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by R. G. Jeroslow *

This paper presents three generalizations of the Second Incompleteness

Theorem of Godel (see [2]) which apply to a broader class of formal systems

than previous generalizations (as, e.g., the generalization in [1]).

The content of all three of our results is that it is versions of

the third derivability condition of Hilbert and Bernays (see page 286 of [3])

which are crucial to Godel!s theorem. The second derivability condi*-

tion plays some role in certain logics, but even there, only in the far weaker

form of a definability condition (see Theorem 2).

The elimination of the first derivability condition allows the applica-

tion of the Consistency Theorem to cut-free logics which cannot prove that

they are closed under cut.

It is Theorem 1 which will probably have primary interest for readers

who are not concerned with technical proof theory or with foundations, for it

treats logics with quantifiers, and in that case one can dispose entirely of

the first and second derivability conditions. The derivation of this result

requires a "new twist11 on old arguments. Specifically, we use a new variation

on the standard self-referential lemma (this is Lemma 5.1 of [1]) to obtain a
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somewhat different self-referential construction than has previously been

employed (this is our Lemma in Section 2 below). With this new construction,

we consider the sentence cp which "expresses11 the fact: "My negation is

provable.11 Then, using hypotheses associated with Godel's First Incomplete-

ness Theorem, one shows that j — | cp is impossible in a consistent logic.

Finally, using only a version of the third Hilbert-Bernays derivability condi-

tion, one shows that the provability of the consistency statement implies | | cp,

and hence that consistency is unprovable.

In the standard kinds of arguments for versions of Godel's Second Unde-

rivability Theorem, as exemplified, e.g., in the proof of Theorem 5.6 of [1],

the following different strategy is employed. Via the standard self-referential

lemma, a sentence \ is constructed which "expresses11 the fact: "I am not

provable." Then with hypotheses for the First Incompleteness Theorem, one shows

that [- \ is impossible in a consistent logic. Finally, one shows that the

provability of the consistency statement implies j- \, and then concludes that

consistency is unprovable; but this latter argument requires, in the standard

proofs, all three of the Hilbert-Bernays derivability conditions.

In view of the preceding discussion, the "new twist" on existing argu-

ments which gives Theorem 1 consists for the most part in a different self-

referential construction and a different choice of the self-referential sentence*

The distinction between various kinds of self-referential constructions was

first discussed in [7].

Theorems 2 and 3 treat Godel's Second Incompleteness Theorem in the

setting of quantifier-free logics. These results alone deal with the kind of

consistency statements which are relevant to Hilbert's original finitist program

[4]. The devices required to derive Theorems 2 and 3 are complex, new self-

referential sentences.



-3-

We originally derived Theorems 1 and 3 as simplifications of the argu-

ment for Theorem 2, which we discovered first. The referee's careful study of

our original proof of Theorem 1 isolated the new self-referential lemma we

mentioned above and also the precise differences between our derivation of

Theorem 1 and standard derivations of analogous results in logics with quantifiers,

We have restructured our original proof of Theorem 1 following the referee's

suggestions.

Kreisel has informed us that a result in his recent joint work with

Takeuti implies that our hypotheses in Theorem 1, while sufficient for Godel's

Second Underivability Theorem, are not strong enough to obtain Lobfs result.

Our results are not sensitive to the connotation of the formulae used

to express proof or provability, and they hold so long as extensional criteria

are met -- e.g., that the formula does in fact define a proof or provability

predicate, etc. The supposedly "vague11 issue of connotation and meaning in

this technical setting will be discussed in a later paper, where it will be

given a precise, mathematical treatment, based on the ideas of G. Kreisel in

[6].

S. Feferman has independently removed any form of the second derivability

condition as a hypothesis in the setting of Theorem 1. For history, the reader

is referred to Section 5 below.

1. We now state certain preliminary hypotheses on a theory T, which are met

commonly in logics for which merely some version of the First Incompleteness

Theorem is known. Then we shall add further conditions explicitly in our

theorems in order to derive versions of the Second Incompleteness Theorem.

