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CLASSIFYING CONVEX EXTREMUM PROBLEMS
OVER LINEAR TOPOLOGIES
HAVING SEPARATION PROPERTIES

by

K. O. Kortanek

Abstract

It is shown that any convex or concave extremum problem
possesses a subsidiary extremum problem which has certain
homogeneous properties. Analogous to the given problem, the
"homogenized" extremum problem seeks the minimum of a convex
function or the maximum of a concave function over a convex
domain. By using homogenized extremum problems new relation-
ships are developed between any given convex extremum problem
(P) and a concave extremum problem (P*) (also having a convex
domain), called the "dual" problem of (P). This is achieved
by combining all possibilities in tabular form of (1), the
values of the extremum functions and (2), the nature of the
convex domains including perturbations of all problems (P),
(P*) , and each of their respective homogenized extremum prob-
lems.

This detailed and refined classification is contrasted to
the relationships obtainable by combining only the possible

values of the extremum functions of the problems (P) and (P*)



and the possible limiting values of these functions stemming
from perturbations of the convex constraint domains of (P)
and (P*) respectively.

The extremum problems in this paper and classification
results are set forth in real topologically paired vector

spaces having the Hahn-Banach separation property.



1. Introduction

This paper develops new relationships between a given
convex extremum problem and another extremum problem, called
its "dual" problem. A convex extremum problem (P) seeks to
minimize a convex function over a convex constraint domain,
while the dual problem (P*) seeks to maximize a concave func-
tion over another convex constraint domain. We study the
structure between these two problems by classifying conceivable
and permissible events on:

(a) the minimizing value of the convex function of (P)

and the maximizing value of the concave function

of (P*) and

(8) the nature of the convex constraint domains of

(P) and (Px).
Some of these events are easily illustrated in the well-
known finite elementary linear programming classification table.
Here problem (P) and its dual (P*) are elementary finite linear

programs,
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(p*) BD | UBD
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Classification Table O



The abbreviation " CONS' or " INC' denotes whether the convex
constraint domain is non-enpty or enpty, respectively, called
"consistent™ or "inconsistent"” in the linear progranmng lit-
erature. \When the constraint domain is non-enpty, then the
l'inear functional value is either bounded "BD' or unbounded
"UBD". Any given linear problem (P and its dual (P*) nay
occur only in one of the joint-events 1, 2, 3, or 4, and al
other joint-events are forbidden and thereby denoted by "0".
El enentary exanpl es show that the four events are realizable.
Returning to the general case, classification table 0 is
not valid because of exanples where problem (P is consistent
and bounded but (P*) is inconsistent, see [2]. When the convex
constraint domain is not a finite dimensional polyhedral set
or when the extrenumproblemis in an infinite dinensiona
space, various convergence conplexities arise. Therefore
various subcl asses of events are required. Consequently nore

rows and columms are needed in classification table O.

For exanple, the mnimzing value of the functional of a
convex extremumproblem (P may be finite, -0o0, or +o0. |Its
constraint domain may be enpty, or not. However, by slightly
rel axing the constraint condition by a perturbation, the rel axed
domain is another convex domai n which may not be enpty. In this
case when the perturbati ons approach 0, one obtains specia
solutions terned "asynptotic solutions". By conmputing functiona
val ues of asynptotic solutions, further conceivable events for
(P) arise. For the given problem (P) only certain conbi nations

of conceivable events are perm ssible, and their total nunber is 7,



Events analogously described arise for the dual problem (P*),
and their total permissible number is also 7. However, when
combining permissible events for both problems (P) and (P¥)
together, many of the conceivable joint-events are forbidden,
In fact, out of a total of 49 conceivable joint-events only 11
are permissible., Some of these and related classifications are
given in references [2], [3], [6], [11], [14], [15], and [23].

In this paper we carry the classification process much
further by introducing a new construction which yields even
more detailed and refined information about the original convex
extremum problems, This is in the form of a pair of subsidiary
problems associated with the given convex extremum problem and
its dual problem, respectively. These new problems are also
convex and concave respectively, but satisfy certain homogeneous
properties. Because of this they are called "homogenized extre-
mum problems".

In linear programming the existence of a homogeneous problem
is rather transparent. 1In this case this construction has already

been done by Duffin [6] in 1956. We illustrate this case.

Example 1. Let A be a continuous linear operator on a locally
convex space E to a locally convex space F and let E*¥ be a
space paired topologically with E. Let ceE*¥, beF, and let C
be a closed convex cone in E,

Compute min(c,x) for all xe¢ E subject to the constraints

AXx = b and xe¢C.



This is an infinite linear programand its infinite |inear
honogeni zed program i s:

Compute min(c,x) for all xeE subject o the constraints
Ax = 0 and x € &

Duffin [6] used the |inear honpogeni zed programto give in-
formati on about the original linear program For exanple, he
used a |inear honbgeni zed program to characterize the existence
of asynptotically consistent solutions as well as the existence
of consistent solutions of the given |inear program,

in |linear programm ng the existence of honopgeni zed subsid-
iary problens permts classification refinenents. These are
achieved by first collecting information on the extrenmum val ues
of the linear functions of the honogeni zed problens of (P and
(P*) and the nature of their convex domains including perturba-
tions. This information is then joined with pernissible events
on (a) and (p) above, but for the given linear problemand its
dual problem This process increases the nunber of perm ssible
events associated with a linear problem from7 to 11. However,
when considering joint-events of both a linear extrenmum problem
and its dual, many conceivable joint-events are forbidden. 1In
fact out of 121 conceivable joint-events only 11 are permssible.,
Classifications of this type are given in Kalina-WIIlians [141
and reference [15], for linear extremum problens.

In convex programm ng, however, the question arises as to
whet her there is a related honogeni zed problem associated with

any convex extremumproblem For exanple, what, if any, is the



convex hompgeni zed probl em of the follow ng problem.

Exanple 2. Let xe R and ueR1 and define

-1 og( x+u) if x> -u

g(U,X) = -
+00 if x £ -u.

