (P) [(P*)] being AUBD by Table 6. Therefore (P) [(P*)]

is HAC, and therefore Program (P) [(P*)] is HAC and AC.

On the other hand, if Program (P) [(P*)] is AC and HAC,

then adding an HAC solution net to an AC solution net yields

an AUBD solution net to Program (P)[(P*)]. See Lemma 6 of [2]

for this idea in the context of linear programming. This com-

pletes the proof of part (c) and hence Theorem 5.

THEOREM 6. program (P)[(P*)] is IAC => Program (P)[(P*)] is

H~AC, see (42) .

Proof. We work with Program (P) since the argument for Program (P*)

is analogous. Assume that Program (P) is IAC and that to the con-

trary Program (P) is H~"SINC, (42). This means that Program (P~)

defined by the bifunction -(Gu)(x) is HSINC* Therefore by

Theorem 4, Program ((P~)*) is CONS, But Program (P) is IAC

implying by definition that Program (P ) is AUBD. But by Table 6,

it is impossible for Program (P~) to be AUBD and Program ((P~)*)

to be CONS. Therefore Program (P) must be H"AC. QED.

6. Compound Classification with Homogenized Bifunctions

6̂ JL Compound Classification Theorem with Positive Homogeneous
Derivant Bifunctions

THEOREM Tj. Of the 121 mutually exclusive and collectively exhaus-

tive compound duality states for Programs (P) and (P*) and their

derivants (38) and
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(44) respectively listed in Table 2, only 11 are possible and are

those denoted by positive integers. A zero in Table 2 means the

corresponding compound duality state is impossible, and the non-

zero integer denotes the corresponding example in

[2] of that state. [For those who are interested, 11 examples

are also given in [13] in an infinite dimensional non-reflexive

Banach space setting. ]

The proof of this Theorem follows from repeated use of

Theorems 3, 4, and 5 and Table 6 in an analogous way that the

linear versions of these Theorems are used to derive the com-

pound classification for the case of linear programming in topo-

logical vector spaces. See [14] and [15]. We include a complete

proof of this compound classification theorem in Appendix 2.

6.2 Compound Classifications with Negative Homogeneous Derivant
Bifunctions

The listing of compound characteristics for Program (P) and

its negative homogeneous derivant is almost completely combinatorial,

The Classification Theorem of Table 6 (see Appendix,1) involves 7

states for Program (P) and a priori there are 3 homogeneous states

for each of these (H~SINC, H~AC and H'lNC, H~"AC and EfCONS) giving

a possible total of 21# However, a slight reduction, to 20, is

made possible by Theorem 6 which implies that Program (P) IAC and

H SINC is impossible. The possible compound characteristics are

set forth in Table 3.

Without the existence of a theorem which relates permissible

states of a given problem to permissible states of the negative

homogeneous derivant of its dual, we are
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led to the following conjecture, which has been proved by

Rom [25] for the linear case, which using the equivalences we

have established extends to convex bifunctions.

Compound Classification with Negative Derivant Bifunctions

THEOREM 8_. Of the 400 mutually exclusive and collectively exhaus-

tive compound duality states for Programs (P) and (P*) and their

negative homogeneous derivant bifunctions defined by Table 3, only

93 are possible.

7. Classification Schemes and Convex Analysis

•Hie concepts of value and subvalue of a program, see (13)

and (14), are related to all of the duality states introduced

in section 2, simply because every program has a value and sub-

value, regardless of the duality state which it and its dual

form. In this section we give this relationship by embedding

each of the 11 possible duality states into a value and subvalue

oriented classification scheme.

In order to apply the 11 examples [2] directly here and in

the proof in Appendices 1 and 2, we alter the program formulation

slightly. Replace Programs (I.C) and (II.C*) of [2] with Pro-

grams (P) and (P*) with the perturbations given below.

Program (P) inf(-c,x) subject to Ax = b + u, xe C (48)

Program (P*) sup(-b,u*) subject to ATu* - c - x* e C*, (49)

where C is the closed convex cone example in [2].

•then the 11 so-numbered examples are generated from the same data

for c, A, b, and C in [2].
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In convex analysis, the seeds of a general classification

result which is value and subvalue oriented were sown in 1965

in Rockafellar1s Theorem 6 [23], p.179-180 and later finned up

in the bifunction terminology as Corollary 30,2.2 in Convex

Analysis [24], p#315# If in addition the 11 possible states

are demonstrated by examples, then this corollary can be used

to prove the classification theorem of Table 6 for convex program-

ming and is so used in Appendix 1.