Let L be the language of T. It is assumed that there is a 1-1 corre-

spondence between some set D of closed terms and pseudo-terms (see below) of L



and the set of all terms, formulae, and sequences of formulae. Let the closed

term or pseudo-term a correspond to the syntactic object #; we also say that

a is the godel numeral of #•

It is assumed that there is a class F of functions, closed under

composition, such that the domain of each fgF is some (finite) Cartesian

product of D, and f maps into D.

It is assumed that, to every fgF, there is an encoding Af(x-,...,x , x -)

of the graph of f, i.e., of the relation f(x-,...,x ) = x • and we shall abuse

notation and write this encoding as f(x-,...,x ) - x -, as if the latter state-

ment were a formula of L (which is the case in free variable systems, at least

up to the issue of use vs. mention).

In further elaborating this abuse of notation, we shall use, e.g.,

k(g(x,y), h(y)) = z to abbreviate the encoding m(x,y) = z of the function

m(x,y) = k(g(x,y),h(y)), and this latter function is in F, by closure of F

under composition. In logics with quantifiers we shall also call the expressions

"f(x-,...,x )ff (which often do not actually exist in L) pseudo-terms. For

a wff <*(x) and fgF, a(f(x)) denotes (3y) (a(y) /\f (x) = y) in quantifier logics.

The meaning of a(f(x)) in quantifier-free languages is clear, since in this case

only terms are used. In quantifier-free languages, f is the godel numeral of

the term for fgF; in systems with quantifiers, f is the godel numeral for Af.

In the usual contexts, F consists of the primitive recursive functions.

The following is assumed regarding F:

Fl) There is a function subgF such that for all wffs a = a(x) with one free

variable x and for all feF, sub(a,f) is a(f(f)).

F2) There is a function nggF such that, for all wffs &> ng(a) is -7 a*

Let \~a denote the fact that a is provable in T.

We assume the following regarding the logic T:
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Tl) For any feF, if f(a) = b, then |-f(a) = b.

T2) If f-f(a) = b, then for all wffs \(x) of L,

T3) The theorems of T are closed under the application of the following

rules (where we by no means assume that these rules are in any way

explicitly rules of T);

R 1 nothing
cp - cp

. cp(x) x a free variable
cp(t) ' t any closed pseudo-term or term

p« cp -» X, cp -+ <b

cp
R 4

2. The following lemma, which provides a new means of obtaining self-referential

sentences, was discovered by the referee, after an examination of our original

proof of Theorem 1 below which contained a particular application of this lemma.

Lemma: With every formula \|f(x) one can effectively associate a formula cp and

a closed term (or pseudo-term) t such that the following holds:

(1) cp is iKt)

(2) h t = 9.

Proof. Define the function f by

f(d) = subOJ^OO, d)

for deD. Clearly, feF, and hence f(y) is a term (or pseudo-term). Set

t = f(f), and cp = \jf(t). Then (1) is trivial and using Fl and Tl we have

|-f(I) = •(£(?)), which gives (2). Q.E.D.
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We now can state our first version of the Godel-Hilbert-Bernays Theorem

whose intended application is to logics with quantifiers.

Theorem 1: Suppose that pr(u) is any wff of T such that the following conditions

hold:

(1) If [~\, then (~prd).

(2) For all closed pseudo-terms t,

[-pr(t) - pr(pr(t))

Let Q-Con be the formula ~i (pr(u)/\pr (neg(u))). Then if T is

consistent, Q-Con is not provable in To

Proof: Take \|((x) = pr(neg(x)) in the lemma and let ^ and t be as in that lemma.

By Rl of T3, [- cp -• cp. By the lemma, {-1 = cp. By T2, these results give

j-cp-> pr(neg(cp)). By hypothesis 2, since neg(t) is a closed pseudo-term, we

also have |— cp —̂  pr(cp). Thus by R3, we have |— cp —• pr(neg(cp))/\pr(cp) .

Noting the last result in the paragraph above, let us suppose, for the

sake of contradiction, that [-Q-Con. By R2 of T3, this gives |-~f(pr(cp) A pr(neg(cp))),

and hence by R4 of T3, we have |—j cp.

We derive a contradiction from [--7 cp as follows. By hypothesis (1),

f-pr(-7 cp), and so, for the contradiction, it suffices to show j--| pr(~7 cp),

since T is assumed consistent.

Since neg(t) = -7 cp, T2 and the fact that f--| cp gives | jpr(-| cp), as

desired. Q.E.D.