Conmpute the minimumof 9(Ox) for all x€RJ:)

This is a convex extremum problemw th perturbations of the con-
straint condition by the variable u, which relaxes the convex
constrai nt donain,,

The answer to the question is that any convex extrermum prob-
lem (P) has a convex honobgeni zed subsidiary problem (H), and its
dual problem (P*) has a concave honobgeni zed subsidiary problem
(H*). Problems (H and (H) are constructed fromlinearizations
of problens (P and (P*) respectively. Two theorens establish
el enentary equi val ences between the dual of a convex extrenmum
probl em and the dual of its linearization. This aids in deter-

m ni ng concei vabl e and perm ssible events on (a) and (p) but with
respect to all the problens (P, (P), (H , and (H*). The desired
classification refinements are then obtained in this paper by
applying four theorens in order to determ ne forbidden joint-
events. The first theoremextends the 49 conceivable joint-
event classification achieved for |inear extrenmum problens to
an arbitrary convex problem (P and its dual (P*). The second
t heorem characteri zes consistency of (P [(P*)] by the existence

of a specific permssible event of (H)[(H], The third theorem



characterizes asymptotic consistency of (P) [(P*)] by the existence
of another specific permissible event of (H*) [(H)]. The fourth
theorem ties certain permissible events of (P) [(P*)] to certain
permissible events of (H) [(H*)].

The end result is a classification similar to the linear-
extremum problem case. It states that out of 121 conceivable
joint-events between any convex extremum problem (P) and its dual
(P*), only 11 are permissible.

In an analogous manner another pair of convex extremum sub-
sidiary problems having homogeneous properties is introduced.
When permissible events of these particular subsidiary problems
are combined with those of the original (P) and (P*), then 400
joint-events are conceivable but only 93 are permissible,

Finally these classifications are contrasted to those obtain-
able from combining only the permissible values and limiting wval-
ues of the extremum functions of a convex extremum problem (P)
and its dual (P*), By using classification methods a new char-
acterization is obtained for when O is in the closure of the
domain of an arbitrary closed convex function.

To begin the process, we make a choice of a particular form
of the dual problems to study. We present the dual convex prob-
lems in the underlying framework of Gale's work [10], but as gen-
eralized in the convex "bifunction" terminology of Rockafellar,
[24], sections 29 and 30, which are all related to the conjugate
function approach of Fenchel [9]; see also Stoer-Witzgall [28].

We turn now to the development of classification schemes for

convex extremum problems over real topological vector spaces having



the Hahn-Banach extension property. The first task is to intro-
duce definitions which adequately encompass and discriminate. the
phenomena of "events" that occur on (a) and (B). This is done by

defining duality states for any given convex extremum problem

(P) and its dual (P*).

2. Duality States for Closed Convex Bifunction Dual Families.

Let E, F be real topological vector spaces which have the
Hahn-Banach extension property (HBEP), see [1l2] and let E*, F¥
be topologically paired with E, F respectively, see [4]. Thus
F X E 1is topologically paired with F* X E*¥ in the product
topology.

Let G be a bifunction from F to E, that is, to each
ue F is associated an extended real valued function on E,

Gu : E > [-0c0,00]. The value of Gu at a point xe E is

denoted by (Gu) (x), see Rockafellar [24], sections 29 and 30.

We assume throughout that G is a proper closed convex bifunction.
This means that the graph function g is proper, closed, and

convex on F X E where by definition:

g(u,x) = (Gu) (x). (1)

Recall that proper means that g(u,x) is not identically
+oo0 and g(u,x) is not allowed to take on the value -co.
The adjoint of G 1is defined as the bifunction, see Rocka-
fellar [24], from E*¥ to F* given by:
(G*¥x*) (u*) = inf{ (Gu) (x) - (x,x*) + (u,u*)} (2)

ueF
XeE

G* 1is also proper closed and convex since G is. Then it



follows that

(G*xx) (u*) = -g* (-ux,x*) (3)

where g* is the conjugate transform of g, valid in this
infinite dimensional setting (Asplund [l], Brondsted [5] and

Moreau [20], [21], see also Rockafellar [24], p.309).

Remark. Following the conventions of [24], the closure
of a convex function is defined to be the lower semi-continuous
hull of £ if £ nowhere has the value -oco. If £ assumes
the value -oo0 somewhere, then its closure, c4 £, is defined
to be the constant function -oo. These distinctions are given
in [24], p.52-54, in particular the comment after Corollary 7.2.2,
Throughout this paper we use the definition of closure as
given in Rockafellar'[24], and thus for example, Corollary 30.2.2
is applicable to our analysis,

We consider the following pair of dual convex programs

Program (P) Seek inf(GO)x subiject to xeE (4)
and

Program (P*¥) Seek sup(G*¥O) (u*) subject to u* eF. (5)
These dual programs are related to the dual family,

[P:P*¥] = [(Pu) : (P*x*)] (6)
(u,x*) € FXE*

which usually arises from perturbations of a given convex

program.



Following [24] let

dom(Gu) = {xc¢E | (Gu) (x) < o]}

and
dom G = {ueF | Gu is proper on E}.
We say that Program (P) [(P*)] is
CONS (consistent) if dom GO # g[dom G*O # @]
INC (inconsistent) if dom GO = @[dom G*O # @]

AC (asymptotically
consistent) if Oecid(dom G) [O€ ct(dom G*) ]

SINC (strongly
inconsistent) if Og ci(dom G) [O ¢ ct(dom G*)]

The value of Program (P) [(P*)] is
(inf G) (0) [(sup G*) (0)]
while the subvalue of Program (P) [(P*)] is

(ct (inf G)) (0) [(ct(sup G*)) (0)].

(7)

(8)

)

(10)

(11)

(12)

(13)

(14)

Any of these may be finite or infinite. See Rockafellar [24]

for definitions of these terms in Rn—space, which extend to the

infinite dimens ional setting here.
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Using definitions (9) through (14) the following states
are introduced for Program (P) [(P*)].
(i) Let Program (P) [(P*)] be CONS. Then it is BD (bounded
if (inf G) (O) > -oo [(sup G*) (0) < oc©]. Otherwise it is
UBD (unbounded) .
(ii) ©Let Program (P) [(P*)] be AC. Then it is PAC (properly AC)
if (ct(inf G)) (0) < oo [(ct(sup G*¥)) (0O) > -c©]., Otherwise
it is IAC (improperly AC).
(iii) Let Program (P) [(P*)] be PAC., Then it is ABD (asymptotically
BD) if (ct(inf G)) (0) > -co [(ct(sup G*¥)) (0) < ]. Other-

wise it is AUBD.