In addition, Table 4 associates each of the 11 examples [2]

to one of six cases determined by values and subvalues of

(inf G) (0) , (c<t(inf G)) (0) , (sup G*) (0) , and (of, (sup G*) ) (0) •

These examples and Corollary 3o.2#2 then yield the following

classification result.

Value-Subvalue Oriented Classification Theorem

THEOREM 9̂  Of the 36 mutually exclusive and collectively exhaus-

tive cases for problems (P) and (P*) with respect to the values

and subvalues (inf G) (0) , (sup G*) (0) , (ct(inf G) ) (0) , (c£(sup G*) ) (0)

only 6 are possible and are those denoted in Table 4 by positive

integers. A zero in the table means the corresponding case is

impossible and the non-zero integers denote the corresponding

example of [2], possibly grouped together for a given value-subvalue

case.

Proof. The proof follows from Rockafellar1s Corollary 30.2.2 [24]

and the Ben-Israel- Charnes-Kortanek linear programming example

data, used for linear programs in 3 or 4 space of the form (48)

and (49).
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Value-Subvalue Oriented Classification Theorem
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Observe that the clustering of the duality states into

the value-subvalue oriented scheme involves the forced mixing

of different homogeneous characteristics either of the primal,

dual, or of both problems. For example, duality states 6 and 9

are collected together for the value-subvalue case (inf G) (0) = +oo ,

(ot(inf G) ) (0) = -co, (sup G*) (0) = -co, and (c£(sup G*) ) (0) = +co .

Upon checking their positive homogeneous derivants we find:

^^**-«^Probleni

Example ^^^^^

6

9

(P)

HINC

HCONS

(P*)

HCONS

HINC

Table 5.

Ihus in the compound classification the 4 duality states

6, 9, 10, 11 are separated out, while they appear in one box in

the value-subvalue oriented scheme. Similarly duality states 3

and 4 are lumped together, as well as duality states 7 and 8.

8- 'The Duality States of Proper or improper Convex Functions

Let f be a closed convex function on E. We embed f into

a closed convex proper bifunction g(u,x) on F x E such that

g(0,x) = f (x) , x e E , (50)

•Hie existence of many convex functions g satisfying (50) is clear

geometrically, see for example Rockafellar*s "New Applications of
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Duality in Nonlinear Programming", presented at the 7th Inter-

national Symposium on Mathematical Programming, the Hague, 1970.

In this section we have two objectives. First, we generalize

Rockafellar»s Theorem 27.1(i) [24] characterizing 0Gct(dom f*) .

Second, we show which duality states are possible when f is

proper and which are possible when f is improper, where the

dual convex programs stem from the closed convex bifunction

g(u,x) .

THEOREM 10, Let g(u,x) be a closed convex proper bifunction on

F x E and f(x) = g(0,x)Vx. Then

(1) Program (P*) AC = > 0Gct(dom f*)

(2) If f(x) is proper, then 0 6c£(dom f*) =$> Program (P*)AC.

Proof. (1) Assume Program (P*) is AC. Then there exists a net

{ ( X * , U * ) | Y ) such that -g*(-u*,x*) > -oo- and lim x* = 0.
» Y Y Y Y

Therefore for each y,

inf {-(x.x*) + f(x)} ^ inf (<(u,x), (u*-x*) > + g(u,x))
(0,x) Y (u,x) Y Y

= -g*(-u*,x*) > -oo. This implies that x* G dom f* and hence

0 G c£(dom f*) .

(2) f(x) proper implies that Program (P) is CONS. Assume

O G c£(dom f*) . Then by Theorem 27.1(i) of [24], (fO*) (x) ^ 0.

But by an elementary calculation,

(gO+) (0,x) ^ (fo+) (x) , X G E. (51)

Therefore by (41) , see also (38) , Program (P) is HINC. But only
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duality states 1, 5, and 7 are possible for Program (P) and

Program (P*) since Program (P) is CONS and HINC. And in these

states Program (P*) itself is AC* This completes the proof of

(2) and hence the proof of Theorem 10.

COROLLARY JL. Let g(u,x) be a closed convex proper bifunction

on F x E and f(x) = g(0,x), x e E. TOien 0ec£(dom f*) except

when program pair (P)-(P*) is in duality state 8. Moreover, in

duality state 8, 04 cl(dom f*).

Proof, We consider two cases.

Case 1. Program (P) is CONS. Only 4 states (1,5,7,8) are

possible. Except for state 8, Program (P*) is AC and hence by

Theorem 10(1) , 0 e c^Cdom f*) .