Remark 1: If one wishes, one can introduce the abstract concept of a "E*.

sentence11 and then restate (2) in the more natural form:

Jl(2)f for every E1 sentence X9

-+ pr(X).
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All the preliminary hypotheses in 1. can then be restated taking into

account the form of the formulae. We shall actually carry out such a detailed

examination of hypotheses in 3. below when we deal with a consistency state-

ment of the free variable form, which is more directly related to Hilbert's

ideas [4] than is Q-Con.

Remark 2. Taking the hypotheses in 1. and taking hypothesis (1) for granted,

hypothesis (2), which is of course a form of the third derivability condition

of Hilbert and Bernays [3] , gives a "best possiblerr result in terms of the

general class of logics treated in Theorem 1.

To see this is the case, one need only consider Kreisel's example of a

logic P* on page 154 of [6]. Here, a proof in P = Peano arithmetic is accepted

as a proof in P* provided only that the addition of its end formula to the

set of theorems of P with shorter proofs (in terms of godel numbers) does not

lead to an inconsistency in propositional logic above.

To be specific, let prf (x,y) be the usual formula used to express the

fact that x is (the g.n. of) a proof of (the formula with g.n.) y in Peano

arithmetic P, and let prop(y,z) express the fact that y is proposionally

equivalent to the negation of z. Then the condition prf*(x,y) that x is a

proof of y in P* is described by the formula

prf(x,y) A (¥u < x) (Vz)(prop(y,z) 3 ^ prf(u,z))

and the condition pr*(y) that y is provable in P* is taken as (3x)prf*(x,y).

Since there are no inconsistencies of any kind in P, evidently P* and

P have the same theorems, in fact, the same proofs. Thus, all the hypothesis

of 1. and the hypothesis (1) of Theorem 1 are met by P*, with pr(x) taken as

the provability predicate for P* (not P ) . However, since inconsistencies in

P* are excluded on trivial grounds, the consistency statement Q-Con (constructed

from this pr(x)) jLs provableo
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Evidently, then, the hypothesis (2) fails for P*, and hence that

hypothesis generally is needed.

Remark 3: Kreisel and Takeuti will shortly be reporting their proof-theoretical

results regarding Takeuti1s system GLC augmented by a rule corresponding to the

axiom of infinity. Kreisel informs us that Q-Con is provable in this logic,

and hence, as weak as our hypothesis (2) for Theorem 1 appear to be, it fails

to hold in this natural logic.

3. In free variable systems, formulae pr(x) expressing provability are simply

not available, so the hypotheses of Theorem 1 are not relevant. And if one

3
merely wishes a result regarding the free variable part of a logic T, evidently

hypotheses for the theorem must be phrased more delicately than in

Theorem 1.

In this Section, we give a result for the free variable part of logics,

which permits control over the form of the consistency statement so that it is

stated entirely in terms of free variable formulae.

We recall the definition of an encoding in 1. The class <S of formulae

consists of all prepositional combinations of formulae which arise by instantiating

into any free variable position of an encoding any closed terms or pseudo-terms.

3
The term "free variable part" of a logic with quantifiers is made precise by
specifying a class of functions and encodings of those functions. Then the
cited part of the logic consists of those formulae which can be construed
as representing equality between functions and propositional combinations
of such formulae, such that the formulae are provable in the logic (perhaps
by deductions involving other formulae). Usually, the primitive recursive
functions with their "natural" encodings are chosen. With this understanding,
the free variable part of Peano arithmetic is stronger than Primitive Recursive
Arithmetic because it contains the encoding of that formula of Primitive
Recursive Arithmetic which asserts the consistency of the latter theory.
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In quantifier-free formalisms, the notion of a pseudo-term is vacuous:

there are only terms.

To the F-list of hypotheses we add:

F3) There is a function sbgF such that, for all cp - cp(x)e£ and

closed pseudo-terms t, sb(cp,t) is cp(t).

F4) There is a function hgF such that h(oO = 0 precisely if ae£ (here 0 is

some constant of L).

The hypothesis F4 is needed merely to state the form of the consistency

statement which we shall use.

