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Abstract

Utilizing an abstract Radon-Nikodym theorem that we have

obtained for positive linear functionals on a B*-algebra, we

are able to demonstrate the equivalence of two possible con-

ditions for defining a martingale in a B*-algebra. One con-

dition is in terms of the positive linear functionals on the

algebra. The other is in terms of expectation-like mappings

obtained from our Radon-Nikodym theorem. We then define

appropriate norms on the algebra which are analogous to the

2 1classical L and L norms. Two convergence theorems are

then obtained. In these proofs neither functional diagonali-

zation of the algebra nor utilization of expectation-like map-

pings is required. The essential assumptions are compactness-

like conditions on the topology.
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MARTINGALES IN BANACH *-ALGEBRAS

by

Richard A. Alo, Charles A. (Cheney, and Andre de Korvin

1. Introduction. Let (X,£, p) be a probability measure space.

For every real number t suppose that 3. is a sub-a-field

of £ such that 3 c 3, whenever s £ t. In addition, for

every t let x be a JLI- integrable random variable such that

x. is measurable with respect to 3.. Ihen fx } is called

a martingale if E(x. |3 ) = x whenever s <̂  t, where E(x.|3 )
X- S S u S

denotes the conditional expectation of x, with respect to 3 .

In [3], it is shown that [x, } is a martingale if and only if
t tG IR

J x td M = J xsd,i

for all A in 3 . Thus a martingale can be defined in terms
s

of either the conditional expectation or the integral. For

more information on martingales, see J. Doob [3] or P. Meyer [4].

In [7] , H. Umegaki extended this concept to the non-commuta-

tive integration theory of W*~algebras, as developed by I. Segal [6]

In this theory the integral is replaced by a positive linear

functional on a W*-aJgebra and the sub-a-fie.lds are replaced by

sub-W*-algebras. Also, it is possible to construct on the

W*-algebra a linear mapping which is very similar to the classical

expectation mapping. In this context Umegaki defined a martingale



(or M-net, in his terminology) and obtained generalizations of

1 2

several classical L and L convergence theorems for martin-

gales. (For completeness, we mention in passing that in the

appendix of [2], W. Arveson has considered a slightly different

generalization of martingales to w*-algebras.)

In this work we extend some of Umegaki's results to Banach

*-algebras. In [1], we obtained an abstract Radon-Nikodym

theorem for positive linear functionals on a B*-algebra. The

resulting Radon-Nikodym "derivatives" are linear mappings

similar to the classical expectation mappings. In Section 3

we then prove under certain restrictions the equivalence of two

possible conditions for defining a martingale in a B*-algebra.

One condition is in terms of the positive linear functional on

the algebra and the other is in terms of the expectation-like

mappings obtained from the abstract Radon-Nikodym theorem.

In order to make the most general definition, we define a

martingale in terms of the positive linear functional since the

existence of the expectation-like mappings involves placing

additional restrictions on the functional.

In Sections 4 and 5 we obtain two convergence theorems for

martingales. We restrict our attention to the case when the

martingale is a sequence. First we define on the algebra appro-
2 1

priate norms which are analogous to the classical L and L

norms. We then consider when the martingale converges in each

of these norms. A feature of the proofs in these sections is

that we do not require that the functional diagonalizes any part



of the algebra. The property of diagonalization (or centrali-

zation) is important in the non-commutative integration theory

of W*-algebras and in Umegaki's proofs. Furthermore, we never

use expectation-like mappings in these proofs, as opposed to

Utnegaki's proofs which rely heavily on them. On the other

hand, we have not been able to obtain all of Umegaki's results

in the more general setting of Banach *-algebras.

2. Definitions and Preliminary Results. For the general theory

of Banach algebras, see C. Rickart [5]. For this section and

Section 3 we assume that N is a sub-B*-algebra of a B*-algebra

M with identity, assuming also that N has the identity.

Throughout the paper ]N will denote the positive integers.

A positive linear functional o on M is said to be

faithful on a subset S of M if whenever he S and p (h*h) = 0,

then h = 0.