A duality state of the pair of programs (P) and (P*) is a

pair of states, one of Program (P) and one of Program (P¥),

Duality states of the above type were developed by Duffin [6]
and Ben-Israel-cCharnes-Kortanek [2], [3], for infinite linear pro-
grams. Definitions related to those above were developed in [3]

for convex programming problems.

3. Linear Programming Equivalents for Programs (P) and ( P¥)

We first present Program (P) and Program (P*) in slightly

altered but equivalent forms, respectively

Program (P)
Seek to inf g(u,x)
subject to (u,x) e OX ENF X E (15)

and
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Program (P¥)

Seek t sup [-g* (-u*, x*) ]
subject t (u*,x*) eF* x 0 0 F* x E* (16)

3JL Program (P

W seek honpbgeni zed convex progranms of Prograns (P and (P¥)

respectively. These are to be called honpgeneous derivant bi -

functions, Chese particular bifunctions are constructed froma
| inearization of the convex program (P) [(P*)] and are related to
several |inear honbgeneous type prograns in the literature [6],
[14], [15].

To begin this construction we introduce a |inear operator

A as follows:

A: (FX® XRXR — (FXH XRXR

by
A (x),29 =((£).0),6). (17)

A is a continuous |inear operator in the product topology on

(FXE) x Rx R Using the pairing it follows that the adjoint

AT of A is given by:

AT . (PXE) X RXR—> (PXE) X RXR
AT 6m = GFLo7). (18)

AT is also continuous in the product topology.

For any set

Wa (FxE)

X R,

| et

C(W denote the homogeni zation

of W ([28]) *, also called the associated cone in [3 ], defined by

See al so [24],

p* 63.



12

aw ={('yY | y~o}.
W shall al so use the notation [3] ,

W = {w e (F*XE*) x R weWsA<w, w*> ;> 0} (19)

and

Wy = {w e (F*xE*) x R1 weWs) <w,w> A -1). (20)

| ntroduce Program (CP) :

Seek the inf §
subj ect to A((£),?, 6) = ((3).0,1) (21)
and ((") ,89) €ct{c(epi g} ¢ (FXE) x Rx R

where epi g denotes the epigraph of g, and

Program ((CP)*)

Seek the sup -yj
subject to  AT((Ip,.C>n> * ((8).1,0) €ct{C(epi g)}*, (22

where {cMc(epi g)}}* ¢ (F*xE*) x Rx R

These progranms form a dual pair of |inear progranmm ng prob-
| ems over closed convex cones as is well known. [|his neans that
by introducing perturbations in the standard way for |inear pro-
grams, see [24], p.311-312, a dual bifunction famly can be associ -.
ated with Prograns (P) and ((CP)*). Following this construction

let (CP) denote an associated closed convex bifunction for Pro-

gram (CP). Then (CP)* denotes its adjoint bifunction also closed

and convex.



13

In this terminology (CP) (O) denotes the value of the
associated bifunction at the zero vector of perturbations,
which as a vector liesin the space (FXE) X R X R, Therefore
(inf(CcP)) (0) is the value of Program (CP). Similarly,
(sup(CP) *) (0) denotes the value of Program ((CP)*), where
here 0Oe (F¥XE¥) X R X R.

Using these identifications the following equivalences

are more computational than conceptual.

THEOREM 1. (a) Program (P) is CONS & Program (CP) is CONS
in which case (inf G) (0) = (inf(cpP)) (0).

(b) Program (P) is AC & Program (CP) is AC in which case
(ct(inf G)) (0) = (ct(inf(CP)) (0).

(c) Program (P*) is CONS & Program ((CP)*) is CONS in
which case (sup G¥) (0) = (sup(CP)*) (0).

(d) Program (P*) is AC < Program ((CP)*) is AC in which

case (ct(sup G*)) (0) = (ct(sup(CP*)) (0).

Proof. The fact that Program (P) is CONS[AC] if and only if
Program (CP) is CONS[AC] follows from the decomposition of

ct{C(epi g)} i.e.
0" (epi 9)
ct{c(epi g) )} = c(epi g) u (~ '°BT 93, (23)

See [24], p.63. Then by construction of the linear Program (CP)
and its associated bifunction, denoted (CP), see [24], p.311-312;

it follows that:

(inf G) (0) = (inf(cp)) (0) (24)

WONT LIBRARY
CARNEGIE-HELLON UNIVERSITY
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and

(c4 (inf G)) (0) = (ct(inf(cP))) (O). (25)

This proves parts (a) and (b).
Now Program (P*) is CONS[AC] if and only if Program ((CP)*)
is CONS[AC] follows analogously from the decomposition of

ct{C(epi g) }*, i.e.
ct{clepi 9))*= c((epi g ¥y ((PL 9%, (26)

see [3], p.68l, where the proof there is valid for any closed

convex set.

To prove the equalities in (c¢) and (d), it is easiest to use

parts (a) and (b) together with Corollary 30.2.2 of Rockafellar [24]j
Applying this Corollary to the bifunctions associated with

Programs P and P* we obtain:

(sup G*) (0) = (ct(inf G)) (0) (27)
and

(ct(sup G*)) (0) = (inf G) (0). (28)

Applying this Corollary to the bifunctions associated with

Programs (CP) and ((CP)*) we obtain
(sup(CP) *) (0) = (cid(inf(cP))) (0) (29)
and

(ct (sup(CP)*)) (0) = (inf(CP)) (O). (30)

i See Appendix 1, relation (*), for a statement of this result,
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Now part (b) together with (27) and (29) shows
(sup G*) (0) = (sup(CP)*) (0) (31)
which proves (c). Using part (a) with (28) and (30) shows
(ct(sup G*)) (0) = (ct(sup(CP)*)) (O) (32)

which proves (d). This completes the proof of Theorem 1.

Program (CP) gives rise to a homogenized linear program to
be introduced shortly. This program gives information about
Program (P). We also need a homogenized linear program stemming
from Program (P*). To construct this program one could work with
Program ((CP)*)., However, it is easier to construct another dual
pair of linear programs whose primal is the associated cone prob-
lem of Program (P*), Following this route we obtain a parallel
development of the homogeneous derivant bifunctions both positive

and negative for Programs (P) and (P*) respectively.

3.2 Program (P¥)
Analogous to section 3.1 define a linear operator B as

follows
B : (F¥XE¥) X R X R — (F¥XE¥) X R X R
where

B S Zm = ((5,) 0,m) . (33)

Thus its adjoint is given by
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B": (FXf XRXR— (FX) X RXR
wher e
BT (1,80 = ((D,0,0. (34)

Both B and B- are continuous linear operators in their

respective topol ogies.