We retain the assumptions T1-T3 on the theory T, though for functions

of two variables and formulae ae£ only. However, we permit t in R2 to be any

pseudo-term. We also add, under T3, that T shall be closed under the applica-

tion of the following rule (for #,|3 numerical formulae):

R5 -<*

P - a

The above hypotheses and the hypotheses of Theorem 2 below are met

by many quantifier-free systems, e.g., Primitive Recursive Arithmetic.

Theorem 2: Let prfeF be such that

3) = 0) <—> |-p

and let us define Con to be

-l (h(u) = 0 A prf(v,sb(u,z)) = 0 /\ prf (w,sb(ng(u) ,z)) = 0).

We suppose also that the following conditions hold:

(1) There is a function ceF such that, if prf(a,(6(v)) = 0 with v as free

variable, and t is any closed pseudo-term, we have prf(c(^,t), *J(t)) « 0.
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(2) For all p(z)e£ there exists LCF such that |- p(z) -• prf(L(z), sb(p,z)) = 0.

Then if T is consistent, Con is not provable in T.

Proof, Apply the lemma of Section 2 to the formula ^(x) = !-i prf(c(z,z),sb(x,z)) = 0f

and let t and cp be as given in that Lemma, so that cp(z) is

H (prf(c(z,z), sb(t,z)) = 0)

and let p(z) be cp(z) without the negation sign.

Since the lemma gives [- t = cp and |-ng(p) - cp, two applications of

T2 and one application of Rl under T3 gives

|-p(z) - prf(c(z,z), sb(ng(p),z)) = 0.

However, hypothesis (2) gives

[-p(z) - prf(L(z), sb(^,z)) = 0

and hence, upon combining the last two results and using h(p) = 0 from Tl

plus R5 and then R3 used twice, we obtain

j-p(z) - (prf(c(z,z), sb(ng(p"),z)) = 0Aprf(L(z), sb(7,z)) = 0Ah(p) = 0).

Now suppose |-Con. Then rule R2 under T2 used three times gives

H (MpO = 0Aprf(L(z),sb(^,z))= 0 Aprf (c(z,z) , sb(ng(^),z)) = 0).

If we combine this result with the last result of the previous paragraph,

and use R4 under T3, we obtain |--j p(z).

Let a be such that prf(a, -7 p(z)) = 0. Then by (1), together with

Tl, we have

[-prf(c(a,a), -7 p(a)) = 0.

On the other hand, since j—\ p(z), the definition of p(z) shows that

\~1 prf(cfo,a), sb(t,a)) = 0.
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The last two results, together with f-sb(t, a) = -7 p(a) (as is implied by Tl)

show that T is inconsistent. This is a contradiction Q.E.D.

Remark 1: Let ctgF be such that c>C(a) = 0 precisely if (y is a closed numerical

formula. The most natural choice of a consistency statement, in terms of Hilbert's

ideas evidently is

-7 (c£(u)/\prf(v,u) = OAprf(w,ng(u)) = 0).

However, if the formula sb(x,y) - z expressing the substitution operation is

chosen in the usual manner, we will have

f-c£(sb(pT,z)) = 0.

Thus, in the common logics, the consistency statement Con of Theorem 2 would

be provable if the natural consistency statement were provable.

Remark 2: Again, we have a "best possible11 result. To see that hypothesis

(2) is needed generally, one need only take the free variable part of P*,

for which hypothesis (1) clearly holds (for P*, see Remark 2 of 2). More-

over, hypothesis (2) by itself (even with the general hypotheses from 2.) is

not enough, since it is satisfied by the free variable part of the logic

discussed in Remark 3 of Section 1.

Remark 3; One easily sees how to adapt the proof of Theorem 2 to establish

essentially the same result if hypothesis (2) is replaced by

|-p(z) - pr(sb(p",z))

and the result is phrased in terms of provability (pr(x)) rather than

proof (prf(x,y)). This observation allows us to answer a question of Kreisel,

which he posed us in private correspondence, and which was the entire motiva-

tion for the research undertaken for this paper, specifically: since at least
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one of the derivability conditions of Hilbert and Bernays must fail for P*,

can one indicate a single derivability condition which must fail? Evidently,

the third derivability condition fails, since the others are not needed to

insure the unprovability of Con.

