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Abstract

Utilizing an abstract Radon-N kodym theorem that we have
obtained for positive linear functionals on a B*-al gebra, we
are able to denonstrate the equival ence of two possible con-
ditions for defining a martingale in a B*-algebra. One con-
dition is in terns of the positive linear functionals on the
algebra. The other is in terns of expectation-Iike mappings
obtai ned from our Radon-N kodym theorem W then define
appropriate norns on the al gebra which are anal ogous to the
cl assi cal L2 and L1 nor ns. Two convergence theorens are
then obtained. In these proofs neither functional diagonali-
zation of the algebra nor utilization of expectation-Ilike map--

pings is required. The essential assunptions are conpactness--

l'i ke conditions on the topol ogy.
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MARTINGALES IN BANACH *-ALGEBRAS
by

Richard A. AlB, Charles A. Cheney, and Andre de Korvin

1. Introduction. Let (X,Z,u) be a probability measure space.

For every real number t suppose that St is a sub-0-field
of ¥ such that 35 c 3t whenever s < t. In addition, for

every t let X, be a p-integrable random variable such that

X is measurable with respect to & Then {x is called

t t’ t]te—:]R

a martingale if R(xtIES) = X whenever s < t, where E(xtfas)

with respect to & .

denotes the conditional expectation of X, s

In [3], it is shown that is a martingale if and only if

(%) eem

IA xtdp = JA xsdp

for all A in 38. Thus a martingale can be defined in terms
of either the conditional expectation or the integral. For
more information on martingales, see J. Doob [3] or P. Meyer [4].

In [7], H. Umegaki extended this concept to the non-commuta-
tive integration theory of W*-algebras, as developed by I. Segal [6].
In this theory the integral is replaced by a positive linear
functional on a W*¥-algebra and the sub-g-fields are replaced by
sub-Wx-algebras. Also, it is possible to construct on the
W¥-algebra a linear mapping which is very similar to the classical

expectation mapping. In this context Umegaki defined a martingale



(or M-net, in his terminology) and obtained generalizations of
several classical Ll and L2 convergence theorems for martin-
gales. (For completeness, we mention in passing that in the
appendix of [2], W. Arveson has considered a slightly different
generalization of martingales to W¥-algebras.)

In this work we extend some of Umegaki's results to Banach
*-algebras. In [l], we obtained an abstract Radon-Nikodym
theorem for positive linear functionals on a B*-algebra. The
resulting Radon-Nikodym "derivatives" are linear mappings
similar to the classical expectation mappings. In Section 3
we then prove under certain restrictions the equivalence of two
possible conditions for defining a martingale in a B¥-algebra.
One condition is in terms of the positive linear functional on
the algebra and the other is in terms of the expectation-like
mappings obtained from the abstract Radon-Nikodym theorem.

In order to make the most general definition, we define a
martingale in terms of the positive linear functional since the
existence of the expectation-like mappings involves placing
additional restrictions on the functional.

In Sections 4 and 5 we obtain two convergence theorems for
martingales. We restrict our attention to the case when the
martingale is a sequence. First we define on the algebra appro-
priate norms which are analogous to the classicai L2 and Ll
norms. We then consider when the martingale converges in each
of these norms. A feature of the proofs in these sections is

that we do not require that the functional diagonalizes any part



of the algebra. The property of diagonalization (or centrali-
zation) is important in the non-commutative integration theory
of W¥-algebras and in Umegaki's proofs. Furthermore, we never
use expectation-like mappings in these proofs, as opposed to
Umegaki's proofs which rely heavily on them. On the other
hand, we have not been able to obtain all of Umegaki's results

in the more general setting of Banach *-algebras.

2. Definitions and Preliminary Results. For the general theory

of Banach algebras, see C. Rickart (5]. For this section and
Section 3 we assume that N 1is a sub-B¥-algebra of a B*-algebra
M with identity, assuming also that N has the identity.
Throughout the paper IN will denote the positive integers.

A positive linear functional o on M is said to be
faithful on a subset S of M if whenever he S and p(h*h) = O,

then h = 0.