The functional p is said to diagonalize the subset S if

p(nm) = p (mn) for all m e M and n e S*

The center of N is the set (xeN | xn = nx for all n e N].

If q is a projection in the center of N, then the set

N = (qnq | n e N} is a sub-*-algebra of N.

For reference we give a lemma and the main theorem from [1].

The proofs are omitted.

LEMMA. Let q l>e a_ projection in the center of N. Suppose

that p d̂s â  positive linear functional on M which satisfies

the following conditions:



(a) p diagonalizes N

(b) p is faithful on N
r q

(c) The re i s a, c o n s t a n t k > 0 such t h a t

p(x*xy*y) <̂  k p ( x * x ) p (y*y) f o r a l l X € N and y € N.

Then N forms a Hilbert algebra under the inner productq

(a,b) = p(b*a) .

We denote the completion of N in this inner product by

N~. Note that N is not necessarily contained in M. But the
q q

multiplication and involution operator of M can be extended

to N . Part (c) of the above lemma allows multiplication to

be extended and the involution is an isometry on N and so

extends to an isometry on N .

THEOREM 1̂ . Suppose that o and q are as in the lemma.

Let a be another positive linear functional on M such that

there is a constant K > 0 for which a(x*x) <̂  Kp(x*x) for all

x e M. Then there is a mapping $ from M t£ N such that

(a) a (ax) =p(a$(x)) for all a e N~ and x e M,
q

(b) $ JL£ linear,

(c) $(bx) = b$(x) for all b e N and x e M.

If a also diagonalizes N, then

(d) $ JLS adjoint preserving,

(e) the mapping $ ijs unique in the sense that any other

mapping from M jtô  N with the above four properties

is equal to $.

This is an abstract Radon-Nikodym theorem. The mapping $

can be considered as a Radon-Nikodym derivative or abstract con-

ditional expectation.



3. Abstract Martingales. Since the classical definition of

a martingale can be given equivalently in terms of either the

conditional expectation or the integral, we consider two similar

possible defining conditions for an abstract martingale and

then show that under suitable assumptions both conditions are

equivalent.

Let D be a directed set and P a positive linear func-

tional on M. Suppose that for every a e D, there is a positive

linear functional a on M and a projection q in the center

of N such that each triple (p,o , q ) satisfies the hypotheses

of TTieorem 1. We thus have a collection of algebras N and
qa

mappings $ . For convenience we denote N by N . We shall
a qa a

assume that N c N • whenever a < 8. Now let fx J ~ be a
a " ~ p -a. r a aeD

set of elements in M such that x e N . Then conditions (a)
a a

and (b) in the following theorem could be thought of as defining

[x } to be a martingale.

THEOREM 2L* Suppose that whenever a <^ (3, then

(1) y x a ) = x a and

( 2 ) a f l ( a x ) = o ( a x ) f o r a l l a e N .
p p OC p CX

Then for a <£. p, the following statements are equivalent;

(a) P(axa) =p(axp) for all a e N
a

<b) W = v
Proof; We prove (a) implies (b) . Suppose a <^ p. By (1)

we have $o (xo) = xo and $ (x ) = x . From Theorem 1 we have
p p p p CL OL



oa(axo) = a a

for all a. e N . Since $ (x ) = x , we have by (a)
a a a ex

P(a* (x )) = P(a* (x )).
OL U P P

But p(a$Q(xQ)) = aQ(ax ) for all a in N since N c N .
p p p p ex up

From the property of the expectation-like mappings and from (1)

we have

a a ( a V = °p(axo)

Thus we have

° 0 ( a V = °°p(axa) = aa{axo)-

By (2), it now follows that a (ax ) = a (ax ) . We also have
(X p OC OL

a a ( a V = P ( a la (V ) and

aa ( a xa } = p ( a l a ( x a ) ) = p ( a x a }

f o r a l l a i n N . I h u s p ( a x ) = p ( a $ ( x ) ) f o r a l l a i n N .
a r a a p a

So p ( a [ x - $ ( x o ) ] ) = 0 f o r a l l a i n N . S i n c e x and
OC OC p (X OC

$ (xQ) are both in N , if a = [x̂  - { (xQ)]^ then p(aa*) = 0.
OC p CX OC OC p
Since p is faithful on N 9 a = 0 and so x = $ (xQ) . 1*hus

OC OC OC p

(a) implies (b).

