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§1. Introduction.

In this paper we show that every function of a complete

metric space into a separable metric space has a continuous

restriction to some dense subset of its domain. The original

objective was to show that this theorem is true for functions

from the real line into the real line, and for functions of

the Euclidean m-space into the Euclidean n-space.

The proof of this theorem depends on the Baire category

theorem [3]y and for the sake of convenience some corollaries

of this theorem are listed in section 2.

The main part of the proof will be found in section 3,

where we construct dense subsets for arbitrary functions from

complete metric spaces into the Cantor set C.

In the last section we prove the main theorem and list

some corollaries and extensions.

The question discussed in this paper originated from

Problem 9 in the problem book of the Department of Mathematics

of Carnegie-MelIon University.



§2. Subsets of the first category.

2.1. Proposition. Let A be a. subset of a. space X. Then

the collection of all points of A for which every neiqhborhood

contains interior points of X\A jjs nowhere dense in X.

CO—
(In formula: A D A is nowhere dense in X.)

Proof. From the calculus of open sets in a topological

space it follows that

(A H A 0 0 " ) " 0 c (A" H A 0 0 " ) 0 = A"° n A 0 0" 0 = A~° fl A" 0 0 0 = 0

Thus,, by definition, A P A is nowhere dense.

2.2. Notation Conventions. Let A be a subset of a space

X. We define t(A) to be the set of all points of A which

have a neighborhood which intersects A in a first category

collection of X. We define p(A) to be the set of all points

q of A such that in every neighborhood U of q there

exist an open subset 0 such that 0 0 A is a first category

collection in X.

The set A\p(A) will be denoted by s(A).

If C is a collection of subsets of X, then P(G) = U{p(A)

and S(G) = X\P(G).

Remark. If qes(A) then there exist a neighborhood U
qA

of q such that every open subset of U has a second category

intersection with A.



2.3. Proposition. Let X be a. metrizable space. Then t(A)

is a first category subset of X for each subset A of X.

Proof. From the Bing metrization theorem [1] we can find
oo

a a-discrete base ft for the space X. Let ft = U ft ,
n=l n

where each ft is a discrete collection. Let ft * be then n

subcollection of all members of ft which have a first category
CD

intersection with A. Let Befe *. Then A fl B = U N, (B) in
n k=l k

which every NL is nowhere dense. But now we can prove that

for every ke3N the collection U {NV(B)|BGB *} is nowhere
K. n

dense. Since the collection ft * is discrete and N, (B) c B
n K:

we have

(U{Nk(B) |Bt"Bn*)"° = U{(Nk(B))"°} = 0

since every N, is nowhere dense.

00 OD OD

Now t(A) = ( U B *) n A = U U (U{N, (B) |Be(B *}) and
n=l n n=l k=l k n

thus t(A) is a countable union of nowhere dense subsets, which

was required.

2.4. Proposition. Let X be a metrizable space. Then

for every subset A of: X the subset p(A) _is of: the first

category in X.



Proof. A point q of A is a member of p(A) either

when q e t(A) or when every neighborhood of q contains an

open subset whose intersection with A is contained in t(A).

Proposition 2.1 applied to A\t(A) implies that p(A)\t(A)

is nowhere dense. Now it follows from 2.3 that p(A) is a

first category subset of X.

2.5. Proposition. If G j-js ja countable family of subsets

of ci complete metric space X, then P(G) is^ a_ subset of the

first category in X.

Proof. Follows immediately from 2.4.

2.6. Proposition. Let X be a. complete metric space and
CD

let G = U G be a, countable collection of finite covers of

X. Let q e S(G). Then for every n and for every A such

that q e A e G there exist a_ neighborhood U(qJ,A) oj: q

such that S (G) 0 A has ji second category intersection with

every non empty open subset 0 o£ U(q,A) .

Proof. Let q e S(G). Since for every n the collection

G^ covers X we have that qeA for some A e. G . It is clearn n

that q G s(A), and from remark 2.2 it follows that q has a

neighborhood U(q^A) such that every open subset 0 cz U(q^A)

has a second category intersection with A. Since G is countable,

P(G) is a subset of the first category and hence (OHA)\P(G) is

a second category subset of X. This finishes the proof.



§3. Mappings into the Cantor Set.

3.1. Lemma. Let X be a. complete metric space and let f

be a. mapping from X into the Cantor set C. Then there exists

ii subset S jof X such that

(i) S has ,a second category intersection with every

non-empty open set in X.

(ii) Ijf q e S and {W } jj3 â  neighborhood base at

f(q) then there exists a neighborhood base {u } of q such
_ _ _ _ _ , ' • J - — — — — — — — — — — — — — — j Q L - — — — — —

that for each n, S 0 f~ [W ] has a. second category intersec-

tion with every open subset of u .
: " " ' • —-— T±

Proof. Consider C as the product of countably many

copies of the discrete pair {0,1}. Let r, . : C > {O^l}1 be

the canonical projection of C onto the product of the first i

coordinate spaces. Define f. = IT. O f. Then f. is a function

from X into {O^l}1 and defines a natural finite partition

of X:

G i = ffi1 I 1

For the sake of completeness we define the cover G = {A } =

and we define A n (q) = f~ (fn(q)) e Gn for all q e X; neHN .