The functional p is said to diagonalize the subset s if
p(nm) = p(mn) for all meM and ne S,
The center of N 1is the set {xeN | xn = nx for all neN).
If q 1is a projection in the center of N, then the set
N = (gng | ne N} is a sub-*-algebra of N.

q
For reference we give a lemma and the main theorem from [1].

The proofs are omitted.

LEMMA. ILet g be a projection in the center of N. Suppose

that p 1is a positive linear functional on M which satisfies

the following conditions:




(a) p diagonalizes N

b is faithful on N
(b) p is faithful u. on Ny
(c) There is a constant %k > O such that
p (x*xy*y) < kp(x*x)p(y*y) for all xeN and yeN,

Then N forms a Hilbert algebra under the inner product

(a,b) = p(b*a).

We denote the completion of Nq in this inner product by
N . Note that ﬁ; is not necessarily contained in M. But the
multiplication and involution operator of M can be extended
to ﬁ;. Part (c) of the above lemma allows multiplication to
be extended and the involution is an isometry on Nq and so

extends to an isometry on Nq.
THEOREM 1. Suppose that p and g are as in the lemma.

et o0 be another positive linear functional on M such that

there is a constant K > O for which o(x*x) < Ko(x*x) for all

x € M. Then there is a mapping ¢ from M to ﬁ; such that

(a) o(ax) = p(ad(x)) for all aeNq and Xe M,
(b) $ is linear,

(c) 3(bx) = b¥(x) for all bequ and xe M

f o also diagonalizes N, then

(d) ¢ is adjoint preserving,

(e) the mapping & is unique in the sense that any other

mapping from M to ﬁ; with the above four properties

t ®.

is

(]
o
V]
=

This is an abstract Radon-Nikodym theorem. The mapping &

can be considered as a Radon-Nikodym derivative or abstract con-

ditional expectation.



3. Abstract Martingal es. Since the classical definition of

a martingale can be given equivalently in terns of either the
condi ti onal expectation or the integral, we consider two simlar
possi bl e defining conditions for an abstract martingal e and

then show that under suitable assunptions both conditions are
equi val ent.

Let D be a directed set and P a positive linear func-
tional on M  Suppose that for every aeD there is a positive
i near functi onal a, on M and a projection d, in the center
of N such that each triple (p,om, qa) satisfies the hypot heses

of TTieorem 1. W thus have a collection of algebras N and

da
mappings $ . For convenience we denote N by N . W shall
a Ja a
assunme that N c N . whenever a< 8 Nowlet fx J ~ be a
a"~p -a. r a aeD
set of elenents in M such that x e N . Then conditions (a)
a a

and (b) in the follow ng theorem could be thought of as defining
a

[x } to be a martingale.

FHEGREM 2L* -Suppose that whenrever— a <@ (3 +hen

() yXa) =X, ond

(2) ar(ax~) = o (ax~) for all aeN

p p oC p CX

Fhen for- a € p, —the ~fot+owng statenents are egquvatent,
() P(axa) =p(ax,) far all 2%

W=v

Proof; W prove (a) Jinplies (b) . Suppose a <" p. By (1)

we have $,(X,) =X, and $.(x ) =x
p P p p C a

From Theorem 1 we have



ca(axa) = P(aéa(xa))
for all ae‘Na. Since @a(xa) = X, we have by (a)
P(ag (x,)) = P(aQB(xB)).
But P(aQB(xB)) = OB(axB) for all a in Na since Na [ NB.

From the property of the expectation-like mappings and from (1)

we have

ca(axa) = OB(axa)'

Thus we have

UB(axB) = aB(axa) = oa(axq).
By (2), it now follows that oa(axB) = oa(axa). We also have

Oa(aXB) = p(aQa(xB)) and

ca(axa) = p(aéa(xa)) = p(axu)
for all a in Na' Thus p(axa) = p(a@a(xs)) for all a in Na'
So p(a[xa - Qa(xB)]) = 0 for all a in Nq. Since xa and
Qa(xs) are both in Na’ if a = [xa - QG(XB)]* then p(aa*) = O.
Since p is faithful on Na’ a =0 and so xa = QG(XB). Thus

(a) implies (b).

It is easily seen that the above argument can be reversed
to obtain (b) implies (a). I

We now give our definition of martingale using condition (a)

of the previous theorem.