Consider the follow ng |inear programns:
Program (CPY)

Seek The sup £

subject to B(( ¥ £ = (( .01 (35)
and ( (%) ,£T) €c£{Clepi h*) } ¢ (FXE') x Rx R

where h*(u*,x*) = -g*(-u*,x*) on F x EV,

and

Program ((CP*)*)

Seek the inf 9

subject to B'((£),?%.e) - ((%3.1,0) € {c-t{Qepi h*)))* (36)

wher e {cE{C(epi h*)}}* ¢ (FXE) x Rx R

Anal ogous to section 3.1 we denote by (CP*) an associated

bifunction to Program (CP*). [Ihe dual bi function shall be denoted

by (CP*)*. Then anal ogous to Theorem 1 we obtain the follow ng
t heorem whose proof is conpletely symetrical to the proof of

Theorem 1, and therefore is omtted.
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THEOREM 2. (a) Program (P*¥) is CONS <> Program (CP*) is CONS
in which case (sup G*) (0) = (sup(CP¥*)) (O).

(b) Program (P*) is AC < Program (CP*) is AC in which
case (ct(sup G*)) (0) = (ct(sup(CP*¥))) (O).

(c) Program (P) is CONS < Program ((CP*)*) is CONS in
which case (inf G) (0) = (inf(CPp*)*) (0).

(d) Program (P) is AC <& Program ((CP*)*) is AC in which

case (cL(inf G)) (0) = (ct(inf(cCP*)*)) (0).

4, The Homogenized Problems for (P) and (Px)

For linear programming problems over convex cones in linear
topological spaces under minimization, the "positive homogeneous
derivant" [15] or "modified homogeneous constraint set" of [14],

is related to Duffint!s homogenized program [6], p.1l63, developed

17 years ago. Duffin!s homogenized program is always consistent

and subconsistent and its value and subvalue is either O or -oo0.
As a subsidiary linear extremum problem the positive homogeneous
derivant may be consistent, inconsistent, asymptotically consistent,
or strongly inconsistent, and thus the terminology CONS, INC, AC,
and SINC has been used for these mutually exclusive and collectively

exhaustive states. The following equivalences can then be verified,

Homogenized Program [6] Positive Homogeneous Derivant [15]
(a) with subvalue O SINC
(b) with subvalue -o00 AC
(c¢) with value O INC
(d) with value -oo CONS

Table 1



18

Each line in the table is an equivalence, e.g., for line (b),
HP has subvalue -o0co < PHD is AC. Therefore the homogenized
program when taken together with its 2 possible values and
2 possible subvalues is equivalent to the 4 duality states of
the positive homogeneous derivant listed in Table 1.

Analogous to infinite linear programming we now develop

both positive and negative homogeneous derivant bifunctions for

closed convex bifunction dual families.

4.1 Homogeneous Derivant Bifunctions for Program (P)

Working on Program (CP) we obtain the positive homogeneous

derivant,

Program (HD(CP))

Seek inf oT(<§> ,2,6)

subject to £ < -1 (37)
and A(()),8,9 = ((),0,0)

where ((i),é,e) e ct{c(epi 9)}.

Program (HD(CP)) gives rise to the following bifunction

(Iv) (x) where v = (u,f) eF Xx E and xc¢E,

fo if  (go™) (;‘{) < -1 and A =0

(Iv) (x) = {0 if Gg(%(i)) < -1 and 9> 0 (38)

K+oo otherwise.

As usual the bifunction (38) generates a collection of programs

given by:
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Program (iv)

Seek inf (1v) (x)
subject to x€E (39)

PROPOSI TION 1« Program (10) is equivalent to Program (HXCP))

in the sense of equivalence of all bifunction duality states of

each program

Proof. W use the fact that 0%(epi g) = epi(g0"), where g¢O
is the recession function of g(u,x), see [24], pz66. Now Pro-

gram (10) is CONS”™ 3x € E such that (gO) (°) £ -1. Upon
X +
setting ? = (g0) (Y%, this is equivalent to ((°),?,0) e (° ~JIt9)

X X \j
which is equivalent to Program (HD(CP)) being CONS. In this case
the objective values agree because they are both 0 trivially.

Assunme now that Program (10) is AC, Then there exists a

Y ¥ Y
net {(u,9 ),x |Y) such that

lim{u,9) =0

vy Y Y
and (g0) (x) £-1 if 6.=0 and 8g(~5(4)) 1-1 if 9.>0

v Y Y Y Y Y
Defi ne
+, Yy _
(go)(x;) if 9,=0
g, = (40)
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u . +
Now if (a) 6. = 0, then ((_Y),8.,0) ¢ (P30 )y  1f ) @_> o,
Y Xy Y 0 Y
1 Yy, 1 : s o
(-——(x ) s QY)ezepl g by definition (40). This implies

eY Y eY

u

u
1 vy 1 .
((.N,8.,8) =0 (—(.V),5 E ,1) e C(epi g).
xY YO Y eY xY 9Y Y

Hence combining (a) and (b), it follows that for each vy

v epi(go™)
((,N,€e,8) eclepi g + (PT 9% ) = ct{c(epi 9)].
y Y
. uY . uY (0]
Furthermore, lim A((XY),gy,GY) = 1$m((()),0,9Y) = ((5)»0,0).

Finally 1lim sup %Y < -1 showing that Program (HD(CP)) is also
Y
AC. In this case the subvalues of IO and HD(CP) agree since

they are both trivially zero.

Oon the other hand, assume that Program (HD(CP)) is AC.
T

Then there exists a net {( j),%;,e;ly} such that

X
Y
1

u
(( ?),5;,9§)€ ct{C(epi g) ) for each vy

b4
Y

and lim(u;,e;) = 0 and lim sup §; < -1, Since ci{C(epi g)}

Y Y
u
is a convex cone, it follows that ((XY),gY,eY) =
Y
!
2(( Y),g’,e')e ct{C(epi g)}. Thus 1lim sup g < -2,
%! YUY ¥ Y

Y
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Therefore, for infinitely many v,

u
(go") (x) i 2.0 -I if e.,=o0
Y Y Y
and
;L. u

oY (y &Y)) L ¥ "4 -1 it ofY> o

Hence for infinitely many vy, (lv¥)(xY¥) < +00y Since limvY =
T i Y
lim(u ,9 ) =0, it follows that Program (10) is AC This con-
y Y Y

el udes the proof of Proposition 1.