It is easily seen that the above argument can be reversed

to obtain (b) implies (a). |

We now give our definition of martingale using condition (a)

of the previous theorem.



DEFINITION, Let M be a Banach *-algebra and P a posi-

tive linear functional on M and D a directed set. For

every ae D let N be a subspace of M. "Then [x ,N } is

called a martingale on M with respect to p jlf

(1) N c N whenever a <__ p,
QC p

(2) xa e Na for every a,

(3) p(ax ) = p(ax ) whenever a £ p and a€ N .
OC p OC

Since M and p will be fixed, we shall call [x ,N } just
OC OC

a martingale.

The following proposition gives some properties of abstract

martingales analogous to those of classical martingales.

PROPOSITION. Let [N.}. „ be an increasing sequence of
2. IE UN "——

* - sub- a lgebr a of M and let [x. } be a sequence with x. e N.

for every i. Let us define

and

y1 =

yn = xn - xn-l

for all n ;> 2.

(a) If {x^,N^} ij3 a^ martingale, then for every n ̂  25

P(ayn) =0 _Lf a e N .. Also,n — n-1

for all i ^ 1.
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(b) JTf {y? } ^ ij3 a_ sequence such that y' ±SL ISL N
n

for every n and if p(ayf) =0 for a l l a e N - whenever- n n-±

n ^ 2, then the sequence,

is a. martingale.

The proofs of (b) and the first part of (a) follow immedi-

ately from the definition of martingales. The summation formula

in (a) is given by a straightforward induction proof. We shall

therefore omit these proofs.

2

3. Convergence in L . Throughout the rest of the paper M

will denote a Banach *-algebra with identity such that

||xj| = ||x*|| for a l l x e M. The let ter p will denote a (con-

tinuous) positive linear functional on M which is also faithful

on M.

The functional p then defines a natural inner-product on

M by (x,y) = p (y*x) . The associated norm ||x|L = y^p(x^x) is
2

then analogous to the L norm from classical integration theory,
We shall denote the Hilbert space completion of M in this

2 2
inner-product by L (M) or usually just by L .

Since ||x||2 = ||x*||2, the involution operation extends to
2

an isometry on L . Also note that although the multiplication
2

in M may not extend to L 9 it is possible to define o(xy)
2

for x and y in L by p(xy) = (y,x*) since the inner-
2

product extends to L .



For the following theorem we assume that fx 5N } is a

2
martingale on L such that each subspace N is also closed
under the involution operation.

THEOREM 3.' Suppose that there exists a. K > 0 such that

llx IL < K for all n. Then there exists a x € L such that
2

fx } converges in L norm to xn — — — oo

Furthermore, i f N^ = llsT, then {f xnl Ufx^ } , {N̂ "} UfN^ } j is.
2

a. martingale on L .

Proof; We first establish the existence of a weak limit

x of the seguence fx ). We then show that {{x }U{x },{N )U{N }}

is a martingale, which will then imply that {x } converges in

L norm to x
oo

For every i, let P. be the orthogonal projection on the

closed subspace N.. Then (P.) is an increasing seguence of

projections which converges strongly to an orthogonal projection P.

(P is just the orthogonal projection on the subspace N = \jW~) •

Also, for every i, P. - P. is an orthogonal projection for

every j > i.

We now show that for j > i5 p.x. = x.. First, we observe

that it is easy to show that (x ,N } is a martingale. We then

have that

= (P^.^x.) - (x^P.x.)

But the first suiranand is just
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^PjXj) - (xi,Pixj) = 0

since P.x. e N T and {X.,N7} is a martingale. Similarly the

last summand is

(xi,xi) - (xj,Pixi) = (xi,xi) - (x^x^ = 0.

