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§1. 1Introduction.

In this paper we show that every function of a complete
metric space into a separable metric space has a continuous
restriction to some dense subset of its domain. The original
objective was to show that this theorem is true for functions
from the real line into the real line, and for functions of

the Euclidean m-space into the Euclidean n-space.

The proof of this theorem depends on the Baire category
theorem [3], and for the sake of convenience some corollaries

of this theorem are listed in section 2.

The main part of the proof will be found in section 3,
where we construct dense subsets for arbitrary functions from

complete metric spaces into the Cantor set C.

In the last section we prove the main theorem and list

some corollaries and extensions.

The question discussed in this paper originated from

Problem 9 in the problem book of the Department of Mathematics

of Carnegie-Mellon University.



§2. ©Subsets of the first category.

2.1. Proposition. Let A be a subset of a space X. Then

the collection of all points of A for which every neighborhood

containg interjior points of X\A is nowhere dense in X.

(In formula: A N AS°"  is nowhere dense in X.)

Proof. From the calculus of open sets in a topological
—

space it follows that

(AﬂACO—)-O - (A— ﬂACO-)O — A—O n ACO-—O - A"O n A—OCO — g

CcO-

Thus, by definition, A N A is nowhere dense.

2.2. Notation Conventions. Let A be a subset of a space

X. We define t(A) to be the set of all points of A which
have a neighborhood which intersects A in a first category
collection of X. We define p(A) to be the set of all points
g of A such that in every neighborhood Ué of g there
exist an open subset O such that O N A is a first category
collection in X.

The set A\p(A) will be denoted by s(A).
If G is a collection of subsets of X, then P(Q) = U{p(d)| AcG)

and S(G) = X\ P(G).

Remark. If ges(A) then there exist a neighborhood UqA

of g such that every open subset of UqA has a second category

intersection with A.



2.3. Proposition. Let X _be a metrizable space. Then t(A)

is a first category subset of X for each subset A of X.

Proof. From the Bing metrization theorem [1l] we can find
@
a o-discrete base B for the space X. Let R = U B >
n=1

where each ﬁn is a discrete collection. Let ﬁn* be the
subcollection of all members of B, which have a first category

@
intersection with A. Let Beﬁn*. Then A N B = U Nk(B) in

k=1
which every Nk is nowhere dense. But now we can prove that
for every ke¢IN the collection [Nk(B)!Beﬁn*} is nowhere
dense. Since the collection ﬁn* is discrete and Nk(B) C B

we have

(o]

(UlN, (B) [BeB_*)7° = ul(N,_(8))7°) = &
since every Nk is nowhere dense.
@ @ o
Now t(A) = (U B *) NA= U U (UN(B)|BeB_*}) and
n=1 n=1 k=1

thus t(A) 1is a countable union of nowhere dense subsets, which

was required.

2.4. Proposition. Let X be a metrizable space. Then

for every subset A of X the subset p(a) i f the first

category iﬂ X.



Proof. A point g of A is a nmenber of p(A) either
when q e t(A) or when every neighborhood of g contains an
open subset whose intersection with A is contained in t(A).
Proposition 2.1 applied to At(A inplies that p(A\t(A
is nowhere dense. Now it follows from 2.3 that p(A) is a

first category subset of X

2.5. Proposition. 1f G j-s ja_countable famly of subsets

of ci _conplete netric space X, then P(G is” a _subset of the

first category in X

Proof. Follows imediately from 2.4.

2.6. Proposition. Let X be a. conplete netric space and
o))

let G= U Gn be_a, countable collection of finite covers of
n=1

X Let qge S(G. _Then for every n _and for every A such

that g e Ae G, there exist a neighborhood Waq; A o ¢

such that S(G O A has ji _second category intersection with

every non enpty open subset 0 o0f U(q, A .