Case 2L. Program (P) is INC. This means f (x) = (GO) (x)

= +oo , xe E and trivially 0€c£(dom f*) since dom f* = E*

in this case.

It remains to show that Oĵ c4,(doxn f*) for duality state 8.

Assume (P)-(P*) is in state 8. T?hen if f is proper, it follows

that 0^c£(dom f*) by Theorem 10(2), since Program (P*) is SINC«

If f is improper, then since Program (P) is CONS, there exists

x such that f(x) = -oo. This means dom f* = 0, and hence

OjZ'oKdom f*) .

Therefore when (P)-(P^) is in duality state 8, 0/ct(dom f*) ,

COROLLARY .2.. Let g(u,x) be a closed convex proper bifunction

on F x E and let f (x) = g(0,x) , x e E. Consider the duality

states of the programs (p)-(p*) : inf(GO) (x) , xe E and

sup(G*0) (u^) , u^ e F*.
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(i) In duality states 1, 5, and 7, f (x) is. proper;

(ii) In duality state 8, f (x) may or may not be proper and

both cases are realizable.

(iii) in duality states 2, 3, 4, 6, 9, 10, 11, f (x) is,

improper«

Proof. (i) and (iii) readily follow from Theorem 10. In (ii)

a proper function f is given by example 8 [ 2 ] taken in the

form (48) and (49). The function identical to -oo gives an

example of state 8 having improper f.
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Appendix 1̂

A Convex Conjugate Transform Classification Theorem

THEOREM 11. Of the 49 mutually inclusive and collectively exhaus-

tive duality states of Programs (P) and (P*) only 11 are possible

and are those denoted in Table 6 by positive integers. A zero

in Table 6 means that the corresponding state is impossible.

The possible duality states are numbered according to examples

1-11 of Ben-Israel-diarnes-Kortanek [2], when the dual programs

of each are taken in the form of (48) and (49).

Proof. We shall use Rockafellar*s Corollary 3o<>2.2, page 315 [24]

which reads:

(inf G)(0) = (c£(sup G*)(0) ^ (sup G*)(0) = (c£(inf G))(0) (*)

where G is any closed convex bifunction from F to E. We

shall use ( *) working row by row, starting with the state of

(P*0) for each row.

Row 1 (P*) is CONS, BD, ABD. This means (inf G))(0) is bounded

and also (c£(inf G))(0) is bounded. Hence (P) is also CONS, BD,

ABD, i.e., only state 1 occurs.

Row 2L (p*) CONS, BD, and AUBD. This means (inf G) (0) = +oo ̂  (PO)

INC and also (c£(inf G)) (0) is bounded => (P) is ABD. Hence only

state 2 occurs in row 2.
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Row 3. (P*) CONS, UBD. This means (c^(inf G) ) (0) = +oo. If

0€C^(dom G) , i.e., AC, then (P) is IAC. If 0/ct(dom G) ,

then (P) is SINC, Hence only states 3 and 4 are possible in

row 3.

Row ± (P*) INC, ABD. Since (ct(sup G*))(0) is bounded so is

(inf G) (0) , i.e., (P) is CONS, BD (hence AC). But (sup G*) (0)

= -oo =£> (c£(inf G) ) (0) = -oo zz> (P) is AUBD since it is AC.

Hence only state 5 is possible in row 4.

Row 5, (p*) INC, AUBD. Hence (inf G) (0) = +oo = > (P) INC.

Also (sup G*) (0) = -oo z=$> (ct(inf F)) (0) = -oo. Hence if (P)

is AC, then it is AUBD. Otherwise it is SINC. Hence only states

11 and 6 are possible in row 5.

Row <5 (P*) IAC. This means (ct(sup G*) ) (0) = -oo z=> inf FO

= -oo — S (p) is CONS, UBD. Hence only state 7 is possible.

Row 2, (P*) SINC. This means (sup G*) (0) = -oo z=> (ct(inf G) ) (0)

= -oo also* However (ot/(sup G^) ) (0) cannot be finite and hence

we consider two cases.

(1) (c£(sup G*) ) (0) = + G O . This means (inf G) (0) = +oo r=> (P)

INC. If (P) AC then it is AUBD, since (ct(inf G)) (0) = -oo

Otherwise it is SINC.

(2) (c£(sup G*)) (0) = -oo. This means (inf G) (0) - -oo = ^ (P)

is CONS, UBD. Hence only states 8, 9, and 10 are pos-

sible in row 7.
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•The proof is completed by remarking that the 11 states

designated as the only possible ones than can occur, do in

fact occur as demonstrated by the 11 examples in [2], QED.