Since it stenms froma linear program the bifunction (iv) (x)

of (38) is closed convex, It is called the positive honogeneous

derivant bifunction of Program (P) « By applying definitions (9)-(14)
to Program (10), additional states nay be defined for Program (P) e
Because the value (and subvalue) of Program (10) is either 0O or

+00, only 4 new states arise and are as foll ows*

W say that Program (P) is

(i) HCONS if Program (10) is CONS

(it) HNC if Program (10) is | NC (41)
(iii) HAC if Program (10) is AC

(iv)  HSINC if Program (10) is SINC.

Anal ogously the negative honogeneous derivant bifunction is
determ ned by replacing the constraint S <L -1 in Program (HO)(CP))
by the constraint ? ~. 1. This gives rise to another bifunction

call ed a negative honpbgeneous bifunction.
o if (gO) ( > 1 and 9 =0

(") (x) =40 if 6g(i0 "1 and 9>0 (42)

+00 ot herw seo
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Anal ogous to Proposition 1, we have the followi ng result

for the negative honbgeneous derivant bifunction.

PROPOSI TION 2.. Program (1"0) from (42) is equivalent to Program

(HD~(CP)) where the latter is gotten fromHDCP) by repl acing
?<1-1 with %™ 1, in the sense of equivalence of all bi-
function duality states of each program  Anal ogously, Program (P
is said to be Ef CONS, H~I NC, H~AC, or Ef SINC accordi ng to whet her
Program (I—0) is CONS, INC, AC, or SINCrespectively.

4.2 Honogeni zed Prograns for Program (P*)

Working with Program (CP*), (35), we obtain a positive

honogeni zed |inear program

Program (HD(CP*))

Seek sup OT((;ﬁ)JEJT))
subject to B( (£5).£7) = ((5).0,0) (43)
and £~ 1
x ¥ (epi h¥)
wher e ((U*}g*ml?) ecl{C(epi h*) } = c(epi h*) U P Pn )

Let X* = (x*,7) e E* x R and introduce the bifunction:
o if (0)H) A1 and m =0
(ax*) (u*) =20 if Tih*(™~")) "1 and rf >0 (44)

-00 otherw se
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and the related program:

Program (JO)

Seek sup (JO) (u*) (45)

subject to  u* ¢ F*.

Analogous to Proposition 1 (and its proof) we have the following

result.

PROPOSITION 3, Program (JO) is equivalent to Program (HD (CP*))

in the sense of equivalence of all bifunction duality states of
each program.

The bifunction (JX*) (u*), (44), is a positive homogeneous

derivant for Program (P*). Analogous to introducing 4 new states

for Program (P), we say that Program (P*) is

(i) HCONS if Program (JO) is CONS

(ii) HINC if Program (JO) is INC (46)
(iii) HAC if Program (JO) is AC
‘(iv) HSINC if Program (JO) is SINC.

Analogous to the development of (42), a negative homogenized
program for Program (P*) is obtained by replacing the constraint
£ >1 in Program (HD(CP¥)) by ¢ < -1. This new program is denoted

HD (CP*). It gives rise to the negative derivant bifunction for

Program (P*) as follows:

0 if (h*0") (3,) < -1 and g =o0
(37 x%) (ux) = 0 if nqh* (%—(;f;)) <-1 and 9> 0 (47)

-oo otherwise.
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Analogous to the preceding propositions we have the follow-

ing result.

PROPOSITION 4. Program (J O) from (47) is equivalent to Program

(HD (CP*)) where the latter is gotten from Program (HD(CP*))
by replacing ¢ > 1 with ¢ < -1, in the sense of equivalence
of all bifunction duality states of each program,

Program (P*) is said to be H CONS, H INC, H AC, and H SINC
according to whether the problem determined by (J O) (u*) is CONS,

INC, AC, or SINC respectively.

5. Determining Permissible "Compound" Duality States of
(P) and (P¥*)

Table 6 of Appendix 1 indicates that any convex extremum
problem (P) (and its dual (P*)) has 7 permissible states itself,
This is seen from examining the rims of the table., To each of
these states, however, conceivably three new ones arise logically
from its positive homogeneous derivant, namely, HSINC, HAC and
HCONS, HAC and HINC. Thus, the mixing of permissible states of
(P) with permissible states of its positive derivant gives rise

to new states for (P) termed compound states, conceivably 21 in

number. But Theorems 3, 4, and 5 applied to Table 6 restrict both
the number of permissible compound states of (P) and (P*) individu-

ally and the number of permissible compound duality states between
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them jointly. The net result is Theorem 7 and Table 2 of the
next section whose proof is given in Appendix 2,

An analogous approach is taken with respect to negative
homogeneous derivants., However, Theorem 6 permits only a slight
reduction in the number of permissible compound duality states,
and hence the compound classification scheme here is much more
combinatorial as set forth in Theorem 8 and Table 3.

Theorems 3 and 4 below are extensions to convex programming

of Duffin's Corollaries 2 and 1, [6], respectively.
THEOREM 3. Program (P) [(P*)] is AC < Program (P*) [(P)] is HINC.

Proof. Program (P) is AC < Program ((CP¥)*) is AC by Theorem
2(d). By Corollary 2 [6], Program ((CP*)*) is AC < Program

(HD(CP¥)) is INC, when HINC is identified to the condition of
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Corollary 2 by Table 1. Further Program (HD(CP¥)) is INC <>
Program (P*) is HINC by Proposition 3.

Next, Program (P*¥) is AC <= Program ((CP)*) is AC by
Theorem 1(d). By Corollary 2 [6] Program ((CP)*)is AC &
Program (HD(CP)) is INC using Table 1, Finally Program (HD(CP))

is INC < Program (P) is HINC by Proposition 1.

THEOREM 4. Program (P) [(P*)] is CONS < Program (P*) [(P)] is

HSINC,

Proof. Program (P) is CONS < Program ((CP*)*) is CONS by
Theorem 2(c). By Corollary 1 [6], Program ((CP*)*) is CONS &
Program (HD(CP*¥)) is SINC, again using Table 1. Now Program
(HD(CP*)) is SINC <& Program (P*) is HSINC by Proposition 3.
Next, Program (P*) is CONS <= Program ((CP) *) is CONS by
Theorem 1(g). By Corollary 1 [6], Program ((CP)%) is CONS &
Program (HD(CP)) is SINC, Therefore using Proposition 1, Pro-
gram (HD(CP)) is SINC & Program (P) is HSINC, completing the

proof of Theorem 6.