OD

Now let G = U Gn and let SQ be S(G). Then it follows
n=0

from 2.5 and the Baire category theorem that S satisfies

(i) . In order to prove (ii), we define W = IT"1 O f (q) for



an arbitrary q e SQ. (i.e. Wn consists of all points of C

which have the first n coordinates equal to the first n

coordinates of f(q)). When n runs through the natural

numbers this is a local base of f(q).

Since A (q) = ff [W ] e Gn c a it follows from 2.6

that there exists a U(q,An(q)) such that SQ n
 A
n (q)

 h a s a

second category intersection with every open subset of U(q^An(q)).

When we choose an open local base [U } at q such that

U c U(q,A (q)) then the collection {U^j satisfies (ii).

It is obvious that (ii) holds for every local base at f(q)

as soon as it is true for the particular local base tw
n}*

3.2. Lemma. Let X be ja complete metric space, f a_

function from X into C, and S ;a subset of X which satisfies

(i) and (ii) jof Lemma 3.1. Let B be open in X, and let

qeB n S . Then there exist a closed neighborhood B! of q
Q j.i. — — — — — , — " — — — — — — ' '

and ja set S c B 0 S such that

(i) q e S and f|s is continuous at q.

(ii) S has a second category intersection with every
q - , . - - - _ _ _ - _ _ _ •

non-empty open subset of B.
(iii) S satisfies condition (ii) ojf Lemma 3.1.

(iv) B1 c B and SQ 0 (B\B
T) = S n (B\Bf). (i.e. no

point of the boundary of B can be ai cluster point of the set

(SoPB)\Sq.).



Proof; Let B! be an arbitrary closed neighborhood of q

which is contained in B. Let {Wn} be a neighborhood base

at f(q), and let {U } be a neighborhood base of q such

that for each n the set SQ n f" (Wn) has a second category

intersection with every open subset of U • (cf. Lemma 3.1).

Since X is regular and first countable we can find a neighbor-

hood base {V } of q such that for every n we have:

V = V~~°7 V~ T c v and V c U 0 B T . Next we are going ton n n+1 n n n

replace S by S 0 f~" [W ] on V~ ; but we must do it•̂  o o n n

carefully in order to meet all requirements. We define:

Sq = B 0 S o0 [ U (An(q)\ V^+1}] U {q}. (N.B.AQ(q) = X)q B 0 S o0 [ U (An(q)\ V^+1}] U {q}. (N.B.AQ

Now S is S 0 f~ (W ) if we restrict our attention to

V*" \V~ , n . Outside vZ we have S , and inside all V wen n+1 1 o n

only have q.

In order to check (i) we take an arbitrary neighborhood

of f(q). This neighborhood contains some W . and now V O S
n n q

is a neighborhood of q with respect to S , which is mapped

entirely into the required neighborhood of f(q).

In order to check condition (ii) we suppose that 0 is a

non-empty open subset of B. If 0 = {q} then 0 n S is

m

clearly second category. If 0 ^ {q} then there exists a

peO such that p ^ q. Let m be the least number such that

p ^ Vm. Then 0\V^ is a neighborhood of p which intersects
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V n. (N.B. We define V = X) . It follows from 3.1 (ii)
m-1 o

that 0 n (V i\V~) has a second category intersection with

A (q) n S • We conclude that 0 has a second category
m*~ 1 o

intersection with S .
q

In order to check (iii), let p € S • If P = q then

the preceding part shows that the collection [V } meets all

requirements. If p ^ q then there exists an m such that

p € vm\ vm+l' N o W f m ^ = f m ^ # W e u s e a s a

base for p the collection {U (p) n (U (p) W ~ ^) ) . This is a

subcollection of the {U ] at p in Lemma 3.1, and it follows

from this lemma that it inherits the required properties from

3.1. (ii).

Condition (iv) is an immediate consequence of the defini-

tions.

3.3. Lemma. Let X be complete metric, f: X — > C ja

mapping from X into the Cantor set; let S satisfy (i)

and (ii) ojE Lemma 3.1. Let B be. â  discrete collection of

non- empty open subsets of X and let cp: B > S be a choice

function which assigns to every BeR a. point cp(B) i S PI B.

Then there exists a. subset S of S such that:

(i) cp[B] c S.

(ii) f | S is continuous at every point of cp[B] .

(iii) S satisifes (i) and (ii) of Lemma 3.1.

(iv) S Q \ UB = S\UB.



Proof: We define S from the S of the previous lemma:

S = U {Sg|q = cp(B) : BeB] U (SQ\UB) .

Next we will check the conditions.

(i) For every q we have q e S e S and hence cp[B] c S c S .

(ii) The continuity on cp[B] follows from the continuity in

every q.

(iii) Let 0 be open in X. If 0 intersects some B then

3.1. (i) follows from 3.2 (ii). If 0 is non-empty and inter-

sects no B then 3.1. (i) follows from 3.1. (i) for SQ.