DEFI NI TI ON, Let M be a Banach *-algebra and P a posi-

tive linear functional on M and D a directed set. For
every ae D let N be a subspace of M "Then [x ,N } is

called a martingale on M with respect to p |l

(1) N ¢ N, whenever a < p,

Q@ p
(2) Xae N, for every a,

(3) p(ax ) = p(ax,) whenever a £ p and a€ N .
aC p ac
Since M and p wll be fixed, we shall call [x ,N}
, oc oc

a martingal e.

The follow ng proposition gives sone properties of abstract

marti ngal es anal ogous to those of classical martingal es.

PROPOSITION. Let [N.}. , be an increasing sequence of

2 |EW —

*.Sub-argebra of M and let [x. } be a sequence with x. e N.

Tor every 1. Tert TS Tertne

a If {x*"N} ij3 a*nmartingale, then for every n " 25

P(ayh) =0 _if aeN .3 Al so,

* i *
px;x.) = jflp (yjyj)



(b) JE {y";l}ne’\ ij3.a _sequence such that y'  +s I ",
for every n _and_if p(aylf}) =0 for all ae N whenever

n N 2, then the seguence,

il
o
<
=

(x

IS a. martingal e.

The proofs of (b) and the first part of (a follow imedi-
ately fromthe definition of martingales. The sunmation formula
in (a) is given by a straightforward induction proof. W shall

therefore omt these proofs.

2

——

3. Convergence in L . Throughout the rest of the paper M

will denote a Banach *-algebra with identity such that
IXil = IIxX*|| for all xeM. The letter p will denote a (con-
tinuous) positive linear functional on M which is also faithful
on M.

The functional p then defines a natural inner-product on

M by (Xy) = py*x). The associated nom ||xiﬁ = y"p(X™X) is

2 .
then anal ogous to the L norm from cl assical integration theory,
W shall denote the Hilbert space conpletion of M in this

2 2
i nner-product by L (M or usually just by L .
Since ||X ]2 = ||Ix*||2 the involution operation extends to
2
an isonetry on L . Also note that although the nmultiplication
2

in M may not extend to L g it is possible to define o(xy)
for x and y in L by p(xy) = (y,x*) since the inner-
product extends to L .



For the following theorem we assume that {xn,Nn} is a
martingale on L2 such that each subspace Nn is also closed

under the involution operation.

THEOREM 3. Suppose that there exists a K > O such that

llx |, < K for all n. Then there exists a xooest such that

. 2
{x_) converges in L norm to x_ .
n = = = "0

Furthermore, if No = Uﬁ;, then [[xn}U[xoo],[ﬁ;}U{Nbo]} is

a martingale on L2.

Proof: We first establish the existence of a weak limit

X o of the sequence {xn}. We then show that {{xn}U{xoo}’{Nn]U[Nbo]}

is a martingale, which will then imply that {xn] converges in

L2 norm to x_ .
00

For every i, let Pi be the orthogonal projection on the
closed subspace ﬁ;. Then {Pi} is an increasing sequence of

projections which converges strongly to an orthogonal projection P.

(P is just the orthogonal projection on the subspace N__ = Uﬁ;).

Also, for every i, Pj - Pi is an orthogonal projection for

every J > 1i.

We now show that for 3j > i, Pixj = X, First, we observe
that it is easy to show that {xn,ﬁ;} is a martingale. We then
have that

(Pixj—xi,Pixj—xi) = (Pixj,Pixj) - (xi,Pixj)

+ (xi,xi) - (Pixj’xi)'

But the first summand is just
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since Pixjezﬁz and {xi,ﬁz] is a martingale. Similarly the

last summand is

(x,,%.) - (xj,Pixi) = (x{,%;) - (xj,xi) = O.

Thus \Pixj - x|, = 0 implies PiXy = X;.