Thus ||P-x. - x.||2 = 0 implies P.x. = x.

2
Now for a e L , we have for j > l

Then as j-^ oo , the last expression converges to zero since

P.a and P.a converge to Pa. Thus (x.) is a weak Cauchy
2

sequence in the Hilbert space L . But Hilbert space is weakly

sequentially complete and so [x.} converges weakly to some x

in L2.

2
Now for every a € L

I ( P xco- xco' a ) I ̂  I ( P xco~ P xn' a ) I + I ( xn~ xoo' a ) '

where Px = x . Again the last expression converges to zero

as n-> oo. Thus (Px̂  -x̂  ,a) = 0 and so Px = x^ and so
oo oo oo OD

xoo i s i n N oo-

To show t h a t {f * n ) U ( x ^ } , {W^} UfN^ }} i s a m a r t i n g a l e , i t i s

s u f f i c i e n t t o show t h a t p ( a x ) = P ( a x ) f o r a l l a e N , t h a t
n oo n

is, we have to show (x ,a*) = (x ,a*) for all a € N . But since

N is closed under involution, it is sufficient just to show

(xn,a) = ( x ^ a ) for all a e Nn.
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Holding n and a fixed, we have

I ( x n - x o o ' a ) I *• I ( xn- xm' a ) I + I (xttfxoo'a) I '

For m > n, (x^x^.a) = 0 and as m —> oo, ((x
m""x

oo ^
a)} converges

to zero. Thus (x - x
o o > a ) = 0.

Finally, we show that [\\x -x |L} converges to zero as

n—^ oo . For t h i s , we have

(xn-xoo'xn-xcx5
) = ( xn' xn } " ^ c o ' V + ^co^co* " ( xn'Xoo ) '

By the martingale property jus t proved, we have (x ,x ) = (x ,x )

for a l l n. Since {x } converges to x weakly, {(x ,x )} con-

verges to (x ,x ) as n—> oo. Tfrus {||x -x |L} converges to

oo oo n oo ^

zero as n > oo. |

5. Convergence in L . T*he proof of the convergence theorem
2

in this section is more difficult than in the L case since

we do not have a Hilbert space structure at our disposal. In

order to get a satisfactory theorem we assume that a compactness

condition on the unit ball of M and two uniformity conditions

on the martingale are satisfied.

First, we define a norm on M similar to the L norm from

classical integration theory. For x in M, let

Tiien ||'|L is a norm on M. (Recall that \\*\\ denotes the norm

in the Banach *-algebra M.) We use both p (xy) and p (yx) to

compensate for the fact that p may not diagonalize the algebra.
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We take the completion of M in this new norm and denote

1 1 2

it by L (M) or usually just by L • As in the L case, the

involution is easily seen to satisfy ||x|L = ||x*|L and so the

involution extends to an isometry on L .
2

As in the L case, multiplication in M may not extend

to L but we have the following result. Suppose x e M is

fixed. Define F (y) = o(yx). Then it is routine to verify

that F is a \\ • |L- continuous linear functional on M and so

extends to a unique || • jL -continuous linear functional on L .

We denote this extension still by F . Thus x e M and y e L

we can define p(yx) to be F (y). Similarly considering the

functional G (y) = p(xy), we can define p(xy) when x e M

and y e L . Henceforth, these values will be the definitions

of p(yx) and p (xy) when x e M and y e L .

We now suppose that for every n e I , N is a subspace of

L which is also closed under the involution and that UN is

n

dense in L . Assume also that for every n, x e M 0 N and

*• 1

[x , N } and fx ,N } are both martingales on L . This means

that for m > n, p(ax ) = p(ax ) and n(ax ) = o(ax ) for all

a. € N . The second equation is equivalent to p(x a) = p(x a)

for all a € N since N is closed under involution.