4. We now give a third and last version of the Consistency Theorem. The

general "background hypotheses" are the same as in 3., except that under T3

the rules R3, R4, and R5 are to be dropped and replaced by the rule

R6 -7 i a - P> V» i (VAC* Ag)

-7 ot

where all formulae involved are in £. The change to R6 is motivated purely

by convenience in proving Theorem 3 below; in practice, it is as easy to

verify as the other rules.

Theorem 3: Let prfgF be such that

,|3) = 0) < — >

and let us define Con1 to be

-i (h(u) = 0/\prf(v,u) = 0 Aprf(w,sb(ng(u),z)) = 0).

We suppose that, for all formulae p(z)g£ , there is a function

LgF such that

[-p(z) - prf(L(z), sb(^,z)) = 0.

Then if T is consistent, Con1 is not provable.

Proof: Apply the lemma of Section 2 to the formula \|r(x) = ' -| prf(z,x) = 0f

and let cp and t be as given in that lemma. By the main hypothesis of Theorem

3 (i.e., the third derivability condition) applied to -? cp(z) as p(z), we have

| in prf(z,t) = 0 - prf(L(z), sbCTcp,*)) = 0.
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Since [- t = cp by Tl, T2 gives

|—j -i prf (z,9) = 0 - prf(L(z), sb( -7 cp,z)) = 0.

Note that, by Tl, we also have j-h(cp) = 0.

Now suppose that j-Conf. By R2 of T3, we have

1 1 (h(9) - O/\prf(z,cp) = 0Aprf(L(z), sb^T^z)) = 0).

If we then combine the last three results and apply R6, we obtain

|—i prf (z,cp) = 0.

Using T2, this immediately gives |—jprf(z,t) = 0, i.e., |-cp(z). Now let

a be such that prf (a,cp) = 0. Hence, by Tl, j- prf (a,cp) = 0; but since

j—| prf (z,cp) = 0, R2 shows that |--] prf (a,cp) = 0. Thus, T is inconsistent,

a contradiction. Q.E.D.

Remark 1: The consistency statement Con1 expresses consistency in the following

form: if a numerical formula cp(x) is provable, then for no term t is —j cp(t)

provable. Unless T can prove that it is closed under substitution for terms —

essentially, a version of the second derivability condition -- Con1 need not

be provably equivalent in T (nor even coprovable in T) with Con.

Remark 2: This result is related to a question of Kreisel, who established

(with Takeuti) that Con1 was not provable in Takeuti's GLC augmented by a

form of the axiom of infinity, although Con is provable there. Their argu-

ments, which establish the non-derivability of Con1, involve, I am told,

certain properties particular to the GLC. Kreisel conjectured that the

phenomenon occurred in a general setting analogous to that of Theorem 3, a

setting in which hypothesis (1) of Theorem 2 is removable, as is indeed the case.

WOT utuir
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5. As is evident from previous remarks, these results have been established

in the course of answering some questions of Professor Kreisel. He read an

earlier draft of a manuscript [5] containing a form of Theorem 2 and suggested

that the result be stated in its present form, so that it is available for

application to the free variable part of cut-free systems of intuitionist

logic. It was also his suggestion to separate the purely technical results

discussed here from the issue of consistency statements which correspond to

a we11-determined intended meaning, an issue which is also treated in [5] .

At Professor Feferman1s suggestion, Theorem 1 was included. We corresponded

with him after having Theorem 2, and this correspondence raised the issue of

logics with quantifiers possessing a provability predicate pr(x). We noted

that, if the proof of Theorem 2 was adapted to a quantifier logic, and a few

easy simplifications made, Theorem 1 resulted.

While this paper seems, at first glance, to show that the first and

second derivability conditions are almost entirely irrelevant to the Godel-

Hilbert-Bernays Theorem, there is a certain interrelation which is worth

mentioning. Specifically, if one is interested in consistency statements with

the intended meaning, such as those treated in [5], it can be shown that the

first and second derivability conditions, together with commonly-occurring

logic, implies the third derivability condition.

We are most grateful to Professor Kreisel for stimulating correspondence

on the matters discussed in this paper; our reliance on this correspondence is

manifest.

We also wish to thank Professor Erwin Engeler for encouraging our research.

Carnegie-Mellon University
October 18, 1972
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