If peB for some BefR then 3.1 (ii) follows from 3.2 (iii).

If p / UB then there exists an open neighborhood 0 of p

which intersects only one B. If we take 0\B! then we have

an open neighborhood of p in which S coincides with S

and now 3.1 (ii) follows immediately,

(iv) Obvious since S c B for every B c B.

3.4. Theorem. Let X bê  a, complete metric space and let f

be an arbitrary mapping from X into the Cantor set c. Then

there exists a, dense subset D o_f X such that f | D jus con-

tinuous.

OD

Proof: Let B = U B be a s-discrete collection of open
n=l

sets of X which constitute a base for the topology. We define

our subset D by induction.
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Start, Let S be the subset defined in Lemma 3.1.
o

Let B-. * be the collection of all non-empty members of B^.

Let cp_ s ft-* >S be any choice function on B^* and let

S, be a subset which satisfies 3.3 (i), (ii), (iii) and (iv).

Define D, = cp, [B.,] .

Step. If for every meHN, m < n the sets B *, Sm, and D
m m m

are defined, then we define the collection B * by:

B * = {B|BeBn; B ^ 0; B n Dm = 0 for all m < n}.

cp : B * > S T is just a choice function and S is a subset
^n n n-1 n

of S ., which can be defined by Lemma 3.3 and which satisfies

3.3 (i) , (ii), (iii) and (iv) with respect to (&n*, Sn_ ̂

and cpn- We define Dn = ^n^n^l •
GD

When we define D = U D , then it follows from 3.3(i)
n=l n

and (iv) that D c S for every n. Now it follows from

3.3(ii) that, whenever p e D 9 the function f|D is continuous

at p, and therefore f is continuous on D. Since every non-

empty member of B contains at least one member of D it follows

that D is dense. This finishes the proof.
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§4. Conclusions,

4.1. Theorem. If f L̂s an arbitrary mapping from a. complete

metric space X into ja separable metric space Y then there exists

<L dense subset D oj: X such that f |D JLJS continuous.

Proof; The closed unit interval is a continuous image of

the Cantor set, and hence the Hilbert cube is also a continuous

image of the countable product of Cantor sets, and this is again

the Cantor set. Let cp be a continuous function of the Cantor

set C onto the Hilbert cube H. Let 77 be an arbitrary func-

tion from H into C such that cp © 77 is the identity on H.

(In fact, 77 can be seen as the composition of cp with a

choice function on the subsets of cp"" . ) . Let g be an arbitrary

function from X into H. Then 77 o g is a function from X

into C. Let D be the dense subset of X constructed in 3.4.
g

Then 77 o g|D is continuous. Since cp is continuous,

cpor?og|D = g|D is continuous. Since Y is separable metric,

it is homeomorphic with a subset of H. Let 0 be the homeo-

morphism: tyz Y >H. If we put g = 0 c f then since if

is 1-1 and continuous we find that if c g is continuous on

D and hence ty o $ « f = f is continuous on D .

4.2. Corollaries. Every function from the real line into

the real line can be restricted to some dense subset such that

the restriction is continuous.
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Every function from the Euclidean n~space into the Eucli-

dean m-space can be restricted to some dense subset such that

the restriction is continuous.

4.3. Proposition. (a) jEf <a space Z can be mapped one

to one onto â  complete metric space such that the inverse images

of dense subsets are dense, then every mapping from Z into ja

separable metric space Y can be restricted to some dense sub-

set of Z such that the restriction is continuous.

(b) IJf X is a dense subspace of a. space X* and every

function from X into Y can be restricted to some dense

subset of X such that the restriction is continuous, then the

same is true for mappings from X* into Y.

Proof: Both parts are obvious.

4.4. Corollaries: If f is a function from X into Y

then there exist a dense subset D of X such that f|D is

continuous when Y is separable metric and X meets one of

the following requirements:

(i) X is the Sorgenfrei half-open interval space.

(ii) X is any compactification of a complete metric space,

(iii) X is some set of ordinals.

(iv) X is the Urysohn space, (i.e. the lexicographical

product of the closed interval [0,1] with the two point set

{0,1}.
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(v) Every point of X has a completely metrizable

neighborhood

(vi) X is a topological manifold.

Proof; (v) The proof is carried out by transfinite induc-

tion. Well-order the points of X. To the first point we assign

a complete metric neighborhood. For every other point which is

not in the closure of all earlier-assigned neighborhoods we

assign a neighborhood which is complete metric and which does

not intersect any of the previously assigned neighborhoods. The

union of these neighborhoods is a dense complete metric subspace

of X; and we can apply 4.3(b).

The parts (i)y (ii)9 (iii), (iv) and (vi) are left to

the reader.

4.5. Proposition. (a) A topological space X is. j-L Baire-

space if and only if every function f from X into a. countable

T^- space can be restricted to <a dense isubset of X, such that

the restriction is continuous.

(b) A topological space X is scattered if and only _if

every function f defined on some subset Y of. X with arbi-

trary range, can be restricted to some dense subset c>f Y such

that the restriction is continuous.
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Remark. During the preparation of this paper I discovered

that some of the main results had been published in [2].
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