Now for ac L2, we have for j > i
I(Xj‘xi:a)’ = I((Pj‘Pi)xj’(Pj"Pia)l < ijHzn(Pj‘Pi)anz
< KH(Pj“Pi)a“Z'

Then as j-» oo, the last expression converges to zero since
Pja and Pia converge to Pa. Thus {xi] is a weak Cauchy
sequence in the Hilbert space L2. But Hilbert space is weakly
sequentially complete and so {xi} converges weakly to some x

in L2.

oo

Now for every ac L2

|(Pxoo—xoo,a)| < [ (Px_-Px_,a)| + |(x -x_,a)|

(0.0}

where Pxn = X, . Again the last expression converges to zero

as n=» oo. Thus (Pxoo—xoo,a) = 0 and so Px00 = X and so
X is in N__.

oo oo

To show that [{Xn]U{xoo}’{Nn]U[Nbo]} is a martingale, it is

sufficient to show that p(axn) = P(axoo) for all ae.Nn, that
is, we have to show (xn,a*) = (xoo,a*) for all ace¢ Nn. But since
Nn is closed under involution, it is sufficient just to show

(xn,a) = (x__,a) for all ac Nn'

(0.0)
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Holding n and a fixed, we have

|(xn—xoo,a)| < ](xn—xm,a)l + I(xm—xoo,a) .
For m > n, (xn-xm,a) =0 and as m—> oo,[(xm-xoo,a)}converges
to zero. Thus (xn-xoo,a) = O.

Finally, we show that [Hxn—xoouz} converges to zero as

n—> oo. For this, we have

(x sX -X ) = (X ,x) - (X ).

- X + (x X - b3
n *oo **n" *oo oo’ n) ( oo’ oo) (x>

n° oo

By the martingale property just proved, we have (xn,xn) = (xoo,xn)

for all n. Since [xn] converges to X 5 weakly,[(xn,xoon con-
verges to (x_ ,Xx ) as n—>» oo. Thus {Hxn—xoonz] converges to

zZero as n > ©oo. '

5. Convergence in Ll. The proof of the convergence theorem

in this section is more difficult than in the L2 case since
we do not have a Hilbert space structure at our disposal. 1In
order to get a satisfactory theorem we assume that a compactness
condition on the unit ball of M and two uniformity conditions
on the martingale are satisfied.

1

First, we define a norm on. M similar to the L norm from

classical integration theory. For x in M, let

x|, = sup (lpxy)| + |p(yx) |].
i<
Then ||-||; is a norm on M. (Recall that ||+|| denotes the norm

in the Banach *-algebra M.) We use both p(xy) and p(yx) to

compensate for the fact that p may not diagonalize the algebra.
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We take the completion of M in this new norm and denote

it by Ll(M) or usually just by Ll. As in the L2 case, the

involution is easily seen to satisfy ||x||; = [[x*||; and so the

involution extends to an isometry on Ll.

As in the L2 case, multiplication in M may not extend

to Ll but we have the following result. Suppose xe M is

fixed. Define Fx(y) = p(yx). Then it is routine to verify
that F_ is a “-Hl—continuous linear functional on M and so
extends to a unique H-Hl—continuous linear functional on LI.

We denote this extension still by F . Thus xe M and ye:Ll
we can define p(yx) to be Fx(y). Similarly considering the

*

functional Gx(y) = p(xy), we can define p(xy) when xeM

and vyve¢ Ll. Henceforth, these values will be the definitions
of p(yx) and p(xy) when xeM and yeLl.

We now suppose that for every ne IN, Nn is a subspace of
Ll which is also closed under the involution and that UNn is
dense in Ll. Assume also that for every n, X, € M N Nn and
{xn,Nn} and {x;,Nn} are both martingales on Ll. This means
that for m > n, p(axn) = p(axm) and p(ax:) = p(ax;) for all
ac Nn. The second equation is equivalent to p(xna) = p(xma)
for all ace N since N is closed under involution.

In the following, Fn and Gn will denote respectively

the linear functionals F_ and G, , whereas “Fnul and
n n
HGnHl will denote the norms of these functionals as continuous

linear functionals on the normed space Ll.

t

One could define p(xy) as p(y*x*), but it is easily seen
that both definitions give the same result.
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We now consider the following conditions:
(A) For every sequence (cn] c {x | lx|| < 1) € M, there is

a subsequence [cnk] and a point ce¢ Ll such that

{p(c_ )} converges to n(c):
Dy

(B) Whenever [p(yn)]converges to zero, then both {p(ynxnﬂ
and {p(xnyn)]converge to zero. Moreover there is a
~ K>0 such that ||F ||; < K and |G |l; < K for all n.