THEOREM 5.
(a) Program (P) [(P*¥)] is ABD —> Program (P) [(P*)] is HSINC.
(b) Program (P) [(P*)] is IAC —> Program (P) [(P*)] is HSINC.
(c) Program (P) [(P*)] is AUBD < Program (P) [(P*¥)] is AC.

and HAC.

Proof. Program (P) [(P*¥)] is ABD or IAC —> Program (P¥*) [(P)] is
CONS by Table 6 of Appendix 1. Hence Program (P) [(PX)] is HSINC

by Theorem 4, which proves (a) and (b).
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To prove (c) assune Program (P [(P*)] is AUBD (hence AC),
and assunme to the contrary that Program (P) [(P*)] is HSINC
Then by Theorem 4, Program (P*) [(P)] is CONS which contradicts
Program (P) [(P*)] being AUBD by Table 6. Therefore (P [(P*)]
is HAC, and therefore Program (P) [(P*)] is HAC and AC.

On the other hand, if Program (P) [(P*)] is AC and HAC,

t hen adding an HAC solution net to an AC solution net vyields
an AUBD solution net to Program (P)[(P*)]. See Lemma 6 of [2]
for this idea in the context of |inear programrmng. This com

pl etes the proof of part (c) and hence Theorem 5.

THEOREM 6. program (P)[(P*)] is IAC=> Program (P)[(P*)] is
H~AC, see (42) .

Proof. W work with Program (P) since the argunent for Program (P*)
i s anal ogous. Assune that Program (P) is IAC and that to the con-
trary Program (P is H"SINC (42). This neans that Program (P~)
defined by the bifunction -(Gu)(lx) is HSINC* Therefore by
Theorem 4, Program ((P~)*) is CONS, But Program (P is IAC

i nplying by definition that Program (P) is AUBD. But by Table 6,
it is inpossible for Program (P~) to be AUBD and Program ((P~)*)

to be CONS. Therefore Program (P) nmust be H'AC. CED. ”

6. Compound Cl assificati on with Honbgeni zed Bifuncti ons

6L Conpound Classification Theoremw th Positive Honbgeneous
Derivant Bifunctions

THEOREM Tj. O the 121 nutual ly exclusive and col |l ectively exhaus-
tive conpound duality states for Prograns (P and (P*) and their

derivants (38) and
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(44) respectively listed in Table 2, only 11 are possible and are
t hose denoted by positive integers. A zero in Table 2 neans the
correspondi ng conpound duality state is inpossible, and the non-
zero integer denotes the corresponding exanple in
[2] of that state. [For those who are interested, 11 exanples
are also given in [13] in an infinite dinensional non-reflexive
Banach space setting. ]

The proof of this Theorem follows from repeated use of
Theorens 3, 4, and 5 and Table 6 in an anal ogous way that the
i near versions of these Theorens are used to derive the com
pound cl assification for the case of linear programm ng in topo-
Iogical vector spaces. See [14] and [15]. W include a conplete
proof of this conpound classification theoremin Appendix 2.

6.2 Conpound Classifications with Negative Honbgeneous Derivant
Bi f uncti ons

The listing of conmpound characteristics for Program (P) and

its negative honogeneous derivant is al nost conpletely conbinatorial,

The C assification Theorem of Table 6 (see Appendi x,1) involves 7
states for Program (P) and a priori there are 3 honbgeneous states
for each of these (H~SINC, H~AC and H I NC, H"AC and Ef CONS) gi Vi ng
a possible total of 21, However, a slight reduction, to 20, is
made possi bl e by Theorem 6 which inplies that Program (P) 1AC and
H"SINC is inpossible. The possible conmpound characteristics are
set forth in Table 3.

Wt hout the existence of a theoremwhich relates permssible
states of a given problemto permssible states of the negative

honobgeneous derivant of its dual, we are
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led to the followi ng conjecture, which has been proved by
Rom [25] for the linear case, which using the equival ences we

have established extends to convex bifunctions.

Conpound Cl assification with Negative Derivant Bifunctions

THEOREM 8. O the 400 nutually exclusive and collectively exhaus-
tive compound duality states for Prograns (P) and (P*) and their

negati ve honogeneous derivant bifunctions defined by Table 3, only
93 are possi bl e.

7. Cl assification Schenes and Convex Anal ysi s

*He concepts of value and subval ue of a program see (13)

and (14), are related to all of the duality states introduced
in section 2, sinply because every programhas a val ue and sub-
val ue, regardless of the duality state which it and its dua
form In this section we give this relationship by enbeddi ng
each of the 11 possible duality states into a value and subval ue
oriented classification schene.

In order to apply the 11 exanples [2] directly here and in
the proof in Appendices 1 and 2, we alter the program fornul ation
slightly. Replace Programs (1.Q and (I1.C) of [2] with Pro-

grans (P and (P*) with the perturbations given bel ow.

Program (P inf(-c,x) _subject to Ax =Db +u, xeC (48)
Program (P*) sup(-b,u*) subject to ATu* - ¢ - x* e C, (49)

where C is the closed convex cone exanple in [2].
ethen the 11 so-nunbered exanples are generated fromthe sane data

for ¢, AL b, and C in [2].
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In convex analysis, the seeds of a general classification
result which is value and subvalue oriented were sown in 1965
in Rockafellar?!s Theorem 6 [23], p.179-180 and later firmed up
in the bifunction terminology as Corollary 30.2.2 in Convex
Analysis [24], p.315., 1If in addition the 11 possible states
are demonstrated by examples, then this corollary can be used
to prove the classification theorem of Table 6 for convex program-
ming and is so used in Appendix 1.

In addition, Table 4 associates each of the 11 examples [2]
to one of six cases determined by values and subvalues of
(inf G) (0), (ci(inf G)) (0O), (sup G*) (0O), and (ci(sup G*)) (0O).
These examples and Corollary 30.2,.,2 then yield the following

classification result,

Value-Subvalue Oriented Classification Theorem

THEOREM 9. Of the 36 mutually exclusive and collectively exhaus-

tive cases for problems (P) and (P*) with respect to the values

and subvalues (inf G) (0), (sup G*) (0), (ct(inf G)) (0), (ct(sup G*)) (0),
only 6 are possible and are those denoted in Table 4 by positive
integers. A Zero in the table means the corresponding case is
impossible and the non-zero integers denote the corresponding

example of [2], possibly grouped together for a given value-subvalue

case.