Proof. Let gqe S(G). Since for every n the collection

Gr\1 covers X we have that geA for sone A e. Gn. It is clear
that q G s(A), and fromremark 2.2 it follows that q has a

nei ghborhood U(g*A) such that every open subset 0 cz W g*A)

has a second category intersection with A  Since G is countable,
P(G is a subset of the first category and hence (OHA)\P(G is

a second category subset of X  This finishes the proof.



(¥)}

§3. Mappings into the Cantor Set.

3.1. IL.emma. Let X be a complete metric space and let £

be a mapping from X into the Cantor set C. Then there exists

———

a subset S, of X such that

(1) So has a second category intersection with every

non-empty open set in X.

(1i) If q ¢ S, and {Wh} is a neighborhood base at

£(q) then there exists a neighborhood base (u, ) of g such

1

that for each n, S0 N f “[W.] has a second category intersec-

n
tion with every open subset of Un'

Proof. Consider C as the product of countably many

copies of the discrete pair {0,1}. Let my: C —> (0,1} Dbe
the canonical projection of C onto the product of the first i
coordinate spaces. Define fi =T, 0 f. Then fi is a function

from X into {O,l}1 and defines a natural finite partition

of X:

-1 i
G; = (£ | vy e {0,1}7].

For the sake of completeness we define the cover Go = {AO} = (X},

. -1
and we define An(q) = fn (fn(q)) € Gn for all g € X; neNlN.

@

Now let G = U Gn and let So be S(G). Then it follows
n=0

from 2.5 and the Baire category theorem that So satisfies

(i) . In order to prove (ii), we define Wh = W;l o fn(q) for



an arbitrary q e Sq. (i.e. W consists of all points of
whi ch have the first n coordinates equal to the first n
coordinates of f(q)). Wen n runs through the natural

nunbers this is a local base of f(qQq).

Si nce An(q) :ffl[VI\{] e Gca it follows from 2.6

that there exists a U(qg,A,(q)) such that Sg n* (q "2s?

second category intersection wth every open subset of U(qg™A.(Q)).

When we choose an open local base [U,} at g such that
Unc U(q,An(q)) then the collection {Uj satisfies (ii).
It is obvious that (ii) holds for every local base at f(Q)

as soon as it is true for the particular local base t"}*

3.2. Lemma. Let X be ja conplete netric space, f a_

function from X into C and S, ;a_subset of X which satisfies

C

(i) and (ii) |jof Lenmma 3.1. Let B be open in X and |et

geB n S . Then t here exi st a cl osed nei ghborhood B of ¢

am ja"sett & ¢ B0 ¥ ‘s*crc‘h‘*‘t‘fra'r'
(i) ge 8 —amd f|s9 T3 TomtTnoous at q.

(i) S ~ras a-secomrmd Tategory i ntersection vvlth'every'

ﬂWTE'ﬂ'pTV‘U‘p‘ETI“S‘Ub’S’E‘l‘"OT‘ B.
(i) Sq satisfies condition (ii) df Lemma 3.1.

(ivy B' ¢ B and So O (B\B = Sgn (B\B"). (i.e. no

poi nt of the boundary of B can be ai cluster point of the set

(SoPB)\ S. ) .



Proof: Let B' be an arbitrary closed neighborhood of ¢

which is contained in B. Let {Wh} be a neighborhood base

at £(g), and let {Un} be a neighborhood base of g such

1

that for each n the set SO n £ (Wn) has a second category

intersection with every open subset of U (cf. Lemma 3.1).
Since X is regular and first countable we can find a neighbor-

hood base {Vn} of g such that for every n we have:

v =v.°%;: v

- U L i
n n el c Vn and Vn < U N B Next we are going to

replace S_ by s N £1

o [Wh] on Vn; but we must do it

carefully in order to meet all requirements. We define:

aD
Sq =B N 5o N I ngo{An(q)\ Vo4 J1 U {al. (N.B.A_(q) = X).