Condition (A) is a type of sequential compactness condition
on the unit ball in M (which is a subset of a multiple of the
unit ball {x | qul < 1) in Ll). The statements in (B) can be
thought of as uniform convergence and boundedness conditions on
the martingale.

For the following theorem, let Moo= N N M and M.CJO =

(gNn) N M.

THEOREM 4. Suppose that (A) and (B) are satisfied. Then

there exists an element x_, in 1! such that {xn] converges

to x in the L1 norm.
o R tne norm

Except for the requirement that xooezMOO,

{{Xn}U{xoo}’{Mn]U{N%o]} satisfies all other requirements for

being a martingale on M.

Proof: TLet N = UNn. Then by assumption N is dense in

Ll. By the martingale property we have that for every vyeN,

lim p(yxn) and 1lim p(xny) both exist. For if yest, then
n n

pyx,) = p(yxn) and p(xky) = p(x_y) for all n > k. We now

show that both of these limits exist when vye¢ Ll.
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Let y Dbe in L1 and {yn} c N such that {yn} converges
to y in Ll, Then for §€> O, choose p such that Hyp-ynl <E.

Then

lp(y(x -x))| < Ip((yp—y) (x -x))| + [p(yp(xn—xm)) .

For m,n > k, where ype N, , the second term on the right hand
side is O by the martingale property. The firstterm is bounded
by ZKHyp-y“l < 2K&€. Thus [p(yxn)} is a Cauchy sequence and

converges, Similarly 1lim P(xny) exists.
n

To show that (xn] is a Ll convergent sequence, we assume

1

that it is not a L~ Cauchy sequence. Thus there is an € > O

such that for every ne IN, there are p(n) and k(n) such that

”Xp(n)_xk(n)Hl > €

for all n, that is

“ilﬁ‘gl{IP(C(Xp(n)_xk(n)))l P () X () @) [ > €
ceM

It is easy to see that the above sup is bounded from above uni-
formly in n wusing the uniform boundedness of the maps F and

n
Gn and the fact that the sup is taken over a subset of a multiple
of the unit ball ({x | Hle < 1) in 1!, Dpenote this bound by R.
We also note that p(n) = oo and k(n) — o© as n => oo.
By the sup property, for every n there is a c €M such

that |lc || <1 and
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R> | /\n/\p(n)—x-k(n)))‘ + Ip((xp(n)-xk(n)cn)l > €.

Now one of the terns in the m ddl e expression nust contain a
subsequence bounded away from 0. Since (*p,~N,) 2N §f%n Npa
are both martingal es, without |oss of generality we can assune

that the first terns are all bounded away from O:

Rs }p(cn(xp(n)_xk(n)”l > 5 > O

for all n. Thus the set of nunbers in the above inequality
contai ns a convergent subsequence and again w thout |oss of

generality we can assune that the entire sequence converges:

'P‘Cn("p(n)"‘k(n)” [=> a/ 0 (1)

as n— o00.
By (A there is a subsequence fc.ﬂn;} of (cn} and an el e-
1

such that [p(c *-c)} converges to zero and

n L .
ment ce Jin)

j () — 00 as n->o00.

, B . . I
But by (B) with Yo = c.j(” c if n k(j(i)) for some

and y. =0 otherwise, we see that {p((c, *-c¢c)x, ,.,..n)] con-

verges to zero as n— oo. Simlarly {p( (cj‘n}/-c)xp(j,m),’)}

converges to zero as n— 00 Since as n — o0,

( p(c(xptj.m)\‘, -ﬁ(tj,m},) , J)) converges to zero, we have al so

[p( Cj.(n_j Aip(_l(n) ) ""_’_\.(_i (n) ) AnCONvergingtozerowlicll contradicts (1)

1

lhus (*J is a Cuachy sequence in L and so converges to

: 1
an element in L% say, x_. |}

L]
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| he proof of the second statenment in the theoremis very
simlar to the proof for the anal ogous statenent in Theorem 3

and so we omt it. W just remark that x may not be in M
J

1 Co
but just sonewhere in the conpletion L of M
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