Proof. The proof follows from Rockafellar!s Corollary 30.2.2 [24]
and the Ben-Israel-cCharnes-Kortanek linear programming example
data, used for linear programs in 3 or 4 space of the form (48)

and (49).
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Observe that the clustering of the duality states into
the value-subvalue oriented scheme involves the forced mixing
of different homogeneous characteristics either of the primal,
dual, or of both problems, For example, duality states 6 and 9
are collected together for the value-subvalue case (inf G) (0) = +o0,
(ct(inf G)) (O) = -co, (sup G*) (0) = -co, and (cl(sup G*)) (0) = +oco.

Upon checking their positive homogeneous derivants we find:

Problem
Example (P) (p*)
6 HINC HCONS
9 | HCONS HINC
Table 5

Thus in the compound classification the 4 duality states
6, 9, 10, 11 are separated out, while they appear in one box in
the value-subvalue oriented scheme., Similarly duality states 3

and 4 are lumped together, as well as duality states 7 and 8.

8. The Duality States of Proper or Improper Convex Functions

Let f Dbe a closed convex function on E. We embed f into

a closed convex proper bifunction g(u,x) on F X E such that
g(o,x) = £(xX), xc¢€E. (50)

The existence of many convex functions g satisfying (50) is clear

geometrically, see for example Rockafellar'!s "New Applicaﬁions of
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Duality in Nonlinear Programming”, presented at the 7th Inter-
national Symposium on Mathematical Programming, the Hague, 1970.
In this section we have two objectives., First, we generalize
Rockafellar?!s Theorem 27.1(i) [24] characterizing Oe ci(dom £fx*),
Second, we show which duality states are possible when £ is
proper and which are possible when f is improper, where the

dual convex programs stem from the closed convex bifunction

g(u,x).

THEOREM 10. Let g(u,x) be a closed convex proper bifunction on
F X E and f(x) = g(0,x)Vx. Then
(1) Program (P*¥) AC =—> Oc ci(dom £f*)

(2) If £f(x) is proper, then O¢€¢ ct(dom f*¥) = Program (P*)AC.

Proof. (1) Assume Program (P*) is AC. Then there exists a net

{(x?,u*)]y] such that -g*(-u*,x*) > -co0 and 1lim x* = 0.
Y Yo v y Y

Therefore for each v,

inf {-(x,x) + £(x)} > inf {<(u,x), (u*,-x¥) > + g(u,x))
(0,%) Y (u,x) A

= -g*(-u?,x;) > -o0o. This implies that xie dom f* and hence

O € ct(dom £*).
(2) £f(x) proper implies that Program (P) is CONS. Assume
Oc ct(dom £*). Then by Theorem 27.1(i) of [24], (fo') (x) > o.

But by an elementary calculation,
+ +
(go’) (0,x) > (f0') (x), =x¢eE. (51)

Therefore by (41), see also (38), Program (P) is HINC. But only
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duality states 1, 5, and 7 are possible for Program (P) and
Program (P*) since Program (P is CONS and HHNC. And in these
states Program (P*) itself is ACt This conpletes the proof of

(2) and hence the proof of Theorem 10.

COROLLARY JL  Let g(u,x) be a closed convex proper bifunction

on Fx E and f(x) =9(0,x), xe E TAden Oecf£(domf*) except
when programpair (P)-(P*) is in duality state 8. Moreover, in
duality state 8, 04 cl(domf*).

Proof, W consider two cases.

Case 1. Program (P is CONS. Only 4 states (1,5,7,8) are

possi ble. Except for state 8 Program (P*) is AC and hence by
Theorem 10(1) , Oe c*"Cdomf*) .

Case 2L. Program (P) is INC. This neans f (x) = (& (x)

= 400, xe E and trivially O€c£(domf*) since domf* = E*

in this case. ”

It remains to show that Q~c4,(doxn f*) for duality state 8.
Assune (P)-(P*) is in state 8 Téhen if f is proper, it follows
that O"cf£(dom f*) by Theorem 10(2), since Program (P*) is SINC
If f is inproper, then since Program (P) is CONS, there exists
X such that f(XJ = -o0o. This neans dom f* = 0, and hence
G Z' oKdom f*) .

Therefore when (P)-(P") is in duality state 8, 0/ct(domf*) ,,

CORQLLARY .2. Let g(u,x) be a closed convex proper bifunction
on Fx E and let f(x) =9g(0,x), xeE Consider the duality
states of the progranms (p)-(p*) . inf(Q) (x) , xe E and
sup(G0) (ud) , urefF.
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(i) In duality states 1, 5, and 7, f(x) is proper:

(ii) In duality state 8, f(x) may or may not be proper and

both cases are realizable.

(iii) In duality states 2, 3, 4, 6, 9, 10, 11, f(x) is
improper.
Proof. (i) and (iii) readily follow from Theorem 10. In (ii)

a proper function £ is given by example 8 [ 2] taken in the

form (48) and (49). The function identical to -oco gives an

example of state 8 having improper f£.
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Appendi x 1*

A Convex Conjugate Transform Cassification Theorem

THEOREM 11. O the 49 mutually inclusive and collectively exhaus-
tive duality states of Prograns (P) and (P*) only 11 are possible
and are those denoted in Table 6 by positive integers. A zero

in Table 6 neans that the corresponding state is inpossible.

The possible duality states are nunbered according to exanples
1-11 of Ben-Israel-diarnes-Kortanek [2], when the dual prograns

of each are taken in the formof (48) and (49).

Proof. W shall use Rockafellar*s Corollary 30<>2.2, page 315 [24]
whi ch reads:

(inf §(0) = (cE(sup G)(0) ™ (sup G&)(0) = (c£(inf G)(0) ()

where G is any closed convex bifunction from F to E W
shall use ( *) working rowby row, starting with the state of

(P*0) for each row

Row 1l (P*) is CONS, BD, ABD. This neans (inf G)(0) is bounded
and also (c£(inf G)(0) is bounded. Hence (P) is also CONS, BD,

ABD, i.e., only state 1 occurs.