Now Sq is s N f_l(Wn) if we restrict our attention to

.

Vi \Vn+l' Outside v, we have Sy and inside all v, we
only have (.

In order to check (i) we take an arbitrary neighborhood
of f(g). This neighborhood contains some Wh, and now Vn n Sq
is a neighborhood of g with respect to Sq, which is mapped

entirely into the required neighborhood of £(q).

In order to check condition (ii) we suppose that O is a
non-empty open subset of B. If 0 = {gq}] then 0 N Sq is
clearly second category. If O # (g} then there exists a
pPcO such that p # g. Let m be the least number such that

p £ V;. Then O\V; is a neighborhood of p which intersects



v (N.B. We define Vo = X). It follows from 3.1 (ii)

m-1°
that 0 n (Vm_l\v;) has a second category intersection with
Amrl(q) n So. We conclude that O has a second category

intersection with Sq.

In order to check (iii), let p ¢ Sq. If p =g then
the preceding part shows that the collection [Vn} meets all
requirements. If p # g then there exists an m such that

p € Vm\vm+l' Now fm(p) = fm(q). We use as a neighborhood

base for p the collection {Un(p) N (Um(p)\vm+l

)}. This is a
subcollection of the {Un] at p in Lemma 3.1, and it follows
from this lemma that it inherits the required properties from

3.1. (ii).

Condition (iv) 1is an immediate consequence of the defini-

tions.

3.3. Lemma. Let X be complete metric, f: X —> C a

mapping from X into the Cantor set; let SO satisfy (i)

and (ii) of Lemma 3.1. Let ®8 be a discrete collection of

non-empty open subsets of X and let o: 8 —> S, be a choice
function which assigns to every BeBf a point o(B) ¢ So N B.

Then there exists a subset S £ S0 such that:

(i) o[B] < s.
(ii) f|s is continuous at every point of o[B].
(iii) s satisifes (i) and (ii) of Lemma 3.1.

(iv) So\ UB = S\UR.



Proof: We define S from the Sq of the previous lemma:
S = U {Sq]q = ¢(B): BeB} U (So\Uﬁ).

Next we will check the conditions.

(1) For every ¢ we have (g € Sq € So and hence o[B] © S c So'
(ii) The continuity on o[R8] follows from the continuity in
every (.

(iii) Let O Dbe open in X. If O intersects some B then
3.1. (i) follows from 3.2 (ii). If O is non-empty and inter-
sects no B then 3.1. (i) follows from 3.1. (i) for So'
If peB for some BefR then 3.1 (ii) follows from 3.2 (iii).
If p £ U8B then there exists an open neighborhood O of p
which intersects only one B. If we take O\B' then we have
an open neighborhood of p in which S coincides with So

and now 3.1 (ii) follows immediately.

(iv) Obvious since Sq < B for every B cC 8.

3.4. Theorem. Let X be a complete metric space and let f

be an arbitrary mapping from X into the Cantor set C. Then

there exists a dense subset D of X such that £|D is con-

tinuous.

Proof: ILet f = U ﬁn be a o¢-discrete collection of open

sets of X which constitute a base for the topology. We define

our subset D Dby induction.



10

Start. Let SO be the subset defined in Lemma 3.1.

Let ﬁl* be the collection of all non-empty members of @l.

Let oy: Ry* ——-—>So be any choice function on Bl* and let

S be a subset which satisfies 3.3 (i), (ii), (iii) and (iv).

1
Define Dl = ml[ﬁl].

Step. If for every me¢WN, m < n the sets B8 ¥, Sm, and Dm

are defined, then we define the collection ﬁn* by:

B % = {B|Beﬁn; B#g; BND =g for all m< n}.