•The following table gives the values of the extrema

(bounded or unbounded) for problems (P) and (P*) for each of

the 11 states.

DUALITY

STATES

1

2

3,4

5

6,9,10,11

7,8

Program

(inf G)(0)

finite

+oo

+OO

finite

+CO

-oo

(P)

(ctf,(inf G)) (0)

finite

finite

+oo

-oo

-oo

-GD

Program (p*)

(sup G*0)

finite

finite

+OO

-oo

-oo

-oo

(el(sup G*))(0)

finite

+00

+OO

finite

+OO

-oo

Table 7
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Appendix 2L

Proof of the Compound Classification Theorem with PHD Closed
Convex Bifunctions

The impossible States

Row JL The impossible states follow from row 1 of Table 6.

For the only possible state, state 1, (P) and (P*) are both

HSINC from Theorem 4.

Row 2L T^Cie impossible states follow from row 2 of Table 6.

For the only possible state, state 2, (P) is HSINC from Theorem

5 (a). Since (P*) is AUBD it follows from Theorem 5(c) that

(P*) is HAC. Theorem 3 implies that (P*) is also HINC,

Rows 3^£ Row 3 of Table 6 splits into 2 rows according to

whether (P*) is HINC or HCONS since it necessarily is HAC from

Theorem 5(c). In these two rows the only possible states involve

(P) being IAC, state 3, or (P) being SINC, state 4O If (P) is

IAC, then by Theorem 3, (p*) is HINC, and of course (P) is HSINC

by Theorem 5(b). If (P) is SINC, then by Theorem 3, (p*) is

HCONS. Further since (P*) is CONS, Theorem 4 shows that (P) is

HSINC.

Row 5_ The impossible states follow from row 4 of Table 6. For

the only possible state, state 5, (P) is HAC by Theorem 5(c) and

HINC by Theorem 3# Theorem 5(a) shows that (P*) is HSINC.
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Row 6»,7_ Row 5 of Table 6 splits into two rows according to

whether (P*) is HINC or HCONS since by Theorem 5 (c) it is HAC.

In these two cases the only possible states involve (P) being

AUBD or (P) being SINC. If (P) is AUBD, then (P) is HAC by

Theorem 5(c) and HINC by Theorem 3# Similarly (P*) is also HAC

and HINC If, on the other hand, (P) is SINC, then (P*) is HCONS

by Theorem 3, and by Theorem 3 (P) is also HINC.

Row j3 The impossible states follow from row 6 of Table 6. For

the only possible state, state 7, (P*) is HSINC by Theorem 5 (b)

and (P) is HAC and HINC by Theorem 5(c) and Theorem 3 respectively.

Rows 9,,ljDjJL1 Row 7 of Table 6 splits into 3 rows by the mutually

exclusive states: (a) HSINC, (b) HAC and HINC, and (c) HAC

and HCONS. Thus one must determine how the possible states 8,

9, and 10 fall in these subclasses.

State 8. By Theorem 5(c) , (P) is HAC. Hence it is either HINC or

HCONS, and Theorem 3 shows it is HCONS. (P*) is HSINC by Theorem 4«

State 9̂  Theorem 3 shows that (P) is HCONS. By Theorem 4, (P*) is

HAC. By Theorem 3, (P*) is HINC

State 10 By Theorem 3, (P) and (P*) are both HCONS and hence HAC

automat i ca1ly o

The Possible States The 11 examples of [2] show that the 11 states

are indeed realizable, when the dual programs of each are taken

in the form of (48) and (49) .
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Appendix 3

An Example of a Positive Homogeneous Derivant Bifunction

Let x e Rf and u e Rx and define

g(u,x) =

-log(x+u) if x > -u

(52)

+co if x £ -u.

Ilien

r

(Gx*) (u*) =

It follows that

1 + log(~x*) if x* < 0 and -u* - x* = 0

(53)

-oo otherwise.

(go+) (u,x) =

0 if x + u > 0

+oo otherwise.

(54)

Upon setting v = (u,0), relation (38) becomes

(IV) (x) = <

0 if (gO+) (̂  ^ -1

o if

+oo otherwise.

(55)

Therefore according to (41), Program (P) is HINC because of (54)

To see, however, that Program (P) is HAC, take
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1
'k> a n d

•then lim(u,,9-.) = (0,0) and (uk,9k) e dom I for each k.

Furthermore for each k, (I(u]ĉ 9]c)) (
xfc) = ° since

d,g(—( K)) = £(-log eK) = -1. Hence Program (P) is HAC.
k flk K^ k
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