Row 2L (™) CONS, BD, and AUBD. This neans (inf G (0) = +oo”~ (PO
INC and also (c£(inf Q) (0 is bounded => (P is ABD. Hence only

state 2 occurs in row 2.
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Row 3 (P*) CONS, UBD. This means (ct(inf G)) (0) = +oo. If
Occt(dom G), i.e., AC, then (P) is IAC. If OfFct(dom G),
then (P) is SINC. Hence only states 3 and 4 are possible in

row 3.

Row 4 (P*) INC, ABD., Since (ct(sup G*)) (0) is bounded so is
(inf G) (0), i.e., (P) is CONS, BD (hence AC). But (sup G¥*) (O)
= -00 => (ct(inf G)) (0) = -co —=> (P) is AUBD since it is AC.

Hence only state 5 is possible in row 4.

Row 2 (P*) INC, AUBD. Hence (inf G) (0) = +o0 => (P) INC.
Also (sup G*) (0) = -co = (ct(inf F)) (0) = -oo. Hence if (P)
is AC, then it is AUBD, Otherwise it is SINC. Hence only states

11 and 6 are possible in row 5,

Row 6 (P*) IAC. This means (cit(sup G*)) (0) = -co —> inf FO

= -co —» (P) is CONS, UBD. Hence only state 7 is possible.

Row 7 (P¥) SINC. This means (sup G*¥) (0) = -oo —> (c4(inf G)) (0)
= -0 also, However (ci4(sup G¥)) (O) cannot be finite and hence
we consider two cases,
(1) (ct (sup G*)) (0) = +©. This means (inf G) (0) = +@@ —> (P)
INC, If (P) AC then it is AUBD, since (c4(inf G)) (0) = -co.
Otherwise it is SINC.
(2) (ct(sup G*)) (0) = -oo. This means (inf G) (0) = -co => (P)
is CONS, UBD. Hence only states 8, 9, and 10 are pos-

sible in row 7.
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The proof is completed by remarking that the 11 states

designated as the only possible ones than can occur, do in

fact occur as demonstrated by the 11 examples in [2], QED.,

The following table gives the values of the extrema

(bounded or unbounded) for problems (P) and (P*) for each of

the 11 states.

DUALITY
STATES

6,9,10,11
7,8

Program (P)

Program (Px)

(inf G) (0) (ct (inf G)) (0) (sup G*0) (ct (sup G*) (0)
finite finite finite finite
+00 finite finite +a
+00 +00 +o00 +00
finite - 00 -00 finite
+co -00 -oo +00
-00 - -o00 -oo

Table 7
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Appendix 2

Proof of the Compound Classification Theorem with PHD Closed
Convex Bifunctions

The Impossible States

Row 1 The impossible states follow from row 1 of Table 6.
For the only possible state, state 1, (P) and (P*) are both

HSINC from Theorem 4.

Row 2 The impossible states follow from row 2 of Table 6.
For the only possible state, state 2, (P) is HSINC from Theorem
5(a)., Since (P*) is AUBD it follows from Theorem 5(c) that

(P*¥) is HAC. Theorem 3 implies that (P*) is also HINC,

Rows 3,4 Row 3 of Table 6 splits into 2 rows according to
whether (P*) is HINC or HCONS since it necessarily is HAC from
Theorem 5(c). In these two rows the only possible states involve
(P) being IAC, state 3, or (P) being SINC, state 4, If (P) is
IAC, then by Theorem 3, (P*) is HINC, and of course (P) is HSINC
by Theorem 5(b)., If (P) is SINC, then by Theorem 3, (P*) is
HCONS. Further since (P*) is CONS, Theorem 4 shows that (P) is

HSINC.

Row 5 The impossible states follow from row 4 of Table 6. For

the only possible state, state 5, (P) is HAC by Theorem 5(c) and

HINC by Theorem 3, Theorem 5(a) shows that (P*¥) is HSINC.
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Row 6,7 Row 5 of Table 6 splits into two rows according to
whether (P*) is HINC or HCONS since by Theorem 5(c) it is HAC.

In these two cases the only possible states involve (P) being
AUBD or (P) being SINC. If (P) is AUBD, then (P) is HAC by
Theorem 5(c) and HINC by Theorem 3. Similarly (P*) is also HAC
and HINC., If, on the other hand, (P) is SINC, then (P*) is HCONS

by Theorem 3, and by Theorem 3 (P) is also HINC.

Row 8 The impossible states follow from row 6 of Table 6. For
the only possible state, state 7, (P*¥) is HSINC by Theorem 5 (b)

and (P) is HAC and HINC by Theorem 5(c) and Theorem 3 respectively.

Rows 9,10,11 "Row 7 of Table 6 splits into 3 rows by the mutually

exclusive states: (a) HSINC, (b) HAC and HINC, and (c) HAC
and HCONS. Thus one must determine how the possible states 8,

9, and 10 fall in these subclasses.

State 8 By Theorem 5(c), (P) is HAC. Hence it is either HINC or

HCONS, and Theorem 3 shows it is HCONS. (P¥) is HSINC by Theorem 4,

State 9 Theorem 3 shows that (P) is HCONS. By Theorem 4, (P*) is

HAC. By Theorem 3, (P*) is HINC,

State 10 By Theorem 3, (P) and (P*) are both HCONS and hence HAC

automatically.

The Possible States The 11 examples of [2] show that the 11 states

are indeed realizable, when the dual programs of each are taken

in the form of (48) and (49).
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Bi functi on

Let xe R and ue R and define
-1 og( x+u) if x> -u
g(u, x) = (52)
+co if X £-u..
Ilien
1 + log(~x*) if x* <0 and -u* - x* =0
(&) (u*) = (53)
-00 ot her wi se.
It follows that
0 if x +u>0
(g0") (u,x) = (54)
+00 ot herw se.
Upon setting v = (u,0), relation (38) becones
0 if (gO) (~ ™ -1
_ . l,u
(1M 0 = s o if 83(5()) < -1 (55)
k+oo ot herwi se.
Therefore according to (41), Program (P) is HI NC because of (54),.

To see, however, that Program (P) is HAC,

t ake
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k
(w,6) = (0,3 and x = 5

Then lim(uk,ek) = (0,0) and (uk,ek)e:dom I for each k.

Furthermore for each k, (I(uk,ek))(xk) = 0 since

1 u

k
8, g (F(
k ek Xy

)) = %{—log ek) = -1, Hence Program (P) is HAC,
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