In the following, F and G will denote respectively

the linear functionals F and G , whereas ||p II1 and
n xn n x

||G IL will denote the norms of these functionals as continuous

linear functionals on the normed space L •

One could define p(xy) as p(y*x*), but it is easily seen
that both definitions give the same result.
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We now consider the following conditions:

(A) For every sequence (c } c [x | ||x|| <̂  1} ci M, there is

a subsequence (c ] and a point c c L such that

{p(c )} converges to o(c) 7

(B) Whenever {p(y )) converges to zero, then both (p (y x )}

and {p(x y )} converge to zero. Moreover there is a

K > 0 such that \\^n\\1 < K and H G J ^ < K for all n.

Condition (A) is a type of sequential compactness condition

on the unit ball in M (which is a subset of a multiple of the

unit ball {x | ||x|L £ 1} in L ) . The statements in (B) can be

thought of as uniform convergence and boundedness conditions on

the martingale.

For the following theorem, let M = N 0 M and M =
n n 00

(UN ) 0 M.
n n

THEOREM 4k Suppose that (A) and (B) are satisfied. Then

there exists an element x in L such that [x } converges

to x in the L norm.

Except for the requirement that x e M ,

{{x^}U{x },{M }U{M }} satisfies all other requirements for
n 00 n 00 - — — - — - - — ——- _ _ . ------i--_-«»-__̂ -«_.

being â  martingale on M.

Proof: Let N = UN . Then by assumption N is dense in

L . By the martingale property we have that for every yeN,

lim p (yx ) and lim p (x y) both exist. For if yeN,, then
n n n n K

p(yxk) = p(yxn) and pix^y) = p(xny) for all n > k. We now

show that both of these limits exist when y e L .
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Let y be in L and {y } e N such that [y } converges

to y in L . Then for g > 0, choose p such that ||y -y|U <£

Then

ip(y(xn-xin))| ̂  lp((yp-y)(xn-V)l + I P V W * ' -

For m,n > k, where y e N. , the second terra on the r i g h t hand
P K

side is 0 by the martingale property. The first term is bounded

by 2K||y -y|L < 2K £. . Thus [p (yx ) } is a Cauchy sequence and

converges. Similarly lim P (x y) exists.
n

To show that fx ) is a L convergent sequence, we assume
that it is not a L Cauchy sequence. Thus there is an £ > 0

such that for every ne M , there are p(n) and k(n) such that

xp(n)

for all n, that is

C G M

It is easy to see that the above sup is bounded from above uni-

formly in n using the uniform boundedness of the maps F and

G and the fact that the sup is taken over a subset of a multiple

of the unit ball [x | ||x|| 1 £ 1} in L . Denote this bound by R.

We also note that p(n) —^ oo and k(n) —^ oo as n -> oo .

By the sup property, for every n there is a c e M such

that ||cn(J £ 1 and
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R> l^n^

Now one of the terms in the middle expression must contain a

subsequence bounded away from 0. Since (xn^
N
n)

 a n d fXn'Nn^

are both martingales, without loss of generality we can assume

that the first terms are all bounded away from 0:

R>

for all n. Thus the set of numbers in the above inequality

contains a convergent subsequence and again without loss of

generality we can assume that the entire sequence converges:

a / 0 (1)

as n —^ oo

By (A) there is a subsequence fc., *} of (c } and an ele-

ment c e L such that [p(c., *-c)} converges to zero and

j (n) — > oo as n -> oo .

But by (B) with y = c.,.* - c if n = k(j(i)) for some i

and y = 0 otherwise, we see that { p ( ( c , *-c)x, ,., n ) ] con-

verges to zero as n —> oo . Similarly { p ( (c ., v-c)x ,., ,,)}

converges to zero as n —> oo • Since as n —> oo ,

( p (c (x , . , v , -x, , . , , J )) converges to zero, we have also

[ p (c.,j ̂ xp(i (n) ) ""^(i (n) ) ̂ ^ c o n v e r g i n g to z e r o wllicl1 contradicts (1)

Ihus (x
nJ is a Cuachy sequence in L and so converges to

an element in L , say, x
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Ihe proof of the second statement in the theorem is very

similar to the proof for the analogous statement in Theorem 3

and so we omit it. We just remark that x may not be in M,
J co

but just somewhere in the completion L of M.
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