. - . . . .
Pt ﬁn j>Sn_l is just a choice function and Sn is a subset
of Sn—l which can be defined by Lemma 3.3 and which satisfies
3.3 (i), (ii), (iii) and (iv) with respect to ﬁn*, Sn—l
. _ %
and P - We define Dn mn[ﬁn ].
@
When we define D = Dn’ then it follows from 3.3(i)
n=1

and (iv) that D cC Sn for every n. Now it follows from

3.3(ii) that, whenever p ¢ Dn’ the function f|D is continuous
at p, and therefore f 1is continuous on D. Since every non-
empty member of f# contains at least one member of D it follows

that D is dense. This finishes the proof.
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84. Concl usi ons,

4.1. Theorem |If f As an arbitrary mapping froma. conplete

netric space X into ja_separable netric space Y then there exists

<L dense_subset D o> X _such that f |D JUs continuous.

Proof; The closed unit interval is a continuous inmage of

the Cantor set, and hence the Hilbert cube is also a continuous

i mge of the countable product of Cantor sets, and this is again
the Cantor set. Let c¢p be a continuous function of the Cantor
set C onto the Hilbert cube H Let 77 be an arbitrary func-
tion from H into C such that cp © 77 is the identity on H
(In fact, 77 can be seen as the conposition of cﬁl with a

choi ce function on the subsets of " 1 ). Let g be an arbitrary

function from X into H Then 77 o g is a function from X

into C Let D be the dense subset of X constructed in 3.4.
g

Then 77, g/D is continuous. Since cp is continuous,

cpor?og| D = g|D is continuous. Since Y is separable netric,
it is homeonorphic with a subset of H Let O be the horreti-
norphism tyz Y___>H. If we put g =0, f then since if

is 1-1 and contihnuous we find that if . g 1is continuous on

D’ and hence ty o $ « f =f is continuous on DY,

4.2, Corollaries. Every function fromthe real line into
the real line can be restricted to sone dense subset such that

the restriction is conti nuous.
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Every function from the Euclidean n-space into the Eucli-
dean m-space can be restricted to some dense subset such that

the restriction is continuous.

4.3. Proposition. (a) If a space Z can be mapped one

to one onto a complete metric space such that the inverse images

f dense subsets are dense, then every mapping from Z into a

—

separable metric space Y can be restricted to some dense sub-

set of Z such that the restriction is continuous.

(b) If X is a dense subspace of a space X* and every

function from X into Y can be restricted to some dense

subset of X such that the restriction is continuous, then the

same is true for mappings from X* into Y.

Proof: Both parts are obvious.

4.4. Corollaries: If f is a function from X into Y

then there exist a dense subset D of X such that £|D is
continuous when Y 1is separable metric and X meets one of

the following requirements:
(1) X 1is the Sorgenfrei half-open interval space.
(ii) X is any compactification of a complete metric space.

(iii) X is some set of ordinals.
(iv) X is the Urysohn space. (i.e. the lexicographical
product of the closed interval [0,1] with the two point set

{0,1}.



(v) Every point of X has a completely metrizable
neighborhood
(vi) X 1is a topological manifold.

Proof: (v) The proof is carried out by transfinite induc-

tion. Well-order the points of X. To the first point we assign
a complete metric neighborhood. For every other point which is
not in the closure of all earlier-assigned neighborhoods we
assign a neighborhood which is complete metric and which does
not intersect any of the previously assigned neighborhoods. The
union of these neighborhoods is a dense complete metric subspace

of X, and we can apply 4.3(b).

The parts (i), (ii), (iii), (iv) and (vi) are left to

the reader.

4.5. Proposition. (a) A topological space X 1is a Baire-

—

space if and only if every function f from X into a countable

T2—§pace can be restricted t

——

2 dense subset of X, such that

the restriction is continuous.

(b) A topological space X is scattered if and only if

every function f defined on some subset Y of X with arbi-

trary range, can be restricted to some dense subset of Y such

that the restriction is continuous.

T Uppugy
ONETE REL10 U pepsyry
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Remark. During the preparation of this paper | discovered

that sone of the main results had been published in [2].
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